Merge tag 'bootconfig-v6.3' of git://git.kernel.org/pub/scm/linux/kernel/git/trace...
[linux-block.git] / fs / cifs / smbdirect.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *   Copyright (C) 2017, Microsoft Corporation.
4  *
5  *   Author(s): Long Li <longli@microsoft.com>
6  */
7 #include <linux/module.h>
8 #include <linux/highmem.h>
9 #include "smbdirect.h"
10 #include "cifs_debug.h"
11 #include "cifsproto.h"
12 #include "smb2proto.h"
13
14 static struct smbd_response *get_empty_queue_buffer(
15                 struct smbd_connection *info);
16 static struct smbd_response *get_receive_buffer(
17                 struct smbd_connection *info);
18 static void put_receive_buffer(
19                 struct smbd_connection *info,
20                 struct smbd_response *response);
21 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf);
22 static void destroy_receive_buffers(struct smbd_connection *info);
23
24 static void put_empty_packet(
25                 struct smbd_connection *info, struct smbd_response *response);
26 static void enqueue_reassembly(
27                 struct smbd_connection *info,
28                 struct smbd_response *response, int data_length);
29 static struct smbd_response *_get_first_reassembly(
30                 struct smbd_connection *info);
31
32 static int smbd_post_recv(
33                 struct smbd_connection *info,
34                 struct smbd_response *response);
35
36 static int smbd_post_send_empty(struct smbd_connection *info);
37
38 static void destroy_mr_list(struct smbd_connection *info);
39 static int allocate_mr_list(struct smbd_connection *info);
40
41 struct smb_extract_to_rdma {
42         struct ib_sge           *sge;
43         unsigned int            nr_sge;
44         unsigned int            max_sge;
45         struct ib_device        *device;
46         u32                     local_dma_lkey;
47         enum dma_data_direction direction;
48 };
49 static ssize_t smb_extract_iter_to_rdma(struct iov_iter *iter, size_t len,
50                                         struct smb_extract_to_rdma *rdma);
51
52 /* SMBD version number */
53 #define SMBD_V1 0x0100
54
55 /* Port numbers for SMBD transport */
56 #define SMB_PORT        445
57 #define SMBD_PORT       5445
58
59 /* Address lookup and resolve timeout in ms */
60 #define RDMA_RESOLVE_TIMEOUT    5000
61
62 /* SMBD negotiation timeout in seconds */
63 #define SMBD_NEGOTIATE_TIMEOUT  120
64
65 /* SMBD minimum receive size and fragmented sized defined in [MS-SMBD] */
66 #define SMBD_MIN_RECEIVE_SIZE           128
67 #define SMBD_MIN_FRAGMENTED_SIZE        131072
68
69 /*
70  * Default maximum number of RDMA read/write outstanding on this connection
71  * This value is possibly decreased during QP creation on hardware limit
72  */
73 #define SMBD_CM_RESPONDER_RESOURCES     32
74
75 /* Maximum number of retries on data transfer operations */
76 #define SMBD_CM_RETRY                   6
77 /* No need to retry on Receiver Not Ready since SMBD manages credits */
78 #define SMBD_CM_RNR_RETRY               0
79
80 /*
81  * User configurable initial values per SMBD transport connection
82  * as defined in [MS-SMBD] 3.1.1.1
83  * Those may change after a SMBD negotiation
84  */
85 /* The local peer's maximum number of credits to grant to the peer */
86 int smbd_receive_credit_max = 255;
87
88 /* The remote peer's credit request of local peer */
89 int smbd_send_credit_target = 255;
90
91 /* The maximum single message size can be sent to remote peer */
92 int smbd_max_send_size = 1364;
93
94 /*  The maximum fragmented upper-layer payload receive size supported */
95 int smbd_max_fragmented_recv_size = 1024 * 1024;
96
97 /*  The maximum single-message size which can be received */
98 int smbd_max_receive_size = 1364;
99
100 /* The timeout to initiate send of a keepalive message on idle */
101 int smbd_keep_alive_interval = 120;
102
103 /*
104  * User configurable initial values for RDMA transport
105  * The actual values used may be lower and are limited to hardware capabilities
106  */
107 /* Default maximum number of pages in a single RDMA write/read */
108 int smbd_max_frmr_depth = 2048;
109
110 /* If payload is less than this byte, use RDMA send/recv not read/write */
111 int rdma_readwrite_threshold = 4096;
112
113 /* Transport logging functions
114  * Logging are defined as classes. They can be OR'ed to define the actual
115  * logging level via module parameter smbd_logging_class
116  * e.g. cifs.smbd_logging_class=0xa0 will log all log_rdma_recv() and
117  * log_rdma_event()
118  */
119 #define LOG_OUTGOING                    0x1
120 #define LOG_INCOMING                    0x2
121 #define LOG_READ                        0x4
122 #define LOG_WRITE                       0x8
123 #define LOG_RDMA_SEND                   0x10
124 #define LOG_RDMA_RECV                   0x20
125 #define LOG_KEEP_ALIVE                  0x40
126 #define LOG_RDMA_EVENT                  0x80
127 #define LOG_RDMA_MR                     0x100
128 static unsigned int smbd_logging_class;
129 module_param(smbd_logging_class, uint, 0644);
130 MODULE_PARM_DESC(smbd_logging_class,
131         "Logging class for SMBD transport 0x0 to 0x100");
132
133 #define ERR             0x0
134 #define INFO            0x1
135 static unsigned int smbd_logging_level = ERR;
136 module_param(smbd_logging_level, uint, 0644);
137 MODULE_PARM_DESC(smbd_logging_level,
138         "Logging level for SMBD transport, 0 (default): error, 1: info");
139
140 #define log_rdma(level, class, fmt, args...)                            \
141 do {                                                                    \
142         if (level <= smbd_logging_level || class & smbd_logging_class)  \
143                 cifs_dbg(VFS, "%s:%d " fmt, __func__, __LINE__, ##args);\
144 } while (0)
145
146 #define log_outgoing(level, fmt, args...) \
147                 log_rdma(level, LOG_OUTGOING, fmt, ##args)
148 #define log_incoming(level, fmt, args...) \
149                 log_rdma(level, LOG_INCOMING, fmt, ##args)
150 #define log_read(level, fmt, args...)   log_rdma(level, LOG_READ, fmt, ##args)
151 #define log_write(level, fmt, args...)  log_rdma(level, LOG_WRITE, fmt, ##args)
152 #define log_rdma_send(level, fmt, args...) \
153                 log_rdma(level, LOG_RDMA_SEND, fmt, ##args)
154 #define log_rdma_recv(level, fmt, args...) \
155                 log_rdma(level, LOG_RDMA_RECV, fmt, ##args)
156 #define log_keep_alive(level, fmt, args...) \
157                 log_rdma(level, LOG_KEEP_ALIVE, fmt, ##args)
158 #define log_rdma_event(level, fmt, args...) \
159                 log_rdma(level, LOG_RDMA_EVENT, fmt, ##args)
160 #define log_rdma_mr(level, fmt, args...) \
161                 log_rdma(level, LOG_RDMA_MR, fmt, ##args)
162
163 static void smbd_disconnect_rdma_work(struct work_struct *work)
164 {
165         struct smbd_connection *info =
166                 container_of(work, struct smbd_connection, disconnect_work);
167
168         if (info->transport_status == SMBD_CONNECTED) {
169                 info->transport_status = SMBD_DISCONNECTING;
170                 rdma_disconnect(info->id);
171         }
172 }
173
174 static void smbd_disconnect_rdma_connection(struct smbd_connection *info)
175 {
176         queue_work(info->workqueue, &info->disconnect_work);
177 }
178
179 /* Upcall from RDMA CM */
180 static int smbd_conn_upcall(
181                 struct rdma_cm_id *id, struct rdma_cm_event *event)
182 {
183         struct smbd_connection *info = id->context;
184
185         log_rdma_event(INFO, "event=%d status=%d\n",
186                 event->event, event->status);
187
188         switch (event->event) {
