net: mvpp2: mvpp2_percpu_read_relaxed() can be static
[linux-2.6-block.git] / fs / dcache.c
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16
17 #include <linux/ratelimit.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/security.h>
28 #include <linux/seqlock.h>
29 #include <linux/bootmem.h>
30 #include <linux/bit_spinlock.h>
31 #include <linux/rculist_bl.h>
32 #include <linux/list_lru.h>
33 #include "internal.h"
34 #include "mount.h"
35
36 /*
37  * Usage:
38  * dcache->d_inode->i_lock protects:
39  *   - i_dentry, d_u.d_alias, d_inode of aliases
40  * dcache_hash_bucket lock protects:
41  *   - the dcache hash table
42  * s_roots bl list spinlock protects:
43  *   - the s_roots list (see __d_drop)
44  * dentry->d_sb->s_dentry_lru_lock protects:
45  *   - the dcache lru lists and counters
46  * d_lock protects:
47  *   - d_flags
48  *   - d_name
49  *   - d_lru
50  *   - d_count
51  *   - d_unhashed()
52  *   - d_parent and d_subdirs
53  *   - childrens' d_child and d_parent
54  *   - d_u.d_alias, d_inode
55  *
56  * Ordering:
57  * dentry->d_inode->i_lock
58  *   dentry->d_lock
59  *     dentry->d_sb->s_dentry_lru_lock
60  *     dcache_hash_bucket lock
61  *     s_roots lock
62  *
63  * If there is an ancestor relationship:
64  * dentry->d_parent->...->d_parent->d_lock
65  *   ...
66  *     dentry->d_parent->d_lock
67  *       dentry->d_lock
68  *
69  * If no ancestor relationship:
70  * arbitrary, since it's serialized on rename_lock
71  */
72 int sysctl_vfs_cache_pressure __read_mostly = 100;
73 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
74
75 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
76
77 EXPORT_SYMBOL(rename_lock);
78
79 static struct kmem_cache *dentry_cache __read_mostly;
80
81 const struct qstr empty_name = QSTR_INIT("", 0);
82 EXPORT_SYMBOL(empty_name);
83 const struct qstr slash_name = QSTR_INIT("/", 1);
84 EXPORT_SYMBOL(slash_name);
85
86 /*
87  * This is the single most critical data structure when it comes
88  * to the dcache: the hashtable for lookups. Somebody should try
89  * to make this good - I've just made it work.
90  *
91  * This hash-function tries to avoid losing too many bits of hash
92  * information, yet avoid using a prime hash-size or similar.
93  */
94
95 static unsigned int d_hash_shift __read_mostly;
96
97 static struct hlist_bl_head *dentry_hashtable __read_mostly;
98
99 static inline struct hlist_bl_head *d_hash(unsigned int hash)
100 {
101         return dentry_hashtable + (hash >> d_hash_shift);
102 }
103
104 #define IN_LOOKUP_SHIFT 10
105 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
106
107 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
108                                         unsigned int hash)
109 {
110         hash += (unsigned long) parent / L1_CACHE_BYTES;
111         return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
112 }
113
114
115 /* Statistics gathering. */
116 struct dentry_stat_t dentry_stat = {
117         .age_limit = 45,
118 };
119
120 static DEFINE_PER_CPU(long, nr_dentry);
121 static DEFINE_PER_CPU(long, nr_dentry_unused);
122
123 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
124
125 /*
126  * Here we resort to our own counters instead of using generic per-cpu counters
127  * for consistency with what the vfs inode code does. We are expected to harvest
128  * better code and performance by having our own specialized counters.
129  *
130  * Please note that the loop is done over all possible CPUs, not over all online
131  * CPUs. The reason for this is that we don't want to play games with CPUs going
132  * on and off. If one of them goes off, we will just keep their counters.
133  *
134  * glommer: See cffbc8a for details, and if you ever intend to change this,
135  * please update all vfs counters to match.
136  */
137 static long get_nr_dentry(void)
138 {
139         int i;
140         long sum = 0;
141         for_each_possible_cpu(i)
142                 sum += per_cpu(nr_dentry, i);
143         return sum < 0 ? 0 : sum;
144 }
145
146 static long get_nr_dentry_unused(void)
147 {
148         int i;
149         long sum = 0;
150         for_each_possible_cpu(i)
151                 sum += per_cpu(nr_dentry_unused, i);
152         return sum < 0 ? 0 : sum;
153 }
154
155 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
156                    size_t *lenp, loff_t *ppos)
157 {
158         dentry_stat.nr_dentry = get_nr_dentry();
159         dentry_stat.nr_unused = get_nr_dentry_unused();
160         return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
161 }
162 #endif
163
164 /*
165  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
166  * The strings are both count bytes long, and count is non-zero.
167  */
168 #ifdef CONFIG_DCACHE_WORD_ACCESS
169
170 #include <asm/word-at-a-time.h>
171 /*
172  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
173  * aligned allocation for this particular component. We don't
174  * strictly need the load_unaligned_zeropad() safety, but it
175  * doesn't hurt either.
176  *
177  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
178  * need the careful unaligned handling.
179  */
180 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
181 {
182         unsigned long a,b,mask;
183
184         for (;;) {
185                 a = read_word_at_a_time(cs);
186                 b = load_unaligned_zeropad(ct);
187                 if (tcount < sizeof(unsigned long))
188                         break;
189                 if (unlikely(a != b))
190                         return 1;
191                 cs += sizeof(unsigned long);
192                 ct += sizeof(unsigned long);
193                 tcount -= sizeof(unsigned long);
194                 if (!tcount)
195                         return 0;
196         }
197         mask = bytemask_from_count(tcount);
198         return unlikely(!!((a ^ b) & mask));
199 }
200
201 #else
202
203 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
204 {
205         do {
206                 if (*cs != *ct)
207                         return 1;
208                 cs++;
209                 ct++;
210                 tcount--;
211         } while (tcount);
212         return 0;
213 }
214
215 #endif
216
217 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
218 {
219         /*
220          * Be careful about RCU walk racing with rename:
221          * use 'READ_ONCE' to fetch the name pointer.
222          *
223          * NOTE! Even if a rename will mean that the length
224          * was not loaded atomically, we don't care. The
225          * RCU walk will check the sequence count eventually,
226          * and catch it. And we won't overrun the buffer,
227          * because we're reading the name pointer atomically,
228          * and a dentry name is guaranteed to be properly
229          * terminated with a NUL byte.
230          *
231          * End result: even if 'len' is wrong, we'll exit
232          * early because the data cannot match (there can
233          * be no NUL in the ct/tcount data)
234          */
235         const unsigned char *cs = READ_ONCE(dentry->d_name.name);
236
237         return dentry_string_cmp(cs, ct, tcount);
238 }
239
240 struct external_name {
241         union {
242                 atomic_t count;
243                 struct rcu_head head;
244         } u;
245         unsigned char name[];
246 };
247
248 static inline struct external_name *external_name(struct dentry *dentry)
249 {
250         return container_of(dentry->d_name.name, struct external_name, name[0]);
251 }
252
253 static void __d_free(struct rcu_head *head)
254 {
255         struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
256
257         kmem_cache_free(dentry_cache, dentry); 
258 }
259
260 static void __d_free_external_name(struct rcu_head *head)
261 {
262         struct external_name *name = container_of(head, struct external_name,
263                                                   u.head);
264
265         mod_node_page_state(page_pgdat(virt_to_page(name)),
266                             NR_INDIRECTLY_RECLAIMABLE_BYTES,
267                             -ksize(name));
268
269         kfree(name);
270 }
271
272 static void __d_free_external(struct rcu_head *head)
273 {
274         struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
275
276         __d_free_external_name(&external_name(dentry)->u.head);
277
278         kmem_cache_free(dentry_cache, dentry);
279 }
280
281 static inline int dname_external(const struct dentry *dentry)
282 {
283         return dentry->d_name.name != dentry->d_iname;
284 }
285
286 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
287 {
288         spin_lock(&dentry->d_lock);
289         if (unlikely(dname_external(dentry))) {
290                 struct external_name *p = external_name(dentry);
291                 atomic_inc(&p->u.count);
292                 spin_unlock(&dentry->d_lock);
293                 name->name = p->name;
294         } else {
295                 memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN);
296                 spin_unlock(&dentry->d_lock);
297                 name->name = name->inline_name;
298         }
299 }
300 EXPORT_SYMBOL(take_dentry_name_snapshot);
301
302 void release_dentry_name_snapshot(struct name_snapshot *name)
303 {
304         if (unlikely(name->name != name->inline_name)) {
305                 struct external_name *p;
306                 p = container_of(name->name, struct external_name, name[0]);
307                 if (unlikely(atomic_dec_and_test(&p->u.count)))
308                         call_rcu(&p->u.head, __d_free_external_name);
309         }
310 }
311 EXPORT_SYMBOL(release_dentry_name_snapshot);
312
313 static inline void __d_set_inode_and_type(struct dentry *dentry,
314                                           struct inode *inode,
315                                           unsigned type_flags)
316 {
317         unsigned flags;
318
319         dentry->d_inode = inode;
320         flags = READ_ONCE(dentry->d_flags);
321         flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
322         flags |= type_flags;
323         WRITE_ONCE(dentry->d_flags, flags);
324 }
325
326 static inline void __d_clear_type_and_inode(struct dentry *dentry)
327 {
328         unsigned flags = READ_ONCE(dentry->d_flags);
329
330         flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
331         WRITE_ONCE(dentry->d_flags, flags);
332         dentry->d_inode = NULL;
333 }
334
335 static void dentry_free(struct dentry *dentry)
336 {
337         WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
338         if (unlikely(dname_external(dentry))) {
339                 struct external_name *p = external_name(dentry);
340                 if (likely(atomic_dec_and_test(&p->u.count))) {
341                         call_rcu(&dentry->d_u.d_rcu, __d_free_external);
342                         return;
343                 }
344         }
345         /* if dentry was never visible to RCU, immediate free is OK */
346         if (!(dentry->d_flags & DCACHE_RCUACCESS))
347                 __d_free(&dentry->d_u.d_rcu);
348         else
349                 call_rcu(&dentry->d_u.d_rcu, __d_free);
350 }
351
352 /*
353  * Release the dentry's inode, using the filesystem
354  * d_iput() operation if defined.
355  */
356 static void dentry_unlink_inode(struct dentry * dentry)
357         __releases(dentry->d_lock)
358         __releases(dentry->d_inode->i_lock)
359 {
360         struct inode *inode = dentry->d_inode;
361         bool hashed = !d_unhashed(dentry);
362
363         if (hashed)
364                 raw_write_seqcount_begin(&dentry->d_seq);
365         __d_clear_type_and_inode(dentry);
366         hlist_del_init(&dentry->d_u.d_alias);
367         if (hashed)
368                 raw_write_seqcount_end(&dentry->d_seq);
369         spin_unlock(&dentry->d_lock);
370         spin_unlock(&inode->i_lock);
371         if (!inode->i_nlink)
372                 fsnotify_inoderemove(inode);
373         if (dentry->d_op && dentry->d_op->d_iput)
374                 dentry->d_op->d_iput(dentry, inode);
375         else
376                 iput(inode);
377 }
378
379 /*
380  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
381  * is in use - which includes both the "real" per-superblock
382  * LRU list _and_ the DCACHE_SHRINK_LIST use.
383  *
384  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
385  * on the shrink list (ie not on the superblock LRU list).
386  *
387  * The per-cpu "nr_dentry_unused" counters are updated with
388  * the DCACHE_LRU_LIST bit.
389  *
390  * These helper functions make sure we always follow the
391  * rules. d_lock must be held by the caller.
392  */
393 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
394 static void d_lru_add(struct dentry *dentry)
395 {
396         D_FLAG_VERIFY(dentry, 0);
397         dentry->d_flags |= DCACHE_LRU_LIST;
398         this_cpu_inc(nr_dentry_unused);
399         WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
400 }
401
402 static void d_lru_del(struct dentry *dentry)
403 {
404         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
405         dentry->d_flags &= ~DCACHE_LRU_LIST;
406         this_cpu_dec(nr_dentry_unused);
407         WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
408 }
409
410 static void d_shrink_del(struct dentry *dentry)
411 {
412         D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
413         list_del_init(&dentry->d_lru);
414         dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
415         this_cpu_dec(nr_dentry_unused);
416 }
417
418 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
419 {
420         D_FLAG_VERIFY(dentry, 0);
421         list_add(&dentry->d_lru, list);
422         dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
423         this_cpu_inc(nr_dentry_unused);
424 }
425
426 /*
427  * These can only be called under the global LRU lock, ie during the
428  * callback for freeing the LRU list. "isolate" removes it from the
429  * LRU lists entirely, while shrink_move moves it to the indicated
430  * private list.
431  */
432 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
433 {
434         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
435         dentry->d_flags &= ~DCACHE_LRU_LIST;
436         this_cpu_dec(nr_dentry_unused);
437         list_lru_isolate(lru, &dentry->d_lru);
438 }
439
440 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
441                               struct list_head *list)
442 {
443         D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
444         dentry->d_flags |= DCACHE_SHRINK_LIST;
445         list_lru_isolate_move(lru, &dentry->d_lru, list);
446 }
447
448 /**
449  * d_drop - drop a dentry
450  * @dentry: dentry to drop
451  *
452  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
453  * be found through a VFS lookup any more. Note that this is different from
454  * deleting the dentry - d_delete will try to mark the dentry negative if
455  * possible, giving a successful _negative_ lookup, while d_drop will
456  * just make the cache lookup fail.
