ecryptfs: Remove unneeded locking that triggers lockdep false positives
[linux-2.6-block.git] / fs / ecryptfs / crypto.c
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 1997-2004 Erez Zadok
5  * Copyright (C) 2001-2004 Stony Brook University
6  * Copyright (C) 2004-2007 International Business Machines Corp.
7  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8  *              Michael C. Thompson <mcthomps@us.ibm.com>
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of the
13  * License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23  * 02111-1307, USA.
24  */
25
26 #include <linux/fs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include <asm/unaligned.h>
37 #include "ecryptfs_kernel.h"
38
39 static int
40 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
41                              struct page *dst_page, int dst_offset,
42                              struct page *src_page, int src_offset, int size,
43                              unsigned char *iv);
44 static int
45 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
46                              struct page *dst_page, int dst_offset,
47                              struct page *src_page, int src_offset, int size,
48                              unsigned char *iv);
49
50 /**
51  * ecryptfs_to_hex
52  * @dst: Buffer to take hex character representation of contents of
53  *       src; must be at least of size (src_size * 2)
54  * @src: Buffer to be converted to a hex string respresentation
55  * @src_size: number of bytes to convert
56  */
57 void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
58 {
59         int x;
60
61         for (x = 0; x < src_size; x++)
62                 sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
63 }
64
65 /**
66  * ecryptfs_from_hex
67  * @dst: Buffer to take the bytes from src hex; must be at least of
68  *       size (src_size / 2)
69  * @src: Buffer to be converted from a hex string respresentation to raw value
70  * @dst_size: size of dst buffer, or number of hex characters pairs to convert
71  */
72 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
73 {
74         int x;
75         char tmp[3] = { 0, };
76
77         for (x = 0; x < dst_size; x++) {
78                 tmp[0] = src[x * 2];
79                 tmp[1] = src[x * 2 + 1];
80                 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
81         }
82 }
83
84 /**
85  * ecryptfs_calculate_md5 - calculates the md5 of @src
86  * @dst: Pointer to 16 bytes of allocated memory
87  * @crypt_stat: Pointer to crypt_stat struct for the current inode
88  * @src: Data to be md5'd
89  * @len: Length of @src
90  *
91  * Uses the allocated crypto context that crypt_stat references to
92  * generate the MD5 sum of the contents of src.
93  */
94 static int ecryptfs_calculate_md5(char *dst,
95                                   struct ecryptfs_crypt_stat *crypt_stat,
96                                   char *src, int len)
97 {
98         struct scatterlist sg;
99         struct hash_desc desc = {
100                 .tfm = crypt_stat->hash_tfm,
101                 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
102         };
103         int rc = 0;
104
105         mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
106         sg_init_one(&sg, (u8 *)src, len);
107         if (!desc.tfm) {
108                 desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
109                                              CRYPTO_ALG_ASYNC);
110                 if (IS_ERR(desc.tfm)) {
111                         rc = PTR_ERR(desc.tfm);
112                         ecryptfs_printk(KERN_ERR, "Error attempting to "
113                                         "allocate crypto context; rc = [%d]\n",
114                                         rc);
115                         goto out;
116                 }
117                 crypt_stat->hash_tfm = desc.tfm;
118         }
119         rc = crypto_hash_init(&desc);
120         if (rc) {
121                 printk(KERN_ERR
122                        "%s: Error initializing crypto hash; rc = [%d]\n",
123                        __func__, rc);
124                 goto out;
125         }
126         rc = crypto_hash_update(&desc, &sg, len);
127         if (rc) {
128                 printk(KERN_ERR
129                        "%s: Error updating crypto hash; rc = [%d]\n",
130                        __func__, rc);
131                 goto out;
132         }
133         rc = crypto_hash_final(&desc, dst);
134         if (rc) {
135                 printk(KERN_ERR
136                        "%s: Error finalizing crypto hash; rc = [%d]\n",
137                        __func__, rc);
138                 goto out;
139         }
140 out:
141         mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
142         return rc;
143 }
144
145 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
146                                                   char *cipher_name,
147                                                   char *chaining_modifier)
148 {
149         int cipher_name_len = strlen(cipher_name);
150         int chaining_modifier_len = strlen(chaining_modifier);
151         int algified_name_len;
152         int rc;
153
154         algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
155         (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
156         if (!(*algified_name)) {
157                 rc = -ENOMEM;
158                 goto out;
159         }
160         snprintf((*algified_name), algified_name_len, "%s(%s)",
161                  chaining_modifier, cipher_name);
162         rc = 0;
163 out:
164         return rc;
165 }
166
167 /**
168  * ecryptfs_derive_iv
169  * @iv: destination for the derived iv vale
170  * @crypt_stat: Pointer to crypt_stat struct for the current inode
171  * @offset: Offset of the extent whose IV we are to derive
172  *
173  * Generate the initialization vector from the given root IV and page
174  * offset.
175  *
176  * Returns zero on success; non-zero on error.
177  */
178 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
179                        loff_t offset)
180 {
181         int rc = 0;
182         char dst[MD5_DIGEST_SIZE];
183         char src[ECRYPTFS_MAX_IV_BYTES + 16];
184
185         if (unlikely(ecryptfs_verbosity > 0)) {
186                 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
187                 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
188         }
189         /* TODO: It is probably secure to just cast the least
190          * significant bits of the root IV into an unsigned long and
191          * add the offset to that rather than go through all this
192          * hashing business. -Halcrow */
193         memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
194         memset((src + crypt_stat->iv_bytes), 0, 16);
195         snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
196         if (unlikely(ecryptfs_verbosity > 0)) {
197                 ecryptfs_printk(KERN_DEBUG, "source:\n");
198                 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
199         }
200         rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
201                                     (crypt_stat->iv_bytes + 16));
202         if (rc) {
203                 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
204                                 "MD5 while generating IV for a page\n");
205                 goto out;
206         }
207         memcpy(iv, dst, crypt_stat->iv_bytes);
208         if (unlikely(ecryptfs_verbosity > 0)) {
209                 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
210                 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
211         }
212 out:
213         return rc;
214 }
215
216 /**
217  * ecryptfs_init_crypt_stat
218  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
219  *
220  * Initialize the crypt_stat structure.
221  */
222 void
223 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
224 {
225         memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
226         INIT_LIST_HEAD(&crypt_stat->keysig_list);
227         mutex_init(&crypt_stat->keysig_list_mutex);
228         mutex_init(&crypt_stat->cs_mutex);
229         mutex_init(&crypt_stat->cs_tfm_mutex);
230         mutex_init(&crypt_stat->cs_hash_tfm_mutex);
231         crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
232 }
233
234 /**
235  * ecryptfs_destroy_crypt_stat
236  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
237  *
238  * Releases all memory associated with a crypt_stat struct.
239  */
240 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
241 {
242         struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
243
244         if (crypt_stat->tfm)
245                 crypto_free_blkcipher(crypt_stat->tfm);
246         if (crypt_stat->hash_tfm)
247                 crypto_free_hash(crypt_stat->hash_tfm);
248         list_for_each_entry_safe(key_sig, key_sig_tmp,
249                                  &crypt_stat->keysig_list, crypt_stat_list) {
250                 list_del(&key_sig->crypt_stat_list);
251                 kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
252         }
253         memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
254 }
255
256 void ecryptfs_destroy_mount_crypt_stat(
257         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
258 {
259         struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
260
261         if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
262                 return;
263         mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
264         list_for_each_entry_safe(auth_tok, auth_tok_tmp,
265                                  &mount_crypt_stat->global_auth_tok_list,
266                                  mount_crypt_stat_list) {
267                 list_del(&auth_tok->mount_crypt_stat_list);
268                 mount_crypt_stat->num_global_auth_toks--;
269                 if (auth_tok->global_auth_tok_key
270                     && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
271                         key_put(auth_tok->global_auth_tok_key);
272                 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
273         }
274         mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
275         memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
276 }
277
278 /**
279  * virt_to_scatterlist
280  * @addr: Virtual address
281  * @size: Size of data; should be an even multiple of the block size
282  * @sg: Pointer to scatterlist array; set to NULL to obtain only
283  *      the number of scatterlist structs required in array
284  * @sg_size: Max array size
285  *
286  * Fills in a scatterlist array with page references for a passed
287  * virtual address.
