Merge tag 'nfs-for-6.10-1' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
[linux-block.git] / fs / eventpoll.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  fs/eventpoll.c (Efficient event retrieval implementation)
4  *  Copyright (C) 2001,...,2009  Davide Libenzi
5  *
6  *  Davide Libenzi <davidel@xmailserver.org>
7  */
8
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/signal.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/signal.h>
15 #include <linux/errno.h>
16 #include <linux/mm.h>
17 #include <linux/slab.h>
18 #include <linux/poll.h>
19 #include <linux/string.h>
20 #include <linux/list.h>
21 #include <linux/hash.h>
22 #include <linux/spinlock.h>
23 #include <linux/syscalls.h>
24 #include <linux/rbtree.h>
25 #include <linux/wait.h>
26 #include <linux/eventpoll.h>
27 #include <linux/mount.h>
28 #include <linux/bitops.h>
29 #include <linux/mutex.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/device.h>
32 #include <linux/uaccess.h>
33 #include <asm/io.h>
34 #include <asm/mman.h>
35 #include <linux/atomic.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/compat.h>
39 #include <linux/rculist.h>
40 #include <linux/capability.h>
41 #include <net/busy_poll.h>
42
43 /*
44  * LOCKING:
45  * There are three level of locking required by epoll :
46  *
47  * 1) epnested_mutex (mutex)
48  * 2) ep->mtx (mutex)
49  * 3) ep->lock (rwlock)
50  *
51  * The acquire order is the one listed above, from 1 to 3.
52  * We need a rwlock (ep->lock) because we manipulate objects
53  * from inside the poll callback, that might be triggered from
54  * a wake_up() that in turn might be called from IRQ context.
55  * So we can't sleep inside the poll callback and hence we need
56  * a spinlock. During the event transfer loop (from kernel to
57  * user space) we could end up sleeping due a copy_to_user(), so
58  * we need a lock that will allow us to sleep. This lock is a
59  * mutex (ep->mtx). It is acquired during the event transfer loop,
60  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
61  * The epnested_mutex is acquired when inserting an epoll fd onto another
62  * epoll fd. We do this so that we walk the epoll tree and ensure that this
63  * insertion does not create a cycle of epoll file descriptors, which
64  * could lead to deadlock. We need a global mutex to prevent two
65  * simultaneous inserts (A into B and B into A) from racing and
66  * constructing a cycle without either insert observing that it is
67  * going to.
68  * It is necessary to acquire multiple "ep->mtx"es at once in the
69  * case when one epoll fd is added to another. In this case, we
70  * always acquire the locks in the order of nesting (i.e. after
71  * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
72  * before e2->mtx). Since we disallow cycles of epoll file
73  * descriptors, this ensures that the mutexes are well-ordered. In
74  * order to communicate this nesting to lockdep, when walking a tree
75  * of epoll file descriptors, we use the current recursion depth as
76  * the lockdep subkey.
77  * It is possible to drop the "ep->mtx" and to use the global
78  * mutex "epnested_mutex" (together with "ep->lock") to have it working,
79  * but having "ep->mtx" will make the interface more scalable.
80  * Events that require holding "epnested_mutex" are very rare, while for
81  * normal operations the epoll private "ep->mtx" will guarantee
82  * a better scalability.
83  */
84
85 /* Epoll private bits inside the event mask */
86 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
87
88 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
89
90 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
91                                 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
92
93 /* Maximum number of nesting allowed inside epoll sets */
94 #define EP_MAX_NESTS 4
95
96 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
97
98 #define EP_UNACTIVE_PTR ((void *) -1L)
99
100 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
101
102 struct epoll_filefd {
103         struct file *file;
104         int fd;
105 } __packed;
106
107 /* Wait structure used by the poll hooks */
108 struct eppoll_entry {
109         /* List header used to link this structure to the "struct epitem" */
110         struct eppoll_entry *next;
111
112         /* The "base" pointer is set to the container "struct epitem" */
113         struct epitem *base;
114
115         /*
116          * Wait queue item that will be linked to the target file wait
117          * queue head.
118          */
119         wait_queue_entry_t wait;
120
121         /* The wait queue head that linked the "wait" wait queue item */
122         wait_queue_head_t *whead;
123 };
124
125 /*
126  * Each file descriptor added to the eventpoll interface will
127  * have an entry of this type linked to the "rbr" RB tree.
128  * Avoid increasing the size of this struct, there can be many thousands
129  * of these on a server and we do not want this to take another cache line.
130  */
131 struct epitem {
132         union {
133                 /* RB tree node links this structure to the eventpoll RB tree */
134                 struct rb_node rbn;
135                 /* Used to free the struct epitem */
136                 struct rcu_head rcu;
137         };
138
139         /* List header used to link this structure to the eventpoll ready list */
140         struct list_head rdllink;
141
142         /*
143          * Works together "struct eventpoll"->ovflist in keeping the
144          * single linked chain of items.
145          */
146         struct epitem *next;
147
148         /* The file descriptor information this item refers to */
149         struct epoll_filefd ffd;
150
151         /*
152          * Protected by file->f_lock, true for to-be-released epitem already
153          * removed from the "struct file" items list; together with
154          * eventpoll->refcount orchestrates "struct eventpoll" disposal
155          */
156         bool dying;
157
158         /* List containing poll wait queues */
159         struct eppoll_entry *pwqlist;
160
161         /* The "container" of this item */
162         struct eventpoll *ep;
163
164         /* List header used to link this item to the "struct file" items list */
165         struct hlist_node fllink;
166
167         /* wakeup_source used when EPOLLWAKEUP is set */
168         struct wakeup_source __rcu *ws;
169
170         /* The structure that describe the interested events and the source fd */
171         struct epoll_event event;
172 };
173
174 /*
175  * This structure is stored inside the "private_data" member of the file
176  * structure and represents the main data structure for the eventpoll
177  * interface.
178  */
179 struct eventpoll {
180         /*
181          * This mutex is used to ensure that files are not removed
182          * while epoll is using them. This is held during the event
183          * collection loop, the file cleanup path, the epoll file exit
184          * code and the ctl operations.
185          */
186         struct mutex mtx;
187
188         /* Wait queue used by sys_epoll_wait() */
189         wait_queue_head_t wq;
190
191         /* Wait queue used by file->poll() */
192         wait_queue_head_t poll_wait;
193
194         /* List of ready file descriptors */
195         struct list_head rdllist;
196
197         /* Lock which protects rdllist and ovflist */
198         rwlock_t lock;
199
200         /* RB tree root used to store monitored fd structs */
201         struct rb_root_cached rbr;
202
203         /*
204          * This is a single linked list that chains all the "struct epitem" that
205          * happened while transferring ready events to userspace w/out
206          * holding ->lock.
207          */
208         struct epitem *ovflist;
209
210         /* wakeup_source used when ep_send_events or __ep_eventpoll_poll is running */
211         struct wakeup_source *ws;
212
213         /* The user that created the eventpoll descriptor */
214         struct user_struct *user;
215
216         struct file *file;
217
218         /* used to optimize loop detection check */
219         u64 gen;
220         struct hlist_head refs;
221
222         /*
223          * usage count, used together with epitem->dying to
224          * orchestrate the disposal of this struct
225          */
226         refcount_t refcount;
227
228 #ifdef CONFIG_NET_RX_BUSY_POLL
229         /* used to track busy poll napi_id */
230         unsigned int napi_id;
231         /* busy poll timeout */
232         u32 busy_poll_usecs;
233         /* busy poll packet budget */
234         u16 busy_poll_budget;
235         bool prefer_busy_poll;
236 #endif
237
238 #ifdef CONFIG_DEBUG_LOCK_ALLOC
239         /* tracks wakeup nests for lockdep validation */
240         u8 nests;
241 #endif
242 };
243
244 /* Wrapper struct used by poll queueing */
245 struct ep_pqueue {
246         poll_table pt;
247         struct epitem *epi;
248 };
249
250 /*
251  * Configuration options available inside /proc/sys/fs/epoll/
252  */
253 /* Maximum number of epoll watched descriptors, per user */
254 static long max_user_watches __read_mostly;
255
256 /* Used for cycles detection */
257 static DEFINE_MUTEX(epnested_mutex);
258
259 static u64 loop_check_gen = 0;
260
261 /* Used to check for epoll file descriptor inclusion loops */
262 static struct eventpoll *inserting_into;
263
264 /* Slab cache used to allocate "struct epitem" */
265 static struct kmem_cache *epi_cache __ro_after_init;
266
267 /* Slab cache used to allocate "struct eppoll_entry" */
268 static struct kmem_cache *pwq_cache __ro_after_init;
269
270 /*
271  * List of files with newly added links, where we may need to limit the number
272  * of emanating paths. Protected by the epnested_mutex.
273  */
274 struct epitems_head {
275         struct hlist_head epitems;
276         struct epitems_head *next;
277 };
278 static struct epitems_head *tfile_check_list = EP_UNACTIVE_PTR;
279
280 static struct kmem_cache *ephead_cache __ro_after_init;
281
282 static inline void free_ephead(struct epitems_head *head)
283 {
284         if (head)
285                 kmem_cache_free(ephead_cache, head);
286 }
287
288 static void list_file(struct file *file)
289 {
290         struct epitems_head *head;
291
292         head = container_of(file->f_ep, struct epitems_head, epitems);
293         if (!head->next) {
294                 head->next = tfile_check_list;
295                 tfile_check_list = head;
296         }
297 }
298
299 static void unlist_file(struct epitems_head *head)
300 {
301         struct epitems_head *to_free = head;
302         struct hlist_node *p = rcu_dereference(hlist_first_rcu(&head->epitems));
303         if (p) {
304                 struct epitem *epi= container_of(p, struct epitem, fllink);
305                 spin_lock(&epi->ffd.file->f_lock);
306                 if (!hlist_empty(&head->epitems))
307                         to_free = NULL;
308                 head->next = NULL;
309                 spin_unlock(&epi->ffd.file->f_lock);
310         }
311         free_ephead(to_free);
312 }
313
314 #ifdef CONFIG_SYSCTL
315
316 #include <linux/sysctl.h>
317
318 static long long_zero;
319 static long long_max = LONG_MAX;
320
321 static struct ctl_table epoll_table[] = {
322         {
323                 .procname       = "max_user_watches",
324                 .data           = &max_user_watches,
325                 .maxlen         = sizeof(max_user_watches),
326                 .mode           = 0644,
327                 .proc_handler   = proc_doulongvec_minmax,
328                 .extra1         = &long_zero,
329                 .extra2         = &long_max,
330         },
331 };
332
333 static void __init epoll_sysctls_init(void)
334 {
335         register_sysctl("fs/epoll", epoll_table);
336 }
337 #else
338 #define epoll_sysctls_init() do { } while (0)
339 #endif /* CONFIG_SYSCTL */
340
341 static const struct file_operations eventpoll_fops;
342
343 static inline int is_file_epoll(struct file *f)
344 {
345         return f->f_op == &eventpoll_fops;
346 }
347
348 /* Setup the structure that is used as key for the RB tree */
349 static inline void ep_set_ffd(struct epoll_filefd *ffd,
350                               struct file *file, int fd)
351 {
352         ffd->file = file;
353         ffd->fd = fd;
354 }
355
356 /* Compare RB tree keys */
357 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
358                              struct epoll_filefd *p2)
359 {
360         return (p1->file > p2->file ? +1:
361                 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
362 }
363
364 /* Tells us if the item is currently linked */
365 static inline int ep_is_linked(struct epitem *epi)
366 {
367         return !list_empty(&epi->rdllink);
368 }
369
370 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
371 {
372         return container_of(p, struct eppoll_entry, wait);
373 }
374
375 /* Get the "struct epitem" from a wait queue pointer */
376 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
377 {
378         return container_of(p, struct eppoll_entry, wait)->base;
379 }
380
381 /**
382  * ep_events_available - Checks if ready events might be available.
