Merge tag 'xtensa-20181228' of git://github.com/jcmvbkbc/linux-xtensa
[linux-2.6-block.git] / fs / dax.c
1 /*
2  * fs/dax.c - Direct Access filesystem code
3  * Copyright (c) 2013-2014 Intel Corporation
4  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/sched.h>
29 #include <linux/sched/signal.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/iomap.h>
36 #include "internal.h"
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/fs_dax.h>
40
41 static inline unsigned int pe_order(enum page_entry_size pe_size)
42 {
43         if (pe_size == PE_SIZE_PTE)
44                 return PAGE_SHIFT - PAGE_SHIFT;
45         if (pe_size == PE_SIZE_PMD)
46                 return PMD_SHIFT - PAGE_SHIFT;
47         if (pe_size == PE_SIZE_PUD)
48                 return PUD_SHIFT - PAGE_SHIFT;
49         return ~0;
50 }
51
52 /* We choose 4096 entries - same as per-zone page wait tables */
53 #define DAX_WAIT_TABLE_BITS 12
54 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
55
56 /* The 'colour' (ie low bits) within a PMD of a page offset.  */
57 #define PG_PMD_COLOUR   ((PMD_SIZE >> PAGE_SHIFT) - 1)
58 #define PG_PMD_NR       (PMD_SIZE >> PAGE_SHIFT)
59
60 /* The order of a PMD entry */
61 #define PMD_ORDER       (PMD_SHIFT - PAGE_SHIFT)
62
63 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
64
65 static int __init init_dax_wait_table(void)
66 {
67         int i;
68
69         for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
70                 init_waitqueue_head(wait_table + i);
71         return 0;
72 }
73 fs_initcall(init_dax_wait_table);
74
75 /*
76  * DAX pagecache entries use XArray value entries so they can't be mistaken
77  * for pages.  We use one bit for locking, one bit for the entry size (PMD)
78  * and two more to tell us if the entry is a zero page or an empty entry that
79  * is just used for locking.  In total four special bits.
80  *
81  * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
82  * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
83  * block allocation.
84  */
85 #define DAX_SHIFT       (4)
86 #define DAX_LOCKED      (1UL << 0)
87 #define DAX_PMD         (1UL << 1)
88 #define DAX_ZERO_PAGE   (1UL << 2)
89 #define DAX_EMPTY       (1UL << 3)
90
91 static unsigned long dax_to_pfn(void *entry)
92 {
93         return xa_to_value(entry) >> DAX_SHIFT;
94 }
95
96 static void *dax_make_entry(pfn_t pfn, unsigned long flags)
97 {
98         return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
99 }
100
101 static bool dax_is_locked(void *entry)
102 {
103         return xa_to_value(entry) & DAX_LOCKED;
104 }
105
106 static unsigned int dax_entry_order(void *entry)
107 {
108         if (xa_to_value(entry) & DAX_PMD)
109                 return PMD_ORDER;
110         return 0;
111 }
112
113 static unsigned long dax_is_pmd_entry(void *entry)
114 {
115         return xa_to_value(entry) & DAX_PMD;
116 }
117
118 static bool dax_is_pte_entry(void *entry)
119 {
120         return !(xa_to_value(entry) & DAX_PMD);
121 }
122
123 static int dax_is_zero_entry(void *entry)
124 {
125         return xa_to_value(entry) & DAX_ZERO_PAGE;
126 }
127
128 static int dax_is_empty_entry(void *entry)
129 {
130         return xa_to_value(entry) & DAX_EMPTY;
131 }
132
133 /*
134  * DAX page cache entry locking
135  */
136 struct exceptional_entry_key {
137         struct xarray *xa;
138         pgoff_t entry_start;
139 };
140
141 struct wait_exceptional_entry_queue {
142         wait_queue_entry_t wait;
143         struct exceptional_entry_key key;
144 };
145
146 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
147                 void *entry, struct exceptional_entry_key *key)
148 {
149         unsigned long hash;
150         unsigned long index = xas->xa_index;
151
152         /*
153          * If 'entry' is a PMD, align the 'index' that we use for the wait
154          * queue to the start of that PMD.  This ensures that all offsets in
155          * the range covered by the PMD map to the same bit lock.
156          */
157         if (dax_is_pmd_entry(entry))
158                 index &= ~PG_PMD_COLOUR;
159         key->xa = xas->xa;
160         key->entry_start = index;
161
162         hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
163         return wait_table + hash;
164 }
165
166 static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
167                 unsigned int mode, int sync, void *keyp)
168 {
169         struct exceptional_entry_key *key = keyp;
170         struct wait_exceptional_entry_queue *ewait =
171                 container_of(wait, struct wait_exceptional_entry_queue, wait);
172
173         if (key->xa != ewait->key.xa ||
174             key->entry_start != ewait->key.entry_start)
175                 return 0;
176         return autoremove_wake_function(wait, mode, sync, NULL);
177 }
178
179 /*
180  * @entry may no longer be the entry at the index in the mapping.
181  * The important information it's conveying is whether the entry at
182  * this index used to be a PMD entry.
183  */
184 static void dax_wake_entry(struct xa_state *xas, void *entry, bool wake_all)
185 {
186         struct exceptional_entry_key key;
187         wait_queue_head_t *wq;
188
189         wq = dax_entry_waitqueue(xas, entry, &key);
190
191         /*
192          * Checking for locked entry and prepare_to_wait_exclusive() happens
193          * under the i_pages lock, ditto for entry handling in our callers.
194          * So at this point all tasks that could have seen our entry locked
195          * must be in the waitqueue and the following check will see them.
196          */
197         if (waitqueue_active(wq))
198                 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
199 }
200
201 /*
202  * Look up entry in page cache, wait for it to become unlocked if it
203  * is a DAX entry and return it.  The caller must subsequently call
204  * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
205  * if it did.
206  *
207  * Must be called with the i_pages lock held.
208  */
209 static void *get_unlocked_entry(struct xa_state *xas)
210 {
211         void *entry;
212         struct wait_exceptional_entry_queue ewait;
213         wait_queue_head_t *wq;
214
215         init_wait(&ewait.wait);
216         ewait.wait.func = wake_exceptional_entry_func;
217
218         for (;;) {
219                 entry = xas_find_conflict(xas);
220                 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)) ||
221                                 !dax_is_locked(entry))
222                         return entry;
223
224                 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
225                 prepare_to_wait_exclusive(wq, &ewait.wait,
226                                           TASK_UNINTERRUPTIBLE);
227                 xas_unlock_irq(xas);
228                 xas_reset(xas);
229                 schedule();
230                 finish_wait(wq, &ewait.wait);
231                 xas_lock_irq(xas);
232         }
233 }
234
235 /*
236  * The only thing keeping the address space around is the i_pages lock
237  * (it's cycled in clear_inode() after removing the entries from i_pages)
238  * After we call xas_unlock_irq(), we cannot touch xas->xa.