288  *
289  * Returns the number of scatterlist structs in array used
290  */
291 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
292                         int sg_size)
293 {
294         int i = 0;
295         struct page *pg;
296         int offset;
297         int remainder_of_page;
298
299         sg_init_table(sg, sg_size);
300
301         while (size > 0 && i < sg_size) {
302                 pg = virt_to_page(addr);
303                 offset = offset_in_page(addr);
304                 if (sg)
305                         sg_set_page(&sg[i], pg, 0, offset);
306                 remainder_of_page = PAGE_CACHE_SIZE - offset;
307                 if (size >= remainder_of_page) {
308                         if (sg)
309                                 sg[i].length = remainder_of_page;
310                         addr += remainder_of_page;
311                         size -= remainder_of_page;
312                 } else {
313                         if (sg)
314                                 sg[i].length = size;
315                         addr += size;
316                         size = 0;
317                 }
318                 i++;
319         }
320         if (size > 0)
321                 return -ENOMEM;
322         return i;
323 }
324
325 /**
326  * encrypt_scatterlist
327  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
328  * @dest_sg: Destination of encrypted data
329  * @src_sg: Data to be encrypted
330  * @size: Length of data to be encrypted
331  * @iv: iv to use during encryption
332  *
333  * Returns the number of bytes encrypted; negative value on error
334  */
335 static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
336                                struct scatterlist *dest_sg,
337                                struct scatterlist *src_sg, int size,
338                                unsigned char *iv)
339 {
340         struct blkcipher_desc desc = {
341                 .tfm = crypt_stat->tfm,
342                 .info = iv,
343                 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
344         };
345         int rc = 0;
346
347         BUG_ON(!crypt_stat || !crypt_stat->tfm
348                || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
349         if (unlikely(ecryptfs_verbosity > 0)) {
350                 ecryptfs_printk(KERN_DEBUG, "Key size [%d]; key:\n",
351                                 crypt_stat->key_size);
352                 ecryptfs_dump_hex(crypt_stat->key,
353                                   crypt_stat->key_size);
354         }
355         /* Consider doing this once, when the file is opened */
356         mutex_lock(&crypt_stat->cs_tfm_mutex);
357         if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
358                 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
359                                              crypt_stat->key_size);
360                 crypt_stat->flags |= ECRYPTFS_KEY_SET;
361         }
362         if (rc) {
363                 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
364                                 rc);
365                 mutex_unlock(&crypt_stat->cs_tfm_mutex);
366                 rc = -EINVAL;
367                 goto out;
368         }
369         ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
370         crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
371         mutex_unlock(&crypt_stat->cs_tfm_mutex);
372 out:
373         return rc;
374 }
375
376 /**
377  * ecryptfs_lower_offset_for_extent
378  *
379  * Convert an eCryptfs page index into a lower byte offset
380  */
381 static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num,
382                                              struct ecryptfs_crypt_stat *crypt_stat)
383 {
384         (*offset) = (crypt_stat->num_header_bytes_at_front
385                      + (crypt_stat->extent_size * extent_num));
386 }
387
388 /**
389  * ecryptfs_encrypt_extent
390  * @enc_extent_page: Allocated page into which to encrypt the data in
391  *                   @page
392  * @crypt_stat: crypt_stat containing cryptographic context for the
393  *              encryption operation
394  * @page: Page containing plaintext data extent to encrypt
395  * @extent_offset: Page extent offset for use in generating IV
396  *
397  * Encrypts one extent of data.
398  *
399  * Return zero on success; non-zero otherwise
400  */
401 static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
402                                    struct ecryptfs_crypt_stat *crypt_stat,
403                                    struct page *page,
404                                    unsigned long extent_offset)
405 {
406         loff_t extent_base;
407         char extent_iv[ECRYPTFS_MAX_IV_BYTES];
408         int rc;
409
410         extent_base = (((loff_t)page->index)
411                        * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
412         rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
413                                 (extent_base + extent_offset));
414         if (rc) {
415                 ecryptfs_printk(KERN_ERR, "Error attempting to "
416                                 "derive IV for extent [0x%.16x]; "
417                                 "rc = [%d]\n", (extent_base + extent_offset),
418                                 rc);
419                 goto out;
420         }
421         if (unlikely(ecryptfs_verbosity > 0)) {
422                 ecryptfs_printk(KERN_DEBUG, "Encrypting extent "
423                                 "with iv:\n");
424                 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
425                 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
426                                 "encryption:\n");
427                 ecryptfs_dump_hex((char *)
428                                   (page_address(page)
429                                    + (extent_offset * crypt_stat->extent_size)),
430                                   8);
431         }
432         rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0,
433                                           page, (extent_offset
434                                                  * crypt_stat->extent_size),
435                                           crypt_stat->extent_size, extent_iv);
436         if (rc < 0) {
437                 printk(KERN_ERR "%s: Error attempting to encrypt page with "
438                        "page->index = [%ld], extent_offset = [%ld]; "
439                        "rc = [%d]\n", __func__, page->index, extent_offset,
440                        rc);
441                 goto out;
442         }
443         rc = 0;
444         if (unlikely(ecryptfs_verbosity > 0)) {
445                 ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16x]; "
446                                 "rc = [%d]\n", (extent_base + extent_offset),
447                                 rc);
448                 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
449                                 "encryption:\n");
450                 ecryptfs_dump_hex((char *)(page_address(enc_extent_page)), 8);
451         }
452 out:
453         return rc;
454 }
455
456 /**
457  * ecryptfs_encrypt_page
458  * @page: Page mapped from the eCryptfs inode for the file; contains
459  *        decrypted content that needs to be encrypted (to a temporary
460  *        page; not in place) and written out to the lower file
461  *
462  * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
463  * that eCryptfs pages may straddle the lower pages -- for instance,
464  * if the file was created on a machine with an 8K page size
465  * (resulting in an 8K header), and then the file is copied onto a
466  * host with a 32K page size, then when reading page 0 of the eCryptfs
467  * file, 24K of page 0 of the lower file will be read and decrypted,
468  * and then 8K of page 1 of the lower file will be read and decrypted.
469  *
470  * Returns zero on success; negative on error
471  */
472 int ecryptfs_encrypt_page(struct page *page)
473 {
474         struct inode *ecryptfs_inode;
475         struct ecryptfs_crypt_stat *crypt_stat;
476         char *enc_extent_virt;
477         struct page *enc_extent_page = NULL;
478         loff_t extent_offset;
479         int rc = 0;
480
481         ecryptfs_inode = page->mapping->host;
482         crypt_stat =
483                 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
484         BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
485         enc_extent_page = alloc_page(GFP_USER);
486         if (!enc_extent_page) {
487                 rc = -ENOMEM;
488                 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
489                                 "encrypted extent\n");
490                 goto out;
491         }
492         enc_extent_virt = kmap(enc_extent_page);
493         for (extent_offset = 0;
494              extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
495              extent_offset++) {
496                 loff_t offset;
497
498                 rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
499                                              extent_offset);
500                 if (rc) {
501                         printk(KERN_ERR "%s: Error encrypting extent; "
502                                "rc = [%d]\n", __func__, rc);
503                         goto out;
504                 }
505                 ecryptfs_lower_offset_for_extent(
506                         &offset, ((((loff_t)page->index)
507                                    * (PAGE_CACHE_SIZE
508                                       / crypt_stat->extent_size))
509                                   + extent_offset), crypt_stat);
510                 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt,
511                                           offset, crypt_stat->extent_size);
512                 if (rc) {
513                         ecryptfs_printk(KERN_ERR, "Error attempting "
514                                         "to write lower page; rc = [%d]"
515                                         "\n", rc);
516                         goto out;
517                 }
518         }
519 out:
520         if (enc_extent_page) {
521                 kunmap(enc_extent_page);
522                 __free_page(enc_extent_page);
523         }
524         return rc;
525 }
526
527 static int ecryptfs_decrypt_extent(struct page *page,
528                                    struct ecryptfs_crypt_stat *crypt_stat,
529                                    struct page *enc_extent_page,
530                                    unsigned long extent_offset)
531 {
532         loff_t extent_base;
533         char extent_iv[ECRYPTFS_MAX_IV_BYTES];
534         int rc;
535
536         extent_base = (((loff_t)page->index)
537                        * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
538         rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
539                                 (extent_base + extent_offset));
540         if (rc) {
541                 ecryptfs_printk(KERN_ERR, "Error attempting to "
542                                 "derive IV for extent [0x%.16x]; "
543                                 "rc = [%d]\n", (extent_base + extent_offset),
544                                 rc);
545                 goto out;
546         }
547         if (unlikely(ecryptfs_verbosity > 0)) {
548                 ecryptfs_printk(KERN_DEBUG, "Decrypting extent "
549                                 "with iv:\n");
550                 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
551                 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
552                                 "decryption:\n");
553                 ecryptfs_dump_hex((char *)
554                                   (page_address(enc_extent_page)
555                                    + (extent_offset * crypt_stat->extent_size)),
556                                   8);
557         }
558         rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
559                                           (extent_offset
560                                            * crypt_stat->extent_size),
561                                           enc_extent_page, 0,
562                                           crypt_stat->extent_size, extent_iv);
563         if (rc < 0) {
564                 printk(KERN_ERR "%s: Error attempting to decrypt to page with "
565                        "page->index = [%ld], extent_offset = [%ld]; "
566                        "rc = [%d]\n", __func__, page->index, extent_offset,
567                        rc);
568                 goto out;
569         }
570         rc = 0;
571         if (unlikely(ecryptfs_verbosity > 0)) {
572                 ecryptfs_printk(KERN_DEBUG, "Decrypt extent [0x%.16x]; "
573                                 "rc = [%d]\n", (extent_base + extent_offset),
574                                 rc);
575                 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
576                                 "decryption:\n");
577                 ecryptfs_dump_hex((char *)(page_address(page)
578                                            + (extent_offset
579                                               * crypt_stat->extent_size)), 8);
580         }
581 out:
582         return rc;
583 }
584
585 /**
586  * ecryptfs_decrypt_page
587  * @page: Page mapped from the eCryptfs inode for the file; data read
588  *        and decrypted from the lower file will be written into this
589  *        page
590  *
591  * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
592  * that eCryptfs pages may straddle the lower pages -- for instance,
593  * if the file was created on a machine with an 8K page size
594  * (resulting in an 8K header), and then the file is copied onto a
595  * host with a 32K page size, then when reading page 0 of the eCryptfs
596  * file, 24K of page 0 of the lower file will be read and decrypted,
597  * and then 8K of page 1 of the lower file will be read and decrypted.
