d_alloc_pseudo(): move setting ->d_op there from the (sole) caller
[linux-block.git] / fs / dcache.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/dcache.c
4  *
5  * Complete reimplementation
6  * (C) 1997 Thomas Schoebel-Theuer,
7  * with heavy changes by Linus Torvalds
8  */
9
10 /*
11  * Notes on the allocation strategy:
12  *
13  * The dcache is a master of the icache - whenever a dcache entry
14  * exists, the inode will always exist. "iput()" is done either when
15  * the dcache entry is deleted or garbage collected.
16  */
17
18 #include <linux/ratelimit.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/fs.h>
22 #include <linux/fscrypt.h>
23 #include <linux/fsnotify.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/export.h>
29 #include <linux/security.h>
30 #include <linux/seqlock.h>
31 #include <linux/memblock.h>
32 #include <linux/bit_spinlock.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/list_lru.h>
35 #include "internal.h"
36 #include "mount.h"
37
38 /*
39  * Usage:
40  * dcache->d_inode->i_lock protects:
41  *   - i_dentry, d_u.d_alias, d_inode of aliases
42  * dcache_hash_bucket lock protects:
43  *   - the dcache hash table
44  * s_roots bl list spinlock protects:
45  *   - the s_roots list (see __d_drop)
46  * dentry->d_sb->s_dentry_lru_lock protects:
47  *   - the dcache lru lists and counters
48  * d_lock protects:
49  *   - d_flags
50  *   - d_name
51  *   - d_lru
52  *   - d_count
53  *   - d_unhashed()
54  *   - d_parent and d_subdirs
55  *   - childrens' d_child and d_parent
56  *   - d_u.d_alias, d_inode
57  *
58  * Ordering:
59  * dentry->d_inode->i_lock
60  *   dentry->d_lock
61  *     dentry->d_sb->s_dentry_lru_lock
62  *     dcache_hash_bucket lock
63  *     s_roots lock
64  *
65  * If there is an ancestor relationship:
66  * dentry->d_parent->...->d_parent->d_lock
67  *   ...
68  *     dentry->d_parent->d_lock
69  *       dentry->d_lock
70  *
71  * If no ancestor relationship:
72  * arbitrary, since it's serialized on rename_lock
73  */
74 int sysctl_vfs_cache_pressure __read_mostly = 100;
75 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
76
77 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
78
79 EXPORT_SYMBOL(rename_lock);
80
81 static struct kmem_cache *dentry_cache __ro_after_init;
82
83 const struct qstr empty_name = QSTR_INIT("", 0);
84 EXPORT_SYMBOL(empty_name);
85 const struct qstr slash_name = QSTR_INIT("/", 1);
86 EXPORT_SYMBOL(slash_name);
87 const struct qstr dotdot_name = QSTR_INIT("..", 2);
88 EXPORT_SYMBOL(dotdot_name);
89
90 /*
91  * This is the single most critical data structure when it comes
92  * to the dcache: the hashtable for lookups. Somebody should try
93  * to make this good - I've just made it work.
94  *
95  * This hash-function tries to avoid losing too many bits of hash
96  * information, yet avoid using a prime hash-size or similar.
97  */
98
99 static unsigned int d_hash_shift __ro_after_init;
100
101 static struct hlist_bl_head *dentry_hashtable __ro_after_init;
102
103 static inline struct hlist_bl_head *d_hash(unsigned int hash)
104 {
105         return dentry_hashtable + (hash >> d_hash_shift);
106 }
107
108 #define IN_LOOKUP_SHIFT 10
109 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
110
111 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
112                                         unsigned int hash)
113 {
114         hash += (unsigned long) parent / L1_CACHE_BYTES;
115         return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
116 }
117
118 struct dentry_stat_t {
119         long nr_dentry;
120         long nr_unused;
121         long age_limit;         /* age in seconds */
122         long want_pages;        /* pages requested by system */
123         long nr_negative;       /* # of unused negative dentries */
124         long dummy;             /* Reserved for future use */
125 };
126
127 static DEFINE_PER_CPU(long, nr_dentry);
128 static DEFINE_PER_CPU(long, nr_dentry_unused);
129 static DEFINE_PER_CPU(long, nr_dentry_negative);
130
131 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
132 /* Statistics gathering. */
133 static struct dentry_stat_t dentry_stat = {
134         .age_limit = 45,
135 };
136
137 /*
138  * Here we resort to our own counters instead of using generic per-cpu counters
139  * for consistency with what the vfs inode code does. We are expected to harvest
140  * better code and performance by having our own specialized counters.
141  *
142  * Please note that the loop is done over all possible CPUs, not over all online
143  * CPUs. The reason for this is that we don't want to play games with CPUs going
144  * on and off. If one of them goes off, we will just keep their counters.
145  *
146  * glommer: See cffbc8a for details, and if you ever intend to change this,
147  * please update all vfs counters to match.
148  */
149 static long get_nr_dentry(void)
150 {
151         int i;
152         long sum = 0;
153         for_each_possible_cpu(i)
154                 sum += per_cpu(nr_dentry, i);
155         return sum < 0 ? 0 : sum;
156 }
157
158 static long get_nr_dentry_unused(void)
159 {
160         int i;
161         long sum = 0;
162         for_each_possible_cpu(i)
163                 sum += per_cpu(nr_dentry_unused, i);
164         return sum < 0 ? 0 : sum;
165 }
166
167 static long get_nr_dentry_negative(void)
168 {
169         int i;
170         long sum = 0;
171
172         for_each_possible_cpu(i)
173                 sum += per_cpu(nr_dentry_negative, i);
174         return sum < 0 ? 0 : sum;
175 }
176
177 static int proc_nr_dentry(struct ctl_table *table, int write, void *buffer,
178                           size_t *lenp, loff_t *ppos)
179 {
180         dentry_stat.nr_dentry = get_nr_dentry();
181         dentry_stat.nr_unused = get_nr_dentry_unused();
182         dentry_stat.nr_negative = get_nr_dentry_negative();
183         return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
184 }
185
186 static struct ctl_table fs_dcache_sysctls[] = {
187         {
188                 .procname       = "dentry-state",
189                 .data           = &dentry_stat,
190                 .maxlen         = 6*sizeof(long),
191                 .mode           = 0444,
192                 .proc_handler   = proc_nr_dentry,
193         },
194         { }
195 };
196
197 static int __init init_fs_dcache_sysctls(void)
198 {
199         register_sysctl_init("fs", fs_dcache_sysctls);
200         return 0;
201 }
202 fs_initcall(init_fs_dcache_sysctls);
203 #endif
204
205 /*
206  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
207  * The strings are both count bytes long, and count is non-zero.
208  */
209 #ifdef CONFIG_DCACHE_WORD_ACCESS
210
211 #include <asm/word-at-a-time.h>
212 /*
213  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
214  * aligned allocation for this particular component. We don't
215  * strictly need the load_unaligned_zeropad() safety, but it
216  * doesn't hurt either.
217  *
218  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
219  * need the careful unaligned handling.
220  */
221 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
222 {
223         unsigned long a,b,mask;
224
225         for (;;) {
226                 a = read_word_at_a_time(cs);
227                 b = load_unaligned_zeropad(ct);
228                 if (tcount < sizeof(unsigned long))
229                         break;
230                 if (unlikely(a != b))
231                         return 1;
232                 cs += sizeof(unsigned long);
233                 ct += sizeof(unsigned long);
234                 tcount -= sizeof(unsigned long);
235                 if (!tcount)
236                         return 0;
237         }
238         mask = bytemask_from_count(tcount);
239         return unlikely(!!((a ^ b) & mask));
240 }
241
242 #else
243
244 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
245 {
246         do {
247                 if (*cs != *ct)
248                         return 1;
249                 cs++;
250                 ct++;
251                 tcount--;
252         } while (tcount);
253         return 0;
254 }
255
256 #endif
257
258 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
259 {
260         /*
261          * Be careful about RCU walk racing with rename:
262          * use 'READ_ONCE' to fetch the name pointer.
263          *
264          * NOTE! Even if a rename will mean that the length
265          * was not loaded atomically, we don't care. The
266          * RCU walk will check the sequence count eventually,
267          * and catch it. And we won't overrun the buffer,
268          * because we're reading the name pointer atomically,
269          * and a dentry name is guaranteed to be properly
270          * terminated with a NUL byte.
271          *
272          * End result: even if 'len' is wrong, we'll exit
273          * early because the data cannot match (there can
274          * be no NUL in the ct/tcount data)
275          */
276         const unsigned char *cs = READ_ONCE(dentry->d_name.name);
277
278         return dentry_string_cmp(cs, ct, tcount);
279 }
280
281 struct external_name {
282         union {
283                 atomic_t count;
284                 struct rcu_head head;
285         } u;
286         unsigned char name[];
287 };
288
289 static inline struct external_name *external_name(struct dentry *dentry)
290 {
291         return container_of(dentry->d_name.name, struct external_name, name[0]);
292 }
293
294 static void __d_free(struct rcu_head *head)
295 {
296         struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
297
298         kmem_cache_free(dentry_cache, dentry); 
299 }
300
301 static void __d_free_external(struct rcu_head *head)
302 {
303         struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
304         kfree(external_name(dentry));
305         kmem_cache_free(dentry_cache, dentry);
306 }
307
308 static inline int dname_external(const struct dentry *dentry)
309 {
310         return dentry->d_name.name != dentry->d_iname;
311 }
312
313 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
314 {
315         spin_lock(&dentry->d_lock);
316         name->name = dentry->d_name;
317         if (unlikely(dname_external(dentry))) {
318                 atomic_inc(&external_name(dentry)->u.count);
319         } else {
320                 memcpy(name->inline_name, dentry->d_iname,
321                        dentry->d_name.len + 1);
322                 name->name.name = name->inline_name;
323         }
324         spin_unlock(&dentry->d_lock);
325 }
326 EXPORT_SYMBOL(take_dentry_name_snapshot);
327
328 void release_dentry_name_snapshot(struct name_snapshot *name)
329 {
330         if (unlikely(name->name.name != name->inline_name)) {
331                 struct external_name *p;
332                 p = container_of(name->name.name, struct external_name, name[0]);
333                 if (unlikely(atomic_dec_and_test(&p->u.count)))
334                         kfree_rcu(p, u.head);
335         }
336 }
337 EXPORT_SYMBOL(release_dentry_name_snapshot);
338
339 static inline void __d_set_inode_and_type(struct dentry *dentry,
340                                           struct inode *inode,
341                                           unsigned type_flags)
342 {
343         unsigned flags;
344
345         dentry->d_inode = inode;
346         flags = READ_ONCE(dentry->d_flags);
347         flags &= ~DCACHE_ENTRY_TYPE;
348         flags |= type_flags;
349         smp_store_release(&dentry->d_flags, flags);
350 }
351
352 static inline void __d_clear_type_and_inode(struct dentry *dentry)
353 {
354         unsigned flags = READ_ONCE(dentry->d_flags);
355
356         flags &= ~DCACHE_ENTRY_TYPE;
357         WRITE_ONCE(dentry->d_flags, flags);
358         dentry->d_inode = NULL;
359         if (dentry->d_flags & DCACHE_LRU_LIST)
360                 this_cpu_inc(nr_dentry_negative);
361 }
362
363 static void dentry_free(struct dentry *dentry)
364 {
365         WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
366         if (unlikely(dname_external(dentry))) {
367                 struct external_name *p = external_name(dentry);
368                 if (likely(atomic_dec_and_test(&p->u.count))) {
369                         call_rcu(&dentry->d_u.d_rcu, __d_free_external);
370                         return;
371                 }
372         }
373         /* if dentry was never visible to RCU, immediate free is OK */
374         if (dentry->d_flags & DCACHE_NORCU)
375                 __d_free(&dentry->d_u.d_rcu);
376         else
377                 call_rcu(&dentry->d_u.d_rcu, __d_free);
378 }
379
380 /*
381  * Release the dentry's inode, using the filesystem
382  * d_iput() operation if defined.
383  */
384 static void dentry_unlink_inode(struct dentry * dentry)
385         __releases(dentry->d_lock)
386         __releases(dentry->d_inode->i_lock)
387 {
388         struct inode *inode = dentry->d_inode;
389
390         raw_write_seqcount_begin(&dentry->d_seq);
391         __d_clear_type_and_inode(dentry);
392         hlist_del_init(&dentry->d_u.d_alias);
393         raw_write_seqcount_end(&dentry->d_seq);
394         spin_unlock(&dentry->d_lock);
395         spin_unlock(&inode->i_lock);
396         if (!inode->i_nlink)
397                 fsnotify_inoderemove(inode);
398         if (dentry->d_op && dentry->d_op->d_iput)
399                 dentry->d_op->d_iput(dentry, inode);
400         else
401                 iput(inode);
402 }
403
404 /*
405  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
406  * is in use - which includes both the "real" per-superblock
407  * LRU list _and_ the DCACHE_SHRINK_LIST use.
408  *
409  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
410  * on the shrink list (ie not on the superblock LRU list).
411  *
412  * The per-cpu "nr_dentry_unused" counters are updated with
413  * the DCACHE_LRU_LIST bit.
414  *
415  * The per-cpu "nr_dentry_negative" counters are only updated
416  * when deleted from or added to the per-superblock LRU list, not
417  * from/to the shrink list. That is to avoid an unneeded dec/inc
418  * pair when moving from LRU to shrink list in select_collect().
419  *
420  * These helper functions make sure we always follow the
421  * rules. d_lock must be held by the caller.