383  *
384  * @ep: Pointer to the eventpoll context.
385  *
386  * Return: a value different than %zero if ready events are available,
387  *          or %zero otherwise.
388  */
389 static inline int ep_events_available(struct eventpoll *ep)
390 {
391         return !list_empty_careful(&ep->rdllist) ||
392                 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
393 }
394
395 #ifdef CONFIG_NET_RX_BUSY_POLL
396 /**
397  * busy_loop_ep_timeout - check if busy poll has timed out. The timeout value
398  * from the epoll instance ep is preferred, but if it is not set fallback to
399  * the system-wide global via busy_loop_timeout.
400  *
401  * @start_time: The start time used to compute the remaining time until timeout.
402  * @ep: Pointer to the eventpoll context.
403  *
404  * Return: true if the timeout has expired, false otherwise.
405  */
406 static bool busy_loop_ep_timeout(unsigned long start_time,
407                                  struct eventpoll *ep)
408 {
409         unsigned long bp_usec = READ_ONCE(ep->busy_poll_usecs);
410
411         if (bp_usec) {
412                 unsigned long end_time = start_time + bp_usec;
413                 unsigned long now = busy_loop_current_time();
414
415                 return time_after(now, end_time);
416         } else {
417                 return busy_loop_timeout(start_time);
418         }
419 }
420
421 static bool ep_busy_loop_on(struct eventpoll *ep)
422 {
423         return !!ep->busy_poll_usecs || net_busy_loop_on();
424 }
425
426 static bool ep_busy_loop_end(void *p, unsigned long start_time)
427 {
428         struct eventpoll *ep = p;
429
430         return ep_events_available(ep) || busy_loop_ep_timeout(start_time, ep);
431 }
432
433 /*
434  * Busy poll if globally on and supporting sockets found && no events,
435  * busy loop will return if need_resched or ep_events_available.
436  *
437  * we must do our busy polling with irqs enabled
438  */
439 static bool ep_busy_loop(struct eventpoll *ep, int nonblock)
440 {
441         unsigned int napi_id = READ_ONCE(ep->napi_id);
442         u16 budget = READ_ONCE(ep->busy_poll_budget);
443         bool prefer_busy_poll = READ_ONCE(ep->prefer_busy_poll);
444
445         if (!budget)
446                 budget = BUSY_POLL_BUDGET;
447
448         if (napi_id >= MIN_NAPI_ID && ep_busy_loop_on(ep)) {
449                 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end,
450                                ep, prefer_busy_poll, budget);
451                 if (ep_events_available(ep))
452                         return true;
453                 /*
454                  * Busy poll timed out.  Drop NAPI ID for now, we can add
455                  * it back in when we have moved a socket with a valid NAPI
456                  * ID onto the ready list.
457                  */
458                 ep->napi_id = 0;
459                 return false;
460         }
461         return false;
462 }
463
464 /*
465  * Set epoll busy poll NAPI ID from sk.
466  */
467 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
468 {
469         struct eventpoll *ep = epi->ep;
470         unsigned int napi_id;
471         struct socket *sock;
472         struct sock *sk;
473
474         if (!ep_busy_loop_on(ep))
475                 return;
476
477         sock = sock_from_file(epi->ffd.file);
478         if (!sock)
479                 return;
480
481         sk = sock->sk;
482         if (!sk)
483                 return;
484
485         napi_id = READ_ONCE(sk->sk_napi_id);
486
487         /* Non-NAPI IDs can be rejected
488          *      or
489          * Nothing to do if we already have this ID
490          */
491         if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
492                 return;
493
494         /* record NAPI ID for use in next busy poll */
495         ep->napi_id = napi_id;
496 }
497
498 static long ep_eventpoll_bp_ioctl(struct file *file, unsigned int cmd,
499                                   unsigned long arg)
500 {
501         struct eventpoll *ep = file->private_data;
502         void __user *uarg = (void __user *)arg;
503         struct epoll_params epoll_params;
504
505         switch (cmd) {
506         case EPIOCSPARAMS:
507                 if (copy_from_user(&epoll_params, uarg, sizeof(epoll_params)))
508                         return -EFAULT;
509
510                 /* pad byte must be zero */
511                 if (epoll_params.__pad)
512                         return -EINVAL;
513
514                 if (epoll_params.busy_poll_usecs > S32_MAX)
515                         return -EINVAL;
516
517                 if (epoll_params.prefer_busy_poll > 1)
518                         return -EINVAL;
519
520                 if (epoll_params.busy_poll_budget > NAPI_POLL_WEIGHT &&
521                     !capable(CAP_NET_ADMIN))
522                         return -EPERM;
523
524                 WRITE_ONCE(ep->busy_poll_usecs, epoll_params.busy_poll_usecs);
525                 WRITE_ONCE(ep->busy_poll_budget, epoll_params.busy_poll_budget);
526                 WRITE_ONCE(ep->prefer_busy_poll, epoll_params.prefer_busy_poll);
527                 return 0;
528         case EPIOCGPARAMS:
529                 memset(&epoll_params, 0, sizeof(epoll_params));
530                 epoll_params.busy_poll_usecs = READ_ONCE(ep->busy_poll_usecs);
531                 epoll_params.busy_poll_budget = READ_ONCE(ep->busy_poll_budget);
532                 epoll_params.prefer_busy_poll = READ_ONCE(ep->prefer_busy_poll);
533                 if (copy_to_user(uarg, &epoll_params, sizeof(epoll_params)))
534                         return -EFAULT;
535                 return 0;
536         default:
537                 return -ENOIOCTLCMD;
538         }
539 }
540
541 #else
542
543 static inline bool ep_busy_loop(struct eventpoll *ep, int nonblock)
544 {
545         return false;
546 }
547
548 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
549 {
550 }
551
552 static long ep_eventpoll_bp_ioctl(struct file *file, unsigned int cmd,
553                                   unsigned long arg)
554 {
555         return -EOPNOTSUPP;
556 }
557
558 #endif /* CONFIG_NET_RX_BUSY_POLL */
559
560 /*
561  * As described in commit 0ccf831cb lockdep: annotate epoll
562  * the use of wait queues used by epoll is done in a very controlled
563  * manner. Wake ups can nest inside each other, but are never done
564  * with the same locking. For example:
565  *
566  *   dfd = socket(...);
567  *   efd1 = epoll_create();
568  *   efd2 = epoll_create();
569  *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
570  *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
571  *
572  * When a packet arrives to the device underneath "dfd", the net code will
573  * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
574  * callback wakeup entry on that queue, and the wake_up() performed by the
575  * "dfd" net code will end up in ep_poll_callback(). At this point epoll
576  * (efd1) notices that it may have some event ready, so it needs to wake up
577  * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
578  * that ends up in another wake_up(), after having checked about the
579  * recursion constraints. That are, no more than EP_MAX_NESTS, to avoid
580  * stack blasting.
581  *
582  * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
583  * this special case of epoll.
584  */
585 #ifdef CONFIG_DEBUG_LOCK_ALLOC
586
587 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
588                              unsigned pollflags)
589 {
590         struct eventpoll *ep_src;
591         unsigned long flags;
592         u8 nests = 0;
593
594         /*
595          * To set the subclass or nesting level for spin_lock_irqsave_nested()
596          * it might be natural to create a per-cpu nest count. However, since
597          * we can recurse on ep->poll_wait.lock, and a non-raw spinlock can
598          * schedule() in the -rt kernel, the per-cpu variable are no longer
599          * protected. Thus, we are introducing a per eventpoll nest field.
600          * If we are not being call from ep_poll_callback(), epi is NULL and
601          * we are at the first level of nesting, 0. Otherwise, we are being
602          * called from ep_poll_callback() and if a previous wakeup source is
603          * not an epoll file itself, we are at depth 1 since the wakeup source
604          * is depth 0. If the wakeup source is a previous epoll file in the
605          * wakeup chain then we use its nests value and record ours as
606          * nests + 1. The previous epoll file nests value is stable since its
607          * already holding its own poll_wait.lock.
608          */
609         if (epi) {
610                 if ((is_file_epoll(epi->ffd.file))) {
611                         ep_src = epi->ffd.file->private_data;
612                         nests = ep_src->nests;
613                 } else {
614                         nests = 1;
615                 }
616         }
617         spin_lock_irqsave_nested(&ep->poll_wait.lock, flags, nests);
618         ep->nests = nests + 1;
619         wake_up_locked_poll(&ep->poll_wait, EPOLLIN | pollflags);
620         ep->nests = 0;
621         spin_unlock_irqrestore(&ep->poll_wait.lock, flags);
622 }
623
624 #else
625
626 static void ep_poll_safewake(struct eventpoll *ep, struct epitem *epi,
627                              __poll_t pollflags)
628 {
629         wake_up_poll(&ep->poll_wait, EPOLLIN | pollflags);
630 }
631
632 #endif
633
634 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
635 {
636         wait_queue_head_t *whead;
637
638         rcu_read_lock();
639         /*
640          * If it is cleared by POLLFREE, it should be rcu-safe.
641          * If we read NULL we need a barrier paired with
642          * smp_store_release() in ep_poll_callback(), otherwise
643          * we rely on whead->lock.
644          */
645         whead = smp_load_acquire(&pwq->whead);
646         if (whead)
647                 remove_wait_queue(whead, &pwq->wait);
648         rcu_read_unlock();
649 }
650
651 /*
652  * This function unregisters poll callbacks from the associated file
653  * descriptor.  Must be called with "mtx" held.
654  */
655 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
656 {
657         struct eppoll_entry **p = &epi->pwqlist;
658         struct eppoll_entry *pwq;
659
660         while ((pwq = *p) != NULL) {
661                 *p = pwq->next;
662                 ep_remove_wait_queue(pwq);
663                 kmem_cache_free(pwq_cache, pwq);
664         }
665 }
666
667 /* call only when ep->mtx is held */
668 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
669 {
670         return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
671 }
672
673 /* call only when ep->mtx is held */
674 static inline void ep_pm_stay_awake(struct epitem *epi)
675 {
676         struct wakeup_source *ws = ep_wakeup_source(epi);
677
678         if (ws)
679                 __pm_stay_awake(ws);
680 }
681
682 static inline bool ep_has_wakeup_source(struct epitem *epi)
683 {
684         return rcu_access_pointer(epi->ws) ? true : false;
685 }
686
687 /* call when ep->mtx cannot be held (ep_poll_callback) */
688 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
689 {
690         struct wakeup_source *ws;
691
692         rcu_read_lock();
693         ws = rcu_dereference(epi->ws);
694         if (ws)
695                 __pm_stay_awake(ws);
696         rcu_read_unlock();
697 }
698
699
700 /*
701  * ep->mutex needs to be held because we could be hit by
702  * eventpoll_release_file() and epoll_ctl().