598  *
599  * Returns zero on success; negative on error
600  */
601 int ecryptfs_decrypt_page(struct page *page)
602 {
603         struct inode *ecryptfs_inode;
604         struct ecryptfs_crypt_stat *crypt_stat;
605         char *enc_extent_virt;
606         struct page *enc_extent_page = NULL;
607         unsigned long extent_offset;
608         int rc = 0;
609
610         ecryptfs_inode = page->mapping->host;
611         crypt_stat =
612                 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
613         BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
614         enc_extent_page = alloc_page(GFP_USER);
615         if (!enc_extent_page) {
616                 rc = -ENOMEM;
617                 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
618                                 "encrypted extent\n");
619                 goto out;
620         }
621         enc_extent_virt = kmap(enc_extent_page);
622         for (extent_offset = 0;
623              extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
624              extent_offset++) {
625                 loff_t offset;
626
627                 ecryptfs_lower_offset_for_extent(
628                         &offset, ((page->index * (PAGE_CACHE_SIZE
629                                                   / crypt_stat->extent_size))
630                                   + extent_offset), crypt_stat);
631                 rc = ecryptfs_read_lower(enc_extent_virt, offset,
632                                          crypt_stat->extent_size,
633                                          ecryptfs_inode);
634                 if (rc) {
635                         ecryptfs_printk(KERN_ERR, "Error attempting "
636                                         "to read lower page; rc = [%d]"
637                                         "\n", rc);
638                         goto out;
639                 }
640                 rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page,
641                                              extent_offset);
642                 if (rc) {
643                         printk(KERN_ERR "%s: Error encrypting extent; "
644                                "rc = [%d]\n", __func__, rc);
645                         goto out;
646                 }
647         }
648 out:
649         if (enc_extent_page) {
650                 kunmap(enc_extent_page);
651                 __free_page(enc_extent_page);
652         }
653         return rc;
654 }
655
656 /**
657  * decrypt_scatterlist
658  * @crypt_stat: Cryptographic context
659  * @dest_sg: The destination scatterlist to decrypt into
660  * @src_sg: The source scatterlist to decrypt from
661  * @size: The number of bytes to decrypt
662  * @iv: The initialization vector to use for the decryption
663  *
664  * Returns the number of bytes decrypted; negative value on error
665  */
666 static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
667                                struct scatterlist *dest_sg,
668                                struct scatterlist *src_sg, int size,
669                                unsigned char *iv)
670 {
671         struct blkcipher_desc desc = {
672                 .tfm = crypt_stat->tfm,
673                 .info = iv,
674                 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
675         };
676         int rc = 0;
677
678         /* Consider doing this once, when the file is opened */
679         mutex_lock(&crypt_stat->cs_tfm_mutex);
680         rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
681                                      crypt_stat->key_size);
682         if (rc) {
683                 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
684                                 rc);
685                 mutex_unlock(&crypt_stat->cs_tfm_mutex);
686                 rc = -EINVAL;
687                 goto out;
688         }
689         ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
690         rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
691         mutex_unlock(&crypt_stat->cs_tfm_mutex);
692         if (rc) {
693                 ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
694                                 rc);
695                 goto out;
696         }
697         rc = size;
698 out:
699         return rc;
700 }
701
702 /**
703  * ecryptfs_encrypt_page_offset
704  * @crypt_stat: The cryptographic context
705  * @dst_page: The page to encrypt into
706  * @dst_offset: The offset in the page to encrypt into
707  * @src_page: The page to encrypt from
708  * @src_offset: The offset in the page to encrypt from
709  * @size: The number of bytes to encrypt
710  * @iv: The initialization vector to use for the encryption
711  *
712  * Returns the number of bytes encrypted
713  */
714 static int
715 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
716                              struct page *dst_page, int dst_offset,
717                              struct page *src_page, int src_offset, int size,
718                              unsigned char *iv)
719 {
720         struct scatterlist src_sg, dst_sg;
721
722         sg_init_table(&src_sg, 1);
723         sg_init_table(&dst_sg, 1);
724
725         sg_set_page(&src_sg, src_page, size, src_offset);
726         sg_set_page(&dst_sg, dst_page, size, dst_offset);
727         return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
728 }
729
730 /**
731  * ecryptfs_decrypt_page_offset
732  * @crypt_stat: The cryptographic context
733  * @dst_page: The page to decrypt into
734  * @dst_offset: The offset in the page to decrypt into
735  * @src_page: The page to decrypt from
736  * @src_offset: The offset in the page to decrypt from
737  * @size: The number of bytes to decrypt
738  * @iv: The initialization vector to use for the decryption
739  *
740  * Returns the number of bytes decrypted
741  */
742 static int
743 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
744                              struct page *dst_page, int dst_offset,
745                              struct page *src_page, int src_offset, int size,
746                              unsigned char *iv)
747 {
748         struct scatterlist src_sg, dst_sg;
749
750         sg_init_table(&src_sg, 1);
751         sg_set_page(&src_sg, src_page, size, src_offset);
752
753         sg_init_table(&dst_sg, 1);
754         sg_set_page(&dst_sg, dst_page, size, dst_offset);
755
756         return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
757 }
758
759 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
760
761 /**
762  * ecryptfs_init_crypt_ctx
763  * @crypt_stat: Uninitilized crypt stats structure
764  *
765  * Initialize the crypto context.
766  *
767  * TODO: Performance: Keep a cache of initialized cipher contexts;
768  * only init if needed
769  */
770 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
771 {
772         char *full_alg_name;
773         int rc = -EINVAL;
774
775         if (!crypt_stat->cipher) {
776                 ecryptfs_printk(KERN_ERR, "No cipher specified\n");
777                 goto out;
778         }
779         ecryptfs_printk(KERN_DEBUG,
780                         "Initializing cipher [%s]; strlen = [%d]; "
781                         "key_size_bits = [%d]\n",
782                         crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
783                         crypt_stat->key_size << 3);
784         if (crypt_stat->tfm) {
785                 rc = 0;
786                 goto out;
787         }
788         mutex_lock(&crypt_stat->cs_tfm_mutex);
789         rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
790                                                     crypt_stat->cipher, "cbc");
791         if (rc)
792                 goto out_unlock;
793         crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
794                                                  CRYPTO_ALG_ASYNC);
795         kfree(full_alg_name);
796         if (IS_ERR(crypt_stat->tfm)) {
797                 rc = PTR_ERR(crypt_stat->tfm);
798                 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
799                                 "Error initializing cipher [%s]\n",
800                                 crypt_stat->cipher);
801                 goto out_unlock;
802         }
803         crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
804         rc = 0;
805 out_unlock:
806         mutex_unlock(&crypt_stat->cs_tfm_mutex);
807 out:
808         return rc;
809 }
810
811 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
812 {
813         int extent_size_tmp;
814
815         crypt_stat->extent_mask = 0xFFFFFFFF;
816         crypt_stat->extent_shift = 0;
817         if (crypt_stat->extent_size == 0)
818                 return;
819         extent_size_tmp = crypt_stat->extent_size;
820         while ((extent_size_tmp & 0x01) == 0) {
821                 extent_size_tmp >>= 1;
822                 crypt_stat->extent_mask <<= 1;
823                 crypt_stat->extent_shift++;
824         }
825 }
826
827 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
828 {
829         /* Default values; may be overwritten as we are parsing the
830          * packets. */
831         crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
832         set_extent_mask_and_shift(crypt_stat);
833         crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
834         if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
835                 crypt_stat->num_header_bytes_at_front = 0;
836         else {
837                 if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
838                         crypt_stat->num_header_bytes_at_front =
839                                 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
840                 else
841                         crypt_stat->num_header_bytes_at_front = PAGE_CACHE_SIZE;
842         }
843 }
844
845 /**
846  * ecryptfs_compute_root_iv
847  * @crypt_stats
848  *
849  * On error, sets the root IV to all 0's.