457  *
458  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
459  * reason (NFS timeouts or autofs deletes).
460  *
461  * __d_drop requires dentry->d_lock
462  * ___d_drop doesn't mark dentry as "unhashed"
463  *   (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
464  */
465 static void ___d_drop(struct dentry *dentry)
466 {
467         struct hlist_bl_head *b;
468         /*
469          * Hashed dentries are normally on the dentry hashtable,
470          * with the exception of those newly allocated by
471          * d_obtain_root, which are always IS_ROOT:
472          */
473         if (unlikely(IS_ROOT(dentry)))
474                 b = &dentry->d_sb->s_roots;
475         else
476                 b = d_hash(dentry->d_name.hash);
477
478         hlist_bl_lock(b);
479         __hlist_bl_del(&dentry->d_hash);
480         hlist_bl_unlock(b);
481 }
482
483 void __d_drop(struct dentry *dentry)
484 {
485         if (!d_unhashed(dentry)) {
486                 ___d_drop(dentry);
487                 dentry->d_hash.pprev = NULL;
488                 write_seqcount_invalidate(&dentry->d_seq);
489         }
490 }
491 EXPORT_SYMBOL(__d_drop);
492
493 void d_drop(struct dentry *dentry)
494 {
495         spin_lock(&dentry->d_lock);
496         __d_drop(dentry);
497         spin_unlock(&dentry->d_lock);
498 }
499 EXPORT_SYMBOL(d_drop);
500
501 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
502 {
503         struct dentry *next;
504         /*
505          * Inform d_walk() and shrink_dentry_list() that we are no longer
506          * attached to the dentry tree
507          */
508         dentry->d_flags |= DCACHE_DENTRY_KILLED;
509         if (unlikely(list_empty(&dentry->d_child)))
510                 return;
511         __list_del_entry(&dentry->d_child);
512         /*
513          * Cursors can move around the list of children.  While we'd been
514          * a normal list member, it didn't matter - ->d_child.next would've
515          * been updated.  However, from now on it won't be and for the
516          * things like d_walk() it might end up with a nasty surprise.
517          * Normally d_walk() doesn't care about cursors moving around -
518          * ->d_lock on parent prevents that and since a cursor has no children
519          * of its own, we get through it without ever unlocking the parent.
520          * There is one exception, though - if we ascend from a child that
521          * gets killed as soon as we unlock it, the next sibling is found
522          * using the value left in its ->d_child.next.  And if _that_
523          * pointed to a cursor, and cursor got moved (e.g. by lseek())
524          * before d_walk() regains parent->d_lock, we'll end up skipping
525          * everything the cursor had been moved past.
526          *
527          * Solution: make sure that the pointer left behind in ->d_child.next
528          * points to something that won't be moving around.  I.e. skip the
529          * cursors.
530          */
531         while (dentry->d_child.next != &parent->d_subdirs) {
532                 next = list_entry(dentry->d_child.next, struct dentry, d_child);
533                 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
534                         break;
535                 dentry->d_child.next = next->d_child.next;
536         }
537 }
538
539 static void __dentry_kill(struct dentry *dentry)
540 {
541         struct dentry *parent = NULL;
542         bool can_free = true;
543         if (!IS_ROOT(dentry))
544                 parent = dentry->d_parent;
545
546         /*
547          * The dentry is now unrecoverably dead to the world.
548          */
549         lockref_mark_dead(&dentry->d_lockref);
550
551         /*
552          * inform the fs via d_prune that this dentry is about to be
553          * unhashed and destroyed.
554          */
555         if (dentry->d_flags & DCACHE_OP_PRUNE)
556                 dentry->d_op->d_prune(dentry);
557
558         if (dentry->d_flags & DCACHE_LRU_LIST) {
559                 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
560                         d_lru_del(dentry);
561         }
562         /* if it was on the hash then remove it */
563         __d_drop(dentry);
564         dentry_unlist(dentry, parent);
565         if (parent)
566                 spin_unlock(&parent->d_lock);
567         if (dentry->d_inode)
568                 dentry_unlink_inode(dentry);
569         else
570                 spin_unlock(&dentry->d_lock);
571         this_cpu_dec(nr_dentry);
572         if (dentry->d_op && dentry->d_op->d_release)
573                 dentry->d_op->d_release(dentry);
574
575         spin_lock(&dentry->d_lock);
576         if (dentry->d_flags & DCACHE_SHRINK_LIST) {
577                 dentry->d_flags |= DCACHE_MAY_FREE;
578                 can_free = false;
579         }
580         spin_unlock(&dentry->d_lock);
581         if (likely(can_free))
582                 dentry_free(dentry);
583 }
584
585 static struct dentry *__lock_parent(struct dentry *dentry)
586 {
587         struct dentry *parent;
588         rcu_read_lock();
589         spin_unlock(&dentry->d_lock);
590 again:
591         parent = READ_ONCE(dentry->d_parent);
592         spin_lock(&parent->d_lock);
593         /*
594          * We can't blindly lock dentry until we are sure
595          * that we won't violate the locking order.
596          * Any changes of dentry->d_parent must have
597          * been done with parent->d_lock held, so
598          * spin_lock() above is enough of a barrier
599          * for checking if it's still our child.
600          */
601         if (unlikely(parent != dentry->d_parent)) {
602                 spin_unlock(&parent->d_lock);
603                 goto again;
604         }
605         rcu_read_unlock();
606         if (parent != dentry)
607                 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
608         else
609                 parent = NULL;
610         return parent;
611 }
612
613 static inline struct dentry *lock_parent(struct dentry *dentry)
614 {
615         struct dentry *parent = dentry->d_parent;
616         if (IS_ROOT(dentry))
617                 return NULL;
618         if (likely(spin_trylock(&parent->d_lock)))
619                 return parent;
620         return __lock_parent(dentry);
621 }
622
623 static inline bool retain_dentry(struct dentry *dentry)
624 {
625         WARN_ON(d_in_lookup(dentry));
626
627         /* Unreachable? Get rid of it */
628         if (unlikely(d_unhashed(dentry)))
629                 return false;
630
631         if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
632                 return false;
633
634         if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
635                 if (dentry->d_op->d_delete(dentry))
636                         return false;
637         }
638         /* retain; LRU fodder */
639         dentry->d_lockref.count--;
640         if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
641                 d_lru_add(dentry);
642         else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
643                 dentry->d_flags |= DCACHE_REFERENCED;
644         return true;
645 }
646
647 /*
648  * Finish off a dentry we've decided to kill.
649  * dentry->d_lock must be held, returns with it unlocked.
650  * Returns dentry requiring refcount drop, or NULL if we're done.
651  */
652 static struct dentry *dentry_kill(struct dentry *dentry)
653         __releases(dentry->d_lock)
654 {
655         struct inode *inode = dentry->d_inode;
656         struct dentry *parent = NULL;
657
658         if (inode && unlikely(!spin_trylock(&inode->i_lock)))
659                 goto slow_positive;
660
661         if (!IS_ROOT(dentry)) {
662                 parent = dentry->d_parent;
663                 if (unlikely(!spin_trylock(&parent->d_lock))) {
664                         parent = __lock_parent(dentry);
665                         if (likely(inode || !dentry->d_inode))
666                                 goto got_locks;
667                         /* negative that became positive */
668                         if (parent)
669                                 spin_unlock(&parent->d_lock);
670                         inode = dentry->d_inode;
671                         goto slow_positive;
672                 }
673         }
674         __dentry_kill(dentry);
675         return parent;
676
677 slow_positive:
678         spin_unlock(&dentry->d_lock);
679         spin_lock(&inode->i_lock);
680         spin_lock(&dentry->d_lock);
681         parent = lock_parent(dentry);
682 got_locks:
683         if (unlikely(dentry->d_lockref.count != 1)) {
684                 dentry->d_lockref.count--;
685         } else if (likely(!retain_dentry(dentry))) {
686                 __dentry_kill(dentry);
687                 return parent;
688         }
689         /* we are keeping it, after all */
690         if (inode)
691                 spin_unlock(&inode->i_lock);
692         if (parent)
693                 spin_unlock(&parent->d_lock);
694         spin_unlock(&dentry->d_lock);
695         return NULL;
696 }
697
698 /*
699  * Try to do a lockless dput(), and return whether that was successful.
700  *
701  * If unsuccessful, we return false, having already taken the dentry lock.
702  *
703  * The caller needs to hold the RCU read lock, so that the dentry is
704  * guaranteed to stay around even if the refcount goes down to zero!
705  */
706 static inline bool fast_dput(struct dentry *dentry)
707 {
708         int ret;
709         unsigned int d_flags;
710
711         /*
712          * If we have a d_op->d_delete() operation, we sould not
713          * let the dentry count go to zero, so use "put_or_lock".
714          */
715         if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
716                 return lockref_put_or_lock(&dentry->d_lockref);
717
718         /*
719          * .. otherwise, we can try to just decrement the
720          * lockref optimistically.
721          */
722         ret = lockref_put_return(&dentry->d_lockref);
723
724         /*
725          * If the lockref_put_return() failed due to the lock being held
726          * by somebody else, the fast path has failed. We will need to
727          * get the lock, and then check the count again.
728          */
729         if (unlikely(ret < 0)) {
730                 spin_lock(&dentry->d_lock);
731                 if (dentry->d_lockref.count > 1) {
732                         dentry->d_lockref.count--;
733                         spin_unlock(&dentry->d_lock);
734                         return 1;
735                 }
736                 return 0;
737         }
738
739         /*
740          * If we weren't the last ref, we're done.
741          */
742         if (ret)
743                 return 1;
744
745         /*
746          * Careful, careful. The reference count went down
747          * to zero, but we don't hold the dentry lock, so
748          * somebody else could get it again, and do another
749          * dput(), and we need to not race with that.
750          *
751          * However, there is a very special and common case
752          * where we don't care, because there is nothing to
753          * do: the dentry is still hashed, it does not have
754          * a 'delete' op, and it's referenced and already on
755          * the LRU list.
756          *
757          * NOTE! Since we aren't locked, these values are
758          * not "stable". However, it is sufficient that at
759          * some point after we dropped the reference the
760          * dentry was hashed and the flags had the proper
761          * value. Other dentry users may have re-gotten
762          * a reference to the dentry and change that, but
763          * our work is done - we can leave the dentry
764          * around with a zero refcount.
765          */
766         smp_rmb();
767         d_flags = READ_ONCE(dentry->d_flags);
768         d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
769
770         /* Nothing to do? Dropping the reference was all we needed? */
771         if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
772                 return 1;
773
774         /*
775          * Not the fast normal case? Get the lock. We've already decremented
776          * the refcount, but we'll need to re-check the situation after
777          * getting the lock.
778          */
779         spin_lock(&dentry->d_lock);
780
781         /*
782          * Did somebody else grab a reference to it in the meantime, and
783          * we're no longer the last user after all? Alternatively, somebody
784          * else could have killed it and marked it dead. Either way, we
785          * don't need to do anything else.
786          */
787         if (dentry->d_lockref.count) {
788                 spin_unlock(&dentry->d_lock);
789                 return 1;
790         }
791
792         /*
793          * Re-get the reference we optimistically dropped. We hold the
794          * lock, and we just tested that it was zero, so we can just
795          * set it to 1.
796          */
797         dentry->d_lockref.count = 1;
798         return 0;
799 }
800
801
802 /* 
803  * This is dput
804  *
805  * This is complicated by the fact that we do not want to put
806  * dentries that are no longer on any hash chain on the unused
807  * list: we'd much rather just get rid of them immediately.
808  *
809  * However, that implies that we have to traverse the dentry
810  * tree upwards to the parents which might _also_ now be
811  * scheduled for deletion (it may have been only waiting for
812  * its last child to go away).
813  *
814  * This tail recursion is done by hand as we don't want to depend
815  * on the compiler to always get this right (gcc generally doesn't).
816  * Real recursion would eat up our stack space.
817  */
818
819 /*
820  * dput - release a dentry
821  * @dentry: dentry to release 
822  *
823  * Release a dentry. This will drop the usage count and if appropriate
824  * call the dentry unlink method as well as removing it from the queues and
825  * releasing its resources. If the parent dentries were scheduled for release
826  * they too may now get deleted.
827  */
828 void dput(struct dentry *dentry)
829 {
830         if (unlikely(!dentry))
831                 return;
832
833 repeat:
834         might_sleep();
835
836         rcu_read_lock();
837         if (likely(fast_dput(dentry))) {
838                 rcu_read_unlock();
839                 return;
840         }
841
842         /* Slow case: now with the dentry lock held */
843         rcu_read_unlock();
844
845         if (likely(retain_dentry(dentry))) {
846                 spin_unlock(&dentry->d_lock);
847                 return;
848         }
849
850         dentry = dentry_kill(dentry);
851         if (dentry) {
852                 cond_resched();
853                 goto repeat;
854         }
855 }
856 EXPORT_SYMBOL(dput);
857
858
859 /* This must be called with d_lock held */
860 static inline void __dget_dlock(struct dentry *dentry)
861 {
862         dentry->d_lockref.count++;
863 }
864
865 static inline void __dget(struct dentry *dentry)
866 {
867         lockref_get(&dentry->d_lockref);
868 }
869
870 struct dentry *dget_parent(struct dentry *dentry)
871 {
872         int gotref;
873         struct dentry *ret;
874
875         /*
876          * Do optimistic parent lookup without any
877          * locking.