189         case RDMA_CM_EVENT_ADDR_RESOLVED:
190         case RDMA_CM_EVENT_ROUTE_RESOLVED:
191                 info->ri_rc = 0;
192                 complete(&info->ri_done);
193                 break;
194
195         case RDMA_CM_EVENT_ADDR_ERROR:
196                 info->ri_rc = -EHOSTUNREACH;
197                 complete(&info->ri_done);
198                 break;
199
200         case RDMA_CM_EVENT_ROUTE_ERROR:
201                 info->ri_rc = -ENETUNREACH;
202                 complete(&info->ri_done);
203                 break;
204
205         case RDMA_CM_EVENT_ESTABLISHED:
206                 log_rdma_event(INFO, "connected event=%d\n", event->event);
207                 info->transport_status = SMBD_CONNECTED;
208                 wake_up_interruptible(&info->conn_wait);
209                 break;
210
211         case RDMA_CM_EVENT_CONNECT_ERROR:
212         case RDMA_CM_EVENT_UNREACHABLE:
213         case RDMA_CM_EVENT_REJECTED:
214                 log_rdma_event(INFO, "connecting failed event=%d\n", event->event);
215                 info->transport_status = SMBD_DISCONNECTED;
216                 wake_up_interruptible(&info->conn_wait);
217                 break;
218
219         case RDMA_CM_EVENT_DEVICE_REMOVAL:
220         case RDMA_CM_EVENT_DISCONNECTED:
221                 /* This happenes when we fail the negotiation */
222                 if (info->transport_status == SMBD_NEGOTIATE_FAILED) {
223                         info->transport_status = SMBD_DISCONNECTED;
224                         wake_up(&info->conn_wait);
225                         break;
226                 }
227
228                 info->transport_status = SMBD_DISCONNECTED;
229                 wake_up_interruptible(&info->disconn_wait);
230                 wake_up_interruptible(&info->wait_reassembly_queue);
231                 wake_up_interruptible_all(&info->wait_send_queue);
232                 break;
233
234         default:
235                 break;
236         }
237
238         return 0;
239 }
240
241 /* Upcall from RDMA QP */
242 static void
243 smbd_qp_async_error_upcall(struct ib_event *event, void *context)
244 {
245         struct smbd_connection *info = context;
246
247         log_rdma_event(ERR, "%s on device %s info %p\n",
248                 ib_event_msg(event->event), event->device->name, info);
249
250         switch (event->event) {
251         case IB_EVENT_CQ_ERR:
252         case IB_EVENT_QP_FATAL:
253                 smbd_disconnect_rdma_connection(info);
254                 break;
255
256         default:
257                 break;
258         }
259 }
260
261 static inline void *smbd_request_payload(struct smbd_request *request)
262 {
263         return (void *)request->packet;
264 }
265
266 static inline void *smbd_response_payload(struct smbd_response *response)
267 {
268         return (void *)response->packet;
269 }
270
271 /* Called when a RDMA send is done */
272 static void send_done(struct ib_cq *cq, struct ib_wc *wc)
273 {
274         int i;
275         struct smbd_request *request =
276                 container_of(wc->wr_cqe, struct smbd_request, cqe);
277
278         log_rdma_send(INFO, "smbd_request 0x%p completed wc->status=%d\n",
279                 request, wc->status);
280
281         if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_SEND) {
282                 log_rdma_send(ERR, "wc->status=%d wc->opcode=%d\n",
283                         wc->status, wc->opcode);
284                 smbd_disconnect_rdma_connection(request->info);
285         }
286
287         for (i = 0; i < request->num_sge; i++)
288                 ib_dma_unmap_single(request->info->id->device,
289                         request->sge[i].addr,
290                         request->sge[i].length,
291                         DMA_TO_DEVICE);
292
293         if (atomic_dec_and_test(&request->info->send_pending))
294                 wake_up(&request->info->wait_send_pending);
295
296         wake_up(&request->info->wait_post_send);
297
298         mempool_free(request, request->info->request_mempool);
299 }
300
301 static void dump_smbd_negotiate_resp(struct smbd_negotiate_resp *resp)
302 {
303         log_rdma_event(INFO, "resp message min_version %u max_version %u negotiated_version %u credits_requested %u credits_granted %u status %u max_readwrite_size %u preferred_send_size %u max_receive_size %u max_fragmented_size %u\n",
304                        resp->min_version, resp->max_version,
305                        resp->negotiated_version, resp->credits_requested,
306                        resp->credits_granted, resp->status,
307                        resp->max_readwrite_size, resp->preferred_send_size,
308                        resp->max_receive_size, resp->max_fragmented_size);
309 }
310
311 /*
312  * Process a negotiation response message, according to [MS-SMBD]3.1.5.7
313  * response, packet_length: the negotiation response message
314  * return value: true if negotiation is a success, false if failed
315  */
316 static bool process_negotiation_response(
317                 struct smbd_response *response, int packet_length)
318 {
319         struct smbd_connection *info = response->info;
320         struct smbd_negotiate_resp *packet = smbd_response_payload(response);
321
322         if (packet_length < sizeof(struct smbd_negotiate_resp)) {
323                 log_rdma_event(ERR,
324                         "error: packet_length=%d\n", packet_length);
325                 return false;
326         }
327
328         if (le16_to_cpu(packet->negotiated_version) != SMBD_V1) {
329                 log_rdma_event(ERR, "error: negotiated_version=%x\n",
330                         le16_to_cpu(packet->negotiated_version));
331                 return false;
332         }
333         info->protocol = le16_to_cpu(packet->negotiated_version);
334
335         if (packet->credits_requested == 0) {
336                 log_rdma_event(ERR, "error: credits_requested==0\n");
337                 return false;
338         }
339         info->receive_credit_target = le16_to_cpu(packet->credits_requested);
340
341         if (packet->credits_granted == 0) {
342                 log_rdma_event(ERR, "error: credits_granted==0\n");
343                 return false;
344         }
345         atomic_set(&info->send_credits, le16_to_cpu(packet->credits_granted));
346
347         atomic_set(&info->receive_credits, 0);
348
349         if (le32_to_cpu(packet->preferred_send_size) > info->max_receive_size) {
350                 log_rdma_event(ERR, "error: preferred_send_size=%d\n",
351                         le32_to_cpu(packet->preferred_send_size));
352                 return false;
353         }
354         info->max_receive_size = le32_to_cpu(packet->preferred_send_size);
355
356         if (le32_to_cpu(packet->max_receive_size) < SMBD_MIN_RECEIVE_SIZE) {
357                 log_rdma_event(ERR, "error: max_receive_size=%d\n",
358                         le32_to_cpu(packet->max_receive_size));
359                 return false;
360         }
361         info->max_send_size = min_t(int, info->max_send_size,
362                                         le32_to_cpu(packet->max_receive_size));
363
364         if (le32_to_cpu(packet->max_fragmented_size) <
365                         SMBD_MIN_FRAGMENTED_SIZE) {
366                 log_rdma_event(ERR, "error: max_fragmented_size=%d\n",
367                         le32_to_cpu(packet->max_fragmented_size));
368                 return false;
369         }
370         info->max_fragmented_send_size =
371                 le32_to_cpu(packet->max_fragmented_size);
372         info->rdma_readwrite_threshold =
373                 rdma_readwrite_threshold > info->max_fragmented_send_size ?