703  */
704 static void ep_start_scan(struct eventpoll *ep, struct list_head *txlist)
705 {
706         /*
707          * Steal the ready list, and re-init the original one to the
708          * empty list. Also, set ep->ovflist to NULL so that events
709          * happening while looping w/out locks, are not lost. We cannot
710          * have the poll callback to queue directly on ep->rdllist,
711          * because we want the "sproc" callback to be able to do it
712          * in a lockless way.
713          */
714         lockdep_assert_irqs_enabled();
715         write_lock_irq(&ep->lock);
716         list_splice_init(&ep->rdllist, txlist);
717         WRITE_ONCE(ep->ovflist, NULL);
718         write_unlock_irq(&ep->lock);
719 }
720
721 static void ep_done_scan(struct eventpoll *ep,
722                          struct list_head *txlist)
723 {
724         struct epitem *epi, *nepi;
725
726         write_lock_irq(&ep->lock);
727         /*
728          * During the time we spent inside the "sproc" callback, some
729          * other events might have been queued by the poll callback.
730          * We re-insert them inside the main ready-list here.
731          */
732         for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
733              nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
734                 /*
735                  * We need to check if the item is already in the list.
736                  * During the "sproc" callback execution time, items are
737                  * queued into ->ovflist but the "txlist" might already
738                  * contain them, and the list_splice() below takes care of them.
739                  */
740                 if (!ep_is_linked(epi)) {
741                         /*
742                          * ->ovflist is LIFO, so we have to reverse it in order
743                          * to keep in FIFO.
744                          */
745                         list_add(&epi->rdllink, &ep->rdllist);
746                         ep_pm_stay_awake(epi);
747                 }
748         }
749         /*
750          * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
751          * releasing the lock, events will be queued in the normal way inside
752          * ep->rdllist.
753          */
754         WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
755
756         /*
757          * Quickly re-inject items left on "txlist".
758          */
759         list_splice(txlist, &ep->rdllist);
760         __pm_relax(ep->ws);
761
762         if (!list_empty(&ep->rdllist)) {
763                 if (waitqueue_active(&ep->wq))
764                         wake_up(&ep->wq);
765         }
766
767         write_unlock_irq(&ep->lock);
768 }
769
770 static void ep_get(struct eventpoll *ep)
771 {
772         refcount_inc(&ep->refcount);
773 }
774
775 /*
776  * Returns true if the event poll can be disposed
777  */
778 static bool ep_refcount_dec_and_test(struct eventpoll *ep)
779 {
780         if (!refcount_dec_and_test(&ep->refcount))
781                 return false;
782
783         WARN_ON_ONCE(!RB_EMPTY_ROOT(&ep->rbr.rb_root));
784         return true;
785 }
786
787 static void ep_free(struct eventpoll *ep)
788 {
789         mutex_destroy(&ep->mtx);
790         free_uid(ep->user);
791         wakeup_source_unregister(ep->ws);
792         kfree(ep);
793 }
794
795 /*
796  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
797  * all the associated resources. Must be called with "mtx" held.
798  * If the dying flag is set, do the removal only if force is true.
799  * This prevents ep_clear_and_put() from dropping all the ep references
800  * while running concurrently with eventpoll_release_file().
801  * Returns true if the eventpoll can be disposed.
802  */
803 static bool __ep_remove(struct eventpoll *ep, struct epitem *epi, bool force)
804 {
805         struct file *file = epi->ffd.file;
806         struct epitems_head *to_free;
807         struct hlist_head *head;
808
809         lockdep_assert_irqs_enabled();
810
811         /*
812          * Removes poll wait queue hooks.
813          */
814         ep_unregister_pollwait(ep, epi);
815
816         /* Remove the current item from the list of epoll hooks */
817         spin_lock(&file->f_lock);
818         if (epi->dying && !force) {
819                 spin_unlock(&file->f_lock);
820                 return false;
821         }
822
823         to_free = NULL;
824         head = file->f_ep;
825         if (head->first == &epi->fllink && !epi->fllink.next) {
826                 file->f_ep = NULL;
827                 if (!is_file_epoll(file)) {
828                         struct epitems_head *v;
829                         v = container_of(head, struct epitems_head, epitems);
830                         if (!smp_load_acquire(&v->next))
831                                 to_free = v;
832                 }
833         }
834         hlist_del_rcu(&epi->fllink);
835         spin_unlock(&file->f_lock);
836         free_ephead(to_free);
837
838         rb_erase_cached(&epi->rbn, &ep->rbr);
839
840         write_lock_irq(&ep->lock);
841         if (ep_is_linked(epi))
842                 list_del_init(&epi->rdllink);
843         write_unlock_irq(&ep->lock);
844
845         wakeup_source_unregister(ep_wakeup_source(epi));
846         /*
847          * At this point it is safe to free the eventpoll item. Use the union
848          * field epi->rcu, since we are trying to minimize the size of
849          * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
850          * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
851          * use of the rbn field.
852          */
853         kfree_rcu(epi, rcu);
854
855         percpu_counter_dec(&ep->user->epoll_watches);
856         return ep_refcount_dec_and_test(ep);
857 }
858
859 /*
860  * ep_remove variant for callers owing an additional reference to the ep
861  */
862 static void ep_remove_safe(struct eventpoll *ep, struct epitem *epi)
863 {
864         WARN_ON_ONCE(__ep_remove(ep, epi, false));
865 }
866
867 static void ep_clear_and_put(struct eventpoll *ep)
868 {
869         struct rb_node *rbp, *next;
870         struct epitem *epi;
871         bool dispose;
872
873         /* We need to release all tasks waiting for these file */
874         if (waitqueue_active(&ep->poll_wait))
875                 ep_poll_safewake(ep, NULL, 0);
876
877         mutex_lock(&ep->mtx);
878
879         /*
880          * Walks through the whole tree by unregistering poll callbacks.
881          */
882         for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
883                 epi = rb_entry(rbp, struct epitem, rbn);
884
885                 ep_unregister_pollwait(ep, epi);
886                 cond_resched();
887         }
888
889         /*
890          * Walks through the whole tree and try to free each "struct epitem".
891          * Note that ep_remove_safe() will not remove the epitem in case of a
892          * racing eventpoll_release_file(); the latter will do the removal.
893          * At this point we are sure no poll callbacks will be lingering around.
894          * Since we still own a reference to the eventpoll struct, the loop can't
895          * dispose it.
896          */
897         for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = next) {
898                 next = rb_next(rbp);
899                 epi = rb_entry(rbp, struct epitem, rbn);
900                 ep_remove_safe(ep, epi);
901                 cond_resched();
902         }
903
904         dispose = ep_refcount_dec_and_test(ep);
905         mutex_unlock(&ep->mtx);
906
907         if (dispose)
908                 ep_free(ep);
909 }
910
911 static long ep_eventpoll_ioctl(struct file *file, unsigned int cmd,
912                                unsigned long arg)
913 {
914         int ret;
915
916         if (!is_file_epoll(file))
917                 return -EINVAL;
918
919         switch (cmd) {
920         case EPIOCSPARAMS:
921         case EPIOCGPARAMS:
922                 ret = ep_eventpoll_bp_ioctl(file, cmd, arg);
923                 break;
924         default:
925                 ret = -EINVAL;
926                 break;
927         }
928
929         return ret;
930 }
931
932 static int ep_eventpoll_release(struct inode *inode, struct file *file)
933 {
934         struct eventpoll *ep = file->private_data;
935
936         if (ep)
937                 ep_clear_and_put(ep);
938
939         return 0;
940 }
941
942 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt, int depth);
943
944 static __poll_t __ep_eventpoll_poll(struct file *file, poll_table *wait, int depth)
945 {
946         struct eventpoll *ep = file->private_data;
947         LIST_HEAD(txlist);
948         struct epitem *epi, *tmp;
949         poll_table pt;
950         __poll_t res = 0;
951
952         init_poll_funcptr(&pt, NULL);
953
954         /* Insert inside our poll wait queue */
955         poll_wait(file, &ep->poll_wait, wait);
956
957         /*
958          * Proceed to find out if wanted events are really available inside
959          * the ready list.
960          */
961         mutex_lock_nested(&ep->mtx, depth);
962         ep_start_scan(ep, &txlist);
963         list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
964                 if (ep_item_poll(epi, &pt, depth + 1)) {
965                         res = EPOLLIN | EPOLLRDNORM;
966                         break;
967                 } else {
968                         /*
969                          * Item has been dropped into the ready list by the poll
970                          * callback, but it's not actually ready, as far as
971                          * caller requested events goes. We can remove it here.
972                          */
973                         __pm_relax(ep_wakeup_source(epi));
974                         list_del_init(&epi->rdllink);
975                 }
976         }
977         ep_done_scan(ep, &txlist);
978         mutex_unlock(&ep->mtx);
979         return res;
980 }
981
982 /*
983  * The ffd.file pointer may be in the process of being torn down due to
984  * being closed, but we may not have finished eventpoll_release() yet.
985  *
986  * Normally, even with the atomic_long_inc_not_zero, the file may have
987  * been free'd and then gotten re-allocated to something else (since
988  * files are not RCU-delayed, they are SLAB_TYPESAFE_BY_RCU).
989  *
990  * But for epoll, users hold the ep->mtx mutex, and as such any file in
991  * the process of being free'd will block in eventpoll_release_file()
992  * and thus the underlying file allocation will not be free'd, and the
993  * file re-use cannot happen.
994  *
995  * For the same reason we can avoid a rcu_read_lock() around the
996  * operation - 'ffd.file' cannot go away even if the refcount has
997  * reached zero (but we must still not call out to ->poll() functions
998  * etc).
999  */
1000 static struct file *epi_fget(const struct epitem *epi)
1001 {
1002         struct file *file;
1003
1004         file = epi->ffd.file;
1005         if (!atomic_long_inc_not_zero(&file->f_count))
1006                 file = NULL;
1007         return file;
1008 }
1009
1010 /*
1011  * Differs from ep_eventpoll_poll() in that internal callers already have
1012  * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
1013  * is correctly annotated.
1014  */
1015 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
1016                                  int depth)
1017 {
1018         struct file *file = epi_fget(epi);
1019         __poll_t res;
1020
1021         /*
1022          * We could return EPOLLERR | EPOLLHUP or something, but let's
1023          * treat this more as "file doesn't exist, poll didn't happen".
