Merge tag 'unicode-next-6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/krisman...
[linux-2.6-block.git] / fs / dcache.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/dcache.c
4  *
5  * Complete reimplementation
6  * (C) 1997 Thomas Schoebel-Theuer,
7  * with heavy changes by Linus Torvalds
8  */
9
10 /*
11  * Notes on the allocation strategy:
12  *
13  * The dcache is a master of the icache - whenever a dcache entry
14  * exists, the inode will always exist. "iput()" is done either when
15  * the dcache entry is deleted or garbage collected.
16  */
17
18 #include <linux/ratelimit.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/fs.h>
22 #include <linux/fscrypt.h>
23 #include <linux/fsnotify.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/export.h>
29 #include <linux/security.h>
30 #include <linux/seqlock.h>
31 #include <linux/memblock.h>
32 #include <linux/bit_spinlock.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/list_lru.h>
35 #include "internal.h"
36 #include "mount.h"
37
38 /*
39  * Usage:
40  * dcache->d_inode->i_lock protects:
41  *   - i_dentry, d_u.d_alias, d_inode of aliases
42  * dcache_hash_bucket lock protects:
43  *   - the dcache hash table
44  * s_roots bl list spinlock protects:
45  *   - the s_roots list (see __d_drop)
46  * dentry->d_sb->s_dentry_lru_lock protects:
47  *   - the dcache lru lists and counters
48  * d_lock protects:
49  *   - d_flags
50  *   - d_name
51  *   - d_lru
52  *   - d_count
53  *   - d_unhashed()
54  *   - d_parent and d_subdirs
55  *   - childrens' d_child and d_parent
56  *   - d_u.d_alias, d_inode
57  *
58  * Ordering:
59  * dentry->d_inode->i_lock
60  *   dentry->d_lock
61  *     dentry->d_sb->s_dentry_lru_lock
62  *     dcache_hash_bucket lock
63  *     s_roots lock
64  *
65  * If there is an ancestor relationship:
66  * dentry->d_parent->...->d_parent->d_lock
67  *   ...
68  *     dentry->d_parent->d_lock
69  *       dentry->d_lock
70  *
71  * If no ancestor relationship:
72  * arbitrary, since it's serialized on rename_lock
73  */
74 int sysctl_vfs_cache_pressure __read_mostly = 100;
75 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
76
77 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
78
79 EXPORT_SYMBOL(rename_lock);
80
81 static struct kmem_cache *dentry_cache __ro_after_init;
82
83 const struct qstr empty_name = QSTR_INIT("", 0);
84 EXPORT_SYMBOL(empty_name);
85 const struct qstr slash_name = QSTR_INIT("/", 1);
86 EXPORT_SYMBOL(slash_name);
87 const struct qstr dotdot_name = QSTR_INIT("..", 2);
88 EXPORT_SYMBOL(dotdot_name);
89
90 /*
91  * This is the single most critical data structure when it comes
92  * to the dcache: the hashtable for lookups. Somebody should try
93  * to make this good - I've just made it work.
94  *
95  * This hash-function tries to avoid losing too many bits of hash
96  * information, yet avoid using a prime hash-size or similar.
97  */
98
99 static unsigned int d_hash_shift __ro_after_init;
100
101 static struct hlist_bl_head *dentry_hashtable __ro_after_init;
102
103 static inline struct hlist_bl_head *d_hash(unsigned int hash)
104 {
105         return dentry_hashtable + (hash >> d_hash_shift);
106 }
107
108 #define IN_LOOKUP_SHIFT 10
109 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
110
111 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
112                                         unsigned int hash)
113 {
114         hash += (unsigned long) parent / L1_CACHE_BYTES;
115         return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
116 }
117
118 struct dentry_stat_t {
119         long nr_dentry;
120         long nr_unused;
121         long age_limit;         /* age in seconds */
122         long want_pages;        /* pages requested by system */
123         long nr_negative;       /* # of unused negative dentries */
124         long dummy;             /* Reserved for future use */
125 };
126
127 static DEFINE_PER_CPU(long, nr_dentry);
128 static DEFINE_PER_CPU(long, nr_dentry_unused);
129 static DEFINE_PER_CPU(long, nr_dentry_negative);
130
131 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
132 /* Statistics gathering. */
133 static struct dentry_stat_t dentry_stat = {
134         .age_limit = 45,
135 };
136
137 /*
138  * Here we resort to our own counters instead of using generic per-cpu counters
139  * for consistency with what the vfs inode code does. We are expected to harvest
140  * better code and performance by having our own specialized counters.
141  *
142  * Please note that the loop is done over all possible CPUs, not over all online
143  * CPUs. The reason for this is that we don't want to play games with CPUs going
144  * on and off. If one of them goes off, we will just keep their counters.
145  *
146  * glommer: See cffbc8a for details, and if you ever intend to change this,
147  * please update all vfs counters to match.
148  */
149 static long get_nr_dentry(void)
150 {
151         int i;
152         long sum = 0;
153         for_each_possible_cpu(i)
154                 sum += per_cpu(nr_dentry, i);
155         return sum < 0 ? 0 : sum;
156 }
157
158 static long get_nr_dentry_unused(void)
159 {
160         int i;
161         long sum = 0;
162         for_each_possible_cpu(i)
163                 sum += per_cpu(nr_dentry_unused, i);
164         return sum < 0 ? 0 : sum;
165 }
166
167 static long get_nr_dentry_negative(void)
168 {
169         int i;
170         long sum = 0;
171
172         for_each_possible_cpu(i)
173                 sum += per_cpu(nr_dentry_negative, i);
174         return sum < 0 ? 0 : sum;
175 }
176
177 static int proc_nr_dentry(struct ctl_table *table, int write, void *buffer,
178                           size_t *lenp, loff_t *ppos)
179 {
180         dentry_stat.nr_dentry = get_nr_dentry();
181         dentry_stat.nr_unused = get_nr_dentry_unused();
182         dentry_stat.nr_negative = get_nr_dentry_negative();
183         return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
184 }
185
186 static struct ctl_table fs_dcache_sysctls[] = {
187         {
188                 .procname       = "dentry-state",
189                 .data           = &dentry_stat,
190                 .maxlen         = 6*sizeof(long),
191                 .mode           = 0444,
192                 .proc_handler   = proc_nr_dentry,
193         },
194         { }
195 };
196
197 static int __init init_fs_dcache_sysctls(void)
198 {
199         register_sysctl_init("fs", fs_dcache_sysctls);
200         return 0;
201 }
202 fs_initcall(init_fs_dcache_sysctls);
203 #endif
204
205 /*
206  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
207  * The strings are both count bytes long, and count is non-zero.
208  */
209 #ifdef CONFIG_DCACHE_WORD_ACCESS
210
211 #include <asm/word-at-a-time.h>
212 /*
213  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
214  * aligned allocation for this particular component. We don't
215  * strictly need the load_unaligned_zeropad() safety, but it
216  * doesn't hurt either.
217  *
218  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
219  * need the careful unaligned handling.
220  */
221 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
222 {
223         unsigned long a,b,mask;
224
225         for (;;) {
226                 a = read_word_at_a_time(cs);
227                 b = load_unaligned_zeropad(ct);
228                 if (tcount < sizeof(unsigned long))
229                         break;
230                 if (unlikely(a != b))
231                         return 1;
232                 cs += sizeof(unsigned long);
233                 ct += sizeof(unsigned long);
234                 tcount -= sizeof(unsigned long);
235                 if (!tcount)
236                         return 0;
237         }
238         mask = bytemask_from_count(tcount);
239         return unlikely(!!((a ^ b) & mask));
240 }
241
242 #else
243
244 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
245 {
246         do {
247                 if (*cs != *ct)
248                         return 1;
249                 cs++;
250                 ct++;
251                 tcount--;
252         } while (tcount);
253         return 0;
254 }
255
256 #endif
257
258 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
259 {
260         /*
261          * Be careful about RCU walk racing with rename:
262          * use 'READ_ONCE' to fetch the name pointer.
263          *
264          * NOTE! Even if a rename will mean that the length
265          * was not loaded atomically, we don't care. The
266          * RCU walk will check the sequence count eventually,
267          * and catch it. And we won't overrun the buffer,
268          * because we're reading the name pointer atomically,
269          * and a dentry name is guaranteed to be properly
270          * terminated with a NUL byte.
271          *
272          * End result: even if 'len' is wrong, we'll exit
273          * early because the data cannot match (there can
274          * be no NUL in the ct/tcount data)
275          */
276         const unsigned char *cs = READ_ONCE(dentry->d_name.name);
277
278         return dentry_string_cmp(cs, ct, tcount);
279 }
280
281 struct external_name {
282         union {
283                 atomic_t count;
284                 struct rcu_head head;
285         } u;
286         unsigned char name[];
287 };
288
289 static inline struct external_name *external_name(struct dentry *dentry)
290 {
291         return container_of(dentry->d_name.name, struct external_name, name[0]);
292 }
293
294 static void __d_free(struct rcu_head *head)
295 {
296         struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
297
298         kmem_cache_free(dentry_cache, dentry); 
299 }
300
301 static void __d_free_external(struct rcu_head *head)
302 {
303         struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
304         kfree(external_name(dentry));
305         kmem_cache_free(dentry_cache, dentry);
306 }
307
308 static inline int dname_external(const struct dentry *dentry)
309 {
310         return dentry->d_name.name != dentry->d_iname;
311 }
312
313 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
314 {
315         spin_lock(&dentry->d_lock);
316         name->name = dentry->d_name;
317         if (unlikely(dname_external(dentry))) {
318                 atomic_inc(&external_name(dentry)->u.count);
319         } else {
320                 memcpy(name->inline_name, dentry->d_iname,
321                        dentry->d_name.len + 1);
322                 name->name.name = name->inline_name;
323         }
324         spin_unlock(&dentry->d_lock);
325 }
326 EXPORT_SYMBOL(take_dentry_name_snapshot);
327
328 void release_dentry_name_snapshot(struct name_snapshot *name)
329 {
330         if (unlikely(name->name.name != name->inline_name)) {
331                 struct external_name *p;
332                 p = container_of(name->name.name, struct external_name, name[0]);
333                 if (unlikely(atomic_dec_and_test(&p->u.count)))
334                         kfree_rcu(p, u.head);
335         }
336 }
337 EXPORT_SYMBOL(release_dentry_name_snapshot);
338
339 static inline void __d_set_inode_and_type(struct dentry *dentry,
340                                           struct inode *inode,
341                                           unsigned type_flags)
342 {
343         unsigned flags;
344
345         dentry->d_inode = inode;
346         flags = READ_ONCE(dentry->d_flags);
347         flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
348         flags |= type_flags;
349         smp_store_release(&dentry->d_flags, flags);
350 }
351
352 static inline void __d_clear_type_and_inode(struct dentry *dentry)
353 {
354         unsigned flags = READ_ONCE(dentry->d_flags);
355
356         flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
357         WRITE_ONCE(dentry->d_flags, flags);
358         dentry->d_inode = NULL;
359         if (dentry->d_flags & DCACHE_LRU_LIST)
360                 this_cpu_inc(nr_dentry_negative);
361 }
362
363 static void dentry_free(struct dentry *dentry)
364 {
365         WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
366         if (unlikely(dname_external(dentry))) {
367                 struct external_name *p = external_name(dentry);
368                 if (likely(atomic_dec_and_test(&p->u.count))) {
369                         call_rcu(&dentry->d_u.d_rcu, __d_free_external);
370                         return;
371                 }
372         }
373         /* if dentry was never visible to RCU, immediate free is OK */
374         if (dentry->d_flags & DCACHE_NORCU)
375                 __d_free(&dentry->d_u.d_rcu);
376         else
377                 call_rcu(&dentry->d_u.d_rcu, __d_free);
378 }
379
380 /*
381  * Release the dentry's inode, using the filesystem
382  * d_iput() operation if defined.
383  */
384 static void dentry_unlink_inode(struct dentry * dentry)
385         __releases(dentry->d_lock)
386         __releases(dentry->d_inode->i_lock)
387 {
388         struct inode *inode = dentry->d_inode;
389
390         raw_write_seqcount_begin(&dentry->d_seq);
391         __d_clear_type_and_inode(dentry);
392         hlist_del_init(&dentry->d_u.d_alias);
393         raw_write_seqcount_end(&dentry->d_seq);
394         spin_unlock(&dentry->d_lock);
395         spin_unlock(&inode->i_lock);
396         if (!inode->i_nlink)
397                 fsnotify_inoderemove(inode);
398         if (dentry->d_op && dentry->d_op->d_iput)
399                 dentry->d_op->d_iput(dentry, inode);
400         else
401                 iput(inode);
402 }
403
404 /*
405  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
406  * is in use - which includes both the "real" per-superblock
407  * LRU list _and_ the DCACHE_SHRINK_LIST use.
408  *
409  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
410  * on the shrink list (ie not on the superblock LRU list).
411  *
412  * The per-cpu "nr_dentry_unused" counters are updated with
413  * the DCACHE_LRU_LIST bit.
414  *
415  * The per-cpu "nr_dentry_negative" counters are only updated
416  * when deleted from or added to the per-superblock LRU list, not
417  * from/to the shrink list. That is to avoid an unneeded dec/inc
418  * pair when moving from LRU to shrink list in select_collect().
419  *
420  * These helper functions make sure we always follow the
421  * rules. d_lock must be held by the caller.