374                 info->max_fragmented_send_size :
375                 rdma_readwrite_threshold;
376
377
378         info->max_readwrite_size = min_t(u32,
379                         le32_to_cpu(packet->max_readwrite_size),
380                         info->max_frmr_depth * PAGE_SIZE);
381         info->max_frmr_depth = info->max_readwrite_size / PAGE_SIZE;
382
383         return true;
384 }
385
386 static void smbd_post_send_credits(struct work_struct *work)
387 {
388         int ret = 0;
389         int use_receive_queue = 1;
390         int rc;
391         struct smbd_response *response;
392         struct smbd_connection *info =
393                 container_of(work, struct smbd_connection,
394                         post_send_credits_work);
395
396         if (info->transport_status != SMBD_CONNECTED) {
397                 wake_up(&info->wait_receive_queues);
398                 return;
399         }
400
401         if (info->receive_credit_target >
402                 atomic_read(&info->receive_credits)) {
403                 while (true) {
404                         if (use_receive_queue)
405                                 response = get_receive_buffer(info);
406                         else
407                                 response = get_empty_queue_buffer(info);
408                         if (!response) {
409                                 /* now switch to emtpy packet queue */
410                                 if (use_receive_queue) {
411                                         use_receive_queue = 0;
412                                         continue;
413                                 } else
414                                         break;
415                         }
416
417                         response->type = SMBD_TRANSFER_DATA;
418                         response->first_segment = false;
419                         rc = smbd_post_recv(info, response);
420                         if (rc) {
421                                 log_rdma_recv(ERR,
422                                         "post_recv failed rc=%d\n", rc);
423                                 put_receive_buffer(info, response);
424                                 break;
425                         }
426
427                         ret++;
428                 }
429         }
430
431         spin_lock(&info->lock_new_credits_offered);
432         info->new_credits_offered += ret;
433         spin_unlock(&info->lock_new_credits_offered);
434
435         /* Promptly send an immediate packet as defined in [MS-SMBD] 3.1.1.1 */
436         info->send_immediate = true;
437         if (atomic_read(&info->receive_credits) <
438                 info->receive_credit_target - 1) {
439                 if (info->keep_alive_requested == KEEP_ALIVE_PENDING ||
440                     info->send_immediate) {
441                         log_keep_alive(INFO, "send an empty message\n");
442                         smbd_post_send_empty(info);
443                 }
444         }
445 }
446
447 /* Called from softirq, when recv is done */
448 static void recv_done(struct ib_cq *cq, struct ib_wc *wc)
449 {
450         struct smbd_data_transfer *data_transfer;
451         struct smbd_response *response =
452                 container_of(wc->wr_cqe, struct smbd_response, cqe);
453         struct smbd_connection *info = response->info;
454         int data_length = 0;
455
456         log_rdma_recv(INFO, "response=0x%p type=%d wc status=%d wc opcode %d byte_len=%d pkey_index=%u\n",
457                       response, response->type, wc->status, wc->opcode,
458                       wc->byte_len, wc->pkey_index);
459
460         if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_RECV) {
461                 log_rdma_recv(INFO, "wc->status=%d opcode=%d\n",
462                         wc->status, wc->opcode);
463                 smbd_disconnect_rdma_connection(info);
464                 goto error;
465         }
466
467         ib_dma_sync_single_for_cpu(
468                 wc->qp->device,
469                 response->sge.addr,
470                 response->sge.length,
471                 DMA_FROM_DEVICE);
472
473         switch (response->type) {
474         /* SMBD negotiation response */
475         case SMBD_NEGOTIATE_RESP:
476                 dump_smbd_negotiate_resp(smbd_response_payload(response));
477                 info->full_packet_received = true;
478                 info->negotiate_done =
479                         process_negotiation_response(response, wc->byte_len);
480                 complete(&info->negotiate_completion);
481                 break;
482
483         /* SMBD data transfer packet */
484         case SMBD_TRANSFER_DATA:
485                 data_transfer = smbd_response_payload(response);
486                 data_length = le32_to_cpu(data_transfer->data_length);
487
488                 /*
489                  * If this is a packet with data playload place the data in
490                  * reassembly queue and wake up the reading thread
491                  */
492                 if (data_length) {
493                         if (info->full_packet_received)
494                                 response->first_segment = true;
495
496                         if (le32_to_cpu(data_transfer->remaining_data_length))
497                                 info->full_packet_received = false;
498                         else
499                                 info->full_packet_received = true;
500
501                         enqueue_reassembly(
502                                 info,
503                                 response,
504                                 data_length);
505                 } else
506                         put_empty_packet(info, response);
507
508                 if (data_length)
509                         wake_up_interruptible(&info->wait_reassembly_queue);
510
511                 atomic_dec(&info->receive_credits);
512                 info->receive_credit_target =
513                         le16_to_cpu(data_transfer->credits_requested);
514                 if (le16_to_cpu(data_transfer->credits_granted)) {
515                         atomic_add(le16_to_cpu(data_transfer->credits_granted),
516                                 &info->send_credits);
517                         /*
518                          * We have new send credits granted from remote peer
519                          * If any sender is waiting for credits, unblock it
520                          */
521                         wake_up_interruptible(&info->wait_send_queue);
522                 }
523
524                 log_incoming(INFO, "data flags %d data_offset %d data_length %d remaining_data_length %d\n",
525                              le16_to_cpu(data_transfer->flags),
526                              le32_to_cpu(data_transfer->data_offset),
527                              le32_to_cpu(data_transfer->data_length),
528                              le32_to_cpu(data_transfer->remaining_data_length));
529
530                 /* Send a KEEP_ALIVE response right away if requested */
531                 info->keep_alive_requested = KEEP_ALIVE_NONE;
532                 if (le16_to_cpu(data_transfer->flags) &
533                                 SMB_DIRECT_RESPONSE_REQUESTED) {
534                         info->keep_alive_requested = KEEP_ALIVE_PENDING;
535                 }
536
537                 return;
538
539         default:
540                 log_rdma_recv(ERR,
541                         "unexpected response type=%d\n", response->type);
542         }
543
544 error:
545         put_receive_buffer(info, response);
546 }
547
548 static struct rdma_cm_id *smbd_create_id(
549                 struct smbd_connection *info,
550                 struct sockaddr *dstaddr, int port)
551 {
552         struct rdma_cm_id *id;
553         int rc;
554         __be16 *sport;
555
556         id = rdma_create_id(&init_net, smbd_conn_upcall, info,
557                 RDMA_PS_TCP, IB_QPT_RC);
558         if (IS_ERR(id)) {
559                 rc = PTR_ERR(id);
560                 log_rdma_event(ERR, "rdma_create_id() failed %i\n", rc);
561                 return id;
562         }
563
564         if (dstaddr->sa_family == AF_INET6)
565                 sport = &((struct sockaddr_in6 *)dstaddr)->sin6_port;
566         else
567                 sport = &((struct sockaddr_in *)dstaddr)->sin_port;
568
569         *sport = htons(port);
570
571         init_completion(&info->ri_done);
572         info->ri_rc = -ETIMEDOUT;
573
574         rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)dstaddr,
575                 RDMA_RESOLVE_TIMEOUT);
576         if (rc) {
577                 log_rdma_event(ERR, "rdma_resolve_addr() failed %i\n", rc);
578                 goto out;
579         }
580         rc = wait_for_completion_interruptible_timeout(
581                 &info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
582         /* e.g. if interrupted returns -ERESTARTSYS */
583         if (rc < 0) {
584                 log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc);
585                 goto out;
586         }
587         rc = info->ri_rc;
588         if (rc) {
589                 log_rdma_event(ERR, "rdma_resolve_addr() completed %i\n", rc);
590                 goto out;
591         }
592
593         info->ri_rc = -ETIMEDOUT;
594         rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
595         if (rc) {
596                 log_rdma_event(ERR, "rdma_resolve_route() failed %i\n", rc);
597                 goto out;
598         }
599         rc = wait_for_completion_interruptible_timeout(
600                 &info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