878          */
879         rcu_read_lock();
880         ret = READ_ONCE(dentry->d_parent);
881         gotref = lockref_get_not_zero(&ret->d_lockref);
882         rcu_read_unlock();
883         if (likely(gotref)) {
884                 if (likely(ret == READ_ONCE(dentry->d_parent)))
885                         return ret;
886                 dput(ret);
887         }
888
889 repeat:
890         /*
891          * Don't need rcu_dereference because we re-check it was correct under
892          * the lock.
893          */
894         rcu_read_lock();
895         ret = dentry->d_parent;
896         spin_lock(&ret->d_lock);
897         if (unlikely(ret != dentry->d_parent)) {
898                 spin_unlock(&ret->d_lock);
899                 rcu_read_unlock();
900                 goto repeat;
901         }
902         rcu_read_unlock();
903         BUG_ON(!ret->d_lockref.count);
904         ret->d_lockref.count++;
905         spin_unlock(&ret->d_lock);
906         return ret;
907 }
908 EXPORT_SYMBOL(dget_parent);
909
910 /**
911  * d_find_alias - grab a hashed alias of inode
912  * @inode: inode in question
913  *
914  * If inode has a hashed alias, or is a directory and has any alias,
915  * acquire the reference to alias and return it. Otherwise return NULL.
916  * Notice that if inode is a directory there can be only one alias and
917  * it can be unhashed only if it has no children, or if it is the root
918  * of a filesystem, or if the directory was renamed and d_revalidate
919  * was the first vfs operation to notice.
920  *
921  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
922  * any other hashed alias over that one.
923  */
924 static struct dentry *__d_find_alias(struct inode *inode)
925 {
926         struct dentry *alias, *discon_alias;
927
928 again:
929         discon_alias = NULL;
930         hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
931                 spin_lock(&alias->d_lock);
932                 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
933                         if (IS_ROOT(alias) &&
934                             (alias->d_flags & DCACHE_DISCONNECTED)) {
935                                 discon_alias = alias;
936                         } else {
937                                 __dget_dlock(alias);
938                                 spin_unlock(&alias->d_lock);
939                                 return alias;
940                         }
941                 }
942                 spin_unlock(&alias->d_lock);
943         }
944         if (discon_alias) {
945                 alias = discon_alias;
946                 spin_lock(&alias->d_lock);
947                 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
948                         __dget_dlock(alias);
949                         spin_unlock(&alias->d_lock);
950                         return alias;
951                 }
952                 spin_unlock(&alias->d_lock);
953                 goto again;
954         }
955         return NULL;
956 }
957
958 struct dentry *d_find_alias(struct inode *inode)
959 {
960         struct dentry *de = NULL;
961
962         if (!hlist_empty(&inode->i_dentry)) {
963                 spin_lock(&inode->i_lock);
964                 de = __d_find_alias(inode);
965                 spin_unlock(&inode->i_lock);
966         }
967         return de;
968 }
969 EXPORT_SYMBOL(d_find_alias);
970
971 /*
972  *      Try to kill dentries associated with this inode.
973  * WARNING: you must own a reference to inode.
974  */
975 void d_prune_aliases(struct inode *inode)
976 {
977         struct dentry *dentry;
978 restart:
979         spin_lock(&inode->i_lock);
980         hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
981                 spin_lock(&dentry->d_lock);
982                 if (!dentry->d_lockref.count) {
983                         struct dentry *parent = lock_parent(dentry);
984                         if (likely(!dentry->d_lockref.count)) {
985                                 __dentry_kill(dentry);
986                                 dput(parent);
987                                 goto restart;
988                         }
989                         if (parent)
990                                 spin_unlock(&parent->d_lock);
991                 }
992                 spin_unlock(&dentry->d_lock);
993         }
994         spin_unlock(&inode->i_lock);
995 }
996 EXPORT_SYMBOL(d_prune_aliases);
997
998 /*
999  * Lock a dentry from shrink list.
1000  * Called under rcu_read_lock() and dentry->d_lock; the former
1001  * guarantees that nothing we access will be freed under us.
1002  * Note that dentry is *not* protected from concurrent dentry_kill(),
1003  * d_delete(), etc.
1004  *
1005  * Return false if dentry has been disrupted or grabbed, leaving
1006  * the caller to kick it off-list.  Otherwise, return true and have
1007  * that dentry's inode and parent both locked.
1008  */
1009 static bool shrink_lock_dentry(struct dentry *dentry)
1010 {
1011         struct inode *inode;
1012         struct dentry *parent;
1013
1014         if (dentry->d_lockref.count)
1015                 return false;
1016
1017         inode = dentry->d_inode;
1018         if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1019                 spin_unlock(&dentry->d_lock);
1020                 spin_lock(&inode->i_lock);
1021                 spin_lock(&dentry->d_lock);
1022                 if (unlikely(dentry->d_lockref.count))
1023                         goto out;
1024                 /* changed inode means that somebody had grabbed it */
1025                 if (unlikely(inode != dentry->d_inode))
1026                         goto out;
1027         }
1028
1029         parent = dentry->d_parent;
1030         if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1031                 return true;
1032
1033         spin_unlock(&dentry->d_lock);
1034         spin_lock(&parent->d_lock);
1035         if (unlikely(parent != dentry->d_parent)) {
1036                 spin_unlock(&parent->d_lock);
1037                 spin_lock(&dentry->d_lock);
1038                 goto out;
1039         }
1040         spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1041         if (likely(!dentry->d_lockref.count))
1042                 return true;
1043         spin_unlock(&parent->d_lock);
1044 out:
1045         if (inode)
1046                 spin_unlock(&inode->i_lock);
1047         return false;
1048 }
1049
1050 static void shrink_dentry_list(struct list_head *list)
1051 {
1052         while (!list_empty(list)) {
1053                 struct dentry *dentry, *parent;
1054
1055                 cond_resched();
1056
1057                 dentry = list_entry(list->prev, struct dentry, d_lru);
1058                 spin_lock(&dentry->d_lock);
1059                 rcu_read_lock();
1060                 if (!shrink_lock_dentry(dentry)) {
1061                         bool can_free = false;
1062                         rcu_read_unlock();
1063                         d_shrink_del(dentry);
1064                         if (dentry->d_lockref.count < 0)
1065                                 can_free = dentry->d_flags & DCACHE_MAY_FREE;
1066                         spin_unlock(&dentry->d_lock);
1067                         if (can_free)
1068                                 dentry_free(dentry);
1069                         continue;
1070                 }
1071                 rcu_read_unlock();
1072                 d_shrink_del(dentry);
1073                 parent = dentry->d_parent;
1074                 __dentry_kill(dentry);
1075                 if (parent == dentry)
1076                         continue;
1077                 /*
1078                  * We need to prune ancestors too. This is necessary to prevent
1079                  * quadratic behavior of shrink_dcache_parent(), but is also
1080                  * expected to be beneficial in reducing dentry cache
1081                  * fragmentation.
1082                  */
1083                 dentry = parent;
1084                 while (dentry && !lockref_put_or_lock(&dentry->d_lockref))
1085                         dentry = dentry_kill(dentry);
1086         }
1087 }
1088
1089 static enum lru_status dentry_lru_isolate(struct list_head *item,
1090                 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1091 {
1092         struct list_head *freeable = arg;
1093         struct dentry   *dentry = container_of(item, struct dentry, d_lru);
1094
1095
1096         /*
1097          * we are inverting the lru lock/dentry->d_lock here,
1098          * so use a trylock. If we fail to get the lock, just skip
1099          * it
1100          */
1101         if (!spin_trylock(&dentry->d_lock))
1102                 return LRU_SKIP;
1103
1104         /*
1105          * Referenced dentries are still in use. If they have active
1106          * counts, just remove them from the LRU. Otherwise give them
1107          * another pass through the LRU.
1108          */
1109         if (dentry->d_lockref.count) {
1110                 d_lru_isolate(lru, dentry);
1111                 spin_unlock(&dentry->d_lock);
1112                 return LRU_REMOVED;
1113         }
1114
1115         if (dentry->d_flags & DCACHE_REFERENCED) {
1116                 dentry->d_flags &= ~DCACHE_REFERENCED;
1117                 spin_unlock(&dentry->d_lock);
1118
1119                 /*
1120                  * The list move itself will be made by the common LRU code. At
1121                  * this point, we've dropped the dentry->d_lock but keep the
1122                  * lru lock. This is safe to do, since every list movement is
1123                  * protected by the lru lock even if both locks are held.
1124                  *
1125                  * This is guaranteed by the fact that all LRU management
1126                  * functions are intermediated by the LRU API calls like
1127                  * list_lru_add and list_lru_del. List movement in this file
1128                  * only ever occur through this functions or through callbacks
1129                  * like this one, that are called from the LRU API.
1130                  *
1131                  * The only exceptions to this are functions like
1132                  * shrink_dentry_list, and code that first checks for the
1133                  * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1134                  * operating only with stack provided lists after they are
1135                  * properly isolated from the main list.  It is thus, always a
1136                  * local access.
1137                  */
1138                 return LRU_ROTATE;
1139         }
1140
1141         d_lru_shrink_move(lru, dentry, freeable);
1142         spin_unlock(&dentry->d_lock);
1143
1144         return LRU_REMOVED;
1145 }
1146
1147 /**
1148  * prune_dcache_sb - shrink the dcache
1149  * @sb: superblock
1150  * @sc: shrink control, passed to list_lru_shrink_walk()
1151  *
1152  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1153  * is done when we need more memory and called from the superblock shrinker
1154  * function.
1155  *
1156  * This function may fail to free any resources if all the dentries are in
1157  * use.
1158  */
1159 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1160 {
1161         LIST_HEAD(dispose);
1162         long freed;
1163
1164         freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1165                                      dentry_lru_isolate, &dispose);
1166         shrink_dentry_list(&dispose);
1167         return freed;
1168 }
1169
1170 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1171                 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1172 {
1173         struct list_head *freeable = arg;
1174         struct dentry   *dentry = container_of(item, struct dentry, d_lru);
1175
1176         /*
1177          * we are inverting the lru lock/dentry->d_lock here,
1178          * so use a trylock. If we fail to get the lock, just skip
1179          * it
1180          */
1181         if (!spin_trylock(&dentry->d_lock))
1182                 return LRU_SKIP;
1183
1184         d_lru_shrink_move(lru, dentry, freeable);
1185         spin_unlock(&dentry->d_lock);
1186
1187         return LRU_REMOVED;
1188 }
1189
1190
1191 /**
1192  * shrink_dcache_sb - shrink dcache for a superblock
1193  * @sb: superblock
1194  *
1195  * Shrink the dcache for the specified super block. This is used to free
1196  * the dcache before unmounting a file system.
1197  */
1198 void shrink_dcache_sb(struct super_block *sb)
1199 {
1200         long freed;
1201
1202         do {
1203                 LIST_HEAD(dispose);
1204
1205                 freed = list_lru_walk(&sb->s_dentry_lru,
1206                         dentry_lru_isolate_shrink, &dispose, 1024);
1207
1208                 this_cpu_sub(nr_dentry_unused, freed);
1209                 shrink_dentry_list(&dispose);
1210         } while (list_lru_count(&sb->s_dentry_lru) > 0);
1211 }
1212 EXPORT_SYMBOL(shrink_dcache_sb);
1213
1214 /**
1215  * enum d_walk_ret - action to talke during tree walk
1216  * @D_WALK_CONTINUE:    contrinue walk
1217  * @D_WALK_QUIT:        quit walk
1218  * @D_WALK_NORETRY:     quit when retry is needed
1219  * @D_WALK_SKIP:        skip this dentry and its children
1220  */
1221 enum d_walk_ret {
1222         D_WALK_CONTINUE,
1223         D_WALK_QUIT,
1224         D_WALK_NORETRY,
1225         D_WALK_SKIP,
1226 };
1227
1228 /**
1229  * d_walk - walk the dentry tree
1230  * @parent:     start of walk
1231  * @data:       data passed to @enter() and @finish()
1232  * @enter:      callback when first entering the dentry
1233  * @finish:     callback when successfully finished the walk
1234  *
1235  * The @enter() and @finish() callbacks are called with d_lock held.