1024          */
1025         if (!file)
1026                 return 0;
1027
1028         pt->_key = epi->event.events;
1029         if (!is_file_epoll(file))
1030                 res = vfs_poll(file, pt);
1031         else
1032                 res = __ep_eventpoll_poll(file, pt, depth);
1033         fput(file);
1034         return res & epi->event.events;
1035 }
1036
1037 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
1038 {
1039         return __ep_eventpoll_poll(file, wait, 0);
1040 }
1041
1042 #ifdef CONFIG_PROC_FS
1043 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
1044 {
1045         struct eventpoll *ep = f->private_data;
1046         struct rb_node *rbp;
1047
1048         mutex_lock(&ep->mtx);
1049         for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1050                 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
1051                 struct inode *inode = file_inode(epi->ffd.file);
1052
1053                 seq_printf(m, "tfd: %8d events: %8x data: %16llx "
1054                            " pos:%lli ino:%lx sdev:%x\n",
1055                            epi->ffd.fd, epi->event.events,
1056                            (long long)epi->event.data,
1057                            (long long)epi->ffd.file->f_pos,
1058                            inode->i_ino, inode->i_sb->s_dev);
1059                 if (seq_has_overflowed(m))
1060                         break;
1061         }
1062         mutex_unlock(&ep->mtx);
1063 }
1064 #endif
1065
1066 /* File callbacks that implement the eventpoll file behaviour */
1067 static const struct file_operations eventpoll_fops = {
1068 #ifdef CONFIG_PROC_FS
1069         .show_fdinfo    = ep_show_fdinfo,
1070 #endif
1071         .release        = ep_eventpoll_release,
1072         .poll           = ep_eventpoll_poll,
1073         .llseek         = noop_llseek,
1074         .unlocked_ioctl = ep_eventpoll_ioctl,
1075         .compat_ioctl   = compat_ptr_ioctl,
1076 };
1077
1078 /*
1079  * This is called from eventpoll_release() to unlink files from the eventpoll
1080  * interface. We need to have this facility to cleanup correctly files that are
1081  * closed without being removed from the eventpoll interface.
1082  */
1083 void eventpoll_release_file(struct file *file)
1084 {
1085         struct eventpoll *ep;
1086         struct epitem *epi;
1087         bool dispose;
1088
1089         /*
1090          * Use the 'dying' flag to prevent a concurrent ep_clear_and_put() from
1091          * touching the epitems list before eventpoll_release_file() can access
1092          * the ep->mtx.
1093          */
1094 again:
1095         spin_lock(&file->f_lock);
1096         if (file->f_ep && file->f_ep->first) {
1097                 epi = hlist_entry(file->f_ep->first, struct epitem, fllink);
1098                 epi->dying = true;
1099                 spin_unlock(&file->f_lock);
1100
1101                 /*
1102                  * ep access is safe as we still own a reference to the ep
1103                  * struct
1104                  */
1105                 ep = epi->ep;
1106                 mutex_lock(&ep->mtx);
1107                 dispose = __ep_remove(ep, epi, true);
1108                 mutex_unlock(&ep->mtx);
1109
1110                 if (dispose)
1111                         ep_free(ep);
1112                 goto again;
1113         }
1114         spin_unlock(&file->f_lock);
1115 }
1116
1117 static int ep_alloc(struct eventpoll **pep)
1118 {
1119         struct eventpoll *ep;
1120
1121         ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1122         if (unlikely(!ep))
1123                 return -ENOMEM;
1124
1125         mutex_init(&ep->mtx);
1126         rwlock_init(&ep->lock);
1127         init_waitqueue_head(&ep->wq);
1128         init_waitqueue_head(&ep->poll_wait);
1129         INIT_LIST_HEAD(&ep->rdllist);
1130         ep->rbr = RB_ROOT_CACHED;
1131         ep->ovflist = EP_UNACTIVE_PTR;
1132         ep->user = get_current_user();
1133         refcount_set(&ep->refcount, 1);
1134
1135         *pep = ep;
1136
1137         return 0;
1138 }
1139
1140 /*
1141  * Search the file inside the eventpoll tree. The RB tree operations
1142  * are protected by the "mtx" mutex, and ep_find() must be called with
1143  * "mtx" held.
1144  */
1145 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1146 {
1147         int kcmp;
1148         struct rb_node *rbp;
1149         struct epitem *epi, *epir = NULL;
1150         struct epoll_filefd ffd;
1151
1152         ep_set_ffd(&ffd, file, fd);
1153         for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1154                 epi = rb_entry(rbp, struct epitem, rbn);
1155                 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1156                 if (kcmp > 0)
1157                         rbp = rbp->rb_right;
1158                 else if (kcmp < 0)
1159                         rbp = rbp->rb_left;
1160                 else {
1161                         epir = epi;
1162                         break;
1163                 }
1164         }
1165
1166         return epir;
1167 }
1168
1169 #ifdef CONFIG_KCMP
1170 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1171 {
1172         struct rb_node *rbp;
1173         struct epitem *epi;
1174
1175         for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1176                 epi = rb_entry(rbp, struct epitem, rbn);
1177                 if (epi->ffd.fd == tfd) {
1178                         if (toff == 0)
1179                                 return epi;
1180                         else
1181                                 toff--;
1182                 }
1183                 cond_resched();
1184         }
1185
1186         return NULL;
1187 }
1188
1189 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1190                                      unsigned long toff)
1191 {
1192         struct file *file_raw;
1193         struct eventpoll *ep;
1194         struct epitem *epi;
1195
1196         if (!is_file_epoll(file))
1197                 return ERR_PTR(-EINVAL);
1198
1199         ep = file->private_data;
1200
1201         mutex_lock(&ep->mtx);
1202         epi = ep_find_tfd(ep, tfd, toff);
1203         if (epi)
1204                 file_raw = epi->ffd.file;
1205         else
1206                 file_raw = ERR_PTR(-ENOENT);
1207         mutex_unlock(&ep->mtx);
1208
1209         return file_raw;
1210 }
1211 #endif /* CONFIG_KCMP */
1212
1213 /*
1214  * Adds a new entry to the tail of the list in a lockless way, i.e.
1215  * multiple CPUs are allowed to call this function concurrently.
1216  *
1217  * Beware: it is necessary to prevent any other modifications of the
1218  *         existing list until all changes are completed, in other words
1219  *         concurrent list_add_tail_lockless() calls should be protected
1220  *         with a read lock, where write lock acts as a barrier which
1221  *         makes sure all list_add_tail_lockless() calls are fully
1222  *         completed.
1223  *
1224  *        Also an element can be locklessly added to the list only in one
1225  *        direction i.e. either to the tail or to the head, otherwise
1226  *        concurrent access will corrupt the list.
1227  *
1228  * Return: %false if element has been already added to the list, %true
1229  * otherwise.
1230  */
1231 static inline bool list_add_tail_lockless(struct list_head *new,
1232                                           struct list_head *head)
1233 {
1234         struct list_head *prev;
1235
1236         /*
1237          * This is simple 'new->next = head' operation, but cmpxchg()
1238          * is used in order to detect that same element has been just
1239          * added to the list from another CPU: the winner observes
1240          * new->next == new.
1241          */
1242         if (!try_cmpxchg(&new->next, &new, head))
1243                 return false;
1244
1245         /*
1246          * Initially ->next of a new element must be updated with the head
1247          * (we are inserting to the tail) and only then pointers are atomically
1248          * exchanged.  XCHG guarantees memory ordering, thus ->next should be
1249          * updated before pointers are actually swapped and pointers are
1250          * swapped before prev->next is updated.
1251          */
1252
1253         prev = xchg(&head->prev, new);
1254
1255         /*
1256          * It is safe to modify prev->next and new->prev, because a new element
1257          * is added only to the tail and new->next is updated before XCHG.
1258          */
1259
1260         prev->next = new;
1261         new->prev = prev;
1262
1263         return true;
1264 }
1265
1266 /*
1267  * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1268  * i.e. multiple CPUs are allowed to call this function concurrently.
1269  *
1270  * Return: %false if epi element has been already chained, %true otherwise.
1271  */
1272 static inline bool chain_epi_lockless(struct epitem *epi)
1273 {
1274         struct eventpoll *ep = epi->ep;
1275
1276         /* Fast preliminary check */
1277         if (epi->next != EP_UNACTIVE_PTR)
1278                 return false;
1279
1280         /* Check that the same epi has not been just chained from another CPU */
1281         if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1282                 return false;
1283
1284         /* Atomically exchange tail */
1285         epi->next = xchg(&ep->ovflist, epi);
1286
1287         return true;
1288 }
1289
1290 /*
1291  * This is the callback that is passed to the wait queue wakeup
1292  * mechanism. It is called by the stored file descriptors when they
1293  * have events to report.
1294  *
1295  * This callback takes a read lock in order not to contend with concurrent
1296  * events from another file descriptor, thus all modifications to ->rdllist
1297  * or ->ovflist are lockless.  Read lock is paired with the write lock from
1298  * ep_start/done_scan(), which stops all list modifications and guarantees
1299  * that lists state is seen correctly.
1300  *
1301  * Another thing worth to mention is that ep_poll_callback() can be called
1302  * concurrently for the same @epi from different CPUs if poll table was inited
1303  * with several wait queues entries.  Plural wakeup from different CPUs of a
1304  * single wait queue is serialized by wq.lock, but the case when multiple wait
1305  * queues are used should be detected accordingly.  This is detected using
1306  * cmpxchg() operation.
1307  */
1308 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1309 {
1310         int pwake = 0;
1311         struct epitem *epi = ep_item_from_wait(wait);
1312         struct eventpoll *ep = epi->ep;
1313         __poll_t pollflags = key_to_poll(key);
1314         unsigned long flags;
1315         int ewake = 0;
1316
1317         read_lock_irqsave(&ep->lock, flags);
1318
1319         ep_set_busy_poll_napi_id(epi);
1320
1321         /*
1322          * If the event mask does not contain any poll(2) event, we consider the
1323          * descriptor to be disabled. This condition is likely the effect of the
1324          * EPOLLONESHOT bit that disables the descriptor when an event is received,
1325          * until the next EPOLL_CTL_MOD will be issued.
1326          */
1327         if (!(epi->event.events & ~EP_PRIVATE_BITS))
1328                 goto out_unlock;
1329
1330         /*
1331          * Check the events coming with the callback. At this stage, not
1332          * every device reports the events in the "key" parameter of the
1333          * callback. We need to be able to handle both cases here, hence the
1334          * test for "key" != NULL before the event match test.
1335          */
1336         if (pollflags && !(pollflags & epi->event.events))
1337                 goto out_unlock;
1338
1339         /*
1340          * If we are transferring events to userspace, we can hold no locks
1341          * (because we're accessing user memory, and because of linux f_op->poll()
1342          * semantics). All the events that happen during that period of time are
1343          * chained in ep->ovflist and requeued later on.