601         /* e.g. if interrupted returns -ERESTARTSYS */
602         if (rc < 0)  {
603                 log_rdma_event(ERR, "rdma_resolve_addr timeout rc: %i\n", rc);
604                 goto out;
605         }
606         rc = info->ri_rc;
607         if (rc) {
608                 log_rdma_event(ERR, "rdma_resolve_route() completed %i\n", rc);
609                 goto out;
610         }
611
612         return id;
613
614 out:
615         rdma_destroy_id(id);
616         return ERR_PTR(rc);
617 }
618
619 /*
620  * Test if FRWR (Fast Registration Work Requests) is supported on the device
621  * This implementation requries FRWR on RDMA read/write
622  * return value: true if it is supported
623  */
624 static bool frwr_is_supported(struct ib_device_attr *attrs)
625 {
626         if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS))
627                 return false;
628         if (attrs->max_fast_reg_page_list_len == 0)
629                 return false;
630         return true;
631 }
632
633 static int smbd_ia_open(
634                 struct smbd_connection *info,
635                 struct sockaddr *dstaddr, int port)
636 {
637         int rc;
638
639         info->id = smbd_create_id(info, dstaddr, port);
640         if (IS_ERR(info->id)) {
641                 rc = PTR_ERR(info->id);
642                 goto out1;
643         }
644
645         if (!frwr_is_supported(&info->id->device->attrs)) {
646                 log_rdma_event(ERR, "Fast Registration Work Requests (FRWR) is not supported\n");
647                 log_rdma_event(ERR, "Device capability flags = %llx max_fast_reg_page_list_len = %u\n",
648                                info->id->device->attrs.device_cap_flags,
649                                info->id->device->attrs.max_fast_reg_page_list_len);
650                 rc = -EPROTONOSUPPORT;
651                 goto out2;
652         }
653         info->max_frmr_depth = min_t(int,
654                 smbd_max_frmr_depth,
655                 info->id->device->attrs.max_fast_reg_page_list_len);
656         info->mr_type = IB_MR_TYPE_MEM_REG;
657         if (info->id->device->attrs.kernel_cap_flags & IBK_SG_GAPS_REG)
658                 info->mr_type = IB_MR_TYPE_SG_GAPS;
659
660         info->pd = ib_alloc_pd(info->id->device, 0);
661         if (IS_ERR(info->pd)) {
662                 rc = PTR_ERR(info->pd);
663                 log_rdma_event(ERR, "ib_alloc_pd() returned %d\n", rc);
664                 goto out2;
665         }
666
667         return 0;
668
669 out2:
670         rdma_destroy_id(info->id);
671         info->id = NULL;
672
673 out1:
674         return rc;
675 }
676
677 /*
678  * Send a negotiation request message to the peer
679  * The negotiation procedure is in [MS-SMBD] 3.1.5.2 and 3.1.5.3
680  * After negotiation, the transport is connected and ready for
681  * carrying upper layer SMB payload
682  */
683 static int smbd_post_send_negotiate_req(struct smbd_connection *info)
684 {
685         struct ib_send_wr send_wr;
686         int rc = -ENOMEM;
687         struct smbd_request *request;
688         struct smbd_negotiate_req *packet;
689
690         request = mempool_alloc(info->request_mempool, GFP_KERNEL);
691         if (!request)
692                 return rc;
693
694         request->info = info;
695
696         packet = smbd_request_payload(request);
697         packet->min_version = cpu_to_le16(SMBD_V1);
698         packet->max_version = cpu_to_le16(SMBD_V1);
699         packet->reserved = 0;
700         packet->credits_requested = cpu_to_le16(info->send_credit_target);
701         packet->preferred_send_size = cpu_to_le32(info->max_send_size);
702         packet->max_receive_size = cpu_to_le32(info->max_receive_size);
703         packet->max_fragmented_size =
704                 cpu_to_le32(info->max_fragmented_recv_size);
705
706         request->num_sge = 1;
707         request->sge[0].addr = ib_dma_map_single(
708                                 info->id->device, (void *)packet,
709                                 sizeof(*packet), DMA_TO_DEVICE);
710         if (ib_dma_mapping_error(info->id->device, request->sge[0].addr)) {
711                 rc = -EIO;
712                 goto dma_mapping_failed;
713         }
714
715         request->sge[0].length = sizeof(*packet);
716         request->sge[0].lkey = info->pd->local_dma_lkey;
717
718         ib_dma_sync_single_for_device(
719                 info->id->device, request->sge[0].addr,
720                 request->sge[0].length, DMA_TO_DEVICE);
721
722         request->cqe.done = send_done;
723
724         send_wr.next = NULL;
725         send_wr.wr_cqe = &request->cqe;
726         send_wr.sg_list = request->sge;
727         send_wr.num_sge = request->num_sge;
728         send_wr.opcode = IB_WR_SEND;
729         send_wr.send_flags = IB_SEND_SIGNALED;
730
731         log_rdma_send(INFO, "sge addr=0x%llx length=%u lkey=0x%x\n",
732                 request->sge[0].addr,
733                 request->sge[0].length, request->sge[0].lkey);
734
735         atomic_inc(&info->send_pending);
736         rc = ib_post_send(info->id->qp, &send_wr, NULL);
737         if (!rc)
738                 return 0;
739
740         /* if we reach here, post send failed */
741         log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
742         atomic_dec(&info->send_pending);
743         ib_dma_unmap_single(info->id->device, request->sge[0].addr,
744                 request->sge[0].length, DMA_TO_DEVICE);
745
746         smbd_disconnect_rdma_connection(info);
747
748 dma_mapping_failed:
749         mempool_free(request, info->request_mempool);
750         return rc;
751 }
752
753 /*
754  * Extend the credits to remote peer
755  * This implements [MS-SMBD] 3.1.5.9
756  * The idea is that we should extend credits to remote peer as quickly as
757  * it's allowed, to maintain data flow. We allocate as much receive
758  * buffer as possible, and extend the receive credits to remote peer
759  * return value: the new credtis being granted.
760  */
761 static int manage_credits_prior_sending(struct smbd_connection *info)
762 {
763         int new_credits;
764
765         spin_lock(&info->lock_new_credits_offered);
766         new_credits = info->new_credits_offered;
767         info->new_credits_offered = 0;
768         spin_unlock(&info->lock_new_credits_offered);
769
770         return new_credits;
771 }
772
773 /*
774  * Check if we need to send a KEEP_ALIVE message
775  * The idle connection timer triggers a KEEP_ALIVE message when expires
776  * SMB_DIRECT_RESPONSE_REQUESTED is set in the message flag to have peer send
777  * back a response.
778  * return value:
779  * 1 if SMB_DIRECT_RESPONSE_REQUESTED needs to be set
780  * 0: otherwise
781  */
782 static int manage_keep_alive_before_sending(struct smbd_connection *info)
783 {
784         if (info->keep_alive_requested == KEEP_ALIVE_PENDING) {
785                 info->keep_alive_requested = KEEP_ALIVE_SENT;
786                 return 1;
787         }
788         return 0;
789 }
790
791 /* Post the send request */
792 static int smbd_post_send(struct smbd_connection *info,
793                 struct smbd_request *request)
794 {
795         struct ib_send_wr send_wr;
796         int rc, i;
797
798         for (i = 0; i < request->num_sge; i++) {
799                 log_rdma_send(INFO,
800                         "rdma_request sge[%d] addr=0x%llx length=%u\n",
801                         i, request->sge[i].addr, request->sge[i].length);
802                 ib_dma_sync_single_for_device(
803                         info->id->device,
804                         request->sge[i].addr,
805                         request->sge[i].length,
806                         DMA_TO_DEVICE);
807         }
808
809         request->cqe.done = send_done;
810
811         send_wr.next = NULL;
812         send_wr.wr_cqe = &request->cqe;
813         send_wr.sg_list = request->sge;
814         send_wr.num_sge = request->num_sge;
815         send_wr.opcode = IB_WR_SEND;
816         send_wr.send_flags = IB_SEND_SIGNALED;
817
818         rc = ib_post_send(info->id->qp, &send_wr, NULL);
819         if (rc) {
820                 log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
821                 smbd_disconnect_rdma_connection(info);
822                 rc = -EAGAIN;
823         } else
824                 /* Reset timer for idle connection after packet is sent */
825                 mod_delayed_work(info->workqueue, &info->idle_timer_work,
826                         info->keep_alive_interval*HZ);
827
828         return rc;
829 }
830
831 static int smbd_post_send_iter(struct smbd_connection *info,
832                                struct iov_iter *iter,
833                                int *_remaining_data_length)
834 {
835         int i, rc;
836         int header_length;
837         int data_length;
838         struct smbd_request *request;
839         struct smbd_data_transfer *packet;
840         int new_credits;
841
842 wait_credit:
843         /* Wait for send credits. A SMBD packet needs one credit */
844         rc = wait_event_interruptible(info->wait_send_queue,
845                 atomic_read(&info->send_credits) > 0 ||
846                 info->transport_status != SMBD_CONNECTED);
847         if (rc)
848                 goto err_wait_credit;
849
850         if (info->transport_status != SMBD_CONNECTED) {
851                 log_outgoing(ERR, "disconnected not sending on wait_credit\n");
852                 rc = -EAGAIN;
853                 goto err_wait_credit;
854         }
855         if (unlikely(atomic_dec_return(&info->send_credits) < 0)) {