850  */
851 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
852 {
853         int rc = 0;
854         char dst[MD5_DIGEST_SIZE];
855
856         BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
857         BUG_ON(crypt_stat->iv_bytes <= 0);
858         if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
859                 rc = -EINVAL;
860                 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
861                                 "cannot generate root IV\n");
862                 goto out;
863         }
864         rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
865                                     crypt_stat->key_size);
866         if (rc) {
867                 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
868                                 "MD5 while generating root IV\n");
869                 goto out;
870         }
871         memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
872 out:
873         if (rc) {
874                 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
875                 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
876         }
877         return rc;
878 }
879
880 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
881 {
882         get_random_bytes(crypt_stat->key, crypt_stat->key_size);
883         crypt_stat->flags |= ECRYPTFS_KEY_VALID;
884         ecryptfs_compute_root_iv(crypt_stat);
885         if (unlikely(ecryptfs_verbosity > 0)) {
886                 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
887                 ecryptfs_dump_hex(crypt_stat->key,
888                                   crypt_stat->key_size);
889         }
890 }
891
892 /**
893  * ecryptfs_copy_mount_wide_flags_to_inode_flags
894  * @crypt_stat: The inode's cryptographic context
895  * @mount_crypt_stat: The mount point's cryptographic context
896  *
897  * This function propagates the mount-wide flags to individual inode
898  * flags.
899  */
900 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
901         struct ecryptfs_crypt_stat *crypt_stat,
902         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
903 {
904         if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
905                 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
906         if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
907                 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
908         if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
909                 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
910                 if (mount_crypt_stat->flags
911                     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
912                         crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
913                 else if (mount_crypt_stat->flags
914                          & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
915                         crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
916         }
917 }
918
919 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
920         struct ecryptfs_crypt_stat *crypt_stat,
921         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
922 {
923         struct ecryptfs_global_auth_tok *global_auth_tok;
924         int rc = 0;
925
926         mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
927         list_for_each_entry(global_auth_tok,
928                             &mount_crypt_stat->global_auth_tok_list,
929                             mount_crypt_stat_list) {
930                 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
931                         continue;
932                 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
933                 if (rc) {
934                         printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
935                         mutex_unlock(
936                                 &mount_crypt_stat->global_auth_tok_list_mutex);
937                         goto out;
938                 }
939         }
940         mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
941 out:
942         return rc;
943 }
944
945 /**
946  * ecryptfs_set_default_crypt_stat_vals
947  * @crypt_stat: The inode's cryptographic context
948  * @mount_crypt_stat: The mount point's cryptographic context
949  *
950  * Default values in the event that policy does not override them.
951  */
952 static void ecryptfs_set_default_crypt_stat_vals(
953         struct ecryptfs_crypt_stat *crypt_stat,
954         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
955 {
956         ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
957                                                       mount_crypt_stat);
958         ecryptfs_set_default_sizes(crypt_stat);
959         strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
960         crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
961         crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
962         crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
963         crypt_stat->mount_crypt_stat = mount_crypt_stat;
964 }
965
966 /**
967  * ecryptfs_new_file_context
968  * @ecryptfs_dentry: The eCryptfs dentry
969  *
970  * If the crypto context for the file has not yet been established,
971  * this is where we do that.  Establishing a new crypto context
972  * involves the following decisions:
973  *  - What cipher to use?
974  *  - What set of authentication tokens to use?
975  * Here we just worry about getting enough information into the
976  * authentication tokens so that we know that they are available.
977  * We associate the available authentication tokens with the new file
978  * via the set of signatures in the crypt_stat struct.  Later, when
979  * the headers are actually written out, we may again defer to
980  * userspace to perform the encryption of the session key; for the
981  * foreseeable future, this will be the case with public key packets.
982  *
983  * Returns zero on success; non-zero otherwise
984  */
985 int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry)
986 {
987         struct ecryptfs_crypt_stat *crypt_stat =
988             &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
989         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
990             &ecryptfs_superblock_to_private(
991                     ecryptfs_dentry->d_sb)->mount_crypt_stat;
992         int cipher_name_len;
993         int rc = 0;
994
995         ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
996         crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
997         ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
998                                                       mount_crypt_stat);
999         rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
1000                                                          mount_crypt_stat);
1001         if (rc) {
1002                 printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
1003                        "to the inode key sigs; rc = [%d]\n", rc);
1004                 goto out;
1005         }
1006         cipher_name_len =
1007                 strlen(mount_crypt_stat->global_default_cipher_name);
1008         memcpy(crypt_stat->cipher,
1009                mount_crypt_stat->global_default_cipher_name,
1010                cipher_name_len);
1011         crypt_stat->cipher[cipher_name_len] = '\0';
1012         crypt_stat->key_size =
1013                 mount_crypt_stat->global_default_cipher_key_size;
1014         ecryptfs_generate_new_key(crypt_stat);
1015         rc = ecryptfs_init_crypt_ctx(crypt_stat);
1016         if (rc)
1017                 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
1018                                 "context for cipher [%s]: rc = [%d]\n",
1019                                 crypt_stat->cipher, rc);
1020 out:
1021         return rc;
1022 }
1023
1024 /**
1025  * contains_ecryptfs_marker - check for the ecryptfs marker
1026  * @data: The data block in which to check
1027  *
1028  * Returns one if marker found; zero if not found
1029  */
1030 static int contains_ecryptfs_marker(char *data)
1031 {
1032         u32 m_1, m_2;
1033
1034         m_1 = get_unaligned_be32(data);
1035         m_2 = get_unaligned_be32(data + 4);
1036         if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
1037                 return 1;
1038         ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1039                         "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
1040                         MAGIC_ECRYPTFS_MARKER);
1041         ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1042                         "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
1043         return 0;
1044 }
1045
1046 struct ecryptfs_flag_map_elem {
1047         u32 file_flag;
1048         u32 local_flag;
1049 };
1050
1051 /* Add support for additional flags by adding elements here. */
1052 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
1053         {0x00000001, ECRYPTFS_ENABLE_HMAC},
1054         {0x00000002, ECRYPTFS_ENCRYPTED},
1055         {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
1056         {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
1057 };
1058
1059 /**
1060  * ecryptfs_process_flags
1061  * @crypt_stat: The cryptographic context
1062  * @page_virt: Source data to be parsed
1063  * @bytes_read: Updated with the number of bytes read
1064  *
1065  * Returns zero on success; non-zero if the flag set is invalid
1066  */
1067 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
1068                                   char *page_virt, int *bytes_read)
1069 {
1070         int rc = 0;
1071         int i;
1072         u32 flags;
1073
1074         flags = get_unaligned_be32(page_virt);
1075         for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1076                           / sizeof(struct ecryptfs_flag_map_elem))); i++)
1077                 if (flags & ecryptfs_flag_map[i].file_flag) {
1078                         crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
1079                 } else
1080                         crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
1081         /* Version is in top 8 bits of the 32-bit flag vector */
1082         crypt_stat->file_version = ((flags >> 24) & 0xFF);
1083         (*bytes_read) = 4;
1084         return rc;
1085 }
1086
1087 /**
1088  * write_ecryptfs_marker
1089  * @page_virt: The pointer to in a page to begin writing the marker
1090  * @written: Number of bytes written
1091  *
1092  * Marker = 0x3c81b7f5
1093  */
1094 static void write_ecryptfs_marker(char *page_virt, size_t *written)
1095 {
1096         u32 m_1, m_2;
1097
1098         get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1099         m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
1100         put_unaligned_be32(m_1, page_virt);
1101         page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
1102         put_unaligned_be32(m_2, page_virt);
1103         (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1104 }
1105
1106 static void
1107 write_ecryptfs_flags(char *page_virt, struct ecryptfs_crypt_stat *crypt_stat,
1108                      size_t *written)
1109 {
1110         u32 flags = 0;
1111         int i;
1112
1113         for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1114                           / sizeof(struct ecryptfs_flag_map_elem))); i++)
1115                 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
1116                         flags |= ecryptfs_flag_map[i].file_flag;
1117         /* Version is in top 8 bits of the 32-bit flag vector */
1118         flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
1119         put_unaligned_be32(flags, page_virt);
1120         (*written) = 4;
1121 }
1122
1123 struct ecryptfs_cipher_code_str_map_elem {
1124         char cipher_str[16];
1125         u8 cipher_code;
1126 };
1127
1128 /* Add support for additional ciphers by adding elements here. The
1129  * cipher_code is whatever OpenPGP applicatoins use to identify the
1130  * ciphers. List in order of probability. */
1131 static struct ecryptfs_cipher_code_str_map_elem
1132 ecryptfs_cipher_code_str_map[] = {
1133         {"aes",RFC2440_CIPHER_AES_128 },
1134         {"blowfish", RFC2440_CIPHER_BLOWFISH},
