treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 156
[linux-block.git] / fs / ecryptfs / crypto.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /**
3  * eCryptfs: Linux filesystem encryption layer
4  *
5  * Copyright (C) 1997-2004 Erez Zadok
6  * Copyright (C) 2001-2004 Stony Brook University
7  * Copyright (C) 2004-2007 International Business Machines Corp.
8  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
9  *              Michael C. Thompson <mcthomps@us.ibm.com>
10  */
11
12 #include <crypto/hash.h>
13 #include <crypto/skcipher.h>
14 #include <linux/fs.h>
15 #include <linux/mount.h>
16 #include <linux/pagemap.h>
17 #include <linux/random.h>
18 #include <linux/compiler.h>
19 #include <linux/key.h>
20 #include <linux/namei.h>
21 #include <linux/file.h>
22 #include <linux/scatterlist.h>
23 #include <linux/slab.h>
24 #include <asm/unaligned.h>
25 #include <linux/kernel.h>
26 #include "ecryptfs_kernel.h"
27
28 #define DECRYPT         0
29 #define ENCRYPT         1
30
31 /**
32  * ecryptfs_from_hex
33  * @dst: Buffer to take the bytes from src hex; must be at least of
34  *       size (src_size / 2)
35  * @src: Buffer to be converted from a hex string representation to raw value
36  * @dst_size: size of dst buffer, or number of hex characters pairs to convert
37  */
38 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
39 {
40         int x;
41         char tmp[3] = { 0, };
42
43         for (x = 0; x < dst_size; x++) {
44                 tmp[0] = src[x * 2];
45                 tmp[1] = src[x * 2 + 1];
46                 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
47         }
48 }
49
50 static int ecryptfs_hash_digest(struct crypto_shash *tfm,
51                                 char *src, int len, char *dst)
52 {
53         SHASH_DESC_ON_STACK(desc, tfm);
54         int err;
55
56         desc->tfm = tfm;
57         err = crypto_shash_digest(desc, src, len, dst);
58         shash_desc_zero(desc);
59         return err;
60 }
61
62 /**
63  * ecryptfs_calculate_md5 - calculates the md5 of @src
64  * @dst: Pointer to 16 bytes of allocated memory
65  * @crypt_stat: Pointer to crypt_stat struct for the current inode
66  * @src: Data to be md5'd
67  * @len: Length of @src
68  *
69  * Uses the allocated crypto context that crypt_stat references to
70  * generate the MD5 sum of the contents of src.
71  */
72 static int ecryptfs_calculate_md5(char *dst,
73                                   struct ecryptfs_crypt_stat *crypt_stat,
74                                   char *src, int len)
75 {
76         struct crypto_shash *tfm;
77         int rc = 0;
78
79         tfm = crypt_stat->hash_tfm;
80         rc = ecryptfs_hash_digest(tfm, src, len, dst);
81         if (rc) {
82                 printk(KERN_ERR
83                        "%s: Error computing crypto hash; rc = [%d]\n",
84                        __func__, rc);
85                 goto out;
86         }
87 out:
88         return rc;
89 }
90
91 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
92                                                   char *cipher_name,
93                                                   char *chaining_modifier)
94 {
95         int cipher_name_len = strlen(cipher_name);
96         int chaining_modifier_len = strlen(chaining_modifier);
97         int algified_name_len;
98         int rc;
99
100         algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
101         (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
102         if (!(*algified_name)) {
103                 rc = -ENOMEM;
104                 goto out;
105         }
106         snprintf((*algified_name), algified_name_len, "%s(%s)",
107                  chaining_modifier, cipher_name);
108         rc = 0;
109 out:
110         return rc;
111 }
112
113 /**
114  * ecryptfs_derive_iv
115  * @iv: destination for the derived iv vale
116  * @crypt_stat: Pointer to crypt_stat struct for the current inode
117  * @offset: Offset of the extent whose IV we are to derive
118  *
119  * Generate the initialization vector from the given root IV and page
120  * offset.
121  *
122  * Returns zero on success; non-zero on error.
123  */
124 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
125                        loff_t offset)
126 {
127         int rc = 0;
128         char dst[MD5_DIGEST_SIZE];
129         char src[ECRYPTFS_MAX_IV_BYTES + 16];
130
131         if (unlikely(ecryptfs_verbosity > 0)) {
132                 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
133                 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
134         }
135         /* TODO: It is probably secure to just cast the least
136          * significant bits of the root IV into an unsigned long and
137          * add the offset to that rather than go through all this
138          * hashing business. -Halcrow */
139         memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
140         memset((src + crypt_stat->iv_bytes), 0, 16);
141         snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
142         if (unlikely(ecryptfs_verbosity > 0)) {
143                 ecryptfs_printk(KERN_DEBUG, "source:\n");
144                 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
145         }
146         rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
147                                     (crypt_stat->iv_bytes + 16));
148         if (rc) {
149                 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
150                                 "MD5 while generating IV for a page\n");
151                 goto out;
152         }
153         memcpy(iv, dst, crypt_stat->iv_bytes);
154         if (unlikely(ecryptfs_verbosity > 0)) {
155                 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
156                 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
157         }
158 out:
159         return rc;
160 }
161
162 /**
163  * ecryptfs_init_crypt_stat
164  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
165  *
166  * Initialize the crypt_stat structure.
167  */
168 int ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
169 {
170         struct crypto_shash *tfm;
171         int rc;
172
173         tfm = crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH, 0, 0);
174         if (IS_ERR(tfm)) {
175                 rc = PTR_ERR(tfm);
176                 ecryptfs_printk(KERN_ERR, "Error attempting to "
177                                 "allocate crypto context; rc = [%d]\n",
178                                 rc);
179                 return rc;
180         }
181
182         memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
183         INIT_LIST_HEAD(&crypt_stat->keysig_list);
184         mutex_init(&crypt_stat->keysig_list_mutex);
185         mutex_init(&crypt_stat->cs_mutex);
186         mutex_init(&crypt_stat->cs_tfm_mutex);
187         crypt_stat->hash_tfm = tfm;
188         crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
189
190         return 0;
191 }
192
193 /**
194  * ecryptfs_destroy_crypt_stat
195  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
196  *
197  * Releases all memory associated with a crypt_stat struct.
198  */
199 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
200 {
201         struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
202
203         crypto_free_skcipher(crypt_stat->tfm);
204         crypto_free_shash(crypt_stat->hash_tfm);
205         list_for_each_entry_safe(key_sig, key_sig_tmp,
206                                  &crypt_stat->keysig_list, crypt_stat_list) {
207                 list_del(&key_sig->crypt_stat_list);
208                 kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
209         }
210         memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
211 }
212
213 void ecryptfs_destroy_mount_crypt_stat(
214         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
215 {
216         struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
217
218         if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
219                 return;
220         mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
221         list_for_each_entry_safe(auth_tok, auth_tok_tmp,
222                                  &mount_crypt_stat->global_auth_tok_list,
223                                  mount_crypt_stat_list) {
224                 list_del(&auth_tok->mount_crypt_stat_list);
225                 if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
226                         key_put(auth_tok->global_auth_tok_key);
227                 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
228         }
229         mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
230         memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
231 }
232
233 /**
234  * virt_to_scatterlist
235  * @addr: Virtual address
236  * @size: Size of data; should be an even multiple of the block size
237  * @sg: Pointer to scatterlist array; set to NULL to obtain only
238  *      the number of scatterlist structs required in array
239  * @sg_size: Max array size
240  *
241  * Fills in a scatterlist array with page references for a passed
242  * virtual address.