422  */
423 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
424 static void d_lru_add(struct dentry *dentry)
425 {
426         D_FLAG_VERIFY(dentry, 0);
427         dentry->d_flags |= DCACHE_LRU_LIST;
428         this_cpu_inc(nr_dentry_unused);
429         if (d_is_negative(dentry))
430                 this_cpu_inc(nr_dentry_negative);
431         WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
432 }
433
434 static void d_lru_del(struct dentry *dentry)
435 {
436         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
437         dentry->d_flags &= ~DCACHE_LRU_LIST;
438         this_cpu_dec(nr_dentry_unused);
439         if (d_is_negative(dentry))
440                 this_cpu_dec(nr_dentry_negative);
441         WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
442 }
443
444 static void d_shrink_del(struct dentry *dentry)
445 {
446         D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
447         list_del_init(&dentry->d_lru);
448         dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
449         this_cpu_dec(nr_dentry_unused);
450 }
451
452 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
453 {
454         D_FLAG_VERIFY(dentry, 0);
455         list_add(&dentry->d_lru, list);
456         dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
457         this_cpu_inc(nr_dentry_unused);
458 }
459
460 /*
461  * These can only be called under the global LRU lock, ie during the
462  * callback for freeing the LRU list. "isolate" removes it from the
463  * LRU lists entirely, while shrink_move moves it to the indicated
464  * private list.
465  */
466 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
467 {
468         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
469         dentry->d_flags &= ~DCACHE_LRU_LIST;
470         this_cpu_dec(nr_dentry_unused);
471         if (d_is_negative(dentry))
472                 this_cpu_dec(nr_dentry_negative);
473         list_lru_isolate(lru, &dentry->d_lru);
474 }
475
476 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
477                               struct list_head *list)
478 {
479         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
480         dentry->d_flags |= DCACHE_SHRINK_LIST;
481         if (d_is_negative(dentry))
482                 this_cpu_dec(nr_dentry_negative);
483         list_lru_isolate_move(lru, &dentry->d_lru, list);
484 }
485
486 static void ___d_drop(struct dentry *dentry)
487 {
488         struct hlist_bl_head *b;
489         /*
490          * Hashed dentries are normally on the dentry hashtable,
491          * with the exception of those newly allocated by
492          * d_obtain_root, which are always IS_ROOT:
493          */
494         if (unlikely(IS_ROOT(dentry)))
495                 b = &dentry->d_sb->s_roots;
496         else
497                 b = d_hash(dentry->d_name.hash);
498
499         hlist_bl_lock(b);
500         __hlist_bl_del(&dentry->d_hash);
501         hlist_bl_unlock(b);
502 }
503
504 void __d_drop(struct dentry *dentry)
505 {
506         if (!d_unhashed(dentry)) {
507                 ___d_drop(dentry);
508                 dentry->d_hash.pprev = NULL;
509                 write_seqcount_invalidate(&dentry->d_seq);
510         }
511 }
512 EXPORT_SYMBOL(__d_drop);
513
514 /**
515  * d_drop - drop a dentry
516  * @dentry: dentry to drop
517  *
518  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
519  * be found through a VFS lookup any more. Note that this is different from
520  * deleting the dentry - d_delete will try to mark the dentry negative if
521  * possible, giving a successful _negative_ lookup, while d_drop will
522  * just make the cache lookup fail.
523  *
524  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
525  * reason (NFS timeouts or autofs deletes).
526  *
527  * __d_drop requires dentry->d_lock
528  *
529  * ___d_drop doesn't mark dentry as "unhashed"
530  * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
531  */
532 void d_drop(struct dentry *dentry)
533 {
534         spin_lock(&dentry->d_lock);
535         __d_drop(dentry);
536         spin_unlock(&dentry->d_lock);
537 }
538 EXPORT_SYMBOL(d_drop);
539
540 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
541 {
542         struct dentry *next;
543         /*
544          * Inform d_walk() and shrink_dentry_list() that we are no longer
545          * attached to the dentry tree
546          */
547         dentry->d_flags |= DCACHE_DENTRY_KILLED;
548         if (unlikely(list_empty(&dentry->d_child)))
549                 return;
550         __list_del_entry(&dentry->d_child);
551         /*
552          * Cursors can move around the list of children.  While we'd been
553          * a normal list member, it didn't matter - ->d_child.next would've
554          * been updated.  However, from now on it won't be and for the
555          * things like d_walk() it might end up with a nasty surprise.
556          * Normally d_walk() doesn't care about cursors moving around -
557          * ->d_lock on parent prevents that and since a cursor has no children
558          * of its own, we get through it without ever unlocking the parent.
559          * There is one exception, though - if we ascend from a child that
560          * gets killed as soon as we unlock it, the next sibling is found
561          * using the value left in its ->d_child.next.  And if _that_
562          * pointed to a cursor, and cursor got moved (e.g. by lseek())
563          * before d_walk() regains parent->d_lock, we'll end up skipping
564          * everything the cursor had been moved past.
565          *
566          * Solution: make sure that the pointer left behind in ->d_child.next
567          * points to something that won't be moving around.  I.e. skip the
568          * cursors.
569          */
570         while (dentry->d_child.next != &parent->d_subdirs) {
571                 next = list_entry(dentry->d_child.next, struct dentry, d_child);
572                 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
573                         break;
574                 dentry->d_child.next = next->d_child.next;
575         }
576 }
577
578 static void __dentry_kill(struct dentry *dentry)
579 {
580         struct dentry *parent = NULL;
581         bool can_free = true;
582         if (!IS_ROOT(dentry))
583                 parent = dentry->d_parent;
584
585         /*
586          * The dentry is now unrecoverably dead to the world.
587          */
588         lockref_mark_dead(&dentry->d_lockref);
589
590         /*
591          * inform the fs via d_prune that this dentry is about to be
592          * unhashed and destroyed.
593          */
594         if (dentry->d_flags & DCACHE_OP_PRUNE)
595                 dentry->d_op->d_prune(dentry);
596
597         if (dentry->d_flags & DCACHE_LRU_LIST) {
598                 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
599                         d_lru_del(dentry);
600         }
601         /* if it was on the hash then remove it */
602         __d_drop(dentry);
603         dentry_unlist(dentry, parent);
604         if (parent)
605                 spin_unlock(&parent->d_lock);
606         if (dentry->d_inode)
607                 dentry_unlink_inode(dentry);
608         else
609                 spin_unlock(&dentry->d_lock);
610         this_cpu_dec(nr_dentry);
611         if (dentry->d_op && dentry->d_op->d_release)
612                 dentry->d_op->d_release(dentry);
613
614         spin_lock(&dentry->d_lock);
615         if (dentry->d_flags & DCACHE_SHRINK_LIST) {
616                 dentry->d_flags |= DCACHE_MAY_FREE;
617                 can_free = false;
618         }
619         spin_unlock(&dentry->d_lock);
620         if (likely(can_free))
621                 dentry_free(dentry);
622         cond_resched();
623 }
624
625 static struct dentry *__lock_parent(struct dentry *dentry)
626 {
627         struct dentry *parent;
628         rcu_read_lock();
629         spin_unlock(&dentry->d_lock);
630 again:
631         parent = READ_ONCE(dentry->d_parent);
632         spin_lock(&parent->d_lock);
633         /*
634          * We can't blindly lock dentry until we are sure
635          * that we won't violate the locking order.
636          * Any changes of dentry->d_parent must have
637          * been done with parent->d_lock held, so
638          * spin_lock() above is enough of a barrier
639          * for checking if it's still our child.
640          */
641         if (unlikely(parent != dentry->d_parent)) {
642                 spin_unlock(&parent->d_lock);
643                 goto again;
644         }
645         rcu_read_unlock();
646         if (parent != dentry)
647                 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
648         else
649                 parent = NULL;
650         return parent;
651 }
652
653 static inline struct dentry *lock_parent(struct dentry *dentry)
654 {
655         struct dentry *parent = dentry->d_parent;
656         if (IS_ROOT(dentry))
657                 return NULL;
658         if (likely(spin_trylock(&parent->d_lock)))
659                 return parent;
660         return __lock_parent(dentry);
661 }
662
663 static inline bool retain_dentry(struct dentry *dentry)
664 {
665         WARN_ON(d_in_lookup(dentry));
666
667         /* Unreachable? Get rid of it */
668         if (unlikely(d_unhashed(dentry)))
669                 return false;
670
671         if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
672                 return false;
673
674         if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
675                 if (dentry->d_op->d_delete(dentry))
676                         return false;
677         }
678
679         if (unlikely(dentry->d_flags & DCACHE_DONTCACHE))
680                 return false;
681
682         /* retain; LRU fodder */
683         dentry->d_lockref.count--;
684         if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
685                 d_lru_add(dentry);
686         else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
687                 dentry->d_flags |= DCACHE_REFERENCED;
688         return true;
689 }
690
691 void d_mark_dontcache(struct inode *inode)
692 {
693         struct dentry *de;
694
695         spin_lock(&inode->i_lock);
696         hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
697                 spin_lock(&de->d_lock);
698                 de->d_flags |= DCACHE_DONTCACHE;
699                 spin_unlock(&de->d_lock);
700         }
701         inode->i_state |= I_DONTCACHE;
702         spin_unlock(&inode->i_lock);
703 }
704 EXPORT_SYMBOL(d_mark_dontcache);
705
706 /*
707  * Finish off a dentry we've decided to kill.
708  * dentry->d_lock must be held, returns with it unlocked.
709  * Returns dentry requiring refcount drop, or NULL if we're done.
710  */
711 static struct dentry *dentry_kill(struct dentry *dentry)
712         __releases(dentry->d_lock)
713 {
714         struct inode *inode = dentry->d_inode;
715         struct dentry *parent = NULL;
716
717         if (inode && unlikely(!spin_trylock(&inode->i_lock)))
718                 goto slow_positive;
719
720         if (!IS_ROOT(dentry)) {
721                 parent = dentry->d_parent;
722                 if (unlikely(!spin_trylock(&parent->d_lock))) {
723                         parent = __lock_parent(dentry);
724                         if (likely(inode || !dentry->d_inode))
725                                 goto got_locks;
726                         /* negative that became positive */
727                         if (parent)
728                                 spin_unlock(&parent->d_lock);
729                         inode = dentry->d_inode;
730                         goto slow_positive;
731                 }
732         }
733         __dentry_kill(dentry);
734         return parent;
735
736 slow_positive:
737         spin_unlock(&dentry->d_lock);
738         spin_lock(&inode->i_lock);
739         spin_lock(&dentry->d_lock);
740         parent = lock_parent(dentry);
741 got_locks:
742         if (unlikely(dentry->d_lockref.count != 1)) {
743                 dentry->d_lockref.count--;
744         } else if (likely(!retain_dentry(dentry))) {
745                 __dentry_kill(dentry);
746                 return parent;
747         }
748         /* we are keeping it, after all */
749         if (inode)
750                 spin_unlock(&inode->i_lock);
751         if (parent)
752                 spin_unlock(&parent->d_lock);
753         spin_unlock(&dentry->d_lock);
754         return NULL;
755 }
756
757 /*
758  * Try to do a lockless dput(), and return whether that was successful.
759  *
760  * If unsuccessful, we return false, having already taken the dentry lock.
761  *
762  * The caller needs to hold the RCU read lock, so that the dentry is
763  * guaranteed to stay around even if the refcount goes down to zero!
764  */
765 static inline bool fast_dput(struct dentry *dentry)
766 {
767         int ret;
768         unsigned int d_flags;
769
770         /*
771          * If we have a d_op->d_delete() operation, we sould not
772          * let the dentry count go to zero, so use "put_or_lock".
773          */
774         if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
775                 return lockref_put_or_lock(&dentry->d_lockref);
776
777         /*
778          * .. otherwise, we can try to just decrement the
779          * lockref optimistically.
780          */
781         ret = lockref_put_return(&dentry->d_lockref);
782
783         /*
784          * If the lockref_put_return() failed due to the lock being held
785          * by somebody else, the fast path has failed. We will need to
786          * get the lock, and then check the count again.
787          */
788         if (unlikely(ret < 0)) {
789                 spin_lock(&dentry->d_lock);
790                 if (dentry->d_lockref.count > 1) {
791                         dentry->d_lockref.count--;
792                         spin_unlock(&dentry->d_lock);
793                         return true;
794                 }
795                 return false;
796         }
797
798         /*
799          * If we weren't the last ref, we're done.
800          */
801         if (ret)
802                 return true;
803
804         /*
805          * Careful, careful. The reference count went down
806          * to zero, but we don't hold the dentry lock, so
807          * somebody else could get it again, and do another
808          * dput(), and we need to not race with that.
809          *
810          * However, there is a very special and common case
811          * where we don't care, because there is nothing to
812          * do: the dentry is still hashed, it does not have
813          * a 'delete' op, and it's referenced and already on
814          * the LRU list.
815          *
816          * NOTE! Since we aren't locked, these values are
817          * not "stable". However, it is sufficient that at
818          * some point after we dropped the reference the
819          * dentry was hashed and the flags had the proper
820          * value. Other dentry users may have re-gotten
821          * a reference to the dentry and change that, but
822          * our work is done - we can leave the dentry
823          * around with a zero refcount.
824          *
825          * Nevertheless, there are two cases that we should kill
826          * the dentry anyway.
827          * 1. free disconnected dentries as soon as their refcount
828          *    reached zero.
829          * 2. free dentries if they should not be cached.
830          */
831         smp_rmb();
832         d_flags = READ_ONCE(dentry->d_flags);
833         d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST |
834                         DCACHE_DISCONNECTED | DCACHE_DONTCACHE;
835
836         /* Nothing to do? Dropping the reference was all we needed? */
837         if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
838                 return true;
839
840         /*
841          * Not the fast normal case? Get the lock. We've already decremented
842          * the refcount, but we'll need to re-check the situation after
843          * getting the lock.
844          */
845         spin_lock(&dentry->d_lock);
846
847         /*
848          * Did somebody else grab a reference to it in the meantime, and
849          * we're no longer the last user after all? Alternatively, somebody
850          * else could have killed it and marked it dead. Either way, we
851          * don't need to do anything else.