422  */
423 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
424 static void d_lru_add(struct dentry *dentry)
425 {
426         D_FLAG_VERIFY(dentry, 0);
427         dentry->d_flags |= DCACHE_LRU_LIST;
428         this_cpu_inc(nr_dentry_unused);
429         if (d_is_negative(dentry))
430                 this_cpu_inc(nr_dentry_negative);
431         WARN_ON_ONCE(!list_lru_add_obj(
432                         &dentry->d_sb->s_dentry_lru, &dentry->d_lru));
433 }
434
435 static void d_lru_del(struct dentry *dentry)
436 {
437         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
438         dentry->d_flags &= ~DCACHE_LRU_LIST;
439         this_cpu_dec(nr_dentry_unused);
440         if (d_is_negative(dentry))
441                 this_cpu_dec(nr_dentry_negative);
442         WARN_ON_ONCE(!list_lru_del_obj(
443                         &dentry->d_sb->s_dentry_lru, &dentry->d_lru));
444 }
445
446 static void d_shrink_del(struct dentry *dentry)
447 {
448         D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
449         list_del_init(&dentry->d_lru);
450         dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
451         this_cpu_dec(nr_dentry_unused);
452 }
453
454 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
455 {
456         D_FLAG_VERIFY(dentry, 0);
457         list_add(&dentry->d_lru, list);
458         dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
459         this_cpu_inc(nr_dentry_unused);
460 }
461
462 /*
463  * These can only be called under the global LRU lock, ie during the
464  * callback for freeing the LRU list. "isolate" removes it from the
465  * LRU lists entirely, while shrink_move moves it to the indicated
466  * private list.
467  */
468 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
469 {
470         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
471         dentry->d_flags &= ~DCACHE_LRU_LIST;
472         this_cpu_dec(nr_dentry_unused);
473         if (d_is_negative(dentry))
474                 this_cpu_dec(nr_dentry_negative);
475         list_lru_isolate(lru, &dentry->d_lru);
476 }
477
478 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
479                               struct list_head *list)
480 {
481         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
482         dentry->d_flags |= DCACHE_SHRINK_LIST;
483         if (d_is_negative(dentry))
484                 this_cpu_dec(nr_dentry_negative);
485         list_lru_isolate_move(lru, &dentry->d_lru, list);
486 }
487
488 static void ___d_drop(struct dentry *dentry)
489 {
490         struct hlist_bl_head *b;
491         /*
492          * Hashed dentries are normally on the dentry hashtable,
493          * with the exception of those newly allocated by
494          * d_obtain_root, which are always IS_ROOT:
495          */
496         if (unlikely(IS_ROOT(dentry)))
497                 b = &dentry->d_sb->s_roots;
498         else
499                 b = d_hash(dentry->d_name.hash);
500
501         hlist_bl_lock(b);
502         __hlist_bl_del(&dentry->d_hash);
503         hlist_bl_unlock(b);
504 }
505
506 void __d_drop(struct dentry *dentry)
507 {
508         if (!d_unhashed(dentry)) {
509                 ___d_drop(dentry);
510                 dentry->d_hash.pprev = NULL;
511                 write_seqcount_invalidate(&dentry->d_seq);
512         }
513 }
514 EXPORT_SYMBOL(__d_drop);
515
516 /**
517  * d_drop - drop a dentry
518  * @dentry: dentry to drop
519  *
520  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
521  * be found through a VFS lookup any more. Note that this is different from
522  * deleting the dentry - d_delete will try to mark the dentry negative if
523  * possible, giving a successful _negative_ lookup, while d_drop will
524  * just make the cache lookup fail.
525  *
526  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
527  * reason (NFS timeouts or autofs deletes).
528  *
529  * __d_drop requires dentry->d_lock
530  *
531  * ___d_drop doesn't mark dentry as "unhashed"
532  * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
533  */
534 void d_drop(struct dentry *dentry)
535 {
536         spin_lock(&dentry->d_lock);
537         __d_drop(dentry);
538         spin_unlock(&dentry->d_lock);
539 }
540 EXPORT_SYMBOL(d_drop);
541
542 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
543 {
544         struct dentry *next;
545         /*
546          * Inform d_walk() and shrink_dentry_list() that we are no longer
547          * attached to the dentry tree
548          */
549         dentry->d_flags |= DCACHE_DENTRY_KILLED;
550         if (unlikely(list_empty(&dentry->d_child)))
551                 return;
552         __list_del_entry(&dentry->d_child);
553         /*
554          * Cursors can move around the list of children.  While we'd been
555          * a normal list member, it didn't matter - ->d_child.next would've
556          * been updated.  However, from now on it won't be and for the
557          * things like d_walk() it might end up with a nasty surprise.
558          * Normally d_walk() doesn't care about cursors moving around -
559          * ->d_lock on parent prevents that and since a cursor has no children
560          * of its own, we get through it without ever unlocking the parent.
561          * There is one exception, though - if we ascend from a child that
562          * gets killed as soon as we unlock it, the next sibling is found
563          * using the value left in its ->d_child.next.  And if _that_
564          * pointed to a cursor, and cursor got moved (e.g. by lseek())
565          * before d_walk() regains parent->d_lock, we'll end up skipping
566          * everything the cursor had been moved past.
567          *
568          * Solution: make sure that the pointer left behind in ->d_child.next
569          * points to something that won't be moving around.  I.e. skip the
570          * cursors.
571          */
572         while (dentry->d_child.next != &parent->d_subdirs) {
573                 next = list_entry(dentry->d_child.next, struct dentry, d_child);
574                 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
575                         break;
576                 dentry->d_child.next = next->d_child.next;
577         }
578 }
579
580 static void __dentry_kill(struct dentry *dentry)
581 {
582         struct dentry *parent = NULL;
583         bool can_free = true;
584         if (!IS_ROOT(dentry))
585                 parent = dentry->d_parent;
586
587         /*
588          * The dentry is now unrecoverably dead to the world.
589          */
590         lockref_mark_dead(&dentry->d_lockref);
591
592         /*
593          * inform the fs via d_prune that this dentry is about to be
594          * unhashed and destroyed.
595          */
596         if (dentry->d_flags & DCACHE_OP_PRUNE)
597                 dentry->d_op->d_prune(dentry);
598
599         if (dentry->d_flags & DCACHE_LRU_LIST) {
600                 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
601                         d_lru_del(dentry);
602         }
603         /* if it was on the hash then remove it */
604         __d_drop(dentry);
605         dentry_unlist(dentry, parent);
606         if (parent)
607                 spin_unlock(&parent->d_lock);
608         if (dentry->d_inode)
609                 dentry_unlink_inode(dentry);
610         else
611                 spin_unlock(&dentry->d_lock);
612         this_cpu_dec(nr_dentry);
613         if (dentry->d_op && dentry->d_op->d_release)
614                 dentry->d_op->d_release(dentry);
615
616         spin_lock(&dentry->d_lock);
617         if (dentry->d_flags & DCACHE_SHRINK_LIST) {
618                 dentry->d_flags |= DCACHE_MAY_FREE;
619                 can_free = false;
620         }
621         spin_unlock(&dentry->d_lock);
622         if (likely(can_free))
623                 dentry_free(dentry);
624         cond_resched();
625 }
626
627 static struct dentry *__lock_parent(struct dentry *dentry)
628 {
629         struct dentry *parent;
630         rcu_read_lock();
631         spin_unlock(&dentry->d_lock);
632 again:
633         parent = READ_ONCE(dentry->d_parent);
634         spin_lock(&parent->d_lock);
635         /*
636          * We can't blindly lock dentry until we are sure
637          * that we won't violate the locking order.
638          * Any changes of dentry->d_parent must have
639          * been done with parent->d_lock held, so
640          * spin_lock() above is enough of a barrier
641          * for checking if it's still our child.
642          */
643         if (unlikely(parent != dentry->d_parent)) {
644                 spin_unlock(&parent->d_lock);
645                 goto again;
646         }
647         rcu_read_unlock();
648         if (parent != dentry)
649                 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
650         else
651                 parent = NULL;
652         return parent;
653 }
654
655 static inline struct dentry *lock_parent(struct dentry *dentry)
656 {
657         struct dentry *parent = dentry->d_parent;
658         if (IS_ROOT(dentry))
659                 return NULL;
660         if (likely(spin_trylock(&parent->d_lock)))
661                 return parent;
662         return __lock_parent(dentry);
663 }
664
665 static inline bool retain_dentry(struct dentry *dentry)
666 {
667         WARN_ON(d_in_lookup(dentry));
668
669         /* Unreachable? Get rid of it */
670         if (unlikely(d_unhashed(dentry)))
671                 return false;
672
673         if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
674                 return false;
675
676         if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
677                 if (dentry->d_op->d_delete(dentry))
678                         return false;
679         }
680
681         if (unlikely(dentry->d_flags & DCACHE_DONTCACHE))
682                 return false;
683
684         /* retain; LRU fodder */
685         dentry->d_lockref.count--;
686         if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
687                 d_lru_add(dentry);
688         else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
689                 dentry->d_flags |= DCACHE_REFERENCED;
690         return true;
691 }
692
693 void d_mark_dontcache(struct inode *inode)
694 {
695         struct dentry *de;
696
697         spin_lock(&inode->i_lock);
698         hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
699                 spin_lock(&de->d_lock);
700                 de->d_flags |= DCACHE_DONTCACHE;
701                 spin_unlock(&de->d_lock);
702         }
703         inode->i_state |= I_DONTCACHE;
704         spin_unlock(&inode->i_lock);
705 }
706 EXPORT_SYMBOL(d_mark_dontcache);
707
708 /*
709  * Finish off a dentry we've decided to kill.
710  * dentry->d_lock must be held, returns with it unlocked.
711  * Returns dentry requiring refcount drop, or NULL if we're done.
712  */
713 static struct dentry *dentry_kill(struct dentry *dentry)
714         __releases(dentry->d_lock)
715 {
716         struct inode *inode = dentry->d_inode;
717         struct dentry *parent = NULL;
718
719         if (inode && unlikely(!spin_trylock(&inode->i_lock)))
720                 goto slow_positive;
721
722         if (!IS_ROOT(dentry)) {
723                 parent = dentry->d_parent;
724                 if (unlikely(!spin_trylock(&parent->d_lock))) {
725                         parent = __lock_parent(dentry);
726                         if (likely(inode || !dentry->d_inode))
727                                 goto got_locks;
728                         /* negative that became positive */
729                         if (parent)
730                                 spin_unlock(&parent->d_lock);
731                         inode = dentry->d_inode;
732                         goto slow_positive;
733                 }
734         }
735         __dentry_kill(dentry);
736         return parent;
737
738 slow_positive:
739         spin_unlock(&dentry->d_lock);
740         spin_lock(&inode->i_lock);
741         spin_lock(&dentry->d_lock);
742         parent = lock_parent(dentry);
743 got_locks:
744         if (unlikely(dentry->d_lockref.count != 1)) {
745                 dentry->d_lockref.count--;
746         } else if (likely(!retain_dentry(dentry))) {
747                 __dentry_kill(dentry);
748                 return parent;
749         }
750         /* we are keeping it, after all */
751         if (inode)
752                 spin_unlock(&inode->i_lock);
753         if (parent)
754                 spin_unlock(&parent->d_lock);
755         spin_unlock(&dentry->d_lock);
756         return NULL;
757 }
758
759 /*
760  * Try to do a lockless dput(), and return whether that was successful.
761  *
762  * If unsuccessful, we return false, having already taken the dentry lock.
763  *
764  * The caller needs to hold the RCU read lock, so that the dentry is
765  * guaranteed to stay around even if the refcount goes down to zero!
766  */
767 static inline bool fast_dput(struct dentry *dentry)
768 {
769         int ret;
770         unsigned int d_flags;
771
772         /*
773          * If we have a d_op->d_delete() operation, we sould not
774          * let the dentry count go to zero, so use "put_or_lock".
775          */
776         if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
777                 return lockref_put_or_lock(&dentry->d_lockref);
778
779         /*
780          * .. otherwise, we can try to just decrement the
781          * lockref optimistically.
782          */
783         ret = lockref_put_return(&dentry->d_lockref);
784
785         /*
786          * If the lockref_put_return() failed due to the lock being held
787          * by somebody else, the fast path has failed. We will need to
788          * get the lock, and then check the count again.
789          */
790         if (unlikely(ret < 0)) {
791                 spin_lock(&dentry->d_lock);
792                 if (dentry->d_lockref.count > 1) {
793                         dentry->d_lockref.count--;
794                         spin_unlock(&dentry->d_lock);
795                         return true;
796                 }
797                 return false;
798         }
799
800         /*
801          * If we weren't the last ref, we're done.
802          */
803         if (ret)
804                 return true;
805
806         /*
807          * Careful, careful. The reference count went down
808          * to zero, but we don't hold the dentry lock, so
809          * somebody else could get it again, and do another
810          * dput(), and we need to not race with that.
811          *
812          * However, there is a very special and common case
813          * where we don't care, because there is nothing to
814          * do: the dentry is still hashed, it does not have
815          * a 'delete' op, and it's referenced and already on
816          * the LRU list.
817          *
818          * NOTE! Since we aren't locked, these values are
819          * not "stable". However, it is sufficient that at
820          * some point after we dropped the reference the
821          * dentry was hashed and the flags had the proper
822          * value. Other dentry users may have re-gotten
823          * a reference to the dentry and change that, but
824          * our work is done - we can leave the dentry
825          * around with a zero refcount.
826          *
827          * Nevertheless, there are two cases that we should kill
828          * the dentry anyway.
829          * 1. free disconnected dentries as soon as their refcount
830          *    reached zero.
831          * 2. free dentries if they should not be cached.
832          */
833         smp_rmb();
834         d_flags = READ_ONCE(dentry->d_flags);
835         d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST |
836                         DCACHE_DISCONNECTED | DCACHE_DONTCACHE;
837
838         /* Nothing to do? Dropping the reference was all we needed? */
839         if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
840                 return true;
841
842         /*
843          * Not the fast normal case? Get the lock. We've already decremented
844          * the refcount, but we'll need to re-check the situation after
845          * getting the lock.
846          */
847         spin_lock(&dentry->d_lock);
848
849         /*
850          * Did somebody else grab a reference to it in the meantime, and
851          * we're no longer the last user after all? Alternatively, somebody
852          * else could have killed it and marked it dead. Either way, we
853          * don't need to do anything else.
854          */
855         if (dentry->d_lockref.count) {
856                 spin_unlock(&dentry->d_lock);
857                 return true;
858         }
859
860         /*
861          * Re-get the reference we optimistically dropped. We hold the
862          * lock, and we just tested that it was zero, so we can just
863          * set it to 1.
