Merge branch 'next' into for-linus
[linux-block.git] / fs / dax.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/dax.c - Direct Access filesystem code
4  * Copyright (c) 2013-2014 Intel Corporation
5  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7  */
8
9 #include <linux/atomic.h>
10 #include <linux/blkdev.h>
11 #include <linux/buffer_head.h>
12 #include <linux/dax.h>
13 #include <linux/fs.h>
14 #include <linux/highmem.h>
15 #include <linux/memcontrol.h>
16 #include <linux/mm.h>
17 #include <linux/mutex.h>
18 #include <linux/pagevec.h>
19 #include <linux/sched.h>
20 #include <linux/sched/signal.h>
21 #include <linux/uio.h>
22 #include <linux/vmstat.h>
23 #include <linux/pfn_t.h>
24 #include <linux/sizes.h>
25 #include <linux/mmu_notifier.h>
26 #include <linux/iomap.h>
27 #include <linux/rmap.h>
28 #include <asm/pgalloc.h>
29
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/fs_dax.h>
32
33 static inline unsigned int pe_order(enum page_entry_size pe_size)
34 {
35         if (pe_size == PE_SIZE_PTE)
36                 return PAGE_SHIFT - PAGE_SHIFT;
37         if (pe_size == PE_SIZE_PMD)
38                 return PMD_SHIFT - PAGE_SHIFT;
39         if (pe_size == PE_SIZE_PUD)
40                 return PUD_SHIFT - PAGE_SHIFT;
41         return ~0;
42 }
43
44 /* We choose 4096 entries - same as per-zone page wait tables */
45 #define DAX_WAIT_TABLE_BITS 12
46 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
47
48 /* The 'colour' (ie low bits) within a PMD of a page offset.  */
49 #define PG_PMD_COLOUR   ((PMD_SIZE >> PAGE_SHIFT) - 1)
50 #define PG_PMD_NR       (PMD_SIZE >> PAGE_SHIFT)
51
52 /* The order of a PMD entry */
53 #define PMD_ORDER       (PMD_SHIFT - PAGE_SHIFT)
54
55 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
56
57 static int __init init_dax_wait_table(void)
58 {
59         int i;
60
61         for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
62                 init_waitqueue_head(wait_table + i);
63         return 0;
64 }
65 fs_initcall(init_dax_wait_table);
66
67 /*
68  * DAX pagecache entries use XArray value entries so they can't be mistaken
69  * for pages.  We use one bit for locking, one bit for the entry size (PMD)
70  * and two more to tell us if the entry is a zero page or an empty entry that
71  * is just used for locking.  In total four special bits.
72  *
73  * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
74  * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
75  * block allocation.
76  */
77 #define DAX_SHIFT       (4)
78 #define DAX_LOCKED      (1UL << 0)
79 #define DAX_PMD         (1UL << 1)
80 #define DAX_ZERO_PAGE   (1UL << 2)
81 #define DAX_EMPTY       (1UL << 3)
82
83 static unsigned long dax_to_pfn(void *entry)
84 {
85         return xa_to_value(entry) >> DAX_SHIFT;
86 }
87
88 static void *dax_make_entry(pfn_t pfn, unsigned long flags)
89 {
90         return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
91 }
92
93 static bool dax_is_locked(void *entry)
94 {
95         return xa_to_value(entry) & DAX_LOCKED;
96 }
97
98 static unsigned int dax_entry_order(void *entry)
99 {
100         if (xa_to_value(entry) & DAX_PMD)
101                 return PMD_ORDER;
102         return 0;
103 }
104
105 static unsigned long dax_is_pmd_entry(void *entry)
106 {
107         return xa_to_value(entry) & DAX_PMD;
108 }
109
110 static bool dax_is_pte_entry(void *entry)
111 {
112         return !(xa_to_value(entry) & DAX_PMD);
113 }
114
115 static int dax_is_zero_entry(void *entry)
116 {
117         return xa_to_value(entry) & DAX_ZERO_PAGE;
118 }
119
120 static int dax_is_empty_entry(void *entry)
121 {
122         return xa_to_value(entry) & DAX_EMPTY;
123 }
124
125 /*
126  * true if the entry that was found is of a smaller order than the entry
127  * we were looking for
128  */
129 static bool dax_is_conflict(void *entry)
130 {
131         return entry == XA_RETRY_ENTRY;
132 }
133
134 /*
135  * DAX page cache entry locking
136  */
137 struct exceptional_entry_key {
138         struct xarray *xa;
139         pgoff_t entry_start;
140 };
141
142 struct wait_exceptional_entry_queue {
143         wait_queue_entry_t wait;
144         struct exceptional_entry_key key;
145 };
146
147 /**
148  * enum dax_wake_mode: waitqueue wakeup behaviour
149  * @WAKE_ALL: wake all waiters in the waitqueue
150  * @WAKE_NEXT: wake only the first waiter in the waitqueue
151  */
152 enum dax_wake_mode {
153         WAKE_ALL,
154         WAKE_NEXT,
155 };
156
157 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
158                 void *entry, struct exceptional_entry_key *key)
159 {
160         unsigned long hash;
161         unsigned long index = xas->xa_index;
162
163         /*
164          * If 'entry' is a PMD, align the 'index' that we use for the wait
165          * queue to the start of that PMD.  This ensures that all offsets in
166          * the range covered by the PMD map to the same bit lock.
167          */
168         if (dax_is_pmd_entry(entry))
169                 index &= ~PG_PMD_COLOUR;
170         key->xa = xas->xa;
171         key->entry_start = index;
172
173         hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
174         return wait_table + hash;
175 }
176
177 static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
178                 unsigned int mode, int sync, void *keyp)
179 {
180         struct exceptional_entry_key *key = keyp;
181         struct wait_exceptional_entry_queue *ewait =
182                 container_of(wait, struct wait_exceptional_entry_queue, wait);
183
184         if (key->xa != ewait->key.xa ||
185             key->entry_start != ewait->key.entry_start)
186                 return 0;
187         return autoremove_wake_function(wait, mode, sync, NULL);
188 }
189
190 /*
191  * @entry may no longer be the entry at the index in the mapping.
192  * The important information it's conveying is whether the entry at
193  * this index used to be a PMD entry.
194  */
195 static void dax_wake_entry(struct xa_state *xas, void *entry,
196                            enum dax_wake_mode mode)
197 {
198         struct exceptional_entry_key key;
199         wait_queue_head_t *wq;
200
201         wq = dax_entry_waitqueue(xas, entry, &key);
202
203         /*
204          * Checking for locked entry and prepare_to_wait_exclusive() happens
205          * under the i_pages lock, ditto for entry handling in our callers.
206          * So at this point all tasks that could have seen our entry locked
207          * must be in the waitqueue and the following check will see them.
208          */
209         if (waitqueue_active(wq))
210                 __wake_up(wq, TASK_NORMAL, mode == WAKE_ALL ? 0 : 1, &key);
211 }
212
213 /*
214  * Look up entry in page cache, wait for it to become unlocked if it
215  * is a DAX entry and return it.  The caller must subsequently call
216  * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
217  * if it did.  The entry returned may have a larger order than @order.
218  * If @order is larger than the order of the entry found in i_pages, this
219  * function returns a dax_is_conflict entry.
220  *
221  * Must be called with the i_pages lock held.
222  */
223 static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
224 {
225         void *entry;
226         struct wait_exceptional_entry_queue ewait;
227         wait_queue_head_t *wq;
228
229         init_wait(&ewait.wait);
230         ewait.wait.func = wake_exceptional_entry_func;
231
232         for (;;) {
233                 entry = xas_find_conflict(xas);
234                 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
235                         return entry;
236                 if (dax_entry_order(entry) < order)
237                         return XA_RETRY_ENTRY;
238                 if (!dax_is_locked(entry))
239                         return entry;
240
241                 wq = dax_entry_waitqueue(xas, entry, &ewait.key);
242                 prepare_to_wait_exclusive(wq, &ewait.wait,
243                                           TASK_UNINTERRUPTIBLE);
244                 xas_unlock_irq(xas);
245                 xas_reset(xas);
246                 schedule();
247                 finish_wait(wq, &ewait.wait);
248                 xas_lock_irq(xas);
249         }
250 }
251
252 /*
253  * The only thing keeping the address space around is the i_pages lock
254  * (it's cycled in clear_inode() after removing the entries from i_pages)
255  * After we call xas_unlock_irq(), we cannot touch xas->xa.
256  */
257 static void wait_entry_unlocked(struct xa_state *xas, void *entry)
258 {
259         struct wait_exceptional_entry_queue ewait;
260         wait_queue_head_t *wq;
261
262         init_wait(&ewait.wait);
263         ewait.wait.func = wake_exceptional_entry_func;
264
265         wq = dax_entry_waitqueue(xas, entry, &ewait.key);
266         /*
267          * Unlike get_unlocked_entry() there is no guarantee that this
268          * path ever successfully retrieves an unlocked entry before an
269          * inode dies. Perform a non-exclusive wait in case this path
270          * never successfully performs its own wake up.