852          */
853         if (dentry->d_lockref.count) {
854                 spin_unlock(&dentry->d_lock);
855                 return true;
856         }
857
858         /*
859          * Re-get the reference we optimistically dropped. We hold the
860          * lock, and we just tested that it was zero, so we can just
861          * set it to 1.
862          */
863         dentry->d_lockref.count = 1;
864         return false;
865 }
866
867
868 /* 
869  * This is dput
870  *
871  * This is complicated by the fact that we do not want to put
872  * dentries that are no longer on any hash chain on the unused
873  * list: we'd much rather just get rid of them immediately.
874  *
875  * However, that implies that we have to traverse the dentry
876  * tree upwards to the parents which might _also_ now be
877  * scheduled for deletion (it may have been only waiting for
878  * its last child to go away).
879  *
880  * This tail recursion is done by hand as we don't want to depend
881  * on the compiler to always get this right (gcc generally doesn't).
882  * Real recursion would eat up our stack space.
883  */
884
885 /*
886  * dput - release a dentry
887  * @dentry: dentry to release 
888  *
889  * Release a dentry. This will drop the usage count and if appropriate
890  * call the dentry unlink method as well as removing it from the queues and
891  * releasing its resources. If the parent dentries were scheduled for release
892  * they too may now get deleted.
893  */
894 void dput(struct dentry *dentry)
895 {
896         while (dentry) {
897                 might_sleep();
898
899                 rcu_read_lock();
900                 if (likely(fast_dput(dentry))) {
901                         rcu_read_unlock();
902                         return;
903                 }
904
905                 /* Slow case: now with the dentry lock held */
906                 rcu_read_unlock();
907
908                 if (likely(retain_dentry(dentry))) {
909                         spin_unlock(&dentry->d_lock);
910                         return;
911                 }
912
913                 dentry = dentry_kill(dentry);
914         }
915 }
916 EXPORT_SYMBOL(dput);
917
918 static void __dput_to_list(struct dentry *dentry, struct list_head *list)
919 __must_hold(&dentry->d_lock)
920 {
921         if (dentry->d_flags & DCACHE_SHRINK_LIST) {
922                 /* let the owner of the list it's on deal with it */
923                 --dentry->d_lockref.count;
924         } else {
925                 if (dentry->d_flags & DCACHE_LRU_LIST)
926                         d_lru_del(dentry);
927                 if (!--dentry->d_lockref.count)
928                         d_shrink_add(dentry, list);
929         }
930 }
931
932 void dput_to_list(struct dentry *dentry, struct list_head *list)
933 {
934         rcu_read_lock();
935         if (likely(fast_dput(dentry))) {
936                 rcu_read_unlock();
937                 return;
938         }
939         rcu_read_unlock();
940         if (!retain_dentry(dentry))
941                 __dput_to_list(dentry, list);
942         spin_unlock(&dentry->d_lock);
943 }
944
945 /* This must be called with d_lock held */
946 static inline void __dget_dlock(struct dentry *dentry)
947 {
948         dentry->d_lockref.count++;
949 }
950
951 struct dentry *dget_parent(struct dentry *dentry)
952 {
953         int gotref;
954         struct dentry *ret;
955         unsigned seq;
956
957         /*
958          * Do optimistic parent lookup without any
959          * locking.
960          */
961         rcu_read_lock();
962         seq = raw_seqcount_begin(&dentry->d_seq);
963         ret = READ_ONCE(dentry->d_parent);
964         gotref = lockref_get_not_zero(&ret->d_lockref);
965         rcu_read_unlock();
966         if (likely(gotref)) {
967                 if (!read_seqcount_retry(&dentry->d_seq, seq))
968                         return ret;
969                 dput(ret);
970         }
971
972 repeat:
973         /*
974          * Don't need rcu_dereference because we re-check it was correct under
975          * the lock.
976          */
977         rcu_read_lock();
978         ret = dentry->d_parent;
979         spin_lock(&ret->d_lock);
980         if (unlikely(ret != dentry->d_parent)) {
981                 spin_unlock(&ret->d_lock);
982                 rcu_read_unlock();
983                 goto repeat;
984         }
985         rcu_read_unlock();
986         BUG_ON(!ret->d_lockref.count);
987         ret->d_lockref.count++;
988         spin_unlock(&ret->d_lock);
989         return ret;
990 }
991 EXPORT_SYMBOL(dget_parent);
992
993 static struct dentry * __d_find_any_alias(struct inode *inode)
994 {
995         struct dentry *alias;
996
997         if (hlist_empty(&inode->i_dentry))
998                 return NULL;
999         alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1000         lockref_get(&alias->d_lockref);
1001         return alias;
1002 }
1003
1004 /**
1005  * d_find_any_alias - find any alias for a given inode
1006  * @inode: inode to find an alias for
1007  *
1008  * If any aliases exist for the given inode, take and return a
1009  * reference for one of them.  If no aliases exist, return %NULL.
1010  */
1011 struct dentry *d_find_any_alias(struct inode *inode)
1012 {
1013         struct dentry *de;
1014
1015         spin_lock(&inode->i_lock);
1016         de = __d_find_any_alias(inode);
1017         spin_unlock(&inode->i_lock);
1018         return de;
1019 }
1020 EXPORT_SYMBOL(d_find_any_alias);
1021
1022 static struct dentry *__d_find_alias(struct inode *inode)
1023 {
1024         struct dentry *alias;
1025
1026         if (S_ISDIR(inode->i_mode))
1027                 return __d_find_any_alias(inode);
1028
1029         hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1030                 spin_lock(&alias->d_lock);
1031                 if (!d_unhashed(alias)) {
1032                         __dget_dlock(alias);
1033                         spin_unlock(&alias->d_lock);
1034                         return alias;
1035                 }
1036                 spin_unlock(&alias->d_lock);
1037         }
1038         return NULL;
1039 }
1040
1041 /**
1042  * d_find_alias - grab a hashed alias of inode
1043  * @inode: inode in question
1044  *
1045  * If inode has a hashed alias, or is a directory and has any alias,
1046  * acquire the reference to alias and return it. Otherwise return NULL.
1047  * Notice that if inode is a directory there can be only one alias and
1048  * it can be unhashed only if it has no children, or if it is the root
1049  * of a filesystem, or if the directory was renamed and d_revalidate
1050  * was the first vfs operation to notice.
1051  *
1052  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1053  * any other hashed alias over that one.
1054  */
1055 struct dentry *d_find_alias(struct inode *inode)
1056 {
1057         struct dentry *de = NULL;
1058
1059         if (!hlist_empty(&inode->i_dentry)) {
1060                 spin_lock(&inode->i_lock);
1061                 de = __d_find_alias(inode);
1062                 spin_unlock(&inode->i_lock);
1063         }
1064         return de;
1065 }
1066 EXPORT_SYMBOL(d_find_alias);
1067
1068 /*
1069  *  Caller MUST be holding rcu_read_lock() and be guaranteed
1070  *  that inode won't get freed until rcu_read_unlock().
1071  */
1072 struct dentry *d_find_alias_rcu(struct inode *inode)
1073 {
1074         struct hlist_head *l = &inode->i_dentry;
1075         struct dentry *de = NULL;
1076
1077         spin_lock(&inode->i_lock);
1078         // ->i_dentry and ->i_rcu are colocated, but the latter won't be
1079         // used without having I_FREEING set, which means no aliases left
1080         if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) {
1081                 if (S_ISDIR(inode->i_mode)) {
1082                         de = hlist_entry(l->first, struct dentry, d_u.d_alias);
1083                 } else {
1084                         hlist_for_each_entry(de, l, d_u.d_alias)
1085                                 if (!d_unhashed(de))
1086                                         break;
1087                 }
1088         }
1089         spin_unlock(&inode->i_lock);
1090         return de;
1091 }
1092
1093 /*
1094  *      Try to kill dentries associated with this inode.
1095  * WARNING: you must own a reference to inode.
1096  */
1097 void d_prune_aliases(struct inode *inode)
1098 {
1099         struct dentry *dentry;
1100 restart:
1101         spin_lock(&inode->i_lock);
1102         hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1103                 spin_lock(&dentry->d_lock);
1104                 if (!dentry->d_lockref.count) {
1105                         struct dentry *parent = lock_parent(dentry);
1106                         if (likely(!dentry->d_lockref.count)) {
1107                                 __dentry_kill(dentry);
1108                                 dput(parent);
1109                                 goto restart;
1110                         }
1111                         if (parent)
1112                                 spin_unlock(&parent->d_lock);
1113                 }
1114                 spin_unlock(&dentry->d_lock);
1115         }
1116         spin_unlock(&inode->i_lock);
1117 }
1118 EXPORT_SYMBOL(d_prune_aliases);
1119
1120 /*
1121  * Lock a dentry from shrink list.
1122  * Called under rcu_read_lock() and dentry->d_lock; the former
1123  * guarantees that nothing we access will be freed under us.
1124  * Note that dentry is *not* protected from concurrent dentry_kill(),
1125  * d_delete(), etc.
1126  *
1127  * Return false if dentry has been disrupted or grabbed, leaving
1128  * the caller to kick it off-list.  Otherwise, return true and have
1129  * that dentry's inode and parent both locked.
1130  */
1131 static bool shrink_lock_dentry(struct dentry *dentry)
1132 {
1133         struct inode *inode;
1134         struct dentry *parent;
1135
1136         if (dentry->d_lockref.count)
1137                 return false;
1138
1139         inode = dentry->d_inode;
1140         if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1141                 spin_unlock(&dentry->d_lock);
1142                 spin_lock(&inode->i_lock);
1143                 spin_lock(&dentry->d_lock);
1144                 if (unlikely(dentry->d_lockref.count))
1145                         goto out;
1146                 /* changed inode means that somebody had grabbed it */
1147                 if (unlikely(inode != dentry->d_inode))
1148                         goto out;
1149         }
1150
1151         parent = dentry->d_parent;
1152         if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1153                 return true;
1154
1155         spin_unlock(&dentry->d_lock);
1156         spin_lock(&parent->d_lock);
1157         if (unlikely(parent != dentry->d_parent)) {
1158                 spin_unlock(&parent->d_lock);
1159                 spin_lock(&dentry->d_lock);
1160                 goto out;
1161         }
1162         spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1163         if (likely(!dentry->d_lockref.count))
1164                 return true;
1165         spin_unlock(&parent->d_lock);
1166 out:
1167         if (inode)
1168                 spin_unlock(&inode->i_lock);
1169         return false;
1170 }
1171
1172 void shrink_dentry_list(struct list_head *list)
1173 {
1174         while (!list_empty(list)) {
1175                 struct dentry *dentry, *parent;
1176
1177                 dentry = list_entry(list->prev, struct dentry, d_lru);
1178                 spin_lock(&dentry->d_lock);
1179                 rcu_read_lock();
1180                 if (!shrink_lock_dentry(dentry)) {
1181                         bool can_free = false;
1182                         rcu_read_unlock();
1183                         d_shrink_del(dentry);
1184                         if (dentry->d_lockref.count < 0)
1185                                 can_free = dentry->d_flags & DCACHE_MAY_FREE;
1186                         spin_unlock(&dentry->d_lock);
1187                         if (can_free)
1188                                 dentry_free(dentry);
1189                         continue;
1190                 }
1191                 rcu_read_unlock();
1192                 d_shrink_del(dentry);
1193                 parent = dentry->d_parent;
1194                 if (parent != dentry)
1195                         __dput_to_list(parent, list);
1196                 __dentry_kill(dentry);
1197         }
1198 }
1199
1200 static enum lru_status dentry_lru_isolate(struct list_head *item,
1201                 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1202 {
1203         struct list_head *freeable = arg;
1204         struct dentry   *dentry = container_of(item, struct dentry, d_lru);
1205
1206
1207         /*
1208          * we are inverting the lru lock/dentry->d_lock here,
1209          * so use a trylock. If we fail to get the lock, just skip
1210          * it
1211          */
1212         if (!spin_trylock(&dentry->d_lock))
1213                 return LRU_SKIP;
1214
1215         /*
1216          * Referenced dentries are still in use. If they have active
1217          * counts, just remove them from the LRU. Otherwise give them
1218          * another pass through the LRU.
1219          */
1220         if (dentry->d_lockref.count) {
1221                 d_lru_isolate(lru, dentry);
1222                 spin_unlock(&dentry->d_lock);
1223                 return LRU_REMOVED;
1224         }
1225
1226         if (dentry->d_flags & DCACHE_REFERENCED) {
1227                 dentry->d_flags &= ~DCACHE_REFERENCED;
1228                 spin_unlock(&dentry->d_lock);
1229
1230                 /*
1231                  * The list move itself will be made by the common LRU code. At
1232                  * this point, we've dropped the dentry->d_lock but keep the
1233                  * lru lock. This is safe to do, since every list movement is
1234                  * protected by the lru lock even if both locks are held.
1235                  *
1236                  * This is guaranteed by the fact that all LRU management
1237                  * functions are intermediated by the LRU API calls like
1238                  * list_lru_add and list_lru_del. List movement in this file
1239                  * only ever occur through this functions or through callbacks
1240                  * like this one, that are called from the LRU API.
1241                  *
1242                  * The only exceptions to this are functions like
1243                  * shrink_dentry_list, and code that first checks for the
1244                  * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1245                  * operating only with stack provided lists after they are
1246                  * properly isolated from the main list.  It is thus, always a
1247                  * local access.
1248                  */
1249                 return LRU_ROTATE;
1250         }
1251
1252         d_lru_shrink_move(lru, dentry, freeable);
1253         spin_unlock(&dentry->d_lock);
1254
1255         return LRU_REMOVED;
1256 }
1257
1258 /**
1259  * prune_dcache_sb - shrink the dcache
1260  * @sb: superblock
1261  * @sc: shrink control, passed to list_lru_shrink_walk()
1262  *
1263  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1264  * is done when we need more memory and called from the superblock shrinker
1265  * function.