239  */
240 static void wait_entry_unlocked(struct xa_state *xas, void *entry)
241 {
242         struct wait_exceptional_entry_queue ewait;
243         wait_queue_head_t *wq;
244
245         init_wait(&ewait.wait);
246         ewait.wait.func = wake_exceptional_entry_func;
247
248         wq = dax_entry_waitqueue(xas, entry, &ewait.key);
249         prepare_to_wait_exclusive(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
250         xas_unlock_irq(xas);
251         schedule();
252         finish_wait(wq, &ewait.wait);
253
254         /*
255          * Entry lock waits are exclusive. Wake up the next waiter since
256          * we aren't sure we will acquire the entry lock and thus wake
257          * the next waiter up on unlock.
258          */
259         if (waitqueue_active(wq))
260                 __wake_up(wq, TASK_NORMAL, 1, &ewait.key);
261 }
262
263 static void put_unlocked_entry(struct xa_state *xas, void *entry)
264 {
265         /* If we were the only waiter woken, wake the next one */
266         if (entry)
267                 dax_wake_entry(xas, entry, false);
268 }
269
270 /*
271  * We used the xa_state to get the entry, but then we locked the entry and
272  * dropped the xa_lock, so we know the xa_state is stale and must be reset
273  * before use.
274  */
275 static void dax_unlock_entry(struct xa_state *xas, void *entry)
276 {
277         void *old;
278
279         BUG_ON(dax_is_locked(entry));
280         xas_reset(xas);
281         xas_lock_irq(xas);
282         old = xas_store(xas, entry);
283         xas_unlock_irq(xas);
284         BUG_ON(!dax_is_locked(old));
285         dax_wake_entry(xas, entry, false);
286 }
287
288 /*
289  * Return: The entry stored at this location before it was locked.
290  */
291 static void *dax_lock_entry(struct xa_state *xas, void *entry)
292 {
293         unsigned long v = xa_to_value(entry);
294         return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
295 }
296
297 static unsigned long dax_entry_size(void *entry)
298 {
299         if (dax_is_zero_entry(entry))
300                 return 0;
301         else if (dax_is_empty_entry(entry))
302                 return 0;
303         else if (dax_is_pmd_entry(entry))
304                 return PMD_SIZE;
305         else
306                 return PAGE_SIZE;
307 }
308
309 static unsigned long dax_end_pfn(void *entry)
310 {
311         return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
312 }
313
314 /*
315  * Iterate through all mapped pfns represented by an entry, i.e. skip
316  * 'empty' and 'zero' entries.
317  */
318 #define for_each_mapped_pfn(entry, pfn) \
319         for (pfn = dax_to_pfn(entry); \
320                         pfn < dax_end_pfn(entry); pfn++)
321
322 /*
323  * TODO: for reflink+dax we need a way to associate a single page with
324  * multiple address_space instances at different linear_page_index()
325  * offsets.
326  */
327 static void dax_associate_entry(void *entry, struct address_space *mapping,
328                 struct vm_area_struct *vma, unsigned long address)
329 {
330         unsigned long size = dax_entry_size(entry), pfn, index;
331         int i = 0;
332
333         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
334                 return;
335
336         index = linear_page_index(vma, address & ~(size - 1));
337         for_each_mapped_pfn(entry, pfn) {
338                 struct page *page = pfn_to_page(pfn);
339
340                 WARN_ON_ONCE(page->mapping);
341                 page->mapping = mapping;
342                 page->index = index + i++;
343         }
344 }
345
346 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
347                 bool trunc)
348 {
349         unsigned long pfn;
350
351         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
352                 return;
353
354         for_each_mapped_pfn(entry, pfn) {
355                 struct page *page = pfn_to_page(pfn);
356
357                 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
358                 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
359                 page->mapping = NULL;
360                 page->index = 0;
361         }
362 }
363
364 static struct page *dax_busy_page(void *entry)
365 {
366         unsigned long pfn;
367
368         for_each_mapped_pfn(entry, pfn) {
369                 struct page *page = pfn_to_page(pfn);
370
371                 if (page_ref_count(page) > 1)
372                         return page;
373         }
374         return NULL;
375 }
376
377 /*
378  * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page
379  * @page: The page whose entry we want to lock
380  *
381  * Context: Process context.
382  * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
383  * not be locked.
384  */
385 dax_entry_t dax_lock_page(struct page *page)
386 {
387         XA_STATE(xas, NULL, 0);
388         void *entry;
389
390         /* Ensure page->mapping isn't freed while we look at it */
391         rcu_read_lock();
392         for (;;) {
393                 struct address_space *mapping = READ_ONCE(page->mapping);
394
395                 entry = NULL;
396                 if (!mapping || !dax_mapping(mapping))
397                         break;
398
399                 /*
400                  * In the device-dax case there's no need to lock, a
401                  * struct dev_pagemap pin is sufficient to keep the
402                  * inode alive, and we assume we have dev_pagemap pin
403                  * otherwise we would not have a valid pfn_to_page()
404                  * translation.
405                  */
406                 entry = (void *)~0UL;
407                 if (S_ISCHR(mapping->host->i_mode))
408                         break;
409
410                 xas.xa = &mapping->i_pages;
411                 xas_lock_irq(&xas);
412                 if (mapping != page->mapping) {
413                         xas_unlock_irq(&xas);
414                         continue;
415                 }
416                 xas_set(&xas, page->index);
417                 entry = xas_load(&xas);
418                 if (dax_is_locked(entry)) {
419                         rcu_read_unlock();
420                         wait_entry_unlocked(&xas, entry);
421                         rcu_read_lock();
422                         continue;
423                 }
424                 dax_lock_entry(&xas, entry);
425                 xas_unlock_irq(&xas);
426                 break;
427         }
428         rcu_read_unlock();
429         return (dax_entry_t)entry;
430 }
431
432 void dax_unlock_page(struct page *page, dax_entry_t cookie)
433 {
434         struct address_space *mapping = page->mapping;
435         XA_STATE(xas, &mapping->i_pages, page->index);
436
437         if (S_ISCHR(mapping->host->i_mode))
438                 return;
439
440         dax_unlock_entry(&xas, (void *)cookie);
441 }
442
443 /*
444  * Find page cache entry at given index. If it is a DAX entry, return it
445  * with the entry locked. If the page cache doesn't contain an entry at
446  * that index, add a locked empty entry.
447  *
448  * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
449  * either return that locked entry or will return VM_FAULT_FALLBACK.
450  * This will happen if there are any PTE entries within the PMD range
451  * that we are requesting.