271          */
272         prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
273         xas_unlock_irq(xas);
274         schedule();
275         finish_wait(wq, &ewait.wait);
276 }
277
278 static void put_unlocked_entry(struct xa_state *xas, void *entry,
279                                enum dax_wake_mode mode)
280 {
281         if (entry && !dax_is_conflict(entry))
282                 dax_wake_entry(xas, entry, mode);
283 }
284
285 /*
286  * We used the xa_state to get the entry, but then we locked the entry and
287  * dropped the xa_lock, so we know the xa_state is stale and must be reset
288  * before use.
289  */
290 static void dax_unlock_entry(struct xa_state *xas, void *entry)
291 {
292         void *old;
293
294         BUG_ON(dax_is_locked(entry));
295         xas_reset(xas);
296         xas_lock_irq(xas);
297         old = xas_store(xas, entry);
298         xas_unlock_irq(xas);
299         BUG_ON(!dax_is_locked(old));
300         dax_wake_entry(xas, entry, WAKE_NEXT);
301 }
302
303 /*
304  * Return: The entry stored at this location before it was locked.
305  */
306 static void *dax_lock_entry(struct xa_state *xas, void *entry)
307 {
308         unsigned long v = xa_to_value(entry);
309         return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
310 }
311
312 static unsigned long dax_entry_size(void *entry)
313 {
314         if (dax_is_zero_entry(entry))
315                 return 0;
316         else if (dax_is_empty_entry(entry))
317                 return 0;
318         else if (dax_is_pmd_entry(entry))
319                 return PMD_SIZE;
320         else
321                 return PAGE_SIZE;
322 }
323
324 static unsigned long dax_end_pfn(void *entry)
325 {
326         return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
327 }
328
329 /*
330  * Iterate through all mapped pfns represented by an entry, i.e. skip
331  * 'empty' and 'zero' entries.
332  */
333 #define for_each_mapped_pfn(entry, pfn) \
334         for (pfn = dax_to_pfn(entry); \
335                         pfn < dax_end_pfn(entry); pfn++)
336
337 static inline bool dax_page_is_shared(struct page *page)
338 {
339         return page->mapping == PAGE_MAPPING_DAX_SHARED;
340 }
341
342 /*
343  * Set the page->mapping with PAGE_MAPPING_DAX_SHARED flag, increase the
344  * refcount.
345  */
346 static inline void dax_page_share_get(struct page *page)
347 {
348         if (page->mapping != PAGE_MAPPING_DAX_SHARED) {
349                 /*
350                  * Reset the index if the page was already mapped
351                  * regularly before.
352                  */
353                 if (page->mapping)
354                         page->share = 1;
355                 page->mapping = PAGE_MAPPING_DAX_SHARED;
356         }
357         page->share++;
358 }
359
360 static inline unsigned long dax_page_share_put(struct page *page)
361 {
362         return --page->share;
363 }
364
365 /*
366  * When it is called in dax_insert_entry(), the shared flag will indicate that
367  * whether this entry is shared by multiple files.  If so, set the page->mapping
368  * PAGE_MAPPING_DAX_SHARED, and use page->share as refcount.
369  */
370 static void dax_associate_entry(void *entry, struct address_space *mapping,
371                 struct vm_area_struct *vma, unsigned long address, bool shared)
372 {
373         unsigned long size = dax_entry_size(entry), pfn, index;
374         int i = 0;
375
376         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
377                 return;
378
379         index = linear_page_index(vma, address & ~(size - 1));
380         for_each_mapped_pfn(entry, pfn) {
381                 struct page *page = pfn_to_page(pfn);
382
383                 if (shared) {
384                         dax_page_share_get(page);
385                 } else {
386                         WARN_ON_ONCE(page->mapping);
387                         page->mapping = mapping;
388                         page->index = index + i++;
389                 }
390         }
391 }
392
393 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
394                 bool trunc)
395 {
396         unsigned long pfn;
397
398         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
399                 return;
400
401         for_each_mapped_pfn(entry, pfn) {
402                 struct page *page = pfn_to_page(pfn);
403
404                 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
405                 if (dax_page_is_shared(page)) {
406                         /* keep the shared flag if this page is still shared */
407                         if (dax_page_share_put(page) > 0)
408                                 continue;
409                 } else
410                         WARN_ON_ONCE(page->mapping && page->mapping != mapping);
411                 page->mapping = NULL;
412                 page->index = 0;
413         }
414 }
415
416 static struct page *dax_busy_page(void *entry)
417 {
418         unsigned long pfn;
419
420         for_each_mapped_pfn(entry, pfn) {
421                 struct page *page = pfn_to_page(pfn);
422
423                 if (page_ref_count(page) > 1)
424                         return page;
425         }
426         return NULL;
427 }
428
429 /*
430  * dax_lock_page - Lock the DAX entry corresponding to a page
431  * @page: The page whose entry we want to lock
432  *
433  * Context: Process context.
434  * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
435  * not be locked.
436  */
437 dax_entry_t dax_lock_page(struct page *page)
438 {
439         XA_STATE(xas, NULL, 0);
440         void *entry;
441
442         /* Ensure page->mapping isn't freed while we look at it */
443         rcu_read_lock();
444         for (;;) {
445                 struct address_space *mapping = READ_ONCE(page->mapping);
446
447                 entry = NULL;
448                 if (!mapping || !dax_mapping(mapping))
449                         break;
450
451                 /*
452                  * In the device-dax case there's no need to lock, a
453                  * struct dev_pagemap pin is sufficient to keep the
454                  * inode alive, and we assume we have dev_pagemap pin
455                  * otherwise we would not have a valid pfn_to_page()
456                  * translation.
457                  */
458                 entry = (void *)~0UL;
459                 if (S_ISCHR(mapping->host->i_mode))
460                         break;
461
462                 xas.xa = &mapping->i_pages;
463                 xas_lock_irq(&xas);
464                 if (mapping != page->mapping) {
465                         xas_unlock_irq(&xas);
466                         continue;
467                 }
468                 xas_set(&xas, page->index);
469                 entry = xas_load(&xas);
470                 if (dax_is_locked(entry)) {
471                         rcu_read_unlock();
472                         wait_entry_unlocked(&xas, entry);
473                         rcu_read_lock();
474                         continue;
475                 }
476                 dax_lock_entry(&xas, entry);
477                 xas_unlock_irq(&xas);
478                 break;
479         }
480         rcu_read_unlock();
481         return (dax_entry_t)entry;
482 }
483
484 void dax_unlock_page(struct page *page, dax_entry_t cookie)
485 {
486         struct address_space *mapping = page->mapping;
487         XA_STATE(xas, &mapping->i_pages, page->index);
488
489         if (S_ISCHR(mapping->host->i_mode))
490                 return;
491
492         dax_unlock_entry(&xas, (void *)cookie);
493 }
494
495 /*
496  * dax_lock_mapping_entry - Lock the DAX entry corresponding to a mapping
497  * @mapping: the file's mapping whose entry we want to lock
498  * @index: the offset within this file
499  * @page: output the dax page corresponding to this dax entry
500  *
501  * Return: A cookie to pass to dax_unlock_mapping_entry() or 0 if the entry
502  * could not be locked.
503  */
504 dax_entry_t dax_lock_mapping_entry(struct address_space *mapping, pgoff_t index,
505                 struct page **page)
506 {
507         XA_STATE(xas, NULL, 0);
508         void *entry;
509
510         rcu_read_lock();
511         for (;;) {
512                 entry = NULL;
513                 if (!dax_mapping(mapping))
514                         break;
515
516                 xas.xa = &mapping->i_pages;
517                 xas_lock_irq(&xas);
518                 xas_set(&xas, index);
519                 entry = xas_load(&xas);
520                 if (dax_is_locked(entry)) {
521                         rcu_read_unlock();
522                         wait_entry_unlocked(&xas, entry);
523                         rcu_read_lock();
524                         continue;
525                 }
526                 if (!entry ||
527                     dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
528                         /*
529                          * Because we are looking for entry from file's mapping
530                          * and index, so the entry may not be inserted for now,
531                          * or even a zero/empty entry.  We don't think this is
532                          * an error case.  So, return a special value and do
533                          * not output @page.
534                          */
535                         entry = (void *)~0UL;
536                 } else {
537                         *page = pfn_to_page(dax_to_pfn(entry));
538                         dax_lock_entry(&xas, entry);
539                 }
540                 xas_unlock_irq(&xas);
541                 break;
542         }
543         rcu_read_unlock();
544         return (dax_entry_t)entry;
545 }
546
547 void dax_unlock_mapping_entry(struct address_space *mapping, pgoff_t index,
548                 dax_entry_t cookie)
549 {
550         XA_STATE(xas, &mapping->i_pages, index);
551
552         if (cookie == ~0UL)
553                 return;
554
555         dax_unlock_entry(&xas, (void *)cookie);
556 }
557
558 /*
559  * Find page cache entry at given index. If it is a DAX entry, return it
560  * with the entry locked. If the page cache doesn't contain an entry at
561  * that index, add a locked empty entry.