1135         {"des3_ede", RFC2440_CIPHER_DES3_EDE},
1136         {"cast5", RFC2440_CIPHER_CAST_5},
1137         {"twofish", RFC2440_CIPHER_TWOFISH},
1138         {"cast6", RFC2440_CIPHER_CAST_6},
1139         {"aes", RFC2440_CIPHER_AES_192},
1140         {"aes", RFC2440_CIPHER_AES_256}
1141 };
1142
1143 /**
1144  * ecryptfs_code_for_cipher_string
1145  * @cipher_name: The string alias for the cipher
1146  * @key_bytes: Length of key in bytes; used for AES code selection
1147  *
1148  * Returns zero on no match, or the cipher code on match
1149  */
1150 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
1151 {
1152         int i;
1153         u8 code = 0;
1154         struct ecryptfs_cipher_code_str_map_elem *map =
1155                 ecryptfs_cipher_code_str_map;
1156
1157         if (strcmp(cipher_name, "aes") == 0) {
1158                 switch (key_bytes) {
1159                 case 16:
1160                         code = RFC2440_CIPHER_AES_128;
1161                         break;
1162                 case 24:
1163                         code = RFC2440_CIPHER_AES_192;
1164                         break;
1165                 case 32:
1166                         code = RFC2440_CIPHER_AES_256;
1167                 }
1168         } else {
1169                 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1170                         if (strcmp(cipher_name, map[i].cipher_str) == 0) {
1171                                 code = map[i].cipher_code;
1172                                 break;
1173                         }
1174         }
1175         return code;
1176 }
1177
1178 /**
1179  * ecryptfs_cipher_code_to_string
1180  * @str: Destination to write out the cipher name
1181  * @cipher_code: The code to convert to cipher name string
1182  *
1183  * Returns zero on success
1184  */
1185 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
1186 {
1187         int rc = 0;
1188         int i;
1189
1190         str[0] = '\0';
1191         for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1192                 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1193                         strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1194         if (str[0] == '\0') {
1195                 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1196                                 "[%d]\n", cipher_code);
1197                 rc = -EINVAL;
1198         }
1199         return rc;
1200 }
1201
1202 int ecryptfs_read_and_validate_header_region(char *data,
1203                                              struct inode *ecryptfs_inode)
1204 {
1205         struct ecryptfs_crypt_stat *crypt_stat =
1206                 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
1207         int rc;
1208
1209         if (crypt_stat->extent_size == 0)
1210                 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
1211         rc = ecryptfs_read_lower(data, 0, crypt_stat->extent_size,
1212                                  ecryptfs_inode);
1213         if (rc) {
1214                 printk(KERN_ERR "%s: Error reading header region; rc = [%d]\n",
1215                        __func__, rc);
1216                 goto out;
1217         }
1218         if (!contains_ecryptfs_marker(data + ECRYPTFS_FILE_SIZE_BYTES)) {
1219                 rc = -EINVAL;
1220         }
1221 out:
1222         return rc;
1223 }
1224
1225 void
1226 ecryptfs_write_header_metadata(char *virt,
1227                                struct ecryptfs_crypt_stat *crypt_stat,
1228                                size_t *written)
1229 {
1230         u32 header_extent_size;
1231         u16 num_header_extents_at_front;
1232
1233         header_extent_size = (u32)crypt_stat->extent_size;
1234         num_header_extents_at_front =
1235                 (u16)(crypt_stat->num_header_bytes_at_front
1236                       / crypt_stat->extent_size);
1237         put_unaligned_be32(header_extent_size, virt);
1238         virt += 4;
1239         put_unaligned_be16(num_header_extents_at_front, virt);
1240         (*written) = 6;
1241 }
1242
1243 struct kmem_cache *ecryptfs_header_cache_1;
1244 struct kmem_cache *ecryptfs_header_cache_2;
1245
1246 /**
1247  * ecryptfs_write_headers_virt
1248  * @page_virt: The virtual address to write the headers to
1249  * @max: The size of memory allocated at page_virt
1250  * @size: Set to the number of bytes written by this function
1251  * @crypt_stat: The cryptographic context
1252  * @ecryptfs_dentry: The eCryptfs dentry
1253  *
1254  * Format version: 1
1255  *
1256  *   Header Extent:
1257  *     Octets 0-7:        Unencrypted file size (big-endian)
1258  *     Octets 8-15:       eCryptfs special marker
1259  *     Octets 16-19:      Flags
1260  *      Octet 16:         File format version number (between 0 and 255)
1261  *      Octets 17-18:     Reserved
1262  *      Octet 19:         Bit 1 (lsb): Reserved
1263  *                        Bit 2: Encrypted?
1264  *                        Bits 3-8: Reserved
1265  *     Octets 20-23:      Header extent size (big-endian)
1266  *     Octets 24-25:      Number of header extents at front of file
1267  *                        (big-endian)
1268  *     Octet  26:         Begin RFC 2440 authentication token packet set
1269  *   Data Extent 0:
1270  *     Lower data (CBC encrypted)
1271  *   Data Extent 1:
1272  *     Lower data (CBC encrypted)
1273  *   ...
1274  *
1275  * Returns zero on success
1276  */
1277 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1278                                        size_t *size,
1279                                        struct ecryptfs_crypt_stat *crypt_stat,
1280                                        struct dentry *ecryptfs_dentry)
1281 {
1282         int rc;
1283         size_t written;
1284         size_t offset;
1285
1286         offset = ECRYPTFS_FILE_SIZE_BYTES;
1287         write_ecryptfs_marker((page_virt + offset), &written);
1288         offset += written;
1289         write_ecryptfs_flags((page_virt + offset), crypt_stat, &written);
1290         offset += written;
1291         ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1292                                        &written);
1293         offset += written;
1294         rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1295                                               ecryptfs_dentry, &written,
1296                                               max - offset);
1297         if (rc)
1298                 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1299                                 "set; rc = [%d]\n", rc);
1300         if (size) {
1301                 offset += written;
1302                 *size = offset;
1303         }
1304         return rc;
1305 }
1306
1307 static int
1308 ecryptfs_write_metadata_to_contents(struct dentry *ecryptfs_dentry,
1309                                     char *virt, size_t virt_len)
1310 {
1311         int rc;
1312
1313         rc = ecryptfs_write_lower(ecryptfs_dentry->d_inode, virt,
1314                                   0, virt_len);
1315         if (rc)
1316                 printk(KERN_ERR "%s: Error attempting to write header "
1317                        "information to lower file; rc = [%d]\n", __func__,
1318                        rc);
1319         return rc;
1320 }
1321
1322 static int
1323 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1324                                  char *page_virt, size_t size)
1325 {
1326         int rc;
1327
1328         rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1329                                size, 0);
1330         return rc;
1331 }
1332
1333 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1334                                                unsigned int order)
1335 {
1336         struct page *page;
1337
1338         page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1339         if (page)
1340                 return (unsigned long) page_address(page);
1341         return 0;
1342 }
1343
1344 /**
1345  * ecryptfs_write_metadata
1346  * @ecryptfs_dentry: The eCryptfs dentry
1347  *
1348  * Write the file headers out.  This will likely involve a userspace
1349  * callout, in which the session key is encrypted with one or more
1350  * public keys and/or the passphrase necessary to do the encryption is
1351  * retrieved via a prompt.  Exactly what happens at this point should
1352  * be policy-dependent.
1353  *
1354  * Returns zero on success; non-zero on error
1355  */
1356 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry)
1357 {
1358         struct ecryptfs_crypt_stat *crypt_stat =
1359                 &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
1360         unsigned int order;
1361         char *virt;
1362         size_t virt_len;
1363         size_t size = 0;
1364         int rc = 0;
1365
1366         if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1367                 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1368                         printk(KERN_ERR "Key is invalid; bailing out\n");
1369                         rc = -EINVAL;
1370                         goto out;
1371                 }
1372         } else {
1373                 printk(KERN_WARNING "%s: Encrypted flag not set\n",
1374                        __func__);
1375                 rc = -EINVAL;
1376                 goto out;
1377         }
1378         virt_len = crypt_stat->num_header_bytes_at_front;
1379         order = get_order(virt_len);
1380         /* Released in this function */
1381         virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1382         if (!virt) {
1383                 printk(KERN_ERR "%s: Out of memory\n", __func__);
1384                 rc = -ENOMEM;
1385                 goto out;
1386         }
1387         rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1388                                          ecryptfs_dentry);
1389         if (unlikely(rc)) {
1390                 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1391                        __func__, rc);
1392                 goto out_free;
1393         }
1394         if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1395                 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
1396                                                       size);
1397         else
1398                 rc = ecryptfs_write_metadata_to_contents(ecryptfs_dentry, virt,
1399                                                          virt_len);
1400         if (rc) {
1401                 printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1402                        "rc = [%d]\n", __func__, rc);
1403                 goto out_free;
1404         }
1405 out_free:
1406         free_pages((unsigned long)virt, order);
1407 out:
1408         return rc;
1409 }
1410
1411 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1412 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1413 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1414                                  char *virt, int *bytes_read,
1415                                  int validate_header_size)
1416 {
1417         int rc = 0;
1418         u32 header_extent_size;
1419         u16 num_header_extents_at_front;
1420
1421         header_extent_size = get_unaligned_be32(virt);
1422         virt += sizeof(__be32);
1423         num_header_extents_at_front = get_unaligned_be16(virt);
1424         crypt_stat->num_header_bytes_at_front =
1425                 (((size_t)num_header_extents_at_front
1426                   * (size_t)header_extent_size));
1427         (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1428         if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1429             && (crypt_stat->num_header_bytes_at_front
1430                 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1431                 rc = -EINVAL;
1432                 printk(KERN_WARNING "Invalid header size: [%zd]\n",
1433                        crypt_stat->num_header_bytes_at_front);
1434         }
1435         return rc;
1436 }
1437
1438 /**
1439  * set_default_header_data
1440  * @crypt_stat: The cryptographic context
1441  *
1442  * For version 0 file format; this function is only for backwards
1443  * compatibility for files created with the prior versions of
1444  * eCryptfs.
