Merge tag 'spi-fix-v4.19-rc5' of https://git.kernel.org/pub/scm/linux/kernel/git...
[linux-block.git] / fs / dax.c
1 /*
2  * fs/dax.c - Direct Access filesystem code
3  * Copyright (c) 2013-2014 Intel Corporation
4  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/sched.h>
29 #include <linux/sched/signal.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/iomap.h>
36 #include "internal.h"
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/fs_dax.h>
40
41 /* We choose 4096 entries - same as per-zone page wait tables */
42 #define DAX_WAIT_TABLE_BITS 12
43 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
44
45 /* The 'colour' (ie low bits) within a PMD of a page offset.  */
46 #define PG_PMD_COLOUR   ((PMD_SIZE >> PAGE_SHIFT) - 1)
47 #define PG_PMD_NR       (PMD_SIZE >> PAGE_SHIFT)
48
49 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
50
51 static int __init init_dax_wait_table(void)
52 {
53         int i;
54
55         for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
56                 init_waitqueue_head(wait_table + i);
57         return 0;
58 }
59 fs_initcall(init_dax_wait_table);
60
61 /*
62  * We use lowest available bit in exceptional entry for locking, one bit for
63  * the entry size (PMD) and two more to tell us if the entry is a zero page or
64  * an empty entry that is just used for locking.  In total four special bits.
65  *
66  * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
67  * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
68  * block allocation.
69  */
70 #define RADIX_DAX_SHIFT         (RADIX_TREE_EXCEPTIONAL_SHIFT + 4)
71 #define RADIX_DAX_ENTRY_LOCK    (1 << RADIX_TREE_EXCEPTIONAL_SHIFT)
72 #define RADIX_DAX_PMD           (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1))
73 #define RADIX_DAX_ZERO_PAGE     (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2))
74 #define RADIX_DAX_EMPTY         (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 3))
75
76 static unsigned long dax_radix_pfn(void *entry)
77 {
78         return (unsigned long)entry >> RADIX_DAX_SHIFT;
79 }
80
81 static void *dax_radix_locked_entry(unsigned long pfn, unsigned long flags)
82 {
83         return (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY | flags |
84                         (pfn << RADIX_DAX_SHIFT) | RADIX_DAX_ENTRY_LOCK);
85 }
86
87 static unsigned int dax_radix_order(void *entry)
88 {
89         if ((unsigned long)entry & RADIX_DAX_PMD)
90                 return PMD_SHIFT - PAGE_SHIFT;
91         return 0;
92 }
93
94 static int dax_is_pmd_entry(void *entry)
95 {
96         return (unsigned long)entry & RADIX_DAX_PMD;
97 }
98
99 static int dax_is_pte_entry(void *entry)
100 {
101         return !((unsigned long)entry & RADIX_DAX_PMD);
102 }
103
104 static int dax_is_zero_entry(void *entry)
105 {
106         return (unsigned long)entry & RADIX_DAX_ZERO_PAGE;
107 }
108
109 static int dax_is_empty_entry(void *entry)
110 {
111         return (unsigned long)entry & RADIX_DAX_EMPTY;
112 }
113
114 /*
115  * DAX radix tree locking
116  */
117 struct exceptional_entry_key {
118         struct address_space *mapping;
119         pgoff_t entry_start;
120 };
121
122 struct wait_exceptional_entry_queue {
123         wait_queue_entry_t wait;
124         struct exceptional_entry_key key;
125 };
126
127 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
128                 pgoff_t index, void *entry, struct exceptional_entry_key *key)
129 {
130         unsigned long hash;
131
132         /*
133          * If 'entry' is a PMD, align the 'index' that we use for the wait
134          * queue to the start of that PMD.  This ensures that all offsets in
135          * the range covered by the PMD map to the same bit lock.
136          */
137         if (dax_is_pmd_entry(entry))
138                 index &= ~PG_PMD_COLOUR;
139
140         key->mapping = mapping;
141         key->entry_start = index;
142
143         hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
144         return wait_table + hash;
145 }
146
147 static int wake_exceptional_entry_func(wait_queue_entry_t *wait, unsigned int mode,
148                                        int sync, void *keyp)
149 {
150         struct exceptional_entry_key *key = keyp;
151         struct wait_exceptional_entry_queue *ewait =
152                 container_of(wait, struct wait_exceptional_entry_queue, wait);
153
154         if (key->mapping != ewait->key.mapping ||
155             key->entry_start != ewait->key.entry_start)
156                 return 0;
157         return autoremove_wake_function(wait, mode, sync, NULL);
158 }
159
160 /*
161  * @entry may no longer be the entry at the index in the mapping.
162  * The important information it's conveying is whether the entry at
163  * this index used to be a PMD entry.
164  */
165 static void dax_wake_mapping_entry_waiter(struct address_space *mapping,
166                 pgoff_t index, void *entry, bool wake_all)
167 {
168         struct exceptional_entry_key key;
169         wait_queue_head_t *wq;
170
171         wq = dax_entry_waitqueue(mapping, index, entry, &key);
172
173         /*
174          * Checking for locked entry and prepare_to_wait_exclusive() happens
175          * under the i_pages lock, ditto for entry handling in our callers.
176          * So at this point all tasks that could have seen our entry locked
177          * must be in the waitqueue and the following check will see them.
178          */
179         if (waitqueue_active(wq))
180                 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
181 }
182
183 /*
184  * Check whether the given slot is locked.  Must be called with the i_pages
185  * lock held.
186  */
187 static inline int slot_locked(struct address_space *mapping, void **slot)
188 {
189         unsigned long entry = (unsigned long)
190                 radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
191         return entry & RADIX_DAX_ENTRY_LOCK;
192 }
193
194 /*
195  * Mark the given slot as locked.  Must be called with the i_pages lock held.
196  */
197 static inline void *lock_slot(struct address_space *mapping, void **slot)
198 {
199         unsigned long entry = (unsigned long)
200                 radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
201
202         entry |= RADIX_DAX_ENTRY_LOCK;
203         radix_tree_replace_slot(&mapping->i_pages, slot, (void *)entry);
204         return (void *)entry;
205 }
206
207 /*
208  * Mark the given slot as unlocked.  Must be called with the i_pages lock held.
209  */
210 static inline void *unlock_slot(struct address_space *mapping, void **slot)
211 {
212         unsigned long entry = (unsigned long)
213                 radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
214
215         entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
216         radix_tree_replace_slot(&mapping->i_pages, slot, (void *)entry);
217         return (void *)entry;
218 }
219
220 /*
221  * Lookup entry in radix tree, wait for it to become unlocked if it is
222  * exceptional entry and return it. The caller must call
223  * put_unlocked_mapping_entry() when he decided not to lock the entry or
224  * put_locked_mapping_entry() when he locked the entry and now wants to
225  * unlock it.
226  *
227  * Must be called with the i_pages lock held.