562  *
563  * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
564  * either return that locked entry or will return VM_FAULT_FALLBACK.
565  * This will happen if there are any PTE entries within the PMD range
566  * that we are requesting.
567  *
568  * We always favor PTE entries over PMD entries. There isn't a flow where we
569  * evict PTE entries in order to 'upgrade' them to a PMD entry.  A PMD
570  * insertion will fail if it finds any PTE entries already in the tree, and a
571  * PTE insertion will cause an existing PMD entry to be unmapped and
572  * downgraded to PTE entries.  This happens for both PMD zero pages as
573  * well as PMD empty entries.
574  *
575  * The exception to this downgrade path is for PMD entries that have
576  * real storage backing them.  We will leave these real PMD entries in
577  * the tree, and PTE writes will simply dirty the entire PMD entry.
578  *
579  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
580  * persistent memory the benefit is doubtful. We can add that later if we can
581  * show it helps.
582  *
583  * On error, this function does not return an ERR_PTR.  Instead it returns
584  * a VM_FAULT code, encoded as an xarray internal entry.  The ERR_PTR values
585  * overlap with xarray value entries.
586  */
587 static void *grab_mapping_entry(struct xa_state *xas,
588                 struct address_space *mapping, unsigned int order)
589 {
590         unsigned long index = xas->xa_index;
591         bool pmd_downgrade;     /* splitting PMD entry into PTE entries? */
592         void *entry;
593
594 retry:
595         pmd_downgrade = false;
596         xas_lock_irq(xas);
597         entry = get_unlocked_entry(xas, order);
598
599         if (entry) {
600                 if (dax_is_conflict(entry))
601                         goto fallback;
602                 if (!xa_is_value(entry)) {
603                         xas_set_err(xas, -EIO);
604                         goto out_unlock;
605                 }
606
607                 if (order == 0) {
608                         if (dax_is_pmd_entry(entry) &&
609                             (dax_is_zero_entry(entry) ||
610                              dax_is_empty_entry(entry))) {
611                                 pmd_downgrade = true;
612                         }
613                 }
614         }
615
616         if (pmd_downgrade) {
617                 /*
618                  * Make sure 'entry' remains valid while we drop
619                  * the i_pages lock.
620                  */
621                 dax_lock_entry(xas, entry);
622
623                 /*
624                  * Besides huge zero pages the only other thing that gets
625                  * downgraded are empty entries which don't need to be
626                  * unmapped.
627                  */
628                 if (dax_is_zero_entry(entry)) {
629                         xas_unlock_irq(xas);
630                         unmap_mapping_pages(mapping,
631                                         xas->xa_index & ~PG_PMD_COLOUR,
632                                         PG_PMD_NR, false);
633                         xas_reset(xas);
634                         xas_lock_irq(xas);
635                 }
636
637                 dax_disassociate_entry(entry, mapping, false);
638                 xas_store(xas, NULL);   /* undo the PMD join */
639                 dax_wake_entry(xas, entry, WAKE_ALL);
640                 mapping->nrpages -= PG_PMD_NR;
641                 entry = NULL;
642                 xas_set(xas, index);
643         }
644
645         if (entry) {
646                 dax_lock_entry(xas, entry);
647         } else {
648                 unsigned long flags = DAX_EMPTY;
649
650                 if (order > 0)
651                         flags |= DAX_PMD;
652                 entry = dax_make_entry(pfn_to_pfn_t(0), flags);
653                 dax_lock_entry(xas, entry);
654                 if (xas_error(xas))
655                         goto out_unlock;
656                 mapping->nrpages += 1UL << order;
657         }
658
659 out_unlock:
660         xas_unlock_irq(xas);
661         if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
662                 goto retry;
663         if (xas->xa_node == XA_ERROR(-ENOMEM))
664                 return xa_mk_internal(VM_FAULT_OOM);
665         if (xas_error(xas))
666                 return xa_mk_internal(VM_FAULT_SIGBUS);
667         return entry;
668 fallback:
669         xas_unlock_irq(xas);
670         return xa_mk_internal(VM_FAULT_FALLBACK);
671 }
672
673 /**
674  * dax_layout_busy_page_range - find first pinned page in @mapping
675  * @mapping: address space to scan for a page with ref count > 1
676  * @start: Starting offset. Page containing 'start' is included.
677  * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX,
678  *       pages from 'start' till the end of file are included.
679  *
680  * DAX requires ZONE_DEVICE mapped pages. These pages are never
681  * 'onlined' to the page allocator so they are considered idle when
682  * page->count == 1. A filesystem uses this interface to determine if
683  * any page in the mapping is busy, i.e. for DMA, or other
684  * get_user_pages() usages.
685  *
686  * It is expected that the filesystem is holding locks to block the
687  * establishment of new mappings in this address_space. I.e. it expects
688  * to be able to run unmap_mapping_range() and subsequently not race
689  * mapping_mapped() becoming true.
690  */
691 struct page *dax_layout_busy_page_range(struct address_space *mapping,
692                                         loff_t start, loff_t end)
693 {
694         void *entry;
695         unsigned int scanned = 0;
696         struct page *page = NULL;
697         pgoff_t start_idx = start >> PAGE_SHIFT;
698         pgoff_t end_idx;
699         XA_STATE(xas, &mapping->i_pages, start_idx);
700
701         /*
702          * In the 'limited' case get_user_pages() for dax is disabled.
703          */
704         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
705                 return NULL;
706
707         if (!dax_mapping(mapping) || !mapping_mapped(mapping))
708                 return NULL;
709
710         /* If end == LLONG_MAX, all pages from start to till end of file */
711         if (end == LLONG_MAX)
712                 end_idx = ULONG_MAX;
713         else
714                 end_idx = end >> PAGE_SHIFT;
715         /*
716          * If we race get_user_pages_fast() here either we'll see the
717          * elevated page count in the iteration and wait, or
718          * get_user_pages_fast() will see that the page it took a reference
719          * against is no longer mapped in the page tables and bail to the
720          * get_user_pages() slow path.  The slow path is protected by
721          * pte_lock() and pmd_lock(). New references are not taken without
722          * holding those locks, and unmap_mapping_pages() will not zero the
723          * pte or pmd without holding the respective lock, so we are
724          * guaranteed to either see new references or prevent new
725          * references from being established.
726          */
727         unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0);
728
729         xas_lock_irq(&xas);
730         xas_for_each(&xas, entry, end_idx) {
731                 if (WARN_ON_ONCE(!xa_is_value(entry)))
732                         continue;
733                 if (unlikely(dax_is_locked(entry)))
734                         entry = get_unlocked_entry(&xas, 0);
735                 if (entry)
736                         page = dax_busy_page(entry);
737                 put_unlocked_entry(&xas, entry, WAKE_NEXT);
738                 if (page)
739                         break;
740                 if (++scanned % XA_CHECK_SCHED)
741                         continue;
742
743                 xas_pause(&xas);
744                 xas_unlock_irq(&xas);
745                 cond_resched();
746                 xas_lock_irq(&xas);
747         }
748         xas_unlock_irq(&xas);
749         return page;
750 }
751 EXPORT_SYMBOL_GPL(dax_layout_busy_page_range);
752
753 struct page *dax_layout_busy_page(struct address_space *mapping)
754 {
755         return dax_layout_busy_page_range(mapping, 0, LLONG_MAX);
756 }
757 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
758
759 static int __dax_invalidate_entry(struct address_space *mapping,
760                                           pgoff_t index, bool trunc)
761 {
762         XA_STATE(xas, &mapping->i_pages, index);
763         int ret = 0;
764         void *entry;
765
766         xas_lock_irq(&xas);
767         entry = get_unlocked_entry(&xas, 0);
768         if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
769                 goto out;
770         if (!trunc &&
771             (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
772              xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
773                 goto out;
774         dax_disassociate_entry(entry, mapping, trunc);
775         xas_store(&xas, NULL);
776         mapping->nrpages -= 1UL << dax_entry_order(entry);
777         ret = 1;
778 out:
779         put_unlocked_entry(&xas, entry, WAKE_ALL);
780         xas_unlock_irq(&xas);
781         return ret;
782 }
783
784 /*
785  * Delete DAX entry at @index from @mapping.  Wait for it
786  * to be unlocked before deleting it.
787  */
788 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
789 {
790         int ret = __dax_invalidate_entry(mapping, index, true);
791
792         /*
793          * This gets called from truncate / punch_hole path. As such, the caller
794          * must hold locks protecting against concurrent modifications of the
795          * page cache (usually fs-private i_mmap_sem for writing). Since the
796          * caller has seen a DAX entry for this index, we better find it
797          * at that index as well...