1445  */
1446 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1447 {
1448         crypt_stat->num_header_bytes_at_front =
1449                 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1450 }
1451
1452 /**
1453  * ecryptfs_read_headers_virt
1454  * @page_virt: The virtual address into which to read the headers
1455  * @crypt_stat: The cryptographic context
1456  * @ecryptfs_dentry: The eCryptfs dentry
1457  * @validate_header_size: Whether to validate the header size while reading
1458  *
1459  * Read/parse the header data. The header format is detailed in the
1460  * comment block for the ecryptfs_write_headers_virt() function.
1461  *
1462  * Returns zero on success
1463  */
1464 static int ecryptfs_read_headers_virt(char *page_virt,
1465                                       struct ecryptfs_crypt_stat *crypt_stat,
1466                                       struct dentry *ecryptfs_dentry,
1467                                       int validate_header_size)
1468 {
1469         int rc = 0;
1470         int offset;
1471         int bytes_read;
1472
1473         ecryptfs_set_default_sizes(crypt_stat);
1474         crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1475                 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1476         offset = ECRYPTFS_FILE_SIZE_BYTES;
1477         rc = contains_ecryptfs_marker(page_virt + offset);
1478         if (rc == 0) {
1479                 rc = -EINVAL;
1480                 goto out;
1481         }
1482         offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1483         rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1484                                     &bytes_read);
1485         if (rc) {
1486                 ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1487                 goto out;
1488         }
1489         if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1490                 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1491                                 "file version [%d] is supported by this "
1492                                 "version of eCryptfs\n",
1493                                 crypt_stat->file_version,
1494                                 ECRYPTFS_SUPPORTED_FILE_VERSION);
1495                 rc = -EINVAL;
1496                 goto out;
1497         }
1498         offset += bytes_read;
1499         if (crypt_stat->file_version >= 1) {
1500                 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1501                                            &bytes_read, validate_header_size);
1502                 if (rc) {
1503                         ecryptfs_printk(KERN_WARNING, "Error reading header "
1504                                         "metadata; rc = [%d]\n", rc);
1505                 }
1506                 offset += bytes_read;
1507         } else
1508                 set_default_header_data(crypt_stat);
1509         rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1510                                        ecryptfs_dentry);
1511 out:
1512         return rc;
1513 }
1514
1515 /**
1516  * ecryptfs_read_xattr_region
1517  * @page_virt: The vitual address into which to read the xattr data
1518  * @ecryptfs_inode: The eCryptfs inode
1519  *
1520  * Attempts to read the crypto metadata from the extended attribute
1521  * region of the lower file.
1522  *
1523  * Returns zero on success; non-zero on error
1524  */
1525 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1526 {
1527         struct dentry *lower_dentry =
1528                 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
1529         ssize_t size;
1530         int rc = 0;
1531
1532         size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
1533                                        page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1534         if (size < 0) {
1535                 if (unlikely(ecryptfs_verbosity > 0))
1536                         printk(KERN_INFO "Error attempting to read the [%s] "
1537                                "xattr from the lower file; return value = "
1538                                "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1539                 rc = -EINVAL;
1540                 goto out;
1541         }
1542 out:
1543         return rc;
1544 }
1545
1546 int ecryptfs_read_and_validate_xattr_region(char *page_virt,
1547                                             struct dentry *ecryptfs_dentry)
1548 {
1549         int rc;
1550
1551         rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_dentry->d_inode);
1552         if (rc)
1553                 goto out;
1554         if (!contains_ecryptfs_marker(page_virt + ECRYPTFS_FILE_SIZE_BYTES)) {
1555                 printk(KERN_WARNING "Valid data found in [%s] xattr, but "
1556                         "the marker is invalid\n", ECRYPTFS_XATTR_NAME);
1557                 rc = -EINVAL;
1558         }
1559 out:
1560         return rc;
1561 }
1562
1563 /**
1564  * ecryptfs_read_metadata
1565  *
1566  * Common entry point for reading file metadata. From here, we could
1567  * retrieve the header information from the header region of the file,
1568  * the xattr region of the file, or some other repostory that is
1569  * stored separately from the file itself. The current implementation
1570  * supports retrieving the metadata information from the file contents
1571  * and from the xattr region.
1572  *
1573  * Returns zero if valid headers found and parsed; non-zero otherwise
1574  */
1575 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1576 {
1577         int rc = 0;
1578         char *page_virt = NULL;
1579         struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
1580         struct ecryptfs_crypt_stat *crypt_stat =
1581             &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1582         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1583                 &ecryptfs_superblock_to_private(
1584                         ecryptfs_dentry->d_sb)->mount_crypt_stat;
1585
1586         ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1587                                                       mount_crypt_stat);
1588         /* Read the first page from the underlying file */
1589         page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, GFP_USER);
1590         if (!page_virt) {
1591                 rc = -ENOMEM;
1592                 printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1593                        __func__);
1594                 goto out;
1595         }
1596         rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1597                                  ecryptfs_inode);
1598         if (!rc)
1599                 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1600                                                 ecryptfs_dentry,
1601                                                 ECRYPTFS_VALIDATE_HEADER_SIZE);
1602         if (rc) {
1603                 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1604                 if (rc) {
1605                         printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1606                                "file header region or xattr region\n");
1607                         rc = -EINVAL;
1608                         goto out;
1609                 }
1610                 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1611                                                 ecryptfs_dentry,
1612                                                 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1613                 if (rc) {
1614                         printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1615                                "file xattr region either\n");
1616                         rc = -EINVAL;
1617                 }
1618                 if (crypt_stat->mount_crypt_stat->flags
1619                     & ECRYPTFS_XATTR_METADATA_ENABLED) {
1620                         crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1621                 } else {
1622                         printk(KERN_WARNING "Attempt to access file with "
1623                                "crypto metadata only in the extended attribute "
1624                                "region, but eCryptfs was mounted without "
1625                                "xattr support enabled. eCryptfs will not treat "
1626                                "this like an encrypted file.\n");
1627                         rc = -EINVAL;
1628                 }
1629         }
1630 out:
1631         if (page_virt) {
1632                 memset(page_virt, 0, PAGE_CACHE_SIZE);
1633                 kmem_cache_free(ecryptfs_header_cache_1, page_virt);
1634         }
1635         return rc;
1636 }
1637
1638 /**
1639  * ecryptfs_encrypt_filename - encrypt filename
1640  *
1641  * CBC-encrypts the filename. We do not want to encrypt the same
1642  * filename with the same key and IV, which may happen with hard
1643  * links, so we prepend random bits to each filename.
1644  *
1645  * Returns zero on success; non-zero otherwise
1646  */
1647 static int
1648 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1649                           struct ecryptfs_crypt_stat *crypt_stat,
1650                           struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1651 {
1652         int rc = 0;
1653
1654         filename->encrypted_filename = NULL;
1655         filename->encrypted_filename_size = 0;
1656         if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1657             || (mount_crypt_stat && (mount_crypt_stat->flags
1658                                      & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
1659                 size_t packet_size;
1660                 size_t remaining_bytes;
1661
1662                 rc = ecryptfs_write_tag_70_packet(
1663                         NULL, NULL,
1664                         &filename->encrypted_filename_size,
1665                         mount_crypt_stat, NULL,
1666                         filename->filename_size);
1667                 if (rc) {
1668                         printk(KERN_ERR "%s: Error attempting to get packet "
1669                                "size for tag 72; rc = [%d]\n", __func__,
1670                                rc);
1671                         filename->encrypted_filename_size = 0;
1672                         goto out;
1673                 }
1674                 filename->encrypted_filename =
1675                         kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1676                 if (!filename->encrypted_filename) {
1677                         printk(KERN_ERR "%s: Out of memory whilst attempting "
1678                                "to kmalloc [%zd] bytes\n", __func__,
1679                                filename->encrypted_filename_size);
1680                         rc = -ENOMEM;
1681                         goto out;
1682                 }
1683                 remaining_bytes = filename->encrypted_filename_size;
1684                 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1685                                                   &remaining_bytes,
1686                                                   &packet_size,
1687                                                   mount_crypt_stat,
1688                                                   filename->filename,
1689                                                   filename->filename_size);
1690                 if (rc) {
1691                         printk(KERN_ERR "%s: Error attempting to generate "
1692                                "tag 70 packet; rc = [%d]\n", __func__,
1693                                rc);
1694                         kfree(filename->encrypted_filename);
1695                         filename->encrypted_filename = NULL;
1696                         filename->encrypted_filename_size = 0;
1697                         goto out;
1698                 }
1699                 filename->encrypted_filename_size = packet_size;
1700         } else {
1701                 printk(KERN_ERR "%s: No support for requested filename "
1702                        "encryption method in this release\n", __func__);
1703                 rc = -ENOTSUPP;
1704                 goto out;
1705         }
1706 out:
1707         return rc;
1708 }
1709
1710 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1711                                   const char *name, size_t name_size)
1712 {
1713         int rc = 0;
1714
1715         (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1716         if (!(*copied_name)) {
1717                 rc = -ENOMEM;
1718                 goto out;
1719         }
1720         memcpy((void *)(*copied_name), (void *)name, name_size);
1721         (*copied_name)[(name_size)] = '\0';     /* Only for convenience
1722                                                  * in printing out the
1723                                                  * string in debug
1724                                                  * messages */
1725         (*copied_name_size) = name_size;
1726 out:
1727         return rc;
1728 }
1729
1730 /**
1731  * ecryptfs_process_key_cipher - Perform key cipher initialization.