452  *
453  * We always favor PTE entries over PMD entries. There isn't a flow where we
454  * evict PTE entries in order to 'upgrade' them to a PMD entry.  A PMD
455  * insertion will fail if it finds any PTE entries already in the tree, and a
456  * PTE insertion will cause an existing PMD entry to be unmapped and
457  * downgraded to PTE entries.  This happens for both PMD zero pages as
458  * well as PMD empty entries.
459  *
460  * The exception to this downgrade path is for PMD entries that have
461  * real storage backing them.  We will leave these real PMD entries in
462  * the tree, and PTE writes will simply dirty the entire PMD entry.
463  *
464  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
465  * persistent memory the benefit is doubtful. We can add that later if we can
466  * show it helps.
467  *
468  * On error, this function does not return an ERR_PTR.  Instead it returns
469  * a VM_FAULT code, encoded as an xarray internal entry.  The ERR_PTR values
470  * overlap with xarray value entries.
471  */
472 static void *grab_mapping_entry(struct xa_state *xas,
473                 struct address_space *mapping, unsigned long size_flag)
474 {
475         unsigned long index = xas->xa_index;
476         bool pmd_downgrade = false; /* splitting PMD entry into PTE entries? */
477         void *entry;
478
479 retry:
480         xas_lock_irq(xas);
481         entry = get_unlocked_entry(xas);
482
483         if (entry) {
484                 if (!xa_is_value(entry)) {
485                         xas_set_err(xas, EIO);
486                         goto out_unlock;
487                 }
488
489                 if (size_flag & DAX_PMD) {
490                         if (dax_is_pte_entry(entry)) {
491                                 put_unlocked_entry(xas, entry);
492                                 goto fallback;
493                         }
494                 } else { /* trying to grab a PTE entry */
495                         if (dax_is_pmd_entry(entry) &&
496                             (dax_is_zero_entry(entry) ||
497                              dax_is_empty_entry(entry))) {
498                                 pmd_downgrade = true;
499                         }
500                 }
501         }
502
503         if (pmd_downgrade) {
504                 /*
505                  * Make sure 'entry' remains valid while we drop
506                  * the i_pages lock.
507                  */
508                 dax_lock_entry(xas, entry);
509
510                 /*
511                  * Besides huge zero pages the only other thing that gets
512                  * downgraded are empty entries which don't need to be
513                  * unmapped.
514                  */
515                 if (dax_is_zero_entry(entry)) {
516                         xas_unlock_irq(xas);
517                         unmap_mapping_pages(mapping,
518                                         xas->xa_index & ~PG_PMD_COLOUR,
519                                         PG_PMD_NR, false);
520                         xas_reset(xas);
521                         xas_lock_irq(xas);
522                 }
523
524                 dax_disassociate_entry(entry, mapping, false);
525                 xas_store(xas, NULL);   /* undo the PMD join */
526                 dax_wake_entry(xas, entry, true);
527                 mapping->nrexceptional--;
528                 entry = NULL;
529                 xas_set(xas, index);
530         }
531
532         if (entry) {
533                 dax_lock_entry(xas, entry);
534         } else {
535                 entry = dax_make_entry(pfn_to_pfn_t(0), size_flag | DAX_EMPTY);
536                 dax_lock_entry(xas, entry);
537                 if (xas_error(xas))
538                         goto out_unlock;
539                 mapping->nrexceptional++;
540         }
541
542 out_unlock:
543         xas_unlock_irq(xas);
544         if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
545                 goto retry;
546         if (xas->xa_node == XA_ERROR(-ENOMEM))
547                 return xa_mk_internal(VM_FAULT_OOM);
548         if (xas_error(xas))
549                 return xa_mk_internal(VM_FAULT_SIGBUS);
550         return entry;
551 fallback:
552         xas_unlock_irq(xas);
553         return xa_mk_internal(VM_FAULT_FALLBACK);
554 }
555
556 /**
557  * dax_layout_busy_page - find first pinned page in @mapping
558  * @mapping: address space to scan for a page with ref count > 1
559  *
560  * DAX requires ZONE_DEVICE mapped pages. These pages are never
561  * 'onlined' to the page allocator so they are considered idle when
562  * page->count == 1. A filesystem uses this interface to determine if
563  * any page in the mapping is busy, i.e. for DMA, or other
564  * get_user_pages() usages.
565  *
566  * It is expected that the filesystem is holding locks to block the
567  * establishment of new mappings in this address_space. I.e. it expects
568  * to be able to run unmap_mapping_range() and subsequently not race
569  * mapping_mapped() becoming true.
570  */
571 struct page *dax_layout_busy_page(struct address_space *mapping)
572 {
573         XA_STATE(xas, &mapping->i_pages, 0);
574         void *entry;
575         unsigned int scanned = 0;
576         struct page *page = NULL;
577
578         /*
579          * In the 'limited' case get_user_pages() for dax is disabled.
580          */
581         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
582                 return NULL;
583
584         if (!dax_mapping(mapping) || !mapping_mapped(mapping))
585                 return NULL;
586
587         /*
588          * If we race get_user_pages_fast() here either we'll see the
589          * elevated page count in the iteration and wait, or
590          * get_user_pages_fast() will see that the page it took a reference
591          * against is no longer mapped in the page tables and bail to the
592          * get_user_pages() slow path.  The slow path is protected by
593          * pte_lock() and pmd_lock(). New references are not taken without
594          * holding those locks, and unmap_mapping_range() will not zero the
595          * pte or pmd without holding the respective lock, so we are
596          * guaranteed to either see new references or prevent new
597          * references from being established.
598          */
599         unmap_mapping_range(mapping, 0, 0, 1);
600
601         xas_lock_irq(&xas);
602         xas_for_each(&xas, entry, ULONG_MAX) {
603                 if (WARN_ON_ONCE(!xa_is_value(entry)))
604                         continue;
605                 if (unlikely(dax_is_locked(entry)))
606                         entry = get_unlocked_entry(&xas);
607                 if (entry)
608                         page = dax_busy_page(entry);
609                 put_unlocked_entry(&xas, entry);
610                 if (page)
611                         break;
612                 if (++scanned % XA_CHECK_SCHED)
613                         continue;
614
615                 xas_pause(&xas);
616                 xas_unlock_irq(&xas);
617                 cond_resched();
618                 xas_lock_irq(&xas);
619         }
620         xas_unlock_irq(&xas);
621         return page;
622 }
623 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
624
625 static int __dax_invalidate_entry(struct address_space *mapping,
626                                           pgoff_t index, bool trunc)
627 {
628         XA_STATE(xas, &mapping->i_pages, index);
629         int ret = 0;
630         void *entry;
631
632         xas_lock_irq(&xas);
633         entry = get_unlocked_entry(&xas);
634         if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
635                 goto out;
636         if (!trunc &&
637             (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
638              xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
639                 goto out;
640         dax_disassociate_entry(entry, mapping, trunc);
641         xas_store(&xas, NULL);
642         mapping->nrexceptional--;
643         ret = 1;
644 out:
645         put_unlocked_entry(&xas, entry);
646         xas_unlock_irq(&xas);
647         return ret;
648 }
649
650 /*
651  * Delete DAX entry at @index from @mapping.  Wait for it
652  * to be unlocked before deleting it.