798          */
799         WARN_ON_ONCE(!ret);
800         return ret;
801 }
802
803 /*
804  * Invalidate DAX entry if it is clean.
805  */
806 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
807                                       pgoff_t index)
808 {
809         return __dax_invalidate_entry(mapping, index, false);
810 }
811
812 static pgoff_t dax_iomap_pgoff(const struct iomap *iomap, loff_t pos)
813 {
814         return PHYS_PFN(iomap->addr + (pos & PAGE_MASK) - iomap->offset);
815 }
816
817 static int copy_cow_page_dax(struct vm_fault *vmf, const struct iomap_iter *iter)
818 {
819         pgoff_t pgoff = dax_iomap_pgoff(&iter->iomap, iter->pos);
820         void *vto, *kaddr;
821         long rc;
822         int id;
823
824         id = dax_read_lock();
825         rc = dax_direct_access(iter->iomap.dax_dev, pgoff, 1, DAX_ACCESS,
826                                 &kaddr, NULL);
827         if (rc < 0) {
828                 dax_read_unlock(id);
829                 return rc;
830         }
831         vto = kmap_atomic(vmf->cow_page);
832         copy_user_page(vto, kaddr, vmf->address, vmf->cow_page);
833         kunmap_atomic(vto);
834         dax_read_unlock(id);
835         return 0;
836 }
837
838 /*
839  * MAP_SYNC on a dax mapping guarantees dirty metadata is
840  * flushed on write-faults (non-cow), but not read-faults.
841  */
842 static bool dax_fault_is_synchronous(const struct iomap_iter *iter,
843                 struct vm_area_struct *vma)
844 {
845         return (iter->flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC) &&
846                 (iter->iomap.flags & IOMAP_F_DIRTY);
847 }
848
849 /*
850  * By this point grab_mapping_entry() has ensured that we have a locked entry
851  * of the appropriate size so we don't have to worry about downgrading PMDs to
852  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
853  * already in the tree, we will skip the insertion and just dirty the PMD as
854  * appropriate.
855  */
856 static void *dax_insert_entry(struct xa_state *xas, struct vm_fault *vmf,
857                 const struct iomap_iter *iter, void *entry, pfn_t pfn,
858                 unsigned long flags)
859 {
860         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
861         void *new_entry = dax_make_entry(pfn, flags);
862         bool write = iter->flags & IOMAP_WRITE;
863         bool dirty = write && !dax_fault_is_synchronous(iter, vmf->vma);
864         bool shared = iter->iomap.flags & IOMAP_F_SHARED;
865
866         if (dirty)
867                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
868
869         if (shared || (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE))) {
870                 unsigned long index = xas->xa_index;
871                 /* we are replacing a zero page with block mapping */
872                 if (dax_is_pmd_entry(entry))
873                         unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
874                                         PG_PMD_NR, false);
875                 else /* pte entry */
876                         unmap_mapping_pages(mapping, index, 1, false);
877         }
878
879         xas_reset(xas);
880         xas_lock_irq(xas);
881         if (shared || dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
882                 void *old;
883
884                 dax_disassociate_entry(entry, mapping, false);
885                 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address,
886                                 shared);
887                 /*
888                  * Only swap our new entry into the page cache if the current
889                  * entry is a zero page or an empty entry.  If a normal PTE or
890                  * PMD entry is already in the cache, we leave it alone.  This
891                  * means that if we are trying to insert a PTE and the
892                  * existing entry is a PMD, we will just leave the PMD in the
893                  * tree and dirty it if necessary.
894                  */
895                 old = dax_lock_entry(xas, new_entry);
896                 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
897                                         DAX_LOCKED));
898                 entry = new_entry;
899         } else {
900                 xas_load(xas);  /* Walk the xa_state */
901         }
902
903         if (dirty)
904                 xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
905
906         if (write && shared)
907                 xas_set_mark(xas, PAGECACHE_TAG_TOWRITE);
908
909         xas_unlock_irq(xas);
910         return entry;
911 }
912
913 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
914                 struct address_space *mapping, void *entry)
915 {
916         unsigned long pfn, index, count, end;
917         long ret = 0;
918         struct vm_area_struct *vma;
919
920         /*
921          * A page got tagged dirty in DAX mapping? Something is seriously
922          * wrong.
923          */
924         if (WARN_ON(!xa_is_value(entry)))
925                 return -EIO;
926
927         if (unlikely(dax_is_locked(entry))) {
928                 void *old_entry = entry;
929
930                 entry = get_unlocked_entry(xas, 0);
931
932                 /* Entry got punched out / reallocated? */
933                 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
934                         goto put_unlocked;
935                 /*
936                  * Entry got reallocated elsewhere? No need to writeback.
937                  * We have to compare pfns as we must not bail out due to
938                  * difference in lockbit or entry type.
939                  */
940                 if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
941                         goto put_unlocked;
942                 if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
943                                         dax_is_zero_entry(entry))) {
944                         ret = -EIO;
945                         goto put_unlocked;
946                 }
947
948                 /* Another fsync thread may have already done this entry */
949                 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
950                         goto put_unlocked;
951         }
952
953         /* Lock the entry to serialize with page faults */
954         dax_lock_entry(xas, entry);
955
956         /*
957          * We can clear the tag now but we have to be careful so that concurrent
958          * dax_writeback_one() calls for the same index cannot finish before we
959          * actually flush the caches. This is achieved as the calls will look
960          * at the entry only under the i_pages lock and once they do that
961          * they will see the entry locked and wait for it to unlock.
962          */
963         xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
964         xas_unlock_irq(xas);
965
966         /*
967          * If dax_writeback_mapping_range() was given a wbc->range_start
968          * in the middle of a PMD, the 'index' we use needs to be
969          * aligned to the start of the PMD.
970          * This allows us to flush for PMD_SIZE and not have to worry about
971          * partial PMD writebacks.
972          */
973         pfn = dax_to_pfn(entry);
974         count = 1UL << dax_entry_order(entry);
975         index = xas->xa_index & ~(count - 1);
976         end = index + count - 1;
977
978         /* Walk all mappings of a given index of a file and writeprotect them */
979         i_mmap_lock_read(mapping);
980         vma_interval_tree_foreach(vma, &mapping->i_mmap, index, end) {
981                 pfn_mkclean_range(pfn, count, index, vma);
982                 cond_resched();
983         }
984         i_mmap_unlock_read(mapping);
985
986         dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
987         /*
988          * After we have flushed the cache, we can clear the dirty tag. There
989          * cannot be new dirty data in the pfn after the flush has completed as
990          * the pfn mappings are writeprotected and fault waits for mapping
991          * entry lock.
992          */
993         xas_reset(xas);
994         xas_lock_irq(xas);
995         xas_store(xas, entry);
996         xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
997         dax_wake_entry(xas, entry, WAKE_NEXT);
998
999         trace_dax_writeback_one(mapping->host, index, count);
1000         return ret;
1001
1002  put_unlocked:
1003         put_unlocked_entry(xas, entry, WAKE_NEXT);
1004         return ret;
1005 }
1006
1007 /*
1008  * Flush the mapping to the persistent domain within the byte range of [start,
1009  * end]. This is required by data integrity operations to ensure file data is
1010  * on persistent storage prior to completion of the operation.
1011  */
1012 int dax_writeback_mapping_range(struct address_space *mapping,
1013                 struct dax_device *dax_dev, struct writeback_control *wbc)
1014 {
1015         XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
1016         struct inode *inode = mapping->host;
1017         pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
1018         void *entry;
1019         int ret = 0;
1020         unsigned int scanned = 0;
1021
1022         if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
1023                 return -EIO;
1024
1025         if (mapping_empty(mapping) || wbc->sync_mode != WB_SYNC_ALL)
1026                 return 0;
1027
1028         trace_dax_writeback_range(inode, xas.xa_index, end_index);
1029
1030         tag_pages_for_writeback(mapping, xas.xa_index, end_index);
1031
1032         xas_lock_irq(&xas);
1033         xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
1034                 ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
1035                 if (ret < 0) {
1036                         mapping_set_error(mapping, ret);
1037                         break;
1038                 }
1039                 if (++scanned % XA_CHECK_SCHED)
1040                         continue;
1041
1042                 xas_pause(&xas);
1043                 xas_unlock_irq(&xas);
1044                 cond_resched();
1045                 xas_lock_irq(&xas);
1046         }
1047         xas_unlock_irq(&xas);
1048         trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
1049         return ret;
1050 }
1051 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
1052
1053 static int dax_iomap_direct_access(const struct iomap *iomap, loff_t pos,
1054                 size_t size, void **kaddr, pfn_t *pfnp)
1055 {
1056         pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1057         int id, rc = 0;
1058         long length;
1059
1060         id = dax_read_lock();
1061         length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
1062                                    DAX_ACCESS, kaddr, pfnp);
1063         if (length < 0) {
1064                 rc = length;
1065                 goto out;
1066         }
1067         if (!pfnp)
1068                 goto out_check_addr;
1069         rc = -EINVAL;
1070         if (PFN_PHYS(length) < size)
1071                 goto out;
1072         if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1073                 goto out;
1074         /* For larger pages we need devmap */
1075         if (length > 1 && !pfn_t_devmap(*pfnp))
1076                 goto out;
1077         rc = 0;
1078
1079 out_check_addr:
1080         if (!kaddr)
1081                 goto out;
1082         if (!*kaddr)
1083                 rc = -EFAULT;
1084 out:
1085         dax_read_unlock(id);
1086         return rc;
1087 }
1088
1089 /**
1090  * dax_iomap_copy_around - Prepare for an unaligned write to a shared/cow page
1091  * by copying the data before and after the range to be written.