864          */
865         dentry->d_lockref.count = 1;
866         return false;
867 }
868
869
870 /* 
871  * This is dput
872  *
873  * This is complicated by the fact that we do not want to put
874  * dentries that are no longer on any hash chain on the unused
875  * list: we'd much rather just get rid of them immediately.
876  *
877  * However, that implies that we have to traverse the dentry
878  * tree upwards to the parents which might _also_ now be
879  * scheduled for deletion (it may have been only waiting for
880  * its last child to go away).
881  *
882  * This tail recursion is done by hand as we don't want to depend
883  * on the compiler to always get this right (gcc generally doesn't).
884  * Real recursion would eat up our stack space.
885  */
886
887 /*
888  * dput - release a dentry
889  * @dentry: dentry to release 
890  *
891  * Release a dentry. This will drop the usage count and if appropriate
892  * call the dentry unlink method as well as removing it from the queues and
893  * releasing its resources. If the parent dentries were scheduled for release
894  * they too may now get deleted.
895  */
896 void dput(struct dentry *dentry)
897 {
898         while (dentry) {
899                 might_sleep();
900
901                 rcu_read_lock();
902                 if (likely(fast_dput(dentry))) {
903                         rcu_read_unlock();
904                         return;
905                 }
906
907                 /* Slow case: now with the dentry lock held */
908                 rcu_read_unlock();
909
910                 if (likely(retain_dentry(dentry))) {
911                         spin_unlock(&dentry->d_lock);
912                         return;
913                 }
914
915                 dentry = dentry_kill(dentry);
916         }
917 }
918 EXPORT_SYMBOL(dput);
919
920 static void __dput_to_list(struct dentry *dentry, struct list_head *list)
921 __must_hold(&dentry->d_lock)
922 {
923         if (dentry->d_flags & DCACHE_SHRINK_LIST) {
924                 /* let the owner of the list it's on deal with it */
925                 --dentry->d_lockref.count;
926         } else {
927                 if (dentry->d_flags & DCACHE_LRU_LIST)
928                         d_lru_del(dentry);
929                 if (!--dentry->d_lockref.count)
930                         d_shrink_add(dentry, list);
931         }
932 }
933
934 void dput_to_list(struct dentry *dentry, struct list_head *list)
935 {
936         rcu_read_lock();
937         if (likely(fast_dput(dentry))) {
938                 rcu_read_unlock();
939                 return;
940         }
941         rcu_read_unlock();
942         if (!retain_dentry(dentry))
943                 __dput_to_list(dentry, list);
944         spin_unlock(&dentry->d_lock);
945 }
946
947 /* This must be called with d_lock held */
948 static inline void __dget_dlock(struct dentry *dentry)
949 {
950         dentry->d_lockref.count++;
951 }
952
953 static inline void __dget(struct dentry *dentry)
954 {
955         lockref_get(&dentry->d_lockref);
956 }
957
958 struct dentry *dget_parent(struct dentry *dentry)
959 {
960         int gotref;
961         struct dentry *ret;
962         unsigned seq;
963
964         /*
965          * Do optimistic parent lookup without any
966          * locking.
967          */
968         rcu_read_lock();
969         seq = raw_seqcount_begin(&dentry->d_seq);
970         ret = READ_ONCE(dentry->d_parent);
971         gotref = lockref_get_not_zero(&ret->d_lockref);
972         rcu_read_unlock();
973         if (likely(gotref)) {
974                 if (!read_seqcount_retry(&dentry->d_seq, seq))
975                         return ret;
976                 dput(ret);
977         }
978
979 repeat:
980         /*
981          * Don't need rcu_dereference because we re-check it was correct under
982          * the lock.
983          */
984         rcu_read_lock();
985         ret = dentry->d_parent;
986         spin_lock(&ret->d_lock);
987         if (unlikely(ret != dentry->d_parent)) {
988                 spin_unlock(&ret->d_lock);
989                 rcu_read_unlock();
990                 goto repeat;
991         }
992         rcu_read_unlock();
993         BUG_ON(!ret->d_lockref.count);
994         ret->d_lockref.count++;
995         spin_unlock(&ret->d_lock);
996         return ret;
997 }
998 EXPORT_SYMBOL(dget_parent);
999
1000 static struct dentry * __d_find_any_alias(struct inode *inode)
1001 {
1002         struct dentry *alias;
1003
1004         if (hlist_empty(&inode->i_dentry))
1005                 return NULL;
1006         alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1007         __dget(alias);
1008         return alias;
1009 }
1010
1011 /**
1012  * d_find_any_alias - find any alias for a given inode
1013  * @inode: inode to find an alias for
1014  *
1015  * If any aliases exist for the given inode, take and return a
1016  * reference for one of them.  If no aliases exist, return %NULL.
1017  */
1018 struct dentry *d_find_any_alias(struct inode *inode)
1019 {
1020         struct dentry *de;
1021
1022         spin_lock(&inode->i_lock);
1023         de = __d_find_any_alias(inode);
1024         spin_unlock(&inode->i_lock);
1025         return de;
1026 }
1027 EXPORT_SYMBOL(d_find_any_alias);
1028
1029 static struct dentry *__d_find_alias(struct inode *inode)
1030 {
1031         struct dentry *alias;
1032
1033         if (S_ISDIR(inode->i_mode))
1034                 return __d_find_any_alias(inode);
1035
1036         hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1037                 spin_lock(&alias->d_lock);
1038                 if (!d_unhashed(alias)) {
1039                         __dget_dlock(alias);
1040                         spin_unlock(&alias->d_lock);
1041                         return alias;
1042                 }
1043                 spin_unlock(&alias->d_lock);
1044         }
1045         return NULL;
1046 }
1047
1048 /**
1049  * d_find_alias - grab a hashed alias of inode
1050  * @inode: inode in question
1051  *
1052  * If inode has a hashed alias, or is a directory and has any alias,
1053  * acquire the reference to alias and return it. Otherwise return NULL.
1054  * Notice that if inode is a directory there can be only one alias and
1055  * it can be unhashed only if it has no children, or if it is the root
1056  * of a filesystem, or if the directory was renamed and d_revalidate
1057  * was the first vfs operation to notice.
1058  *
1059  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1060  * any other hashed alias over that one.
1061  */
1062 struct dentry *d_find_alias(struct inode *inode)
1063 {
1064         struct dentry *de = NULL;
1065
1066         if (!hlist_empty(&inode->i_dentry)) {
1067                 spin_lock(&inode->i_lock);
1068                 de = __d_find_alias(inode);
1069                 spin_unlock(&inode->i_lock);
1070         }
1071         return de;
1072 }
1073 EXPORT_SYMBOL(d_find_alias);
1074
1075 /*
1076  *  Caller MUST be holding rcu_read_lock() and be guaranteed
1077  *  that inode won't get freed until rcu_read_unlock().
1078  */
1079 struct dentry *d_find_alias_rcu(struct inode *inode)
1080 {
1081         struct hlist_head *l = &inode->i_dentry;
1082         struct dentry *de = NULL;
1083
1084         spin_lock(&inode->i_lock);
1085         // ->i_dentry and ->i_rcu are colocated, but the latter won't be
1086         // used without having I_FREEING set, which means no aliases left
1087         if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) {
1088                 if (S_ISDIR(inode->i_mode)) {
1089                         de = hlist_entry(l->first, struct dentry, d_u.d_alias);
1090                 } else {
1091                         hlist_for_each_entry(de, l, d_u.d_alias)
1092                                 if (!d_unhashed(de))
1093                                         break;
1094                 }
1095         }
1096         spin_unlock(&inode->i_lock);
1097         return de;
1098 }
1099
1100 /*
1101  *      Try to kill dentries associated with this inode.
1102  * WARNING: you must own a reference to inode.
1103  */
1104 void d_prune_aliases(struct inode *inode)
1105 {
1106         struct dentry *dentry;
1107 restart:
1108         spin_lock(&inode->i_lock);
1109         hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1110                 spin_lock(&dentry->d_lock);
1111                 if (!dentry->d_lockref.count) {
1112                         struct dentry *parent = lock_parent(dentry);
1113                         if (likely(!dentry->d_lockref.count)) {
1114                                 __dentry_kill(dentry);
1115                                 dput(parent);
1116                                 goto restart;
1117                         }
1118                         if (parent)
1119                                 spin_unlock(&parent->d_lock);
1120                 }
1121                 spin_unlock(&dentry->d_lock);
1122         }
1123         spin_unlock(&inode->i_lock);
1124 }
1125 EXPORT_SYMBOL(d_prune_aliases);
1126
1127 /*
1128  * Lock a dentry from shrink list.
1129  * Called under rcu_read_lock() and dentry->d_lock; the former
1130  * guarantees that nothing we access will be freed under us.
1131  * Note that dentry is *not* protected from concurrent dentry_kill(),
1132  * d_delete(), etc.
1133  *
1134  * Return false if dentry has been disrupted or grabbed, leaving
1135  * the caller to kick it off-list.  Otherwise, return true and have
1136  * that dentry's inode and parent both locked.
1137  */
1138 static bool shrink_lock_dentry(struct dentry *dentry)
1139 {
1140         struct inode *inode;
1141         struct dentry *parent;
1142
1143         if (dentry->d_lockref.count)
1144                 return false;
1145
1146         inode = dentry->d_inode;
1147         if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1148                 spin_unlock(&dentry->d_lock);
1149                 spin_lock(&inode->i_lock);
1150                 spin_lock(&dentry->d_lock);
1151                 if (unlikely(dentry->d_lockref.count))
1152                         goto out;
1153                 /* changed inode means that somebody had grabbed it */
1154                 if (unlikely(inode != dentry->d_inode))
1155                         goto out;
1156         }
1157
1158         parent = dentry->d_parent;
1159         if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1160                 return true;
1161
1162         spin_unlock(&dentry->d_lock);
1163         spin_lock(&parent->d_lock);
1164         if (unlikely(parent != dentry->d_parent)) {
1165                 spin_unlock(&parent->d_lock);
1166                 spin_lock(&dentry->d_lock);
1167                 goto out;
1168         }
1169         spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1170         if (likely(!dentry->d_lockref.count))
1171                 return true;
1172         spin_unlock(&parent->d_lock);
1173 out:
1174         if (inode)
1175                 spin_unlock(&inode->i_lock);
1176         return false;
1177 }
1178
1179 void shrink_dentry_list(struct list_head *list)
1180 {
1181         while (!list_empty(list)) {
1182                 struct dentry *dentry, *parent;
1183
1184                 dentry = list_entry(list->prev, struct dentry, d_lru);
1185                 spin_lock(&dentry->d_lock);
1186                 rcu_read_lock();
1187                 if (!shrink_lock_dentry(dentry)) {
1188                         bool can_free = false;
1189                         rcu_read_unlock();
1190                         d_shrink_del(dentry);
1191                         if (dentry->d_lockref.count < 0)
1192                                 can_free = dentry->d_flags & DCACHE_MAY_FREE;
1193                         spin_unlock(&dentry->d_lock);
1194                         if (can_free)
1195                                 dentry_free(dentry);
1196                         continue;
1197                 }
1198                 rcu_read_unlock();
1199                 d_shrink_del(dentry);
1200                 parent = dentry->d_parent;
1201                 if (parent != dentry)
1202                         __dput_to_list(parent, list);
1203                 __dentry_kill(dentry);
1204         }
1205 }
1206
1207 static enum lru_status dentry_lru_isolate(struct list_head *item,
1208                 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1209 {
1210         struct list_head *freeable = arg;
1211         struct dentry   *dentry = container_of(item, struct dentry, d_lru);
1212
1213
1214         /*
1215          * we are inverting the lru lock/dentry->d_lock here,
1216          * so use a trylock. If we fail to get the lock, just skip
1217          * it
1218          */
1219         if (!spin_trylock(&dentry->d_lock))
1220                 return LRU_SKIP;
1221
1222         /*
1223          * Referenced dentries are still in use. If they have active
1224          * counts, just remove them from the LRU. Otherwise give them
1225          * another pass through the LRU.
1226          */
1227         if (dentry->d_lockref.count) {
1228                 d_lru_isolate(lru, dentry);
1229                 spin_unlock(&dentry->d_lock);
1230                 return LRU_REMOVED;
1231         }
1232
1233         if (dentry->d_flags & DCACHE_REFERENCED) {
1234                 dentry->d_flags &= ~DCACHE_REFERENCED;
1235                 spin_unlock(&dentry->d_lock);
1236
1237                 /*
1238                  * The list move itself will be made by the common LRU code. At
1239                  * this point, we've dropped the dentry->d_lock but keep the
1240                  * lru lock. This is safe to do, since every list movement is
1241                  * protected by the lru lock even if both locks are held.
1242                  *
1243                  * This is guaranteed by the fact that all LRU management
1244                  * functions are intermediated by the LRU API calls like
1245                  * list_lru_add_obj and list_lru_del_obj. List movement in this file
1246                  * only ever occur through this functions or through callbacks
1247                  * like this one, that are called from the LRU API.
1248                  *
1249                  * The only exceptions to this are functions like
1250                  * shrink_dentry_list, and code that first checks for the
1251                  * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1252                  * operating only with stack provided lists after they are
1253                  * properly isolated from the main list.  It is thus, always a
1254                  * local access.
1255                  */
1256                 return LRU_ROTATE;
1257         }
1258
1259         d_lru_shrink_move(lru, dentry, freeable);
1260         spin_unlock(&dentry->d_lock);
1261
1262         return LRU_REMOVED;
1263 }
1264
1265 /**
1266  * prune_dcache_sb - shrink the dcache
1267  * @sb: superblock
1268  * @sc: shrink control, passed to list_lru_shrink_walk()
1269  *
1270  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1271  * is done when we need more memory and called from the superblock shrinker
1272  * function.
1273  *
1274  * This function may fail to free any resources if all the dentries are in
1275  * use.