1732  * @key_tfm: Crypto context for key material, set by this function
1733  * @cipher_name: Name of the cipher
1734  * @key_size: Size of the key in bytes
1735  *
1736  * Returns zero on success. Any crypto_tfm structs allocated here
1737  * should be released by other functions, such as on a superblock put
1738  * event, regardless of whether this function succeeds for fails.
1739  */
1740 static int
1741 ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1742                             char *cipher_name, size_t *key_size)
1743 {
1744         char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1745         char *full_alg_name;
1746         int rc;
1747
1748         *key_tfm = NULL;
1749         if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1750                 rc = -EINVAL;
1751                 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1752                       "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1753                 goto out;
1754         }
1755         rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1756                                                     "ecb");
1757         if (rc)
1758                 goto out;
1759         *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1760         kfree(full_alg_name);
1761         if (IS_ERR(*key_tfm)) {
1762                 rc = PTR_ERR(*key_tfm);
1763                 printk(KERN_ERR "Unable to allocate crypto cipher with name "
1764                        "[%s]; rc = [%d]\n", cipher_name, rc);
1765                 goto out;
1766         }
1767         crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1768         if (*key_size == 0) {
1769                 struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1770
1771                 *key_size = alg->max_keysize;
1772         }
1773         get_random_bytes(dummy_key, *key_size);
1774         rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1775         if (rc) {
1776                 printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1777                        "cipher [%s]; rc = [%d]\n", *key_size, cipher_name, rc);
1778                 rc = -EINVAL;
1779                 goto out;
1780         }
1781 out:
1782         return rc;
1783 }
1784
1785 struct kmem_cache *ecryptfs_key_tfm_cache;
1786 static struct list_head key_tfm_list;
1787 struct mutex key_tfm_list_mutex;
1788
1789 int ecryptfs_init_crypto(void)
1790 {
1791         mutex_init(&key_tfm_list_mutex);
1792         INIT_LIST_HEAD(&key_tfm_list);
1793         return 0;
1794 }
1795
1796 /**
1797  * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1798  *
1799  * Called only at module unload time
1800  */
1801 int ecryptfs_destroy_crypto(void)
1802 {
1803         struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1804
1805         mutex_lock(&key_tfm_list_mutex);
1806         list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1807                                  key_tfm_list) {
1808                 list_del(&key_tfm->key_tfm_list);
1809                 if (key_tfm->key_tfm)
1810                         crypto_free_blkcipher(key_tfm->key_tfm);
1811                 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1812         }
1813         mutex_unlock(&key_tfm_list_mutex);
1814         return 0;
1815 }
1816
1817 int
1818 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1819                          size_t key_size)
1820 {
1821         struct ecryptfs_key_tfm *tmp_tfm;
1822         int rc = 0;
1823
1824         BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1825
1826         tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1827         if (key_tfm != NULL)
1828                 (*key_tfm) = tmp_tfm;
1829         if (!tmp_tfm) {
1830                 rc = -ENOMEM;
1831                 printk(KERN_ERR "Error attempting to allocate from "
1832                        "ecryptfs_key_tfm_cache\n");
1833                 goto out;
1834         }
1835         mutex_init(&tmp_tfm->key_tfm_mutex);
1836         strncpy(tmp_tfm->cipher_name, cipher_name,
1837                 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1838         tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1839         tmp_tfm->key_size = key_size;
1840         rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1841                                          tmp_tfm->cipher_name,
1842                                          &tmp_tfm->key_size);
1843         if (rc) {
1844                 printk(KERN_ERR "Error attempting to initialize key TFM "
1845                        "cipher with name = [%s]; rc = [%d]\n",
1846                        tmp_tfm->cipher_name, rc);
1847                 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1848                 if (key_tfm != NULL)
1849                         (*key_tfm) = NULL;
1850                 goto out;
1851         }
1852         list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1853 out:
1854         return rc;
1855 }
1856
1857 /**
1858  * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1859  * @cipher_name: the name of the cipher to search for
1860  * @key_tfm: set to corresponding tfm if found
1861  *
1862  * Searches for cached key_tfm matching @cipher_name
1863  * Must be called with &key_tfm_list_mutex held
1864  * Returns 1 if found, with @key_tfm set
1865  * Returns 0 if not found, with @key_tfm set to NULL
1866  */
1867 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1868 {
1869         struct ecryptfs_key_tfm *tmp_key_tfm;
1870
1871         BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1872
1873         list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1874                 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1875                         if (key_tfm)
1876                                 (*key_tfm) = tmp_key_tfm;
1877                         return 1;
1878                 }
1879         }
1880         if (key_tfm)
1881                 (*key_tfm) = NULL;
1882         return 0;
1883 }
1884
1885 /**
1886  * ecryptfs_get_tfm_and_mutex_for_cipher_name
1887  *
1888  * @tfm: set to cached tfm found, or new tfm created
1889  * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1890  * @cipher_name: the name of the cipher to search for and/or add
1891  *
1892  * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1893  * Searches for cached item first, and creates new if not found.
1894  * Returns 0 on success, non-zero if adding new cipher failed
1895  */
1896 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1897                                                struct mutex **tfm_mutex,
1898                                                char *cipher_name)
1899 {
1900         struct ecryptfs_key_tfm *key_tfm;
1901         int rc = 0;
1902
1903         (*tfm) = NULL;
1904         (*tfm_mutex) = NULL;
1905
1906         mutex_lock(&key_tfm_list_mutex);
1907         if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1908                 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1909                 if (rc) {
1910                         printk(KERN_ERR "Error adding new key_tfm to list; "
1911                                         "rc = [%d]\n", rc);
1912                         goto out;
1913                 }
1914         }
1915         (*tfm) = key_tfm->key_tfm;
1916         (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1917 out:
1918         mutex_unlock(&key_tfm_list_mutex);
1919         return rc;
1920 }
1921
1922 /* 64 characters forming a 6-bit target field */
1923 static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1924                                                  "EFGHIJKLMNOPQRST"
1925                                                  "UVWXYZabcdefghij"
1926                                                  "klmnopqrstuvwxyz");
1927
1928 /* We could either offset on every reverse map or just pad some 0x00's
1929  * at the front here */
1930 static const unsigned char filename_rev_map[] = {
1931         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1932         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1933         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1934         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1935         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1936         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1937         0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1938         0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1939         0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1940         0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1941         0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1942         0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1943         0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1944         0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1945         0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1946         0x3D, 0x3E, 0x3F
1947 };
1948
1949 /**
1950  * ecryptfs_encode_for_filename
1951  * @dst: Destination location for encoded filename
1952  * @dst_size: Size of the encoded filename in bytes
1953  * @src: Source location for the filename to encode
1954  * @src_size: Size of the source in bytes
1955  */
1956 void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1957                                   unsigned char *src, size_t src_size)
1958 {
1959         size_t num_blocks;
1960         size_t block_num = 0;
1961         size_t dst_offset = 0;
1962         unsigned char last_block[3];
1963
1964         if (src_size == 0) {
1965                 (*dst_size) = 0;
1966                 goto out;
1967         }
1968         num_blocks = (src_size / 3);
1969         if ((src_size % 3) == 0) {
1970                 memcpy(last_block, (&src[src_size - 3]), 3);
1971         } else {
1972                 num_blocks++;
1973                 last_block[2] = 0x00;
1974                 switch (src_size % 3) {
1975                 case 1:
1976                         last_block[0] = src[src_size - 1];
1977                         last_block[1] = 0x00;
1978                         break;
1979                 case 2:
1980                         last_block[0] = src[src_size - 2];
1981                         last_block[1] = src[src_size - 1];
1982                 }
1983         }
1984         (*dst_size) = (num_blocks * 4);
1985         if (!dst)
1986                 goto out;
1987         while (block_num < num_blocks) {
1988                 unsigned char *src_block;
1989                 unsigned char dst_block[4];
1990
1991                 if (block_num == (num_blocks - 1))
1992                         src_block = last_block;
1993                 else
1994                         src_block = &src[block_num * 3];
1995                 dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1996                 dst_block[1] = (((src_block[0] << 4) & 0x30)
1997                                 | ((src_block[1] >> 4) & 0x0F));
1998                 dst_block[2] = (((src_block[1] << 2) & 0x3C)
1999                                 | ((src_block[2] >> 6) & 0x03));
2000                 dst_block[3] = (src_block[2] & 0x3F);
2001                 dst[dst_offset++] = portable_filename_chars[dst_block[0]];
2002                 dst[dst_offset++] = portable_filename_chars[dst_block[1]];
2003                 dst[dst_offset++] = portable_filename_chars[dst_block[2]];
2004                 dst[dst_offset++] = portable_filename_chars[dst_block[3]];
2005                 block_num++;
2006         }
2007 out:
2008         return;
2009 }
2010
2011 /**
2012  * ecryptfs_decode_from_filename
2013  * @dst: If NULL, this function only sets @dst_size and returns. If
2014  *       non-NULL, this function decodes the encoded octets in @src
2015  *       into the memory that @dst points to.