228  */
229 static void *__get_unlocked_mapping_entry(struct address_space *mapping,
230                 pgoff_t index, void ***slotp, bool (*wait_fn)(void))
231 {
232         void *entry, **slot;
233         struct wait_exceptional_entry_queue ewait;
234         wait_queue_head_t *wq;
235
236         init_wait(&ewait.wait);
237         ewait.wait.func = wake_exceptional_entry_func;
238
239         for (;;) {
240                 bool revalidate;
241
242                 entry = __radix_tree_lookup(&mapping->i_pages, index, NULL,
243                                           &slot);
244                 if (!entry ||
245                     WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)) ||
246                     !slot_locked(mapping, slot)) {
247                         if (slotp)
248                                 *slotp = slot;
249                         return entry;
250                 }
251
252                 wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
253                 prepare_to_wait_exclusive(wq, &ewait.wait,
254                                           TASK_UNINTERRUPTIBLE);
255                 xa_unlock_irq(&mapping->i_pages);
256                 revalidate = wait_fn();
257                 finish_wait(wq, &ewait.wait);
258                 xa_lock_irq(&mapping->i_pages);
259                 if (revalidate)
260                         return ERR_PTR(-EAGAIN);
261         }
262 }
263
264 static bool entry_wait(void)
265 {
266         schedule();
267         /*
268          * Never return an ERR_PTR() from
269          * __get_unlocked_mapping_entry(), just keep looping.
270          */
271         return false;
272 }
273
274 static void *get_unlocked_mapping_entry(struct address_space *mapping,
275                 pgoff_t index, void ***slotp)
276 {
277         return __get_unlocked_mapping_entry(mapping, index, slotp, entry_wait);
278 }
279
280 static void unlock_mapping_entry(struct address_space *mapping, pgoff_t index)
281 {
282         void *entry, **slot;
283
284         xa_lock_irq(&mapping->i_pages);
285         entry = __radix_tree_lookup(&mapping->i_pages, index, NULL, &slot);
286         if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
287                          !slot_locked(mapping, slot))) {
288                 xa_unlock_irq(&mapping->i_pages);
289                 return;
290         }
291         unlock_slot(mapping, slot);
292         xa_unlock_irq(&mapping->i_pages);
293         dax_wake_mapping_entry_waiter(mapping, index, entry, false);
294 }
295
296 static void put_locked_mapping_entry(struct address_space *mapping,
297                 pgoff_t index)
298 {
299         unlock_mapping_entry(mapping, index);
300 }
301
302 /*
303  * Called when we are done with radix tree entry we looked up via
304  * get_unlocked_mapping_entry() and which we didn't lock in the end.
305  */
306 static void put_unlocked_mapping_entry(struct address_space *mapping,
307                                        pgoff_t index, void *entry)
308 {
309         if (!entry)
310                 return;
311
312         /* We have to wake up next waiter for the radix tree entry lock */
313         dax_wake_mapping_entry_waiter(mapping, index, entry, false);
314 }
315
316 static unsigned long dax_entry_size(void *entry)
317 {
318         if (dax_is_zero_entry(entry))
319                 return 0;
320         else if (dax_is_empty_entry(entry))
321                 return 0;
322         else if (dax_is_pmd_entry(entry))
323                 return PMD_SIZE;
324         else
325                 return PAGE_SIZE;
326 }
327
328 static unsigned long dax_radix_end_pfn(void *entry)
329 {
330         return dax_radix_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
331 }
332
333 /*
334  * Iterate through all mapped pfns represented by an entry, i.e. skip
335  * 'empty' and 'zero' entries.
336  */
337 #define for_each_mapped_pfn(entry, pfn) \
338         for (pfn = dax_radix_pfn(entry); \
339                         pfn < dax_radix_end_pfn(entry); pfn++)
340
341 /*
342  * TODO: for reflink+dax we need a way to associate a single page with
343  * multiple address_space instances at different linear_page_index()
344  * offsets.
345  */
346 static void dax_associate_entry(void *entry, struct address_space *mapping,
347                 struct vm_area_struct *vma, unsigned long address)
348 {
349         unsigned long size = dax_entry_size(entry), pfn, index;
350         int i = 0;
351
352         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
353                 return;
354
355         index = linear_page_index(vma, address & ~(size - 1));
356         for_each_mapped_pfn(entry, pfn) {
357                 struct page *page = pfn_to_page(pfn);
358
359                 WARN_ON_ONCE(page->mapping);
360                 page->mapping = mapping;
361                 page->index = index + i++;
362         }
363 }
364
365 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
366                 bool trunc)
367 {
368         unsigned long pfn;
369
370         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
371                 return;
372
373         for_each_mapped_pfn(entry, pfn) {
374                 struct page *page = pfn_to_page(pfn);
375
376                 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
377                 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
378                 page->mapping = NULL;
379                 page->index = 0;
380         }
381 }
382
383 static struct page *dax_busy_page(void *entry)
384 {
385         unsigned long pfn;
386
387         for_each_mapped_pfn(entry, pfn) {
388                 struct page *page = pfn_to_page(pfn);
389
390                 if (page_ref_count(page) > 1)
391                         return page;
392         }
393         return NULL;
394 }
395
396 static bool entry_wait_revalidate(void)
397 {
398         rcu_read_unlock();
399         schedule();
400         rcu_read_lock();
401
402         /*
403          * Tell __get_unlocked_mapping_entry() to take a break, we need
404          * to revalidate page->mapping after dropping locks
405          */
406         return true;
407 }
408
409 bool dax_lock_mapping_entry(struct page *page)
410 {
411         pgoff_t index;
412         struct inode *inode;
413         bool did_lock = false;
414         void *entry = NULL, **slot;
415         struct address_space *mapping;
416
417         rcu_read_lock();
418         for (;;) {
419                 mapping = READ_ONCE(page->mapping);
420
421                 if (!dax_mapping(mapping))
422                         break;
423
424                 /*
425                  * In the device-dax case there's no need to lock, a
426                  * struct dev_pagemap pin is sufficient to keep the
427                  * inode alive, and we assume we have dev_pagemap pin
428                  * otherwise we would not have a valid pfn_to_page()
429                  * translation.
430                  */
431                 inode = mapping->host;
432                 if (S_ISCHR(inode->i_mode)) {
433                         did_lock = true;
434                         break;
435                 }
436
437                 xa_lock_irq(&mapping->i_pages);
438                 if (mapping != page->mapping) {
439                         xa_unlock_irq(&mapping->i_pages);
440                         continue;
441                 }
442                 index = page->index;
443
444                 entry = __get_unlocked_mapping_entry(mapping, index, &slot,
445                                 entry_wait_revalidate);
446                 if (!entry) {
447                         xa_unlock_irq(&mapping->i_pages);
448                         break;
449                 } else if (IS_ERR(entry)) {
450                         WARN_ON_ONCE(PTR_ERR(entry) != -EAGAIN);
451                         continue;
452                 }
453                 lock_slot(mapping, slot);
454                 did_lock = true;
455                 xa_unlock_irq(&mapping->i_pages);
456                 break;
457         }
458         rcu_read_unlock();
459
460         return did_lock;
461 }
462
463 void dax_unlock_mapping_entry(struct page *page)
464 {
465         struct address_space *mapping = page->mapping;
466         struct inode *inode = mapping->host;
467
468         if (S_ISCHR(inode->i_mode))
469                 return;
470
471         unlock_mapping_entry(mapping, page->index);
472 }
473
474 /*
475  * Find radix tree entry at given index. If it points to an exceptional entry,
476  * return it with the radix tree entry locked. If the radix tree doesn't
477  * contain given index, create an empty exceptional entry for the index and
478  * return with it locked.
479  *
480  * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
481  * either return that locked entry or will return an error.  This error will
482  * happen if there are any 4k entries within the 2MiB range that we are
483  * requesting.
484  *
485  * We always favor 4k entries over 2MiB entries. There isn't a flow where we
486  * evict 4k entries in order to 'upgrade' them to a 2MiB entry.  A 2MiB
487  * insertion will fail if it finds any 4k entries already in the tree, and a
488  * 4k insertion will cause an existing 2MiB entry to be unmapped and
489  * downgraded to 4k entries.  This happens for both 2MiB huge zero pages as
490  * well as 2MiB empty entries.