243  *
244  * Returns the number of scatterlist structs in array used
245  */
246 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
247                         int sg_size)
248 {
249         int i = 0;
250         struct page *pg;
251         int offset;
252         int remainder_of_page;
253
254         sg_init_table(sg, sg_size);
255
256         while (size > 0 && i < sg_size) {
257                 pg = virt_to_page(addr);
258                 offset = offset_in_page(addr);
259                 sg_set_page(&sg[i], pg, 0, offset);
260                 remainder_of_page = PAGE_SIZE - offset;
261                 if (size >= remainder_of_page) {
262                         sg[i].length = remainder_of_page;
263                         addr += remainder_of_page;
264                         size -= remainder_of_page;
265                 } else {
266                         sg[i].length = size;
267                         addr += size;
268                         size = 0;
269                 }
270                 i++;
271         }
272         if (size > 0)
273                 return -ENOMEM;
274         return i;
275 }
276
277 struct extent_crypt_result {
278         struct completion completion;
279         int rc;
280 };
281
282 static void extent_crypt_complete(struct crypto_async_request *req, int rc)
283 {
284         struct extent_crypt_result *ecr = req->data;
285
286         if (rc == -EINPROGRESS)
287                 return;
288
289         ecr->rc = rc;
290         complete(&ecr->completion);
291 }
292
293 /**
294  * crypt_scatterlist
295  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
296  * @dst_sg: Destination of the data after performing the crypto operation
297  * @src_sg: Data to be encrypted or decrypted
298  * @size: Length of data
299  * @iv: IV to use
300  * @op: ENCRYPT or DECRYPT to indicate the desired operation
301  *
302  * Returns the number of bytes encrypted or decrypted; negative value on error
303  */
304 static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
305                              struct scatterlist *dst_sg,
306                              struct scatterlist *src_sg, int size,
307                              unsigned char *iv, int op)
308 {
309         struct skcipher_request *req = NULL;
310         struct extent_crypt_result ecr;
311         int rc = 0;
312
313         BUG_ON(!crypt_stat || !crypt_stat->tfm
314                || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
315         if (unlikely(ecryptfs_verbosity > 0)) {
316                 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
317                                 crypt_stat->key_size);
318                 ecryptfs_dump_hex(crypt_stat->key,
319                                   crypt_stat->key_size);
320         }
321
322         init_completion(&ecr.completion);
323
324         mutex_lock(&crypt_stat->cs_tfm_mutex);
325         req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
326         if (!req) {
327                 mutex_unlock(&crypt_stat->cs_tfm_mutex);
328                 rc = -ENOMEM;
329                 goto out;
330         }
331
332         skcipher_request_set_callback(req,
333                         CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
334                         extent_crypt_complete, &ecr);
335         /* Consider doing this once, when the file is opened */
336         if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
337                 rc = crypto_skcipher_setkey(crypt_stat->tfm, crypt_stat->key,
338                                             crypt_stat->key_size);
339                 if (rc) {
340                         ecryptfs_printk(KERN_ERR,
341                                         "Error setting key; rc = [%d]\n",
342                                         rc);
343                         mutex_unlock(&crypt_stat->cs_tfm_mutex);
344                         rc = -EINVAL;
345                         goto out;
346                 }
347                 crypt_stat->flags |= ECRYPTFS_KEY_SET;
348         }
349         mutex_unlock(&crypt_stat->cs_tfm_mutex);
350         skcipher_request_set_crypt(req, src_sg, dst_sg, size, iv);
351         rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) :
352                              crypto_skcipher_decrypt(req);
353         if (rc == -EINPROGRESS || rc == -EBUSY) {
354                 struct extent_crypt_result *ecr = req->base.data;
355
356                 wait_for_completion(&ecr->completion);
357                 rc = ecr->rc;
358                 reinit_completion(&ecr->completion);
359         }
360 out:
361         skcipher_request_free(req);
362         return rc;
363 }
364
365 /**
366  * lower_offset_for_page
367  *
368  * Convert an eCryptfs page index into a lower byte offset
369  */
370 static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
371                                     struct page *page)
372 {
373         return ecryptfs_lower_header_size(crypt_stat) +
374                ((loff_t)page->index << PAGE_SHIFT);
375 }
376
377 /**
378  * crypt_extent
379  * @crypt_stat: crypt_stat containing cryptographic context for the
380  *              encryption operation
381  * @dst_page: The page to write the result into
382  * @src_page: The page to read from
383  * @extent_offset: Page extent offset for use in generating IV
384  * @op: ENCRYPT or DECRYPT to indicate the desired operation
385  *
386  * Encrypts or decrypts one extent of data.
387  *
388  * Return zero on success; non-zero otherwise
389  */
390 static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat,
391                         struct page *dst_page,
392                         struct page *src_page,
393                         unsigned long extent_offset, int op)
394 {
395         pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index;
396         loff_t extent_base;
397         char extent_iv[ECRYPTFS_MAX_IV_BYTES];
398         struct scatterlist src_sg, dst_sg;
399         size_t extent_size = crypt_stat->extent_size;
400         int rc;
401
402         extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size));
403         rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
404                                 (extent_base + extent_offset));
405         if (rc) {
406                 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
407                         "extent [0x%.16llx]; rc = [%d]\n",
408                         (unsigned long long)(extent_base + extent_offset), rc);
409                 goto out;
410         }
411
412         sg_init_table(&src_sg, 1);
413         sg_init_table(&dst_sg, 1);
414
415         sg_set_page(&src_sg, src_page, extent_size,
416                     extent_offset * extent_size);
417         sg_set_page(&dst_sg, dst_page, extent_size,
418                     extent_offset * extent_size);
419
420         rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size,
421                                extent_iv, op);
422         if (rc < 0) {
423                 printk(KERN_ERR "%s: Error attempting to crypt page with "
424                        "page_index = [%ld], extent_offset = [%ld]; "
425                        "rc = [%d]\n", __func__, page_index, extent_offset, rc);
426                 goto out;
427         }
428         rc = 0;
429 out:
430         return rc;
431 }
432
433 /**
434  * ecryptfs_encrypt_page
435  * @page: Page mapped from the eCryptfs inode for the file; contains
436  *        decrypted content that needs to be encrypted (to a temporary
437  *        page; not in place) and written out to the lower file
438  *
439  * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
440  * that eCryptfs pages may straddle the lower pages -- for instance,
441  * if the file was created on a machine with an 8K page size
442  * (resulting in an 8K header), and then the file is copied onto a
443  * host with a 32K page size, then when reading page 0 of the eCryptfs
444  * file, 24K of page 0 of the lower file will be read and decrypted,
445  * and then 8K of page 1 of the lower file will be read and decrypted.
446  *
447  * Returns zero on success; negative on error
448  */
449 int ecryptfs_encrypt_page(struct page *page)
450 {
451         struct inode *ecryptfs_inode;
452         struct ecryptfs_crypt_stat *crypt_stat;
453         char *enc_extent_virt;
454         struct page *enc_extent_page = NULL;
455         loff_t extent_offset;
456         loff_t lower_offset;
457         int rc = 0;
458
459         ecryptfs_inode = page->mapping->host;
460         crypt_stat =
461                 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
462         BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
463         enc_extent_page = alloc_page(GFP_USER);
464         if (!enc_extent_page) {
465                 rc = -ENOMEM;
466                 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
467                                 "encrypted extent\n");
468                 goto out;
469         }
470
471         for (extent_offset = 0;
472              extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
473              extent_offset++) {
474                 rc = crypt_extent(crypt_stat, enc_extent_page, page,
475                                   extent_offset, ENCRYPT);
476                 if (rc) {
477                         printk(KERN_ERR "%s: Error encrypting extent; "
478                                "rc = [%d]\n", __func__, rc);
479                         goto out;
480                 }
481         }
482
483         lower_offset = lower_offset_for_page(crypt_stat, page);
484         enc_extent_virt = kmap(enc_extent_page);
485         rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
486                                   PAGE_SIZE);
487         kunmap(enc_extent_page);
488         if (rc < 0) {
489                 ecryptfs_printk(KERN_ERR,
490                         "Error attempting to write lower page; rc = [%d]\n",
491                         rc);
492                 goto out;
493         }
494         rc = 0;
495 out:
496         if (enc_extent_page) {
497                 __free_page(enc_extent_page);
498         }
499         return rc;
500 }
501
502 /**
503  * ecryptfs_decrypt_page
504  * @page: Page mapped from the eCryptfs inode for the file; data read
505  *        and decrypted from the lower file will be written into this
506  *        page
507  *
508  * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
509  * that eCryptfs pages may straddle the lower pages -- for instance,
510  * if the file was created on a machine with an 8K page size
511  * (resulting in an 8K header), and then the file is copied onto a
512  * host with a 32K page size, then when reading page 0 of the eCryptfs
513  * file, 24K of page 0 of the lower file will be read and decrypted,
514  * and then 8K of page 1 of the lower file will be read and decrypted.