1092  * @pos:        address to do copy from.
1093  * @length:     size of copy operation.
1094  * @align_size: aligned w.r.t align_size (either PMD_SIZE or PAGE_SIZE)
1095  * @srcmap:     iomap srcmap
1096  * @daddr:      destination address to copy to.
1097  *
1098  * This can be called from two places. Either during DAX write fault (page
1099  * aligned), to copy the length size data to daddr. Or, while doing normal DAX
1100  * write operation, dax_iomap_iter() might call this to do the copy of either
1101  * start or end unaligned address. In the latter case the rest of the copy of
1102  * aligned ranges is taken care by dax_iomap_iter() itself.
1103  * If the srcmap contains invalid data, such as HOLE and UNWRITTEN, zero the
1104  * area to make sure no old data remains.
1105  */
1106 static int dax_iomap_copy_around(loff_t pos, uint64_t length, size_t align_size,
1107                 const struct iomap *srcmap, void *daddr)
1108 {
1109         loff_t head_off = pos & (align_size - 1);
1110         size_t size = ALIGN(head_off + length, align_size);
1111         loff_t end = pos + length;
1112         loff_t pg_end = round_up(end, align_size);
1113         /* copy_all is usually in page fault case */
1114         bool copy_all = head_off == 0 && end == pg_end;
1115         /* zero the edges if srcmap is a HOLE or IOMAP_UNWRITTEN */
1116         bool zero_edge = srcmap->flags & IOMAP_F_SHARED ||
1117                          srcmap->type == IOMAP_UNWRITTEN;
1118         void *saddr = 0;
1119         int ret = 0;
1120
1121         if (!zero_edge) {
1122                 ret = dax_iomap_direct_access(srcmap, pos, size, &saddr, NULL);
1123                 if (ret)
1124                         return ret;
1125         }
1126
1127         if (copy_all) {
1128                 if (zero_edge)
1129                         memset(daddr, 0, size);
1130                 else
1131                         ret = copy_mc_to_kernel(daddr, saddr, length);
1132                 goto out;
1133         }
1134
1135         /* Copy the head part of the range */
1136         if (head_off) {
1137                 if (zero_edge)
1138                         memset(daddr, 0, head_off);
1139                 else {
1140                         ret = copy_mc_to_kernel(daddr, saddr, head_off);
1141                         if (ret)
1142                                 return -EIO;
1143                 }
1144         }
1145
1146         /* Copy the tail part of the range */
1147         if (end < pg_end) {
1148                 loff_t tail_off = head_off + length;
1149                 loff_t tail_len = pg_end - end;
1150
1151                 if (zero_edge)
1152                         memset(daddr + tail_off, 0, tail_len);
1153                 else {
1154                         ret = copy_mc_to_kernel(daddr + tail_off,
1155                                                 saddr + tail_off, tail_len);
1156                         if (ret)
1157                                 return -EIO;
1158                 }
1159         }
1160 out:
1161         if (zero_edge)
1162                 dax_flush(srcmap->dax_dev, daddr, size);
1163         return ret ? -EIO : 0;
1164 }
1165
1166 /*
1167  * The user has performed a load from a hole in the file.  Allocating a new
1168  * page in the file would cause excessive storage usage for workloads with
1169  * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
1170  * If this page is ever written to we will re-fault and change the mapping to
1171  * point to real DAX storage instead.
1172  */
1173 static vm_fault_t dax_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1174                 const struct iomap_iter *iter, void **entry)
1175 {
1176         struct inode *inode = iter->inode;
1177         unsigned long vaddr = vmf->address;
1178         pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1179         vm_fault_t ret;
1180
1181         *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, DAX_ZERO_PAGE);
1182
1183         ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1184         trace_dax_load_hole(inode, vmf, ret);
1185         return ret;
1186 }
1187
1188 #ifdef CONFIG_FS_DAX_PMD
1189 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1190                 const struct iomap_iter *iter, void **entry)
1191 {
1192         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1193         unsigned long pmd_addr = vmf->address & PMD_MASK;
1194         struct vm_area_struct *vma = vmf->vma;
1195         struct inode *inode = mapping->host;
1196         pgtable_t pgtable = NULL;
1197         struct page *zero_page;
1198         spinlock_t *ptl;
1199         pmd_t pmd_entry;
1200         pfn_t pfn;
1201
1202         zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1203
1204         if (unlikely(!zero_page))
1205                 goto fallback;
1206
1207         pfn = page_to_pfn_t(zero_page);
1208         *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn,
1209                                   DAX_PMD | DAX_ZERO_PAGE);
1210
1211         if (arch_needs_pgtable_deposit()) {
1212                 pgtable = pte_alloc_one(vma->vm_mm);
1213                 if (!pgtable)
1214                         return VM_FAULT_OOM;
1215         }
1216
1217         ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1218         if (!pmd_none(*(vmf->pmd))) {
1219                 spin_unlock(ptl);
1220                 goto fallback;
1221         }
1222
1223         if (pgtable) {
1224                 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1225                 mm_inc_nr_ptes(vma->vm_mm);
1226         }
1227         pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1228         pmd_entry = pmd_mkhuge(pmd_entry);
1229         set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1230         spin_unlock(ptl);
1231         trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1232         return VM_FAULT_NOPAGE;
1233
1234 fallback:
1235         if (pgtable)
1236                 pte_free(vma->vm_mm, pgtable);
1237         trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1238         return VM_FAULT_FALLBACK;
1239 }
1240 #else
1241 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1242                 const struct iomap_iter *iter, void **entry)
1243 {
1244         return VM_FAULT_FALLBACK;
1245 }
1246 #endif /* CONFIG_FS_DAX_PMD */
1247
1248 static s64 dax_unshare_iter(struct iomap_iter *iter)
1249 {
1250         struct iomap *iomap = &iter->iomap;
1251         const struct iomap *srcmap = iomap_iter_srcmap(iter);
1252         loff_t pos = iter->pos;
1253         loff_t length = iomap_length(iter);
1254         int id = 0;
1255         s64 ret = 0;
1256         void *daddr = NULL, *saddr = NULL;
1257
1258         /* don't bother with blocks that are not shared to start with */
1259         if (!(iomap->flags & IOMAP_F_SHARED))
1260                 return length;
1261         /* don't bother with holes or unwritten extents */
1262         if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1263                 return length;
1264
1265         id = dax_read_lock();
1266         ret = dax_iomap_direct_access(iomap, pos, length, &daddr, NULL);
1267         if (ret < 0)
1268                 goto out_unlock;
1269
1270         ret = dax_iomap_direct_access(srcmap, pos, length, &saddr, NULL);
1271         if (ret < 0)
1272                 goto out_unlock;
1273
1274         if (copy_mc_to_kernel(daddr, saddr, length) == 0)
1275                 ret = length;
1276         else
1277                 ret = -EIO;
1278
1279 out_unlock:
1280         dax_read_unlock(id);
1281         return ret;
1282 }
1283
1284 int dax_file_unshare(struct inode *inode, loff_t pos, loff_t len,
1285                 const struct iomap_ops *ops)
1286 {
1287         struct iomap_iter iter = {
1288                 .inode          = inode,
1289                 .pos            = pos,
1290                 .len            = len,
1291                 .flags          = IOMAP_WRITE | IOMAP_UNSHARE | IOMAP_DAX,
1292         };
1293         int ret;
1294
1295         while ((ret = iomap_iter(&iter, ops)) > 0)
1296                 iter.processed = dax_unshare_iter(&iter);
1297         return ret;
1298 }
1299 EXPORT_SYMBOL_GPL(dax_file_unshare);
1300
1301 static int dax_memzero(struct iomap_iter *iter, loff_t pos, size_t size)
1302 {
1303         const struct iomap *iomap = &iter->iomap;
1304         const struct iomap *srcmap = iomap_iter_srcmap(iter);
1305         unsigned offset = offset_in_page(pos);
1306         pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1307         void *kaddr;
1308         long ret;
1309
1310         ret = dax_direct_access(iomap->dax_dev, pgoff, 1, DAX_ACCESS, &kaddr,
1311                                 NULL);
1312         if (ret < 0)
1313                 return ret;
1314         memset(kaddr + offset, 0, size);
1315         if (iomap->flags & IOMAP_F_SHARED)
1316                 ret = dax_iomap_copy_around(pos, size, PAGE_SIZE, srcmap,
1317                                             kaddr);
1318         else
1319                 dax_flush(iomap->dax_dev, kaddr + offset, size);
1320         return ret;
1321 }
1322
1323 static s64 dax_zero_iter(struct iomap_iter *iter, bool *did_zero)
1324 {
1325         const struct iomap *iomap = &iter->iomap;
1326         const struct iomap *srcmap = iomap_iter_srcmap(iter);
1327         loff_t pos = iter->pos;
1328         u64 length = iomap_length(iter);
1329         s64 written = 0;
1330
1331         /* already zeroed?  we're done. */
1332         if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1333                 return length;
1334
1335         /*
1336          * invalidate the pages whose sharing state is to be changed
1337          * because of CoW.