491  *
492  * The exception to this downgrade path is for 2MiB DAX PMD entries that have
493  * real storage backing them.  We will leave these real 2MiB DAX entries in
494  * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
495  *
496  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
497  * persistent memory the benefit is doubtful. We can add that later if we can
498  * show it helps.
499  */
500 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
501                 unsigned long size_flag)
502 {
503         bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
504         void *entry, **slot;
505
506 restart:
507         xa_lock_irq(&mapping->i_pages);
508         entry = get_unlocked_mapping_entry(mapping, index, &slot);
509
510         if (WARN_ON_ONCE(entry && !radix_tree_exceptional_entry(entry))) {
511                 entry = ERR_PTR(-EIO);
512                 goto out_unlock;
513         }
514
515         if (entry) {
516                 if (size_flag & RADIX_DAX_PMD) {
517                         if (dax_is_pte_entry(entry)) {
518                                 put_unlocked_mapping_entry(mapping, index,
519                                                 entry);
520                                 entry = ERR_PTR(-EEXIST);
521                                 goto out_unlock;
522                         }
523                 } else { /* trying to grab a PTE entry */
524                         if (dax_is_pmd_entry(entry) &&
525                             (dax_is_zero_entry(entry) ||
526                              dax_is_empty_entry(entry))) {
527                                 pmd_downgrade = true;
528                         }
529                 }
530         }
531
532         /* No entry for given index? Make sure radix tree is big enough. */
533         if (!entry || pmd_downgrade) {
534                 int err;
535
536                 if (pmd_downgrade) {
537                         /*
538                          * Make sure 'entry' remains valid while we drop
539                          * the i_pages lock.
540                          */
541                         entry = lock_slot(mapping, slot);
542                 }
543
544                 xa_unlock_irq(&mapping->i_pages);
545                 /*
546                  * Besides huge zero pages the only other thing that gets
547                  * downgraded are empty entries which don't need to be
548                  * unmapped.
549                  */
550                 if (pmd_downgrade && dax_is_zero_entry(entry))
551                         unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
552                                                         PG_PMD_NR, false);
553
554                 err = radix_tree_preload(
555                                 mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
556                 if (err) {
557                         if (pmd_downgrade)
558                                 put_locked_mapping_entry(mapping, index);
559                         return ERR_PTR(err);
560                 }
561                 xa_lock_irq(&mapping->i_pages);
562
563                 if (!entry) {
564                         /*
565                          * We needed to drop the i_pages lock while calling
566                          * radix_tree_preload() and we didn't have an entry to
567                          * lock.  See if another thread inserted an entry at
568                          * our index during this time.
569                          */
570                         entry = __radix_tree_lookup(&mapping->i_pages, index,
571                                         NULL, &slot);
572                         if (entry) {
573                                 radix_tree_preload_end();
574                                 xa_unlock_irq(&mapping->i_pages);
575                                 goto restart;
576                         }
577                 }
578
579                 if (pmd_downgrade) {
580                         dax_disassociate_entry(entry, mapping, false);
581                         radix_tree_delete(&mapping->i_pages, index);
582                         mapping->nrexceptional--;
583                         dax_wake_mapping_entry_waiter(mapping, index, entry,
584                                         true);
585                 }
586
587                 entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
588
589                 err = __radix_tree_insert(&mapping->i_pages, index,
590                                 dax_radix_order(entry), entry);
591                 radix_tree_preload_end();
592                 if (err) {
593                         xa_unlock_irq(&mapping->i_pages);
594                         /*
595                          * Our insertion of a DAX entry failed, most likely
596                          * because we were inserting a PMD entry and it
597                          * collided with a PTE sized entry at a different
598                          * index in the PMD range.  We haven't inserted
599                          * anything into the radix tree and have no waiters to
600                          * wake.
601                          */
602                         return ERR_PTR(err);
603                 }
604                 /* Good, we have inserted empty locked entry into the tree. */
605                 mapping->nrexceptional++;
606                 xa_unlock_irq(&mapping->i_pages);
607                 return entry;
608         }
609         entry = lock_slot(mapping, slot);
610  out_unlock:
611         xa_unlock_irq(&mapping->i_pages);
612         return entry;
613 }
614
615 /**
616  * dax_layout_busy_page - find first pinned page in @mapping
617  * @mapping: address space to scan for a page with ref count > 1
618  *
619  * DAX requires ZONE_DEVICE mapped pages. These pages are never
620  * 'onlined' to the page allocator so they are considered idle when
621  * page->count == 1. A filesystem uses this interface to determine if
622  * any page in the mapping is busy, i.e. for DMA, or other
623  * get_user_pages() usages.
624  *
625  * It is expected that the filesystem is holding locks to block the
626  * establishment of new mappings in this address_space. I.e. it expects
627  * to be able to run unmap_mapping_range() and subsequently not race
628  * mapping_mapped() becoming true.
629  */
630 struct page *dax_layout_busy_page(struct address_space *mapping)
631 {
632         pgoff_t indices[PAGEVEC_SIZE];
633         struct page *page = NULL;
634         struct pagevec pvec;
635         pgoff_t index, end;
636         unsigned i;
637
638         /*
639          * In the 'limited' case get_user_pages() for dax is disabled.
640          */
641         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
642                 return NULL;
643
644         if (!dax_mapping(mapping) || !mapping_mapped(mapping))
645                 return NULL;
646
647         pagevec_init(&pvec);
648         index = 0;
649         end = -1;
650
651         /*
652          * If we race get_user_pages_fast() here either we'll see the
653          * elevated page count in the pagevec_lookup and wait, or
654          * get_user_pages_fast() will see that the page it took a reference
655          * against is no longer mapped in the page tables and bail to the
656          * get_user_pages() slow path.  The slow path is protected by
657          * pte_lock() and pmd_lock(). New references are not taken without
658          * holding those locks, and unmap_mapping_range() will not zero the
659          * pte or pmd without holding the respective lock, so we are
660          * guaranteed to either see new references or prevent new
661          * references from being established.
662          */
663         unmap_mapping_range(mapping, 0, 0, 1);
664
665         while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
666                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
667                                 indices)) {
668                 for (i = 0; i < pagevec_count(&pvec); i++) {
669                         struct page *pvec_ent = pvec.pages[i];
670                         void *entry;
671
672                         index = indices[i];
673                         if (index >= end)
674                                 break;
675
676                         if (WARN_ON_ONCE(
677                              !radix_tree_exceptional_entry(pvec_ent)))
678                                 continue;
679
680                         xa_lock_irq(&mapping->i_pages);
681                         entry = get_unlocked_mapping_entry(mapping, index, NULL);
682                         if (entry)
683                                 page = dax_busy_page(entry);
684                         put_unlocked_mapping_entry(mapping, index, entry);
685                         xa_unlock_irq(&mapping->i_pages);
686                         if (page)
687                                 break;
688                 }
689
690                 /*
691                  * We don't expect normal struct page entries to exist in our
692                  * tree, but we keep these pagevec calls so that this code is
693                  * consistent with the common pattern for handling pagevecs
694                  * throughout the kernel.