1344          */
1345         if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1346                 if (chain_epi_lockless(epi))
1347                         ep_pm_stay_awake_rcu(epi);
1348         } else if (!ep_is_linked(epi)) {
1349                 /* In the usual case, add event to ready list. */
1350                 if (list_add_tail_lockless(&epi->rdllink, &ep->rdllist))
1351                         ep_pm_stay_awake_rcu(epi);
1352         }
1353
1354         /*
1355          * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1356          * wait list.
1357          */
1358         if (waitqueue_active(&ep->wq)) {
1359                 if ((epi->event.events & EPOLLEXCLUSIVE) &&
1360                                         !(pollflags & POLLFREE)) {
1361                         switch (pollflags & EPOLLINOUT_BITS) {
1362                         case EPOLLIN:
1363                                 if (epi->event.events & EPOLLIN)
1364                                         ewake = 1;
1365                                 break;
1366                         case EPOLLOUT:
1367                                 if (epi->event.events & EPOLLOUT)
1368                                         ewake = 1;
1369                                 break;
1370                         case 0:
1371                                 ewake = 1;
1372                                 break;
1373                         }
1374                 }
1375                 wake_up(&ep->wq);
1376         }
1377         if (waitqueue_active(&ep->poll_wait))
1378                 pwake++;
1379
1380 out_unlock:
1381         read_unlock_irqrestore(&ep->lock, flags);
1382
1383         /* We have to call this outside the lock */
1384         if (pwake)
1385                 ep_poll_safewake(ep, epi, pollflags & EPOLL_URING_WAKE);
1386
1387         if (!(epi->event.events & EPOLLEXCLUSIVE))
1388                 ewake = 1;
1389
1390         if (pollflags & POLLFREE) {
1391                 /*
1392                  * If we race with ep_remove_wait_queue() it can miss
1393                  * ->whead = NULL and do another remove_wait_queue() after
1394                  * us, so we can't use __remove_wait_queue().
1395                  */
1396                 list_del_init(&wait->entry);
1397                 /*
1398                  * ->whead != NULL protects us from the race with
1399                  * ep_clear_and_put() or ep_remove(), ep_remove_wait_queue()
1400                  * takes whead->lock held by the caller. Once we nullify it,
1401                  * nothing protects ep/epi or even wait.
1402                  */
1403                 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1404         }
1405
1406         return ewake;
1407 }
1408
1409 /*
1410  * This is the callback that is used to add our wait queue to the
1411  * target file wakeup lists.
1412  */
1413 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1414                                  poll_table *pt)
1415 {
1416         struct ep_pqueue *epq = container_of(pt, struct ep_pqueue, pt);
1417         struct epitem *epi = epq->epi;
1418         struct eppoll_entry *pwq;
1419
1420         if (unlikely(!epi))     // an earlier allocation has failed
1421                 return;
1422
1423         pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL);
1424         if (unlikely(!pwq)) {
1425                 epq->epi = NULL;
1426                 return;
1427         }
1428
1429         init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1430         pwq->whead = whead;
1431         pwq->base = epi;
1432         if (epi->event.events & EPOLLEXCLUSIVE)
1433                 add_wait_queue_exclusive(whead, &pwq->wait);
1434         else
1435                 add_wait_queue(whead, &pwq->wait);
1436         pwq->next = epi->pwqlist;
1437         epi->pwqlist = pwq;
1438 }
1439
1440 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1441 {
1442         int kcmp;
1443         struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1444         struct epitem *epic;
1445         bool leftmost = true;
1446
1447         while (*p) {
1448                 parent = *p;
1449                 epic = rb_entry(parent, struct epitem, rbn);
1450                 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1451                 if (kcmp > 0) {
1452                         p = &parent->rb_right;
1453                         leftmost = false;
1454                 } else
1455                         p = &parent->rb_left;
1456         }
1457         rb_link_node(&epi->rbn, parent, p);
1458         rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1459 }
1460
1461
1462
1463 #define PATH_ARR_SIZE 5
1464 /*
1465  * These are the number paths of length 1 to 5, that we are allowing to emanate
1466  * from a single file of interest. For example, we allow 1000 paths of length
1467  * 1, to emanate from each file of interest. This essentially represents the
1468  * potential wakeup paths, which need to be limited in order to avoid massive
1469  * uncontrolled wakeup storms. The common use case should be a single ep which
1470  * is connected to n file sources. In this case each file source has 1 path
1471  * of length 1. Thus, the numbers below should be more than sufficient. These
1472  * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1473  * and delete can't add additional paths. Protected by the epnested_mutex.
1474  */
1475 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1476 static int path_count[PATH_ARR_SIZE];
1477
1478 static int path_count_inc(int nests)
1479 {
1480         /* Allow an arbitrary number of depth 1 paths */
1481         if (nests == 0)
1482                 return 0;
1483
1484         if (++path_count[nests] > path_limits[nests])
1485                 return -1;
1486         return 0;
1487 }
1488
1489 static void path_count_init(void)
1490 {
1491         int i;
1492
1493         for (i = 0; i < PATH_ARR_SIZE; i++)
1494                 path_count[i] = 0;
1495 }
1496
1497 static int reverse_path_check_proc(struct hlist_head *refs, int depth)
1498 {
1499         int error = 0;
1500         struct epitem *epi;
1501
1502         if (depth > EP_MAX_NESTS) /* too deep nesting */
1503                 return -1;
1504
1505         /* CTL_DEL can remove links here, but that can't increase our count */
1506         hlist_for_each_entry_rcu(epi, refs, fllink) {
1507                 struct hlist_head *refs = &epi->ep->refs;
1508                 if (hlist_empty(refs))
1509                         error = path_count_inc(depth);
1510                 else
1511                         error = reverse_path_check_proc(refs, depth + 1);
1512                 if (error != 0)
1513                         break;
1514         }
1515         return error;
1516 }
1517
1518 /**
1519  * reverse_path_check - The tfile_check_list is list of epitem_head, which have
1520  *                      links that are proposed to be newly added. We need to
1521  *                      make sure that those added links don't add too many
1522  *                      paths such that we will spend all our time waking up
1523  *                      eventpoll objects.
1524  *
1525  * Return: %zero if the proposed links don't create too many paths,
1526  *          %-1 otherwise.
1527  */
1528 static int reverse_path_check(void)
1529 {
1530         struct epitems_head *p;
1531
1532         for (p = tfile_check_list; p != EP_UNACTIVE_PTR; p = p->next) {
1533                 int error;
1534                 path_count_init();
1535                 rcu_read_lock();
1536                 error = reverse_path_check_proc(&p->epitems, 0);
1537                 rcu_read_unlock();
1538                 if (error)
1539                         return error;
1540         }
1541         return 0;
1542 }
1543
1544 static int ep_create_wakeup_source(struct epitem *epi)
1545 {
1546         struct name_snapshot n;
1547         struct wakeup_source *ws;
1548
1549         if (!epi->ep->ws) {
1550                 epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
1551                 if (!epi->ep->ws)
1552                         return -ENOMEM;
1553         }
1554
1555         take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1556         ws = wakeup_source_register(NULL, n.name.name);
1557         release_dentry_name_snapshot(&n);
1558
1559         if (!ws)
1560                 return -ENOMEM;
1561         rcu_assign_pointer(epi->ws, ws);
1562
1563         return 0;
1564 }
1565
1566 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1567 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1568 {
1569         struct wakeup_source *ws = ep_wakeup_source(epi);
1570
1571         RCU_INIT_POINTER(epi->ws, NULL);
1572
1573         /*
1574          * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1575          * used internally by wakeup_source_remove, too (called by
1576          * wakeup_source_unregister), so we cannot use call_rcu
1577          */
1578         synchronize_rcu();
1579         wakeup_source_unregister(ws);
1580 }
1581
1582 static int attach_epitem(struct file *file, struct epitem *epi)
1583 {
1584         struct epitems_head *to_free = NULL;
1585         struct hlist_head *head = NULL;
1586         struct eventpoll *ep = NULL;
1587
1588         if (is_file_epoll(file))
1589                 ep = file->private_data;
1590
1591         if (ep) {
1592                 head = &ep->refs;
1593         } else if (!READ_ONCE(file->f_ep)) {
1594 allocate:
1595                 to_free = kmem_cache_zalloc(ephead_cache, GFP_KERNEL);
1596                 if (!to_free)
1597                         return -ENOMEM;
1598                 head = &to_free->epitems;
1599         }
1600         spin_lock(&file->f_lock);
1601         if (!file->f_ep) {
1602                 if (unlikely(!head)) {
1603                         spin_unlock(&file->f_lock);
1604                         goto allocate;
1605                 }
1606                 file->f_ep = head;
1607                 to_free = NULL;
1608         }
1609         hlist_add_head_rcu(&epi->fllink, file->f_ep);
1610         spin_unlock(&file->f_lock);
1611         free_ephead(to_free);
1612         return 0;
1613 }
1614
1615 /*
1616  * Must be called with "mtx" held.
1617  */
1618 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1619                      struct file *tfile, int fd, int full_check)
1620 {
1621         int error, pwake = 0;
1622         __poll_t revents;
1623         struct epitem *epi;
1624         struct ep_pqueue epq;
1625         struct eventpoll *tep = NULL;
1626
1627         if (is_file_epoll(tfile))
1628                 tep = tfile->private_data;
1629
1630         lockdep_assert_irqs_enabled();
1631
1632         if (unlikely(percpu_counter_compare(&ep->user->epoll_watches,
1633                                             max_user_watches) >= 0))
1634                 return -ENOSPC;
1635         percpu_counter_inc(&ep->user->epoll_watches);
1636
1637         if (!(epi = kmem_cache_zalloc(epi_cache, GFP_KERNEL))) {
1638                 percpu_counter_dec(&ep->user->epoll_watches);
1639                 return -ENOMEM;
1640         }
1641
1642         /* Item initialization follow here ... */
1643         INIT_LIST_HEAD(&epi->rdllink);
1644         epi->ep = ep;
1645         ep_set_ffd(&epi->ffd, tfile, fd);
1646         epi->event = *event;
1647         epi->next = EP_UNACTIVE_PTR;
1648
1649         if (tep)
1650                 mutex_lock_nested(&tep->mtx, 1);
1651         /* Add the current item to the list of active epoll hook for this file */
1652         if (unlikely(attach_epitem(tfile, epi) < 0)) {
1653                 if (tep)
1654                         mutex_unlock(&tep->mtx);
1655                 kmem_cache_free(epi_cache, epi);
1656                 percpu_counter_dec(&ep->user->epoll_watches);
1657                 return -ENOMEM;
1658         }
1659
1660         if (full_check && !tep)
1661                 list_file(tfile);
1662
1663         /*
1664          * Add the current item to the RB tree. All RB tree operations are
1665          * protected by "mtx", and ep_insert() is called with "mtx" held.
1666          */
1667         ep_rbtree_insert(ep, epi);
1668         if (tep)
1669                 mutex_unlock(&tep->mtx);
1670
1671         /*
1672          * ep_remove_safe() calls in the later error paths can't lead to
1673          * ep_free() as the ep file itself still holds an ep reference.