856                 atomic_inc(&info->send_credits);
857                 goto wait_credit;
858         }
859
860 wait_send_queue:
861         wait_event(info->wait_post_send,
862                 atomic_read(&info->send_pending) < info->send_credit_target ||
863                 info->transport_status != SMBD_CONNECTED);
864
865         if (info->transport_status != SMBD_CONNECTED) {
866                 log_outgoing(ERR, "disconnected not sending on wait_send_queue\n");
867                 rc = -EAGAIN;
868                 goto err_wait_send_queue;
869         }
870
871         if (unlikely(atomic_inc_return(&info->send_pending) >
872                                 info->send_credit_target)) {
873                 atomic_dec(&info->send_pending);
874                 goto wait_send_queue;
875         }
876
877         request = mempool_alloc(info->request_mempool, GFP_KERNEL);
878         if (!request) {
879                 rc = -ENOMEM;
880                 goto err_alloc;
881         }
882
883         request->info = info;
884         memset(request->sge, 0, sizeof(request->sge));
885
886         /* Fill in the data payload to find out how much data we can add */
887         if (iter) {
888                 struct smb_extract_to_rdma extract = {
889                         .nr_sge         = 1,
890                         .max_sge        = SMBDIRECT_MAX_SEND_SGE,
891                         .sge            = request->sge,
892                         .device         = info->id->device,
893                         .local_dma_lkey = info->pd->local_dma_lkey,
894                         .direction      = DMA_TO_DEVICE,
895                 };
896
897                 rc = smb_extract_iter_to_rdma(iter, *_remaining_data_length,
898                                               &extract);
899                 if (rc < 0)
900                         goto err_dma;
901                 data_length = rc;
902                 request->num_sge = extract.nr_sge;
903                 *_remaining_data_length -= data_length;
904         } else {
905                 data_length = 0;
906                 request->num_sge = 1;
907         }
908
909         /* Fill in the packet header */
910         packet = smbd_request_payload(request);
911         packet->credits_requested = cpu_to_le16(info->send_credit_target);
912
913         new_credits = manage_credits_prior_sending(info);
914         atomic_add(new_credits, &info->receive_credits);
915         packet->credits_granted = cpu_to_le16(new_credits);
916
917         info->send_immediate = false;
918
919         packet->flags = 0;
920         if (manage_keep_alive_before_sending(info))
921                 packet->flags |= cpu_to_le16(SMB_DIRECT_RESPONSE_REQUESTED);
922
923         packet->reserved = 0;
924         if (!data_length)
925                 packet->data_offset = 0;
926         else
927                 packet->data_offset = cpu_to_le32(24);
928         packet->data_length = cpu_to_le32(data_length);
929         packet->remaining_data_length = cpu_to_le32(*_remaining_data_length);
930         packet->padding = 0;
931
932         log_outgoing(INFO, "credits_requested=%d credits_granted=%d data_offset=%d data_length=%d remaining_data_length=%d\n",
933                      le16_to_cpu(packet->credits_requested),
934                      le16_to_cpu(packet->credits_granted),
935                      le32_to_cpu(packet->data_offset),
936                      le32_to_cpu(packet->data_length),
937                      le32_to_cpu(packet->remaining_data_length));
938
939         /* Map the packet to DMA */
940         header_length = sizeof(struct smbd_data_transfer);
941         /* If this is a packet without payload, don't send padding */
942         if (!data_length)
943                 header_length = offsetof(struct smbd_data_transfer, padding);
944
945         request->sge[0].addr = ib_dma_map_single(info->id->device,
946                                                  (void *)packet,
947                                                  header_length,
948                                                  DMA_TO_DEVICE);
949         if (ib_dma_mapping_error(info->id->device, request->sge[0].addr)) {
950                 rc = -EIO;
951                 request->sge[0].addr = 0;
952                 goto err_dma;
953         }
954
955         request->sge[0].length = header_length;
956         request->sge[0].lkey = info->pd->local_dma_lkey;
957
958         rc = smbd_post_send(info, request);
959         if (!rc)
960                 return 0;
961
962 err_dma:
963         for (i = 0; i < request->num_sge; i++)
964                 if (request->sge[i].addr)
965                         ib_dma_unmap_single(info->id->device,
966                                             request->sge[i].addr,
967                                             request->sge[i].length,
968                                             DMA_TO_DEVICE);
969         mempool_free(request, info->request_mempool);
970
971         /* roll back receive credits and credits to be offered */
972         spin_lock(&info->lock_new_credits_offered);
973         info->new_credits_offered += new_credits;
974         spin_unlock(&info->lock_new_credits_offered);
975         atomic_sub(new_credits, &info->receive_credits);
976
977 err_alloc:
978         if (atomic_dec_and_test(&info->send_pending))
979                 wake_up(&info->wait_send_pending);
980
981 err_wait_send_queue:
982         /* roll back send credits and pending */
983         atomic_inc(&info->send_credits);
984
985 err_wait_credit:
986         return rc;
987 }
988
989 /*
990  * Send an empty message
991  * Empty message is used to extend credits to peer to for keep live
992  * while there is no upper layer payload to send at the time
993  */
994 static int smbd_post_send_empty(struct smbd_connection *info)
995 {
996         int remaining_data_length = 0;
997
998         info->count_send_empty++;
999         return smbd_post_send_iter(info, NULL, &remaining_data_length);
1000 }
1001
1002 /*
1003  * Post a receive request to the transport
1004  * The remote peer can only send data when a receive request is posted
1005  * The interaction is controlled by send/receive credit system
1006  */
1007 static int smbd_post_recv(
1008                 struct smbd_connection *info, struct smbd_response *response)
1009 {
1010         struct ib_recv_wr recv_wr;
1011         int rc = -EIO;
1012
1013         response->sge.addr = ib_dma_map_single(
1014                                 info->id->device, response->packet,
1015                                 info->max_receive_size, DMA_FROM_DEVICE);
1016         if (ib_dma_mapping_error(info->id->device, response->sge.addr))
1017                 return rc;
1018
1019         response->sge.length = info->max_receive_size;
1020         response->sge.lkey = info->pd->local_dma_lkey;
1021
1022         response->cqe.done = recv_done;
1023
1024         recv_wr.wr_cqe = &response->cqe;
1025         recv_wr.next = NULL;
1026         recv_wr.sg_list = &response->sge;
1027         recv_wr.num_sge = 1;
1028
1029         rc = ib_post_recv(info->id->qp, &recv_wr, NULL);
1030         if (rc) {
1031                 ib_dma_unmap_single(info->id->device, response->sge.addr,
1032                                     response->sge.length, DMA_FROM_DEVICE);
1033                 smbd_disconnect_rdma_connection(info);
1034                 log_rdma_recv(ERR, "ib_post_recv failed rc=%d\n", rc);
1035         }
1036
1037         return rc;
1038 }
1039
1040 /* Perform SMBD negotiate according to [MS-SMBD] 3.1.5.2 */
1041 static int smbd_negotiate(struct smbd_connection *info)
1042 {
1043         int rc;
1044         struct smbd_response *response = get_receive_buffer(info);
1045
1046         response->type = SMBD_NEGOTIATE_RESP;
1047         rc = smbd_post_recv(info, response);
1048         log_rdma_event(INFO, "smbd_post_recv rc=%d iov.addr=0x%llx iov.length=%u iov.lkey=0x%x\n",
1049                        rc, response->sge.addr,
1050                        response->sge.length, response->sge.lkey);
1051         if (rc)
1052                 return rc;
1053
1054         init_completion(&info->negotiate_completion);
1055         info->negotiate_done = false;
1056         rc = smbd_post_send_negotiate_req(info);
1057         if (rc)
1058                 return rc;
1059
1060         rc = wait_for_completion_interruptible_timeout(
1061                 &info->negotiate_completion, SMBD_NEGOTIATE_TIMEOUT * HZ);
1062         log_rdma_event(INFO, "wait_for_completion_timeout rc=%d\n", rc);
1063
1064         if (info->negotiate_done)
1065                 return 0;
1066
1067         if (rc == 0)
1068                 rc = -ETIMEDOUT;
1069         else if (rc == -ERESTARTSYS)
1070                 rc = -EINTR;
1071         else
1072                 rc = -ENOTCONN;
1073
1074         return rc;
1075 }
1076
1077 static void put_empty_packet(
1078                 struct smbd_connection *info, struct smbd_response *response)
1079 {
1080         spin_lock(&info->empty_packet_queue_lock);
1081         list_add_tail(&response->list, &info->empty_packet_queue);
1082         info->count_empty_packet_queue++;
1083         spin_unlock(&info->empty_packet_queue_lock);
1084
1085         queue_work(info->workqueue, &info->post_send_credits_work);
1086 }
1087
1088 /*
1089  * Implement Connection.FragmentReassemblyBuffer defined in [MS-SMBD] 3.1.1.1
1090  * This is a queue for reassembling upper layer payload and present to upper
1091  * layer. All the inncoming payload go to the reassembly queue, regardless of
1092  * if reassembly is required. The uuper layer code reads from the queue for all
1093  * incoming payloads.