695                  */
696                 pagevec_remove_exceptionals(&pvec);
697                 pagevec_release(&pvec);
698                 index++;
699
700                 if (page)
701                         break;
702         }
703         return page;
704 }
705 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
706
707 static int __dax_invalidate_mapping_entry(struct address_space *mapping,
708                                           pgoff_t index, bool trunc)
709 {
710         int ret = 0;
711         void *entry;
712         struct radix_tree_root *pages = &mapping->i_pages;
713
714         xa_lock_irq(pages);
715         entry = get_unlocked_mapping_entry(mapping, index, NULL);
716         if (!entry || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)))
717                 goto out;
718         if (!trunc &&
719             (radix_tree_tag_get(pages, index, PAGECACHE_TAG_DIRTY) ||
720              radix_tree_tag_get(pages, index, PAGECACHE_TAG_TOWRITE)))
721                 goto out;
722         dax_disassociate_entry(entry, mapping, trunc);
723         radix_tree_delete(pages, index);
724         mapping->nrexceptional--;
725         ret = 1;
726 out:
727         put_unlocked_mapping_entry(mapping, index, entry);
728         xa_unlock_irq(pages);
729         return ret;
730 }
731 /*
732  * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
733  * entry to get unlocked before deleting it.
734  */
735 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
736 {
737         int ret = __dax_invalidate_mapping_entry(mapping, index, true);
738
739         /*
740          * This gets called from truncate / punch_hole path. As such, the caller
741          * must hold locks protecting against concurrent modifications of the
742          * radix tree (usually fs-private i_mmap_sem for writing). Since the
743          * caller has seen exceptional entry for this index, we better find it
744          * at that index as well...
745          */
746         WARN_ON_ONCE(!ret);
747         return ret;
748 }
749
750 /*
751  * Invalidate exceptional DAX entry if it is clean.
752  */
753 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
754                                       pgoff_t index)
755 {
756         return __dax_invalidate_mapping_entry(mapping, index, false);
757 }
758
759 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
760                 sector_t sector, size_t size, struct page *to,
761                 unsigned long vaddr)
762 {
763         void *vto, *kaddr;
764         pgoff_t pgoff;
765         long rc;
766         int id;
767
768         rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
769         if (rc)
770                 return rc;
771
772         id = dax_read_lock();
773         rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL);
774         if (rc < 0) {
775                 dax_read_unlock(id);
776                 return rc;
777         }
778         vto = kmap_atomic(to);
779         copy_user_page(vto, (void __force *)kaddr, vaddr, to);
780         kunmap_atomic(vto);
781         dax_read_unlock(id);
782         return 0;
783 }
784
785 /*
786  * By this point grab_mapping_entry() has ensured that we have a locked entry
787  * of the appropriate size so we don't have to worry about downgrading PMDs to
788  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
789  * already in the tree, we will skip the insertion and just dirty the PMD as
790  * appropriate.
791  */
792 static void *dax_insert_mapping_entry(struct address_space *mapping,
793                                       struct vm_fault *vmf,
794                                       void *entry, pfn_t pfn_t,
795                                       unsigned long flags, bool dirty)
796 {
797         struct radix_tree_root *pages = &mapping->i_pages;
798         unsigned long pfn = pfn_t_to_pfn(pfn_t);
799         pgoff_t index = vmf->pgoff;
800         void *new_entry;
801
802         if (dirty)
803                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
804
805         if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_ZERO_PAGE)) {
806                 /* we are replacing a zero page with block mapping */
807                 if (dax_is_pmd_entry(entry))
808                         unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
809                                                         PG_PMD_NR, false);
810                 else /* pte entry */
811                         unmap_mapping_pages(mapping, vmf->pgoff, 1, false);
812         }
813
814         xa_lock_irq(pages);
815         new_entry = dax_radix_locked_entry(pfn, flags);
816         if (dax_entry_size(entry) != dax_entry_size(new_entry)) {
817                 dax_disassociate_entry(entry, mapping, false);
818                 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
819         }
820
821         if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
822                 /*
823                  * Only swap our new entry into the radix tree if the current
824                  * entry is a zero page or an empty entry.  If a normal PTE or
825                  * PMD entry is already in the tree, we leave it alone.  This
826                  * means that if we are trying to insert a PTE and the
827                  * existing entry is a PMD, we will just leave the PMD in the
828                  * tree and dirty it if necessary.
829                  */
830                 struct radix_tree_node *node;
831                 void **slot;
832                 void *ret;
833
834                 ret = __radix_tree_lookup(pages, index, &node, &slot);
835                 WARN_ON_ONCE(ret != entry);
836                 __radix_tree_replace(pages, node, slot,
837                                      new_entry, NULL);
838                 entry = new_entry;
839         }
840
841         if (dirty)
842                 radix_tree_tag_set(pages, index, PAGECACHE_TAG_DIRTY);
843
844         xa_unlock_irq(pages);
845         return entry;
846 }
847
848 static inline unsigned long
849 pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
850 {
851         unsigned long address;
852
853         address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
854         VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
855         return address;
856 }
857
858 /* Walk all mappings of a given index of a file and writeprotect them */
859 static void dax_mapping_entry_mkclean(struct address_space *mapping,
860                                       pgoff_t index, unsigned long pfn)
861 {
862         struct vm_area_struct *vma;
863         pte_t pte, *ptep = NULL;
864         pmd_t *pmdp = NULL;
865         spinlock_t *ptl;
866
867         i_mmap_lock_read(mapping);
868         vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
869                 unsigned long address, start, end;
870
871                 cond_resched();
872
873                 if (!(vma->vm_flags & VM_SHARED))
874                         continue;
875
876                 address = pgoff_address(index, vma);
877
878                 /*
879                  * Note because we provide start/end to follow_pte_pmd it will
880                  * call mmu_notifier_invalidate_range_start() on our behalf
881                  * before taking any lock.
882                  */
883                 if (follow_pte_pmd(vma->vm_mm, address, &start, &end, &ptep, &pmdp, &ptl))
884                         continue;
885
886                 /*
887                  * No need to call mmu_notifier_invalidate_range() as we are
888                  * downgrading page table protection not changing it to point
889                  * to a new page.
890                  *
891                  * See Documentation/vm/mmu_notifier.rst
892                  */
893                 if (pmdp) {
894 #ifdef CONFIG_FS_DAX_PMD
895                         pmd_t pmd;
896
897                         if (pfn != pmd_pfn(*pmdp))
898                                 goto unlock_pmd;
899                         if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
900                                 goto unlock_pmd;
901
902                         flush_cache_page(vma, address, pfn);
903                         pmd = pmdp_huge_clear_flush(vma, address, pmdp);
904                         pmd = pmd_wrprotect(pmd);
905                         pmd = pmd_mkclean(pmd);
906                         set_pmd_at(vma->vm_mm, address, pmdp, pmd);
907 unlock_pmd:
908 #endif
909                         spin_unlock(ptl);
910                 } else {
911                         if (pfn != pte_pfn(*ptep))
912                                 goto unlock_pte;
913                         if (!pte_dirty(*ptep) && !pte_write(*ptep))
914                                 goto unlock_pte;
915
916                         flush_cache_page(vma, address, pfn);
917                         pte = ptep_clear_flush(vma, address, ptep);
918                         pte = pte_wrprotect(pte);
919                         pte = pte_mkclean(pte);
920                         set_pte_at(vma->vm_mm, address, ptep, pte);
921 unlock_pte:
922                         pte_unmap_unlock(ptep, ptl);
923                 }
924
925                 mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
926         }
927         i_mmap_unlock_read(mapping);
928 }
929
930 static int dax_writeback_one(struct dax_device *dax_dev,
931                 struct address_space *mapping, pgoff_t index, void *entry)
932 {
933         struct radix_tree_root *pages = &mapping->i_pages;
934         void *entry2, **slot;
935         unsigned long pfn;
936         long ret = 0;
937         size_t size;
938
939         /*
940          * A page got tagged dirty in DAX mapping? Something is seriously
941          * wrong.