653  */
654 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
655 {
656         int ret = __dax_invalidate_entry(mapping, index, true);
657
658         /*
659          * This gets called from truncate / punch_hole path. As such, the caller
660          * must hold locks protecting against concurrent modifications of the
661          * page cache (usually fs-private i_mmap_sem for writing). Since the
662          * caller has seen a DAX entry for this index, we better find it
663          * at that index as well...
664          */
665         WARN_ON_ONCE(!ret);
666         return ret;
667 }
668
669 /*
670  * Invalidate DAX entry if it is clean.
671  */
672 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
673                                       pgoff_t index)
674 {
675         return __dax_invalidate_entry(mapping, index, false);
676 }
677
678 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
679                 sector_t sector, size_t size, struct page *to,
680                 unsigned long vaddr)
681 {
682         void *vto, *kaddr;
683         pgoff_t pgoff;
684         long rc;
685         int id;
686
687         rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
688         if (rc)
689                 return rc;
690
691         id = dax_read_lock();
692         rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL);
693         if (rc < 0) {
694                 dax_read_unlock(id);
695                 return rc;
696         }
697         vto = kmap_atomic(to);
698         copy_user_page(vto, (void __force *)kaddr, vaddr, to);
699         kunmap_atomic(vto);
700         dax_read_unlock(id);
701         return 0;
702 }
703
704 /*
705  * By this point grab_mapping_entry() has ensured that we have a locked entry
706  * of the appropriate size so we don't have to worry about downgrading PMDs to
707  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
708  * already in the tree, we will skip the insertion and just dirty the PMD as
709  * appropriate.
710  */
711 static void *dax_insert_entry(struct xa_state *xas,
712                 struct address_space *mapping, struct vm_fault *vmf,
713                 void *entry, pfn_t pfn, unsigned long flags, bool dirty)
714 {
715         void *new_entry = dax_make_entry(pfn, flags);
716
717         if (dirty)
718                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
719
720         if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
721                 unsigned long index = xas->xa_index;
722                 /* we are replacing a zero page with block mapping */
723                 if (dax_is_pmd_entry(entry))
724                         unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
725                                         PG_PMD_NR, false);
726                 else /* pte entry */
727                         unmap_mapping_pages(mapping, index, 1, false);
728         }
729
730         xas_reset(xas);
731         xas_lock_irq(xas);
732         if (dax_entry_size(entry) != dax_entry_size(new_entry)) {
733                 dax_disassociate_entry(entry, mapping, false);
734                 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
735         }
736
737         if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
738                 /*
739                  * Only swap our new entry into the page cache if the current
740                  * entry is a zero page or an empty entry.  If a normal PTE or
741                  * PMD entry is already in the cache, we leave it alone.  This
742                  * means that if we are trying to insert a PTE and the
743                  * existing entry is a PMD, we will just leave the PMD in the
744                  * tree and dirty it if necessary.
745                  */
746                 void *old = dax_lock_entry(xas, new_entry);
747                 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
748                                         DAX_LOCKED));
749                 entry = new_entry;
750         } else {
751                 xas_load(xas);  /* Walk the xa_state */
752         }
753
754         if (dirty)
755                 xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
756
757         xas_unlock_irq(xas);
758         return entry;
759 }
760
761 static inline
762 unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
763 {
764         unsigned long address;
765
766         address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
767         VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
768         return address;
769 }
770
771 /* Walk all mappings of a given index of a file and writeprotect them */
772 static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
773                 unsigned long pfn)
774 {
775         struct vm_area_struct *vma;
776         pte_t pte, *ptep = NULL;
777         pmd_t *pmdp = NULL;
778         spinlock_t *ptl;
779
780         i_mmap_lock_read(mapping);
781         vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
782                 struct mmu_notifier_range range;
783                 unsigned long address;
784
785                 cond_resched();
786
787                 if (!(vma->vm_flags & VM_SHARED))
788                         continue;
789
790                 address = pgoff_address(index, vma);
791
792                 /*
793                  * Note because we provide start/end to follow_pte_pmd it will
794                  * call mmu_notifier_invalidate_range_start() on our behalf
795                  * before taking any lock.
796                  */
797                 if (follow_pte_pmd(vma->vm_mm, address, &range,
798                                    &ptep, &pmdp, &ptl))
799                         continue;
800
801                 /*
802                  * No need to call mmu_notifier_invalidate_range() as we are
803                  * downgrading page table protection not changing it to point
804                  * to a new page.
805                  *
806                  * See Documentation/vm/mmu_notifier.rst
807                  */
808                 if (pmdp) {
809 #ifdef CONFIG_FS_DAX_PMD
810                         pmd_t pmd;
811
812                         if (pfn != pmd_pfn(*pmdp))
813                                 goto unlock_pmd;
814                         if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
815                                 goto unlock_pmd;
816
817                         flush_cache_page(vma, address, pfn);
818                         pmd = pmdp_huge_clear_flush(vma, address, pmdp);
819                         pmd = pmd_wrprotect(pmd);
820                         pmd = pmd_mkclean(pmd);
821                         set_pmd_at(vma->vm_mm, address, pmdp, pmd);
822 unlock_pmd:
823 #endif
824                         spin_unlock(ptl);
825                 } else {
826                         if (pfn != pte_pfn(*ptep))
827                                 goto unlock_pte;
828                         if (!pte_dirty(*ptep) && !pte_write(*ptep))
829                                 goto unlock_pte;
830
831                         flush_cache_page(vma, address, pfn);
832                         pte = ptep_clear_flush(vma, address, ptep);
833                         pte = pte_wrprotect(pte);
834                         pte = pte_mkclean(pte);
835                         set_pte_at(vma->vm_mm, address, ptep, pte);
836 unlock_pte:
837                         pte_unmap_unlock(ptep, ptl);
838                 }
839
840                 mmu_notifier_invalidate_range_end(&range);
841         }
842         i_mmap_unlock_read(mapping);
843 }
844
845 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
846                 struct address_space *mapping, void *entry)
847 {
848         unsigned long pfn;
849         long ret = 0;
850         size_t size;
851
852         /*
853          * A page got tagged dirty in DAX mapping? Something is seriously
854          * wrong.
855          */
856         if (WARN_ON(!xa_is_value(entry)))
857                 return -EIO;
858
859         if (unlikely(dax_is_locked(entry))) {
860                 void *old_entry = entry;
861
862                 entry = get_unlocked_entry(xas);
863
864                 /* Entry got punched out / reallocated? */
865                 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
866                         goto put_unlocked;
867                 /*
868                  * Entry got reallocated elsewhere? No need to writeback.