1276  */
1277 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1278 {
1279         LIST_HEAD(dispose);
1280         long freed;
1281
1282         freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1283                                      dentry_lru_isolate, &dispose);
1284         shrink_dentry_list(&dispose);
1285         return freed;
1286 }
1287
1288 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1289                 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1290 {
1291         struct list_head *freeable = arg;
1292         struct dentry   *dentry = container_of(item, struct dentry, d_lru);
1293
1294         /*
1295          * we are inverting the lru lock/dentry->d_lock here,
1296          * so use a trylock. If we fail to get the lock, just skip
1297          * it
1298          */
1299         if (!spin_trylock(&dentry->d_lock))
1300                 return LRU_SKIP;
1301
1302         d_lru_shrink_move(lru, dentry, freeable);
1303         spin_unlock(&dentry->d_lock);
1304
1305         return LRU_REMOVED;
1306 }
1307
1308
1309 /**
1310  * shrink_dcache_sb - shrink dcache for a superblock
1311  * @sb: superblock
1312  *
1313  * Shrink the dcache for the specified super block. This is used to free
1314  * the dcache before unmounting a file system.
1315  */
1316 void shrink_dcache_sb(struct super_block *sb)
1317 {
1318         do {
1319                 LIST_HEAD(dispose);
1320
1321                 list_lru_walk(&sb->s_dentry_lru,
1322                         dentry_lru_isolate_shrink, &dispose, 1024);
1323                 shrink_dentry_list(&dispose);
1324         } while (list_lru_count(&sb->s_dentry_lru) > 0);
1325 }
1326 EXPORT_SYMBOL(shrink_dcache_sb);
1327
1328 /**
1329  * enum d_walk_ret - action to talke during tree walk
1330  * @D_WALK_CONTINUE:    contrinue walk
1331  * @D_WALK_QUIT:        quit walk
1332  * @D_WALK_NORETRY:     quit when retry is needed
1333  * @D_WALK_SKIP:        skip this dentry and its children
1334  */
1335 enum d_walk_ret {
1336         D_WALK_CONTINUE,
1337         D_WALK_QUIT,
1338         D_WALK_NORETRY,
1339         D_WALK_SKIP,
1340 };
1341
1342 /**
1343  * d_walk - walk the dentry tree
1344  * @parent:     start of walk
1345  * @data:       data passed to @enter() and @finish()
1346  * @enter:      callback when first entering the dentry
1347  *
1348  * The @enter() callbacks are called with d_lock held.
1349  */
1350 static void d_walk(struct dentry *parent, void *data,
1351                    enum d_walk_ret (*enter)(void *, struct dentry *))
1352 {
1353         struct dentry *this_parent;
1354         struct list_head *next;
1355         unsigned seq = 0;
1356         enum d_walk_ret ret;
1357         bool retry = true;
1358
1359 again:
1360         read_seqbegin_or_lock(&rename_lock, &seq);
1361         this_parent = parent;
1362         spin_lock(&this_parent->d_lock);
1363
1364         ret = enter(data, this_parent);
1365         switch (ret) {
1366         case D_WALK_CONTINUE:
1367                 break;
1368         case D_WALK_QUIT:
1369         case D_WALK_SKIP:
1370                 goto out_unlock;
1371         case D_WALK_NORETRY:
1372                 retry = false;
1373                 break;
1374         }
1375 repeat:
1376         next = this_parent->d_subdirs.next;
1377 resume:
1378         while (next != &this_parent->d_subdirs) {
1379                 struct list_head *tmp = next;
1380                 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1381                 next = tmp->next;
1382
1383                 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1384                         continue;
1385
1386                 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1387
1388                 ret = enter(data, dentry);
1389                 switch (ret) {
1390                 case D_WALK_CONTINUE:
1391                         break;
1392                 case D_WALK_QUIT:
1393                         spin_unlock(&dentry->d_lock);
1394                         goto out_unlock;
1395                 case D_WALK_NORETRY:
1396                         retry = false;
1397                         break;
1398                 case D_WALK_SKIP:
1399                         spin_unlock(&dentry->d_lock);
1400                         continue;
1401                 }
1402
1403                 if (!list_empty(&dentry->d_subdirs)) {
1404                         spin_unlock(&this_parent->d_lock);
1405                         spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1406                         this_parent = dentry;
1407                         spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1408                         goto repeat;
1409                 }
1410                 spin_unlock(&dentry->d_lock);
1411         }
1412         /*
1413          * All done at this level ... ascend and resume the search.
1414          */
1415         rcu_read_lock();
1416 ascend:
1417         if (this_parent != parent) {
1418                 struct dentry *child = this_parent;
1419                 this_parent = child->d_parent;
1420
1421                 spin_unlock(&child->d_lock);
1422                 spin_lock(&this_parent->d_lock);
1423
1424                 /* might go back up the wrong parent if we have had a rename. */
1425                 if (need_seqretry(&rename_lock, seq))
1426                         goto rename_retry;
1427                 /* go into the first sibling still alive */
1428                 do {
1429                         next = child->d_child.next;
1430                         if (next == &this_parent->d_subdirs)
1431                                 goto ascend;
1432                         child = list_entry(next, struct dentry, d_child);
1433                 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1434                 rcu_read_unlock();
1435                 goto resume;
1436         }
1437         if (need_seqretry(&rename_lock, seq))
1438                 goto rename_retry;
1439         rcu_read_unlock();
1440
1441 out_unlock:
1442         spin_unlock(&this_parent->d_lock);
1443         done_seqretry(&rename_lock, seq);
1444         return;
1445
1446 rename_retry:
1447         spin_unlock(&this_parent->d_lock);
1448         rcu_read_unlock();
1449         BUG_ON(seq & 1);
1450         if (!retry)
1451                 return;
1452         seq = 1;
1453         goto again;
1454 }
1455
1456 struct check_mount {
1457         struct vfsmount *mnt;
1458         unsigned int mounted;
1459 };
1460
1461 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1462 {
1463         struct check_mount *info = data;
1464         struct path path = { .mnt = info->mnt, .dentry = dentry };
1465
1466         if (likely(!d_mountpoint(dentry)))
1467                 return D_WALK_CONTINUE;
1468         if (__path_is_mountpoint(&path)) {
1469                 info->mounted = 1;
1470                 return D_WALK_QUIT;
1471         }
1472         return D_WALK_CONTINUE;
1473 }
1474
1475 /**
1476  * path_has_submounts - check for mounts over a dentry in the
1477  *                      current namespace.
1478  * @parent: path to check.
1479  *
1480  * Return true if the parent or its subdirectories contain
1481  * a mount point in the current namespace.
1482  */
1483 int path_has_submounts(const struct path *parent)
1484 {
1485         struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1486
1487         read_seqlock_excl(&mount_lock);
1488         d_walk(parent->dentry, &data, path_check_mount);
1489         read_sequnlock_excl(&mount_lock);
1490
1491         return data.mounted;
1492 }
1493 EXPORT_SYMBOL(path_has_submounts);
1494
1495 /*
1496  * Called by mount code to set a mountpoint and check if the mountpoint is
1497  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1498  * subtree can become unreachable).
1499  *
1500  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1501  * this reason take rename_lock and d_lock on dentry and ancestors.
1502  */
1503 int d_set_mounted(struct dentry *dentry)
1504 {
1505         struct dentry *p;
1506         int ret = -ENOENT;
1507         write_seqlock(&rename_lock);
1508         for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1509                 /* Need exclusion wrt. d_invalidate() */
1510                 spin_lock(&p->d_lock);
1511                 if (unlikely(d_unhashed(p))) {
1512                         spin_unlock(&p->d_lock);
1513                         goto out;
1514                 }
1515                 spin_unlock(&p->d_lock);
1516         }
1517         spin_lock(&dentry->d_lock);
1518         if (!d_unlinked(dentry)) {
1519                 ret = -EBUSY;
1520                 if (!d_mountpoint(dentry)) {
1521                         dentry->d_flags |= DCACHE_MOUNTED;
1522                         ret = 0;
1523                 }
1524         }
1525         spin_unlock(&dentry->d_lock);
1526 out:
1527         write_sequnlock(&rename_lock);
1528         return ret;
1529 }
1530
1531 /*
1532  * Search the dentry child list of the specified parent,
1533  * and move any unused dentries to the end of the unused
1534  * list for prune_dcache(). We descend to the next level
1535  * whenever the d_subdirs list is non-empty and continue
1536  * searching.
1537  *
1538  * It returns zero iff there are no unused children,
1539  * otherwise  it returns the number of children moved to
1540  * the end of the unused list. This may not be the total
1541  * number of unused children, because select_parent can
1542  * drop the lock and return early due to latency
1543  * constraints.
1544  */
1545
1546 struct select_data {
1547         struct dentry *start;
1548         union {
1549                 long found;
1550                 struct dentry *victim;
1551         };
1552         struct list_head dispose;
1553 };
1554
1555 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1556 {
1557         struct select_data *data = _data;
1558         enum d_walk_ret ret = D_WALK_CONTINUE;
1559
1560         if (data->start == dentry)
1561                 goto out;
1562
1563         if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1564                 data->found++;
1565         } else {
1566                 if (dentry->d_flags & DCACHE_LRU_LIST)
1567                         d_lru_del(dentry);
1568                 if (!dentry->d_lockref.count) {
1569                         d_shrink_add(dentry, &data->dispose);
1570                         data->found++;
1571                 }
1572         }
1573         /*
1574          * We can return to the caller if we have found some (this
1575          * ensures forward progress). We'll be coming back to find
1576          * the rest.
1577          */
1578         if (!list_empty(&data->dispose))
1579                 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1580 out:
1581         return ret;
1582 }
1583
1584 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1585 {
1586         struct select_data *data = _data;
1587         enum d_walk_ret ret = D_WALK_CONTINUE;
1588
1589         if (data->start == dentry)
1590                 goto out;
1591
1592         if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1593                 if (!dentry->d_lockref.count) {
1594                         rcu_read_lock();
1595                         data->victim = dentry;
1596                         return D_WALK_QUIT;
1597                 }
1598         } else {
1599                 if (dentry->d_flags & DCACHE_LRU_LIST)
1600                         d_lru_del(dentry);
1601                 if (!dentry->d_lockref.count)
1602                         d_shrink_add(dentry, &data->dispose);
1603         }
1604         /*
1605          * We can return to the caller if we have found some (this
1606          * ensures forward progress). We'll be coming back to find
1607          * the rest.
1608          */
1609         if (!list_empty(&data->dispose))
1610                 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1611 out:
1612         return ret;
1613 }
1614
1615 /**
1616  * shrink_dcache_parent - prune dcache
1617  * @parent: parent of entries to prune
1618  *
1619  * Prune the dcache to remove unused children of the parent dentry.
1620  */
1621 void shrink_dcache_parent(struct dentry *parent)
1622 {
1623         for (;;) {
1624                 struct select_data data = {.start = parent};
1625
1626                 INIT_LIST_HEAD(&data.dispose);
1627                 d_walk(parent, &data, select_collect);
1628
1629                 if (!list_empty(&data.dispose)) {
1630                         shrink_dentry_list(&data.dispose);
1631                         continue;
1632                 }
1633
1634                 cond_resched();
1635                 if (!data.found)
1636                         break;
1637                 data.victim = NULL;
1638                 d_walk(parent, &data, select_collect2);
1639                 if (data.victim) {
1640                         struct dentry *parent;
1641                         spin_lock(&data.victim->d_lock);
1642                         if (!shrink_lock_dentry(data.victim)) {
1643                                 spin_unlock(&data.victim->d_lock);
1644                                 rcu_read_unlock();
1645                         } else {
1646                                 rcu_read_unlock();
1647                                 parent = data.victim->d_parent;
1648                                 if (parent != data.victim)
1649                                         __dput_to_list(parent, &data.dispose);
1650                                 __dentry_kill(data.victim);
1651                         }
1652                 }
1653                 if (!list_empty(&data.dispose))
1654                         shrink_dentry_list(&data.dispose);
1655         }
1656 }
1657 EXPORT_SYMBOL(shrink_dcache_parent);
1658
1659 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1660 {
1661         /* it has busy descendents; complain about those instead */
1662         if (!list_empty(&dentry->d_subdirs))
1663                 return D_WALK_CONTINUE;
1664
1665         /* root with refcount 1 is fine */
1666         if (dentry == _data && dentry->d_lockref.count == 1)
1667                 return D_WALK_CONTINUE;
1668
1669         WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} "
1670                         " still in use (%d) [unmount of %s %s]\n",
1671                        dentry,
1672                        dentry->d_inode ?