942          */
943         if (WARN_ON(!radix_tree_exceptional_entry(entry)))
944                 return -EIO;
945
946         xa_lock_irq(pages);
947         entry2 = get_unlocked_mapping_entry(mapping, index, &slot);
948         /* Entry got punched out / reallocated? */
949         if (!entry2 || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry2)))
950                 goto put_unlocked;
951         /*
952          * Entry got reallocated elsewhere? No need to writeback. We have to
953          * compare pfns as we must not bail out due to difference in lockbit
954          * or entry type.
955          */
956         if (dax_radix_pfn(entry2) != dax_radix_pfn(entry))
957                 goto put_unlocked;
958         if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
959                                 dax_is_zero_entry(entry))) {
960                 ret = -EIO;
961                 goto put_unlocked;
962         }
963
964         /* Another fsync thread may have already written back this entry */
965         if (!radix_tree_tag_get(pages, index, PAGECACHE_TAG_TOWRITE))
966                 goto put_unlocked;
967         /* Lock the entry to serialize with page faults */
968         entry = lock_slot(mapping, slot);
969         /*
970          * We can clear the tag now but we have to be careful so that concurrent
971          * dax_writeback_one() calls for the same index cannot finish before we
972          * actually flush the caches. This is achieved as the calls will look
973          * at the entry only under the i_pages lock and once they do that
974          * they will see the entry locked and wait for it to unlock.
975          */
976         radix_tree_tag_clear(pages, index, PAGECACHE_TAG_TOWRITE);
977         xa_unlock_irq(pages);
978
979         /*
980          * Even if dax_writeback_mapping_range() was given a wbc->range_start
981          * in the middle of a PMD, the 'index' we are given will be aligned to
982          * the start index of the PMD, as will the pfn we pull from 'entry'.
983          * This allows us to flush for PMD_SIZE and not have to worry about
984          * partial PMD writebacks.
985          */
986         pfn = dax_radix_pfn(entry);
987         size = PAGE_SIZE << dax_radix_order(entry);
988
989         dax_mapping_entry_mkclean(mapping, index, pfn);
990         dax_flush(dax_dev, page_address(pfn_to_page(pfn)), size);
991         /*
992          * After we have flushed the cache, we can clear the dirty tag. There
993          * cannot be new dirty data in the pfn after the flush has completed as
994          * the pfn mappings are writeprotected and fault waits for mapping
995          * entry lock.
996          */
997         xa_lock_irq(pages);
998         radix_tree_tag_clear(pages, index, PAGECACHE_TAG_DIRTY);
999         xa_unlock_irq(pages);
1000         trace_dax_writeback_one(mapping->host, index, size >> PAGE_SHIFT);
1001         put_locked_mapping_entry(mapping, index);
1002         return ret;
1003
1004  put_unlocked:
1005         put_unlocked_mapping_entry(mapping, index, entry2);
1006         xa_unlock_irq(pages);
1007         return ret;
1008 }
1009
1010 /*
1011  * Flush the mapping to the persistent domain within the byte range of [start,
1012  * end]. This is required by data integrity operations to ensure file data is
1013  * on persistent storage prior to completion of the operation.
1014  */
1015 int dax_writeback_mapping_range(struct address_space *mapping,
1016                 struct block_device *bdev, struct writeback_control *wbc)
1017 {
1018         struct inode *inode = mapping->host;
1019         pgoff_t start_index, end_index;
1020         pgoff_t indices[PAGEVEC_SIZE];
1021         struct dax_device *dax_dev;
1022         struct pagevec pvec;
1023         bool done = false;
1024         int i, ret = 0;
1025
1026         if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
1027                 return -EIO;
1028
1029         if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
1030                 return 0;
1031
1032         dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
1033         if (!dax_dev)
1034                 return -EIO;
1035
1036         start_index = wbc->range_start >> PAGE_SHIFT;
1037         end_index = wbc->range_end >> PAGE_SHIFT;
1038
1039         trace_dax_writeback_range(inode, start_index, end_index);
1040
1041         tag_pages_for_writeback(mapping, start_index, end_index);
1042
1043         pagevec_init(&pvec);
1044         while (!done) {
1045                 pvec.nr = find_get_entries_tag(mapping, start_index,
1046                                 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
1047                                 pvec.pages, indices);
1048
1049                 if (pvec.nr == 0)
1050                         break;
1051
1052                 for (i = 0; i < pvec.nr; i++) {
1053                         if (indices[i] > end_index) {
1054                                 done = true;
1055                                 break;
1056                         }
1057
1058                         ret = dax_writeback_one(dax_dev, mapping, indices[i],
1059                                         pvec.pages[i]);
1060                         if (ret < 0) {
1061                                 mapping_set_error(mapping, ret);
1062                                 goto out;
1063                         }
1064                 }
1065                 start_index = indices[pvec.nr - 1] + 1;
1066         }
1067 out:
1068         put_dax(dax_dev);
1069         trace_dax_writeback_range_done(inode, start_index, end_index);
1070         return (ret < 0 ? ret : 0);
1071 }
1072 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
1073
1074 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
1075 {
1076         return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
1077 }
1078
1079 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
1080                          pfn_t *pfnp)
1081 {
1082         const sector_t sector = dax_iomap_sector(iomap, pos);
1083         pgoff_t pgoff;
1084         int id, rc;
1085         long length;
1086
1087         rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
1088         if (rc)
1089                 return rc;
1090         id = dax_read_lock();
1091         length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
1092                                    NULL, pfnp);
1093         if (length < 0) {
1094                 rc = length;
1095                 goto out;
1096         }
1097         rc = -EINVAL;
1098         if (PFN_PHYS(length) < size)
1099                 goto out;
1100         if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1101                 goto out;
1102         /* For larger pages we need devmap */
1103         if (length > 1 && !pfn_t_devmap(*pfnp))
1104                 goto out;
1105         rc = 0;
1106 out:
1107         dax_read_unlock(id);
1108         return rc;
1109 }
1110
1111 /*
1112  * The user has performed a load from a hole in the file.  Allocating a new
1113  * page in the file would cause excessive storage usage for workloads with
1114  * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
1115  * If this page is ever written to we will re-fault and change the mapping to
1116  * point to real DAX storage instead.