869                  * We have to compare pfns as we must not bail out due to
870                  * difference in lockbit or entry type.
871                  */
872                 if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
873                         goto put_unlocked;
874                 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
875                                         dax_is_zero_entry(entry))) {
876                         ret = -EIO;
877                         goto put_unlocked;
878                 }
879
880                 /* Another fsync thread may have already done this entry */
881                 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
882                         goto put_unlocked;
883         }
884
885         /* Lock the entry to serialize with page faults */
886         dax_lock_entry(xas, entry);
887
888         /*
889          * We can clear the tag now but we have to be careful so that concurrent
890          * dax_writeback_one() calls for the same index cannot finish before we
891          * actually flush the caches. This is achieved as the calls will look
892          * at the entry only under the i_pages lock and once they do that
893          * they will see the entry locked and wait for it to unlock.
894          */
895         xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
896         xas_unlock_irq(xas);
897
898         /*
899          * Even if dax_writeback_mapping_range() was given a wbc->range_start
900          * in the middle of a PMD, the 'index' we are given will be aligned to
901          * the start index of the PMD, as will the pfn we pull from 'entry'.
902          * This allows us to flush for PMD_SIZE and not have to worry about
903          * partial PMD writebacks.
904          */
905         pfn = dax_to_pfn(entry);
906         size = PAGE_SIZE << dax_entry_order(entry);
907
908         dax_entry_mkclean(mapping, xas->xa_index, pfn);
909         dax_flush(dax_dev, page_address(pfn_to_page(pfn)), size);
910         /*
911          * After we have flushed the cache, we can clear the dirty tag. There
912          * cannot be new dirty data in the pfn after the flush has completed as
913          * the pfn mappings are writeprotected and fault waits for mapping
914          * entry lock.
915          */
916         xas_reset(xas);
917         xas_lock_irq(xas);
918         xas_store(xas, entry);
919         xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
920         dax_wake_entry(xas, entry, false);
921
922         trace_dax_writeback_one(mapping->host, xas->xa_index,
923                         size >> PAGE_SHIFT);
924         return ret;
925
926  put_unlocked:
927         put_unlocked_entry(xas, entry);
928         return ret;
929 }
930
931 /*
932  * Flush the mapping to the persistent domain within the byte range of [start,
933  * end]. This is required by data integrity operations to ensure file data is
934  * on persistent storage prior to completion of the operation.
935  */
936 int dax_writeback_mapping_range(struct address_space *mapping,
937                 struct block_device *bdev, struct writeback_control *wbc)
938 {
939         XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
940         struct inode *inode = mapping->host;
941         pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
942         struct dax_device *dax_dev;
943         void *entry;
944         int ret = 0;
945         unsigned int scanned = 0;
946
947         if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
948                 return -EIO;
949
950         if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
951                 return 0;
952
953         dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
954         if (!dax_dev)
955                 return -EIO;
956
957         trace_dax_writeback_range(inode, xas.xa_index, end_index);
958
959         tag_pages_for_writeback(mapping, xas.xa_index, end_index);
960
961         xas_lock_irq(&xas);
962         xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
963                 ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
964                 if (ret < 0) {
965                         mapping_set_error(mapping, ret);
966                         break;
967                 }
968                 if (++scanned % XA_CHECK_SCHED)
969                         continue;
970
971                 xas_pause(&xas);
972                 xas_unlock_irq(&xas);
973                 cond_resched();
974                 xas_lock_irq(&xas);
975         }
976         xas_unlock_irq(&xas);
977         put_dax(dax_dev);
978         trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
979         return ret;
980 }
981 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
982
983 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
984 {
985         return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
986 }
987
988 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
989                          pfn_t *pfnp)
990 {
991         const sector_t sector = dax_iomap_sector(iomap, pos);
992         pgoff_t pgoff;
993         int id, rc;
994         long length;
995
996         rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
997         if (rc)
998                 return rc;
999         id = dax_read_lock();
1000         length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
1001                                    NULL, pfnp);
1002         if (length < 0) {
1003                 rc = length;
1004                 goto out;
1005         }
1006         rc = -EINVAL;
1007         if (PFN_PHYS(length) < size)
1008                 goto out;
1009         if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1010                 goto out;
1011         /* For larger pages we need devmap */
1012         if (length > 1 && !pfn_t_devmap(*pfnp))
1013                 goto out;
1014         rc = 0;
1015 out:
1016         dax_read_unlock(id);
1017         return rc;
1018 }
1019
1020 /*
1021  * The user has performed a load from a hole in the file.  Allocating a new
1022  * page in the file would cause excessive storage usage for workloads with
1023  * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
1024  * If this page is ever written to we will re-fault and change the mapping to
1025  * point to real DAX storage instead.
1026  */
1027 static vm_fault_t dax_load_hole(struct xa_state *xas,
1028                 struct address_space *mapping, void **entry,
1029                 struct vm_fault *vmf)
1030 {
1031         struct inode *inode = mapping->host;
1032         unsigned long vaddr = vmf->address;
1033         pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1034         vm_fault_t ret;
1035
1036         *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1037                         DAX_ZERO_PAGE, false);
1038
1039         ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1040         trace_dax_load_hole(inode, vmf, ret);
1041         return ret;
1042 }
1043
1044 static bool dax_range_is_aligned(struct block_device *bdev,
1045                                  unsigned int offset, unsigned int length)
1046 {
1047         unsigned short sector_size = bdev_logical_block_size(bdev);
1048
1049         if (!IS_ALIGNED(offset, sector_size))
1050                 return false;
1051         if (!IS_ALIGNED(length, sector_size))
1052                 return false;
1053
1054         return true;
1055 }
1056
1057 int __dax_zero_page_range(struct block_device *bdev,
1058                 struct dax_device *dax_dev, sector_t sector,
1059                 unsigned int offset, unsigned int size)
1060 {
1061         if (dax_range_is_aligned(bdev, offset, size)) {
1062                 sector_t start_sector = sector + (offset >> 9);
1063
1064                 return blkdev_issue_zeroout(bdev, start_sector,
1065                                 size >> 9, GFP_NOFS, 0);
1066         } else {
1067                 pgoff_t pgoff;
1068                 long rc, id;
1069                 void *kaddr;
1070
1071                 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
1072                 if (rc)
1073                         return rc;
1074
1075                 id = dax_read_lock();
1076                 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
1077                 if (rc < 0) {
1078                         dax_read_unlock(id);
1079                         return rc;
1080                 }
1081                 memset(kaddr + offset, 0, size);
1082                 dax_flush(dax_dev, kaddr + offset, size);
1083                 dax_read_unlock(id);
1084         }
1085         return 0;
1086 }
1087 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1088
1089 static loff_t
1090 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1091                 struct iomap *iomap)
1092 {
1093         struct block_device *bdev = iomap->bdev;
1094         struct dax_device *dax_dev = iomap->dax_dev;
1095         struct iov_iter *iter = data;
1096         loff_t end = pos + length, done = 0;
1097         ssize_t ret = 0;
1098         size_t xfer;
1099         int id;
1100
1101         if (iov_iter_rw(iter) == READ) {
1102                 end = min(end, i_size_read(inode));
1103                 if (pos >= end)
1104                         return 0;
1105
1106                 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1107                         return iov_iter_zero(min(length, end - pos), iter);
1108         }
1109
1110         if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1111                 return -EIO;
1112
1113         /*
1114          * Write can allocate block for an area which has a hole page mapped
1115          * into page tables. We have to tear down these mappings so that data
1116          * written by write(2) is visible in mmap.