1266  *
1267  * This function may fail to free any resources if all the dentries are in
1268  * use.
1269  */
1270 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1271 {
1272         LIST_HEAD(dispose);
1273         long freed;
1274
1275         freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1276                                      dentry_lru_isolate, &dispose);
1277         shrink_dentry_list(&dispose);
1278         return freed;
1279 }
1280
1281 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1282                 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1283 {
1284         struct list_head *freeable = arg;
1285         struct dentry   *dentry = container_of(item, struct dentry, d_lru);
1286
1287         /*
1288          * we are inverting the lru lock/dentry->d_lock here,
1289          * so use a trylock. If we fail to get the lock, just skip
1290          * it
1291          */
1292         if (!spin_trylock(&dentry->d_lock))
1293                 return LRU_SKIP;
1294
1295         d_lru_shrink_move(lru, dentry, freeable);
1296         spin_unlock(&dentry->d_lock);
1297
1298         return LRU_REMOVED;
1299 }
1300
1301
1302 /**
1303  * shrink_dcache_sb - shrink dcache for a superblock
1304  * @sb: superblock
1305  *
1306  * Shrink the dcache for the specified super block. This is used to free
1307  * the dcache before unmounting a file system.
1308  */
1309 void shrink_dcache_sb(struct super_block *sb)
1310 {
1311         do {
1312                 LIST_HEAD(dispose);
1313
1314                 list_lru_walk(&sb->s_dentry_lru,
1315                         dentry_lru_isolate_shrink, &dispose, 1024);
1316                 shrink_dentry_list(&dispose);
1317         } while (list_lru_count(&sb->s_dentry_lru) > 0);
1318 }
1319 EXPORT_SYMBOL(shrink_dcache_sb);
1320
1321 /**
1322  * enum d_walk_ret - action to talke during tree walk
1323  * @D_WALK_CONTINUE:    contrinue walk
1324  * @D_WALK_QUIT:        quit walk
1325  * @D_WALK_NORETRY:     quit when retry is needed
1326  * @D_WALK_SKIP:        skip this dentry and its children
1327  */
1328 enum d_walk_ret {
1329         D_WALK_CONTINUE,
1330         D_WALK_QUIT,
1331         D_WALK_NORETRY,
1332         D_WALK_SKIP,
1333 };
1334
1335 /**
1336  * d_walk - walk the dentry tree
1337  * @parent:     start of walk
1338  * @data:       data passed to @enter() and @finish()
1339  * @enter:      callback when first entering the dentry
1340  *
1341  * The @enter() callbacks are called with d_lock held.
1342  */
1343 static void d_walk(struct dentry *parent, void *data,
1344                    enum d_walk_ret (*enter)(void *, struct dentry *))
1345 {
1346         struct dentry *this_parent;
1347         struct list_head *next;
1348         unsigned seq = 0;
1349         enum d_walk_ret ret;
1350         bool retry = true;
1351
1352 again:
1353         read_seqbegin_or_lock(&rename_lock, &seq);
1354         this_parent = parent;
1355         spin_lock(&this_parent->d_lock);
1356
1357         ret = enter(data, this_parent);
1358         switch (ret) {
1359         case D_WALK_CONTINUE:
1360                 break;
1361         case D_WALK_QUIT:
1362         case D_WALK_SKIP:
1363                 goto out_unlock;
1364         case D_WALK_NORETRY:
1365                 retry = false;
1366                 break;
1367         }
1368 repeat:
1369         next = this_parent->d_subdirs.next;
1370 resume:
1371         while (next != &this_parent->d_subdirs) {
1372                 struct list_head *tmp = next;
1373                 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1374                 next = tmp->next;
1375
1376                 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1377                         continue;
1378
1379                 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1380
1381                 ret = enter(data, dentry);
1382                 switch (ret) {
1383                 case D_WALK_CONTINUE:
1384                         break;
1385                 case D_WALK_QUIT:
1386                         spin_unlock(&dentry->d_lock);
1387                         goto out_unlock;
1388                 case D_WALK_NORETRY:
1389                         retry = false;
1390                         break;
1391                 case D_WALK_SKIP:
1392                         spin_unlock(&dentry->d_lock);
1393                         continue;
1394                 }
1395
1396                 if (!list_empty(&dentry->d_subdirs)) {
1397                         spin_unlock(&this_parent->d_lock);
1398                         spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1399                         this_parent = dentry;
1400                         spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1401                         goto repeat;
1402                 }
1403                 spin_unlock(&dentry->d_lock);
1404         }
1405         /*
1406          * All done at this level ... ascend and resume the search.
1407          */
1408         rcu_read_lock();
1409 ascend:
1410         if (this_parent != parent) {
1411                 struct dentry *child = this_parent;
1412                 this_parent = child->d_parent;
1413
1414                 spin_unlock(&child->d_lock);
1415                 spin_lock(&this_parent->d_lock);
1416
1417                 /* might go back up the wrong parent if we have had a rename. */
1418                 if (need_seqretry(&rename_lock, seq))
1419                         goto rename_retry;
1420                 /* go into the first sibling still alive */
1421                 do {
1422                         next = child->d_child.next;
1423                         if (next == &this_parent->d_subdirs)
1424                                 goto ascend;
1425                         child = list_entry(next, struct dentry, d_child);
1426                 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1427                 rcu_read_unlock();
1428                 goto resume;
1429         }
1430         if (need_seqretry(&rename_lock, seq))
1431                 goto rename_retry;
1432         rcu_read_unlock();
1433
1434 out_unlock:
1435         spin_unlock(&this_parent->d_lock);
1436         done_seqretry(&rename_lock, seq);
1437         return;
1438
1439 rename_retry:
1440         spin_unlock(&this_parent->d_lock);
1441         rcu_read_unlock();
1442         BUG_ON(seq & 1);
1443         if (!retry)
1444                 return;
1445         seq = 1;
1446         goto again;
1447 }
1448
1449 struct check_mount {
1450         struct vfsmount *mnt;
1451         unsigned int mounted;
1452 };
1453
1454 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1455 {
1456         struct check_mount *info = data;
1457         struct path path = { .mnt = info->mnt, .dentry = dentry };
1458
1459         if (likely(!d_mountpoint(dentry)))
1460                 return D_WALK_CONTINUE;
1461         if (__path_is_mountpoint(&path)) {
1462                 info->mounted = 1;
1463                 return D_WALK_QUIT;
1464         }
1465         return D_WALK_CONTINUE;
1466 }
1467
1468 /**
1469  * path_has_submounts - check for mounts over a dentry in the
1470  *                      current namespace.
1471  * @parent: path to check.
1472  *
1473  * Return true if the parent or its subdirectories contain
1474  * a mount point in the current namespace.
1475  */
1476 int path_has_submounts(const struct path *parent)
1477 {
1478         struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1479
1480         read_seqlock_excl(&mount_lock);
1481         d_walk(parent->dentry, &data, path_check_mount);
1482         read_sequnlock_excl(&mount_lock);
1483
1484         return data.mounted;
1485 }
1486 EXPORT_SYMBOL(path_has_submounts);
1487
1488 /*
1489  * Called by mount code to set a mountpoint and check if the mountpoint is
1490  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1491  * subtree can become unreachable).
1492  *
1493  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1494  * this reason take rename_lock and d_lock on dentry and ancestors.
1495  */
1496 int d_set_mounted(struct dentry *dentry)
1497 {
1498         struct dentry *p;
1499         int ret = -ENOENT;
1500         write_seqlock(&rename_lock);
1501         for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1502                 /* Need exclusion wrt. d_invalidate() */
1503                 spin_lock(&p->d_lock);
1504                 if (unlikely(d_unhashed(p))) {
1505                         spin_unlock(&p->d_lock);
1506                         goto out;
1507                 }
1508                 spin_unlock(&p->d_lock);
1509         }
1510         spin_lock(&dentry->d_lock);
1511         if (!d_unlinked(dentry)) {
1512                 ret = -EBUSY;
1513                 if (!d_mountpoint(dentry)) {
1514                         dentry->d_flags |= DCACHE_MOUNTED;
1515                         ret = 0;
1516                 }
1517         }
1518         spin_unlock(&dentry->d_lock);
1519 out:
1520         write_sequnlock(&rename_lock);
1521         return ret;
1522 }
1523
1524 /*
1525  * Search the dentry child list of the specified parent,
1526  * and move any unused dentries to the end of the unused
1527  * list for prune_dcache(). We descend to the next level
1528  * whenever the d_subdirs list is non-empty and continue
1529  * searching.
1530  *
1531  * It returns zero iff there are no unused children,
1532  * otherwise  it returns the number of children moved to
1533  * the end of the unused list. This may not be the total
1534  * number of unused children, because select_parent can
1535  * drop the lock and return early due to latency
1536  * constraints.
1537  */
1538
1539 struct select_data {
1540         struct dentry *start;
1541         union {
1542                 long found;
1543                 struct dentry *victim;
1544         };
1545         struct list_head dispose;
1546 };
1547
1548 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1549 {
1550         struct select_data *data = _data;
1551         enum d_walk_ret ret = D_WALK_CONTINUE;
1552
1553         if (data->start == dentry)
1554                 goto out;
1555
1556         if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1557                 data->found++;
1558         } else {
1559                 if (dentry->d_flags & DCACHE_LRU_LIST)
1560                         d_lru_del(dentry);
1561                 if (!dentry->d_lockref.count) {
1562                         d_shrink_add(dentry, &data->dispose);
1563                         data->found++;
1564                 }
1565         }
1566         /*
1567          * We can return to the caller if we have found some (this
1568          * ensures forward progress). We'll be coming back to find
1569          * the rest.
1570          */
1571         if (!list_empty(&data->dispose))
1572                 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1573 out:
1574         return ret;
1575 }
1576
1577 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1578 {
1579         struct select_data *data = _data;
1580         enum d_walk_ret ret = D_WALK_CONTINUE;
1581
1582         if (data->start == dentry)
1583                 goto out;
1584
1585         if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1586                 if (!dentry->d_lockref.count) {
1587                         rcu_read_lock();
1588                         data->victim = dentry;
1589                         return D_WALK_QUIT;
1590                 }
1591         } else {
1592                 if (dentry->d_flags & DCACHE_LRU_LIST)
1593                         d_lru_del(dentry);
1594                 if (!dentry->d_lockref.count)
1595                         d_shrink_add(dentry, &data->dispose);
1596         }
1597         /*
1598          * We can return to the caller if we have found some (this
1599          * ensures forward progress). We'll be coming back to find
1600          * the rest.
1601          */
1602         if (!list_empty(&data->dispose))
1603                 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1604 out:
1605         return ret;
1606 }
1607
1608 /**
1609  * shrink_dcache_parent - prune dcache
1610  * @parent: parent of entries to prune
1611  *
1612  * Prune the dcache to remove unused children of the parent dentry.
1613  */
1614 void shrink_dcache_parent(struct dentry *parent)
1615 {
1616         for (;;) {
1617                 struct select_data data = {.start = parent};
1618
1619                 INIT_LIST_HEAD(&data.dispose);
1620                 d_walk(parent, &data, select_collect);
1621
1622                 if (!list_empty(&data.dispose)) {
1623                         shrink_dentry_list(&data.dispose);
1624                         continue;
1625                 }
1626
1627                 cond_resched();
1628                 if (!data.found)
1629                         break;
1630                 data.victim = NULL;
1631                 d_walk(parent, &data, select_collect2);
1632                 if (data.victim) {
1633                         struct dentry *parent;
1634                         spin_lock(&data.victim->d_lock);
1635                         if (!shrink_lock_dentry(data.victim)) {
1636                                 spin_unlock(&data.victim->d_lock);
1637                                 rcu_read_unlock();
1638                         } else {
1639                                 rcu_read_unlock();
1640                                 parent = data.victim->d_parent;
1641                                 if (parent != data.victim)
1642                                         __dput_to_list(parent, &data.dispose);
1643                                 __dentry_kill(data.victim);
1644                         }
1645                 }
1646                 if (!list_empty(&data.dispose))
1647                         shrink_dentry_list(&data.dispose);
1648         }
1649 }
1650 EXPORT_SYMBOL(shrink_dcache_parent);
1651
1652 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1653 {
1654         /* it has busy descendents; complain about those instead */
1655         if (!list_empty(&dentry->d_subdirs))
1656                 return D_WALK_CONTINUE;
1657
1658         /* root with refcount 1 is fine */
1659         if (dentry == _data && dentry->d_lockref.count == 1)
1660                 return D_WALK_CONTINUE;
1661
1662         WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} "
1663                         " still in use (%d) [unmount of %s %s]\n",
1664                        dentry,
1665                        dentry->d_inode ?