1094  * Put a received packet to the reassembly queue
1095  * response: the packet received
1096  * data_length: the size of payload in this packet
1097  */
1098 static void enqueue_reassembly(
1099         struct smbd_connection *info,
1100         struct smbd_response *response,
1101         int data_length)
1102 {
1103         spin_lock(&info->reassembly_queue_lock);
1104         list_add_tail(&response->list, &info->reassembly_queue);
1105         info->reassembly_queue_length++;
1106         /*
1107          * Make sure reassembly_data_length is updated after list and
1108          * reassembly_queue_length are updated. On the dequeue side
1109          * reassembly_data_length is checked without a lock to determine
1110          * if reassembly_queue_length and list is up to date
1111          */
1112         virt_wmb();
1113         info->reassembly_data_length += data_length;
1114         spin_unlock(&info->reassembly_queue_lock);
1115         info->count_reassembly_queue++;
1116         info->count_enqueue_reassembly_queue++;
1117 }
1118
1119 /*
1120  * Get the first entry at the front of reassembly queue
1121  * Caller is responsible for locking
1122  * return value: the first entry if any, NULL if queue is empty
1123  */
1124 static struct smbd_response *_get_first_reassembly(struct smbd_connection *info)
1125 {
1126         struct smbd_response *ret = NULL;
1127
1128         if (!list_empty(&info->reassembly_queue)) {
1129                 ret = list_first_entry(
1130                         &info->reassembly_queue,
1131                         struct smbd_response, list);
1132         }
1133         return ret;
1134 }
1135
1136 static struct smbd_response *get_empty_queue_buffer(
1137                 struct smbd_connection *info)
1138 {
1139         struct smbd_response *ret = NULL;
1140         unsigned long flags;
1141
1142         spin_lock_irqsave(&info->empty_packet_queue_lock, flags);
1143         if (!list_empty(&info->empty_packet_queue)) {
1144                 ret = list_first_entry(
1145                         &info->empty_packet_queue,
1146                         struct smbd_response, list);
1147                 list_del(&ret->list);
1148                 info->count_empty_packet_queue--;
1149         }
1150         spin_unlock_irqrestore(&info->empty_packet_queue_lock, flags);
1151
1152         return ret;
1153 }
1154
1155 /*
1156  * Get a receive buffer
1157  * For each remote send, we need to post a receive. The receive buffers are
1158  * pre-allocated in advance.
1159  * return value: the receive buffer, NULL if none is available
1160  */
1161 static struct smbd_response *get_receive_buffer(struct smbd_connection *info)
1162 {
1163         struct smbd_response *ret = NULL;
1164         unsigned long flags;
1165
1166         spin_lock_irqsave(&info->receive_queue_lock, flags);
1167         if (!list_empty(&info->receive_queue)) {
1168                 ret = list_first_entry(
1169                         &info->receive_queue,
1170                         struct smbd_response, list);
1171                 list_del(&ret->list);
1172                 info->count_receive_queue--;
1173                 info->count_get_receive_buffer++;
1174         }
1175         spin_unlock_irqrestore(&info->receive_queue_lock, flags);
1176
1177         return ret;
1178 }
1179
1180 /*
1181  * Return a receive buffer
1182  * Upon returning of a receive buffer, we can post new receive and extend
1183  * more receive credits to remote peer. This is done immediately after a
1184  * receive buffer is returned.
1185  */
1186 static void put_receive_buffer(
1187         struct smbd_connection *info, struct smbd_response *response)
1188 {
1189         unsigned long flags;
1190
1191         ib_dma_unmap_single(info->id->device, response->sge.addr,
1192                 response->sge.length, DMA_FROM_DEVICE);
1193
1194         spin_lock_irqsave(&info->receive_queue_lock, flags);
1195         list_add_tail(&response->list, &info->receive_queue);
1196         info->count_receive_queue++;
1197         info->count_put_receive_buffer++;
1198         spin_unlock_irqrestore(&info->receive_queue_lock, flags);
1199
1200         queue_work(info->workqueue, &info->post_send_credits_work);
1201 }
1202
1203 /* Preallocate all receive buffer on transport establishment */
1204 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf)
1205 {
1206         int i;
1207         struct smbd_response *response;
1208
1209         INIT_LIST_HEAD(&info->reassembly_queue);
1210         spin_lock_init(&info->reassembly_queue_lock);
1211         info->reassembly_data_length = 0;
1212         info->reassembly_queue_length = 0;
1213
1214         INIT_LIST_HEAD(&info->receive_queue);
1215         spin_lock_init(&info->receive_queue_lock);
1216         info->count_receive_queue = 0;
1217
1218         INIT_LIST_HEAD(&info->empty_packet_queue);
1219         spin_lock_init(&info->empty_packet_queue_lock);
1220         info->count_empty_packet_queue = 0;
1221
1222         init_waitqueue_head(&info->wait_receive_queues);
1223
1224         for (i = 0; i < num_buf; i++) {
1225                 response = mempool_alloc(info->response_mempool, GFP_KERNEL);
1226                 if (!response)
1227                         goto allocate_failed;
1228
1229                 response->info = info;
1230                 list_add_tail(&response->list, &info->receive_queue);
1231                 info->count_receive_queue++;
1232         }
1233
1234         return 0;
1235
1236 allocate_failed:
1237         while (!list_empty(&info->receive_queue)) {
1238                 response = list_first_entry(
1239                                 &info->receive_queue,
1240                                 struct smbd_response, list);
1241                 list_del(&response->list);
1242                 info->count_receive_queue--;
1243
1244                 mempool_free(response, info->response_mempool);
1245         }
1246         return -ENOMEM;
1247 }
1248
1249 static void destroy_receive_buffers(struct smbd_connection *info)
1250 {
1251         struct smbd_response *response;
1252
1253         while ((response = get_receive_buffer(info)))
1254                 mempool_free(response, info->response_mempool);
1255
1256         while ((response = get_empty_queue_buffer(info)))
1257                 mempool_free(response, info->response_mempool);
1258 }
1259
1260 /* Implement idle connection timer [MS-SMBD] 3.1.6.2 */
1261 static void idle_connection_timer(struct work_struct *work)
1262 {
1263         struct smbd_connection *info = container_of(
1264                                         work, struct smbd_connection,
1265                                         idle_timer_work.work);
1266
1267         if (info->keep_alive_requested != KEEP_ALIVE_NONE) {
1268                 log_keep_alive(ERR,
1269                         "error status info->keep_alive_requested=%d\n",
1270                         info->keep_alive_requested);
1271                 smbd_disconnect_rdma_connection(info);
1272                 return;
1273         }
1274
1275         log_keep_alive(INFO, "about to send an empty idle message\n");
1276         smbd_post_send_empty(info);
1277
1278         /* Setup the next idle timeout work */
1279         queue_delayed_work(info->workqueue, &info->idle_timer_work,
1280                         info->keep_alive_interval*HZ);
1281 }
1282
1283 /*
1284  * Destroy the transport and related RDMA and memory resources
1285  * Need to go through all the pending counters and make sure on one is using
1286  * the transport while it is destroyed
1287  */
1288 void smbd_destroy(struct TCP_Server_Info *server)
1289 {
1290         struct smbd_connection *info = server->smbd_conn;
1291         struct smbd_response *response;
1292         unsigned long flags;
1293