1673                        dentry->d_inode->i_ino : 0UL,
1674                        dentry,
1675                        dentry->d_lockref.count,
1676                        dentry->d_sb->s_type->name,
1677                        dentry->d_sb->s_id);
1678         return D_WALK_CONTINUE;
1679 }
1680
1681 static void do_one_tree(struct dentry *dentry)
1682 {
1683         shrink_dcache_parent(dentry);
1684         d_walk(dentry, dentry, umount_check);
1685         d_drop(dentry);
1686         dput(dentry);
1687 }
1688
1689 /*
1690  * destroy the dentries attached to a superblock on unmounting
1691  */
1692 void shrink_dcache_for_umount(struct super_block *sb)
1693 {
1694         struct dentry *dentry;
1695
1696         WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1697
1698         dentry = sb->s_root;
1699         sb->s_root = NULL;
1700         do_one_tree(dentry);
1701
1702         while (!hlist_bl_empty(&sb->s_roots)) {
1703                 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1704                 do_one_tree(dentry);
1705         }
1706 }
1707
1708 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1709 {
1710         struct dentry **victim = _data;
1711         if (d_mountpoint(dentry)) {
1712                 __dget_dlock(dentry);
1713                 *victim = dentry;
1714                 return D_WALK_QUIT;
1715         }
1716         return D_WALK_CONTINUE;
1717 }
1718
1719 /**
1720  * d_invalidate - detach submounts, prune dcache, and drop
1721  * @dentry: dentry to invalidate (aka detach, prune and drop)
1722  */
1723 void d_invalidate(struct dentry *dentry)
1724 {
1725         bool had_submounts = false;
1726         spin_lock(&dentry->d_lock);
1727         if (d_unhashed(dentry)) {
1728                 spin_unlock(&dentry->d_lock);
1729                 return;
1730         }
1731         __d_drop(dentry);
1732         spin_unlock(&dentry->d_lock);
1733
1734         /* Negative dentries can be dropped without further checks */
1735         if (!dentry->d_inode)
1736                 return;
1737
1738         shrink_dcache_parent(dentry);
1739         for (;;) {
1740                 struct dentry *victim = NULL;
1741                 d_walk(dentry, &victim, find_submount);
1742                 if (!victim) {
1743                         if (had_submounts)
1744                                 shrink_dcache_parent(dentry);
1745                         return;
1746                 }
1747                 had_submounts = true;
1748                 detach_mounts(victim);
1749                 dput(victim);
1750         }
1751 }
1752 EXPORT_SYMBOL(d_invalidate);
1753
1754 /**
1755  * __d_alloc    -       allocate a dcache entry
1756  * @sb: filesystem it will belong to
1757  * @name: qstr of the name
1758  *
1759  * Allocates a dentry. It returns %NULL if there is insufficient memory
1760  * available. On a success the dentry is returned. The name passed in is
1761  * copied and the copy passed in may be reused after this call.
1762  */
1763  
1764 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1765 {
1766         struct dentry *dentry;
1767         char *dname;
1768         int err;
1769
1770         dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru,
1771                                       GFP_KERNEL);
1772         if (!dentry)
1773                 return NULL;
1774
1775         /*
1776          * We guarantee that the inline name is always NUL-terminated.
1777          * This way the memcpy() done by the name switching in rename
1778          * will still always have a NUL at the end, even if we might
1779          * be overwriting an internal NUL character
1780          */
1781         dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1782         if (unlikely(!name)) {
1783                 name = &slash_name;
1784                 dname = dentry->d_iname;
1785         } else if (name->len > DNAME_INLINE_LEN-1) {
1786                 size_t size = offsetof(struct external_name, name[1]);
1787                 struct external_name *p = kmalloc(size + name->len,
1788                                                   GFP_KERNEL_ACCOUNT |
1789                                                   __GFP_RECLAIMABLE);
1790                 if (!p) {
1791                         kmem_cache_free(dentry_cache, dentry); 
1792                         return NULL;
1793                 }
1794                 atomic_set(&p->u.count, 1);
1795                 dname = p->name;
1796         } else  {
1797                 dname = dentry->d_iname;
1798         }       
1799
1800         dentry->d_name.len = name->len;
1801         dentry->d_name.hash = name->hash;
1802         memcpy(dname, name->name, name->len);
1803         dname[name->len] = 0;
1804
1805         /* Make sure we always see the terminating NUL character */
1806         smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1807
1808         dentry->d_lockref.count = 1;
1809         dentry->d_flags = 0;
1810         spin_lock_init(&dentry->d_lock);
1811         seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1812         dentry->d_inode = NULL;
1813         dentry->d_parent = dentry;
1814         dentry->d_sb = sb;
1815         dentry->d_op = NULL;
1816         dentry->d_fsdata = NULL;
1817         INIT_HLIST_BL_NODE(&dentry->d_hash);
1818         INIT_LIST_HEAD(&dentry->d_lru);
1819         INIT_LIST_HEAD(&dentry->d_subdirs);
1820         INIT_HLIST_NODE(&dentry->d_u.d_alias);
1821         INIT_LIST_HEAD(&dentry->d_child);
1822         d_set_d_op(dentry, dentry->d_sb->s_d_op);
1823
1824         if (dentry->d_op && dentry->d_op->d_init) {
1825                 err = dentry->d_op->d_init(dentry);
1826                 if (err) {
1827                         if (dname_external(dentry))
1828                                 kfree(external_name(dentry));
1829                         kmem_cache_free(dentry_cache, dentry);
1830                         return NULL;
1831                 }
1832         }
1833
1834         this_cpu_inc(nr_dentry);
1835
1836         return dentry;
1837 }
1838
1839 /**
1840  * d_alloc      -       allocate a dcache entry
1841  * @parent: parent of entry to allocate
1842  * @name: qstr of the name
1843  *
1844  * Allocates a dentry. It returns %NULL if there is insufficient memory
1845  * available. On a success the dentry is returned. The name passed in is
1846  * copied and the copy passed in may be reused after this call.
1847  */
1848 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1849 {
1850         struct dentry *dentry = __d_alloc(parent->d_sb, name);
1851         if (!dentry)
1852                 return NULL;
1853         spin_lock(&parent->d_lock);
1854         /*
1855          * don't need child lock because it is not subject
1856          * to concurrency here
1857          */
1858         __dget_dlock(parent);
1859         dentry->d_parent = parent;
1860         list_add(&dentry->d_child, &parent->d_subdirs);
1861         spin_unlock(&parent->d_lock);
1862
1863         return dentry;
1864 }
1865 EXPORT_SYMBOL(d_alloc);
1866
1867 struct dentry *d_alloc_anon(struct super_block *sb)
1868 {
1869         return __d_alloc(sb, NULL);
1870 }
1871 EXPORT_SYMBOL(d_alloc_anon);
1872
1873 struct dentry *d_alloc_cursor(struct dentry * parent)
1874 {
1875         struct dentry *dentry = d_alloc_anon(parent->d_sb);
1876         if (dentry) {
1877                 dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1878                 dentry->d_parent = dget(parent);
1879         }
1880         return dentry;
1881 }
1882
1883 /**
1884  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1885  * @sb: the superblock
1886  * @name: qstr of the name
1887  *
1888  * For a filesystem that just pins its dentries in memory and never
1889  * performs lookups at all, return an unhashed IS_ROOT dentry.
1890  * This is used for pipes, sockets et.al. - the stuff that should
1891  * never be anyone's children or parents.  Unlike all other
1892  * dentries, these will not have RCU delay between dropping the
1893  * last reference and freeing them.
1894  *
1895  * The only user is alloc_file_pseudo() and that's what should
1896  * be considered a public interface.  Don't use directly.
1897  */
1898 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1899 {
1900         struct dentry *dentry = __d_alloc(sb, name);
1901         if (likely(dentry))
1902                 dentry->d_flags |= DCACHE_NORCU;
1903         return dentry;
1904 }
1905
1906 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1907 {
1908         struct qstr q;
1909
1910         q.name = name;
1911         q.hash_len = hashlen_string(parent, name);
1912         return d_alloc(parent, &q);
1913 }
1914 EXPORT_SYMBOL(d_alloc_name);
1915
1916 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1917 {
1918         WARN_ON_ONCE(dentry->d_op);
1919         WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH  |
1920                                 DCACHE_OP_COMPARE       |
1921                                 DCACHE_OP_REVALIDATE    |
1922                                 DCACHE_OP_WEAK_REVALIDATE       |
1923                                 DCACHE_OP_DELETE        |
1924                                 DCACHE_OP_REAL));
1925         dentry->d_op = op;
1926         if (!op)
1927                 return;
1928         if (op->d_hash)
1929                 dentry->d_flags |= DCACHE_OP_HASH;
1930         if (op->d_compare)
1931                 dentry->d_flags |= DCACHE_OP_COMPARE;
1932         if (op->d_revalidate)
1933                 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1934         if (op->d_weak_revalidate)
1935                 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1936         if (op->d_delete)
1937                 dentry->d_flags |= DCACHE_OP_DELETE;
1938         if (op->d_prune)
1939                 dentry->d_flags |= DCACHE_OP_PRUNE;
1940         if (op->d_real)
1941                 dentry->d_flags |= DCACHE_OP_REAL;
1942
1943 }
1944 EXPORT_SYMBOL(d_set_d_op);
1945
1946
1947 /*
1948  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1949  * @dentry - The dentry to mark
1950  *
1951  * Mark a dentry as falling through to the lower layer (as set with
1952  * d_pin_lower()).  This flag may be recorded on the medium.
1953  */
1954 void d_set_fallthru(struct dentry *dentry)
1955 {
1956         spin_lock(&dentry->d_lock);
1957         dentry->d_flags |= DCACHE_FALLTHRU;
1958         spin_unlock(&dentry->d_lock);
1959 }
1960 EXPORT_SYMBOL(d_set_fallthru);
1961
1962 static unsigned d_flags_for_inode(struct inode *inode)
1963 {
1964         unsigned add_flags = DCACHE_REGULAR_TYPE;
1965
1966         if (!inode)
1967                 return DCACHE_MISS_TYPE;
1968
1969         if (S_ISDIR(inode->i_mode)) {
1970                 add_flags = DCACHE_DIRECTORY_TYPE;
1971                 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1972                         if (unlikely(!inode->i_op->lookup))
1973                                 add_flags = DCACHE_AUTODIR_TYPE;
1974                         else
1975                                 inode->i_opflags |= IOP_LOOKUP;
1976                 }
1977                 goto type_determined;
1978         }
1979
1980         if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1981                 if (unlikely(inode->i_op->get_link)) {
1982                         add_flags = DCACHE_SYMLINK_TYPE;
1983                         goto type_determined;
1984                 }
1985                 inode->i_opflags |= IOP_NOFOLLOW;
1986         }
1987
1988         if (unlikely(!S_ISREG(inode->i_mode)))
1989                 add_flags = DCACHE_SPECIAL_TYPE;
1990
1991 type_determined:
1992         if (unlikely(IS_AUTOMOUNT(inode)))
1993                 add_flags |= DCACHE_NEED_AUTOMOUNT;
1994         return add_flags;
1995 }
1996
1997 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1998 {
1999         unsigned add_flags = d_flags_for_inode(inode);
2000         WARN_ON(d_in_lookup(dentry));
2001
2002         spin_lock(&dentry->d_lock);
2003         /*
2004          * Decrement negative dentry count if it was in the LRU list.
2005          */
2006         if (dentry->d_flags & DCACHE_LRU_LIST)
2007                 this_cpu_dec(nr_dentry_negative);
2008         hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2009         raw_write_seqcount_begin(&dentry->d_seq);
2010         __d_set_inode_and_type(dentry, inode, add_flags);
2011         raw_write_seqcount_end(&dentry->d_seq);
2012         fsnotify_update_flags(dentry);
2013         spin_unlock(&dentry->d_lock);
2014 }
2015
2016 /**
2017  * d_instantiate - fill in inode information for a dentry
2018  * @entry: dentry to complete
2019  * @inode: inode to attach to this dentry
2020  *
2021  * Fill in inode information in the entry.
2022  *
2023  * This turns negative dentries into productive full members
2024  * of society.
2025  *
2026  * NOTE! This assumes that the inode count has been incremented
2027  * (or otherwise set) by the caller to indicate that it is now
2028  * in use by the dcache.
2029  */
2030  
2031 void d_instantiate(struct dentry *entry, struct inode * inode)
2032 {
2033         BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
2034         if (inode) {
2035                 security_d_instantiate(entry, inode);
2036                 spin_lock(&inode->i_lock);
2037                 __d_instantiate(entry, inode);
2038                 spin_unlock(&inode->i_lock);
2039         }
2040 }
2041 EXPORT_SYMBOL(d_instantiate);
2042
2043 /*
2044  * This should be equivalent to d_instantiate() + unlock_new_inode(),
2045  * with lockdep-related part of unlock_new_inode() done before
2046  * anything else.  Use that instead of open-coding d_instantiate()/
2047  * unlock_new_inode() combinations.
2048  */
2049 void d_instantiate_new(struct dentry *entry, struct inode *inode)
2050 {
2051         BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
2052         BUG_ON(!inode);
2053         lockdep_annotate_inode_mutex_key(inode);
2054         security_d_instantiate(entry, inode);
2055         spin_lock(&inode->i_lock);
2056         __d_instantiate(entry, inode);
2057         WARN_ON(!(inode->i_state & I_NEW));
2058         inode->i_state &= ~I_NEW & ~I_CREATING;
2059         smp_mb();
2060         wake_up_bit(&inode->i_state, __I_NEW);
2061         spin_unlock(&inode->i_lock);
2062 }
2063 EXPORT_SYMBOL(d_instantiate_new);
2064
2065 struct dentry *d_make_root(struct inode *root_inode)
2066 {
2067         struct dentry *res = NULL;
2068
2069         if (root_inode) {
2070                 res = d_alloc_anon(root_inode->i_sb);
2071                 if (res)
2072                         d_instantiate(res, root_inode);
2073                 else
2074                         iput(root_inode);
2075         }
2076         return res;
2077 }
2078 EXPORT_SYMBOL(d_make_root);
2079
2080 static struct dentry *__d_instantiate_anon(struct dentry *dentry,
2081                                            struct inode *inode,
2082                                            bool disconnected)
2083 {
2084         struct dentry *res;
2085         unsigned add_flags;
2086
2087         security_d_instantiate(dentry, inode);
2088         spin_lock(&inode->i_lock);
2089         res = __d_find_any_alias(inode);
2090         if (res) {
2091                 spin_unlock(&inode->i_lock);
2092                 dput(dentry);
2093                 goto out_iput;
2094         }
2095
2096         /* attach a disconnected dentry */
2097         add_flags = d_flags_for_inode(inode);
2098
2099         if (disconnected)
2100                 add_flags |= DCACHE_DISCONNECTED;
2101
2102         spin_lock(&dentry->d_lock);
2103         __d_set_inode_and_type(dentry, inode, add_flags);
2104         hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2105         if (!disconnected) {
2106                 hlist_bl_lock(&dentry->d_sb->s_roots);
2107                 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
2108                 hlist_bl_unlock(&dentry->d_sb->s_roots);
2109         }
2110         spin_unlock(&dentry->d_lock);
2111         spin_unlock(&inode->i_lock);
2112
2113         return dentry;
2114
2115  out_iput:
2116         iput(inode);
2117         return res;
2118 }
2119
2120 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
2121 {
2122         return __d_instantiate_anon(dentry, inode, true);
2123 }
2124 EXPORT_SYMBOL(d_instantiate_anon);
2125
2126 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2127 {
2128         struct dentry *tmp;
2129         struct dentry *res;
2130
2131         if (!inode)
2132                 return ERR_PTR(-ESTALE);
2133         if (IS_ERR(inode))
2134                 return ERR_CAST(inode);
2135
2136         res = d_find_any_alias(inode);
2137         if (res)
2138                 goto out_iput;
2139
2140         tmp = d_alloc_anon(inode->i_sb);
2141         if (!tmp) {
2142                 res = ERR_PTR(-ENOMEM);
2143                 goto out_iput;
2144         }
2145
2146         return __d_instantiate_anon(tmp, inode, disconnected);
2147
2148 out_iput:
2149         iput(inode);
2150         return res;
2151 }
2152
2153 /**
2154  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2155  * @inode: inode to allocate the dentry for
2156  *
2157  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2158  * similar open by handle operations.  The returned dentry may be anonymous,
2159  * or may have a full name (if the inode was already in the cache).