1674          */
1675         ep_get(ep);
1676
1677         /* now check if we've created too many backpaths */
1678         if (unlikely(full_check && reverse_path_check())) {
1679                 ep_remove_safe(ep, epi);
1680                 return -EINVAL;
1681         }
1682
1683         if (epi->event.events & EPOLLWAKEUP) {
1684                 error = ep_create_wakeup_source(epi);
1685                 if (error) {
1686                         ep_remove_safe(ep, epi);
1687                         return error;
1688                 }
1689         }
1690
1691         /* Initialize the poll table using the queue callback */
1692         epq.epi = epi;
1693         init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1694
1695         /*
1696          * Attach the item to the poll hooks and get current event bits.
1697          * We can safely use the file* here because its usage count has
1698          * been increased by the caller of this function. Note that after
1699          * this operation completes, the poll callback can start hitting
1700          * the new item.
1701          */
1702         revents = ep_item_poll(epi, &epq.pt, 1);
1703
1704         /*
1705          * We have to check if something went wrong during the poll wait queue
1706          * install process. Namely an allocation for a wait queue failed due
1707          * high memory pressure.
1708          */
1709         if (unlikely(!epq.epi)) {
1710                 ep_remove_safe(ep, epi);
1711                 return -ENOMEM;
1712         }
1713
1714         /* We have to drop the new item inside our item list to keep track of it */
1715         write_lock_irq(&ep->lock);
1716
1717         /* record NAPI ID of new item if present */
1718         ep_set_busy_poll_napi_id(epi);
1719
1720         /* If the file is already "ready" we drop it inside the ready list */
1721         if (revents && !ep_is_linked(epi)) {
1722                 list_add_tail(&epi->rdllink, &ep->rdllist);
1723                 ep_pm_stay_awake(epi);
1724
1725                 /* Notify waiting tasks that events are available */
1726                 if (waitqueue_active(&ep->wq))
1727                         wake_up(&ep->wq);
1728                 if (waitqueue_active(&ep->poll_wait))
1729                         pwake++;
1730         }
1731
1732         write_unlock_irq(&ep->lock);
1733
1734         /* We have to call this outside the lock */
1735         if (pwake)
1736                 ep_poll_safewake(ep, NULL, 0);
1737
1738         return 0;
1739 }
1740
1741 /*
1742  * Modify the interest event mask by dropping an event if the new mask
1743  * has a match in the current file status. Must be called with "mtx" held.
1744  */
1745 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1746                      const struct epoll_event *event)
1747 {
1748         int pwake = 0;
1749         poll_table pt;
1750
1751         lockdep_assert_irqs_enabled();
1752
1753         init_poll_funcptr(&pt, NULL);
1754
1755         /*
1756          * Set the new event interest mask before calling f_op->poll();
1757          * otherwise we might miss an event that happens between the
1758          * f_op->poll() call and the new event set registering.
1759          */
1760         epi->event.events = event->events; /* need barrier below */
1761         epi->event.data = event->data; /* protected by mtx */
1762         if (epi->event.events & EPOLLWAKEUP) {
1763                 if (!ep_has_wakeup_source(epi))
1764                         ep_create_wakeup_source(epi);
1765         } else if (ep_has_wakeup_source(epi)) {
1766                 ep_destroy_wakeup_source(epi);
1767         }
1768
1769         /*
1770          * The following barrier has two effects:
1771          *
1772          * 1) Flush epi changes above to other CPUs.  This ensures
1773          *    we do not miss events from ep_poll_callback if an
1774          *    event occurs immediately after we call f_op->poll().
1775          *    We need this because we did not take ep->lock while
1776          *    changing epi above (but ep_poll_callback does take
1777          *    ep->lock).
1778          *
1779          * 2) We also need to ensure we do not miss _past_ events
1780          *    when calling f_op->poll().  This barrier also
1781          *    pairs with the barrier in wq_has_sleeper (see
1782          *    comments for wq_has_sleeper).
1783          *
1784          * This barrier will now guarantee ep_poll_callback or f_op->poll
1785          * (or both) will notice the readiness of an item.
1786          */
1787         smp_mb();
1788
1789         /*
1790          * Get current event bits. We can safely use the file* here because
1791          * its usage count has been increased by the caller of this function.
1792          * If the item is "hot" and it is not registered inside the ready
1793          * list, push it inside.
1794          */
1795         if (ep_item_poll(epi, &pt, 1)) {
1796                 write_lock_irq(&ep->lock);
1797                 if (!ep_is_linked(epi)) {
1798                         list_add_tail(&epi->rdllink, &ep->rdllist);
1799                         ep_pm_stay_awake(epi);
1800
1801                         /* Notify waiting tasks that events are available */
1802                         if (waitqueue_active(&ep->wq))
1803                                 wake_up(&ep->wq);
1804                         if (waitqueue_active(&ep->poll_wait))
1805                                 pwake++;
1806                 }
1807                 write_unlock_irq(&ep->lock);
1808         }
1809
1810         /* We have to call this outside the lock */
1811         if (pwake)
1812                 ep_poll_safewake(ep, NULL, 0);
1813
1814         return 0;
1815 }
1816
1817 static int ep_send_events(struct eventpoll *ep,
1818                           struct epoll_event __user *events, int maxevents)
1819 {
1820         struct epitem *epi, *tmp;
1821         LIST_HEAD(txlist);
1822         poll_table pt;
1823         int res = 0;
1824
1825         /*
1826          * Always short-circuit for fatal signals to allow threads to make a
1827          * timely exit without the chance of finding more events available and
1828          * fetching repeatedly.
1829          */
1830         if (fatal_signal_pending(current))
1831                 return -EINTR;
1832
1833         init_poll_funcptr(&pt, NULL);
1834
1835         mutex_lock(&ep->mtx);
1836         ep_start_scan(ep, &txlist);
1837
1838         /*
1839          * We can loop without lock because we are passed a task private list.
1840          * Items cannot vanish during the loop we are holding ep->mtx.
1841          */
1842         list_for_each_entry_safe(epi, tmp, &txlist, rdllink) {
1843                 struct wakeup_source *ws;
1844                 __poll_t revents;
1845
1846                 if (res >= maxevents)
1847                         break;
1848
1849                 /*
1850                  * Activate ep->ws before deactivating epi->ws to prevent
1851                  * triggering auto-suspend here (in case we reactive epi->ws
1852                  * below).
1853                  *
1854                  * This could be rearranged to delay the deactivation of epi->ws
1855                  * instead, but then epi->ws would temporarily be out of sync
1856                  * with ep_is_linked().
1857                  */
1858                 ws = ep_wakeup_source(epi);
1859                 if (ws) {
1860                         if (ws->active)
1861                                 __pm_stay_awake(ep->ws);
1862                         __pm_relax(ws);
1863                 }
1864
1865                 list_del_init(&epi->rdllink);
1866
1867                 /*
1868                  * If the event mask intersect the caller-requested one,
1869                  * deliver the event to userspace. Again, we are holding ep->mtx,
1870                  * so no operations coming from userspace can change the item.
1871                  */
1872                 revents = ep_item_poll(epi, &pt, 1);
1873                 if (!revents)
1874                         continue;
1875
1876                 events = epoll_put_uevent(revents, epi->event.data, events);
1877                 if (!events) {
1878                         list_add(&epi->rdllink, &txlist);
1879                         ep_pm_stay_awake(epi);
1880                         if (!res)
1881                                 res = -EFAULT;
1882                         break;
1883                 }
1884                 res++;
1885                 if (epi->event.events & EPOLLONESHOT)
1886                         epi->event.events &= EP_PRIVATE_BITS;
1887                 else if (!(epi->event.events & EPOLLET)) {
1888                         /*
1889                          * If this file has been added with Level
1890                          * Trigger mode, we need to insert back inside
1891                          * the ready list, so that the next call to
1892                          * epoll_wait() will check again the events
1893                          * availability. At this point, no one can insert
1894                          * into ep->rdllist besides us. The epoll_ctl()
1895                          * callers are locked out by
1896                          * ep_send_events() holding "mtx" and the
1897                          * poll callback will queue them in ep->ovflist.
1898                          */
1899                         list_add_tail(&epi->rdllink, &ep->rdllist);
1900                         ep_pm_stay_awake(epi);
1901                 }
1902         }
1903         ep_done_scan(ep, &txlist);
1904         mutex_unlock(&ep->mtx);
1905
1906         return res;
1907 }
1908
1909 static struct timespec64 *ep_timeout_to_timespec(struct timespec64 *to, long ms)
1910 {
1911         struct timespec64 now;
1912
1913         if (ms < 0)
1914                 return NULL;
1915
1916         if (!ms) {
1917                 to->tv_sec = 0;
1918                 to->tv_nsec = 0;
1919                 return to;
1920         }
1921
1922         to->tv_sec = ms / MSEC_PER_SEC;
1923         to->tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC);
1924
1925         ktime_get_ts64(&now);
1926         *to = timespec64_add_safe(now, *to);
1927         return to;
1928 }
1929
1930 /*
1931  * autoremove_wake_function, but remove even on failure to wake up, because we
1932  * know that default_wake_function/ttwu will only fail if the thread is already
1933  * woken, and in that case the ep_poll loop will remove the entry anyways, not
1934  * try to reuse it.
1935  */
1936 static int ep_autoremove_wake_function(struct wait_queue_entry *wq_entry,
1937                                        unsigned int mode, int sync, void *key)
1938 {
1939         int ret = default_wake_function(wq_entry, mode, sync, key);
1940
1941         /*
1942          * Pairs with list_empty_careful in ep_poll, and ensures future loop
1943          * iterations see the cause of this wakeup.
1944          */
1945         list_del_init_careful(&wq_entry->entry);
1946         return ret;
1947 }
1948
1949 /**
1950  * ep_poll - Retrieves ready events, and delivers them to the caller-supplied
1951  *           event buffer.
1952  *
1953  * @ep: Pointer to the eventpoll context.
1954  * @events: Pointer to the userspace buffer where the ready events should be
1955  *          stored.
1956  * @maxevents: Size (in terms of number of events) of the caller event buffer.
1957  * @timeout: Maximum timeout for the ready events fetch operation, in
1958  *           timespec. If the timeout is zero, the function will not block,
1959  *           while if the @timeout ptr is NULL, the function will block
1960  *           until at least one event has been retrieved (or an error
1961  *           occurred).
1962  *
1963  * Return: the number of ready events which have been fetched, or an
1964  *          error code, in case of error.
1965  */
1966 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1967                    int maxevents, struct timespec64 *timeout)
1968 {
1969         int res, eavail, timed_out = 0;
1970         u64 slack = 0;
1971         wait_queue_entry_t wait;
1972         ktime_t expires, *to = NULL;
1973
1974         lockdep_assert_irqs_enabled();
1975
1976         if (timeout && (timeout->tv_sec | timeout->tv_nsec)) {
1977                 slack = select_estimate_accuracy(timeout);
1978                 to = &expires;
1979                 *to = timespec64_to_ktime(*timeout);
1980         } else if (timeout) {
1981                 /*
1982                  * Avoid the unnecessary trip to the wait queue loop, if the
1983                  * caller specified a non blocking operation.