1294         if (!info) {
1295                 log_rdma_event(INFO, "rdma session already destroyed\n");
1296                 return;
1297         }
1298
1299         log_rdma_event(INFO, "destroying rdma session\n");
1300         if (info->transport_status != SMBD_DISCONNECTED) {
1301                 rdma_disconnect(server->smbd_conn->id);
1302                 log_rdma_event(INFO, "wait for transport being disconnected\n");
1303                 wait_event_interruptible(
1304                         info->disconn_wait,
1305                         info->transport_status == SMBD_DISCONNECTED);
1306         }
1307
1308         log_rdma_event(INFO, "destroying qp\n");
1309         ib_drain_qp(info->id->qp);
1310         rdma_destroy_qp(info->id);
1311
1312         log_rdma_event(INFO, "cancelling idle timer\n");
1313         cancel_delayed_work_sync(&info->idle_timer_work);
1314
1315         log_rdma_event(INFO, "wait for all send posted to IB to finish\n");
1316         wait_event(info->wait_send_pending,
1317                 atomic_read(&info->send_pending) == 0);
1318
1319         /* It's not possible for upper layer to get to reassembly */
1320         log_rdma_event(INFO, "drain the reassembly queue\n");
1321         do {
1322                 spin_lock_irqsave(&info->reassembly_queue_lock, flags);
1323                 response = _get_first_reassembly(info);
1324                 if (response) {
1325                         list_del(&response->list);
1326                         spin_unlock_irqrestore(
1327                                 &info->reassembly_queue_lock, flags);
1328                         put_receive_buffer(info, response);
1329                 } else
1330                         spin_unlock_irqrestore(
1331                                 &info->reassembly_queue_lock, flags);
1332         } while (response);
1333         info->reassembly_data_length = 0;
1334
1335         log_rdma_event(INFO, "free receive buffers\n");
1336         wait_event(info->wait_receive_queues,
1337                 info->count_receive_queue + info->count_empty_packet_queue
1338                         == info->receive_credit_max);
1339         destroy_receive_buffers(info);
1340
1341         /*
1342          * For performance reasons, memory registration and deregistration
1343          * are not locked by srv_mutex. It is possible some processes are
1344          * blocked on transport srv_mutex while holding memory registration.
1345          * Release the transport srv_mutex to allow them to hit the failure
1346          * path when sending data, and then release memory registartions.
1347          */
1348         log_rdma_event(INFO, "freeing mr list\n");
1349         wake_up_interruptible_all(&info->wait_mr);
1350         while (atomic_read(&info->mr_used_count)) {
1351                 cifs_server_unlock(server);
1352                 msleep(1000);
1353                 cifs_server_lock(server);
1354         }
1355         destroy_mr_list(info);
1356
1357         ib_free_cq(info->send_cq);
1358         ib_free_cq(info->recv_cq);
1359         ib_dealloc_pd(info->pd);
1360         rdma_destroy_id(info->id);
1361
1362         /* free mempools */
1363         mempool_destroy(info->request_mempool);
1364         kmem_cache_destroy(info->request_cache);
1365
1366         mempool_destroy(info->response_mempool);
1367         kmem_cache_destroy(info->response_cache);
1368
1369         info->transport_status = SMBD_DESTROYED;
1370
1371         destroy_workqueue(info->workqueue);
1372         log_rdma_event(INFO,  "rdma session destroyed\n");
1373         kfree(info);
1374         server->smbd_conn = NULL;
1375 }
1376
1377 /*
1378  * Reconnect this SMBD connection, called from upper layer
1379  * return value: 0 on success, or actual error code
1380  */
1381 int smbd_reconnect(struct TCP_Server_Info *server)
1382 {
1383         log_rdma_event(INFO, "reconnecting rdma session\n");
1384
1385         if (!server->smbd_conn) {
1386                 log_rdma_event(INFO, "rdma session already destroyed\n");
1387                 goto create_conn;
1388         }
1389
1390         /*
1391          * This is possible if transport is disconnected and we haven't received
1392          * notification from RDMA, but upper layer has detected timeout
1393          */
1394         if (server->smbd_conn->transport_status == SMBD_CONNECTED) {
1395                 log_rdma_event(INFO, "disconnecting transport\n");
1396                 smbd_destroy(server);
1397         }
1398
1399 create_conn:
1400         log_rdma_event(INFO, "creating rdma session\n");
1401         server->smbd_conn = smbd_get_connection(
1402                 server, (struct sockaddr *) &server->dstaddr);
1403
1404         if (server->smbd_conn)
1405                 cifs_dbg(VFS, "RDMA transport re-established\n");
1406
1407         return server->smbd_conn ? 0 : -ENOENT;
1408 }
1409
1410 static void destroy_caches_and_workqueue(struct smbd_connection *info)
1411 {
1412         destroy_receive_buffers(info);
1413         destroy_workqueue(info->workqueue);
1414         mempool_destroy(info->response_mempool);
1415         kmem_cache_destroy(info->response_cache);
1416         mempool_destroy(info->request_mempool);
1417         kmem_cache_destroy(info->request_cache);
1418 }
1419
1420 #define MAX_NAME_LEN    80
1421 static int allocate_caches_and_workqueue(struct smbd_connection *info)
1422 {
1423         char name[MAX_NAME_LEN];
1424         int rc;
1425
1426         scnprintf(name, MAX_NAME_LEN, "smbd_request_%p", info);
1427         info->request_cache =
1428                 kmem_cache_create(
1429                         name,
1430                         sizeof(struct smbd_request) +
1431                                 sizeof(struct smbd_data_transfer),
1432                         0, SLAB_HWCACHE_ALIGN, NULL);
1433         if (!info->request_cache)
1434                 return -ENOMEM;
1435
1436         info->request_mempool =
1437                 mempool_create(info->send_credit_target, mempool_alloc_slab,
1438                         mempool_free_slab, info->request_cache);
1439         if (!info->request_mempool)
1440                 goto out1;
1441
1442         scnprintf(name, MAX_NAME_LEN, "smbd_response_%p", info);
1443         info->response_cache =
1444                 kmem_cache_create(
1445                         name,
1446                         sizeof(struct smbd_response) +
1447                                 info->max_receive_size,
1448                         0, SLAB_HWCACHE_ALIGN, NULL);
1449         if (!info->response_cache)
1450                 goto out2;
1451
1452         info->response_mempool =
1453                 mempool_create(info->receive_credit_max, mempool_alloc_slab,
1454                        mempool_free_slab, info->response_cache);
1455         if (!info->response_mempool)
1456                 goto out3;
1457
1458         scnprintf(name, MAX_NAME_LEN, "smbd_%p", info);
1459         info->workqueue = create_workqueue(name);
1460         if (!info->workqueue)
1461                 goto out4;
1462
1463         rc = allocate_receive_buffers(info, info->receive_credit_max);
1464         if (rc) {
1465                 log_rdma_event(ERR, "failed to allocate receive buffers\n");
1466                 goto out5;
1467         }
1468
1469         return 0;
1470
1471 out5:
1472         destroy_workqueue(info->workqueue);
1473 out4:
1474         mempool_destroy(info->response_mempool);
1475 out3:
1476         kmem_cache_destroy(info->response_cache);
1477 out2:
1478         mempool_destroy(info->request_mempool);
1479 out1:
1480         kmem_cache_destroy(info->request_cache);
1481         return -ENOMEM;
1482 }
1483
1484 /* Create a SMBD connection, called by upper layer */
1485 static struct smbd_connection *_smbd_get_connection(