1338          */
1339         if (iomap->flags & IOMAP_F_SHARED)
1340                 invalidate_inode_pages2_range(iter->inode->i_mapping,
1341                                               pos >> PAGE_SHIFT,
1342                                               (pos + length - 1) >> PAGE_SHIFT);
1343
1344         do {
1345                 unsigned offset = offset_in_page(pos);
1346                 unsigned size = min_t(u64, PAGE_SIZE - offset, length);
1347                 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1348                 long rc;
1349                 int id;
1350
1351                 id = dax_read_lock();
1352                 if (IS_ALIGNED(pos, PAGE_SIZE) && size == PAGE_SIZE)
1353                         rc = dax_zero_page_range(iomap->dax_dev, pgoff, 1);
1354                 else
1355                         rc = dax_memzero(iter, pos, size);
1356                 dax_read_unlock(id);
1357
1358                 if (rc < 0)
1359                         return rc;
1360                 pos += size;
1361                 length -= size;
1362                 written += size;
1363         } while (length > 0);
1364
1365         if (did_zero)
1366                 *did_zero = true;
1367         return written;
1368 }
1369
1370 int dax_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1371                 const struct iomap_ops *ops)
1372 {
1373         struct iomap_iter iter = {
1374                 .inode          = inode,
1375                 .pos            = pos,
1376                 .len            = len,
1377                 .flags          = IOMAP_DAX | IOMAP_ZERO,
1378         };
1379         int ret;
1380
1381         while ((ret = iomap_iter(&iter, ops)) > 0)
1382                 iter.processed = dax_zero_iter(&iter, did_zero);
1383         return ret;
1384 }
1385 EXPORT_SYMBOL_GPL(dax_zero_range);
1386
1387 int dax_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1388                 const struct iomap_ops *ops)
1389 {
1390         unsigned int blocksize = i_blocksize(inode);
1391         unsigned int off = pos & (blocksize - 1);
1392
1393         /* Block boundary? Nothing to do */
1394         if (!off)
1395                 return 0;
1396         return dax_zero_range(inode, pos, blocksize - off, did_zero, ops);
1397 }
1398 EXPORT_SYMBOL_GPL(dax_truncate_page);
1399
1400 static loff_t dax_iomap_iter(const struct iomap_iter *iomi,
1401                 struct iov_iter *iter)
1402 {
1403         const struct iomap *iomap = &iomi->iomap;
1404         const struct iomap *srcmap = iomap_iter_srcmap(iomi);
1405         loff_t length = iomap_length(iomi);
1406         loff_t pos = iomi->pos;
1407         struct dax_device *dax_dev = iomap->dax_dev;
1408         loff_t end = pos + length, done = 0;
1409         bool write = iov_iter_rw(iter) == WRITE;
1410         bool cow = write && iomap->flags & IOMAP_F_SHARED;
1411         ssize_t ret = 0;
1412         size_t xfer;
1413         int id;
1414
1415         if (!write) {
1416                 end = min(end, i_size_read(iomi->inode));
1417                 if (pos >= end)
1418                         return 0;
1419
1420                 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1421                         return iov_iter_zero(min(length, end - pos), iter);
1422         }
1423
1424         /*
1425          * In DAX mode, enforce either pure overwrites of written extents, or
1426          * writes to unwritten extents as part of a copy-on-write operation.
1427          */
1428         if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED &&
1429                         !(iomap->flags & IOMAP_F_SHARED)))
1430                 return -EIO;
1431
1432         /*
1433          * Write can allocate block for an area which has a hole page mapped
1434          * into page tables. We have to tear down these mappings so that data
1435          * written by write(2) is visible in mmap.
1436          */
1437         if (iomap->flags & IOMAP_F_NEW || cow) {
1438                 invalidate_inode_pages2_range(iomi->inode->i_mapping,
1439                                               pos >> PAGE_SHIFT,
1440                                               (end - 1) >> PAGE_SHIFT);
1441         }
1442
1443         id = dax_read_lock();
1444         while (pos < end) {
1445                 unsigned offset = pos & (PAGE_SIZE - 1);
1446                 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1447                 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1448                 ssize_t map_len;
1449                 bool recovery = false;
1450                 void *kaddr;
1451
1452                 if (fatal_signal_pending(current)) {
1453                         ret = -EINTR;
1454                         break;
1455                 }
1456
1457                 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1458                                 DAX_ACCESS, &kaddr, NULL);
1459                 if (map_len == -EIO && iov_iter_rw(iter) == WRITE) {
1460                         map_len = dax_direct_access(dax_dev, pgoff,
1461                                         PHYS_PFN(size), DAX_RECOVERY_WRITE,
1462                                         &kaddr, NULL);
1463                         if (map_len > 0)
1464                                 recovery = true;
1465                 }
1466                 if (map_len < 0) {
1467                         ret = map_len;
1468                         break;
1469                 }
1470
1471                 if (cow) {
1472                         ret = dax_iomap_copy_around(pos, length, PAGE_SIZE,
1473                                                     srcmap, kaddr);
1474                         if (ret)
1475                                 break;
1476                 }
1477
1478                 map_len = PFN_PHYS(map_len);
1479                 kaddr += offset;
1480                 map_len -= offset;
1481                 if (map_len > end - pos)
1482                         map_len = end - pos;
1483
1484                 if (recovery)
1485                         xfer = dax_recovery_write(dax_dev, pgoff, kaddr,
1486                                         map_len, iter);
1487                 else if (write)
1488                         xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1489                                         map_len, iter);
1490                 else
1491                         xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1492                                         map_len, iter);
1493
1494                 pos += xfer;
1495                 length -= xfer;
1496                 done += xfer;
1497
1498                 if (xfer == 0)
1499                         ret = -EFAULT;
1500                 if (xfer < map_len)
1501                         break;
1502         }
1503         dax_read_unlock(id);
1504
1505         return done ? done : ret;
1506 }
1507
1508 /**
1509  * dax_iomap_rw - Perform I/O to a DAX file
1510  * @iocb:       The control block for this I/O
1511  * @iter:       The addresses to do I/O from or to
1512  * @ops:        iomap ops passed from the file system
1513  *
1514  * This function performs read and write operations to directly mapped
1515  * persistent memory.  The callers needs to take care of read/write exclusion
1516  * and evicting any page cache pages in the region under I/O.
1517  */
1518 ssize_t
1519 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1520                 const struct iomap_ops *ops)
1521 {
1522         struct iomap_iter iomi = {
1523                 .inode          = iocb->ki_filp->f_mapping->host,
1524                 .pos            = iocb->ki_pos,
1525                 .len            = iov_iter_count(iter),
1526                 .flags          = IOMAP_DAX,
1527         };
1528         loff_t done = 0;
1529         int ret;
1530
1531         if (!iomi.len)
1532                 return 0;
1533
1534         if (iov_iter_rw(iter) == WRITE) {
1535                 lockdep_assert_held_write(&iomi.inode->i_rwsem);
1536                 iomi.flags |= IOMAP_WRITE;
1537         } else {
1538                 lockdep_assert_held(&iomi.inode->i_rwsem);
1539         }
1540
1541         if (iocb->ki_flags & IOCB_NOWAIT)
1542                 iomi.flags |= IOMAP_NOWAIT;
1543
1544         while ((ret = iomap_iter(&iomi, ops)) > 0)
1545                 iomi.processed = dax_iomap_iter(&iomi, iter);
1546
1547         done = iomi.pos - iocb->ki_pos;
1548         iocb->ki_pos = iomi.pos;
1549         return done ? done : ret;
1550 }
1551 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1552
1553 static vm_fault_t dax_fault_return(int error)
1554 {
1555         if (error == 0)
1556                 return VM_FAULT_NOPAGE;
1557         return vmf_error(error);
1558 }
1559
1560 /*
1561  * When handling a synchronous page fault and the inode need a fsync, we can
1562  * insert the PTE/PMD into page tables only after that fsync happened. Skip
1563  * insertion for now and return the pfn so that caller can insert it after the
1564  * fsync is done.