1984                  */
1985                 timed_out = 1;
1986         }
1987
1988         /*
1989          * This call is racy: We may or may not see events that are being added
1990          * to the ready list under the lock (e.g., in IRQ callbacks). For cases
1991          * with a non-zero timeout, this thread will check the ready list under
1992          * lock and will add to the wait queue.  For cases with a zero
1993          * timeout, the user by definition should not care and will have to
1994          * recheck again.
1995          */
1996         eavail = ep_events_available(ep);
1997
1998         while (1) {
1999                 if (eavail) {
2000                         /*
2001                          * Try to transfer events to user space. In case we get
2002                          * 0 events and there's still timeout left over, we go
2003                          * trying again in search of more luck.
2004                          */
2005                         res = ep_send_events(ep, events, maxevents);
2006                         if (res)
2007                                 return res;
2008                 }
2009
2010                 if (timed_out)
2011                         return 0;
2012
2013                 eavail = ep_busy_loop(ep, timed_out);
2014                 if (eavail)
2015                         continue;
2016
2017                 if (signal_pending(current))
2018                         return -EINTR;
2019
2020                 /*
2021                  * Internally init_wait() uses autoremove_wake_function(),
2022                  * thus wait entry is removed from the wait queue on each
2023                  * wakeup. Why it is important? In case of several waiters
2024                  * each new wakeup will hit the next waiter, giving it the
2025                  * chance to harvest new event. Otherwise wakeup can be
2026                  * lost. This is also good performance-wise, because on
2027                  * normal wakeup path no need to call __remove_wait_queue()
2028                  * explicitly, thus ep->lock is not taken, which halts the
2029                  * event delivery.
2030                  *
2031                  * In fact, we now use an even more aggressive function that
2032                  * unconditionally removes, because we don't reuse the wait
2033                  * entry between loop iterations. This lets us also avoid the
2034                  * performance issue if a process is killed, causing all of its
2035                  * threads to wake up without being removed normally.
2036                  */
2037                 init_wait(&wait);
2038                 wait.func = ep_autoremove_wake_function;
2039
2040                 write_lock_irq(&ep->lock);
2041                 /*
2042                  * Barrierless variant, waitqueue_active() is called under
2043                  * the same lock on wakeup ep_poll_callback() side, so it
2044                  * is safe to avoid an explicit barrier.
2045                  */
2046                 __set_current_state(TASK_INTERRUPTIBLE);
2047
2048                 /*
2049                  * Do the final check under the lock. ep_start/done_scan()
2050                  * plays with two lists (->rdllist and ->ovflist) and there
2051                  * is always a race when both lists are empty for short
2052                  * period of time although events are pending, so lock is
2053                  * important.
2054                  */
2055                 eavail = ep_events_available(ep);
2056                 if (!eavail)
2057                         __add_wait_queue_exclusive(&ep->wq, &wait);
2058
2059                 write_unlock_irq(&ep->lock);
2060
2061                 if (!eavail)
2062                         timed_out = !schedule_hrtimeout_range(to, slack,
2063                                                               HRTIMER_MODE_ABS);
2064                 __set_current_state(TASK_RUNNING);
2065
2066                 /*
2067                  * We were woken up, thus go and try to harvest some events.
2068                  * If timed out and still on the wait queue, recheck eavail
2069                  * carefully under lock, below.
2070                  */
2071                 eavail = 1;
2072
2073                 if (!list_empty_careful(&wait.entry)) {
2074                         write_lock_irq(&ep->lock);
2075                         /*
2076                          * If the thread timed out and is not on the wait queue,
2077                          * it means that the thread was woken up after its
2078                          * timeout expired before it could reacquire the lock.
2079                          * Thus, when wait.entry is empty, it needs to harvest
2080                          * events.
2081                          */
2082                         if (timed_out)
2083                                 eavail = list_empty(&wait.entry);
2084                         __remove_wait_queue(&ep->wq, &wait);
2085                         write_unlock_irq(&ep->lock);
2086                 }
2087         }
2088 }
2089
2090 /**
2091  * ep_loop_check_proc - verify that adding an epoll file inside another
2092  *                      epoll structure does not violate the constraints, in
2093  *                      terms of closed loops, or too deep chains (which can
2094  *                      result in excessive stack usage).
2095  *
2096  * @ep: the &struct eventpoll to be currently checked.
2097  * @depth: Current depth of the path being checked.
2098  *
2099  * Return: %zero if adding the epoll @file inside current epoll
2100  *          structure @ep does not violate the constraints, or %-1 otherwise.
2101  */
2102 static int ep_loop_check_proc(struct eventpoll *ep, int depth)
2103 {
2104         int error = 0;
2105         struct rb_node *rbp;
2106         struct epitem *epi;
2107
2108         mutex_lock_nested(&ep->mtx, depth + 1);
2109         ep->gen = loop_check_gen;
2110         for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
2111                 epi = rb_entry(rbp, struct epitem, rbn);
2112                 if (unlikely(is_file_epoll(epi->ffd.file))) {
2113                         struct eventpoll *ep_tovisit;
2114                         ep_tovisit = epi->ffd.file->private_data;
2115                         if (ep_tovisit->gen == loop_check_gen)
2116                                 continue;
2117                         if (ep_tovisit == inserting_into || depth > EP_MAX_NESTS)
2118                                 error = -1;
2119                         else
2120                                 error = ep_loop_check_proc(ep_tovisit, depth + 1);
2121                         if (error != 0)
2122                                 break;
2123                 } else {
2124                         /*
2125                          * If we've reached a file that is not associated with
2126                          * an ep, then we need to check if the newly added
2127                          * links are going to add too many wakeup paths. We do
2128                          * this by adding it to the tfile_check_list, if it's
2129                          * not already there, and calling reverse_path_check()
2130                          * during ep_insert().
2131                          */
2132                         list_file(epi->ffd.file);
2133                 }
2134         }
2135         mutex_unlock(&ep->mtx);
2136
2137         return error;
2138 }
2139
2140 /**
2141  * ep_loop_check - Performs a check to verify that adding an epoll file (@to)
2142  *                 into another epoll file (represented by @ep) does not create
2143  *                 closed loops or too deep chains.
2144  *
2145  * @ep: Pointer to the epoll we are inserting into.
2146  * @to: Pointer to the epoll to be inserted.
2147  *
2148  * Return: %zero if adding the epoll @to inside the epoll @from
2149  * does not violate the constraints, or %-1 otherwise.
2150  */
2151 static int ep_loop_check(struct eventpoll *ep, struct eventpoll *to)
2152 {
2153         inserting_into = ep;
2154         return ep_loop_check_proc(to, 0);
2155 }
2156
2157 static void clear_tfile_check_list(void)
2158 {
2159         rcu_read_lock();
2160         while (tfile_check_list != EP_UNACTIVE_PTR) {
2161                 struct epitems_head *head = tfile_check_list;
2162                 tfile_check_list = head->next;
2163                 unlist_file(head);
2164         }
2165         rcu_read_unlock();
2166 }
2167
2168 /*
2169  * Open an eventpoll file descriptor.
2170  */
2171 static int do_epoll_create(int flags)
2172 {
2173         int error, fd;
2174         struct eventpoll *ep = NULL;
2175         struct file *file;
2176
2177         /* Check the EPOLL_* constant for consistency.  */
2178         BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
2179
2180         if (flags & ~EPOLL_CLOEXEC)
2181                 return -EINVAL;
2182         /*
2183          * Create the internal data structure ("struct eventpoll").
2184          */
2185         error = ep_alloc(&ep);
2186         if (error < 0)
2187                 return error;
2188         /*
2189          * Creates all the items needed to setup an eventpoll file. That is,
2190          * a file structure and a free file descriptor.
2191          */
2192         fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2193         if (fd < 0) {
2194                 error = fd;
2195                 goto out_free_ep;
2196         }
2197         file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
2198                                  O_RDWR | (flags & O_CLOEXEC));
2199         if (IS_ERR(file)) {
2200                 error = PTR_ERR(file);
2201                 goto out_free_fd;
2202         }
2203 #ifdef CONFIG_NET_RX_BUSY_POLL
2204         ep->busy_poll_usecs = 0;
2205         ep->busy_poll_budget = 0;
2206         ep->prefer_busy_poll = false;
2207 #endif
2208         ep->file = file;
2209         fd_install(fd, file);
2210         return fd;
2211
2212 out_free_fd:
2213         put_unused_fd(fd);
2214 out_free_ep:
2215         ep_clear_and_put(ep);
2216         return error;
2217 }
2218
2219 SYSCALL_DEFINE1(epoll_create1, int, flags)
2220 {
2221         return do_epoll_create(flags);
2222 }
2223
2224 SYSCALL_DEFINE1(epoll_create, int, size)
2225 {
2226         if (size <= 0)
2227                 return -EINVAL;
2228
2229         return do_epoll_create(0);
2230 }
2231
2232 #ifdef CONFIG_PM_SLEEP
2233 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev)
2234 {
2235         if ((epev->events & EPOLLWAKEUP) && !capable(CAP_BLOCK_SUSPEND))
2236                 epev->events &= ~EPOLLWAKEUP;
2237 }
2238 #else
2239 static inline void ep_take_care_of_epollwakeup(struct epoll_event *epev)
2240 {
2241         epev->events &= ~EPOLLWAKEUP;
2242 }
2243 #endif
2244
2245 static inline int epoll_mutex_lock(struct mutex *mutex, int depth,
2246                                    bool nonblock)
2247 {
2248         if (!nonblock) {
2249                 mutex_lock_nested(mutex, depth);
2250                 return 0;
2251         }
2252         if (mutex_trylock(mutex))
2253                 return 0;
2254         return -EAGAIN;
2255 }
2256
2257 int do_epoll_ctl(int epfd, int op, int fd, struct epoll_event *epds,
2258                  bool nonblock)
2259 {
2260         int error;
2261         int full_check = 0;
2262         struct fd f, tf;
2263         struct eventpoll *ep;
2264         struct epitem *epi;
2265         struct eventpoll *tep = NULL;
2266
2267         error = -EBADF;
2268         f = fdget(epfd);
2269         if (!f.file)
2270                 goto error_return;
2271
2272         /* Get the "struct file *" for the target file */
2273         tf = fdget(fd);
2274         if (!tf.file)
2275                 goto error_fput;
2276
2277         /* The target file descriptor must support poll */
2278         error = -EPERM;
2279         if (!file_can_poll(tf.file))
2280                 goto error_tgt_fput;
2281
2282         /* Check if EPOLLWAKEUP is allowed */
2283         if (ep_op_has_event(op))
2284                 ep_take_care_of_epollwakeup(epds);
2285
2286         /*
2287          * We have to check that the file structure underneath the file descriptor
2288          * the user passed to us _is_ an eventpoll file. And also we do not permit
2289          * adding an epoll file descriptor inside itself.