2160  *
2161  * When called on a directory inode, we must ensure that the inode only ever
2162  * has one dentry.  If a dentry is found, that is returned instead of
2163  * allocating a new one.
2164  *
2165  * On successful return, the reference to the inode has been transferred
2166  * to the dentry.  In case of an error the reference on the inode is released.
2167  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2168  * be passed in and the error will be propagated to the return value,
2169  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2170  */
2171 struct dentry *d_obtain_alias(struct inode *inode)
2172 {
2173         return __d_obtain_alias(inode, true);
2174 }
2175 EXPORT_SYMBOL(d_obtain_alias);
2176
2177 /**
2178  * d_obtain_root - find or allocate a dentry for a given inode
2179  * @inode: inode to allocate the dentry for
2180  *
2181  * Obtain an IS_ROOT dentry for the root of a filesystem.
2182  *
2183  * We must ensure that directory inodes only ever have one dentry.  If a
2184  * dentry is found, that is returned instead of allocating a new one.
2185  *
2186  * On successful return, the reference to the inode has been transferred
2187  * to the dentry.  In case of an error the reference on the inode is
2188  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2189  * error will be propagate to the return value, with a %NULL @inode
2190  * replaced by ERR_PTR(-ESTALE).
2191  */
2192 struct dentry *d_obtain_root(struct inode *inode)
2193 {
2194         return __d_obtain_alias(inode, false);
2195 }
2196 EXPORT_SYMBOL(d_obtain_root);
2197
2198 /**
2199  * d_add_ci - lookup or allocate new dentry with case-exact name
2200  * @inode:  the inode case-insensitive lookup has found
2201  * @dentry: the negative dentry that was passed to the parent's lookup func
2202  * @name:   the case-exact name to be associated with the returned dentry
2203  *
2204  * This is to avoid filling the dcache with case-insensitive names to the
2205  * same inode, only the actual correct case is stored in the dcache for
2206  * case-insensitive filesystems.
2207  *
2208  * For a case-insensitive lookup match and if the case-exact dentry
2209  * already exists in the dcache, use it and return it.
2210  *
2211  * If no entry exists with the exact case name, allocate new dentry with
2212  * the exact case, and return the spliced entry.
2213  */
2214 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2215                         struct qstr *name)
2216 {
2217         struct dentry *found, *res;
2218
2219         /*
2220          * First check if a dentry matching the name already exists,
2221          * if not go ahead and create it now.
2222          */
2223         found = d_hash_and_lookup(dentry->d_parent, name);
2224         if (found) {
2225                 iput(inode);
2226                 return found;
2227         }
2228         if (d_in_lookup(dentry)) {
2229                 found = d_alloc_parallel(dentry->d_parent, name,
2230                                         dentry->d_wait);
2231                 if (IS_ERR(found) || !d_in_lookup(found)) {
2232                         iput(inode);
2233                         return found;
2234                 }
2235         } else {
2236                 found = d_alloc(dentry->d_parent, name);
2237                 if (!found) {
2238                         iput(inode);
2239                         return ERR_PTR(-ENOMEM);
2240                 } 
2241         }
2242         res = d_splice_alias(inode, found);
2243         if (res) {
2244                 d_lookup_done(found);
2245                 dput(found);
2246                 return res;
2247         }
2248         return found;
2249 }
2250 EXPORT_SYMBOL(d_add_ci);
2251
2252 /**
2253  * d_same_name - compare dentry name with case-exact name
2254  * @parent: parent dentry
2255  * @dentry: the negative dentry that was passed to the parent's lookup func
2256  * @name:   the case-exact name to be associated with the returned dentry
2257  *
2258  * Return: true if names are same, or false
2259  */
2260 bool d_same_name(const struct dentry *dentry, const struct dentry *parent,
2261                  const struct qstr *name)
2262 {
2263         if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2264                 if (dentry->d_name.len != name->len)
2265                         return false;
2266                 return dentry_cmp(dentry, name->name, name->len) == 0;
2267         }
2268         return parent->d_op->d_compare(dentry,
2269                                        dentry->d_name.len, dentry->d_name.name,
2270                                        name) == 0;
2271 }
2272 EXPORT_SYMBOL_GPL(d_same_name);
2273
2274 /*
2275  * This is __d_lookup_rcu() when the parent dentry has
2276  * DCACHE_OP_COMPARE, which makes things much nastier.
2277  */
2278 static noinline struct dentry *__d_lookup_rcu_op_compare(
2279         const struct dentry *parent,
2280         const struct qstr *name,
2281         unsigned *seqp)
2282 {
2283         u64 hashlen = name->hash_len;
2284         struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2285         struct hlist_bl_node *node;
2286         struct dentry *dentry;
2287
2288         hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2289                 int tlen;
2290                 const char *tname;
2291                 unsigned seq;
2292
2293 seqretry:
2294                 seq = raw_seqcount_begin(&dentry->d_seq);
2295                 if (dentry->d_parent != parent)
2296                         continue;
2297                 if (d_unhashed(dentry))
2298                         continue;
2299                 if (dentry->d_name.hash != hashlen_hash(hashlen))
2300                         continue;
2301                 tlen = dentry->d_name.len;
2302                 tname = dentry->d_name.name;
2303                 /* we want a consistent (name,len) pair */
2304                 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2305                         cpu_relax();
2306                         goto seqretry;
2307                 }
2308                 if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0)
2309                         continue;
2310                 *seqp = seq;
2311                 return dentry;
2312         }
2313         return NULL;
2314 }
2315
2316 /**
2317  * __d_lookup_rcu - search for a dentry (racy, store-free)
2318  * @parent: parent dentry
2319  * @name: qstr of name we wish to find
2320  * @seqp: returns d_seq value at the point where the dentry was found
2321  * Returns: dentry, or NULL
2322  *
2323  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2324  * resolution (store-free path walking) design described in
2325  * Documentation/filesystems/path-lookup.txt.
2326  *
2327  * This is not to be used outside core vfs.
2328  *
2329  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2330  * held, and rcu_read_lock held. The returned dentry must not be stored into
2331  * without taking d_lock and checking d_seq sequence count against @seq
2332  * returned here.
2333  *
2334  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2335  * function.
2336  *
2337  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2338  * the returned dentry, so long as its parent's seqlock is checked after the
2339  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2340  * is formed, giving integrity down the path walk.
2341  *
2342  * NOTE! The caller *has* to check the resulting dentry against the sequence
2343  * number we've returned before using any of the resulting dentry state!
2344  */
2345 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2346                                 const struct qstr *name,
2347                                 unsigned *seqp)
2348 {
2349         u64 hashlen = name->hash_len;
2350         const unsigned char *str = name->name;
2351         struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2352         struct hlist_bl_node *node;
2353         struct dentry *dentry;
2354
2355         /*
2356          * Note: There is significant duplication with __d_lookup_rcu which is
2357          * required to prevent single threaded performance regressions
2358          * especially on architectures where smp_rmb (in seqcounts) are costly.
2359          * Keep the two functions in sync.
2360          */
2361
2362         if (unlikely(parent->d_flags & DCACHE_OP_COMPARE))
2363                 return __d_lookup_rcu_op_compare(parent, name, seqp);
2364
2365         /*
2366          * The hash list is protected using RCU.
2367          *
2368          * Carefully use d_seq when comparing a candidate dentry, to avoid
2369          * races with d_move().
2370          *
2371          * It is possible that concurrent renames can mess up our list
2372          * walk here and result in missing our dentry, resulting in the
2373          * false-negative result. d_lookup() protects against concurrent
2374          * renames using rename_lock seqlock.
2375          *
2376          * See Documentation/filesystems/path-lookup.txt for more details.
2377          */
2378         hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2379                 unsigned seq;
2380
2381                 /*
2382                  * The dentry sequence count protects us from concurrent
2383                  * renames, and thus protects parent and name fields.
2384                  *
2385                  * The caller must perform a seqcount check in order
2386                  * to do anything useful with the returned dentry.
2387                  *
2388                  * NOTE! We do a "raw" seqcount_begin here. That means that
2389                  * we don't wait for the sequence count to stabilize if it
2390                  * is in the middle of a sequence change. If we do the slow
2391                  * dentry compare, we will do seqretries until it is stable,
2392                  * and if we end up with a successful lookup, we actually
2393                  * want to exit RCU lookup anyway.
2394                  *
2395                  * Note that raw_seqcount_begin still *does* smp_rmb(), so
2396                  * we are still guaranteed NUL-termination of ->d_name.name.
2397                  */
2398                 seq = raw_seqcount_begin(&dentry->d_seq);
2399                 if (dentry->d_parent != parent)
2400                         continue;
2401                 if (d_unhashed(dentry))
2402                         continue;
2403                 if (dentry->d_name.hash_len != hashlen)
2404                         continue;
2405                 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2406                         continue;
2407                 *seqp = seq;
2408                 return dentry;
2409         }
2410         return NULL;
2411 }
2412
2413 /**
2414  * d_lookup - search for a dentry
2415  * @parent: parent dentry
2416  * @name: qstr of name we wish to find
2417  * Returns: dentry, or NULL
2418  *
2419  * d_lookup searches the children of the parent dentry for the name in
2420  * question. If the dentry is found its reference count is incremented and the
2421  * dentry is returned. The caller must use dput to free the entry when it has
2422  * finished using it. %NULL is returned if the dentry does not exist.
2423  */
2424 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2425 {
2426         struct dentry *dentry;
2427         unsigned seq;
2428
2429         do {
2430                 seq = read_seqbegin(&rename_lock);
2431                 dentry = __d_lookup(parent, name);
2432                 if (dentry)
2433                         break;
2434         } while (read_seqretry(&rename_lock, seq));
2435         return dentry;
2436 }
2437 EXPORT_SYMBOL(d_lookup);
2438
2439 /**
2440  * __d_lookup - search for a dentry (racy)
2441  * @parent: parent dentry
2442  * @name: qstr of name we wish to find
2443  * Returns: dentry, or NULL
2444  *
2445  * __d_lookup is like d_lookup, however it may (rarely) return a
2446  * false-negative result due to unrelated rename activity.
2447  *
2448  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2449  * however it must be used carefully, eg. with a following d_lookup in
2450  * the case of failure.
2451  *
2452  * __d_lookup callers must be commented.
2453  */
2454 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2455 {
2456         unsigned int hash = name->hash;
2457         struct hlist_bl_head *b = d_hash(hash);
2458         struct hlist_bl_node *node;
2459         struct dentry *found = NULL;
2460         struct dentry *dentry;
2461
2462         /*
2463          * Note: There is significant duplication with __d_lookup_rcu which is
2464          * required to prevent single threaded performance regressions
2465          * especially on architectures where smp_rmb (in seqcounts) are costly.
2466          * Keep the two functions in sync.
2467          */
2468
2469         /*
2470          * The hash list is protected using RCU.
2471          *
2472          * Take d_lock when comparing a candidate dentry, to avoid races
2473          * with d_move().
2474          *
2475          * It is possible that concurrent renames can mess up our list
2476          * walk here and result in missing our dentry, resulting in the
2477          * false-negative result. d_lookup() protects against concurrent
2478          * renames using rename_lock seqlock.
2479          *
2480          * See Documentation/filesystems/path-lookup.txt for more details.
2481          */
2482         rcu_read_lock();
2483         
2484         hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2485
2486                 if (dentry->d_name.hash != hash)
2487                         continue;
2488
2489                 spin_lock(&dentry->d_lock);
2490                 if (dentry->d_parent != parent)
2491                         goto next;
2492                 if (d_unhashed(dentry))
2493                         goto next;
2494
2495                 if (!d_same_name(dentry, parent, name))
2496                         goto next;
2497
2498                 dentry->d_lockref.count++;
2499                 found = dentry;
2500                 spin_unlock(&dentry->d_lock);
2501                 break;
2502 next:
2503                 spin_unlock(&dentry->d_lock);
2504         }
2505         rcu_read_unlock();
2506
2507         return found;
2508 }
2509
2510 /**
2511  * d_hash_and_lookup - hash the qstr then search for a dentry
2512  * @dir: Directory to search in
2513  * @name: qstr of name we wish to find
2514  *
2515  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2516  */
2517 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2518 {
2519         /*
2520          * Check for a fs-specific hash function. Note that we must
2521          * calculate the standard hash first, as the d_op->d_hash()
2522          * routine may choose to leave the hash value unchanged.
2523          */
2524         name->hash = full_name_hash(dir, name->name, name->len);
2525         if (dir->d_flags & DCACHE_OP_HASH) {
2526                 int err = dir->d_op->d_hash(dir, name);
2527                 if (unlikely(err < 0))
2528                         return ERR_PTR(err);
2529         }
2530         return d_lookup(dir, name);
2531 }
2532 EXPORT_SYMBOL(d_hash_and_lookup);
2533
2534 /*
2535  * When a file is deleted, we have two options:
2536  * - turn this dentry into a negative dentry
2537  * - unhash this dentry and free it.