2016  * @dst_size: Set to the size of the decoded string.
2017  * @src: The encoded set of octets to decode.
2018  * @src_size: The size of the encoded set of octets to decode.
2019  */
2020 static void
2021 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
2022                               const unsigned char *src, size_t src_size)
2023 {
2024         u8 current_bit_offset = 0;
2025         size_t src_byte_offset = 0;
2026         size_t dst_byte_offset = 0;
2027
2028         if (dst == NULL) {
2029                 /* Not exact; conservatively long. Every block of 4
2030                  * encoded characters decodes into a block of 3
2031                  * decoded characters. This segment of code provides
2032                  * the caller with the maximum amount of allocated
2033                  * space that @dst will need to point to in a
2034                  * subsequent call. */
2035                 (*dst_size) = (((src_size + 1) * 3) / 4);
2036                 goto out;
2037         }
2038         while (src_byte_offset < src_size) {
2039                 unsigned char src_byte =
2040                                 filename_rev_map[(int)src[src_byte_offset]];
2041
2042                 switch (current_bit_offset) {
2043                 case 0:
2044                         dst[dst_byte_offset] = (src_byte << 2);
2045                         current_bit_offset = 6;
2046                         break;
2047                 case 6:
2048                         dst[dst_byte_offset++] |= (src_byte >> 4);
2049                         dst[dst_byte_offset] = ((src_byte & 0xF)
2050                                                  << 4);
2051                         current_bit_offset = 4;
2052                         break;
2053                 case 4:
2054                         dst[dst_byte_offset++] |= (src_byte >> 2);
2055                         dst[dst_byte_offset] = (src_byte << 6);
2056                         current_bit_offset = 2;
2057                         break;
2058                 case 2:
2059                         dst[dst_byte_offset++] |= (src_byte);
2060                         dst[dst_byte_offset] = 0;
2061                         current_bit_offset = 0;
2062                         break;
2063                 }
2064                 src_byte_offset++;
2065         }
2066         (*dst_size) = dst_byte_offset;
2067 out:
2068         return;
2069 }
2070
2071 /**
2072  * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
2073  * @crypt_stat: The crypt_stat struct associated with the file anem to encode
2074  * @name: The plaintext name
2075  * @length: The length of the plaintext
2076  * @encoded_name: The encypted name
2077  *
2078  * Encrypts and encodes a filename into something that constitutes a
2079  * valid filename for a filesystem, with printable characters.
2080  *
2081  * We assume that we have a properly initialized crypto context,
2082  * pointed to by crypt_stat->tfm.
2083  *
2084  * Returns zero on success; non-zero on otherwise
2085  */
2086 int ecryptfs_encrypt_and_encode_filename(
2087         char **encoded_name,
2088         size_t *encoded_name_size,
2089         struct ecryptfs_crypt_stat *crypt_stat,
2090         struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2091         const char *name, size_t name_size)
2092 {
2093         size_t encoded_name_no_prefix_size;
2094         int rc = 0;
2095
2096         (*encoded_name) = NULL;
2097         (*encoded_name_size) = 0;
2098         if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
2099             || (mount_crypt_stat && (mount_crypt_stat->flags
2100                                      & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
2101                 struct ecryptfs_filename *filename;
2102
2103                 filename = kzalloc(sizeof(*filename), GFP_KERNEL);
2104                 if (!filename) {
2105                         printk(KERN_ERR "%s: Out of memory whilst attempting "
2106                                "to kzalloc [%zd] bytes\n", __func__,
2107                                sizeof(*filename));
2108                         rc = -ENOMEM;
2109                         goto out;
2110                 }
2111                 filename->filename = (char *)name;
2112                 filename->filename_size = name_size;
2113                 rc = ecryptfs_encrypt_filename(filename, crypt_stat,
2114                                                mount_crypt_stat);
2115                 if (rc) {
2116                         printk(KERN_ERR "%s: Error attempting to encrypt "
2117                                "filename; rc = [%d]\n", __func__, rc);
2118                         kfree(filename);
2119                         goto out;
2120                 }
2121                 ecryptfs_encode_for_filename(
2122                         NULL, &encoded_name_no_prefix_size,
2123                         filename->encrypted_filename,
2124                         filename->encrypted_filename_size);
2125                 if ((crypt_stat && (crypt_stat->flags
2126                                     & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2127                     || (mount_crypt_stat
2128                         && (mount_crypt_stat->flags
2129                             & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
2130                         (*encoded_name_size) =
2131                                 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2132                                  + encoded_name_no_prefix_size);
2133                 else
2134                         (*encoded_name_size) =
2135                                 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2136                                  + encoded_name_no_prefix_size);
2137                 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
2138                 if (!(*encoded_name)) {
2139                         printk(KERN_ERR "%s: Out of memory whilst attempting "
2140                                "to kzalloc [%zd] bytes\n", __func__,
2141                                (*encoded_name_size));
2142                         rc = -ENOMEM;
2143                         kfree(filename->encrypted_filename);
2144                         kfree(filename);
2145                         goto out;
2146                 }
2147                 if ((crypt_stat && (crypt_stat->flags
2148                                     & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2149                     || (mount_crypt_stat
2150                         && (mount_crypt_stat->flags
2151                             & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
2152                         memcpy((*encoded_name),
2153                                ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2154                                ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
2155                         ecryptfs_encode_for_filename(
2156                             ((*encoded_name)
2157                              + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
2158                             &encoded_name_no_prefix_size,
2159                             filename->encrypted_filename,
2160                             filename->encrypted_filename_size);
2161                         (*encoded_name_size) =
2162                                 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2163                                  + encoded_name_no_prefix_size);
2164                         (*encoded_name)[(*encoded_name_size)] = '\0';
2165                         (*encoded_name_size)++;
2166                 } else {
2167                         rc = -ENOTSUPP;
2168                 }
2169                 if (rc) {
2170                         printk(KERN_ERR "%s: Error attempting to encode "
2171                                "encrypted filename; rc = [%d]\n", __func__,
2172                                rc);
2173                         kfree((*encoded_name));
2174                         (*encoded_name) = NULL;
2175                         (*encoded_name_size) = 0;
2176                 }
2177                 kfree(filename->encrypted_filename);
2178                 kfree(filename);
2179         } else {
2180                 rc = ecryptfs_copy_filename(encoded_name,
2181                                             encoded_name_size,
2182                                             name, name_size);
2183         }
2184 out:
2185         return rc;
2186 }
2187
2188 /**
2189  * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2190  * @plaintext_name: The plaintext name
2191  * @plaintext_name_size: The plaintext name size
2192  * @ecryptfs_dir_dentry: eCryptfs directory dentry
2193  * @name: The filename in cipher text
2194  * @name_size: The cipher text name size
2195  *
2196  * Decrypts and decodes the filename.
2197  *
2198  * Returns zero on error; non-zero otherwise
2199  */
2200 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2201                                          size_t *plaintext_name_size,
2202                                          struct dentry *ecryptfs_dir_dentry,
2203                                          const char *name, size_t name_size)
2204 {
2205         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2206                 &ecryptfs_superblock_to_private(
2207                         ecryptfs_dir_dentry->d_sb)->mount_crypt_stat;
2208         char *decoded_name;
2209         size_t decoded_name_size;
2210         size_t packet_size;
2211         int rc = 0;
2212
2213         if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
2214             && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
2215             && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
2216             && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2217                         ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
2218                 const char *orig_name = name;
2219                 size_t orig_name_size = name_size;
2220
2221                 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2222                 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2223                 ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2224                                               name, name_size);
2225                 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2226                 if (!decoded_name) {
2227                         printk(KERN_ERR "%s: Out of memory whilst attempting "
2228                                "to kmalloc [%zd] bytes\n", __func__,
2229                                decoded_name_size);
2230                         rc = -ENOMEM;
2231                         goto out;
2232                 }
2233                 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2234                                               name, name_size);
2235                 rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2236                                                   plaintext_name_size,
2237                                                   &packet_size,
2238                                                   mount_crypt_stat,
2239                                                   decoded_name,
2240                                                   decoded_name_size);
2241                 if (rc) {
2242                         printk(KERN_INFO "%s: Could not parse tag 70 packet "
2243                                "from filename; copying through filename "
2244                                "as-is\n", __func__);
2245                         rc = ecryptfs_copy_filename(plaintext_name,
2246                                                     plaintext_name_size,
2247                                                     orig_name, orig_name_size);
2248                         goto out_free;
2249                 }
2250         } else {
2251                 rc = ecryptfs_copy_filename(plaintext_name,
2252                                             plaintext_name_size,
2253                                             name, name_size);
2254                 goto out;
2255         }
2256 out_free:
2257         kfree(decoded_name);
2258 out:
2259         return rc;
2260 }