1236  */
1237 static void d_walk(struct dentry *parent, void *data,
1238                    enum d_walk_ret (*enter)(void *, struct dentry *),
1239                    void (*finish)(void *))
1240 {
1241         struct dentry *this_parent;
1242         struct list_head *next;
1243         unsigned seq = 0;
1244         enum d_walk_ret ret;
1245         bool retry = true;
1246
1247 again:
1248         read_seqbegin_or_lock(&rename_lock, &seq);
1249         this_parent = parent;
1250         spin_lock(&this_parent->d_lock);
1251
1252         ret = enter(data, this_parent);
1253         switch (ret) {
1254         case D_WALK_CONTINUE:
1255                 break;
1256         case D_WALK_QUIT:
1257         case D_WALK_SKIP:
1258                 goto out_unlock;
1259         case D_WALK_NORETRY:
1260                 retry = false;
1261                 break;
1262         }
1263 repeat:
1264         next = this_parent->d_subdirs.next;
1265 resume:
1266         while (next != &this_parent->d_subdirs) {
1267                 struct list_head *tmp = next;
1268                 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1269                 next = tmp->next;
1270
1271                 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1272                         continue;
1273
1274                 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1275
1276                 ret = enter(data, dentry);
1277                 switch (ret) {
1278                 case D_WALK_CONTINUE:
1279                         break;
1280                 case D_WALK_QUIT:
1281                         spin_unlock(&dentry->d_lock);
1282                         goto out_unlock;
1283                 case D_WALK_NORETRY:
1284                         retry = false;
1285                         break;
1286                 case D_WALK_SKIP:
1287                         spin_unlock(&dentry->d_lock);
1288                         continue;
1289                 }
1290
1291                 if (!list_empty(&dentry->d_subdirs)) {
1292                         spin_unlock(&this_parent->d_lock);
1293                         spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1294                         this_parent = dentry;
1295                         spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1296                         goto repeat;
1297                 }
1298                 spin_unlock(&dentry->d_lock);
1299         }
1300         /*
1301          * All done at this level ... ascend and resume the search.
1302          */
1303         rcu_read_lock();
1304 ascend:
1305         if (this_parent != parent) {
1306                 struct dentry *child = this_parent;
1307                 this_parent = child->d_parent;
1308
1309                 spin_unlock(&child->d_lock);
1310                 spin_lock(&this_parent->d_lock);
1311
1312                 /* might go back up the wrong parent if we have had a rename. */
1313                 if (need_seqretry(&rename_lock, seq))
1314                         goto rename_retry;
1315                 /* go into the first sibling still alive */
1316                 do {
1317                         next = child->d_child.next;
1318                         if (next == &this_parent->d_subdirs)
1319                                 goto ascend;
1320                         child = list_entry(next, struct dentry, d_child);
1321                 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1322                 rcu_read_unlock();
1323                 goto resume;
1324         }
1325         if (need_seqretry(&rename_lock, seq))
1326                 goto rename_retry;
1327         rcu_read_unlock();
1328         if (finish)
1329                 finish(data);
1330
1331 out_unlock:
1332         spin_unlock(&this_parent->d_lock);
1333         done_seqretry(&rename_lock, seq);
1334         return;
1335
1336 rename_retry:
1337         spin_unlock(&this_parent->d_lock);
1338         rcu_read_unlock();
1339         BUG_ON(seq & 1);
1340         if (!retry)
1341                 return;
1342         seq = 1;
1343         goto again;
1344 }
1345
1346 struct check_mount {
1347         struct vfsmount *mnt;
1348         unsigned int mounted;
1349 };
1350
1351 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1352 {
1353         struct check_mount *info = data;
1354         struct path path = { .mnt = info->mnt, .dentry = dentry };
1355
1356         if (likely(!d_mountpoint(dentry)))
1357                 return D_WALK_CONTINUE;
1358         if (__path_is_mountpoint(&path)) {
1359                 info->mounted = 1;
1360                 return D_WALK_QUIT;
1361         }
1362         return D_WALK_CONTINUE;
1363 }
1364
1365 /**
1366  * path_has_submounts - check for mounts over a dentry in the
1367  *                      current namespace.
1368  * @parent: path to check.
1369  *
1370  * Return true if the parent or its subdirectories contain
1371  * a mount point in the current namespace.
1372  */
1373 int path_has_submounts(const struct path *parent)
1374 {
1375         struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1376
1377         read_seqlock_excl(&mount_lock);
1378         d_walk(parent->dentry, &data, path_check_mount, NULL);
1379         read_sequnlock_excl(&mount_lock);
1380
1381         return data.mounted;
1382 }
1383 EXPORT_SYMBOL(path_has_submounts);
1384
1385 /*
1386  * Called by mount code to set a mountpoint and check if the mountpoint is
1387  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1388  * subtree can become unreachable).
1389  *
1390  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1391  * this reason take rename_lock and d_lock on dentry and ancestors.
1392  */
1393 int d_set_mounted(struct dentry *dentry)
1394 {
1395         struct dentry *p;
1396         int ret = -ENOENT;
1397         write_seqlock(&rename_lock);
1398         for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1399                 /* Need exclusion wrt. d_invalidate() */
1400                 spin_lock(&p->d_lock);
1401                 if (unlikely(d_unhashed(p))) {
1402                         spin_unlock(&p->d_lock);
1403                         goto out;
1404                 }
1405                 spin_unlock(&p->d_lock);
1406         }
1407         spin_lock(&dentry->d_lock);
1408         if (!d_unlinked(dentry)) {
1409                 ret = -EBUSY;
1410                 if (!d_mountpoint(dentry)) {
1411                         dentry->d_flags |= DCACHE_MOUNTED;
1412                         ret = 0;
1413                 }
1414         }
1415         spin_unlock(&dentry->d_lock);
1416 out:
1417         write_sequnlock(&rename_lock);
1418         return ret;
1419 }
1420
1421 /*
1422  * Search the dentry child list of the specified parent,
1423  * and move any unused dentries to the end of the unused
1424  * list for prune_dcache(). We descend to the next level
1425  * whenever the d_subdirs list is non-empty and continue
1426  * searching.
1427  *
1428  * It returns zero iff there are no unused children,
1429  * otherwise  it returns the number of children moved to
1430  * the end of the unused list. This may not be the total
1431  * number of unused children, because select_parent can
1432  * drop the lock and return early due to latency
1433  * constraints.
1434  */
1435
1436 struct select_data {
1437         struct dentry *start;
1438         struct list_head dispose;
1439         int found;
1440 };
1441
1442 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1443 {
1444         struct select_data *data = _data;
1445         enum d_walk_ret ret = D_WALK_CONTINUE;
1446
1447         if (data->start == dentry)
1448                 goto out;
1449
1450         if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1451                 data->found++;
1452         } else {
1453                 if (dentry->d_flags & DCACHE_LRU_LIST)
1454                         d_lru_del(dentry);
1455                 if (!dentry->d_lockref.count) {
1456                         d_shrink_add(dentry, &data->dispose);
1457                         data->found++;
1458                 }
1459         }
1460         /*
1461          * We can return to the caller if we have found some (this
1462          * ensures forward progress). We'll be coming back to find
1463          * the rest.
1464          */
1465         if (!list_empty(&data->dispose))
1466                 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1467 out:
1468         return ret;
1469 }
1470
1471 /**
1472  * shrink_dcache_parent - prune dcache
1473  * @parent: parent of entries to prune
1474  *
1475  * Prune the dcache to remove unused children of the parent dentry.
1476  */
1477 void shrink_dcache_parent(struct dentry *parent)
1478 {
1479         for (;;) {
1480                 struct select_data data;
1481
1482                 INIT_LIST_HEAD(&data.dispose);
1483                 data.start = parent;
1484                 data.found = 0;
1485
1486                 d_walk(parent, &data, select_collect, NULL);
1487                 if (!data.found)
1488                         break;
1489
1490                 shrink_dentry_list(&data.dispose);
1491         }
1492 }
1493 EXPORT_SYMBOL(shrink_dcache_parent);
1494
1495 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1496 {
1497         /* it has busy descendents; complain about those instead */
1498         if (!list_empty(&dentry->d_subdirs))
1499                 return D_WALK_CONTINUE;
1500
1501         /* root with refcount 1 is fine */
1502         if (dentry == _data && dentry->d_lockref.count == 1)
1503                 return D_WALK_CONTINUE;
1504
1505         printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1506                         " still in use (%d) [unmount of %s %s]\n",
1507                        dentry,
1508                        dentry->d_inode ?
1509                        dentry->d_inode->i_ino : 0UL,
1510                        dentry,
1511                        dentry->d_lockref.count,
1512                        dentry->d_sb->s_type->name,
1513                        dentry->d_sb->s_id);
1514         WARN_ON(1);
1515         return D_WALK_CONTINUE;
1516 }
1517
1518 static void do_one_tree(struct dentry *dentry)
1519 {
1520         shrink_dcache_parent(dentry);
1521         d_walk(dentry, dentry, umount_check, NULL);
1522         d_drop(dentry);
1523         dput(dentry);
1524 }
1525
1526 /*
1527  * destroy the dentries attached to a superblock on unmounting
1528  */
1529 void shrink_dcache_for_umount(struct super_block *sb)
1530 {
1531         struct dentry *dentry;
1532
1533         WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1534
1535         dentry = sb->s_root;
1536         sb->s_root = NULL;
1537         do_one_tree(dentry);
1538
1539         while (!hlist_bl_empty(&sb->s_roots)) {
1540                 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1541                 do_one_tree(dentry);
1542         }
1543 }
1544
1545 struct detach_data {
1546         struct select_data select;
1547         struct dentry *mountpoint;
1548 };
1549 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1550 {
1551         struct detach_data *data = _data;
1552
1553         if (d_mountpoint(dentry)) {
1554                 __dget_dlock(dentry);
1555                 data->mountpoint = dentry;
1556                 return D_WALK_QUIT;
1557         }
1558
1559         return select_collect(&data->select, dentry);
1560 }
1561
1562 static void check_and_drop(void *_data)
1563 {
1564         struct detach_data *data = _data;
1565
1566         if (!data->mountpoint && list_empty(&data->select.dispose))
1567                 __d_drop(data->select.start);
1568 }
1569
1570 /**
1571  * d_invalidate - detach submounts, prune dcache, and drop
1572  * @dentry: dentry to invalidate (aka detach, prune and drop)
1573  *
1574  * no dcache lock.
1575  *
1576  * The final d_drop is done as an atomic operation relative to
1577  * rename_lock ensuring there are no races with d_set_mounted.  This
1578  * ensures there are no unhashed dentries on the path to a mountpoint.
1579  */
1580 void d_invalidate(struct dentry *dentry)
1581 {
1582         /*
1583          * If it's already been dropped, return OK.
1584          */
1585         spin_lock(&dentry->d_lock);
1586         if (d_unhashed(dentry)) {
1587                 spin_unlock(&dentry->d_lock);
1588                 return;
1589         }
1590         spin_unlock(&dentry->d_lock);
1591
1592         /* Negative dentries can be dropped without further checks */
1593         if (!dentry->d_inode) {
1594                 d_drop(dentry);
1595                 return;
1596         }
1597
1598         for (;;) {
1599                 struct detach_data data;
1600
1601                 data.mountpoint = NULL;
1602                 INIT_LIST_HEAD(&data.select.dispose);
1603                 data.select.start = dentry;
1604                 data.select.found = 0;
1605
1606                 d_walk(dentry, &data, detach_and_collect, check_and_drop);
1607
1608                 if (!list_empty(&data.select.dispose))
1609                         shrink_dentry_list(&data.select.dispose);
1610                 else if (!data.mountpoint)
1611                         return;
1612
1613                 if (data.mountpoint) {
1614                         detach_mounts(data.mountpoint);
1615                         dput(data.mountpoint);
1616                 }
1617         }
1618 }
1619 EXPORT_SYMBOL(d_invalidate);
1620
1621 /**
1622  * __d_alloc    -       allocate a dcache entry
1623  * @sb: filesystem it will belong to
1624  * @name: qstr of the name
1625  *
1626  * Allocates a dentry. It returns %NULL if there is insufficient memory
1627  * available. On a success the dentry is returned. The name passed in is
1628  * copied and the copy passed in may be reused after this call.
1629  */
1630  
1631 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1632 {
1633         struct external_name *ext = NULL;
1634         struct dentry *dentry;
1635         char *dname;
1636         int err;
1637
1638         dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1639         if (!dentry)
1640                 return NULL;
1641
1642         /*
1643          * We guarantee that the inline name is always NUL-terminated.