1117  */
1118 static vm_fault_t dax_load_hole(struct address_space *mapping, void *entry,
1119                          struct vm_fault *vmf)
1120 {
1121         struct inode *inode = mapping->host;
1122         unsigned long vaddr = vmf->address;
1123         pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1124         vm_fault_t ret;
1125
1126         dax_insert_mapping_entry(mapping, vmf, entry, pfn, RADIX_DAX_ZERO_PAGE,
1127                         false);
1128         ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1129         trace_dax_load_hole(inode, vmf, ret);
1130         return ret;
1131 }
1132
1133 static bool dax_range_is_aligned(struct block_device *bdev,
1134                                  unsigned int offset, unsigned int length)
1135 {
1136         unsigned short sector_size = bdev_logical_block_size(bdev);
1137
1138         if (!IS_ALIGNED(offset, sector_size))
1139                 return false;
1140         if (!IS_ALIGNED(length, sector_size))
1141                 return false;
1142
1143         return true;
1144 }
1145
1146 int __dax_zero_page_range(struct block_device *bdev,
1147                 struct dax_device *dax_dev, sector_t sector,
1148                 unsigned int offset, unsigned int size)
1149 {
1150         if (dax_range_is_aligned(bdev, offset, size)) {
1151                 sector_t start_sector = sector + (offset >> 9);
1152
1153                 return blkdev_issue_zeroout(bdev, start_sector,
1154                                 size >> 9, GFP_NOFS, 0);
1155         } else {
1156                 pgoff_t pgoff;
1157                 long rc, id;
1158                 void *kaddr;
1159
1160                 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
1161                 if (rc)
1162                         return rc;
1163
1164                 id = dax_read_lock();
1165                 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
1166                 if (rc < 0) {
1167                         dax_read_unlock(id);
1168                         return rc;
1169                 }
1170                 memset(kaddr + offset, 0, size);
1171                 dax_flush(dax_dev, kaddr + offset, size);
1172                 dax_read_unlock(id);
1173         }
1174         return 0;
1175 }
1176 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1177
1178 static loff_t
1179 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1180                 struct iomap *iomap)
1181 {
1182         struct block_device *bdev = iomap->bdev;
1183         struct dax_device *dax_dev = iomap->dax_dev;
1184         struct iov_iter *iter = data;
1185         loff_t end = pos + length, done = 0;
1186         ssize_t ret = 0;
1187         size_t xfer;
1188         int id;
1189
1190         if (iov_iter_rw(iter) == READ) {
1191                 end = min(end, i_size_read(inode));
1192                 if (pos >= end)
1193                         return 0;
1194
1195                 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1196                         return iov_iter_zero(min(length, end - pos), iter);
1197         }
1198
1199         if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1200                 return -EIO;
1201
1202         /*
1203          * Write can allocate block for an area which has a hole page mapped
1204          * into page tables. We have to tear down these mappings so that data
1205          * written by write(2) is visible in mmap.
1206          */
1207         if (iomap->flags & IOMAP_F_NEW) {
1208                 invalidate_inode_pages2_range(inode->i_mapping,
1209                                               pos >> PAGE_SHIFT,
1210                                               (end - 1) >> PAGE_SHIFT);
1211         }
1212
1213         id = dax_read_lock();
1214         while (pos < end) {
1215                 unsigned offset = pos & (PAGE_SIZE - 1);
1216                 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1217                 const sector_t sector = dax_iomap_sector(iomap, pos);
1218                 ssize_t map_len;
1219                 pgoff_t pgoff;
1220                 void *kaddr;
1221
1222                 if (fatal_signal_pending(current)) {
1223                         ret = -EINTR;
1224                         break;
1225                 }
1226
1227                 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1228                 if (ret)
1229                         break;
1230
1231                 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1232                                 &kaddr, NULL);
1233                 if (map_len < 0) {
1234                         ret = map_len;
1235                         break;
1236                 }
1237
1238                 map_len = PFN_PHYS(map_len);
1239                 kaddr += offset;
1240                 map_len -= offset;
1241                 if (map_len > end - pos)
1242                         map_len = end - pos;
1243
1244                 /*
1245                  * The userspace address for the memory copy has already been
1246                  * validated via access_ok() in either vfs_read() or
1247                  * vfs_write(), depending on which operation we are doing.
1248                  */
1249                 if (iov_iter_rw(iter) == WRITE)
1250                         xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1251                                         map_len, iter);
1252                 else
1253                         xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1254                                         map_len, iter);
1255
1256                 pos += xfer;
1257                 length -= xfer;
1258                 done += xfer;
1259
1260                 if (xfer == 0)
1261                         ret = -EFAULT;
1262                 if (xfer < map_len)
1263                         break;
1264         }
1265         dax_read_unlock(id);
1266
1267         return done ? done : ret;
1268 }
1269
1270 /**
1271  * dax_iomap_rw - Perform I/O to a DAX file
1272  * @iocb:       The control block for this I/O
1273  * @iter:       The addresses to do I/O from or to
1274  * @ops:        iomap ops passed from the file system
1275  *
1276  * This function performs read and write operations to directly mapped
1277  * persistent memory.  The callers needs to take care of read/write exclusion
1278  * and evicting any page cache pages in the region under I/O.
1279  */
1280 ssize_t
1281 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1282                 const struct iomap_ops *ops)
1283 {
1284         struct address_space *mapping = iocb->ki_filp->f_mapping;
1285         struct inode *inode = mapping->host;
1286         loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1287         unsigned flags = 0;
1288
1289         if (iov_iter_rw(iter) == WRITE) {
1290                 lockdep_assert_held_exclusive(&inode->i_rwsem);
1291                 flags |= IOMAP_WRITE;
1292         } else {
1293                 lockdep_assert_held(&inode->i_rwsem);
1294         }
1295
1296         while (iov_iter_count(iter)) {
1297                 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1298                                 iter, dax_iomap_actor);
1299                 if (ret <= 0)
1300                         break;
1301                 pos += ret;
1302                 done += ret;
1303         }
1304
1305         iocb->ki_pos += done;
1306         return done ? done : ret;
1307 }
1308 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1309
1310 static vm_fault_t dax_fault_return(int error)
1311 {
1312         if (error == 0)
1313                 return VM_FAULT_NOPAGE;
1314         if (error == -ENOMEM)
1315                 return VM_FAULT_OOM;
1316         return VM_FAULT_SIGBUS;
1317 }
1318
1319 /*
1320  * MAP_SYNC on a dax mapping guarantees dirty metadata is
1321  * flushed on write-faults (non-cow), but not read-faults.
1322  */
1323 static bool dax_fault_is_synchronous(unsigned long flags,
1324                 struct vm_area_struct *vma, struct iomap *iomap)
1325 {
1326         return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1327                 && (iomap->flags & IOMAP_F_DIRTY);
1328 }
1329
1330 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1331                                int *iomap_errp, const struct iomap_ops *ops)
1332 {
1333         struct vm_area_struct *vma = vmf->vma;
1334         struct address_space *mapping = vma->vm_file->f_mapping;
1335         struct inode *inode = mapping->host;
1336         unsigned long vaddr = vmf->address;
1337         loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1338         struct iomap iomap = { 0 };
1339         unsigned flags = IOMAP_FAULT;
1340         int error, major = 0;
1341         bool write = vmf->flags & FAULT_FLAG_WRITE;
1342         bool sync;
1343         vm_fault_t ret = 0;
1344         void *entry;
1345         pfn_t pfn;
1346
1347         trace_dax_pte_fault(inode, vmf, ret);
1348         /*
1349          * Check whether offset isn't beyond end of file now. Caller is supposed
1350          * to hold locks serializing us with truncate / punch hole so this is
1351          * a reliable test.
1352          */
1353         if (pos >= i_size_read(inode)) {
1354                 ret = VM_FAULT_SIGBUS;
1355                 goto out;
1356         }
1357
1358         if (write && !vmf->cow_page)
1359                 flags |= IOMAP_WRITE;
1360
1361         entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
1362         if (IS_ERR(entry)) {
1363                 ret = dax_fault_return(PTR_ERR(entry));
1364                 goto out;
1365         }
1366
1367         /*
1368          * It is possible, particularly with mixed reads & writes to private
1369          * mappings, that we have raced with a PMD fault that overlaps with
1370          * the PTE we need to set up.  If so just return and the fault will be
1371          * retried.