515  *
516  * Returns zero on success; negative on error
517  */
518 int ecryptfs_decrypt_page(struct page *page)
519 {
520         struct inode *ecryptfs_inode;
521         struct ecryptfs_crypt_stat *crypt_stat;
522         char *page_virt;
523         unsigned long extent_offset;
524         loff_t lower_offset;
525         int rc = 0;
526
527         ecryptfs_inode = page->mapping->host;
528         crypt_stat =
529                 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
530         BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
531
532         lower_offset = lower_offset_for_page(crypt_stat, page);
533         page_virt = kmap(page);
534         rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_SIZE,
535                                  ecryptfs_inode);
536         kunmap(page);
537         if (rc < 0) {
538                 ecryptfs_printk(KERN_ERR,
539                         "Error attempting to read lower page; rc = [%d]\n",
540                         rc);
541                 goto out;
542         }
543
544         for (extent_offset = 0;
545              extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
546              extent_offset++) {
547                 rc = crypt_extent(crypt_stat, page, page,
548                                   extent_offset, DECRYPT);
549                 if (rc) {
550                         printk(KERN_ERR "%s: Error encrypting extent; "
551                                "rc = [%d]\n", __func__, rc);
552                         goto out;
553                 }
554         }
555 out:
556         return rc;
557 }
558
559 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
560
561 /**
562  * ecryptfs_init_crypt_ctx
563  * @crypt_stat: Uninitialized crypt stats structure
564  *
565  * Initialize the crypto context.
566  *
567  * TODO: Performance: Keep a cache of initialized cipher contexts;
568  * only init if needed
569  */
570 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
571 {
572         char *full_alg_name;
573         int rc = -EINVAL;
574
575         ecryptfs_printk(KERN_DEBUG,
576                         "Initializing cipher [%s]; strlen = [%d]; "
577                         "key_size_bits = [%zd]\n",
578                         crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
579                         crypt_stat->key_size << 3);
580         mutex_lock(&crypt_stat->cs_tfm_mutex);
581         if (crypt_stat->tfm) {
582                 rc = 0;
583                 goto out_unlock;
584         }
585         rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
586                                                     crypt_stat->cipher, "cbc");
587         if (rc)
588                 goto out_unlock;
589         crypt_stat->tfm = crypto_alloc_skcipher(full_alg_name, 0, 0);
590         if (IS_ERR(crypt_stat->tfm)) {
591                 rc = PTR_ERR(crypt_stat->tfm);
592                 crypt_stat->tfm = NULL;
593                 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
594                                 "Error initializing cipher [%s]\n",
595                                 full_alg_name);
596                 goto out_free;
597         }
598         crypto_skcipher_set_flags(crypt_stat->tfm,
599                                   CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
600         rc = 0;
601 out_free:
602         kfree(full_alg_name);
603 out_unlock:
604         mutex_unlock(&crypt_stat->cs_tfm_mutex);
605         return rc;
606 }
607
608 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
609 {
610         int extent_size_tmp;
611
612         crypt_stat->extent_mask = 0xFFFFFFFF;
613         crypt_stat->extent_shift = 0;
614         if (crypt_stat->extent_size == 0)
615                 return;
616         extent_size_tmp = crypt_stat->extent_size;
617         while ((extent_size_tmp & 0x01) == 0) {
618                 extent_size_tmp >>= 1;
619                 crypt_stat->extent_mask <<= 1;
620                 crypt_stat->extent_shift++;
621         }
622 }
623
624 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
625 {
626         /* Default values; may be overwritten as we are parsing the
627          * packets. */
628         crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
629         set_extent_mask_and_shift(crypt_stat);
630         crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
631         if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
632                 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
633         else {
634                 if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
635                         crypt_stat->metadata_size =
636                                 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
637                 else
638                         crypt_stat->metadata_size = PAGE_SIZE;
639         }
640 }
641
642 /**
643  * ecryptfs_compute_root_iv
644  * @crypt_stats
645  *
646  * On error, sets the root IV to all 0's.
647  */
648 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
649 {
650         int rc = 0;
651         char dst[MD5_DIGEST_SIZE];
652
653         BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
654         BUG_ON(crypt_stat->iv_bytes <= 0);
655         if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
656                 rc = -EINVAL;
657                 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
658                                 "cannot generate root IV\n");
659                 goto out;
660         }
661         rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
662                                     crypt_stat->key_size);
663         if (rc) {
664                 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
665                                 "MD5 while generating root IV\n");
666                 goto out;
667         }
668         memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
669 out:
670         if (rc) {
671                 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
672                 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
673         }
674         return rc;
675 }
676
677 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
678 {
679         get_random_bytes(crypt_stat->key, crypt_stat->key_size);
680         crypt_stat->flags |= ECRYPTFS_KEY_VALID;
681         ecryptfs_compute_root_iv(crypt_stat);
682         if (unlikely(ecryptfs_verbosity > 0)) {
683                 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
684                 ecryptfs_dump_hex(crypt_stat->key,
685                                   crypt_stat->key_size);
686         }
687 }
688
689 /**
690  * ecryptfs_copy_mount_wide_flags_to_inode_flags
691  * @crypt_stat: The inode's cryptographic context
692  * @mount_crypt_stat: The mount point's cryptographic context
693  *
694  * This function propagates the mount-wide flags to individual inode
695  * flags.
696  */
697 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
698         struct ecryptfs_crypt_stat *crypt_stat,
699         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
700 {
701         if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
702                 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
703         if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
704                 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
705         if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
706                 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
707                 if (mount_crypt_stat->flags
708                     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
709                         crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
710                 else if (mount_crypt_stat->flags
711                          & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
712                         crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
713         }
714 }
715
716 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
717         struct ecryptfs_crypt_stat *crypt_stat,
718         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
719 {
720         struct ecryptfs_global_auth_tok *global_auth_tok;
721         int rc = 0;
722
723         mutex_lock(&crypt_stat->keysig_list_mutex);
724         mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
725
726         list_for_each_entry(global_auth_tok,
727                             &mount_crypt_stat->global_auth_tok_list,
728                             mount_crypt_stat_list) {
729                 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
730                         continue;
731                 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
732                 if (rc) {
733                         printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
734                         goto out;
735                 }
736         }
737
738 out:
739         mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
740         mutex_unlock(&crypt_stat->keysig_list_mutex);
741         return rc;
742 }
743
744 /**
745  * ecryptfs_set_default_crypt_stat_vals
746  * @crypt_stat: The inode's cryptographic context
747  * @mount_crypt_stat: The mount point's cryptographic context
748  *
749  * Default values in the event that policy does not override them.
750  */
751 static void ecryptfs_set_default_crypt_stat_vals(
752         struct ecryptfs_crypt_stat *crypt_stat,
753         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
754 {
755         ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
756                                                       mount_crypt_stat);
757         ecryptfs_set_default_sizes(crypt_stat);
758         strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
759         crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
760         crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
761         crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
762         crypt_stat->mount_crypt_stat = mount_crypt_stat;
763 }
764
765 /**
766  * ecryptfs_new_file_context
767  * @ecryptfs_inode: The eCryptfs inode
768  *
769  * If the crypto context for the file has not yet been established,
770  * this is where we do that.  Establishing a new crypto context
771  * involves the following decisions:
772  *  - What cipher to use?
773  *  - What set of authentication tokens to use?
774  * Here we just worry about getting enough information into the
775  * authentication tokens so that we know that they are available.
776  * We associate the available authentication tokens with the new file
777  * via the set of signatures in the crypt_stat struct.  Later, when
778  * the headers are actually written out, we may again defer to
779  * userspace to perform the encryption of the session key; for the
780  * foreseeable future, this will be the case with public key packets.