1117          */
1118         if (iomap->flags & IOMAP_F_NEW) {
1119                 invalidate_inode_pages2_range(inode->i_mapping,
1120                                               pos >> PAGE_SHIFT,
1121                                               (end - 1) >> PAGE_SHIFT);
1122         }
1123
1124         id = dax_read_lock();
1125         while (pos < end) {
1126                 unsigned offset = pos & (PAGE_SIZE - 1);
1127                 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1128                 const sector_t sector = dax_iomap_sector(iomap, pos);
1129                 ssize_t map_len;
1130                 pgoff_t pgoff;
1131                 void *kaddr;
1132
1133                 if (fatal_signal_pending(current)) {
1134                         ret = -EINTR;
1135                         break;
1136                 }
1137
1138                 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1139                 if (ret)
1140                         break;
1141
1142                 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1143                                 &kaddr, NULL);
1144                 if (map_len < 0) {
1145                         ret = map_len;
1146                         break;
1147                 }
1148
1149                 map_len = PFN_PHYS(map_len);
1150                 kaddr += offset;
1151                 map_len -= offset;
1152                 if (map_len > end - pos)
1153                         map_len = end - pos;
1154
1155                 /*
1156                  * The userspace address for the memory copy has already been
1157                  * validated via access_ok() in either vfs_read() or
1158                  * vfs_write(), depending on which operation we are doing.
1159                  */
1160                 if (iov_iter_rw(iter) == WRITE)
1161                         xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1162                                         map_len, iter);
1163                 else
1164                         xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1165                                         map_len, iter);
1166
1167                 pos += xfer;
1168                 length -= xfer;
1169                 done += xfer;
1170
1171                 if (xfer == 0)
1172                         ret = -EFAULT;
1173                 if (xfer < map_len)
1174                         break;
1175         }
1176         dax_read_unlock(id);
1177
1178         return done ? done : ret;
1179 }
1180
1181 /**
1182  * dax_iomap_rw - Perform I/O to a DAX file
1183  * @iocb:       The control block for this I/O
1184  * @iter:       The addresses to do I/O from or to
1185  * @ops:        iomap ops passed from the file system
1186  *
1187  * This function performs read and write operations to directly mapped
1188  * persistent memory.  The callers needs to take care of read/write exclusion
1189  * and evicting any page cache pages in the region under I/O.
1190  */
1191 ssize_t
1192 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1193                 const struct iomap_ops *ops)
1194 {
1195         struct address_space *mapping = iocb->ki_filp->f_mapping;
1196         struct inode *inode = mapping->host;
1197         loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1198         unsigned flags = 0;
1199
1200         if (iov_iter_rw(iter) == WRITE) {
1201                 lockdep_assert_held_exclusive(&inode->i_rwsem);
1202                 flags |= IOMAP_WRITE;
1203         } else {
1204                 lockdep_assert_held(&inode->i_rwsem);
1205         }
1206
1207         while (iov_iter_count(iter)) {
1208                 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1209                                 iter, dax_iomap_actor);
1210                 if (ret <= 0)
1211                         break;
1212                 pos += ret;
1213                 done += ret;
1214         }
1215
1216         iocb->ki_pos += done;
1217         return done ? done : ret;
1218 }
1219 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1220
1221 static vm_fault_t dax_fault_return(int error)
1222 {
1223         if (error == 0)
1224                 return VM_FAULT_NOPAGE;
1225         if (error == -ENOMEM)
1226                 return VM_FAULT_OOM;
1227         return VM_FAULT_SIGBUS;
1228 }
1229
1230 /*
1231  * MAP_SYNC on a dax mapping guarantees dirty metadata is
1232  * flushed on write-faults (non-cow), but not read-faults.
1233  */
1234 static bool dax_fault_is_synchronous(unsigned long flags,
1235                 struct vm_area_struct *vma, struct iomap *iomap)
1236 {
1237         return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1238                 && (iomap->flags & IOMAP_F_DIRTY);
1239 }
1240
1241 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1242                                int *iomap_errp, const struct iomap_ops *ops)
1243 {
1244         struct vm_area_struct *vma = vmf->vma;
1245         struct address_space *mapping = vma->vm_file->f_mapping;
1246         XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1247         struct inode *inode = mapping->host;
1248         unsigned long vaddr = vmf->address;
1249         loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1250         struct iomap iomap = { 0 };
1251         unsigned flags = IOMAP_FAULT;
1252         int error, major = 0;
1253         bool write = vmf->flags & FAULT_FLAG_WRITE;
1254         bool sync;
1255         vm_fault_t ret = 0;
1256         void *entry;
1257         pfn_t pfn;
1258
1259         trace_dax_pte_fault(inode, vmf, ret);
1260         /*
1261          * Check whether offset isn't beyond end of file now. Caller is supposed
1262          * to hold locks serializing us with truncate / punch hole so this is
1263          * a reliable test.
1264          */
1265         if (pos >= i_size_read(inode)) {
1266                 ret = VM_FAULT_SIGBUS;
1267                 goto out;
1268         }
1269
1270         if (write && !vmf->cow_page)
1271                 flags |= IOMAP_WRITE;
1272
1273         entry = grab_mapping_entry(&xas, mapping, 0);
1274         if (xa_is_internal(entry)) {
1275                 ret = xa_to_internal(entry);
1276                 goto out;
1277         }
1278
1279         /*
1280          * It is possible, particularly with mixed reads & writes to private
1281          * mappings, that we have raced with a PMD fault that overlaps with
1282          * the PTE we need to set up.  If so just return and the fault will be
1283          * retried.
1284          */
1285         if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1286                 ret = VM_FAULT_NOPAGE;
1287                 goto unlock_entry;
1288         }
1289
1290         /*
1291          * Note that we don't bother to use iomap_apply here: DAX required
1292          * the file system block size to be equal the page size, which means
1293          * that we never have to deal with more than a single extent here.