2538  *
2539  * Usually, we want to just turn this into
2540  * a negative dentry, but if anybody else is
2541  * currently using the dentry or the inode
2542  * we can't do that and we fall back on removing
2543  * it from the hash queues and waiting for
2544  * it to be deleted later when it has no users
2545  */
2546  
2547 /**
2548  * d_delete - delete a dentry
2549  * @dentry: The dentry to delete
2550  *
2551  * Turn the dentry into a negative dentry if possible, otherwise
2552  * remove it from the hash queues so it can be deleted later
2553  */
2554  
2555 void d_delete(struct dentry * dentry)
2556 {
2557         struct inode *inode = dentry->d_inode;
2558
2559         spin_lock(&inode->i_lock);
2560         spin_lock(&dentry->d_lock);
2561         /*
2562          * Are we the only user?
2563          */
2564         if (dentry->d_lockref.count == 1) {
2565                 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2566                 dentry_unlink_inode(dentry);
2567         } else {
2568                 __d_drop(dentry);
2569                 spin_unlock(&dentry->d_lock);
2570                 spin_unlock(&inode->i_lock);
2571         }
2572 }
2573 EXPORT_SYMBOL(d_delete);
2574
2575 static void __d_rehash(struct dentry *entry)
2576 {
2577         struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2578
2579         hlist_bl_lock(b);
2580         hlist_bl_add_head_rcu(&entry->d_hash, b);
2581         hlist_bl_unlock(b);
2582 }
2583
2584 /**
2585  * d_rehash     - add an entry back to the hash
2586  * @entry: dentry to add to the hash
2587  *
2588  * Adds a dentry to the hash according to its name.
2589  */
2590  
2591 void d_rehash(struct dentry * entry)
2592 {
2593         spin_lock(&entry->d_lock);
2594         __d_rehash(entry);
2595         spin_unlock(&entry->d_lock);
2596 }
2597 EXPORT_SYMBOL(d_rehash);
2598
2599 static inline unsigned start_dir_add(struct inode *dir)
2600 {
2601         preempt_disable_nested();
2602         for (;;) {
2603                 unsigned n = dir->i_dir_seq;
2604                 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2605                         return n;
2606                 cpu_relax();
2607         }
2608 }
2609
2610 static inline void end_dir_add(struct inode *dir, unsigned int n,
2611                                wait_queue_head_t *d_wait)
2612 {
2613         smp_store_release(&dir->i_dir_seq, n + 2);
2614         preempt_enable_nested();
2615         wake_up_all(d_wait);
2616 }
2617
2618 static void d_wait_lookup(struct dentry *dentry)
2619 {
2620         if (d_in_lookup(dentry)) {
2621                 DECLARE_WAITQUEUE(wait, current);
2622                 add_wait_queue(dentry->d_wait, &wait);
2623                 do {
2624                         set_current_state(TASK_UNINTERRUPTIBLE);
2625                         spin_unlock(&dentry->d_lock);
2626                         schedule();
2627                         spin_lock(&dentry->d_lock);
2628                 } while (d_in_lookup(dentry));
2629         }
2630 }
2631
2632 struct dentry *d_alloc_parallel(struct dentry *parent,
2633                                 const struct qstr *name,
2634                                 wait_queue_head_t *wq)
2635 {
2636         unsigned int hash = name->hash;
2637         struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2638         struct hlist_bl_node *node;
2639         struct dentry *new = d_alloc(parent, name);
2640         struct dentry *dentry;
2641         unsigned seq, r_seq, d_seq;
2642
2643         if (unlikely(!new))
2644                 return ERR_PTR(-ENOMEM);
2645
2646 retry:
2647         rcu_read_lock();
2648         seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2649         r_seq = read_seqbegin(&rename_lock);
2650         dentry = __d_lookup_rcu(parent, name, &d_seq);
2651         if (unlikely(dentry)) {
2652                 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2653                         rcu_read_unlock();
2654                         goto retry;
2655                 }
2656                 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2657                         rcu_read_unlock();
2658                         dput(dentry);
2659                         goto retry;
2660                 }
2661                 rcu_read_unlock();
2662                 dput(new);
2663                 return dentry;
2664         }
2665         if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2666                 rcu_read_unlock();
2667                 goto retry;
2668         }
2669
2670         if (unlikely(seq & 1)) {
2671                 rcu_read_unlock();
2672                 goto retry;
2673         }
2674
2675         hlist_bl_lock(b);
2676         if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2677                 hlist_bl_unlock(b);
2678                 rcu_read_unlock();
2679                 goto retry;
2680         }
2681         /*
2682          * No changes for the parent since the beginning of d_lookup().
2683          * Since all removals from the chain happen with hlist_bl_lock(),
2684          * any potential in-lookup matches are going to stay here until
2685          * we unlock the chain.  All fields are stable in everything
2686          * we encounter.
2687          */
2688         hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2689                 if (dentry->d_name.hash != hash)
2690                         continue;
2691                 if (dentry->d_parent != parent)
2692                         continue;
2693                 if (!d_same_name(dentry, parent, name))
2694                         continue;
2695                 hlist_bl_unlock(b);
2696                 /* now we can try to grab a reference */
2697                 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2698                         rcu_read_unlock();
2699                         goto retry;
2700                 }
2701
2702                 rcu_read_unlock();
2703                 /*
2704                  * somebody is likely to be still doing lookup for it;
2705                  * wait for them to finish
2706                  */
2707                 spin_lock(&dentry->d_lock);
2708                 d_wait_lookup(dentry);
2709                 /*
2710                  * it's not in-lookup anymore; in principle we should repeat
2711                  * everything from dcache lookup, but it's likely to be what
2712                  * d_lookup() would've found anyway.  If it is, just return it;
2713                  * otherwise we really have to repeat the whole thing.
2714                  */
2715                 if (unlikely(dentry->d_name.hash != hash))
2716                         goto mismatch;
2717                 if (unlikely(dentry->d_parent != parent))
2718                         goto mismatch;
2719                 if (unlikely(d_unhashed(dentry)))
2720                         goto mismatch;
2721                 if (unlikely(!d_same_name(dentry, parent, name)))
2722                         goto mismatch;
2723                 /* OK, it *is* a hashed match; return it */
2724                 spin_unlock(&dentry->d_lock);
2725                 dput(new);
2726                 return dentry;
2727         }
2728         rcu_read_unlock();
2729         /* we can't take ->d_lock here; it's OK, though. */
2730         new->d_flags |= DCACHE_PAR_LOOKUP;
2731         new->d_wait = wq;
2732         hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2733         hlist_bl_unlock(b);
2734         return new;
2735 mismatch:
2736         spin_unlock(&dentry->d_lock);
2737         dput(dentry);
2738         goto retry;
2739 }
2740 EXPORT_SYMBOL(d_alloc_parallel);
2741
2742 /*
2743  * - Unhash the dentry
2744  * - Retrieve and clear the waitqueue head in dentry
2745  * - Return the waitqueue head
2746  */
2747 static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry)
2748 {
2749         wait_queue_head_t *d_wait;
2750         struct hlist_bl_head *b;
2751
2752         lockdep_assert_held(&dentry->d_lock);
2753
2754         b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash);
2755         hlist_bl_lock(b);
2756         dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2757         __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2758         d_wait = dentry->d_wait;
2759         dentry->d_wait = NULL;
2760         hlist_bl_unlock(b);
2761         INIT_HLIST_NODE(&dentry->d_u.d_alias);
2762         INIT_LIST_HEAD(&dentry->d_lru);
2763         return d_wait;
2764 }
2765
2766 void __d_lookup_unhash_wake(struct dentry *dentry)
2767 {
2768         spin_lock(&dentry->d_lock);
2769         wake_up_all(__d_lookup_unhash(dentry));
2770         spin_unlock(&dentry->d_lock);
2771 }
2772 EXPORT_SYMBOL(__d_lookup_unhash_wake);
2773
2774 /* inode->i_lock held if inode is non-NULL */
2775
2776 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2777 {
2778         wait_queue_head_t *d_wait;
2779         struct inode *dir = NULL;
2780         unsigned n;
2781         spin_lock(&dentry->d_lock);
2782         if (unlikely(d_in_lookup(dentry))) {
2783                 dir = dentry->d_parent->d_inode;
2784                 n = start_dir_add(dir);
2785                 d_wait = __d_lookup_unhash(dentry);
2786         }
2787         if (inode) {
2788                 unsigned add_flags = d_flags_for_inode(inode);
2789                 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2790                 raw_write_seqcount_begin(&dentry->d_seq);
2791                 __d_set_inode_and_type(dentry, inode, add_flags);
2792                 raw_write_seqcount_end(&dentry->d_seq);
2793                 fsnotify_update_flags(dentry);
2794         }
2795         __d_rehash(dentry);
2796         if (dir)
2797                 end_dir_add(dir, n, d_wait);
2798         spin_unlock(&dentry->d_lock);
2799         if (inode)
2800                 spin_unlock(&inode->i_lock);
2801 }
2802
2803 /**
2804  * d_add - add dentry to hash queues
2805  * @entry: dentry to add
2806  * @inode: The inode to attach to this dentry
2807  *
2808  * This adds the entry to the hash queues and initializes @inode.
2809  * The entry was actually filled in earlier during d_alloc().
2810  */
2811
2812 void d_add(struct dentry *entry, struct inode *inode)
2813 {
2814         if (inode) {
2815                 security_d_instantiate(entry, inode);
2816                 spin_lock(&inode->i_lock);
2817         }
2818         __d_add(entry, inode);
2819 }
2820 EXPORT_SYMBOL(d_add);
2821
2822 /**
2823  * d_exact_alias - find and hash an exact unhashed alias
2824  * @entry: dentry to add
2825  * @inode: The inode to go with this dentry
2826  *
2827  * If an unhashed dentry with the same name/parent and desired
2828  * inode already exists, hash and return it.  Otherwise, return
2829  * NULL.
2830  *
2831  * Parent directory should be locked.
2832  */
2833 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2834 {
2835         struct dentry *alias;
2836         unsigned int hash = entry->d_name.hash;
2837
2838         spin_lock(&inode->i_lock);
2839         hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2840                 /*
2841                  * Don't need alias->d_lock here, because aliases with
2842                  * d_parent == entry->d_parent are not subject to name or
2843                  * parent changes, because the parent inode i_mutex is held.
2844                  */
2845                 if (alias->d_name.hash != hash)
2846                         continue;
2847                 if (alias->d_parent != entry->d_parent)
2848                         continue;
2849                 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2850                         continue;
2851                 spin_lock(&alias->d_lock);
2852                 if (!d_unhashed(alias)) {
2853                         spin_unlock(&alias->d_lock);
2854                         alias = NULL;
2855                 } else {
2856                         __dget_dlock(alias);
2857                         __d_rehash(alias);
2858                         spin_unlock(&alias->d_lock);
2859                 }
2860                 spin_unlock(&inode->i_lock);
2861                 return alias;
2862         }
2863         spin_unlock(&inode->i_lock);
2864         return NULL;
2865 }
2866 EXPORT_SYMBOL(d_exact_alias);
2867
2868 static void swap_names(struct dentry *dentry, struct dentry *target)
2869 {
2870         if (unlikely(dname_external(target))) {
2871                 if (unlikely(dname_external(dentry))) {
2872                         /*
2873                          * Both external: swap the pointers
2874                          */
2875                         swap(target->d_name.name, dentry->d_name.name);
2876                 } else {
2877                         /*
2878                          * dentry:internal, target:external.  Steal target's
2879                          * storage and make target internal.
2880                          */
2881                         memcpy(target->d_iname, dentry->d_name.name,
2882                                         dentry->d_name.len + 1);
2883                         dentry->d_name.name = target->d_name.name;
2884                         target->d_name.name = target->d_iname;
2885                 }
2886         } else {
2887                 if (unlikely(dname_external(dentry))) {
2888                         /*
2889                          * dentry:external, target:internal.  Give dentry's
2890                          * storage to target and make dentry internal
2891                          */
2892                         memcpy(dentry->d_iname, target->d_name.name,
2893                                         target->d_name.len + 1);
2894                         target->d_name.name = dentry->d_name.name;
2895                         dentry->d_name.name = dentry->d_iname;
2896                 } else {
2897                         /*
2898                          * Both are internal.