1644          * This way the memcpy() done by the name switching in rename
1645          * will still always have a NUL at the end, even if we might
1646          * be overwriting an internal NUL character
1647          */
1648         dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1649         if (unlikely(!name)) {
1650                 name = &slash_name;
1651                 dname = dentry->d_iname;
1652         } else if (name->len > DNAME_INLINE_LEN-1) {
1653                 size_t size = offsetof(struct external_name, name[1]);
1654
1655                 ext = kmalloc(size + name->len, GFP_KERNEL_ACCOUNT);
1656                 if (!ext) {
1657                         kmem_cache_free(dentry_cache, dentry); 
1658                         return NULL;
1659                 }
1660                 atomic_set(&ext->u.count, 1);
1661                 dname = ext->name;
1662         } else  {
1663                 dname = dentry->d_iname;
1664         }       
1665
1666         dentry->d_name.len = name->len;
1667         dentry->d_name.hash = name->hash;
1668         memcpy(dname, name->name, name->len);
1669         dname[name->len] = 0;
1670
1671         /* Make sure we always see the terminating NUL character */
1672         smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1673
1674         dentry->d_lockref.count = 1;
1675         dentry->d_flags = 0;
1676         spin_lock_init(&dentry->d_lock);
1677         seqcount_init(&dentry->d_seq);
1678         dentry->d_inode = NULL;
1679         dentry->d_parent = dentry;
1680         dentry->d_sb = sb;
1681         dentry->d_op = NULL;
1682         dentry->d_fsdata = NULL;
1683         INIT_HLIST_BL_NODE(&dentry->d_hash);
1684         INIT_LIST_HEAD(&dentry->d_lru);
1685         INIT_LIST_HEAD(&dentry->d_subdirs);
1686         INIT_HLIST_NODE(&dentry->d_u.d_alias);
1687         INIT_LIST_HEAD(&dentry->d_child);
1688         d_set_d_op(dentry, dentry->d_sb->s_d_op);
1689
1690         if (dentry->d_op && dentry->d_op->d_init) {
1691                 err = dentry->d_op->d_init(dentry);
1692                 if (err) {
1693                         if (dname_external(dentry))
1694                                 kfree(external_name(dentry));
1695                         kmem_cache_free(dentry_cache, dentry);
1696                         return NULL;
1697                 }
1698         }
1699
1700         if (unlikely(ext)) {
1701                 pg_data_t *pgdat = page_pgdat(virt_to_page(ext));
1702                 mod_node_page_state(pgdat, NR_INDIRECTLY_RECLAIMABLE_BYTES,
1703                                     ksize(ext));
1704         }
1705
1706         this_cpu_inc(nr_dentry);
1707
1708         return dentry;
1709 }
1710
1711 /**
1712  * d_alloc      -       allocate a dcache entry
1713  * @parent: parent of entry to allocate
1714  * @name: qstr of the name
1715  *
1716  * Allocates a dentry. It returns %NULL if there is insufficient memory
1717  * available. On a success the dentry is returned. The name passed in is
1718  * copied and the copy passed in may be reused after this call.
1719  */
1720 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1721 {
1722         struct dentry *dentry = __d_alloc(parent->d_sb, name);
1723         if (!dentry)
1724                 return NULL;
1725         dentry->d_flags |= DCACHE_RCUACCESS;
1726         spin_lock(&parent->d_lock);
1727         /*
1728          * don't need child lock because it is not subject
1729          * to concurrency here
1730          */
1731         __dget_dlock(parent);
1732         dentry->d_parent = parent;
1733         list_add(&dentry->d_child, &parent->d_subdirs);
1734         spin_unlock(&parent->d_lock);
1735
1736         return dentry;
1737 }
1738 EXPORT_SYMBOL(d_alloc);
1739
1740 struct dentry *d_alloc_anon(struct super_block *sb)
1741 {
1742         return __d_alloc(sb, NULL);
1743 }
1744 EXPORT_SYMBOL(d_alloc_anon);
1745
1746 struct dentry *d_alloc_cursor(struct dentry * parent)
1747 {
1748         struct dentry *dentry = d_alloc_anon(parent->d_sb);
1749         if (dentry) {
1750                 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1751                 dentry->d_parent = dget(parent);
1752         }
1753         return dentry;
1754 }
1755
1756 /**
1757  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1758  * @sb: the superblock
1759  * @name: qstr of the name
1760  *
1761  * For a filesystem that just pins its dentries in memory and never
1762  * performs lookups at all, return an unhashed IS_ROOT dentry.
1763  */
1764 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1765 {
1766         return __d_alloc(sb, name);
1767 }
1768 EXPORT_SYMBOL(d_alloc_pseudo);
1769
1770 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1771 {
1772         struct qstr q;
1773
1774         q.name = name;
1775         q.hash_len = hashlen_string(parent, name);
1776         return d_alloc(parent, &q);
1777 }
1778 EXPORT_SYMBOL(d_alloc_name);
1779
1780 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1781 {
1782         WARN_ON_ONCE(dentry->d_op);
1783         WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH  |
1784                                 DCACHE_OP_COMPARE       |
1785                                 DCACHE_OP_REVALIDATE    |
1786                                 DCACHE_OP_WEAK_REVALIDATE       |
1787                                 DCACHE_OP_DELETE        |
1788                                 DCACHE_OP_REAL));
1789         dentry->d_op = op;
1790         if (!op)
1791                 return;
1792         if (op->d_hash)
1793                 dentry->d_flags |= DCACHE_OP_HASH;
1794         if (op->d_compare)
1795                 dentry->d_flags |= DCACHE_OP_COMPARE;
1796         if (op->d_revalidate)
1797                 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1798         if (op->d_weak_revalidate)
1799                 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1800         if (op->d_delete)
1801                 dentry->d_flags |= DCACHE_OP_DELETE;
1802         if (op->d_prune)
1803                 dentry->d_flags |= DCACHE_OP_PRUNE;
1804         if (op->d_real)
1805                 dentry->d_flags |= DCACHE_OP_REAL;
1806
1807 }
1808 EXPORT_SYMBOL(d_set_d_op);
1809
1810
1811 /*
1812  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1813  * @dentry - The dentry to mark
1814  *
1815  * Mark a dentry as falling through to the lower layer (as set with
1816  * d_pin_lower()).  This flag may be recorded on the medium.
1817  */
1818 void d_set_fallthru(struct dentry *dentry)
1819 {
1820         spin_lock(&dentry->d_lock);
1821         dentry->d_flags |= DCACHE_FALLTHRU;
1822         spin_unlock(&dentry->d_lock);
1823 }
1824 EXPORT_SYMBOL(d_set_fallthru);
1825
1826 static unsigned d_flags_for_inode(struct inode *inode)
1827 {
1828         unsigned add_flags = DCACHE_REGULAR_TYPE;
1829
1830         if (!inode)
1831                 return DCACHE_MISS_TYPE;
1832
1833         if (S_ISDIR(inode->i_mode)) {
1834                 add_flags = DCACHE_DIRECTORY_TYPE;
1835                 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1836                         if (unlikely(!inode->i_op->lookup))
1837                                 add_flags = DCACHE_AUTODIR_TYPE;
1838                         else
1839                                 inode->i_opflags |= IOP_LOOKUP;
1840                 }
1841                 goto type_determined;
1842         }
1843
1844         if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1845                 if (unlikely(inode->i_op->get_link)) {
1846                         add_flags = DCACHE_SYMLINK_TYPE;
1847                         goto type_determined;
1848                 }
1849                 inode->i_opflags |= IOP_NOFOLLOW;
1850         }
1851
1852         if (unlikely(!S_ISREG(inode->i_mode)))
1853                 add_flags = DCACHE_SPECIAL_TYPE;
1854
1855 type_determined:
1856         if (unlikely(IS_AUTOMOUNT(inode)))
1857                 add_flags |= DCACHE_NEED_AUTOMOUNT;
1858         return add_flags;
1859 }
1860
1861 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1862 {
1863         unsigned add_flags = d_flags_for_inode(inode);
1864         WARN_ON(d_in_lookup(dentry));
1865
1866         spin_lock(&dentry->d_lock);
1867         hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1868         raw_write_seqcount_begin(&dentry->d_seq);
1869         __d_set_inode_and_type(dentry, inode, add_flags);
1870         raw_write_seqcount_end(&dentry->d_seq);
1871         fsnotify_update_flags(dentry);
1872         spin_unlock(&dentry->d_lock);
1873 }
1874
1875 /**
1876  * d_instantiate - fill in inode information for a dentry
1877  * @entry: dentry to complete
1878  * @inode: inode to attach to this dentry
1879  *
1880  * Fill in inode information in the entry.
1881  *
1882  * This turns negative dentries into productive full members
1883  * of society.
1884  *
1885  * NOTE! This assumes that the inode count has been incremented
1886  * (or otherwise set) by the caller to indicate that it is now
1887  * in use by the dcache.
1888  */
1889  
1890 void d_instantiate(struct dentry *entry, struct inode * inode)
1891 {
1892         BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1893         if (inode) {
1894                 security_d_instantiate(entry, inode);
1895                 spin_lock(&inode->i_lock);
1896                 __d_instantiate(entry, inode);
1897                 spin_unlock(&inode->i_lock);
1898         }
1899 }
1900 EXPORT_SYMBOL(d_instantiate);
1901
1902 /*
1903  * This should be equivalent to d_instantiate() + unlock_new_inode(),
1904  * with lockdep-related part of unlock_new_inode() done before
1905  * anything else.  Use that instead of open-coding d_instantiate()/
1906  * unlock_new_inode() combinations.
1907  */
1908 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1909 {
1910         BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1911         BUG_ON(!inode);
1912         lockdep_annotate_inode_mutex_key(inode);
1913         security_d_instantiate(entry, inode);
1914         spin_lock(&inode->i_lock);
1915         __d_instantiate(entry, inode);
1916         WARN_ON(!(inode->i_state & I_NEW));
1917         inode->i_state &= ~I_NEW;
1918         smp_mb();
1919         wake_up_bit(&inode->i_state, __I_NEW);
1920         spin_unlock(&inode->i_lock);
1921 }
1922 EXPORT_SYMBOL(d_instantiate_new);
1923
1924 /**
1925  * d_instantiate_no_diralias - instantiate a non-aliased dentry
1926  * @entry: dentry to complete
1927  * @inode: inode to attach to this dentry
1928  *
1929  * Fill in inode information in the entry.  If a directory alias is found, then
1930  * return an error (and drop inode).  Together with d_materialise_unique() this
1931  * guarantees that a directory inode may never have more than one alias.
1932  */
1933 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1934 {
1935         BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1936
1937         security_d_instantiate(entry, inode);
1938         spin_lock(&inode->i_lock);
1939         if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1940                 spin_unlock(&inode->i_lock);
1941                 iput(inode);
1942                 return -EBUSY;
1943         }
1944         __d_instantiate(entry, inode);
1945         spin_unlock(&inode->i_lock);
1946
1947         return 0;
1948 }
1949 EXPORT_SYMBOL(d_instantiate_no_diralias);
1950
1951 struct dentry *d_make_root(struct inode *root_inode)
1952 {
1953         struct dentry *res = NULL;
1954
1955         if (root_inode) {
1956                 res = d_alloc_anon(root_inode->i_sb);
1957                 if (res)
1958                         d_instantiate(res, root_inode);
1959                 else
1960                         iput(root_inode);
1961         }
1962         return res;
1963 }
1964 EXPORT_SYMBOL(d_make_root);
1965
1966 static struct dentry * __d_find_any_alias(struct inode *inode)
1967 {
1968         struct dentry *alias;
1969
1970         if (hlist_empty(&inode->i_dentry))
1971                 return NULL;
1972         alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1973         __dget(alias);
1974         return alias;
1975 }
1976
1977 /**
1978  * d_find_any_alias - find any alias for a given inode
1979  * @inode: inode to find an alias for
1980  *
1981  * If any aliases exist for the given inode, take and return a
1982  * reference for one of them.  If no aliases exist, return %NULL.
1983  */
1984 struct dentry *d_find_any_alias(struct inode *inode)
1985 {
1986         struct dentry *de;
1987
1988         spin_lock(&inode->i_lock);
1989         de = __d_find_any_alias(inode);
1990         spin_unlock(&inode->i_lock);
1991         return de;
1992 }
1993 EXPORT_SYMBOL(d_find_any_alias);
1994
1995 static struct dentry *__d_instantiate_anon(struct dentry *dentry,
1996                                            struct inode *inode,
1997                                            bool disconnected)
1998 {
1999         struct dentry *res;
2000         unsigned add_flags;
2001
2002         security_d_instantiate(dentry, inode);
2003         spin_lock(&inode->i_lock);
2004         res = __d_find_any_alias(inode);
2005         if (res) {
2006                 spin_unlock(&inode->i_lock);
2007                 dput(dentry);
2008                 goto out_iput;
2009         }
2010
2011         /* attach a disconnected dentry */
2012         add_flags = d_flags_for_inode(inode);
2013
2014         if (disconnected)
2015                 add_flags |= DCACHE_DISCONNECTED;
2016
2017         spin_lock(&dentry->d_lock);
2018         __d_set_inode_and_type(dentry, inode, add_flags);
2019         hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2020         if (!disconnected) {
2021                 hlist_bl_lock(&dentry->d_sb->s_roots);
2022                 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
2023                 hlist_bl_unlock(&dentry->d_sb->s_roots);
2024         }
2025         spin_unlock(&dentry->d_lock);
2026         spin_unlock(&inode->i_lock);
2027
2028         return dentry;
2029
2030  out_iput:
2031         iput(inode);
2032         return res;
2033 }
2034
2035 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
2036 {
2037         return __d_instantiate_anon(dentry, inode, true);
2038 }
2039 EXPORT_SYMBOL(d_instantiate_anon);
2040
2041 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2042 {
2043         struct dentry *tmp;
2044         struct dentry *res;
2045
2046         if (!inode)
2047                 return ERR_PTR(-ESTALE);
2048         if (IS_ERR(inode))
2049                 return ERR_CAST(inode);
2050
2051         res = d_find_any_alias(inode);
2052         if (res)
2053                 goto out_iput;
2054
2055         tmp = d_alloc_anon(inode->i_sb);
2056         if (!tmp) {
2057                 res = ERR_PTR(-ENOMEM);
2058                 goto out_iput;
2059         }
2060
2061         return __d_instantiate_anon(tmp, inode, disconnected);
2062
2063 out_iput:
2064         iput(inode);
2065         return res;
2066 }
2067
2068 /**
2069  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2070  * @inode: inode to allocate the dentry for
2071  *
2072  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2073  * similar open by handle operations.  The returned dentry may be anonymous,
2074  * or may have a full name (if the inode was already in the cache).