1666                        dentry->d_inode->i_ino : 0UL,
1667                        dentry,
1668                        dentry->d_lockref.count,
1669                        dentry->d_sb->s_type->name,
1670                        dentry->d_sb->s_id);
1671         return D_WALK_CONTINUE;
1672 }
1673
1674 static void do_one_tree(struct dentry *dentry)
1675 {
1676         shrink_dcache_parent(dentry);
1677         d_walk(dentry, dentry, umount_check);
1678         d_drop(dentry);
1679         dput(dentry);
1680 }
1681
1682 /*
1683  * destroy the dentries attached to a superblock on unmounting
1684  */
1685 void shrink_dcache_for_umount(struct super_block *sb)
1686 {
1687         struct dentry *dentry;
1688
1689         WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1690
1691         dentry = sb->s_root;
1692         sb->s_root = NULL;
1693         do_one_tree(dentry);
1694
1695         while (!hlist_bl_empty(&sb->s_roots)) {
1696                 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1697                 do_one_tree(dentry);
1698         }
1699 }
1700
1701 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1702 {
1703         struct dentry **victim = _data;
1704         if (d_mountpoint(dentry)) {
1705                 __dget_dlock(dentry);
1706                 *victim = dentry;
1707                 return D_WALK_QUIT;
1708         }
1709         return D_WALK_CONTINUE;
1710 }
1711
1712 /**
1713  * d_invalidate - detach submounts, prune dcache, and drop
1714  * @dentry: dentry to invalidate (aka detach, prune and drop)
1715  */
1716 void d_invalidate(struct dentry *dentry)
1717 {
1718         bool had_submounts = false;
1719         spin_lock(&dentry->d_lock);
1720         if (d_unhashed(dentry)) {
1721                 spin_unlock(&dentry->d_lock);
1722                 return;
1723         }
1724         __d_drop(dentry);
1725         spin_unlock(&dentry->d_lock);
1726
1727         /* Negative dentries can be dropped without further checks */
1728         if (!dentry->d_inode)
1729                 return;
1730
1731         shrink_dcache_parent(dentry);
1732         for (;;) {
1733                 struct dentry *victim = NULL;
1734                 d_walk(dentry, &victim, find_submount);
1735                 if (!victim) {
1736                         if (had_submounts)
1737                                 shrink_dcache_parent(dentry);
1738                         return;
1739                 }
1740                 had_submounts = true;
1741                 detach_mounts(victim);
1742                 dput(victim);
1743         }
1744 }
1745 EXPORT_SYMBOL(d_invalidate);
1746
1747 /**
1748  * __d_alloc    -       allocate a dcache entry
1749  * @sb: filesystem it will belong to
1750  * @name: qstr of the name
1751  *
1752  * Allocates a dentry. It returns %NULL if there is insufficient memory
1753  * available. On a success the dentry is returned. The name passed in is
1754  * copied and the copy passed in may be reused after this call.
1755  */
1756  
1757 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1758 {
1759         struct dentry *dentry;
1760         char *dname;
1761         int err;
1762
1763         dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru,
1764                                       GFP_KERNEL);
1765         if (!dentry)
1766                 return NULL;
1767
1768         /*
1769          * We guarantee that the inline name is always NUL-terminated.
1770          * This way the memcpy() done by the name switching in rename
1771          * will still always have a NUL at the end, even if we might
1772          * be overwriting an internal NUL character
1773          */
1774         dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1775         if (unlikely(!name)) {
1776                 name = &slash_name;
1777                 dname = dentry->d_iname;
1778         } else if (name->len > DNAME_INLINE_LEN-1) {
1779                 size_t size = offsetof(struct external_name, name[1]);
1780                 struct external_name *p = kmalloc(size + name->len,
1781                                                   GFP_KERNEL_ACCOUNT |
1782                                                   __GFP_RECLAIMABLE);
1783                 if (!p) {
1784                         kmem_cache_free(dentry_cache, dentry); 
1785                         return NULL;
1786                 }
1787                 atomic_set(&p->u.count, 1);
1788                 dname = p->name;
1789         } else  {
1790                 dname = dentry->d_iname;
1791         }       
1792
1793         dentry->d_name.len = name->len;
1794         dentry->d_name.hash = name->hash;
1795         memcpy(dname, name->name, name->len);
1796         dname[name->len] = 0;
1797
1798         /* Make sure we always see the terminating NUL character */
1799         smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1800
1801         dentry->d_lockref.count = 1;
1802         dentry->d_flags = 0;
1803         spin_lock_init(&dentry->d_lock);
1804         seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1805         dentry->d_inode = NULL;
1806         dentry->d_parent = dentry;
1807         dentry->d_sb = sb;
1808         dentry->d_op = NULL;
1809         dentry->d_fsdata = NULL;
1810         INIT_HLIST_BL_NODE(&dentry->d_hash);
1811         INIT_LIST_HEAD(&dentry->d_lru);
1812         INIT_LIST_HEAD(&dentry->d_subdirs);
1813         INIT_HLIST_NODE(&dentry->d_u.d_alias);
1814         INIT_LIST_HEAD(&dentry->d_child);
1815         d_set_d_op(dentry, dentry->d_sb->s_d_op);
1816
1817         if (dentry->d_op && dentry->d_op->d_init) {
1818                 err = dentry->d_op->d_init(dentry);
1819                 if (err) {
1820                         if (dname_external(dentry))
1821                                 kfree(external_name(dentry));
1822                         kmem_cache_free(dentry_cache, dentry);
1823                         return NULL;
1824                 }
1825         }
1826
1827         this_cpu_inc(nr_dentry);
1828
1829         return dentry;
1830 }
1831
1832 /**
1833  * d_alloc      -       allocate a dcache entry
1834  * @parent: parent of entry to allocate
1835  * @name: qstr of the name
1836  *
1837  * Allocates a dentry. It returns %NULL if there is insufficient memory
1838  * available. On a success the dentry is returned. The name passed in is
1839  * copied and the copy passed in may be reused after this call.
1840  */
1841 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1842 {
1843         struct dentry *dentry = __d_alloc(parent->d_sb, name);
1844         if (!dentry)
1845                 return NULL;
1846         spin_lock(&parent->d_lock);
1847         /*
1848          * don't need child lock because it is not subject
1849          * to concurrency here
1850          */
1851         __dget_dlock(parent);
1852         dentry->d_parent = parent;
1853         list_add(&dentry->d_child, &parent->d_subdirs);
1854         spin_unlock(&parent->d_lock);
1855
1856         return dentry;
1857 }
1858 EXPORT_SYMBOL(d_alloc);
1859
1860 struct dentry *d_alloc_anon(struct super_block *sb)
1861 {
1862         return __d_alloc(sb, NULL);
1863 }
1864 EXPORT_SYMBOL(d_alloc_anon);
1865
1866 struct dentry *d_alloc_cursor(struct dentry * parent)
1867 {
1868         struct dentry *dentry = d_alloc_anon(parent->d_sb);
1869         if (dentry) {
1870                 dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1871                 dentry->d_parent = dget(parent);
1872         }
1873         return dentry;
1874 }
1875
1876 /**
1877  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1878  * @sb: the superblock
1879  * @name: qstr of the name
1880  *
1881  * For a filesystem that just pins its dentries in memory and never
1882  * performs lookups at all, return an unhashed IS_ROOT dentry.
1883  * This is used for pipes, sockets et.al. - the stuff that should
1884  * never be anyone's children or parents.  Unlike all other
1885  * dentries, these will not have RCU delay between dropping the
1886  * last reference and freeing them.
1887  *
1888  * The only user is alloc_file_pseudo() and that's what should
1889  * be considered a public interface.  Don't use directly.
1890  */
1891 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1892 {
1893         static const struct dentry_operations anon_ops = {
1894                 .d_dname = simple_dname
1895         };
1896         struct dentry *dentry = __d_alloc(sb, name);
1897         if (likely(dentry)) {
1898                 dentry->d_flags |= DCACHE_NORCU;
1899                 if (!sb->s_d_op)
1900                         d_set_d_op(dentry, &anon_ops);
1901         }
1902         return dentry;
1903 }
1904
1905 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1906 {
1907         struct qstr q;
1908
1909         q.name = name;
1910         q.hash_len = hashlen_string(parent, name);
1911         return d_alloc(parent, &q);
1912 }
1913 EXPORT_SYMBOL(d_alloc_name);
1914
1915 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1916 {
1917         WARN_ON_ONCE(dentry->d_op);
1918         WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH  |
1919                                 DCACHE_OP_COMPARE       |
1920                                 DCACHE_OP_REVALIDATE    |
1921                                 DCACHE_OP_WEAK_REVALIDATE       |
1922                                 DCACHE_OP_DELETE        |
1923                                 DCACHE_OP_REAL));
1924         dentry->d_op = op;
1925         if (!op)
1926                 return;
1927         if (op->d_hash)
1928                 dentry->d_flags |= DCACHE_OP_HASH;
1929         if (op->d_compare)
1930                 dentry->d_flags |= DCACHE_OP_COMPARE;
1931         if (op->d_revalidate)
1932                 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1933         if (op->d_weak_revalidate)
1934                 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1935         if (op->d_delete)
1936                 dentry->d_flags |= DCACHE_OP_DELETE;
1937         if (op->d_prune)
1938                 dentry->d_flags |= DCACHE_OP_PRUNE;
1939         if (op->d_real)
1940                 dentry->d_flags |= DCACHE_OP_REAL;
1941
1942 }
1943 EXPORT_SYMBOL(d_set_d_op);
1944
1945 static unsigned d_flags_for_inode(struct inode *inode)
1946 {
1947         unsigned add_flags = DCACHE_REGULAR_TYPE;
1948
1949         if (!inode)
1950                 return DCACHE_MISS_TYPE;
1951
1952         if (S_ISDIR(inode->i_mode)) {
1953                 add_flags = DCACHE_DIRECTORY_TYPE;
1954                 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1955                         if (unlikely(!inode->i_op->lookup))
1956                                 add_flags = DCACHE_AUTODIR_TYPE;
1957                         else
1958                                 inode->i_opflags |= IOP_LOOKUP;
1959                 }
1960                 goto type_determined;
1961         }
1962
1963         if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1964                 if (unlikely(inode->i_op->get_link)) {
1965                         add_flags = DCACHE_SYMLINK_TYPE;
1966                         goto type_determined;
1967                 }
1968                 inode->i_opflags |= IOP_NOFOLLOW;
1969         }
1970
1971         if (unlikely(!S_ISREG(inode->i_mode)))
1972                 add_flags = DCACHE_SPECIAL_TYPE;
1973
1974 type_determined:
1975         if (unlikely(IS_AUTOMOUNT(inode)))
1976                 add_flags |= DCACHE_NEED_AUTOMOUNT;
1977         return add_flags;
1978 }
1979
1980 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1981 {
1982         unsigned add_flags = d_flags_for_inode(inode);
1983         WARN_ON(d_in_lookup(dentry));
1984
1985         spin_lock(&dentry->d_lock);
1986         /*
1987          * Decrement negative dentry count if it was in the LRU list.
1988          */
1989         if (dentry->d_flags & DCACHE_LRU_LIST)
1990                 this_cpu_dec(nr_dentry_negative);
1991         hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1992         raw_write_seqcount_begin(&dentry->d_seq);
1993         __d_set_inode_and_type(dentry, inode, add_flags);
1994         raw_write_seqcount_end(&dentry->d_seq);
1995         fsnotify_update_flags(dentry);
1996         spin_unlock(&dentry->d_lock);
1997 }
1998
1999 /**
2000  * d_instantiate - fill in inode information for a dentry
2001  * @entry: dentry to complete
2002  * @inode: inode to attach to this dentry
2003  *
2004  * Fill in inode information in the entry.
2005  *
2006  * This turns negative dentries into productive full members
2007  * of society.
2008  *
2009  * NOTE! This assumes that the inode count has been incremented
2010  * (or otherwise set) by the caller to indicate that it is now
2011  * in use by the dcache.
2012  */
2013  
2014 void d_instantiate(struct dentry *entry, struct inode * inode)
2015 {
2016         BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
2017         if (inode) {
2018                 security_d_instantiate(entry, inode);
2019                 spin_lock(&inode->i_lock);
2020                 __d_instantiate(entry, inode);
2021                 spin_unlock(&inode->i_lock);
2022         }
2023 }
2024 EXPORT_SYMBOL(d_instantiate);
2025
2026 /*
2027  * This should be equivalent to d_instantiate() + unlock_new_inode(),
2028  * with lockdep-related part of unlock_new_inode() done before
2029  * anything else.  Use that instead of open-coding d_instantiate()/
2030  * unlock_new_inode() combinations.
2031  */
2032 void d_instantiate_new(struct dentry *entry, struct inode *inode)
2033 {
2034         BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
2035         BUG_ON(!inode);
2036         lockdep_annotate_inode_mutex_key(inode);
2037         security_d_instantiate(entry, inode);
2038         spin_lock(&inode->i_lock);
2039         __d_instantiate(entry, inode);
2040         WARN_ON(!(inode->i_state & I_NEW));
2041         inode->i_state &= ~I_NEW & ~I_CREATING;
2042         smp_mb();
2043         wake_up_bit(&inode->i_state, __I_NEW);
2044         spin_unlock(&inode->i_lock);
2045 }
2046 EXPORT_SYMBOL(d_instantiate_new);
2047
2048 struct dentry *d_make_root(struct inode *root_inode)
2049 {
2050         struct dentry *res = NULL;
2051
2052         if (root_inode) {
2053                 res = d_alloc_anon(root_inode->i_sb);
2054                 if (res)
2055                         d_instantiate(res, root_inode);
2056                 else
2057                         iput(root_inode);
2058         }
2059         return res;
2060 }
2061 EXPORT_SYMBOL(d_make_root);
2062
2063 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2064 {
2065         struct super_block *sb;
2066         struct dentry *new, *res;
2067
2068         if (!inode)
2069                 return ERR_PTR(-ESTALE);
2070         if (IS_ERR(inode))
2071                 return ERR_CAST(inode);
2072
2073         sb = inode->i_sb;
2074
2075         res = d_find_any_alias(inode); /* existing alias? */
2076         if (res)
2077                 goto out;
2078
2079         new = d_alloc_anon(sb);
2080         if (!new) {
2081                 res = ERR_PTR(-ENOMEM);
2082                 goto out;
2083         }
2084
2085         security_d_instantiate(new, inode);
2086         spin_lock(&inode->i_lock);
2087         res = __d_find_any_alias(inode); /* recheck under lock */
2088         if (likely(!res)) { /* still no alias, attach a disconnected dentry */
2089                 unsigned add_flags = d_flags_for_inode(inode);
2090
2091                 if (disconnected)
2092                         add_flags |= DCACHE_DISCONNECTED;
2093
2094                 spin_lock(&new->d_lock);
2095                 __d_set_inode_and_type(new, inode, add_flags);
2096                 hlist_add_head(&new->d_u.d_alias, &inode->i_dentry);
2097                 if (!disconnected) {
2098                         hlist_bl_lock(&sb->s_roots);
2099                         hlist_bl_add_head(&new->d_hash, &sb->s_roots);
2100                         hlist_bl_unlock(&sb->s_roots);
2101                 }
2102                 spin_unlock(&new->d_lock);
2103                 spin_unlock(&inode->i_lock);
2104                 inode = NULL; /* consumed by new->d_inode */
2105                 res = new;
2106         } else {
2107                 spin_unlock(&inode->i_lock);
2108                 dput(new);
2109         }
2110
2111  out:
2112         iput(inode);
2113         return res;
2114 }
2115
2116 /**
2117  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2118  * @inode: inode to allocate the dentry for
2119  *
2120  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2121  * similar open by handle operations.  The returned dentry may be anonymous,
2122  * or may have a full name (if the inode was already in the cache).