781  *
782  * Returns zero on success; non-zero otherwise
783  */
784 int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
785 {
786         struct ecryptfs_crypt_stat *crypt_stat =
787             &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
788         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
789             &ecryptfs_superblock_to_private(
790                     ecryptfs_inode->i_sb)->mount_crypt_stat;
791         int cipher_name_len;
792         int rc = 0;
793
794         ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
795         crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
796         ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
797                                                       mount_crypt_stat);
798         rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
799                                                          mount_crypt_stat);
800         if (rc) {
801                 printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
802                        "to the inode key sigs; rc = [%d]\n", rc);
803                 goto out;
804         }
805         cipher_name_len =
806                 strlen(mount_crypt_stat->global_default_cipher_name);
807         memcpy(crypt_stat->cipher,
808                mount_crypt_stat->global_default_cipher_name,
809                cipher_name_len);
810         crypt_stat->cipher[cipher_name_len] = '\0';
811         crypt_stat->key_size =
812                 mount_crypt_stat->global_default_cipher_key_size;
813         ecryptfs_generate_new_key(crypt_stat);
814         rc = ecryptfs_init_crypt_ctx(crypt_stat);
815         if (rc)
816                 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
817                                 "context for cipher [%s]: rc = [%d]\n",
818                                 crypt_stat->cipher, rc);
819 out:
820         return rc;
821 }
822
823 /**
824  * ecryptfs_validate_marker - check for the ecryptfs marker
825  * @data: The data block in which to check
826  *
827  * Returns zero if marker found; -EINVAL if not found
828  */
829 static int ecryptfs_validate_marker(char *data)
830 {
831         u32 m_1, m_2;
832
833         m_1 = get_unaligned_be32(data);
834         m_2 = get_unaligned_be32(data + 4);
835         if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
836                 return 0;
837         ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
838                         "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
839                         MAGIC_ECRYPTFS_MARKER);
840         ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
841                         "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
842         return -EINVAL;
843 }
844
845 struct ecryptfs_flag_map_elem {
846         u32 file_flag;
847         u32 local_flag;
848 };
849
850 /* Add support for additional flags by adding elements here. */
851 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
852         {0x00000001, ECRYPTFS_ENABLE_HMAC},
853         {0x00000002, ECRYPTFS_ENCRYPTED},
854         {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
855         {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
856 };
857
858 /**
859  * ecryptfs_process_flags
860  * @crypt_stat: The cryptographic context
861  * @page_virt: Source data to be parsed
862  * @bytes_read: Updated with the number of bytes read
863  *
864  * Returns zero on success; non-zero if the flag set is invalid
865  */
866 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
867                                   char *page_virt, int *bytes_read)
868 {
869         int rc = 0;
870         int i;
871         u32 flags;
872
873         flags = get_unaligned_be32(page_virt);
874         for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
875                 if (flags & ecryptfs_flag_map[i].file_flag) {
876                         crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
877                 } else
878                         crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
879         /* Version is in top 8 bits of the 32-bit flag vector */
880         crypt_stat->file_version = ((flags >> 24) & 0xFF);
881         (*bytes_read) = 4;
882         return rc;
883 }
884
885 /**
886  * write_ecryptfs_marker
887  * @page_virt: The pointer to in a page to begin writing the marker
888  * @written: Number of bytes written
889  *
890  * Marker = 0x3c81b7f5
891  */
892 static void write_ecryptfs_marker(char *page_virt, size_t *written)
893 {
894         u32 m_1, m_2;
895
896         get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
897         m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
898         put_unaligned_be32(m_1, page_virt);
899         page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
900         put_unaligned_be32(m_2, page_virt);
901         (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
902 }
903
904 void ecryptfs_write_crypt_stat_flags(char *page_virt,
905                                      struct ecryptfs_crypt_stat *crypt_stat,
906                                      size_t *written)
907 {
908         u32 flags = 0;
909         int i;
910
911         for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
912                 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
913                         flags |= ecryptfs_flag_map[i].file_flag;
914         /* Version is in top 8 bits of the 32-bit flag vector */
915         flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
916         put_unaligned_be32(flags, page_virt);
917         (*written) = 4;
918 }
919
920 struct ecryptfs_cipher_code_str_map_elem {
921         char cipher_str[16];
922         u8 cipher_code;
923 };
924
925 /* Add support for additional ciphers by adding elements here. The
926  * cipher_code is whatever OpenPGP applications use to identify the
927  * ciphers. List in order of probability. */
928 static struct ecryptfs_cipher_code_str_map_elem
929 ecryptfs_cipher_code_str_map[] = {
930         {"aes",RFC2440_CIPHER_AES_128 },
931         {"blowfish", RFC2440_CIPHER_BLOWFISH},
932         {"des3_ede", RFC2440_CIPHER_DES3_EDE},
933         {"cast5", RFC2440_CIPHER_CAST_5},
934         {"twofish", RFC2440_CIPHER_TWOFISH},
935         {"cast6", RFC2440_CIPHER_CAST_6},
936         {"aes", RFC2440_CIPHER_AES_192},
937         {"aes", RFC2440_CIPHER_AES_256}
938 };
939
940 /**
941  * ecryptfs_code_for_cipher_string
942  * @cipher_name: The string alias for the cipher
943  * @key_bytes: Length of key in bytes; used for AES code selection
944  *
945  * Returns zero on no match, or the cipher code on match
946  */
947 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
948 {
949         int i;
950         u8 code = 0;
951         struct ecryptfs_cipher_code_str_map_elem *map =
952                 ecryptfs_cipher_code_str_map;
953
954         if (strcmp(cipher_name, "aes") == 0) {
955                 switch (key_bytes) {
956                 case 16:
957                         code = RFC2440_CIPHER_AES_128;
958                         break;
959                 case 24:
960                         code = RFC2440_CIPHER_AES_192;
961                         break;
962                 case 32:
963                         code = RFC2440_CIPHER_AES_256;
964                 }
965         } else {
966                 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
967                         if (strcmp(cipher_name, map[i].cipher_str) == 0) {
968                                 code = map[i].cipher_code;
969                                 break;
970                         }
971         }
972         return code;
973 }
974
975 /**
976  * ecryptfs_cipher_code_to_string
977  * @str: Destination to write out the cipher name
978  * @cipher_code: The code to convert to cipher name string
979  *
980  * Returns zero on success
981  */
982 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
983 {
984         int rc = 0;
985         int i;
986
987         str[0] = '\0';
988         for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
989                 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
990                         strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
991         if (str[0] == '\0') {
992                 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
993                                 "[%d]\n", cipher_code);
994                 rc = -EINVAL;
995         }
996         return rc;
997 }
998
999 int ecryptfs_read_and_validate_header_region(struct inode *inode)
1000 {
1001         u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1002         u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1003         int rc;
1004
1005         rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
1006                                  inode);
1007         if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1008                 return rc >= 0 ? -EINVAL : rc;
1009         rc = ecryptfs_validate_marker(marker);
1010         if (!rc)
1011                 ecryptfs_i_size_init(file_size, inode);
1012         return rc;
1013 }
1014
1015 void
1016 ecryptfs_write_header_metadata(char *virt,
1017                                struct ecryptfs_crypt_stat *crypt_stat,
1018                                size_t *written)
1019 {
1020         u32 header_extent_size;
1021         u16 num_header_extents_at_front;
1022
1023         header_extent_size = (u32)crypt_stat->extent_size;
1024         num_header_extents_at_front =
1025                 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1026         put_unaligned_be32(header_extent_size, virt);
1027         virt += 4;
1028         put_unaligned_be16(num_header_extents_at_front, virt);
1029         (*written) = 6;
1030 }
1031
1032 struct kmem_cache *ecryptfs_header_cache;
1033
1034 /**
1035  * ecryptfs_write_headers_virt
1036  * @page_virt: The virtual address to write the headers to
1037  * @max: The size of memory allocated at page_virt
1038  * @size: Set to the number of bytes written by this function
1039  * @crypt_stat: The cryptographic context
1040  * @ecryptfs_dentry: The eCryptfs dentry
1041  *
1042  * Format version: 1
1043  *
1044  *   Header Extent:
1045  *     Octets 0-7:        Unencrypted file size (big-endian)
1046  *     Octets 8-15:       eCryptfs special marker
1047  *     Octets 16-19:      Flags
1048  *      Octet 16:         File format version number (between 0 and 255)
1049  *      Octets 17-18:     Reserved
1050  *      Octet 19:         Bit 1 (lsb): Reserved
1051  *                        Bit 2: Encrypted?
1052  *                        Bits 3-8: Reserved
1053  *     Octets 20-23:      Header extent size (big-endian)
1054  *     Octets 24-25:      Number of header extents at front of file
1055  *                        (big-endian)
1056  *     Octet  26:         Begin RFC 2440 authentication token packet set
1057  *   Data Extent 0:
1058  *     Lower data (CBC encrypted)
1059  *   Data Extent 1:
1060  *     Lower data (CBC encrypted)
1061  *   ...