2075  *
2076  * When called on a directory inode, we must ensure that the inode only ever
2077  * has one dentry.  If a dentry is found, that is returned instead of
2078  * allocating a new one.
2079  *
2080  * On successful return, the reference to the inode has been transferred
2081  * to the dentry.  In case of an error the reference on the inode is released.
2082  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2083  * be passed in and the error will be propagated to the return value,
2084  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2085  */
2086 struct dentry *d_obtain_alias(struct inode *inode)
2087 {
2088         return __d_obtain_alias(inode, true);
2089 }
2090 EXPORT_SYMBOL(d_obtain_alias);
2091
2092 /**
2093  * d_obtain_root - find or allocate a dentry for a given inode
2094  * @inode: inode to allocate the dentry for
2095  *
2096  * Obtain an IS_ROOT dentry for the root of a filesystem.
2097  *
2098  * We must ensure that directory inodes only ever have one dentry.  If a
2099  * dentry is found, that is returned instead of allocating a new one.
2100  *
2101  * On successful return, the reference to the inode has been transferred
2102  * to the dentry.  In case of an error the reference on the inode is
2103  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2104  * error will be propagate to the return value, with a %NULL @inode
2105  * replaced by ERR_PTR(-ESTALE).
2106  */
2107 struct dentry *d_obtain_root(struct inode *inode)
2108 {
2109         return __d_obtain_alias(inode, false);
2110 }
2111 EXPORT_SYMBOL(d_obtain_root);
2112
2113 /**
2114  * d_add_ci - lookup or allocate new dentry with case-exact name
2115  * @inode:  the inode case-insensitive lookup has found
2116  * @dentry: the negative dentry that was passed to the parent's lookup func
2117  * @name:   the case-exact name to be associated with the returned dentry
2118  *
2119  * This is to avoid filling the dcache with case-insensitive names to the
2120  * same inode, only the actual correct case is stored in the dcache for
2121  * case-insensitive filesystems.
2122  *
2123  * For a case-insensitive lookup match and if the the case-exact dentry
2124  * already exists in in the dcache, use it and return it.
2125  *
2126  * If no entry exists with the exact case name, allocate new dentry with
2127  * the exact case, and return the spliced entry.
2128  */
2129 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2130                         struct qstr *name)
2131 {
2132         struct dentry *found, *res;
2133
2134         /*
2135          * First check if a dentry matching the name already exists,
2136          * if not go ahead and create it now.
2137          */
2138         found = d_hash_and_lookup(dentry->d_parent, name);
2139         if (found) {
2140                 iput(inode);
2141                 return found;
2142         }
2143         if (d_in_lookup(dentry)) {
2144                 found = d_alloc_parallel(dentry->d_parent, name,
2145                                         dentry->d_wait);
2146                 if (IS_ERR(found) || !d_in_lookup(found)) {
2147                         iput(inode);
2148                         return found;
2149                 }
2150         } else {
2151                 found = d_alloc(dentry->d_parent, name);
2152                 if (!found) {
2153                         iput(inode);
2154                         return ERR_PTR(-ENOMEM);
2155                 } 
2156         }
2157         res = d_splice_alias(inode, found);
2158         if (res) {
2159                 dput(found);
2160                 return res;
2161         }
2162         return found;
2163 }
2164 EXPORT_SYMBOL(d_add_ci);
2165
2166
2167 static inline bool d_same_name(const struct dentry *dentry,
2168                                 const struct dentry *parent,
2169                                 const struct qstr *name)
2170 {
2171         if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2172                 if (dentry->d_name.len != name->len)
2173                         return false;
2174                 return dentry_cmp(dentry, name->name, name->len) == 0;
2175         }
2176         return parent->d_op->d_compare(dentry,
2177                                        dentry->d_name.len, dentry->d_name.name,
2178                                        name) == 0;
2179 }
2180
2181 /**
2182  * __d_lookup_rcu - search for a dentry (racy, store-free)
2183  * @parent: parent dentry
2184  * @name: qstr of name we wish to find
2185  * @seqp: returns d_seq value at the point where the dentry was found
2186  * Returns: dentry, or NULL
2187  *
2188  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2189  * resolution (store-free path walking) design described in
2190  * Documentation/filesystems/path-lookup.txt.
2191  *
2192  * This is not to be used outside core vfs.
2193  *
2194  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2195  * held, and rcu_read_lock held. The returned dentry must not be stored into
2196  * without taking d_lock and checking d_seq sequence count against @seq
2197  * returned here.
2198  *
2199  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2200  * function.
2201  *
2202  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2203  * the returned dentry, so long as its parent's seqlock is checked after the
2204  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2205  * is formed, giving integrity down the path walk.
2206  *
2207  * NOTE! The caller *has* to check the resulting dentry against the sequence
2208  * number we've returned before using any of the resulting dentry state!
2209  */
2210 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2211                                 const struct qstr *name,
2212                                 unsigned *seqp)
2213 {
2214         u64 hashlen = name->hash_len;
2215         const unsigned char *str = name->name;
2216         struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2217         struct hlist_bl_node *node;
2218         struct dentry *dentry;
2219
2220         /*
2221          * Note: There is significant duplication with __d_lookup_rcu which is
2222          * required to prevent single threaded performance regressions
2223          * especially on architectures where smp_rmb (in seqcounts) are costly.
2224          * Keep the two functions in sync.
2225          */
2226
2227         /*
2228          * The hash list is protected using RCU.
2229          *
2230          * Carefully use d_seq when comparing a candidate dentry, to avoid
2231          * races with d_move().
2232          *
2233          * It is possible that concurrent renames can mess up our list
2234          * walk here and result in missing our dentry, resulting in the
2235          * false-negative result. d_lookup() protects against concurrent
2236          * renames using rename_lock seqlock.
2237          *
2238          * See Documentation/filesystems/path-lookup.txt for more details.
2239          */
2240         hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2241                 unsigned seq;
2242
2243 seqretry:
2244                 /*
2245                  * The dentry sequence count protects us from concurrent
2246                  * renames, and thus protects parent and name fields.
2247                  *
2248                  * The caller must perform a seqcount check in order
2249                  * to do anything useful with the returned dentry.
2250                  *
2251                  * NOTE! We do a "raw" seqcount_begin here. That means that
2252                  * we don't wait for the sequence count to stabilize if it
2253                  * is in the middle of a sequence change. If we do the slow
2254                  * dentry compare, we will do seqretries until it is stable,
2255                  * and if we end up with a successful lookup, we actually
2256                  * want to exit RCU lookup anyway.
2257                  *
2258                  * Note that raw_seqcount_begin still *does* smp_rmb(), so
2259                  * we are still guaranteed NUL-termination of ->d_name.name.
2260                  */
2261                 seq = raw_seqcount_begin(&dentry->d_seq);
2262                 if (dentry->d_parent != parent)
2263                         continue;
2264                 if (d_unhashed(dentry))
2265                         continue;
2266
2267                 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2268                         int tlen;
2269                         const char *tname;
2270                         if (dentry->d_name.hash != hashlen_hash(hashlen))
2271                                 continue;
2272                         tlen = dentry->d_name.len;
2273                         tname = dentry->d_name.name;
2274                         /* we want a consistent (name,len) pair */
2275                         if (read_seqcount_retry(&dentry->d_seq, seq)) {
2276                                 cpu_relax();
2277                                 goto seqretry;
2278                         }
2279                         if (parent->d_op->d_compare(dentry,
2280                                                     tlen, tname, name) != 0)
2281                                 continue;
2282                 } else {
2283                         if (dentry->d_name.hash_len != hashlen)
2284                                 continue;
2285                         if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2286                                 continue;
2287                 }
2288                 *seqp = seq;
2289                 return dentry;
2290         }
2291         return NULL;
2292 }
2293
2294 /**
2295  * d_lookup - search for a dentry
2296  * @parent: parent dentry
2297  * @name: qstr of name we wish to find
2298  * Returns: dentry, or NULL
2299  *
2300  * d_lookup searches the children of the parent dentry for the name in
2301  * question. If the dentry is found its reference count is incremented and the
2302  * dentry is returned. The caller must use dput to free the entry when it has
2303  * finished using it. %NULL is returned if the dentry does not exist.
2304  */
2305 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2306 {
2307         struct dentry *dentry;
2308         unsigned seq;
2309
2310         do {
2311                 seq = read_seqbegin(&rename_lock);
2312                 dentry = __d_lookup(parent, name);
2313                 if (dentry)
2314                         break;
2315         } while (read_seqretry(&rename_lock, seq));
2316         return dentry;
2317 }
2318 EXPORT_SYMBOL(d_lookup);
2319
2320 /**
2321  * __d_lookup - search for a dentry (racy)
2322  * @parent: parent dentry
2323  * @name: qstr of name we wish to find
2324  * Returns: dentry, or NULL
2325  *
2326  * __d_lookup is like d_lookup, however it may (rarely) return a
2327  * false-negative result due to unrelated rename activity.
2328  *
2329  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2330  * however it must be used carefully, eg. with a following d_lookup in
2331  * the case of failure.
2332  *
2333  * __d_lookup callers must be commented.
2334  */
2335 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2336 {
2337         unsigned int hash = name->hash;
2338         struct hlist_bl_head *b = d_hash(hash);
2339         struct hlist_bl_node *node;
2340         struct dentry *found = NULL;
2341         struct dentry *dentry;
2342
2343         /*
2344          * Note: There is significant duplication with __d_lookup_rcu which is
2345          * required to prevent single threaded performance regressions
2346          * especially on architectures where smp_rmb (in seqcounts) are costly.
2347          * Keep the two functions in sync.
2348          */
2349
2350         /*
2351          * The hash list is protected using RCU.
2352          *
2353          * Take d_lock when comparing a candidate dentry, to avoid races
2354          * with d_move().
2355          *
2356          * It is possible that concurrent renames can mess up our list
2357          * walk here and result in missing our dentry, resulting in the
2358          * false-negative result. d_lookup() protects against concurrent
2359          * renames using rename_lock seqlock.
2360          *
2361          * See Documentation/filesystems/path-lookup.txt for more details.
2362          */
2363         rcu_read_lock();
2364         
2365         hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2366
2367                 if (dentry->d_name.hash != hash)
2368                         continue;
2369
2370                 spin_lock(&dentry->d_lock);
2371                 if (dentry->d_parent != parent)
2372                         goto next;
2373                 if (d_unhashed(dentry))
2374                         goto next;
2375
2376                 if (!d_same_name(dentry, parent, name))
2377                         goto next;
2378
2379                 dentry->d_lockref.count++;
2380                 found = dentry;
2381                 spin_unlock(&dentry->d_lock);
2382                 break;
2383 next:
2384                 spin_unlock(&dentry->d_lock);
2385         }
2386         rcu_read_unlock();
2387
2388         return found;
2389 }
2390
2391 /**
2392  * d_hash_and_lookup - hash the qstr then search for a dentry
2393  * @dir: Directory to search in
2394  * @name: qstr of name we wish to find
2395  *
2396  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2397  */
2398 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2399 {
2400         /*
2401          * Check for a fs-specific hash function. Note that we must
2402          * calculate the standard hash first, as the d_op->d_hash()
2403          * routine may choose to leave the hash value unchanged.
2404          */
2405         name->hash = full_name_hash(dir, name->name, name->len);
2406         if (dir->d_flags & DCACHE_OP_HASH) {
2407                 int err = dir->d_op->d_hash(dir, name);
2408                 if (unlikely(err < 0))
2409                         return ERR_PTR(err);
2410         }
2411         return d_lookup(dir, name);
2412 }
2413 EXPORT_SYMBOL(d_hash_and_lookup);
2414
2415 /*
2416  * When a file is deleted, we have two options:
2417  * - turn this dentry into a negative dentry
2418  * - unhash this dentry and free it.
2419  *
2420  * Usually, we want to just turn this into
2421  * a negative dentry, but if anybody else is
2422  * currently using the dentry or the inode
2423  * we can't do that and we fall back on removing
2424  * it from the hash queues and waiting for
2425  * it to be deleted later when it has no users
2426  */
2427  
2428 /**
2429  * d_delete - delete a dentry
2430  * @dentry: The dentry to delete
2431  *
2432  * Turn the dentry into a negative dentry if possible, otherwise
2433  * remove it from the hash queues so it can be deleted later
2434  */
2435  
2436 void d_delete(struct dentry * dentry)
2437 {
2438         struct inode *inode = dentry->d_inode;
2439         int isdir = d_is_dir(dentry);
2440
2441         spin_lock(&inode->i_lock);
2442         spin_lock(&dentry->d_lock);
2443         /*
2444          * Are we the only user?