1294          */
1295         error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1296         if (iomap_errp)
1297                 *iomap_errp = error;
1298         if (error) {
1299                 ret = dax_fault_return(error);
1300                 goto unlock_entry;
1301         }
1302         if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1303                 error = -EIO;   /* fs corruption? */
1304                 goto error_finish_iomap;
1305         }
1306
1307         if (vmf->cow_page) {
1308                 sector_t sector = dax_iomap_sector(&iomap, pos);
1309
1310                 switch (iomap.type) {
1311                 case IOMAP_HOLE:
1312                 case IOMAP_UNWRITTEN:
1313                         clear_user_highpage(vmf->cow_page, vaddr);
1314                         break;
1315                 case IOMAP_MAPPED:
1316                         error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1317                                         sector, PAGE_SIZE, vmf->cow_page, vaddr);
1318                         break;
1319                 default:
1320                         WARN_ON_ONCE(1);
1321                         error = -EIO;
1322                         break;
1323                 }
1324
1325                 if (error)
1326                         goto error_finish_iomap;
1327
1328                 __SetPageUptodate(vmf->cow_page);
1329                 ret = finish_fault(vmf);
1330                 if (!ret)
1331                         ret = VM_FAULT_DONE_COW;
1332                 goto finish_iomap;
1333         }
1334
1335         sync = dax_fault_is_synchronous(flags, vma, &iomap);
1336
1337         switch (iomap.type) {
1338         case IOMAP_MAPPED:
1339                 if (iomap.flags & IOMAP_F_NEW) {
1340                         count_vm_event(PGMAJFAULT);
1341                         count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1342                         major = VM_FAULT_MAJOR;
1343                 }
1344                 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1345                 if (error < 0)
1346                         goto error_finish_iomap;
1347
1348                 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1349                                                  0, write && !sync);
1350
1351                 /*
1352                  * If we are doing synchronous page fault and inode needs fsync,
1353                  * we can insert PTE into page tables only after that happens.
1354                  * Skip insertion for now and return the pfn so that caller can
1355                  * insert it after fsync is done.
1356                  */
1357                 if (sync) {
1358                         if (WARN_ON_ONCE(!pfnp)) {
1359                                 error = -EIO;
1360                                 goto error_finish_iomap;
1361                         }
1362                         *pfnp = pfn;
1363                         ret = VM_FAULT_NEEDDSYNC | major;
1364                         goto finish_iomap;
1365                 }
1366                 trace_dax_insert_mapping(inode, vmf, entry);
1367                 if (write)
1368                         ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1369                 else
1370                         ret = vmf_insert_mixed(vma, vaddr, pfn);
1371
1372                 goto finish_iomap;
1373         case IOMAP_UNWRITTEN:
1374         case IOMAP_HOLE:
1375                 if (!write) {
1376                         ret = dax_load_hole(&xas, mapping, &entry, vmf);
1377                         goto finish_iomap;
1378                 }
1379                 /*FALLTHRU*/
1380         default:
1381                 WARN_ON_ONCE(1);
1382                 error = -EIO;
1383                 break;
1384         }
1385
1386  error_finish_iomap:
1387         ret = dax_fault_return(error);
1388  finish_iomap:
1389         if (ops->iomap_end) {
1390                 int copied = PAGE_SIZE;
1391
1392                 if (ret & VM_FAULT_ERROR)
1393                         copied = 0;
1394                 /*
1395                  * The fault is done by now and there's no way back (other
1396                  * thread may be already happily using PTE we have installed).
1397                  * Just ignore error from ->iomap_end since we cannot do much
1398                  * with it.
1399                  */
1400                 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1401         }
1402  unlock_entry:
1403         dax_unlock_entry(&xas, entry);
1404  out:
1405         trace_dax_pte_fault_done(inode, vmf, ret);
1406         return ret | major;
1407 }
1408
1409 #ifdef CONFIG_FS_DAX_PMD
1410 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1411                 struct iomap *iomap, void **entry)
1412 {
1413         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1414         unsigned long pmd_addr = vmf->address & PMD_MASK;
1415         struct inode *inode = mapping->host;
1416         struct page *zero_page;
1417         spinlock_t *ptl;
1418         pmd_t pmd_entry;
1419         pfn_t pfn;
1420
1421         zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1422
1423         if (unlikely(!zero_page))
1424                 goto fallback;
1425
1426         pfn = page_to_pfn_t(zero_page);
1427         *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1428                         DAX_PMD | DAX_ZERO_PAGE, false);
1429
1430         ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1431         if (!pmd_none(*(vmf->pmd))) {
1432                 spin_unlock(ptl);
1433                 goto fallback;
1434         }
1435
1436         pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1437         pmd_entry = pmd_mkhuge(pmd_entry);
1438         set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1439         spin_unlock(ptl);
1440         trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1441         return VM_FAULT_NOPAGE;
1442
1443 fallback:
1444         trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1445         return VM_FAULT_FALLBACK;
1446 }
1447
1448 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1449                                const struct iomap_ops *ops)
1450 {
1451         struct vm_area_struct *vma = vmf->vma;
1452         struct address_space *mapping = vma->vm_file->f_mapping;
1453         XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1454         unsigned long pmd_addr = vmf->address & PMD_MASK;
1455         bool write = vmf->flags & FAULT_FLAG_WRITE;
1456         bool sync;
1457         unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1458         struct inode *inode = mapping->host;
1459         vm_fault_t result = VM_FAULT_FALLBACK;
1460         struct iomap iomap = { 0 };
1461         pgoff_t max_pgoff;
1462         void *entry;
1463         loff_t pos;
1464         int error;
1465         pfn_t pfn;
1466
1467         /*
1468          * Check whether offset isn't beyond end of file now. Caller is
1469          * supposed to hold locks serializing us with truncate / punch hole so
1470          * this is a reliable test.
1471          */
1472         max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1473
1474         trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1475
1476         /*
1477          * Make sure that the faulting address's PMD offset (color) matches
1478          * the PMD offset from the start of the file.  This is necessary so
1479          * that a PMD range in the page table overlaps exactly with a PMD
1480          * range in the page cache.
1481          */
1482         if ((vmf->pgoff & PG_PMD_COLOUR) !=
1483             ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1484                 goto fallback;
1485
1486         /* Fall back to PTEs if we're going to COW */
1487         if (write && !(vma->vm_flags & VM_SHARED))
1488                 goto fallback;
1489
1490         /* If the PMD would extend outside the VMA */
1491         if (pmd_addr < vma->vm_start)
1492                 goto fallback;
1493         if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1494                 goto fallback;
1495
1496         if (xas.xa_index >= max_pgoff) {
1497                 result = VM_FAULT_SIGBUS;
1498                 goto out;
1499         }
1500
1501         /* If the PMD would extend beyond the file size */
1502         if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff)
1503                 goto fallback;
1504
1505         /*
1506          * grab_mapping_entry() will make sure we get an empty PMD entry,
1507          * a zero PMD entry or a DAX PMD.  If it can't (because a PTE
1508          * entry is already in the array, for instance), it will return
1509          * VM_FAULT_FALLBACK.