1062  *
1063  * Returns zero on success
1064  */
1065 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1066                                        size_t *size,
1067                                        struct ecryptfs_crypt_stat *crypt_stat,
1068                                        struct dentry *ecryptfs_dentry)
1069 {
1070         int rc;
1071         size_t written;
1072         size_t offset;
1073
1074         offset = ECRYPTFS_FILE_SIZE_BYTES;
1075         write_ecryptfs_marker((page_virt + offset), &written);
1076         offset += written;
1077         ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1078                                         &written);
1079         offset += written;
1080         ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1081                                        &written);
1082         offset += written;
1083         rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1084                                               ecryptfs_dentry, &written,
1085                                               max - offset);
1086         if (rc)
1087                 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1088                                 "set; rc = [%d]\n", rc);
1089         if (size) {
1090                 offset += written;
1091                 *size = offset;
1092         }
1093         return rc;
1094 }
1095
1096 static int
1097 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1098                                     char *virt, size_t virt_len)
1099 {
1100         int rc;
1101
1102         rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1103                                   0, virt_len);
1104         if (rc < 0)
1105                 printk(KERN_ERR "%s: Error attempting to write header "
1106                        "information to lower file; rc = [%d]\n", __func__, rc);
1107         else
1108                 rc = 0;
1109         return rc;
1110 }
1111
1112 static int
1113 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1114                                  struct inode *ecryptfs_inode,
1115                                  char *page_virt, size_t size)
1116 {
1117         int rc;
1118
1119         rc = ecryptfs_setxattr(ecryptfs_dentry, ecryptfs_inode,
1120                                ECRYPTFS_XATTR_NAME, page_virt, size, 0);
1121         return rc;
1122 }
1123
1124 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1125                                                unsigned int order)
1126 {
1127         struct page *page;
1128
1129         page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1130         if (page)
1131                 return (unsigned long) page_address(page);
1132         return 0;
1133 }
1134
1135 /**
1136  * ecryptfs_write_metadata
1137  * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1138  * @ecryptfs_inode: The newly created eCryptfs inode
1139  *
1140  * Write the file headers out.  This will likely involve a userspace
1141  * callout, in which the session key is encrypted with one or more
1142  * public keys and/or the passphrase necessary to do the encryption is
1143  * retrieved via a prompt.  Exactly what happens at this point should
1144  * be policy-dependent.
1145  *
1146  * Returns zero on success; non-zero on error
1147  */
1148 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1149                             struct inode *ecryptfs_inode)
1150 {
1151         struct ecryptfs_crypt_stat *crypt_stat =
1152                 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1153         unsigned int order;
1154         char *virt;
1155         size_t virt_len;
1156         size_t size = 0;
1157         int rc = 0;
1158
1159         if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1160                 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1161                         printk(KERN_ERR "Key is invalid; bailing out\n");
1162                         rc = -EINVAL;
1163                         goto out;
1164                 }
1165         } else {
1166                 printk(KERN_WARNING "%s: Encrypted flag not set\n",
1167                        __func__);
1168                 rc = -EINVAL;
1169                 goto out;
1170         }
1171         virt_len = crypt_stat->metadata_size;
1172         order = get_order(virt_len);
1173         /* Released in this function */
1174         virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1175         if (!virt) {
1176                 printk(KERN_ERR "%s: Out of memory\n", __func__);
1177                 rc = -ENOMEM;
1178                 goto out;
1179         }
1180         /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1181         rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1182                                          ecryptfs_dentry);
1183         if (unlikely(rc)) {
1184                 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1185                        __func__, rc);
1186                 goto out_free;
1187         }
1188         if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1189                 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, ecryptfs_inode,
1190                                                       virt, size);
1191         else
1192                 rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1193                                                          virt_len);
1194         if (rc) {
1195                 printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1196                        "rc = [%d]\n", __func__, rc);
1197                 goto out_free;
1198         }
1199 out_free:
1200         free_pages((unsigned long)virt, order);
1201 out:
1202         return rc;
1203 }
1204
1205 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1206 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1207 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1208                                  char *virt, int *bytes_read,
1209                                  int validate_header_size)
1210 {
1211         int rc = 0;
1212         u32 header_extent_size;
1213         u16 num_header_extents_at_front;
1214
1215         header_extent_size = get_unaligned_be32(virt);
1216         virt += sizeof(__be32);
1217         num_header_extents_at_front = get_unaligned_be16(virt);
1218         crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1219                                      * (size_t)header_extent_size));
1220         (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1221         if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1222             && (crypt_stat->metadata_size
1223                 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1224                 rc = -EINVAL;
1225                 printk(KERN_WARNING "Invalid header size: [%zd]\n",
1226                        crypt_stat->metadata_size);
1227         }
1228         return rc;
1229 }
1230
1231 /**
1232  * set_default_header_data
1233  * @crypt_stat: The cryptographic context
1234  *
1235  * For version 0 file format; this function is only for backwards
1236  * compatibility for files created with the prior versions of
1237  * eCryptfs.
1238  */
1239 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1240 {
1241         crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1242 }
1243
1244 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1245 {
1246         struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1247         struct ecryptfs_crypt_stat *crypt_stat;
1248         u64 file_size;
1249
1250         crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1251         mount_crypt_stat =
1252                 &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1253         if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1254                 file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1255                 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1256                         file_size += crypt_stat->metadata_size;
1257         } else
1258                 file_size = get_unaligned_be64(page_virt);
1259         i_size_write(inode, (loff_t)file_size);
1260         crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1261 }
1262
1263 /**
1264  * ecryptfs_read_headers_virt
1265  * @page_virt: The virtual address into which to read the headers
1266  * @crypt_stat: The cryptographic context
1267  * @ecryptfs_dentry: The eCryptfs dentry
1268  * @validate_header_size: Whether to validate the header size while reading
1269  *
1270  * Read/parse the header data. The header format is detailed in the
1271  * comment block for the ecryptfs_write_headers_virt() function.
1272  *
1273  * Returns zero on success
1274  */
1275 static int ecryptfs_read_headers_virt(char *page_virt,
1276                                       struct ecryptfs_crypt_stat *crypt_stat,
1277                                       struct dentry *ecryptfs_dentry,
1278                                       int validate_header_size)
1279 {
1280         int rc = 0;
1281         int offset;
1282         int bytes_read;
1283
1284         ecryptfs_set_default_sizes(crypt_stat);
1285         crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1286                 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1287         offset = ECRYPTFS_FILE_SIZE_BYTES;
1288         rc = ecryptfs_validate_marker(page_virt + offset);
1289         if (rc)
1290                 goto out;
1291         if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1292                 ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry));
1293         offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1294         rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1295                                     &bytes_read);
1296         if (rc) {
1297                 ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1298                 goto out;
1299         }
1300         if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1301                 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1302                                 "file version [%d] is supported by this "
1303                                 "version of eCryptfs\n",
1304                                 crypt_stat->file_version,
1305                                 ECRYPTFS_SUPPORTED_FILE_VERSION);
1306                 rc = -EINVAL;
1307                 goto out;
1308         }
1309         offset += bytes_read;
1310         if (crypt_stat->file_version >= 1) {
1311                 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1312                                            &bytes_read, validate_header_size);
1313                 if (rc) {
1314                         ecryptfs_printk(KERN_WARNING, "Error reading header "
1315                                         "metadata; rc = [%d]\n", rc);
1316                 }
1317                 offset += bytes_read;
1318         } else
1319                 set_default_header_data(crypt_stat);
1320         rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1321                                        ecryptfs_dentry);
1322 out:
1323         return rc;
1324 }
1325
1326 /**
1327  * ecryptfs_read_xattr_region
1328  * @page_virt: The vitual address into which to read the xattr data
1329  * @ecryptfs_inode: The eCryptfs inode
1330  *
1331  * Attempts to read the crypto metadata from the extended attribute
1332  * region of the lower file.