1372          */
1373         if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1374                 ret = VM_FAULT_NOPAGE;
1375                 goto unlock_entry;
1376         }
1377
1378         /*
1379          * Note that we don't bother to use iomap_apply here: DAX required
1380          * the file system block size to be equal the page size, which means
1381          * that we never have to deal with more than a single extent here.
1382          */
1383         error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1384         if (iomap_errp)
1385                 *iomap_errp = error;
1386         if (error) {
1387                 ret = dax_fault_return(error);
1388                 goto unlock_entry;
1389         }
1390         if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1391                 error = -EIO;   /* fs corruption? */
1392                 goto error_finish_iomap;
1393         }
1394
1395         if (vmf->cow_page) {
1396                 sector_t sector = dax_iomap_sector(&iomap, pos);
1397
1398                 switch (iomap.type) {
1399                 case IOMAP_HOLE:
1400                 case IOMAP_UNWRITTEN:
1401                         clear_user_highpage(vmf->cow_page, vaddr);
1402                         break;
1403                 case IOMAP_MAPPED:
1404                         error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1405                                         sector, PAGE_SIZE, vmf->cow_page, vaddr);
1406                         break;
1407                 default:
1408                         WARN_ON_ONCE(1);
1409                         error = -EIO;
1410                         break;
1411                 }
1412
1413                 if (error)
1414                         goto error_finish_iomap;
1415
1416                 __SetPageUptodate(vmf->cow_page);
1417                 ret = finish_fault(vmf);
1418                 if (!ret)
1419                         ret = VM_FAULT_DONE_COW;
1420                 goto finish_iomap;
1421         }
1422
1423         sync = dax_fault_is_synchronous(flags, vma, &iomap);
1424
1425         switch (iomap.type) {
1426         case IOMAP_MAPPED:
1427                 if (iomap.flags & IOMAP_F_NEW) {
1428                         count_vm_event(PGMAJFAULT);
1429                         count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1430                         major = VM_FAULT_MAJOR;
1431                 }
1432                 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1433                 if (error < 0)
1434                         goto error_finish_iomap;
1435
1436                 entry = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
1437                                                  0, write && !sync);
1438
1439                 /*
1440                  * If we are doing synchronous page fault and inode needs fsync,
1441                  * we can insert PTE into page tables only after that happens.
1442                  * Skip insertion for now and return the pfn so that caller can
1443                  * insert it after fsync is done.
1444                  */
1445                 if (sync) {
1446                         if (WARN_ON_ONCE(!pfnp)) {
1447                                 error = -EIO;
1448                                 goto error_finish_iomap;
1449                         }
1450                         *pfnp = pfn;
1451                         ret = VM_FAULT_NEEDDSYNC | major;
1452                         goto finish_iomap;
1453                 }
1454                 trace_dax_insert_mapping(inode, vmf, entry);
1455                 if (write)
1456                         ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1457                 else
1458                         ret = vmf_insert_mixed(vma, vaddr, pfn);
1459
1460                 goto finish_iomap;
1461         case IOMAP_UNWRITTEN:
1462         case IOMAP_HOLE:
1463                 if (!write) {
1464                         ret = dax_load_hole(mapping, entry, vmf);
1465                         goto finish_iomap;
1466                 }
1467                 /*FALLTHRU*/
1468         default:
1469                 WARN_ON_ONCE(1);
1470                 error = -EIO;
1471                 break;
1472         }
1473
1474  error_finish_iomap:
1475         ret = dax_fault_return(error);
1476  finish_iomap:
1477         if (ops->iomap_end) {
1478                 int copied = PAGE_SIZE;
1479
1480                 if (ret & VM_FAULT_ERROR)
1481                         copied = 0;
1482                 /*
1483                  * The fault is done by now and there's no way back (other
1484                  * thread may be already happily using PTE we have installed).
1485                  * Just ignore error from ->iomap_end since we cannot do much
1486                  * with it.
1487                  */
1488                 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1489         }
1490  unlock_entry:
1491         put_locked_mapping_entry(mapping, vmf->pgoff);
1492  out:
1493         trace_dax_pte_fault_done(inode, vmf, ret);
1494         return ret | major;
1495 }
1496
1497 #ifdef CONFIG_FS_DAX_PMD
1498 static vm_fault_t dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap,
1499                 void *entry)
1500 {
1501         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1502         unsigned long pmd_addr = vmf->address & PMD_MASK;
1503         struct inode *inode = mapping->host;
1504         struct page *zero_page;
1505         void *ret = NULL;
1506         spinlock_t *ptl;
1507         pmd_t pmd_entry;
1508         pfn_t pfn;
1509
1510         zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1511
1512         if (unlikely(!zero_page))
1513                 goto fallback;
1514
1515         pfn = page_to_pfn_t(zero_page);
1516         ret = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
1517                         RADIX_DAX_PMD | RADIX_DAX_ZERO_PAGE, false);
1518
1519         ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1520         if (!pmd_none(*(vmf->pmd))) {
1521                 spin_unlock(ptl);
1522                 goto fallback;
1523         }
1524
1525         pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1526         pmd_entry = pmd_mkhuge(pmd_entry);
1527         set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1528         spin_unlock(ptl);
1529         trace_dax_pmd_load_hole(inode, vmf, zero_page, ret);
1530         return VM_FAULT_NOPAGE;
1531
1532 fallback:
1533         trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret);
1534         return VM_FAULT_FALLBACK;
1535 }
1536
1537 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1538                                const struct iomap_ops *ops)
1539 {
1540         struct vm_area_struct *vma = vmf->vma;
1541         struct address_space *mapping = vma->vm_file->f_mapping;
1542         unsigned long pmd_addr = vmf->address & PMD_MASK;
1543         bool write = vmf->flags & FAULT_FLAG_WRITE;
1544         bool sync;
1545         unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1546         struct inode *inode = mapping->host;
1547         vm_fault_t result = VM_FAULT_FALLBACK;
1548         struct iomap iomap = { 0 };
1549         pgoff_t max_pgoff, pgoff;
1550         void *entry;
1551         loff_t pos;
1552         int error;
1553         pfn_t pfn;
1554
1555         /*
1556          * Check whether offset isn't beyond end of file now. Caller is
1557          * supposed to hold locks serializing us with truncate / punch hole so
1558          * this is a reliable test.
1559          */
1560         pgoff = linear_page_index(vma, pmd_addr);
1561         max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1562
1563         trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1564
1565         /*
1566          * Make sure that the faulting address's PMD offset (color) matches
1567          * the PMD offset from the start of the file.  This is necessary so
1568          * that a PMD range in the page table overlaps exactly with a PMD
1569          * range in the radix tree.
1570          */
1571         if ((vmf->pgoff & PG_PMD_COLOUR) !=
1572             ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1573                 goto fallback;
1574
1575         /* Fall back to PTEs if we're going to COW */
1576         if (write && !(vma->vm_flags & VM_SHARED))
1577                 goto fallback;
1578
1579         /* If the PMD would extend outside the VMA */
1580         if (pmd_addr < vma->vm_start)
1581                 goto fallback;
1582         if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1583                 goto fallback;
1584
1585         if (pgoff >= max_pgoff) {
1586                 result = VM_FAULT_SIGBUS;
1587                 goto out;
1588         }
1589
1590         /* If the PMD would extend beyond the file size */
1591         if ((pgoff | PG_PMD_COLOUR) >= max_pgoff)
1592                 goto fallback;
1593
1594         /*
1595          * grab_mapping_entry() will make sure we get a 2MiB empty entry, a
1596          * 2MiB zero page entry or a DAX PMD.  If it can't (because a 4k page
1597          * is already in the tree, for instance), it will return -EEXIST and
1598          * we just fall back to 4k entries.