2290          */
2291         error = -EINVAL;
2292         if (f.file == tf.file || !is_file_epoll(f.file))
2293                 goto error_tgt_fput;
2294
2295         /*
2296          * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2297          * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2298          * Also, we do not currently supported nested exclusive wakeups.
2299          */
2300         if (ep_op_has_event(op) && (epds->events & EPOLLEXCLUSIVE)) {
2301                 if (op == EPOLL_CTL_MOD)
2302                         goto error_tgt_fput;
2303                 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2304                                 (epds->events & ~EPOLLEXCLUSIVE_OK_BITS)))
2305                         goto error_tgt_fput;
2306         }
2307
2308         /*
2309          * At this point it is safe to assume that the "private_data" contains
2310          * our own data structure.
2311          */
2312         ep = f.file->private_data;
2313
2314         /*
2315          * When we insert an epoll file descriptor inside another epoll file
2316          * descriptor, there is the chance of creating closed loops, which are
2317          * better be handled here, than in more critical paths. While we are
2318          * checking for loops we also determine the list of files reachable
2319          * and hang them on the tfile_check_list, so we can check that we
2320          * haven't created too many possible wakeup paths.
2321          *
2322          * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2323          * the epoll file descriptor is attaching directly to a wakeup source,
2324          * unless the epoll file descriptor is nested. The purpose of taking the
2325          * 'epnested_mutex' on add is to prevent complex toplogies such as loops and
2326          * deep wakeup paths from forming in parallel through multiple
2327          * EPOLL_CTL_ADD operations.
2328          */
2329         error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2330         if (error)
2331                 goto error_tgt_fput;
2332         if (op == EPOLL_CTL_ADD) {
2333                 if (READ_ONCE(f.file->f_ep) || ep->gen == loop_check_gen ||
2334                     is_file_epoll(tf.file)) {
2335                         mutex_unlock(&ep->mtx);
2336                         error = epoll_mutex_lock(&epnested_mutex, 0, nonblock);
2337                         if (error)
2338                                 goto error_tgt_fput;
2339                         loop_check_gen++;
2340                         full_check = 1;
2341                         if (is_file_epoll(tf.file)) {
2342                                 tep = tf.file->private_data;
2343                                 error = -ELOOP;
2344                                 if (ep_loop_check(ep, tep) != 0)
2345                                         goto error_tgt_fput;
2346                         }
2347                         error = epoll_mutex_lock(&ep->mtx, 0, nonblock);
2348                         if (error)
2349                                 goto error_tgt_fput;
2350                 }
2351         }
2352
2353         /*
2354          * Try to lookup the file inside our RB tree. Since we grabbed "mtx"
2355          * above, we can be sure to be able to use the item looked up by
2356          * ep_find() till we release the mutex.
2357          */
2358         epi = ep_find(ep, tf.file, fd);
2359
2360         error = -EINVAL;
2361         switch (op) {
2362         case EPOLL_CTL_ADD:
2363                 if (!epi) {
2364                         epds->events |= EPOLLERR | EPOLLHUP;
2365                         error = ep_insert(ep, epds, tf.file, fd, full_check);
2366                 } else
2367                         error = -EEXIST;
2368                 break;
2369         case EPOLL_CTL_DEL:
2370                 if (epi) {
2371                         /*
2372                          * The eventpoll itself is still alive: the refcount
2373                          * can't go to zero here.
2374                          */
2375                         ep_remove_safe(ep, epi);
2376                         error = 0;
2377                 } else {
2378                         error = -ENOENT;
2379                 }
2380                 break;
2381         case EPOLL_CTL_MOD:
2382                 if (epi) {
2383                         if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2384                                 epds->events |= EPOLLERR | EPOLLHUP;
2385                                 error = ep_modify(ep, epi, epds);
2386                         }
2387                 } else
2388                         error = -ENOENT;
2389                 break;
2390         }
2391         mutex_unlock(&ep->mtx);
2392
2393 error_tgt_fput:
2394         if (full_check) {
2395                 clear_tfile_check_list();
2396                 loop_check_gen++;
2397                 mutex_unlock(&epnested_mutex);
2398         }
2399
2400         fdput(tf);
2401 error_fput:
2402         fdput(f);
2403 error_return:
2404
2405         return error;
2406 }
2407
2408 /*
2409  * The following function implements the controller interface for
2410  * the eventpoll file that enables the insertion/removal/change of
2411  * file descriptors inside the interest set.
2412  */
2413 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2414                 struct epoll_event __user *, event)
2415 {
2416         struct epoll_event epds;
2417
2418         if (ep_op_has_event(op) &&
2419             copy_from_user(&epds, event, sizeof(struct epoll_event)))
2420                 return -EFAULT;
2421
2422         return do_epoll_ctl(epfd, op, fd, &epds, false);
2423 }
2424
2425 /*
2426  * Implement the event wait interface for the eventpoll file. It is the kernel
2427  * part of the user space epoll_wait(2).
2428  */
2429 static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2430                          int maxevents, struct timespec64 *to)
2431 {
2432         int error;
2433         struct fd f;
2434         struct eventpoll *ep;
2435
2436         /* The maximum number of event must be greater than zero */
2437         if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2438                 return -EINVAL;
2439
2440         /* Verify that the area passed by the user is writeable */
2441         if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2442                 return -EFAULT;
2443
2444         /* Get the "struct file *" for the eventpoll file */
2445         f = fdget(epfd);
2446         if (!f.file)
2447                 return -EBADF;
2448
2449         /*
2450          * We have to check that the file structure underneath the fd
2451          * the user passed to us _is_ an eventpoll file.
2452          */
2453         error = -EINVAL;
2454         if (!is_file_epoll(f.file))
2455                 goto error_fput;
2456
2457         /*
2458          * At this point it is safe to assume that the "private_data" contains
2459          * our own data structure.
2460          */
2461         ep = f.file->private_data;
2462
2463         /* Time to fish for events ... */
2464         error = ep_poll(ep, events, maxevents, to);
2465
2466 error_fput:
2467         fdput(f);
2468         return error;
2469 }
2470
2471 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2472                 int, maxevents, int, timeout)
2473 {
2474         struct timespec64 to;
2475
2476         return do_epoll_wait(epfd, events, maxevents,
2477                              ep_timeout_to_timespec(&to, timeout));
2478 }
2479
2480 /*
2481  * Implement the event wait interface for the eventpoll file. It is the kernel
2482  * part of the user space epoll_pwait(2).
2483  */
2484 static int do_epoll_pwait(int epfd, struct epoll_event __user *events,
2485                           int maxevents, struct timespec64 *to,
2486                           const sigset_t __user *sigmask, size_t sigsetsize)
2487 {
2488         int error;
2489
2490         /*
2491          * If the caller wants a certain signal mask to be set during the wait,
2492          * we apply it here.
2493          */
2494         error = set_user_sigmask(sigmask, sigsetsize);
2495         if (error)
2496                 return error;
2497
2498         error = do_epoll_wait(epfd, events, maxevents, to);
2499
2500         restore_saved_sigmask_unless(error == -EINTR);
2501
2502         return error;
2503 }
2504
2505 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2506                 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2507                 size_t, sigsetsize)
2508 {
2509         struct timespec64 to;
2510
2511         return do_epoll_pwait(epfd, events, maxevents,
2512                               ep_timeout_to_timespec(&to, timeout),
2513                               sigmask, sigsetsize);
2514 }
2515
2516 SYSCALL_DEFINE6(epoll_pwait2, int, epfd, struct epoll_event __user *, events,
2517                 int, maxevents, const struct __kernel_timespec __user *, timeout,
2518                 const sigset_t __user *, sigmask, size_t, sigsetsize)
2519 {
2520         struct timespec64 ts, *to = NULL;
2521
2522         if (timeout) {
2523                 if (get_timespec64(&ts, timeout))
2524                         return -EFAULT;
2525                 to = &ts;
2526                 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2527                         return -EINVAL;
2528         }
2529
2530         return do_epoll_pwait(epfd, events, maxevents, to,
2531                               sigmask, sigsetsize);
2532 }
2533
2534 #ifdef CONFIG_COMPAT
2535 static int do_compat_epoll_pwait(int epfd, struct epoll_event __user *events,
2536                                  int maxevents, struct timespec64 *timeout,
2537                                  const compat_sigset_t __user *sigmask,
2538                                  compat_size_t sigsetsize)
2539 {
2540         long err;
2541
2542         /*
2543          * If the caller wants a certain signal mask to be set during the wait,
2544          * we apply it here.
2545          */
2546         err = set_compat_user_sigmask(sigmask, sigsetsize);
2547         if (err)
2548                 return err;
2549
2550         err = do_epoll_wait(epfd, events, maxevents, timeout);
2551
2552         restore_saved_sigmask_unless(err == -EINTR);
2553
2554         return err;
2555 }
2556
2557 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2558                        struct epoll_event __user *, events,
2559                        int, maxevents, int, timeout,
2560                        const compat_sigset_t __user *, sigmask,
2561                        compat_size_t, sigsetsize)
2562 {
2563         struct timespec64 to;
2564
2565         return do_compat_epoll_pwait(epfd, events, maxevents,
2566                                      ep_timeout_to_timespec(&to, timeout),
2567                                      sigmask, sigsetsize);
2568 }
2569
2570 COMPAT_SYSCALL_DEFINE6(epoll_pwait2, int, epfd,
2571                        struct epoll_event __user *, events,
2572                        int, maxevents,
2573                        const struct __kernel_timespec __user *, timeout,
2574                        const compat_sigset_t __user *, sigmask,
2575                        compat_size_t, sigsetsize)
2576 {
2577         struct timespec64 ts, *to = NULL;
2578
2579         if (timeout) {
2580                 if (get_timespec64(&ts, timeout))
2581                         return -EFAULT;
2582                 to = &ts;
2583                 if (poll_select_set_timeout(to, ts.tv_sec, ts.tv_nsec))
2584                         return -EINVAL;
2585         }
2586
2587         return do_compat_epoll_pwait(epfd, events, maxevents, to,
2588                                      sigmask, sigsetsize);
2589 }
2590
2591 #endif
2592
2593 static int __init eventpoll_init(void)
2594 {
2595         struct sysinfo si;
2596
2597         si_meminfo(&si);
2598         /*
2599          * Allows top 4% of lomem to be allocated for epoll watches (per user).
2600          */
2601         max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2602                 EP_ITEM_COST;
2603         BUG_ON(max_user_watches < 0);
2604
2605         /*
2606          * We can have many thousands of epitems, so prevent this from
2607          * using an extra cache line on 64-bit (and smaller) CPUs
2608          */
2609         BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2610
2611         /* Allocates slab cache used to allocate "struct epitem" items */
2612         epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2613                         0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2614
2615         /* Allocates slab cache used to allocate "struct eppoll_entry" */
2616         pwq_cache = kmem_cache_create("eventpoll_pwq",
2617                 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2618         epoll_sysctls_init();
2619
2620         ephead_cache = kmem_cache_create("ep_head",
2621                 sizeof(struct epitems_head), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2622
2623         return 0;
2624 }
2625 fs_initcall(eventpoll_init);