1333  *
1334  * Returns zero on success; non-zero on error
1335  */
1336 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1337 {
1338         struct dentry *lower_dentry =
1339                 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry;
1340         ssize_t size;
1341         int rc = 0;
1342
1343         size = ecryptfs_getxattr_lower(lower_dentry,
1344                                        ecryptfs_inode_to_lower(ecryptfs_inode),
1345                                        ECRYPTFS_XATTR_NAME,
1346                                        page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1347         if (size < 0) {
1348                 if (unlikely(ecryptfs_verbosity > 0))
1349                         printk(KERN_INFO "Error attempting to read the [%s] "
1350                                "xattr from the lower file; return value = "
1351                                "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1352                 rc = -EINVAL;
1353                 goto out;
1354         }
1355 out:
1356         return rc;
1357 }
1358
1359 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1360                                             struct inode *inode)
1361 {
1362         u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1363         u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1364         int rc;
1365
1366         rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1367                                      ecryptfs_inode_to_lower(inode),
1368                                      ECRYPTFS_XATTR_NAME, file_size,
1369                                      ECRYPTFS_SIZE_AND_MARKER_BYTES);
1370         if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1371                 return rc >= 0 ? -EINVAL : rc;
1372         rc = ecryptfs_validate_marker(marker);
1373         if (!rc)
1374                 ecryptfs_i_size_init(file_size, inode);
1375         return rc;
1376 }
1377
1378 /**
1379  * ecryptfs_read_metadata
1380  *
1381  * Common entry point for reading file metadata. From here, we could
1382  * retrieve the header information from the header region of the file,
1383  * the xattr region of the file, or some other repository that is
1384  * stored separately from the file itself. The current implementation
1385  * supports retrieving the metadata information from the file contents
1386  * and from the xattr region.
1387  *
1388  * Returns zero if valid headers found and parsed; non-zero otherwise
1389  */
1390 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1391 {
1392         int rc;
1393         char *page_virt;
1394         struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry);
1395         struct ecryptfs_crypt_stat *crypt_stat =
1396             &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1397         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1398                 &ecryptfs_superblock_to_private(
1399                         ecryptfs_dentry->d_sb)->mount_crypt_stat;
1400
1401         ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1402                                                       mount_crypt_stat);
1403         /* Read the first page from the underlying file */
1404         page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1405         if (!page_virt) {
1406                 rc = -ENOMEM;
1407                 goto out;
1408         }
1409         rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1410                                  ecryptfs_inode);
1411         if (rc >= 0)
1412                 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1413                                                 ecryptfs_dentry,
1414                                                 ECRYPTFS_VALIDATE_HEADER_SIZE);
1415         if (rc) {
1416                 /* metadata is not in the file header, so try xattrs */
1417                 memset(page_virt, 0, PAGE_SIZE);
1418                 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1419                 if (rc) {
1420                         printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1421                                "file header region or xattr region, inode %lu\n",
1422                                 ecryptfs_inode->i_ino);
1423                         rc = -EINVAL;
1424                         goto out;
1425                 }
1426                 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1427                                                 ecryptfs_dentry,
1428                                                 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1429                 if (rc) {
1430                         printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1431                                "file xattr region either, inode %lu\n",
1432                                 ecryptfs_inode->i_ino);
1433                         rc = -EINVAL;
1434                 }
1435                 if (crypt_stat->mount_crypt_stat->flags
1436                     & ECRYPTFS_XATTR_METADATA_ENABLED) {
1437                         crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1438                 } else {
1439                         printk(KERN_WARNING "Attempt to access file with "
1440                                "crypto metadata only in the extended attribute "
1441                                "region, but eCryptfs was mounted without "
1442                                "xattr support enabled. eCryptfs will not treat "
1443                                "this like an encrypted file, inode %lu\n",
1444                                 ecryptfs_inode->i_ino);
1445                         rc = -EINVAL;
1446                 }
1447         }
1448 out:
1449         if (page_virt) {
1450                 memset(page_virt, 0, PAGE_SIZE);
1451                 kmem_cache_free(ecryptfs_header_cache, page_virt);
1452         }
1453         return rc;
1454 }
1455
1456 /**
1457  * ecryptfs_encrypt_filename - encrypt filename
1458  *
1459  * CBC-encrypts the filename. We do not want to encrypt the same
1460  * filename with the same key and IV, which may happen with hard
1461  * links, so we prepend random bits to each filename.
1462  *
1463  * Returns zero on success; non-zero otherwise
1464  */
1465 static int
1466 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1467                           struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1468 {
1469         int rc = 0;
1470
1471         filename->encrypted_filename = NULL;
1472         filename->encrypted_filename_size = 0;
1473         if (mount_crypt_stat && (mount_crypt_stat->flags
1474                                      & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1475                 size_t packet_size;
1476                 size_t remaining_bytes;
1477
1478                 rc = ecryptfs_write_tag_70_packet(
1479                         NULL, NULL,
1480                         &filename->encrypted_filename_size,
1481                         mount_crypt_stat, NULL,
1482                         filename->filename_size);
1483                 if (rc) {
1484                         printk(KERN_ERR "%s: Error attempting to get packet "
1485                                "size for tag 72; rc = [%d]\n", __func__,
1486                                rc);
1487                         filename->encrypted_filename_size = 0;
1488                         goto out;
1489                 }
1490                 filename->encrypted_filename =
1491                         kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1492                 if (!filename->encrypted_filename) {
1493                         rc = -ENOMEM;
1494                         goto out;
1495                 }
1496                 remaining_bytes = filename->encrypted_filename_size;
1497                 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1498                                                   &remaining_bytes,
1499                                                   &packet_size,
1500                                                   mount_crypt_stat,
1501                                                   filename->filename,
1502                                                   filename->filename_size);
1503                 if (rc) {
1504                         printk(KERN_ERR "%s: Error attempting to generate "
1505                                "tag 70 packet; rc = [%d]\n", __func__,
1506                                rc);
1507                         kfree(filename->encrypted_filename);
1508                         filename->encrypted_filename = NULL;
1509                         filename->encrypted_filename_size = 0;
1510                         goto out;
1511                 }
1512                 filename->encrypted_filename_size = packet_size;
1513         } else {
1514                 printk(KERN_ERR "%s: No support for requested filename "
1515                        "encryption method in this release\n", __func__);
1516                 rc = -EOPNOTSUPP;
1517                 goto out;
1518         }
1519 out:
1520         return rc;
1521 }
1522
1523 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1524                                   const char *name, size_t name_size)
1525 {
1526         int rc = 0;
1527
1528         (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1529         if (!(*copied_name)) {
1530                 rc = -ENOMEM;
1531                 goto out;
1532         }
1533         memcpy((void *)(*copied_name), (void *)name, name_size);
1534         (*copied_name)[(name_size)] = '\0';     /* Only for convenience
1535                                                  * in printing out the
1536                                                  * string in debug
1537                                                  * messages */
1538         (*copied_name_size) = name_size;
1539 out:
1540         return rc;
1541 }
1542
1543 /**
1544  * ecryptfs_process_key_cipher - Perform key cipher initialization.
1545  * @key_tfm: Crypto context for key material, set by this function
1546  * @cipher_name: Name of the cipher
1547  * @key_size: Size of the key in bytes
1548  *
1549  * Returns zero on success. Any crypto_tfm structs allocated here
1550  * should be released by other functions, such as on a superblock put
1551  * event, regardless of whether this function succeeds for fails.