2123  *
2124  * When called on a directory inode, we must ensure that the inode only ever
2125  * has one dentry.  If a dentry is found, that is returned instead of
2126  * allocating a new one.
2127  *
2128  * On successful return, the reference to the inode has been transferred
2129  * to the dentry.  In case of an error the reference on the inode is released.
2130  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2131  * be passed in and the error will be propagated to the return value,
2132  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2133  */
2134 struct dentry *d_obtain_alias(struct inode *inode)
2135 {
2136         return __d_obtain_alias(inode, true);
2137 }
2138 EXPORT_SYMBOL(d_obtain_alias);
2139
2140 /**
2141  * d_obtain_root - find or allocate a dentry for a given inode
2142  * @inode: inode to allocate the dentry for
2143  *
2144  * Obtain an IS_ROOT dentry for the root of a filesystem.
2145  *
2146  * We must ensure that directory inodes only ever have one dentry.  If a
2147  * dentry is found, that is returned instead of allocating a new one.
2148  *
2149  * On successful return, the reference to the inode has been transferred
2150  * to the dentry.  In case of an error the reference on the inode is
2151  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2152  * error will be propagate to the return value, with a %NULL @inode
2153  * replaced by ERR_PTR(-ESTALE).
2154  */
2155 struct dentry *d_obtain_root(struct inode *inode)
2156 {
2157         return __d_obtain_alias(inode, false);
2158 }
2159 EXPORT_SYMBOL(d_obtain_root);
2160
2161 /**
2162  * d_add_ci - lookup or allocate new dentry with case-exact name
2163  * @inode:  the inode case-insensitive lookup has found
2164  * @dentry: the negative dentry that was passed to the parent's lookup func
2165  * @name:   the case-exact name to be associated with the returned dentry
2166  *
2167  * This is to avoid filling the dcache with case-insensitive names to the
2168  * same inode, only the actual correct case is stored in the dcache for
2169  * case-insensitive filesystems.
2170  *
2171  * For a case-insensitive lookup match and if the case-exact dentry
2172  * already exists in the dcache, use it and return it.
2173  *
2174  * If no entry exists with the exact case name, allocate new dentry with
2175  * the exact case, and return the spliced entry.
2176  */
2177 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2178                         struct qstr *name)
2179 {
2180         struct dentry *found, *res;
2181
2182         /*
2183          * First check if a dentry matching the name already exists,
2184          * if not go ahead and create it now.
2185          */
2186         found = d_hash_and_lookup(dentry->d_parent, name);
2187         if (found) {
2188                 iput(inode);
2189                 return found;
2190         }
2191         if (d_in_lookup(dentry)) {
2192                 found = d_alloc_parallel(dentry->d_parent, name,
2193                                         dentry->d_wait);
2194                 if (IS_ERR(found) || !d_in_lookup(found)) {
2195                         iput(inode);
2196                         return found;
2197                 }
2198         } else {
2199                 found = d_alloc(dentry->d_parent, name);
2200                 if (!found) {
2201                         iput(inode);
2202                         return ERR_PTR(-ENOMEM);
2203                 } 
2204         }
2205         res = d_splice_alias(inode, found);
2206         if (res) {
2207                 d_lookup_done(found);
2208                 dput(found);
2209                 return res;
2210         }
2211         return found;
2212 }
2213 EXPORT_SYMBOL(d_add_ci);
2214
2215 /**
2216  * d_same_name - compare dentry name with case-exact name
2217  * @parent: parent dentry
2218  * @dentry: the negative dentry that was passed to the parent's lookup func
2219  * @name:   the case-exact name to be associated with the returned dentry
2220  *
2221  * Return: true if names are same, or false
2222  */
2223 bool d_same_name(const struct dentry *dentry, const struct dentry *parent,
2224                  const struct qstr *name)
2225 {
2226         if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2227                 if (dentry->d_name.len != name->len)
2228                         return false;
2229                 return dentry_cmp(dentry, name->name, name->len) == 0;
2230         }
2231         return parent->d_op->d_compare(dentry,
2232                                        dentry->d_name.len, dentry->d_name.name,
2233                                        name) == 0;
2234 }
2235 EXPORT_SYMBOL_GPL(d_same_name);
2236
2237 /*
2238  * This is __d_lookup_rcu() when the parent dentry has
2239  * DCACHE_OP_COMPARE, which makes things much nastier.
2240  */
2241 static noinline struct dentry *__d_lookup_rcu_op_compare(
2242         const struct dentry *parent,
2243         const struct qstr *name,
2244         unsigned *seqp)
2245 {
2246         u64 hashlen = name->hash_len;
2247         struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2248         struct hlist_bl_node *node;
2249         struct dentry *dentry;
2250
2251         hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2252                 int tlen;
2253                 const char *tname;
2254                 unsigned seq;
2255
2256 seqretry:
2257                 seq = raw_seqcount_begin(&dentry->d_seq);
2258                 if (dentry->d_parent != parent)
2259                         continue;
2260                 if (d_unhashed(dentry))
2261                         continue;
2262                 if (dentry->d_name.hash != hashlen_hash(hashlen))
2263                         continue;
2264                 tlen = dentry->d_name.len;
2265                 tname = dentry->d_name.name;
2266                 /* we want a consistent (name,len) pair */
2267                 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2268                         cpu_relax();
2269                         goto seqretry;
2270                 }
2271                 if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0)
2272                         continue;
2273                 *seqp = seq;
2274                 return dentry;
2275         }
2276         return NULL;
2277 }
2278
2279 /**
2280  * __d_lookup_rcu - search for a dentry (racy, store-free)
2281  * @parent: parent dentry
2282  * @name: qstr of name we wish to find
2283  * @seqp: returns d_seq value at the point where the dentry was found
2284  * Returns: dentry, or NULL
2285  *
2286  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2287  * resolution (store-free path walking) design described in
2288  * Documentation/filesystems/path-lookup.txt.
2289  *
2290  * This is not to be used outside core vfs.
2291  *
2292  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2293  * held, and rcu_read_lock held. The returned dentry must not be stored into
2294  * without taking d_lock and checking d_seq sequence count against @seq
2295  * returned here.
2296  *
2297  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2298  * function.
2299  *
2300  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2301  * the returned dentry, so long as its parent's seqlock is checked after the
2302  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2303  * is formed, giving integrity down the path walk.
2304  *
2305  * NOTE! The caller *has* to check the resulting dentry against the sequence
2306  * number we've returned before using any of the resulting dentry state!
2307  */
2308 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2309                                 const struct qstr *name,
2310                                 unsigned *seqp)
2311 {
2312         u64 hashlen = name->hash_len;
2313         const unsigned char *str = name->name;
2314         struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2315         struct hlist_bl_node *node;
2316         struct dentry *dentry;
2317
2318         /*
2319          * Note: There is significant duplication with __d_lookup_rcu which is
2320          * required to prevent single threaded performance regressions
2321          * especially on architectures where smp_rmb (in seqcounts) are costly.
2322          * Keep the two functions in sync.
2323          */
2324
2325         if (unlikely(parent->d_flags & DCACHE_OP_COMPARE))
2326                 return __d_lookup_rcu_op_compare(parent, name, seqp);
2327
2328         /*
2329          * The hash list is protected using RCU.
2330          *
2331          * Carefully use d_seq when comparing a candidate dentry, to avoid
2332          * races with d_move().
2333          *
2334          * It is possible that concurrent renames can mess up our list
2335          * walk here and result in missing our dentry, resulting in the
2336          * false-negative result. d_lookup() protects against concurrent
2337          * renames using rename_lock seqlock.
2338          *
2339          * See Documentation/filesystems/path-lookup.txt for more details.
2340          */
2341         hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2342                 unsigned seq;
2343
2344                 /*
2345                  * The dentry sequence count protects us from concurrent
2346                  * renames, and thus protects parent and name fields.
2347                  *
2348                  * The caller must perform a seqcount check in order
2349                  * to do anything useful with the returned dentry.
2350                  *
2351                  * NOTE! We do a "raw" seqcount_begin here. That means that
2352                  * we don't wait for the sequence count to stabilize if it
2353                  * is in the middle of a sequence change. If we do the slow
2354                  * dentry compare, we will do seqretries until it is stable,
2355                  * and if we end up with a successful lookup, we actually
2356                  * want to exit RCU lookup anyway.
2357                  *
2358                  * Note that raw_seqcount_begin still *does* smp_rmb(), so
2359                  * we are still guaranteed NUL-termination of ->d_name.name.
2360                  */
2361                 seq = raw_seqcount_begin(&dentry->d_seq);
2362                 if (dentry->d_parent != parent)
2363                         continue;
2364                 if (d_unhashed(dentry))
2365                         continue;
2366                 if (dentry->d_name.hash_len != hashlen)
2367                         continue;
2368                 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2369                         continue;
2370                 *seqp = seq;
2371                 return dentry;
2372         }
2373         return NULL;
2374 }
2375
2376 /**
2377  * d_lookup - search for a dentry
2378  * @parent: parent dentry
2379  * @name: qstr of name we wish to find
2380  * Returns: dentry, or NULL
2381  *
2382  * d_lookup searches the children of the parent dentry for the name in
2383  * question. If the dentry is found its reference count is incremented and the
2384  * dentry is returned. The caller must use dput to free the entry when it has
2385  * finished using it. %NULL is returned if the dentry does not exist.
2386  */
2387 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2388 {
2389         struct dentry *dentry;
2390         unsigned seq;
2391
2392         do {
2393                 seq = read_seqbegin(&rename_lock);
2394                 dentry = __d_lookup(parent, name);
2395                 if (dentry)
2396                         break;
2397         } while (read_seqretry(&rename_lock, seq));
2398         return dentry;
2399 }
2400 EXPORT_SYMBOL(d_lookup);
2401
2402 /**
2403  * __d_lookup - search for a dentry (racy)
2404  * @parent: parent dentry
2405  * @name: qstr of name we wish to find
2406  * Returns: dentry, or NULL
2407  *
2408  * __d_lookup is like d_lookup, however it may (rarely) return a
2409  * false-negative result due to unrelated rename activity.
2410  *
2411  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2412  * however it must be used carefully, eg. with a following d_lookup in
2413  * the case of failure.
2414  *
2415  * __d_lookup callers must be commented.
2416  */
2417 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2418 {
2419         unsigned int hash = name->hash;
2420         struct hlist_bl_head *b = d_hash(hash);
2421         struct hlist_bl_node *node;
2422         struct dentry *found = NULL;
2423         struct dentry *dentry;
2424
2425         /*
2426          * Note: There is significant duplication with __d_lookup_rcu which is
2427          * required to prevent single threaded performance regressions
2428          * especially on architectures where smp_rmb (in seqcounts) are costly.
2429          * Keep the two functions in sync.
2430          */
2431
2432         /*
2433          * The hash list is protected using RCU.
2434          *
2435          * Take d_lock when comparing a candidate dentry, to avoid races
2436          * with d_move().
2437          *
2438          * It is possible that concurrent renames can mess up our list
2439          * walk here and result in missing our dentry, resulting in the
2440          * false-negative result. d_lookup() protects against concurrent
2441          * renames using rename_lock seqlock.
2442          *
2443          * See Documentation/filesystems/path-lookup.txt for more details.
2444          */
2445         rcu_read_lock();
2446         
2447         hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2448
2449                 if (dentry->d_name.hash != hash)
2450                         continue;
2451
2452                 spin_lock(&dentry->d_lock);
2453                 if (dentry->d_parent != parent)
2454                         goto next;
2455                 if (d_unhashed(dentry))
2456                         goto next;
2457
2458                 if (!d_same_name(dentry, parent, name))
2459                         goto next;
2460
2461                 dentry->d_lockref.count++;
2462                 found = dentry;
2463                 spin_unlock(&dentry->d_lock);
2464                 break;
2465 next:
2466                 spin_unlock(&dentry->d_lock);
2467         }
2468         rcu_read_unlock();
2469
2470         return found;
2471 }
2472
2473 /**
2474  * d_hash_and_lookup - hash the qstr then search for a dentry
2475  * @dir: Directory to search in
2476  * @name: qstr of name we wish to find
2477  *
2478  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2479  */
2480 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2481 {
2482         /*
2483          * Check for a fs-specific hash function. Note that we must
2484          * calculate the standard hash first, as the d_op->d_hash()
2485          * routine may choose to leave the hash value unchanged.
2486          */
2487         name->hash = full_name_hash(dir, name->name, name->len);
2488         if (dir->d_flags & DCACHE_OP_HASH) {
2489                 int err = dir->d_op->d_hash(dir, name);
2490                 if (unlikely(err < 0))
2491                         return ERR_PTR(err);
2492         }
2493         return d_lookup(dir, name);
2494 }
2495 EXPORT_SYMBOL(d_hash_and_lookup);
2496
2497 /*
2498  * When a file is deleted, we have two options:
2499  * - turn this dentry into a negative dentry
2500  * - unhash this dentry and free it.