1599          */
1600         entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1601         if (IS_ERR(entry))
1602                 goto fallback;
1603
1604         /*
1605          * It is possible, particularly with mixed reads & writes to private
1606          * mappings, that we have raced with a PTE fault that overlaps with
1607          * the PMD we need to set up.  If so just return and the fault will be
1608          * retried.
1609          */
1610         if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1611                         !pmd_devmap(*vmf->pmd)) {
1612                 result = 0;
1613                 goto unlock_entry;
1614         }
1615
1616         /*
1617          * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1618          * setting up a mapping, so really we're using iomap_begin() as a way
1619          * to look up our filesystem block.
1620          */
1621         pos = (loff_t)pgoff << PAGE_SHIFT;
1622         error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1623         if (error)
1624                 goto unlock_entry;
1625
1626         if (iomap.offset + iomap.length < pos + PMD_SIZE)
1627                 goto finish_iomap;
1628
1629         sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1630
1631         switch (iomap.type) {
1632         case IOMAP_MAPPED:
1633                 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1634                 if (error < 0)
1635                         goto finish_iomap;
1636
1637                 entry = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
1638                                                 RADIX_DAX_PMD, write && !sync);
1639
1640                 /*
1641                  * If we are doing synchronous page fault and inode needs fsync,
1642                  * we can insert PMD into page tables only after that happens.
1643                  * Skip insertion for now and return the pfn so that caller can
1644                  * insert it after fsync is done.
1645                  */
1646                 if (sync) {
1647                         if (WARN_ON_ONCE(!pfnp))
1648                                 goto finish_iomap;
1649                         *pfnp = pfn;
1650                         result = VM_FAULT_NEEDDSYNC;
1651                         goto finish_iomap;
1652                 }
1653
1654                 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1655                 result = vmf_insert_pfn_pmd(vma, vmf->address, vmf->pmd, pfn,
1656                                             write);
1657                 break;
1658         case IOMAP_UNWRITTEN:
1659         case IOMAP_HOLE:
1660                 if (WARN_ON_ONCE(write))
1661                         break;
1662                 result = dax_pmd_load_hole(vmf, &iomap, entry);
1663                 break;
1664         default:
1665                 WARN_ON_ONCE(1);
1666                 break;
1667         }
1668
1669  finish_iomap:
1670         if (ops->iomap_end) {
1671                 int copied = PMD_SIZE;
1672
1673                 if (result == VM_FAULT_FALLBACK)
1674                         copied = 0;
1675                 /*
1676                  * The fault is done by now and there's no way back (other
1677                  * thread may be already happily using PMD we have installed).
1678                  * Just ignore error from ->iomap_end since we cannot do much
1679                  * with it.
1680                  */
1681                 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1682                                 &iomap);
1683         }
1684  unlock_entry:
1685         put_locked_mapping_entry(mapping, pgoff);
1686  fallback:
1687         if (result == VM_FAULT_FALLBACK) {
1688                 split_huge_pmd(vma, vmf->pmd, vmf->address);
1689                 count_vm_event(THP_FAULT_FALLBACK);
1690         }
1691 out:
1692         trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1693         return result;
1694 }
1695 #else
1696 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1697                                const struct iomap_ops *ops)
1698 {
1699         return VM_FAULT_FALLBACK;
1700 }
1701 #endif /* CONFIG_FS_DAX_PMD */
1702
1703 /**
1704  * dax_iomap_fault - handle a page fault on a DAX file
1705  * @vmf: The description of the fault
1706  * @pe_size: Size of the page to fault in
1707  * @pfnp: PFN to insert for synchronous faults if fsync is required
1708  * @iomap_errp: Storage for detailed error code in case of error
1709  * @ops: Iomap ops passed from the file system
1710  *
1711  * When a page fault occurs, filesystems may call this helper in
1712  * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1713  * has done all the necessary locking for page fault to proceed
1714  * successfully.
1715  */
1716 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1717                     pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1718 {
1719         switch (pe_size) {
1720         case PE_SIZE_PTE:
1721                 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1722         case PE_SIZE_PMD:
1723                 return dax_iomap_pmd_fault(vmf, pfnp, ops);
1724         default:
1725                 return VM_FAULT_FALLBACK;
1726         }
1727 }
1728 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1729
1730 /**
1731  * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1732  * @vmf: The description of the fault
1733  * @pe_size: Size of entry to be inserted
1734  * @pfn: PFN to insert
1735  *
1736  * This function inserts writeable PTE or PMD entry into page tables for mmaped
1737  * DAX file.  It takes care of marking corresponding radix tree entry as dirty
1738  * as well.
1739  */
1740 static vm_fault_t dax_insert_pfn_mkwrite(struct vm_fault *vmf,
1741                                   enum page_entry_size pe_size,
1742                                   pfn_t pfn)
1743 {
1744         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1745         void *entry, **slot;
1746         pgoff_t index = vmf->pgoff;
1747         vm_fault_t ret;
1748
1749         xa_lock_irq(&mapping->i_pages);
1750         entry = get_unlocked_mapping_entry(mapping, index, &slot);
1751         /* Did we race with someone splitting entry or so? */
1752         if (!entry ||
1753             (pe_size == PE_SIZE_PTE && !dax_is_pte_entry(entry)) ||
1754             (pe_size == PE_SIZE_PMD && !dax_is_pmd_entry(entry))) {
1755                 put_unlocked_mapping_entry(mapping, index, entry);
1756                 xa_unlock_irq(&mapping->i_pages);
1757                 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1758                                                       VM_FAULT_NOPAGE);
1759                 return VM_FAULT_NOPAGE;
1760         }
1761         radix_tree_tag_set(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY);
1762         entry = lock_slot(mapping, slot);
1763         xa_unlock_irq(&mapping->i_pages);
1764         switch (pe_size) {
1765         case PE_SIZE_PTE:
1766                 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1767                 break;
1768 #ifdef CONFIG_FS_DAX_PMD
1769         case PE_SIZE_PMD:
1770                 ret = vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
1771                         pfn, true);
1772                 break;
1773 #endif
1774         default:
1775                 ret = VM_FAULT_FALLBACK;
1776         }
1777         put_locked_mapping_entry(mapping, index);
1778         trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1779         return ret;
1780 }
1781
1782 /**
1783  * dax_finish_sync_fault - finish synchronous page fault
1784  * @vmf: The description of the fault
1785  * @pe_size: Size of entry to be inserted
1786  * @pfn: PFN to insert
1787  *
1788  * This function ensures that the file range touched by the page fault is
1789  * stored persistently on the media and handles inserting of appropriate page
1790  * table entry.
1791  */
1792 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1793                 enum page_entry_size pe_size, pfn_t pfn)
1794 {
1795         int err;
1796         loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1797         size_t len = 0;
1798
1799         if (pe_size == PE_SIZE_PTE)
1800                 len = PAGE_SIZE;
1801         else if (pe_size == PE_SIZE_PMD)
1802                 len = PMD_SIZE;
1803         else
1804                 WARN_ON_ONCE(1);
1805         err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1806         if (err)
1807                 return VM_FAULT_SIGBUS;
1808         return dax_insert_pfn_mkwrite(vmf, pe_size, pfn);
1809 }
1810 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);