1552  */
1553 static int
1554 ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm,
1555                             char *cipher_name, size_t *key_size)
1556 {
1557         char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1558         char *full_alg_name = NULL;
1559         int rc;
1560
1561         *key_tfm = NULL;
1562         if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1563                 rc = -EINVAL;
1564                 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1565                       "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1566                 goto out;
1567         }
1568         rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1569                                                     "ecb");
1570         if (rc)
1571                 goto out;
1572         *key_tfm = crypto_alloc_skcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1573         if (IS_ERR(*key_tfm)) {
1574                 rc = PTR_ERR(*key_tfm);
1575                 printk(KERN_ERR "Unable to allocate crypto cipher with name "
1576                        "[%s]; rc = [%d]\n", full_alg_name, rc);
1577                 goto out;
1578         }
1579         crypto_skcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
1580         if (*key_size == 0)
1581                 *key_size = crypto_skcipher_default_keysize(*key_tfm);
1582         get_random_bytes(dummy_key, *key_size);
1583         rc = crypto_skcipher_setkey(*key_tfm, dummy_key, *key_size);
1584         if (rc) {
1585                 printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1586                        "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1587                        rc);
1588                 rc = -EINVAL;
1589                 goto out;
1590         }
1591 out:
1592         kfree(full_alg_name);
1593         return rc;
1594 }
1595
1596 struct kmem_cache *ecryptfs_key_tfm_cache;
1597 static struct list_head key_tfm_list;
1598 struct mutex key_tfm_list_mutex;
1599
1600 int __init ecryptfs_init_crypto(void)
1601 {
1602         mutex_init(&key_tfm_list_mutex);
1603         INIT_LIST_HEAD(&key_tfm_list);
1604         return 0;
1605 }
1606
1607 /**
1608  * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1609  *
1610  * Called only at module unload time
1611  */
1612 int ecryptfs_destroy_crypto(void)
1613 {
1614         struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1615
1616         mutex_lock(&key_tfm_list_mutex);
1617         list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1618                                  key_tfm_list) {
1619                 list_del(&key_tfm->key_tfm_list);
1620                 crypto_free_skcipher(key_tfm->key_tfm);
1621                 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1622         }
1623         mutex_unlock(&key_tfm_list_mutex);
1624         return 0;
1625 }
1626
1627 int
1628 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1629                          size_t key_size)
1630 {
1631         struct ecryptfs_key_tfm *tmp_tfm;
1632         int rc = 0;
1633
1634         BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1635
1636         tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1637         if (key_tfm)
1638                 (*key_tfm) = tmp_tfm;
1639         if (!tmp_tfm) {
1640                 rc = -ENOMEM;
1641                 goto out;
1642         }
1643         mutex_init(&tmp_tfm->key_tfm_mutex);
1644         strncpy(tmp_tfm->cipher_name, cipher_name,
1645                 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1646         tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1647         tmp_tfm->key_size = key_size;
1648         rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1649                                          tmp_tfm->cipher_name,
1650                                          &tmp_tfm->key_size);
1651         if (rc) {
1652                 printk(KERN_ERR "Error attempting to initialize key TFM "
1653                        "cipher with name = [%s]; rc = [%d]\n",
1654                        tmp_tfm->cipher_name, rc);
1655                 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1656                 if (key_tfm)
1657                         (*key_tfm) = NULL;
1658                 goto out;
1659         }
1660         list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1661 out:
1662         return rc;
1663 }
1664
1665 /**
1666  * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1667  * @cipher_name: the name of the cipher to search for
1668  * @key_tfm: set to corresponding tfm if found
1669  *
1670  * Searches for cached key_tfm matching @cipher_name
1671  * Must be called with &key_tfm_list_mutex held
1672  * Returns 1 if found, with @key_tfm set
1673  * Returns 0 if not found, with @key_tfm set to NULL
1674  */
1675 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1676 {
1677         struct ecryptfs_key_tfm *tmp_key_tfm;
1678
1679         BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1680
1681         list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1682                 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1683                         if (key_tfm)
1684                                 (*key_tfm) = tmp_key_tfm;
1685                         return 1;
1686                 }
1687         }
1688         if (key_tfm)
1689                 (*key_tfm) = NULL;
1690         return 0;
1691 }
1692
1693 /**
1694  * ecryptfs_get_tfm_and_mutex_for_cipher_name
1695  *
1696  * @tfm: set to cached tfm found, or new tfm created
1697  * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1698  * @cipher_name: the name of the cipher to search for and/or add
1699  *
1700  * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1701  * Searches for cached item first, and creates new if not found.
1702  * Returns 0 on success, non-zero if adding new cipher failed
1703  */
1704 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm,
1705                                                struct mutex **tfm_mutex,
1706                                                char *cipher_name)
1707 {
1708         struct ecryptfs_key_tfm *key_tfm;
1709         int rc = 0;
1710
1711         (*tfm) = NULL;
1712         (*tfm_mutex) = NULL;
1713
1714         mutex_lock(&key_tfm_list_mutex);
1715         if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1716                 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1717                 if (rc) {
1718                         printk(KERN_ERR "Error adding new key_tfm to list; "
1719                                         "rc = [%d]\n", rc);
1720                         goto out;
1721                 }
1722         }
1723         (*tfm) = key_tfm->key_tfm;
1724         (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1725 out:
1726         mutex_unlock(&key_tfm_list_mutex);
1727         return rc;
1728 }
1729
1730 /* 64 characters forming a 6-bit target field */
1731 static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1732                                                  "EFGHIJKLMNOPQRST"
1733                                                  "UVWXYZabcdefghij"
1734                                                  "klmnopqrstuvwxyz");
1735
1736 /* We could either offset on every reverse map or just pad some 0x00's
1737  * at the front here */
1738 static const unsigned char filename_rev_map[256] = {
1739         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1740         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1741         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1742         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1743         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1744         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1745         0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1746         0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1747         0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1748         0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1749         0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1750         0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1751         0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1752         0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1753         0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1754         0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1755 };
1756
1757 /**
1758  * ecryptfs_encode_for_filename
1759  * @dst: Destination location for encoded filename
1760  * @dst_size: Size of the encoded filename in bytes
1761  * @src: Source location for the filename to encode
1762  * @src_size: Size of the source in bytes
1763  */
1764 static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1765                                   unsigned char *src, size_t src_size)
1766 {
1767         size_t num_blocks;
1768         size_t block_num = 0;
1769         size_t dst_offset = 0;
1770         unsigned char last_block[3];
1771
1772         if (src_size == 0) {
1773                 (*dst_size) = 0;
1774                 goto out;
1775         }
1776         num_blocks = (src_size / 3);
1777         if ((src_size % 3) == 0) {
1778                 memcpy(last_block, (&src[src_size - 3]), 3);
1779         } else {
1780                 num_blocks++;
1781                 last_block[2] = 0x00;
1782                 switch (src_size % 3) {
1783                 case 1:
1784                         last_block[0] = src[src_size - 1];
1785                         last_block[1] = 0x00;
1786                         break;
1787                 case 2:
1788                         last_block[0] = src[src_size - 2];
1789                         last_block[1] = src[src_size - 1];
1790                 }
1791         }
1792         (*dst_size) = (num_blocks * 4);
1793         if (!dst)
1794                 goto out;
1795         while (block_num < num_blocks) {
1796                 unsigned char *src_block;
1797                 unsigned char dst_block[4];
1798
1799                 if (block_num == (num_blocks - 1))
1800                         src_block = last_block;
1801                 else
1802                         src_block = &src[block_num * 3];
1803                 dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1804                 dst_block[1] = (((src_block[0] << 4) & 0x30)
1805                                 | ((src_block[1] >> 4) & 0x0F));
1806                 dst_block[2] = (((src_block[1] << 2) & 0x3C)
1807                                 | ((src_block[2] >> 6) & 0x03));
1808                 dst_block[3] = (src_block[2] & 0x3F);
1809                 dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1810                 dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1811                 dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1812                 dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1813                 block_num++;
1814         }
1815 out:
1816         return;
1817 }
1818
1819 static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1820 {
1821         /* Not exact; conservatively long. Every block of 4
1822          * encoded characters decodes into a block of 3
1823          * decoded characters. This segment of code provides
1824          * the caller with the maximum amount of allocated
1825          * space that @dst will need to point to in a
1826          * subsequent call. */
1827         return ((encoded_size + 1) * 3) / 4;
1828 }
1829
1830 /**
1831  * ecryptfs_decode_from_filename
1832  * @dst: If NULL, this function only sets @dst_size and returns. If
1833  *       non-NULL, this function decodes the encoded octets in @src
1834  *       into the memory that @dst points to.
1835  * @dst_size: Set to the size of the decoded string.
1836  * @src: The encoded set of octets to decode.
1837  * @src_size: The size of the encoded set of octets to decode.