2899                          */
2900                         unsigned int i;
2901                         BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2902                         for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2903                                 swap(((long *) &dentry->d_iname)[i],
2904                                      ((long *) &target->d_iname)[i]);
2905                         }
2906                 }
2907         }
2908         swap(dentry->d_name.hash_len, target->d_name.hash_len);
2909 }
2910
2911 static void copy_name(struct dentry *dentry, struct dentry *target)
2912 {
2913         struct external_name *old_name = NULL;
2914         if (unlikely(dname_external(dentry)))
2915                 old_name = external_name(dentry);
2916         if (unlikely(dname_external(target))) {
2917                 atomic_inc(&external_name(target)->u.count);
2918                 dentry->d_name = target->d_name;
2919         } else {
2920                 memcpy(dentry->d_iname, target->d_name.name,
2921                                 target->d_name.len + 1);
2922                 dentry->d_name.name = dentry->d_iname;
2923                 dentry->d_name.hash_len = target->d_name.hash_len;
2924         }
2925         if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2926                 kfree_rcu(old_name, u.head);
2927 }
2928
2929 /*
2930  * __d_move - move a dentry
2931  * @dentry: entry to move
2932  * @target: new dentry
2933  * @exchange: exchange the two dentries
2934  *
2935  * Update the dcache to reflect the move of a file name. Negative
2936  * dcache entries should not be moved in this way. Caller must hold
2937  * rename_lock, the i_mutex of the source and target directories,
2938  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2939  */
2940 static void __d_move(struct dentry *dentry, struct dentry *target,
2941                      bool exchange)
2942 {
2943         struct dentry *old_parent, *p;
2944         wait_queue_head_t *d_wait;
2945         struct inode *dir = NULL;
2946         unsigned n;
2947
2948         WARN_ON(!dentry->d_inode);
2949         if (WARN_ON(dentry == target))
2950                 return;
2951
2952         BUG_ON(d_ancestor(target, dentry));
2953         old_parent = dentry->d_parent;
2954         p = d_ancestor(old_parent, target);
2955         if (IS_ROOT(dentry)) {
2956                 BUG_ON(p);
2957                 spin_lock(&target->d_parent->d_lock);
2958         } else if (!p) {
2959                 /* target is not a descendent of dentry->d_parent */
2960                 spin_lock(&target->d_parent->d_lock);
2961                 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2962         } else {
2963                 BUG_ON(p == dentry);
2964                 spin_lock(&old_parent->d_lock);
2965                 if (p != target)
2966                         spin_lock_nested(&target->d_parent->d_lock,
2967                                         DENTRY_D_LOCK_NESTED);
2968         }
2969         spin_lock_nested(&dentry->d_lock, 2);
2970         spin_lock_nested(&target->d_lock, 3);
2971
2972         if (unlikely(d_in_lookup(target))) {
2973                 dir = target->d_parent->d_inode;
2974                 n = start_dir_add(dir);
2975                 d_wait = __d_lookup_unhash(target);
2976         }
2977
2978         write_seqcount_begin(&dentry->d_seq);
2979         write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2980
2981         /* unhash both */
2982         if (!d_unhashed(dentry))
2983                 ___d_drop(dentry);
2984         if (!d_unhashed(target))
2985                 ___d_drop(target);
2986
2987         /* ... and switch them in the tree */
2988         dentry->d_parent = target->d_parent;
2989         if (!exchange) {
2990                 copy_name(dentry, target);
2991                 target->d_hash.pprev = NULL;
2992                 dentry->d_parent->d_lockref.count++;
2993                 if (dentry != old_parent) /* wasn't IS_ROOT */
2994                         WARN_ON(!--old_parent->d_lockref.count);
2995         } else {
2996                 target->d_parent = old_parent;
2997                 swap_names(dentry, target);
2998                 list_move(&target->d_child, &target->d_parent->d_subdirs);
2999                 __d_rehash(target);
3000                 fsnotify_update_flags(target);
3001         }
3002         list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
3003         __d_rehash(dentry);
3004         fsnotify_update_flags(dentry);
3005         fscrypt_handle_d_move(dentry);
3006
3007         write_seqcount_end(&target->d_seq);
3008         write_seqcount_end(&dentry->d_seq);
3009
3010         if (dir)
3011                 end_dir_add(dir, n, d_wait);
3012
3013         if (dentry->d_parent != old_parent)
3014                 spin_unlock(&dentry->d_parent->d_lock);
3015         if (dentry != old_parent)
3016                 spin_unlock(&old_parent->d_lock);
3017         spin_unlock(&target->d_lock);
3018         spin_unlock(&dentry->d_lock);
3019 }
3020
3021 /*
3022  * d_move - move a dentry
3023  * @dentry: entry to move
3024  * @target: new dentry
3025  *
3026  * Update the dcache to reflect the move of a file name. Negative
3027  * dcache entries should not be moved in this way. See the locking
3028  * requirements for __d_move.
3029  */
3030 void d_move(struct dentry *dentry, struct dentry *target)
3031 {
3032         write_seqlock(&rename_lock);
3033         __d_move(dentry, target, false);
3034         write_sequnlock(&rename_lock);
3035 }
3036 EXPORT_SYMBOL(d_move);
3037
3038 /*
3039  * d_exchange - exchange two dentries
3040  * @dentry1: first dentry
3041  * @dentry2: second dentry
3042  */
3043 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
3044 {
3045         write_seqlock(&rename_lock);
3046
3047         WARN_ON(!dentry1->d_inode);
3048         WARN_ON(!dentry2->d_inode);
3049         WARN_ON(IS_ROOT(dentry1));
3050         WARN_ON(IS_ROOT(dentry2));
3051
3052         __d_move(dentry1, dentry2, true);
3053
3054         write_sequnlock(&rename_lock);
3055 }
3056
3057 /**
3058  * d_ancestor - search for an ancestor
3059  * @p1: ancestor dentry
3060  * @p2: child dentry
3061  *
3062  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
3063  * an ancestor of p2, else NULL.
3064  */
3065 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
3066 {
3067         struct dentry *p;
3068
3069         for (p = p2; !IS_ROOT(p); p = p->d_parent) {
3070                 if (p->d_parent == p1)
3071                         return p;
3072         }
3073         return NULL;
3074 }
3075
3076 /*
3077  * This helper attempts to cope with remotely renamed directories
3078  *
3079  * It assumes that the caller is already holding
3080  * dentry->d_parent->d_inode->i_mutex, and rename_lock
3081  *
3082  * Note: If ever the locking in lock_rename() changes, then please
3083  * remember to update this too...
3084  */
3085 static int __d_unalias(struct inode *inode,
3086                 struct dentry *dentry, struct dentry *alias)
3087 {
3088         struct mutex *m1 = NULL;
3089         struct rw_semaphore *m2 = NULL;
3090         int ret = -ESTALE;
3091
3092         /* If alias and dentry share a parent, then no extra locks required */
3093         if (alias->d_parent == dentry->d_parent)
3094                 goto out_unalias;
3095
3096         /* See lock_rename() */
3097         if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
3098                 goto out_err;
3099         m1 = &dentry->d_sb->s_vfs_rename_mutex;
3100         if (!inode_trylock_shared(alias->d_parent->d_inode))
3101                 goto out_err;
3102         m2 = &alias->d_parent->d_inode->i_rwsem;
3103 out_unalias:
3104         __d_move(alias, dentry, false);
3105         ret = 0;
3106 out_err:
3107         if (m2)
3108                 up_read(m2);
3109         if (m1)
3110                 mutex_unlock(m1);
3111         return ret;
3112 }
3113
3114 /**
3115  * d_splice_alias - splice a disconnected dentry into the tree if one exists
3116  * @inode:  the inode which may have a disconnected dentry
3117  * @dentry: a negative dentry which we want to point to the inode.
3118  *
3119  * If inode is a directory and has an IS_ROOT alias, then d_move that in
3120  * place of the given dentry and return it, else simply d_add the inode
3121  * to the dentry and return NULL.
3122  *
3123  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3124  * we should error out: directories can't have multiple aliases.
3125  *
3126  * This is needed in the lookup routine of any filesystem that is exportable
3127  * (via knfsd) so that we can build dcache paths to directories effectively.
3128  *
3129  * If a dentry was found and moved, then it is returned.  Otherwise NULL
3130  * is returned.  This matches the expected return value of ->lookup.
3131  *
3132  * Cluster filesystems may call this function with a negative, hashed dentry.
3133  * In that case, we know that the inode will be a regular file, and also this
3134  * will only occur during atomic_open. So we need to check for the dentry
3135  * being already hashed only in the final case.
3136  */
3137 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3138 {
3139         if (IS_ERR(inode))
3140                 return ERR_CAST(inode);
3141
3142         BUG_ON(!d_unhashed(dentry));
3143
3144         if (!inode)
3145                 goto out;
3146
3147         security_d_instantiate(dentry, inode);
3148         spin_lock(&inode->i_lock);
3149         if (S_ISDIR(inode->i_mode)) {
3150                 struct dentry *new = __d_find_any_alias(inode);
3151                 if (unlikely(new)) {
3152                         /* The reference to new ensures it remains an alias */
3153                         spin_unlock(&inode->i_lock);
3154                         write_seqlock(&rename_lock);
3155                         if (unlikely(d_ancestor(new, dentry))) {
3156                                 write_sequnlock(&rename_lock);
3157                                 dput(new);
3158                                 new = ERR_PTR(-ELOOP);
3159                                 pr_warn_ratelimited(
3160                                         "VFS: Lookup of '%s' in %s %s"
3161                                         " would have caused loop\n",
3162                                         dentry->d_name.name,
3163                                         inode->i_sb->s_type->name,
3164                                         inode->i_sb->s_id);
3165                         } else if (!IS_ROOT(new)) {
3166                                 struct dentry *old_parent = dget(new->d_parent);
3167                                 int err = __d_unalias(inode, dentry, new);
3168                                 write_sequnlock(&rename_lock);
3169                                 if (err) {
3170                                         dput(new);
3171                                         new = ERR_PTR(err);
3172                                 }
3173                                 dput(old_parent);
3174                         } else {
3175                                 __d_move(new, dentry, false);
3176                                 write_sequnlock(&rename_lock);
3177                         }
3178                         iput(inode);
3179                         return new;
3180                 }
3181         }
3182 out:
3183         __d_add(dentry, inode);
3184         return NULL;
3185 }
3186 EXPORT_SYMBOL(d_splice_alias);
3187
3188 /*
3189  * Test whether new_dentry is a subdirectory of old_dentry.
3190  *
3191  * Trivially implemented using the dcache structure
3192  */
3193
3194 /**
3195  * is_subdir - is new dentry a subdirectory of old_dentry
3196  * @new_dentry: new dentry
3197  * @old_dentry: old dentry
3198  *
3199  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3200  * Returns false otherwise.
3201  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3202  */
3203   
3204 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3205 {
3206         bool result;
3207         unsigned seq;
3208
3209         if (new_dentry == old_dentry)
3210                 return true;
3211
3212         do {
3213                 /* for restarting inner loop in case of seq retry */
3214                 seq = read_seqbegin(&rename_lock);
3215                 /*
3216                  * Need rcu_readlock to protect against the d_parent trashing
3217                  * due to d_move
3218                  */
3219                 rcu_read_lock();
3220                 if (d_ancestor(old_dentry, new_dentry))
3221                         result = true;
3222                 else
3223                         result = false;
3224                 rcu_read_unlock();
3225         } while (read_seqretry(&rename_lock, seq));
3226
3227         return result;
3228 }
3229 EXPORT_SYMBOL(is_subdir);
3230
3231 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3232 {
3233         struct dentry *root = data;
3234         if (dentry != root) {
3235                 if (d_unhashed(dentry) || !dentry->d_inode)
3236                         return D_WALK_SKIP;
3237
3238                 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3239                         dentry->d_flags |= DCACHE_GENOCIDE;
3240                         dentry->d_lockref.count--;
3241                 }
3242         }
3243         return D_WALK_CONTINUE;
3244 }
3245
3246 void d_genocide(struct dentry *parent)
3247 {
3248         d_walk(parent, parent, d_genocide_kill);
3249 }
3250
3251 void d_mark_tmpfile(struct file *file, struct inode *inode)
3252 {
3253         struct dentry *dentry = file->f_path.dentry;
3254
3255         BUG_ON(dentry->d_name.name != dentry->d_iname ||
3256                 !hlist_unhashed(&dentry->d_u.d_alias) ||
3257                 !d_unlinked(dentry));
3258         spin_lock(&dentry->d_parent->d_lock);
3259         spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3260         dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3261                                 (unsigned long long)inode->i_ino);
3262         spin_unlock(&dentry->d_lock);
3263         spin_unlock(&dentry->d_parent->d_lock);
3264 }
3265 EXPORT_SYMBOL(d_mark_tmpfile);
3266
3267 void d_tmpfile(struct file *file, struct inode *inode)
3268 {
3269         struct dentry *dentry = file->f_path.dentry;
3270
3271         inode_dec_link_count(inode);
3272         d_mark_tmpfile(file, inode);
3273         d_instantiate(dentry, inode);
3274 }
3275 EXPORT_SYMBOL(d_tmpfile);
3276
3277 static __initdata unsigned long dhash_entries;
3278 static int __init set_dhash_entries(char *str)
3279 {
3280         if (!str)
3281                 return 0;
3282         dhash_entries = simple_strtoul(str, &str, 0);
3283         return 1;
3284 }
3285 __setup("dhash_entries=", set_dhash_entries);
3286
3287 static void __init dcache_init_early(void)
3288 {
3289         /* If hashes are distributed across NUMA nodes, defer
3290          * hash allocation until vmalloc space is available.
3291          */
3292         if (hashdist)
3293                 return;
3294
3295         dentry_hashtable =
3296                 alloc_large_system_hash("Dentry cache",
3297                                         sizeof(struct hlist_bl_head),
3298                                         dhash_entries,
3299                                         13,
3300                                         HASH_EARLY | HASH_ZERO,
3301                                         &d_hash_shift,
3302                                         NULL,
3303                                         0,
3304                                         0);
3305         d_hash_shift = 32 - d_hash_shift;
3306 }
3307
3308 static void __init dcache_init(void)
3309 {
3310         /*
3311          * A constructor could be added for stable state like the lists,
3312          * but it is probably not worth it because of the cache nature
3313          * of the dcache.
3314          */
3315         dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3316                 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3317                 d_iname);
3318
3319         /* Hash may have been set up in dcache_init_early */
3320         if (!hashdist)
3321                 return;
3322
3323         dentry_hashtable =
3324                 alloc_large_system_hash("Dentry cache",
3325                                         sizeof(struct hlist_bl_head),
3326                                         dhash_entries,
3327                                         13,
3328                                         HASH_ZERO,
3329                                         &d_hash_shift,
3330                                         NULL,
3331                                         0,
3332                                         0);
3333         d_hash_shift = 32 - d_hash_shift;
3334 }
3335
3336 /* SLAB cache for __getname() consumers */
3337 struct kmem_cache *names_cachep __ro_after_init;
3338 EXPORT_SYMBOL(names_cachep);
3339
3340 void __init vfs_caches_init_early(void)
3341 {
3342         int i;
3343
3344         for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3345                 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3346
3347         dcache_init_early();
3348         inode_init_early();
3349 }
3350
3351 void __init vfs_caches_init(void)
3352 {
3353         names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3354                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3355
3356         dcache_init();
3357         inode_init();
3358         files_init();
3359         files_maxfiles_init();
3360         mnt_init();
3361         bdev_cache_init();
3362         chrdev_init();
3363 }