1565  */
1566 static vm_fault_t dax_fault_synchronous_pfnp(pfn_t *pfnp, pfn_t pfn)
1567 {
1568         if (WARN_ON_ONCE(!pfnp))
1569                 return VM_FAULT_SIGBUS;
1570         *pfnp = pfn;
1571         return VM_FAULT_NEEDDSYNC;
1572 }
1573
1574 static vm_fault_t dax_fault_cow_page(struct vm_fault *vmf,
1575                 const struct iomap_iter *iter)
1576 {
1577         vm_fault_t ret;
1578         int error = 0;
1579
1580         switch (iter->iomap.type) {
1581         case IOMAP_HOLE:
1582         case IOMAP_UNWRITTEN:
1583                 clear_user_highpage(vmf->cow_page, vmf->address);
1584                 break;
1585         case IOMAP_MAPPED:
1586                 error = copy_cow_page_dax(vmf, iter);
1587                 break;
1588         default:
1589                 WARN_ON_ONCE(1);
1590                 error = -EIO;
1591                 break;
1592         }
1593
1594         if (error)
1595                 return dax_fault_return(error);
1596
1597         __SetPageUptodate(vmf->cow_page);
1598         ret = finish_fault(vmf);
1599         if (!ret)
1600                 return VM_FAULT_DONE_COW;
1601         return ret;
1602 }
1603
1604 /**
1605  * dax_fault_iter - Common actor to handle pfn insertion in PTE/PMD fault.
1606  * @vmf:        vm fault instance
1607  * @iter:       iomap iter
1608  * @pfnp:       pfn to be returned
1609  * @xas:        the dax mapping tree of a file
1610  * @entry:      an unlocked dax entry to be inserted
1611  * @pmd:        distinguish whether it is a pmd fault
1612  */
1613 static vm_fault_t dax_fault_iter(struct vm_fault *vmf,
1614                 const struct iomap_iter *iter, pfn_t *pfnp,
1615                 struct xa_state *xas, void **entry, bool pmd)
1616 {
1617         const struct iomap *iomap = &iter->iomap;
1618         const struct iomap *srcmap = iomap_iter_srcmap(iter);
1619         size_t size = pmd ? PMD_SIZE : PAGE_SIZE;
1620         loff_t pos = (loff_t)xas->xa_index << PAGE_SHIFT;
1621         bool write = iter->flags & IOMAP_WRITE;
1622         unsigned long entry_flags = pmd ? DAX_PMD : 0;
1623         int err = 0;
1624         pfn_t pfn;
1625         void *kaddr;
1626
1627         if (!pmd && vmf->cow_page)
1628                 return dax_fault_cow_page(vmf, iter);
1629
1630         /* if we are reading UNWRITTEN and HOLE, return a hole. */
1631         if (!write &&
1632             (iomap->type == IOMAP_UNWRITTEN || iomap->type == IOMAP_HOLE)) {
1633                 if (!pmd)
1634                         return dax_load_hole(xas, vmf, iter, entry);
1635                 return dax_pmd_load_hole(xas, vmf, iter, entry);
1636         }
1637
1638         if (iomap->type != IOMAP_MAPPED && !(iomap->flags & IOMAP_F_SHARED)) {
1639                 WARN_ON_ONCE(1);
1640                 return pmd ? VM_FAULT_FALLBACK : VM_FAULT_SIGBUS;
1641         }
1642
1643         err = dax_iomap_direct_access(iomap, pos, size, &kaddr, &pfn);
1644         if (err)
1645                 return pmd ? VM_FAULT_FALLBACK : dax_fault_return(err);
1646
1647         *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, entry_flags);
1648
1649         if (write && iomap->flags & IOMAP_F_SHARED) {
1650                 err = dax_iomap_copy_around(pos, size, size, srcmap, kaddr);
1651                 if (err)
1652                         return dax_fault_return(err);
1653         }
1654
1655         if (dax_fault_is_synchronous(iter, vmf->vma))
1656                 return dax_fault_synchronous_pfnp(pfnp, pfn);
1657
1658         /* insert PMD pfn */
1659         if (pmd)
1660                 return vmf_insert_pfn_pmd(vmf, pfn, write);
1661
1662         /* insert PTE pfn */
1663         if (write)
1664                 return vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1665         return vmf_insert_mixed(vmf->vma, vmf->address, pfn);
1666 }
1667
1668 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1669                                int *iomap_errp, const struct iomap_ops *ops)
1670 {
1671         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1672         XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1673         struct iomap_iter iter = {
1674                 .inode          = mapping->host,
1675                 .pos            = (loff_t)vmf->pgoff << PAGE_SHIFT,
1676                 .len            = PAGE_SIZE,
1677                 .flags          = IOMAP_DAX | IOMAP_FAULT,
1678         };
1679         vm_fault_t ret = 0;
1680         void *entry;
1681         int error;
1682
1683         trace_dax_pte_fault(iter.inode, vmf, ret);
1684         /*
1685          * Check whether offset isn't beyond end of file now. Caller is supposed
1686          * to hold locks serializing us with truncate / punch hole so this is
1687          * a reliable test.
1688          */
1689         if (iter.pos >= i_size_read(iter.inode)) {
1690                 ret = VM_FAULT_SIGBUS;
1691                 goto out;
1692         }
1693
1694         if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1695                 iter.flags |= IOMAP_WRITE;
1696
1697         entry = grab_mapping_entry(&xas, mapping, 0);
1698         if (xa_is_internal(entry)) {
1699                 ret = xa_to_internal(entry);
1700                 goto out;
1701         }
1702
1703         /*
1704          * It is possible, particularly with mixed reads & writes to private
1705          * mappings, that we have raced with a PMD fault that overlaps with
1706          * the PTE we need to set up.  If so just return and the fault will be
1707          * retried.
1708          */
1709         if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1710                 ret = VM_FAULT_NOPAGE;
1711                 goto unlock_entry;
1712         }
1713
1714         while ((error = iomap_iter(&iter, ops)) > 0) {
1715                 if (WARN_ON_ONCE(iomap_length(&iter) < PAGE_SIZE)) {
1716                         iter.processed = -EIO;  /* fs corruption? */
1717                         continue;
1718                 }
1719
1720                 ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, false);
1721                 if (ret != VM_FAULT_SIGBUS &&
1722                     (iter.iomap.flags & IOMAP_F_NEW)) {
1723                         count_vm_event(PGMAJFAULT);
1724                         count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
1725                         ret |= VM_FAULT_MAJOR;
1726                 }
1727
1728                 if (!(ret & VM_FAULT_ERROR))
1729                         iter.processed = PAGE_SIZE;
1730         }
1731
1732         if (iomap_errp)
1733                 *iomap_errp = error;
1734         if (!ret && error)
1735                 ret = dax_fault_return(error);
1736
1737 unlock_entry:
1738         dax_unlock_entry(&xas, entry);
1739 out:
1740         trace_dax_pte_fault_done(iter.inode, vmf, ret);
1741         return ret;
1742 }
1743
1744 #ifdef CONFIG_FS_DAX_PMD
1745 static bool dax_fault_check_fallback(struct vm_fault *vmf, struct xa_state *xas,
1746                 pgoff_t max_pgoff)
1747 {
1748         unsigned long pmd_addr = vmf->address & PMD_MASK;
1749         bool write = vmf->flags & FAULT_FLAG_WRITE;
1750
1751         /*
1752          * Make sure that the faulting address's PMD offset (color) matches
1753          * the PMD offset from the start of the file.  This is necessary so
1754          * that a PMD range in the page table overlaps exactly with a PMD
1755          * range in the page cache.
1756          */
1757         if ((vmf->pgoff & PG_PMD_COLOUR) !=
1758             ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1759                 return true;
1760
1761         /* Fall back to PTEs if we're going to COW */
1762         if (write && !(vmf->vma->vm_flags & VM_SHARED))
1763                 return true;
1764
1765         /* If the PMD would extend outside the VMA */
1766         if (pmd_addr < vmf->vma->vm_start)
1767                 return true;
1768         if ((pmd_addr + PMD_SIZE) > vmf->vma->vm_end)
1769                 return true;
1770
1771         /* If the PMD would extend beyond the file size */
1772         if ((xas->xa_index | PG_PMD_COLOUR) >= max_pgoff)
1773                 return true;
1774
1775         return false;
1776 }
1777
1778 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1779                                const struct iomap_ops *ops)
1780 {
1781         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1782         XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1783         struct iomap_iter iter = {
1784                 .inode          = mapping->host,
1785                 .len            = PMD_SIZE,
1786                 .flags          = IOMAP_DAX | IOMAP_FAULT,
1787         };
1788         vm_fault_t ret = VM_FAULT_FALLBACK;
1789         pgoff_t max_pgoff;
1790         void *entry;
1791         int error;
1792
1793         if (vmf->flags & FAULT_FLAG_WRITE)
1794                 iter.flags |= IOMAP_WRITE;
1795
1796         /*
1797          * Check whether offset isn't beyond end of file now. Caller is
1798          * supposed to hold locks serializing us with truncate / punch hole so
1799          * this is a reliable test.