2445          */
2446         if (dentry->d_lockref.count == 1) {
2447                 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2448                 dentry_unlink_inode(dentry);
2449         } else {
2450                 __d_drop(dentry);
2451                 spin_unlock(&dentry->d_lock);
2452                 spin_unlock(&inode->i_lock);
2453         }
2454         fsnotify_nameremove(dentry, isdir);
2455 }
2456 EXPORT_SYMBOL(d_delete);
2457
2458 static void __d_rehash(struct dentry *entry)
2459 {
2460         struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2461
2462         hlist_bl_lock(b);
2463         hlist_bl_add_head_rcu(&entry->d_hash, b);
2464         hlist_bl_unlock(b);
2465 }
2466
2467 /**
2468  * d_rehash     - add an entry back to the hash
2469  * @entry: dentry to add to the hash
2470  *
2471  * Adds a dentry to the hash according to its name.
2472  */
2473  
2474 void d_rehash(struct dentry * entry)
2475 {
2476         spin_lock(&entry->d_lock);
2477         __d_rehash(entry);
2478         spin_unlock(&entry->d_lock);
2479 }
2480 EXPORT_SYMBOL(d_rehash);
2481
2482 static inline unsigned start_dir_add(struct inode *dir)
2483 {
2484
2485         for (;;) {
2486                 unsigned n = dir->i_dir_seq;
2487                 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2488                         return n;
2489                 cpu_relax();
2490         }
2491 }
2492
2493 static inline void end_dir_add(struct inode *dir, unsigned n)
2494 {
2495         smp_store_release(&dir->i_dir_seq, n + 2);
2496 }
2497
2498 static void d_wait_lookup(struct dentry *dentry)
2499 {
2500         if (d_in_lookup(dentry)) {
2501                 DECLARE_WAITQUEUE(wait, current);
2502                 add_wait_queue(dentry->d_wait, &wait);
2503                 do {
2504                         set_current_state(TASK_UNINTERRUPTIBLE);
2505                         spin_unlock(&dentry->d_lock);
2506                         schedule();
2507                         spin_lock(&dentry->d_lock);
2508                 } while (d_in_lookup(dentry));
2509         }
2510 }
2511
2512 struct dentry *d_alloc_parallel(struct dentry *parent,
2513                                 const struct qstr *name,
2514                                 wait_queue_head_t *wq)
2515 {
2516         unsigned int hash = name->hash;
2517         struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2518         struct hlist_bl_node *node;
2519         struct dentry *new = d_alloc(parent, name);
2520         struct dentry *dentry;
2521         unsigned seq, r_seq, d_seq;
2522
2523         if (unlikely(!new))
2524                 return ERR_PTR(-ENOMEM);
2525
2526 retry:
2527         rcu_read_lock();
2528         seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2529         r_seq = read_seqbegin(&rename_lock);
2530         dentry = __d_lookup_rcu(parent, name, &d_seq);
2531         if (unlikely(dentry)) {
2532                 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2533                         rcu_read_unlock();
2534                         goto retry;
2535                 }
2536                 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2537                         rcu_read_unlock();
2538                         dput(dentry);
2539                         goto retry;
2540                 }
2541                 rcu_read_unlock();
2542                 dput(new);
2543                 return dentry;
2544         }
2545         if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2546                 rcu_read_unlock();
2547                 goto retry;
2548         }
2549
2550         if (unlikely(seq & 1)) {
2551                 rcu_read_unlock();
2552                 goto retry;
2553         }
2554
2555         hlist_bl_lock(b);
2556         if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2557                 hlist_bl_unlock(b);
2558                 rcu_read_unlock();
2559                 goto retry;
2560         }
2561         /*
2562          * No changes for the parent since the beginning of d_lookup().
2563          * Since all removals from the chain happen with hlist_bl_lock(),
2564          * any potential in-lookup matches are going to stay here until
2565          * we unlock the chain.  All fields are stable in everything
2566          * we encounter.
2567          */
2568         hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2569                 if (dentry->d_name.hash != hash)
2570                         continue;
2571                 if (dentry->d_parent != parent)
2572                         continue;
2573                 if (!d_same_name(dentry, parent, name))
2574                         continue;
2575                 hlist_bl_unlock(b);
2576                 /* now we can try to grab a reference */
2577                 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2578                         rcu_read_unlock();
2579                         goto retry;
2580                 }
2581
2582                 rcu_read_unlock();
2583                 /*
2584                  * somebody is likely to be still doing lookup for it;
2585                  * wait for them to finish
2586                  */
2587                 spin_lock(&dentry->d_lock);
2588                 d_wait_lookup(dentry);
2589                 /*
2590                  * it's not in-lookup anymore; in principle we should repeat
2591                  * everything from dcache lookup, but it's likely to be what
2592                  * d_lookup() would've found anyway.  If it is, just return it;
2593                  * otherwise we really have to repeat the whole thing.
2594                  */
2595                 if (unlikely(dentry->d_name.hash != hash))
2596                         goto mismatch;
2597                 if (unlikely(dentry->d_parent != parent))
2598                         goto mismatch;
2599                 if (unlikely(d_unhashed(dentry)))
2600                         goto mismatch;
2601                 if (unlikely(!d_same_name(dentry, parent, name)))
2602                         goto mismatch;
2603                 /* OK, it *is* a hashed match; return it */
2604                 spin_unlock(&dentry->d_lock);
2605                 dput(new);
2606                 return dentry;
2607         }
2608         rcu_read_unlock();
2609         /* we can't take ->d_lock here; it's OK, though. */
2610         new->d_flags |= DCACHE_PAR_LOOKUP;
2611         new->d_wait = wq;
2612         hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2613         hlist_bl_unlock(b);
2614         return new;
2615 mismatch:
2616         spin_unlock(&dentry->d_lock);
2617         dput(dentry);
2618         goto retry;
2619 }
2620 EXPORT_SYMBOL(d_alloc_parallel);
2621
2622 void __d_lookup_done(struct dentry *dentry)
2623 {
2624         struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2625                                                  dentry->d_name.hash);
2626         hlist_bl_lock(b);
2627         dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2628         __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2629         wake_up_all(dentry->d_wait);
2630         dentry->d_wait = NULL;
2631         hlist_bl_unlock(b);
2632         INIT_HLIST_NODE(&dentry->d_u.d_alias);
2633         INIT_LIST_HEAD(&dentry->d_lru);
2634 }
2635 EXPORT_SYMBOL(__d_lookup_done);
2636
2637 /* inode->i_lock held if inode is non-NULL */
2638
2639 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2640 {
2641         struct inode *dir = NULL;
2642         unsigned n;
2643         spin_lock(&dentry->d_lock);
2644         if (unlikely(d_in_lookup(dentry))) {
2645                 dir = dentry->d_parent->d_inode;
2646                 n = start_dir_add(dir);
2647                 __d_lookup_done(dentry);
2648         }
2649         if (inode) {
2650                 unsigned add_flags = d_flags_for_inode(inode);
2651                 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2652                 raw_write_seqcount_begin(&dentry->d_seq);
2653                 __d_set_inode_and_type(dentry, inode, add_flags);
2654                 raw_write_seqcount_end(&dentry->d_seq);
2655                 fsnotify_update_flags(dentry);
2656         }
2657         __d_rehash(dentry);
2658         if (dir)
2659                 end_dir_add(dir, n);
2660         spin_unlock(&dentry->d_lock);
2661         if (inode)
2662                 spin_unlock(&inode->i_lock);
2663 }
2664
2665 /**
2666  * d_add - add dentry to hash queues
2667  * @entry: dentry to add
2668  * @inode: The inode to attach to this dentry
2669  *
2670  * This adds the entry to the hash queues and initializes @inode.
2671  * The entry was actually filled in earlier during d_alloc().
2672  */
2673
2674 void d_add(struct dentry *entry, struct inode *inode)
2675 {
2676         if (inode) {
2677                 security_d_instantiate(entry, inode);
2678                 spin_lock(&inode->i_lock);
2679         }
2680         __d_add(entry, inode);
2681 }
2682 EXPORT_SYMBOL(d_add);
2683
2684 /**
2685  * d_exact_alias - find and hash an exact unhashed alias
2686  * @entry: dentry to add
2687  * @inode: The inode to go with this dentry
2688  *
2689  * If an unhashed dentry with the same name/parent and desired
2690  * inode already exists, hash and return it.  Otherwise, return
2691  * NULL.
2692  *
2693  * Parent directory should be locked.
2694  */
2695 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2696 {
2697         struct dentry *alias;
2698         unsigned int hash = entry->d_name.hash;
2699
2700         spin_lock(&inode->i_lock);
2701         hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2702                 /*
2703                  * Don't need alias->d_lock here, because aliases with
2704                  * d_parent == entry->d_parent are not subject to name or
2705                  * parent changes, because the parent inode i_mutex is held.
2706                  */
2707                 if (alias->d_name.hash != hash)
2708                         continue;
2709                 if (alias->d_parent != entry->d_parent)
2710                         continue;
2711                 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2712                         continue;
2713                 spin_lock(&alias->d_lock);
2714                 if (!d_unhashed(alias)) {
2715                         spin_unlock(&alias->d_lock);
2716                         alias = NULL;
2717                 } else {
2718                         __dget_dlock(alias);
2719                         __d_rehash(alias);
2720                         spin_unlock(&alias->d_lock);
2721                 }
2722                 spin_unlock(&inode->i_lock);
2723                 return alias;
2724         }
2725         spin_unlock(&inode->i_lock);
2726         return NULL;
2727 }
2728 EXPORT_SYMBOL(d_exact_alias);
2729
2730 /**
2731  * dentry_update_name_case - update case insensitive dentry with a new name
2732  * @dentry: dentry to be updated
2733  * @name: new name
2734  *
2735  * Update a case insensitive dentry with new case of name.
2736  *
2737  * dentry must have been returned by d_lookup with name @name. Old and new
2738  * name lengths must match (ie. no d_compare which allows mismatched name
2739  * lengths).
2740  *
2741  * Parent inode i_mutex must be held over d_lookup and into this call (to
2742  * keep renames and concurrent inserts, and readdir(2) away).
2743  */
2744 void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
2745 {
2746         BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
2747         BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2748
2749         spin_lock(&dentry->d_lock);
2750         write_seqcount_begin(&dentry->d_seq);
2751         memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2752         write_seqcount_end(&dentry->d_seq);
2753         spin_unlock(&dentry->d_lock);
2754 }
2755 EXPORT_SYMBOL(dentry_update_name_case);
2756
2757 static void swap_names(struct dentry *dentry, struct dentry *target)
2758 {
2759         if (unlikely(dname_external(target))) {
2760                 if (unlikely(dname_external(dentry))) {
2761                         /*
2762                          * Both external: swap the pointers
2763                          */
2764                         swap(target->d_name.name, dentry->d_name.name);
2765                 } else {
2766                         /*
2767                          * dentry:internal, target:external.  Steal target's
2768                          * storage and make target internal.
2769                          */
2770                         memcpy(target->d_iname, dentry->d_name.name,
2771                                         dentry->d_name.len + 1);
2772                         dentry->d_name.name = target->d_name.name;
2773                         target->d_name.name = target->d_iname;
2774                 }
2775         } else {
2776                 if (unlikely(dname_external(dentry))) {
2777                         /*
2778                          * dentry:external, target:internal.  Give dentry's
2779                          * storage to target and make dentry internal
2780                          */
2781                         memcpy(dentry->d_iname, target->d_name.name,
2782                                         target->d_name.len + 1);
2783                         target->d_name.name = dentry->d_name.name;
2784                         dentry->d_name.name = dentry->d_iname;
2785                 } else {
2786                         /*
2787                          * Both are internal.