2501  *
2502  * Usually, we want to just turn this into
2503  * a negative dentry, but if anybody else is
2504  * currently using the dentry or the inode
2505  * we can't do that and we fall back on removing
2506  * it from the hash queues and waiting for
2507  * it to be deleted later when it has no users
2508  */
2509  
2510 /**
2511  * d_delete - delete a dentry
2512  * @dentry: The dentry to delete
2513  *
2514  * Turn the dentry into a negative dentry if possible, otherwise
2515  * remove it from the hash queues so it can be deleted later
2516  */
2517  
2518 void d_delete(struct dentry * dentry)
2519 {
2520         struct inode *inode = dentry->d_inode;
2521
2522         spin_lock(&inode->i_lock);
2523         spin_lock(&dentry->d_lock);
2524         /*
2525          * Are we the only user?
2526          */
2527         if (dentry->d_lockref.count == 1) {
2528                 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2529                 dentry_unlink_inode(dentry);
2530         } else {
2531                 __d_drop(dentry);
2532                 spin_unlock(&dentry->d_lock);
2533                 spin_unlock(&inode->i_lock);
2534         }
2535 }
2536 EXPORT_SYMBOL(d_delete);
2537
2538 static void __d_rehash(struct dentry *entry)
2539 {
2540         struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2541
2542         hlist_bl_lock(b);
2543         hlist_bl_add_head_rcu(&entry->d_hash, b);
2544         hlist_bl_unlock(b);
2545 }
2546
2547 /**
2548  * d_rehash     - add an entry back to the hash
2549  * @entry: dentry to add to the hash
2550  *
2551  * Adds a dentry to the hash according to its name.
2552  */
2553  
2554 void d_rehash(struct dentry * entry)
2555 {
2556         spin_lock(&entry->d_lock);
2557         __d_rehash(entry);
2558         spin_unlock(&entry->d_lock);
2559 }
2560 EXPORT_SYMBOL(d_rehash);
2561
2562 static inline unsigned start_dir_add(struct inode *dir)
2563 {
2564         preempt_disable_nested();
2565         for (;;) {
2566                 unsigned n = dir->i_dir_seq;
2567                 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2568                         return n;
2569                 cpu_relax();
2570         }
2571 }
2572
2573 static inline void end_dir_add(struct inode *dir, unsigned int n,
2574                                wait_queue_head_t *d_wait)
2575 {
2576         smp_store_release(&dir->i_dir_seq, n + 2);
2577         preempt_enable_nested();
2578         wake_up_all(d_wait);
2579 }
2580
2581 static void d_wait_lookup(struct dentry *dentry)
2582 {
2583         if (d_in_lookup(dentry)) {
2584                 DECLARE_WAITQUEUE(wait, current);
2585                 add_wait_queue(dentry->d_wait, &wait);
2586                 do {
2587                         set_current_state(TASK_UNINTERRUPTIBLE);
2588                         spin_unlock(&dentry->d_lock);
2589                         schedule();
2590                         spin_lock(&dentry->d_lock);
2591                 } while (d_in_lookup(dentry));
2592         }
2593 }
2594
2595 struct dentry *d_alloc_parallel(struct dentry *parent,
2596                                 const struct qstr *name,
2597                                 wait_queue_head_t *wq)
2598 {
2599         unsigned int hash = name->hash;
2600         struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2601         struct hlist_bl_node *node;
2602         struct dentry *new = d_alloc(parent, name);
2603         struct dentry *dentry;
2604         unsigned seq, r_seq, d_seq;
2605
2606         if (unlikely(!new))
2607                 return ERR_PTR(-ENOMEM);
2608
2609 retry:
2610         rcu_read_lock();
2611         seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2612         r_seq = read_seqbegin(&rename_lock);
2613         dentry = __d_lookup_rcu(parent, name, &d_seq);
2614         if (unlikely(dentry)) {
2615                 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2616                         rcu_read_unlock();
2617                         goto retry;
2618                 }
2619                 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2620                         rcu_read_unlock();
2621                         dput(dentry);
2622                         goto retry;
2623                 }
2624                 rcu_read_unlock();
2625                 dput(new);
2626                 return dentry;
2627         }
2628         if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2629                 rcu_read_unlock();
2630                 goto retry;
2631         }
2632
2633         if (unlikely(seq & 1)) {
2634                 rcu_read_unlock();
2635                 goto retry;
2636         }
2637
2638         hlist_bl_lock(b);
2639         if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2640                 hlist_bl_unlock(b);
2641                 rcu_read_unlock();
2642                 goto retry;
2643         }
2644         /*
2645          * No changes for the parent since the beginning of d_lookup().
2646          * Since all removals from the chain happen with hlist_bl_lock(),
2647          * any potential in-lookup matches are going to stay here until
2648          * we unlock the chain.  All fields are stable in everything
2649          * we encounter.
2650          */
2651         hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2652                 if (dentry->d_name.hash != hash)
2653                         continue;
2654                 if (dentry->d_parent != parent)
2655                         continue;
2656                 if (!d_same_name(dentry, parent, name))
2657                         continue;
2658                 hlist_bl_unlock(b);
2659                 /* now we can try to grab a reference */
2660                 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2661                         rcu_read_unlock();
2662                         goto retry;
2663                 }
2664
2665                 rcu_read_unlock();
2666                 /*
2667                  * somebody is likely to be still doing lookup for it;
2668                  * wait for them to finish
2669                  */
2670                 spin_lock(&dentry->d_lock);
2671                 d_wait_lookup(dentry);
2672                 /*
2673                  * it's not in-lookup anymore; in principle we should repeat
2674                  * everything from dcache lookup, but it's likely to be what
2675                  * d_lookup() would've found anyway.  If it is, just return it;
2676                  * otherwise we really have to repeat the whole thing.
2677                  */
2678                 if (unlikely(dentry->d_name.hash != hash))
2679                         goto mismatch;
2680                 if (unlikely(dentry->d_parent != parent))
2681                         goto mismatch;
2682                 if (unlikely(d_unhashed(dentry)))
2683                         goto mismatch;
2684                 if (unlikely(!d_same_name(dentry, parent, name)))
2685                         goto mismatch;
2686                 /* OK, it *is* a hashed match; return it */
2687                 spin_unlock(&dentry->d_lock);
2688                 dput(new);
2689                 return dentry;
2690         }
2691         rcu_read_unlock();
2692         /* we can't take ->d_lock here; it's OK, though. */
2693         new->d_flags |= DCACHE_PAR_LOOKUP;
2694         new->d_wait = wq;
2695         hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2696         hlist_bl_unlock(b);
2697         return new;
2698 mismatch:
2699         spin_unlock(&dentry->d_lock);
2700         dput(dentry);
2701         goto retry;
2702 }
2703 EXPORT_SYMBOL(d_alloc_parallel);
2704
2705 /*
2706  * - Unhash the dentry
2707  * - Retrieve and clear the waitqueue head in dentry
2708  * - Return the waitqueue head
2709  */
2710 static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry)
2711 {
2712         wait_queue_head_t *d_wait;
2713         struct hlist_bl_head *b;
2714
2715         lockdep_assert_held(&dentry->d_lock);
2716
2717         b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash);
2718         hlist_bl_lock(b);
2719         dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2720         __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2721         d_wait = dentry->d_wait;
2722         dentry->d_wait = NULL;
2723         hlist_bl_unlock(b);
2724         INIT_HLIST_NODE(&dentry->d_u.d_alias);
2725         INIT_LIST_HEAD(&dentry->d_lru);
2726         return d_wait;
2727 }
2728
2729 void __d_lookup_unhash_wake(struct dentry *dentry)
2730 {
2731         spin_lock(&dentry->d_lock);
2732         wake_up_all(__d_lookup_unhash(dentry));
2733         spin_unlock(&dentry->d_lock);
2734 }
2735 EXPORT_SYMBOL(__d_lookup_unhash_wake);
2736
2737 /* inode->i_lock held if inode is non-NULL */
2738
2739 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2740 {
2741         wait_queue_head_t *d_wait;
2742         struct inode *dir = NULL;
2743         unsigned n;
2744         spin_lock(&dentry->d_lock);
2745         if (unlikely(d_in_lookup(dentry))) {
2746                 dir = dentry->d_parent->d_inode;
2747                 n = start_dir_add(dir);
2748                 d_wait = __d_lookup_unhash(dentry);
2749         }
2750         if (inode) {
2751                 unsigned add_flags = d_flags_for_inode(inode);
2752                 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2753                 raw_write_seqcount_begin(&dentry->d_seq);
2754                 __d_set_inode_and_type(dentry, inode, add_flags);
2755                 raw_write_seqcount_end(&dentry->d_seq);
2756                 fsnotify_update_flags(dentry);
2757         }
2758         __d_rehash(dentry);
2759         if (dir)
2760                 end_dir_add(dir, n, d_wait);
2761         spin_unlock(&dentry->d_lock);
2762         if (inode)
2763                 spin_unlock(&inode->i_lock);
2764 }
2765
2766 /**
2767  * d_add - add dentry to hash queues
2768  * @entry: dentry to add
2769  * @inode: The inode to attach to this dentry
2770  *
2771  * This adds the entry to the hash queues and initializes @inode.
2772  * The entry was actually filled in earlier during d_alloc().
2773  */
2774
2775 void d_add(struct dentry *entry, struct inode *inode)
2776 {
2777         if (inode) {
2778                 security_d_instantiate(entry, inode);
2779                 spin_lock(&inode->i_lock);
2780         }
2781         __d_add(entry, inode);
2782 }
2783 EXPORT_SYMBOL(d_add);
2784
2785 /**
2786  * d_exact_alias - find and hash an exact unhashed alias
2787  * @entry: dentry to add
2788  * @inode: The inode to go with this dentry
2789  *
2790  * If an unhashed dentry with the same name/parent and desired
2791  * inode already exists, hash and return it.  Otherwise, return
2792  * NULL.
2793  *
2794  * Parent directory should be locked.
2795  */
2796 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2797 {
2798         struct dentry *alias;
2799         unsigned int hash = entry->d_name.hash;
2800
2801         spin_lock(&inode->i_lock);
2802         hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2803                 /*
2804                  * Don't need alias->d_lock here, because aliases with
2805                  * d_parent == entry->d_parent are not subject to name or
2806                  * parent changes, because the parent inode i_mutex is held.
2807                  */
2808                 if (alias->d_name.hash != hash)
2809                         continue;
2810                 if (alias->d_parent != entry->d_parent)
2811                         continue;
2812                 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2813                         continue;
2814                 spin_lock(&alias->d_lock);
2815                 if (!d_unhashed(alias)) {
2816                         spin_unlock(&alias->d_lock);
2817                         alias = NULL;
2818                 } else {
2819                         __dget_dlock(alias);
2820                         __d_rehash(alias);
2821                         spin_unlock(&alias->d_lock);
2822                 }
2823                 spin_unlock(&inode->i_lock);
2824                 return alias;
2825         }
2826         spin_unlock(&inode->i_lock);
2827         return NULL;
2828 }
2829 EXPORT_SYMBOL(d_exact_alias);
2830
2831 static void swap_names(struct dentry *dentry, struct dentry *target)
2832 {
2833         if (unlikely(dname_external(target))) {
2834                 if (unlikely(dname_external(dentry))) {
2835                         /*
2836                          * Both external: swap the pointers
2837                          */
2838                         swap(target->d_name.name, dentry->d_name.name);
2839                 } else {
2840                         /*
2841                          * dentry:internal, target:external.  Steal target's
2842                          * storage and make target internal.
2843                          */
2844                         memcpy(target->d_iname, dentry->d_name.name,
2845                                         dentry->d_name.len + 1);
2846                         dentry->d_name.name = target->d_name.name;
2847                         target->d_name.name = target->d_iname;
2848                 }
2849         } else {
2850                 if (unlikely(dname_external(dentry))) {
2851                         /*
2852                          * dentry:external, target:internal.  Give dentry's
2853                          * storage to target and make dentry internal
2854                          */
2855                         memcpy(dentry->d_iname, target->d_name.name,
2856                                         target->d_name.len + 1);
2857                         target->d_name.name = dentry->d_name.name;
2858                         dentry->d_name.name = dentry->d_iname;
2859                 } else {
2860                         /*
2861                          * Both are internal.