1800          */
1801         max_pgoff = DIV_ROUND_UP(i_size_read(iter.inode), PAGE_SIZE);
1802
1803         trace_dax_pmd_fault(iter.inode, vmf, max_pgoff, 0);
1804
1805         if (xas.xa_index >= max_pgoff) {
1806                 ret = VM_FAULT_SIGBUS;
1807                 goto out;
1808         }
1809
1810         if (dax_fault_check_fallback(vmf, &xas, max_pgoff))
1811                 goto fallback;
1812
1813         /*
1814          * grab_mapping_entry() will make sure we get an empty PMD entry,
1815          * a zero PMD entry or a DAX PMD.  If it can't (because a PTE
1816          * entry is already in the array, for instance), it will return
1817          * VM_FAULT_FALLBACK.
1818          */
1819         entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
1820         if (xa_is_internal(entry)) {
1821                 ret = xa_to_internal(entry);
1822                 goto fallback;
1823         }
1824
1825         /*
1826          * It is possible, particularly with mixed reads & writes to private
1827          * mappings, that we have raced with a PTE fault that overlaps with
1828          * the PMD we need to set up.  If so just return and the fault will be
1829          * retried.
1830          */
1831         if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1832                         !pmd_devmap(*vmf->pmd)) {
1833                 ret = 0;
1834                 goto unlock_entry;
1835         }
1836
1837         iter.pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1838         while ((error = iomap_iter(&iter, ops)) > 0) {
1839                 if (iomap_length(&iter) < PMD_SIZE)
1840                         continue; /* actually breaks out of the loop */
1841
1842                 ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, true);
1843                 if (ret != VM_FAULT_FALLBACK)
1844                         iter.processed = PMD_SIZE;
1845         }
1846
1847 unlock_entry:
1848         dax_unlock_entry(&xas, entry);
1849 fallback:
1850         if (ret == VM_FAULT_FALLBACK) {
1851                 split_huge_pmd(vmf->vma, vmf->pmd, vmf->address);
1852                 count_vm_event(THP_FAULT_FALLBACK);
1853         }
1854 out:
1855         trace_dax_pmd_fault_done(iter.inode, vmf, max_pgoff, ret);
1856         return ret;
1857 }
1858 #else
1859 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1860                                const struct iomap_ops *ops)
1861 {
1862         return VM_FAULT_FALLBACK;
1863 }
1864 #endif /* CONFIG_FS_DAX_PMD */
1865
1866 /**
1867  * dax_iomap_fault - handle a page fault on a DAX file
1868  * @vmf: The description of the fault
1869  * @pe_size: Size of the page to fault in
1870  * @pfnp: PFN to insert for synchronous faults if fsync is required
1871  * @iomap_errp: Storage for detailed error code in case of error
1872  * @ops: Iomap ops passed from the file system
1873  *
1874  * When a page fault occurs, filesystems may call this helper in
1875  * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1876  * has done all the necessary locking for page fault to proceed
1877  * successfully.
1878  */
1879 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1880                     pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1881 {
1882         switch (pe_size) {
1883         case PE_SIZE_PTE:
1884                 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1885         case PE_SIZE_PMD:
1886                 return dax_iomap_pmd_fault(vmf, pfnp, ops);
1887         default:
1888                 return VM_FAULT_FALLBACK;
1889         }
1890 }
1891 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1892
1893 /*
1894  * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1895  * @vmf: The description of the fault
1896  * @pfn: PFN to insert
1897  * @order: Order of entry to insert.
1898  *
1899  * This function inserts a writeable PTE or PMD entry into the page tables
1900  * for an mmaped DAX file.  It also marks the page cache entry as dirty.
1901  */
1902 static vm_fault_t
1903 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1904 {
1905         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1906         XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1907         void *entry;
1908         vm_fault_t ret;
1909
1910         xas_lock_irq(&xas);
1911         entry = get_unlocked_entry(&xas, order);
1912         /* Did we race with someone splitting entry or so? */
1913         if (!entry || dax_is_conflict(entry) ||
1914             (order == 0 && !dax_is_pte_entry(entry))) {
1915                 put_unlocked_entry(&xas, entry, WAKE_NEXT);
1916                 xas_unlock_irq(&xas);
1917                 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1918                                                       VM_FAULT_NOPAGE);
1919                 return VM_FAULT_NOPAGE;
1920         }
1921         xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1922         dax_lock_entry(&xas, entry);
1923         xas_unlock_irq(&xas);
1924         if (order == 0)
1925                 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1926 #ifdef CONFIG_FS_DAX_PMD
1927         else if (order == PMD_ORDER)
1928                 ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
1929 #endif
1930         else
1931                 ret = VM_FAULT_FALLBACK;
1932         dax_unlock_entry(&xas, entry);
1933         trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1934         return ret;
1935 }
1936
1937 /**
1938  * dax_finish_sync_fault - finish synchronous page fault
1939  * @vmf: The description of the fault
1940  * @pe_size: Size of entry to be inserted
1941  * @pfn: PFN to insert
1942  *
1943  * This function ensures that the file range touched by the page fault is
1944  * stored persistently on the media and handles inserting of appropriate page
1945  * table entry.
1946  */
1947 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1948                 enum page_entry_size pe_size, pfn_t pfn)
1949 {
1950         int err;
1951         loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1952         unsigned int order = pe_order(pe_size);
1953         size_t len = PAGE_SIZE << order;
1954
1955         err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1956         if (err)
1957                 return VM_FAULT_SIGBUS;
1958         return dax_insert_pfn_mkwrite(vmf, pfn, order);
1959 }
1960 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);
1961
1962 static loff_t dax_range_compare_iter(struct iomap_iter *it_src,
1963                 struct iomap_iter *it_dest, u64 len, bool *same)
1964 {
1965         const struct iomap *smap = &it_src->iomap;
1966         const struct iomap *dmap = &it_dest->iomap;
1967         loff_t pos1 = it_src->pos, pos2 = it_dest->pos;
1968         void *saddr, *daddr;
1969         int id, ret;
1970
1971         len = min(len, min(smap->length, dmap->length));
1972
1973         if (smap->type == IOMAP_HOLE && dmap->type == IOMAP_HOLE) {
1974                 *same = true;
1975                 return len;
1976         }
1977
1978         if (smap->type == IOMAP_HOLE || dmap->type == IOMAP_HOLE) {
1979                 *same = false;
1980                 return 0;
1981         }
1982
1983         id = dax_read_lock();
1984         ret = dax_iomap_direct_access(smap, pos1, ALIGN(pos1 + len, PAGE_SIZE),
1985                                       &saddr, NULL);
1986         if (ret < 0)
1987                 goto out_unlock;
1988
1989         ret = dax_iomap_direct_access(dmap, pos2, ALIGN(pos2 + len, PAGE_SIZE),
1990                                       &daddr, NULL);
1991         if (ret < 0)
1992                 goto out_unlock;
1993
1994         *same = !memcmp(saddr, daddr, len);
1995         if (!*same)
1996                 len = 0;
1997         dax_read_unlock(id);
1998         return len;
1999
2000 out_unlock:
2001         dax_read_unlock(id);
2002         return -EIO;
2003 }
2004
2005 int dax_dedupe_file_range_compare(struct inode *src, loff_t srcoff,
2006                 struct inode *dst, loff_t dstoff, loff_t len, bool *same,
2007                 const struct iomap_ops *ops)
2008 {
2009         struct iomap_iter src_iter = {
2010                 .inode          = src,
2011                 .pos            = srcoff,
2012                 .len            = len,
2013                 .flags          = IOMAP_DAX,
2014         };
2015         struct iomap_iter dst_iter = {
2016                 .inode          = dst,
2017                 .pos            = dstoff,
2018                 .len            = len,
2019                 .flags          = IOMAP_DAX,
2020         };
2021         int ret, compared = 0;
2022
2023         while ((ret = iomap_iter(&src_iter, ops)) > 0 &&
2024                (ret = iomap_iter(&dst_iter, ops)) > 0) {
2025                 compared = dax_range_compare_iter(&src_iter, &dst_iter, len,
2026                                                   same);
2027                 if (compared < 0)
2028                         return ret;
2029                 src_iter.processed = dst_iter.processed = compared;
2030         }
2031         return ret;
2032 }
2033
2034 int dax_remap_file_range_prep(struct file *file_in, loff_t pos_in,
2035                               struct file *file_out, loff_t pos_out,
2036                               loff_t *len, unsigned int remap_flags,
2037                               const struct iomap_ops *ops)
2038 {
2039         return __generic_remap_file_range_prep(file_in, pos_in, file_out,
2040                                                pos_out, len, remap_flags, ops);
2041 }
2042 EXPORT_SYMBOL_GPL(dax_remap_file_range_prep);