1510          */
1511         entry = grab_mapping_entry(&xas, mapping, DAX_PMD);
1512         if (xa_is_internal(entry)) {
1513                 result = xa_to_internal(entry);
1514                 goto fallback;
1515         }
1516
1517         /*
1518          * It is possible, particularly with mixed reads & writes to private
1519          * mappings, that we have raced with a PTE fault that overlaps with
1520          * the PMD we need to set up.  If so just return and the fault will be
1521          * retried.
1522          */
1523         if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1524                         !pmd_devmap(*vmf->pmd)) {
1525                 result = 0;
1526                 goto unlock_entry;
1527         }
1528
1529         /*
1530          * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1531          * setting up a mapping, so really we're using iomap_begin() as a way
1532          * to look up our filesystem block.
1533          */
1534         pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1535         error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1536         if (error)
1537                 goto unlock_entry;
1538
1539         if (iomap.offset + iomap.length < pos + PMD_SIZE)
1540                 goto finish_iomap;
1541
1542         sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1543
1544         switch (iomap.type) {
1545         case IOMAP_MAPPED:
1546                 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1547                 if (error < 0)
1548                         goto finish_iomap;
1549
1550                 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1551                                                 DAX_PMD, write && !sync);
1552
1553                 /*
1554                  * If we are doing synchronous page fault and inode needs fsync,
1555                  * we can insert PMD into page tables only after that happens.
1556                  * Skip insertion for now and return the pfn so that caller can
1557                  * insert it after fsync is done.
1558                  */
1559                 if (sync) {
1560                         if (WARN_ON_ONCE(!pfnp))
1561                                 goto finish_iomap;
1562                         *pfnp = pfn;
1563                         result = VM_FAULT_NEEDDSYNC;
1564                         goto finish_iomap;
1565                 }
1566
1567                 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1568                 result = vmf_insert_pfn_pmd(vma, vmf->address, vmf->pmd, pfn,
1569                                             write);
1570                 break;
1571         case IOMAP_UNWRITTEN:
1572         case IOMAP_HOLE:
1573                 if (WARN_ON_ONCE(write))
1574                         break;
1575                 result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry);
1576                 break;
1577         default:
1578                 WARN_ON_ONCE(1);
1579                 break;
1580         }
1581
1582  finish_iomap:
1583         if (ops->iomap_end) {
1584                 int copied = PMD_SIZE;
1585
1586                 if (result == VM_FAULT_FALLBACK)
1587                         copied = 0;
1588                 /*
1589                  * The fault is done by now and there's no way back (other
1590                  * thread may be already happily using PMD we have installed).
1591                  * Just ignore error from ->iomap_end since we cannot do much
1592                  * with it.
1593                  */
1594                 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1595                                 &iomap);
1596         }
1597  unlock_entry:
1598         dax_unlock_entry(&xas, entry);
1599  fallback:
1600         if (result == VM_FAULT_FALLBACK) {
1601                 split_huge_pmd(vma, vmf->pmd, vmf->address);
1602                 count_vm_event(THP_FAULT_FALLBACK);
1603         }
1604 out:
1605         trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1606         return result;
1607 }
1608 #else
1609 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1610                                const struct iomap_ops *ops)
1611 {
1612         return VM_FAULT_FALLBACK;
1613 }
1614 #endif /* CONFIG_FS_DAX_PMD */
1615
1616 /**
1617  * dax_iomap_fault - handle a page fault on a DAX file
1618  * @vmf: The description of the fault
1619  * @pe_size: Size of the page to fault in
1620  * @pfnp: PFN to insert for synchronous faults if fsync is required
1621  * @iomap_errp: Storage for detailed error code in case of error
1622  * @ops: Iomap ops passed from the file system
1623  *
1624  * When a page fault occurs, filesystems may call this helper in
1625  * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1626  * has done all the necessary locking for page fault to proceed
1627  * successfully.
1628  */
1629 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1630                     pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1631 {
1632         switch (pe_size) {
1633         case PE_SIZE_PTE:
1634                 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1635         case PE_SIZE_PMD:
1636                 return dax_iomap_pmd_fault(vmf, pfnp, ops);
1637         default:
1638                 return VM_FAULT_FALLBACK;
1639         }
1640 }
1641 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1642
1643 /*
1644  * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1645  * @vmf: The description of the fault
1646  * @pfn: PFN to insert
1647  * @order: Order of entry to insert.
1648  *
1649  * This function inserts a writeable PTE or PMD entry into the page tables
1650  * for an mmaped DAX file.  It also marks the page cache entry as dirty.
1651  */
1652 static vm_fault_t
1653 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1654 {
1655         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1656         XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1657         void *entry;
1658         vm_fault_t ret;
1659
1660         xas_lock_irq(&xas);
1661         entry = get_unlocked_entry(&xas);
1662         /* Did we race with someone splitting entry or so? */
1663         if (!entry ||
1664             (order == 0 && !dax_is_pte_entry(entry)) ||
1665             (order == PMD_ORDER && !dax_is_pmd_entry(entry))) {
1666                 put_unlocked_entry(&xas, entry);
1667                 xas_unlock_irq(&xas);
1668                 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1669                                                       VM_FAULT_NOPAGE);
1670                 return VM_FAULT_NOPAGE;
1671         }
1672         xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1673         dax_lock_entry(&xas, entry);
1674         xas_unlock_irq(&xas);
1675         if (order == 0)
1676                 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1677 #ifdef CONFIG_FS_DAX_PMD
1678         else if (order == PMD_ORDER)
1679                 ret = vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
1680                         pfn, true);
1681 #endif
1682         else
1683                 ret = VM_FAULT_FALLBACK;
1684         dax_unlock_entry(&xas, entry);
1685         trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1686         return ret;
1687 }
1688
1689 /**
1690  * dax_finish_sync_fault - finish synchronous page fault
1691  * @vmf: The description of the fault
1692  * @pe_size: Size of entry to be inserted
1693  * @pfn: PFN to insert
1694  *
1695  * This function ensures that the file range touched by the page fault is
1696  * stored persistently on the media and handles inserting of appropriate page
1697  * table entry.
1698  */
1699 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1700                 enum page_entry_size pe_size, pfn_t pfn)
1701 {
1702         int err;
1703         loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1704         unsigned int order = pe_order(pe_size);
1705         size_t len = PAGE_SIZE << order;
1706
1707         err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1708         if (err)
1709                 return VM_FAULT_SIGBUS;
1710         return dax_insert_pfn_mkwrite(vmf, pfn, order);
1711 }
1712 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);