1838  */
1839 static void
1840 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
1841                               const unsigned char *src, size_t src_size)
1842 {
1843         u8 current_bit_offset = 0;
1844         size_t src_byte_offset = 0;
1845         size_t dst_byte_offset = 0;
1846
1847         if (!dst) {
1848                 (*dst_size) = ecryptfs_max_decoded_size(src_size);
1849                 goto out;
1850         }
1851         while (src_byte_offset < src_size) {
1852                 unsigned char src_byte =
1853                                 filename_rev_map[(int)src[src_byte_offset]];
1854
1855                 switch (current_bit_offset) {
1856                 case 0:
1857                         dst[dst_byte_offset] = (src_byte << 2);
1858                         current_bit_offset = 6;
1859                         break;
1860                 case 6:
1861                         dst[dst_byte_offset++] |= (src_byte >> 4);
1862                         dst[dst_byte_offset] = ((src_byte & 0xF)
1863                                                  << 4);
1864                         current_bit_offset = 4;
1865                         break;
1866                 case 4:
1867                         dst[dst_byte_offset++] |= (src_byte >> 2);
1868                         dst[dst_byte_offset] = (src_byte << 6);
1869                         current_bit_offset = 2;
1870                         break;
1871                 case 2:
1872                         dst[dst_byte_offset++] |= (src_byte);
1873                         current_bit_offset = 0;
1874                         break;
1875                 }
1876                 src_byte_offset++;
1877         }
1878         (*dst_size) = dst_byte_offset;
1879 out:
1880         return;
1881 }
1882
1883 /**
1884  * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1885  * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1886  * @name: The plaintext name
1887  * @length: The length of the plaintext
1888  * @encoded_name: The encypted name
1889  *
1890  * Encrypts and encodes a filename into something that constitutes a
1891  * valid filename for a filesystem, with printable characters.
1892  *
1893  * We assume that we have a properly initialized crypto context,
1894  * pointed to by crypt_stat->tfm.
1895  *
1896  * Returns zero on success; non-zero on otherwise
1897  */
1898 int ecryptfs_encrypt_and_encode_filename(
1899         char **encoded_name,
1900         size_t *encoded_name_size,
1901         struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
1902         const char *name, size_t name_size)
1903 {
1904         size_t encoded_name_no_prefix_size;
1905         int rc = 0;
1906
1907         (*encoded_name) = NULL;
1908         (*encoded_name_size) = 0;
1909         if (mount_crypt_stat && (mount_crypt_stat->flags
1910                                      & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
1911                 struct ecryptfs_filename *filename;
1912
1913                 filename = kzalloc(sizeof(*filename), GFP_KERNEL);
1914                 if (!filename) {
1915                         rc = -ENOMEM;
1916                         goto out;
1917                 }
1918                 filename->filename = (char *)name;
1919                 filename->filename_size = name_size;
1920                 rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat);
1921                 if (rc) {
1922                         printk(KERN_ERR "%s: Error attempting to encrypt "
1923                                "filename; rc = [%d]\n", __func__, rc);
1924                         kfree(filename);
1925                         goto out;
1926                 }
1927                 ecryptfs_encode_for_filename(
1928                         NULL, &encoded_name_no_prefix_size,
1929                         filename->encrypted_filename,
1930                         filename->encrypted_filename_size);
1931                 if (mount_crypt_stat
1932                         && (mount_crypt_stat->flags
1933                             & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))
1934                         (*encoded_name_size) =
1935                                 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1936                                  + encoded_name_no_prefix_size);
1937                 else
1938                         (*encoded_name_size) =
1939                                 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1940                                  + encoded_name_no_prefix_size);
1941                 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
1942                 if (!(*encoded_name)) {
1943                         rc = -ENOMEM;
1944                         kfree(filename->encrypted_filename);
1945                         kfree(filename);
1946                         goto out;
1947                 }
1948                 if (mount_crypt_stat
1949                         && (mount_crypt_stat->flags
1950                             & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1951                         memcpy((*encoded_name),
1952                                ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
1953                                ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
1954                         ecryptfs_encode_for_filename(
1955                             ((*encoded_name)
1956                              + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
1957                             &encoded_name_no_prefix_size,
1958                             filename->encrypted_filename,
1959                             filename->encrypted_filename_size);
1960                         (*encoded_name_size) =
1961                                 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1962                                  + encoded_name_no_prefix_size);
1963                         (*encoded_name)[(*encoded_name_size)] = '\0';
1964                 } else {
1965                         rc = -EOPNOTSUPP;
1966                 }
1967                 if (rc) {
1968                         printk(KERN_ERR "%s: Error attempting to encode "
1969                                "encrypted filename; rc = [%d]\n", __func__,
1970                                rc);
1971                         kfree((*encoded_name));
1972                         (*encoded_name) = NULL;
1973                         (*encoded_name_size) = 0;
1974                 }
1975                 kfree(filename->encrypted_filename);
1976                 kfree(filename);
1977         } else {
1978                 rc = ecryptfs_copy_filename(encoded_name,
1979                                             encoded_name_size,
1980                                             name, name_size);
1981         }
1982 out:
1983         return rc;
1984 }
1985
1986 static bool is_dot_dotdot(const char *name, size_t name_size)
1987 {
1988         if (name_size == 1 && name[0] == '.')
1989                 return true;
1990         else if (name_size == 2 && name[0] == '.' && name[1] == '.')
1991                 return true;
1992
1993         return false;
1994 }
1995
1996 /**
1997  * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
1998  * @plaintext_name: The plaintext name
1999  * @plaintext_name_size: The plaintext name size
2000  * @ecryptfs_dir_dentry: eCryptfs directory dentry
2001  * @name: The filename in cipher text
2002  * @name_size: The cipher text name size
2003  *
2004  * Decrypts and decodes the filename.
2005  *
2006  * Returns zero on error; non-zero otherwise
2007  */
2008 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2009                                          size_t *plaintext_name_size,
2010                                          struct super_block *sb,
2011                                          const char *name, size_t name_size)
2012 {
2013         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2014                 &ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
2015         char *decoded_name;
2016         size_t decoded_name_size;
2017         size_t packet_size;
2018         int rc = 0;
2019
2020         if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) &&
2021             !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)) {
2022                 if (is_dot_dotdot(name, name_size)) {
2023                         rc = ecryptfs_copy_filename(plaintext_name,
2024                                                     plaintext_name_size,
2025                                                     name, name_size);
2026                         goto out;
2027                 }
2028
2029                 if (name_size <= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE ||
2030                     strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2031                             ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)) {
2032                         rc = -EINVAL;
2033                         goto out;
2034                 }
2035
2036                 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2037                 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2038                 ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2039                                               name, name_size);
2040                 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2041                 if (!decoded_name) {
2042                         rc = -ENOMEM;
2043                         goto out;
2044                 }
2045                 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2046                                               name, name_size);
2047                 rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2048                                                   plaintext_name_size,
2049                                                   &packet_size,
2050                                                   mount_crypt_stat,
2051                                                   decoded_name,
2052                                                   decoded_name_size);
2053                 if (rc) {
2054                         ecryptfs_printk(KERN_DEBUG,
2055                                         "%s: Could not parse tag 70 packet from filename\n",
2056                                         __func__);
2057                         goto out_free;
2058                 }
2059         } else {
2060                 rc = ecryptfs_copy_filename(plaintext_name,
2061                                             plaintext_name_size,
2062                                             name, name_size);
2063                 goto out;
2064         }
2065 out_free:
2066         kfree(decoded_name);
2067 out:
2068         return rc;
2069 }
2070
2071 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16   143
2072
2073 int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2074                            struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2075 {
2076         struct crypto_skcipher *tfm;
2077         struct mutex *tfm_mutex;
2078         size_t cipher_blocksize;
2079         int rc;
2080
2081         if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2082                 (*namelen) = lower_namelen;
2083                 return 0;
2084         }
2085
2086         rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
2087                         mount_crypt_stat->global_default_fn_cipher_name);
2088         if (unlikely(rc)) {
2089                 (*namelen) = 0;
2090                 return rc;
2091         }
2092
2093         mutex_lock(tfm_mutex);
2094         cipher_blocksize = crypto_skcipher_blocksize(tfm);
2095         mutex_unlock(tfm_mutex);
2096
2097         /* Return an exact amount for the common cases */
2098         if (lower_namelen == NAME_MAX
2099             && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2100                 (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2101                 return 0;
2102         }
2103
2104         /* Return a safe estimate for the uncommon cases */
2105         (*namelen) = lower_namelen;
2106         (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2107         /* Since this is the max decoded size, subtract 1 "decoded block" len */
2108         (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2109         (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2110         (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2111         /* Worst case is that the filename is padded nearly a full block size */
2112         (*namelen) -= cipher_blocksize - 1;
2113
2114         if ((*namelen) < 0)
2115                 (*namelen) = 0;
2116
2117         return 0;
2118 }