2862                          */
2863                         unsigned int i;
2864                         BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2865                         for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2866                                 swap(((long *) &dentry->d_iname)[i],
2867                                      ((long *) &target->d_iname)[i]);
2868                         }
2869                 }
2870         }
2871         swap(dentry->d_name.hash_len, target->d_name.hash_len);
2872 }
2873
2874 static void copy_name(struct dentry *dentry, struct dentry *target)
2875 {
2876         struct external_name *old_name = NULL;
2877         if (unlikely(dname_external(dentry)))
2878                 old_name = external_name(dentry);
2879         if (unlikely(dname_external(target))) {
2880                 atomic_inc(&external_name(target)->u.count);
2881                 dentry->d_name = target->d_name;
2882         } else {
2883                 memcpy(dentry->d_iname, target->d_name.name,
2884                                 target->d_name.len + 1);
2885                 dentry->d_name.name = dentry->d_iname;
2886                 dentry->d_name.hash_len = target->d_name.hash_len;
2887         }
2888         if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2889                 kfree_rcu(old_name, u.head);
2890 }
2891
2892 /*
2893  * __d_move - move a dentry
2894  * @dentry: entry to move
2895  * @target: new dentry
2896  * @exchange: exchange the two dentries
2897  *
2898  * Update the dcache to reflect the move of a file name. Negative
2899  * dcache entries should not be moved in this way. Caller must hold
2900  * rename_lock, the i_mutex of the source and target directories,
2901  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2902  */
2903 static void __d_move(struct dentry *dentry, struct dentry *target,
2904                      bool exchange)
2905 {
2906         struct dentry *old_parent, *p;
2907         wait_queue_head_t *d_wait;
2908         struct inode *dir = NULL;
2909         unsigned n;
2910
2911         WARN_ON(!dentry->d_inode);
2912         if (WARN_ON(dentry == target))
2913                 return;
2914
2915         BUG_ON(d_ancestor(target, dentry));
2916         old_parent = dentry->d_parent;
2917         p = d_ancestor(old_parent, target);
2918         if (IS_ROOT(dentry)) {
2919                 BUG_ON(p);
2920                 spin_lock(&target->d_parent->d_lock);
2921         } else if (!p) {
2922                 /* target is not a descendent of dentry->d_parent */
2923                 spin_lock(&target->d_parent->d_lock);
2924                 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2925         } else {
2926                 BUG_ON(p == dentry);
2927                 spin_lock(&old_parent->d_lock);
2928                 if (p != target)
2929                         spin_lock_nested(&target->d_parent->d_lock,
2930                                         DENTRY_D_LOCK_NESTED);
2931         }
2932         spin_lock_nested(&dentry->d_lock, 2);
2933         spin_lock_nested(&target->d_lock, 3);
2934
2935         if (unlikely(d_in_lookup(target))) {
2936                 dir = target->d_parent->d_inode;
2937                 n = start_dir_add(dir);
2938                 d_wait = __d_lookup_unhash(target);
2939         }
2940
2941         write_seqcount_begin(&dentry->d_seq);
2942         write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2943
2944         /* unhash both */
2945         if (!d_unhashed(dentry))
2946                 ___d_drop(dentry);
2947         if (!d_unhashed(target))
2948                 ___d_drop(target);
2949
2950         /* ... and switch them in the tree */
2951         dentry->d_parent = target->d_parent;
2952         if (!exchange) {
2953                 copy_name(dentry, target);
2954                 target->d_hash.pprev = NULL;
2955                 dentry->d_parent->d_lockref.count++;
2956                 if (dentry != old_parent) /* wasn't IS_ROOT */
2957                         WARN_ON(!--old_parent->d_lockref.count);
2958         } else {
2959                 target->d_parent = old_parent;
2960                 swap_names(dentry, target);
2961                 list_move(&target->d_child, &target->d_parent->d_subdirs);
2962                 __d_rehash(target);
2963                 fsnotify_update_flags(target);
2964         }
2965         list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2966         __d_rehash(dentry);
2967         fsnotify_update_flags(dentry);
2968         fscrypt_handle_d_move(dentry);
2969
2970         write_seqcount_end(&target->d_seq);
2971         write_seqcount_end(&dentry->d_seq);
2972
2973         if (dir)
2974                 end_dir_add(dir, n, d_wait);
2975
2976         if (dentry->d_parent != old_parent)
2977                 spin_unlock(&dentry->d_parent->d_lock);
2978         if (dentry != old_parent)
2979                 spin_unlock(&old_parent->d_lock);
2980         spin_unlock(&target->d_lock);
2981         spin_unlock(&dentry->d_lock);
2982 }
2983
2984 /*
2985  * d_move - move a dentry
2986  * @dentry: entry to move
2987  * @target: new dentry
2988  *
2989  * Update the dcache to reflect the move of a file name. Negative
2990  * dcache entries should not be moved in this way. See the locking
2991  * requirements for __d_move.
2992  */
2993 void d_move(struct dentry *dentry, struct dentry *target)
2994 {
2995         write_seqlock(&rename_lock);
2996         __d_move(dentry, target, false);
2997         write_sequnlock(&rename_lock);
2998 }
2999 EXPORT_SYMBOL(d_move);
3000
3001 /*
3002  * d_exchange - exchange two dentries
3003  * @dentry1: first dentry
3004  * @dentry2: second dentry
3005  */
3006 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
3007 {
3008         write_seqlock(&rename_lock);
3009
3010         WARN_ON(!dentry1->d_inode);
3011         WARN_ON(!dentry2->d_inode);
3012         WARN_ON(IS_ROOT(dentry1));
3013         WARN_ON(IS_ROOT(dentry2));
3014
3015         __d_move(dentry1, dentry2, true);
3016
3017         write_sequnlock(&rename_lock);
3018 }
3019
3020 /**
3021  * d_ancestor - search for an ancestor
3022  * @p1: ancestor dentry
3023  * @p2: child dentry
3024  *
3025  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
3026  * an ancestor of p2, else NULL.
3027  */
3028 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
3029 {
3030         struct dentry *p;
3031
3032         for (p = p2; !IS_ROOT(p); p = p->d_parent) {
3033                 if (p->d_parent == p1)
3034                         return p;
3035         }
3036         return NULL;
3037 }
3038
3039 /*
3040  * This helper attempts to cope with remotely renamed directories
3041  *
3042  * It assumes that the caller is already holding
3043  * dentry->d_parent->d_inode->i_mutex, and rename_lock
3044  *
3045  * Note: If ever the locking in lock_rename() changes, then please
3046  * remember to update this too...
3047  */
3048 static int __d_unalias(struct inode *inode,
3049                 struct dentry *dentry, struct dentry *alias)
3050 {
3051         struct mutex *m1 = NULL;
3052         struct rw_semaphore *m2 = NULL;
3053         int ret = -ESTALE;
3054
3055         /* If alias and dentry share a parent, then no extra locks required */
3056         if (alias->d_parent == dentry->d_parent)
3057                 goto out_unalias;
3058
3059         /* See lock_rename() */
3060         if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
3061                 goto out_err;
3062         m1 = &dentry->d_sb->s_vfs_rename_mutex;
3063         if (!inode_trylock_shared(alias->d_parent->d_inode))
3064                 goto out_err;
3065         m2 = &alias->d_parent->d_inode->i_rwsem;
3066 out_unalias:
3067         __d_move(alias, dentry, false);
3068         ret = 0;
3069 out_err:
3070         if (m2)
3071                 up_read(m2);
3072         if (m1)
3073                 mutex_unlock(m1);
3074         return ret;
3075 }
3076
3077 /**
3078  * d_splice_alias - splice a disconnected dentry into the tree if one exists
3079  * @inode:  the inode which may have a disconnected dentry
3080  * @dentry: a negative dentry which we want to point to the inode.
3081  *
3082  * If inode is a directory and has an IS_ROOT alias, then d_move that in
3083  * place of the given dentry and return it, else simply d_add the inode
3084  * to the dentry and return NULL.
3085  *
3086  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3087  * we should error out: directories can't have multiple aliases.
3088  *
3089  * This is needed in the lookup routine of any filesystem that is exportable
3090  * (via knfsd) so that we can build dcache paths to directories effectively.
3091  *
3092  * If a dentry was found and moved, then it is returned.  Otherwise NULL
3093  * is returned.  This matches the expected return value of ->lookup.
3094  *
3095  * Cluster filesystems may call this function with a negative, hashed dentry.
3096  * In that case, we know that the inode will be a regular file, and also this
3097  * will only occur during atomic_open. So we need to check for the dentry
3098  * being already hashed only in the final case.
3099  */
3100 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3101 {
3102         if (IS_ERR(inode))
3103                 return ERR_CAST(inode);
3104
3105         BUG_ON(!d_unhashed(dentry));
3106
3107         if (!inode)
3108                 goto out;
3109
3110         security_d_instantiate(dentry, inode);
3111         spin_lock(&inode->i_lock);
3112         if (S_ISDIR(inode->i_mode)) {
3113                 struct dentry *new = __d_find_any_alias(inode);
3114                 if (unlikely(new)) {
3115                         /* The reference to new ensures it remains an alias */
3116                         spin_unlock(&inode->i_lock);
3117                         write_seqlock(&rename_lock);
3118                         if (unlikely(d_ancestor(new, dentry))) {
3119                                 write_sequnlock(&rename_lock);
3120                                 dput(new);
3121                                 new = ERR_PTR(-ELOOP);
3122                                 pr_warn_ratelimited(
3123                                         "VFS: Lookup of '%s' in %s %s"
3124                                         " would have caused loop\n",
3125                                         dentry->d_name.name,
3126                                         inode->i_sb->s_type->name,
3127                                         inode->i_sb->s_id);
3128                         } else if (!IS_ROOT(new)) {
3129                                 struct dentry *old_parent = dget(new->d_parent);
3130                                 int err = __d_unalias(inode, dentry, new);
3131                                 write_sequnlock(&rename_lock);
3132                                 if (err) {
3133                                         dput(new);
3134                                         new = ERR_PTR(err);
3135                                 }
3136                                 dput(old_parent);
3137                         } else {
3138                                 __d_move(new, dentry, false);
3139                                 write_sequnlock(&rename_lock);
3140                         }
3141                         iput(inode);
3142                         return new;
3143                 }
3144         }
3145 out:
3146         __d_add(dentry, inode);
3147         return NULL;
3148 }
3149 EXPORT_SYMBOL(d_splice_alias);
3150
3151 /*
3152  * Test whether new_dentry is a subdirectory of old_dentry.
3153  *
3154  * Trivially implemented using the dcache structure
3155  */
3156
3157 /**
3158  * is_subdir - is new dentry a subdirectory of old_dentry
3159  * @new_dentry: new dentry
3160  * @old_dentry: old dentry
3161  *
3162  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3163  * Returns false otherwise.
3164  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3165  */
3166   
3167 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3168 {
3169         bool result;
3170         unsigned seq;
3171
3172         if (new_dentry == old_dentry)
3173                 return true;
3174
3175         do {
3176                 /* for restarting inner loop in case of seq retry */
3177                 seq = read_seqbegin(&rename_lock);
3178                 /*
3179                  * Need rcu_readlock to protect against the d_parent trashing
3180                  * due to d_move
3181                  */
3182                 rcu_read_lock();
3183                 if (d_ancestor(old_dentry, new_dentry))
3184                         result = true;
3185                 else
3186                         result = false;
3187                 rcu_read_unlock();
3188         } while (read_seqretry(&rename_lock, seq));
3189
3190         return result;
3191 }
3192 EXPORT_SYMBOL(is_subdir);
3193
3194 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3195 {
3196         struct dentry *root = data;
3197         if (dentry != root) {
3198                 if (d_unhashed(dentry) || !dentry->d_inode)
3199                         return D_WALK_SKIP;
3200
3201                 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3202                         dentry->d_flags |= DCACHE_GENOCIDE;
3203                         dentry->d_lockref.count--;
3204                 }
3205         }
3206         return D_WALK_CONTINUE;
3207 }
3208
3209 void d_genocide(struct dentry *parent)
3210 {
3211         d_walk(parent, parent, d_genocide_kill);
3212 }
3213
3214 void d_mark_tmpfile(struct file *file, struct inode *inode)
3215 {
3216         struct dentry *dentry = file->f_path.dentry;
3217
3218         BUG_ON(dentry->d_name.name != dentry->d_iname ||
3219                 !hlist_unhashed(&dentry->d_u.d_alias) ||
3220                 !d_unlinked(dentry));
3221         spin_lock(&dentry->d_parent->d_lock);
3222         spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3223         dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3224                                 (unsigned long long)inode->i_ino);
3225         spin_unlock(&dentry->d_lock);
3226         spin_unlock(&dentry->d_parent->d_lock);
3227 }
3228 EXPORT_SYMBOL(d_mark_tmpfile);
3229
3230 void d_tmpfile(struct file *file, struct inode *inode)
3231 {
3232         struct dentry *dentry = file->f_path.dentry;
3233
3234         inode_dec_link_count(inode);
3235         d_mark_tmpfile(file, inode);
3236         d_instantiate(dentry, inode);
3237 }
3238 EXPORT_SYMBOL(d_tmpfile);
3239
3240 static __initdata unsigned long dhash_entries;
3241 static int __init set_dhash_entries(char *str)
3242 {
3243         if (!str)
3244                 return 0;
3245         dhash_entries = simple_strtoul(str, &str, 0);
3246         return 1;
3247 }
3248 __setup("dhash_entries=", set_dhash_entries);
3249
3250 static void __init dcache_init_early(void)
3251 {
3252         /* If hashes are distributed across NUMA nodes, defer
3253          * hash allocation until vmalloc space is available.
3254          */
3255         if (hashdist)
3256                 return;
3257
3258         dentry_hashtable =
3259                 alloc_large_system_hash("Dentry cache",
3260                                         sizeof(struct hlist_bl_head),
3261                                         dhash_entries,
3262                                         13,
3263                                         HASH_EARLY | HASH_ZERO,
3264                                         &d_hash_shift,
3265                                         NULL,
3266                                         0,
3267                                         0);
3268         d_hash_shift = 32 - d_hash_shift;
3269 }
3270
3271 static void __init dcache_init(void)
3272 {
3273         /*
3274          * A constructor could be added for stable state like the lists,
3275          * but it is probably not worth it because of the cache nature
3276          * of the dcache.
3277          */
3278         dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3279                 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3280                 d_iname);
3281
3282         /* Hash may have been set up in dcache_init_early */
3283         if (!hashdist)
3284                 return;
3285
3286         dentry_hashtable =
3287                 alloc_large_system_hash("Dentry cache",
3288                                         sizeof(struct hlist_bl_head),
3289                                         dhash_entries,
3290                                         13,
3291                                         HASH_ZERO,
3292                                         &d_hash_shift,
3293                                         NULL,
3294                                         0,
3295                                         0);
3296         d_hash_shift = 32 - d_hash_shift;
3297 }
3298
3299 /* SLAB cache for __getname() consumers */
3300 struct kmem_cache *names_cachep __ro_after_init;
3301 EXPORT_SYMBOL(names_cachep);
3302
3303 void __init vfs_caches_init_early(void)
3304 {
3305         int i;
3306
3307         for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3308                 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3309
3310         dcache_init_early();
3311         inode_init_early();
3312 }
3313
3314 void __init vfs_caches_init(void)
3315 {
3316         names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3317                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3318
3319         dcache_init();
3320         inode_init();
3321         files_init();
3322         files_maxfiles_init();
3323         mnt_init();
3324         bdev_cache_init();
3325         chrdev_init();
3326 }