2788                          */
2789                         unsigned int i;
2790                         BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2791                         for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2792                                 swap(((long *) &dentry->d_iname)[i],
2793                                      ((long *) &target->d_iname)[i]);
2794                         }
2795                 }
2796         }
2797         swap(dentry->d_name.hash_len, target->d_name.hash_len);
2798 }
2799
2800 static void copy_name(struct dentry *dentry, struct dentry *target)
2801 {
2802         struct external_name *old_name = NULL;
2803         if (unlikely(dname_external(dentry)))
2804                 old_name = external_name(dentry);
2805         if (unlikely(dname_external(target))) {
2806                 atomic_inc(&external_name(target)->u.count);
2807                 dentry->d_name = target->d_name;
2808         } else {
2809                 memcpy(dentry->d_iname, target->d_name.name,
2810                                 target->d_name.len + 1);
2811                 dentry->d_name.name = dentry->d_iname;
2812                 dentry->d_name.hash_len = target->d_name.hash_len;
2813         }
2814         if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2815                 call_rcu(&old_name->u.head, __d_free_external_name);
2816 }
2817
2818 /*
2819  * __d_move - move a dentry
2820  * @dentry: entry to move
2821  * @target: new dentry
2822  * @exchange: exchange the two dentries
2823  *
2824  * Update the dcache to reflect the move of a file name. Negative
2825  * dcache entries should not be moved in this way. Caller must hold
2826  * rename_lock, the i_mutex of the source and target directories,
2827  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2828  */
2829 static void __d_move(struct dentry *dentry, struct dentry *target,
2830                      bool exchange)
2831 {
2832         struct dentry *old_parent, *p;
2833         struct inode *dir = NULL;
2834         unsigned n;
2835
2836         WARN_ON(!dentry->d_inode);
2837         if (WARN_ON(dentry == target))
2838                 return;
2839
2840         BUG_ON(d_ancestor(target, dentry));
2841         old_parent = dentry->d_parent;
2842         p = d_ancestor(old_parent, target);
2843         if (IS_ROOT(dentry)) {
2844                 BUG_ON(p);
2845                 spin_lock(&target->d_parent->d_lock);
2846         } else if (!p) {
2847                 /* target is not a descendent of dentry->d_parent */
2848                 spin_lock(&target->d_parent->d_lock);
2849                 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2850         } else {
2851                 BUG_ON(p == dentry);
2852                 spin_lock(&old_parent->d_lock);
2853                 if (p != target)
2854                         spin_lock_nested(&target->d_parent->d_lock,
2855                                         DENTRY_D_LOCK_NESTED);
2856         }
2857         spin_lock_nested(&dentry->d_lock, 2);
2858         spin_lock_nested(&target->d_lock, 3);
2859
2860         if (unlikely(d_in_lookup(target))) {
2861                 dir = target->d_parent->d_inode;
2862                 n = start_dir_add(dir);
2863                 __d_lookup_done(target);
2864         }
2865
2866         write_seqcount_begin(&dentry->d_seq);
2867         write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2868
2869         /* unhash both */
2870         if (!d_unhashed(dentry))
2871                 ___d_drop(dentry);
2872         if (!d_unhashed(target))
2873                 ___d_drop(target);
2874
2875         /* ... and switch them in the tree */
2876         dentry->d_parent = target->d_parent;
2877         if (!exchange) {
2878                 copy_name(dentry, target);
2879                 target->d_hash.pprev = NULL;
2880                 dentry->d_parent->d_lockref.count++;
2881                 if (dentry == old_parent)
2882                         dentry->d_flags |= DCACHE_RCUACCESS;
2883                 else
2884                         WARN_ON(!--old_parent->d_lockref.count);
2885         } else {
2886                 target->d_parent = old_parent;
2887                 swap_names(dentry, target);
2888                 list_move(&target->d_child, &target->d_parent->d_subdirs);
2889                 __d_rehash(target);
2890                 fsnotify_update_flags(target);
2891         }
2892         list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2893         __d_rehash(dentry);
2894         fsnotify_update_flags(dentry);
2895
2896         write_seqcount_end(&target->d_seq);
2897         write_seqcount_end(&dentry->d_seq);
2898
2899         if (dir)
2900                 end_dir_add(dir, n);
2901
2902         if (dentry->d_parent != old_parent)
2903                 spin_unlock(&dentry->d_parent->d_lock);
2904         if (dentry != old_parent)
2905                 spin_unlock(&old_parent->d_lock);
2906         spin_unlock(&target->d_lock);
2907         spin_unlock(&dentry->d_lock);
2908 }
2909
2910 /*
2911  * d_move - move a dentry
2912  * @dentry: entry to move
2913  * @target: new dentry
2914  *
2915  * Update the dcache to reflect the move of a file name. Negative
2916  * dcache entries should not be moved in this way. See the locking
2917  * requirements for __d_move.
2918  */
2919 void d_move(struct dentry *dentry, struct dentry *target)
2920 {
2921         write_seqlock(&rename_lock);
2922         __d_move(dentry, target, false);
2923         write_sequnlock(&rename_lock);
2924 }
2925 EXPORT_SYMBOL(d_move);
2926
2927 /*
2928  * d_exchange - exchange two dentries
2929  * @dentry1: first dentry
2930  * @dentry2: second dentry
2931  */
2932 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2933 {
2934         write_seqlock(&rename_lock);
2935
2936         WARN_ON(!dentry1->d_inode);
2937         WARN_ON(!dentry2->d_inode);
2938         WARN_ON(IS_ROOT(dentry1));
2939         WARN_ON(IS_ROOT(dentry2));
2940
2941         __d_move(dentry1, dentry2, true);
2942
2943         write_sequnlock(&rename_lock);
2944 }
2945
2946 /**
2947  * d_ancestor - search for an ancestor
2948  * @p1: ancestor dentry
2949  * @p2: child dentry
2950  *
2951  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2952  * an ancestor of p2, else NULL.
2953  */
2954 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2955 {
2956         struct dentry *p;
2957
2958         for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2959                 if (p->d_parent == p1)
2960                         return p;
2961         }
2962         return NULL;
2963 }
2964
2965 /*
2966  * This helper attempts to cope with remotely renamed directories
2967  *
2968  * It assumes that the caller is already holding
2969  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2970  *
2971  * Note: If ever the locking in lock_rename() changes, then please
2972  * remember to update this too...
2973  */
2974 static int __d_unalias(struct inode *inode,
2975                 struct dentry *dentry, struct dentry *alias)
2976 {
2977         struct mutex *m1 = NULL;
2978         struct rw_semaphore *m2 = NULL;
2979         int ret = -ESTALE;
2980
2981         /* If alias and dentry share a parent, then no extra locks required */
2982         if (alias->d_parent == dentry->d_parent)
2983                 goto out_unalias;
2984
2985         /* See lock_rename() */
2986         if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2987                 goto out_err;
2988         m1 = &dentry->d_sb->s_vfs_rename_mutex;
2989         if (!inode_trylock_shared(alias->d_parent->d_inode))
2990                 goto out_err;
2991         m2 = &alias->d_parent->d_inode->i_rwsem;
2992 out_unalias:
2993         __d_move(alias, dentry, false);
2994         ret = 0;
2995 out_err:
2996         if (m2)
2997                 up_read(m2);
2998         if (m1)
2999                 mutex_unlock(m1);
3000         return ret;
3001 }
3002
3003 /**
3004  * d_splice_alias - splice a disconnected dentry into the tree if one exists
3005  * @inode:  the inode which may have a disconnected dentry
3006  * @dentry: a negative dentry which we want to point to the inode.
3007  *
3008  * If inode is a directory and has an IS_ROOT alias, then d_move that in
3009  * place of the given dentry and return it, else simply d_add the inode
3010  * to the dentry and return NULL.
3011  *
3012  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3013  * we should error out: directories can't have multiple aliases.
3014  *
3015  * This is needed in the lookup routine of any filesystem that is exportable
3016  * (via knfsd) so that we can build dcache paths to directories effectively.
3017  *
3018  * If a dentry was found and moved, then it is returned.  Otherwise NULL
3019  * is returned.  This matches the expected return value of ->lookup.
3020  *
3021  * Cluster filesystems may call this function with a negative, hashed dentry.
3022  * In that case, we know that the inode will be a regular file, and also this
3023  * will only occur during atomic_open. So we need to check for the dentry
3024  * being already hashed only in the final case.
3025  */
3026 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3027 {
3028         if (IS_ERR(inode))
3029                 return ERR_CAST(inode);
3030
3031         BUG_ON(!d_unhashed(dentry));
3032
3033         if (!inode)
3034                 goto out;
3035
3036         security_d_instantiate(dentry, inode);
3037         spin_lock(&inode->i_lock);
3038         if (S_ISDIR(inode->i_mode)) {
3039                 struct dentry *new = __d_find_any_alias(inode);
3040                 if (unlikely(new)) {
3041                         /* The reference to new ensures it remains an alias */
3042                         spin_unlock(&inode->i_lock);
3043                         write_seqlock(&rename_lock);
3044                         if (unlikely(d_ancestor(new, dentry))) {
3045                                 write_sequnlock(&rename_lock);
3046                                 dput(new);
3047                                 new = ERR_PTR(-ELOOP);
3048                                 pr_warn_ratelimited(
3049                                         "VFS: Lookup of '%s' in %s %s"
3050                                         " would have caused loop\n",
3051                                         dentry->d_name.name,
3052                                         inode->i_sb->s_type->name,
3053                                         inode->i_sb->s_id);
3054                         } else if (!IS_ROOT(new)) {
3055                                 struct dentry *old_parent = dget(new->d_parent);
3056                                 int err = __d_unalias(inode, dentry, new);
3057                                 write_sequnlock(&rename_lock);
3058                                 if (err) {
3059                                         dput(new);
3060                                         new = ERR_PTR(err);
3061                                 }
3062                                 dput(old_parent);
3063                         } else {
3064                                 __d_move(new, dentry, false);
3065                                 write_sequnlock(&rename_lock);
3066                         }
3067                         iput(inode);
3068                         return new;
3069                 }
3070         }
3071 out:
3072         __d_add(dentry, inode);
3073         return NULL;
3074 }
3075 EXPORT_SYMBOL(d_splice_alias);
3076
3077 /*
3078  * Test whether new_dentry is a subdirectory of old_dentry.
3079  *
3080  * Trivially implemented using the dcache structure
3081  */
3082
3083 /**
3084  * is_subdir - is new dentry a subdirectory of old_dentry
3085  * @new_dentry: new dentry
3086  * @old_dentry: old dentry
3087  *
3088  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3089  * Returns false otherwise.
3090  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3091  */
3092   
3093 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3094 {
3095         bool result;
3096         unsigned seq;
3097
3098         if (new_dentry == old_dentry)
3099                 return true;
3100
3101         do {
3102                 /* for restarting inner loop in case of seq retry */
3103                 seq = read_seqbegin(&rename_lock);
3104                 /*
3105                  * Need rcu_readlock to protect against the d_parent trashing
3106                  * due to d_move
3107                  */
3108                 rcu_read_lock();
3109                 if (d_ancestor(old_dentry, new_dentry))
3110                         result = true;
3111                 else
3112                         result = false;
3113                 rcu_read_unlock();
3114         } while (read_seqretry(&rename_lock, seq));
3115
3116         return result;
3117 }
3118 EXPORT_SYMBOL(is_subdir);
3119
3120 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3121 {
3122         struct dentry *root = data;
3123         if (dentry != root) {
3124                 if (d_unhashed(dentry) || !dentry->d_inode)
3125                         return D_WALK_SKIP;
3126
3127                 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3128                         dentry->d_flags |= DCACHE_GENOCIDE;
3129                         dentry->d_lockref.count--;
3130                 }
3131         }
3132         return D_WALK_CONTINUE;
3133 }
3134
3135 void d_genocide(struct dentry *parent)
3136 {
3137         d_walk(parent, parent, d_genocide_kill, NULL);
3138 }
3139
3140 EXPORT_SYMBOL(d_genocide);
3141
3142 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3143 {
3144         inode_dec_link_count(inode);
3145         BUG_ON(dentry->d_name.name != dentry->d_iname ||
3146                 !hlist_unhashed(&dentry->d_u.d_alias) ||
3147                 !d_unlinked(dentry));
3148         spin_lock(&dentry->d_parent->d_lock);
3149         spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3150         dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3151                                 (unsigned long long)inode->i_ino);
3152         spin_unlock(&dentry->d_lock);
3153         spin_unlock(&dentry->d_parent->d_lock);
3154         d_instantiate(dentry, inode);
3155 }
3156 EXPORT_SYMBOL(d_tmpfile);
3157
3158 static __initdata unsigned long dhash_entries;
3159 static int __init set_dhash_entries(char *str)
3160 {
3161         if (!str)
3162                 return 0;
3163         dhash_entries = simple_strtoul(str, &str, 0);
3164         return 1;
3165 }
3166 __setup("dhash_entries=", set_dhash_entries);
3167
3168 static void __init dcache_init_early(void)
3169 {
3170         /* If hashes are distributed across NUMA nodes, defer
3171          * hash allocation until vmalloc space is available.
3172          */
3173         if (hashdist)
3174                 return;
3175
3176         dentry_hashtable =
3177                 alloc_large_system_hash("Dentry cache",
3178                                         sizeof(struct hlist_bl_head),
3179                                         dhash_entries,
3180                                         13,
3181                                         HASH_EARLY | HASH_ZERO,
3182                                         &d_hash_shift,
3183                                         NULL,
3184                                         0,
3185                                         0);
3186         d_hash_shift = 32 - d_hash_shift;
3187 }
3188
3189 static void __init dcache_init(void)
3190 {
3191         /*
3192          * A constructor could be added for stable state like the lists,
3193          * but it is probably not worth it because of the cache nature
3194          * of the dcache.
3195          */
3196         dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3197                 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3198                 d_iname);
3199
3200         /* Hash may have been set up in dcache_init_early */
3201         if (!hashdist)
3202                 return;
3203
3204         dentry_hashtable =
3205                 alloc_large_system_hash("Dentry cache",
3206                                         sizeof(struct hlist_bl_head),
3207                                         dhash_entries,
3208                                         13,
3209                                         HASH_ZERO,
3210                                         &d_hash_shift,
3211                                         NULL,
3212                                         0,
3213                                         0);
3214         d_hash_shift = 32 - d_hash_shift;
3215 }
3216
3217 /* SLAB cache for __getname() consumers */
3218 struct kmem_cache *names_cachep __read_mostly;
3219 EXPORT_SYMBOL(names_cachep);
3220
3221 void __init vfs_caches_init_early(void)
3222 {
3223         int i;
3224
3225         for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3226                 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3227
3228         dcache_init_early();
3229         inode_init_early();
3230 }
3231
3232 void __init vfs_caches_init(void)
3233 {
3234         names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3235                         SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3236
3237         dcache_init();
3238         inode_init();
3239         files_init();
3240         files_maxfiles_init();
3241         mnt_init();
3242         bdev_cache_init();
3243         chrdev_init();
3244 }