1486         struct TCP_Server_Info *server, struct sockaddr *dstaddr, int port)
1487 {
1488         int rc;
1489         struct smbd_connection *info;
1490         struct rdma_conn_param conn_param;
1491         struct ib_qp_init_attr qp_attr;
1492         struct sockaddr_in *addr_in = (struct sockaddr_in *) dstaddr;
1493         struct ib_port_immutable port_immutable;
1494         u32 ird_ord_hdr[2];
1495
1496         info = kzalloc(sizeof(struct smbd_connection), GFP_KERNEL);
1497         if (!info)
1498                 return NULL;
1499
1500         info->transport_status = SMBD_CONNECTING;
1501         rc = smbd_ia_open(info, dstaddr, port);
1502         if (rc) {
1503                 log_rdma_event(INFO, "smbd_ia_open rc=%d\n", rc);
1504                 goto create_id_failed;
1505         }
1506
1507         if (smbd_send_credit_target > info->id->device->attrs.max_cqe ||
1508             smbd_send_credit_target > info->id->device->attrs.max_qp_wr) {
1509                 log_rdma_event(ERR, "consider lowering send_credit_target = %d. Possible CQE overrun, device reporting max_cqe %d max_qp_wr %d\n",
1510                                smbd_send_credit_target,
1511                                info->id->device->attrs.max_cqe,
1512                                info->id->device->attrs.max_qp_wr);
1513                 goto config_failed;
1514         }
1515
1516         if (smbd_receive_credit_max > info->id->device->attrs.max_cqe ||
1517             smbd_receive_credit_max > info->id->device->attrs.max_qp_wr) {
1518                 log_rdma_event(ERR, "consider lowering receive_credit_max = %d. Possible CQE overrun, device reporting max_cqe %d max_qp_wr %d\n",
1519                                smbd_receive_credit_max,
1520                                info->id->device->attrs.max_cqe,
1521                                info->id->device->attrs.max_qp_wr);
1522                 goto config_failed;
1523         }
1524
1525         info->receive_credit_max = smbd_receive_credit_max;
1526         info->send_credit_target = smbd_send_credit_target;
1527         info->max_send_size = smbd_max_send_size;
1528         info->max_fragmented_recv_size = smbd_max_fragmented_recv_size;
1529         info->max_receive_size = smbd_max_receive_size;
1530         info->keep_alive_interval = smbd_keep_alive_interval;
1531
1532         if (info->id->device->attrs.max_send_sge < SMBDIRECT_MAX_SEND_SGE ||
1533             info->id->device->attrs.max_recv_sge < SMBDIRECT_MAX_RECV_SGE) {
1534                 log_rdma_event(ERR,
1535                         "device %.*s max_send_sge/max_recv_sge = %d/%d too small\n",
1536                         IB_DEVICE_NAME_MAX,
1537                         info->id->device->name,
1538                         info->id->device->attrs.max_send_sge,
1539                         info->id->device->attrs.max_recv_sge);
1540                 goto config_failed;
1541         }
1542
1543         info->send_cq = NULL;
1544         info->recv_cq = NULL;
1545         info->send_cq =
1546                 ib_alloc_cq_any(info->id->device, info,
1547                                 info->send_credit_target, IB_POLL_SOFTIRQ);
1548         if (IS_ERR(info->send_cq)) {
1549                 info->send_cq = NULL;
1550                 goto alloc_cq_failed;
1551         }
1552
1553         info->recv_cq =
1554                 ib_alloc_cq_any(info->id->device, info,
1555                                 info->receive_credit_max, IB_POLL_SOFTIRQ);
1556         if (IS_ERR(info->recv_cq)) {
1557                 info->recv_cq = NULL;
1558                 goto alloc_cq_failed;
1559         }
1560
1561         memset(&qp_attr, 0, sizeof(qp_attr));
1562         qp_attr.event_handler = smbd_qp_async_error_upcall;
1563         qp_attr.qp_context = info;
1564         qp_attr.cap.max_send_wr = info->send_credit_target;
1565         qp_attr.cap.max_recv_wr = info->receive_credit_max;
1566         qp_attr.cap.max_send_sge = SMBDIRECT_MAX_SEND_SGE;
1567         qp_attr.cap.max_recv_sge = SMBDIRECT_MAX_RECV_SGE;
1568         qp_attr.cap.max_inline_data = 0;
1569         qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1570         qp_attr.qp_type = IB_QPT_RC;
1571         qp_attr.send_cq = info->send_cq;
1572         qp_attr.recv_cq = info->recv_cq;
1573         qp_attr.port_num = ~0;
1574
1575         rc = rdma_create_qp(info->id, info->pd, &qp_attr);
1576         if (rc) {
1577                 log_rdma_event(ERR, "rdma_create_qp failed %i\n", rc);
1578                 goto create_qp_failed;
1579         }
1580
1581         memset(&conn_param, 0, sizeof(conn_param));
1582         conn_param.initiator_depth = 0;
1583
1584         conn_param.responder_resources =
1585                 info->id->device->attrs.max_qp_rd_atom
1586                         < SMBD_CM_RESPONDER_RESOURCES ?
1587                 info->id->device->attrs.max_qp_rd_atom :
1588                 SMBD_CM_RESPONDER_RESOURCES;
1589         info->responder_resources = conn_param.responder_resources;
1590         log_rdma_mr(INFO, "responder_resources=%d\n",
1591                 info->responder_resources);
1592
1593         /* Need to send IRD/ORD in private data for iWARP */
1594         info->id->device->ops.get_port_immutable(
1595                 info->id->device, info->id->port_num, &port_immutable);
1596         if (port_immutable.core_cap_flags & RDMA_CORE_PORT_IWARP) {
1597                 ird_ord_hdr[0] = info->responder_resources;
1598                 ird_ord_hdr[1] = 1;
1599                 conn_param.private_data = ird_ord_hdr;
1600                 conn_param.private_data_len = sizeof(ird_ord_hdr);
1601         } else {
1602                 conn_param.private_data = NULL;
1603                 conn_param.private_data_len = 0;
1604         }
1605
1606         conn_param.retry_count = SMBD_CM_RETRY;
1607         conn_param.rnr_retry_count = SMBD_CM_RNR_RETRY;
1608         conn_param.flow_control = 0;
1609
1610         log_rdma_event(INFO, "connecting to IP %pI4 port %d\n",
1611                 &addr_in->sin_addr, port);
1612
1613         init_waitqueue_head(&info->conn_wait);
1614         init_waitqueue_head(&info->disconn_wait);
1615         init_waitqueue_head(&info->wait_reassembly_queue);
1616         rc = rdma_connect(info->id, &conn_param);
1617         if (rc) {
1618                 log_rdma_event(ERR, "rdma_connect() failed with %i\n", rc);
1619                 goto rdma_connect_failed;
1620         }
1621
1622         wait_event_interruptible(
1623                 info->conn_wait, info->transport_status != SMBD_CONNECTING);
1624
1625         if (info->transport_status != SMBD_CONNECTED) {
1626                 log_rdma_event(ERR, "rdma_connect failed port=%d\n", port);
1627                 goto rdma_connect_failed;
1628         }
1629
1630         log_rdma_event(INFO, "rdma_connect connected\n");
1631
1632         rc = allocate_caches_and_workqueue(info);
1633         if (rc) {
1634                 log_rdma_event(ERR, "cache allocation failed\n");
1635                 goto allocate_cache_failed;
1636         }
1637
1638         init_waitqueue_head(&info->wait_send_queue);
1639         INIT_DELAYED_WORK(&info->idle_timer_work, idle_connection_timer);
1640         queue_delayed_work(info->workqueue, &info->idle_timer_work,
1641                 info->keep_alive_interval*HZ);
1642
1643         init_waitqueue_head(&info->wait_send_pending);
1644         atomic_set(&info->send_pending, 0);
1645
1646         init_waitqueue_head(&info->wait_post_send);
1647
1648         INIT_WORK(&info->disconnect_work, smbd_disconnect_rdma_work);
1649         INIT_WORK(&info->post_send_credits_work, smbd_post_send_credits);
1650         info->new_credits_offered = 0;
1651         spin_lock_init(&info->lock_new_credits_offered);
1652
1653         rc = smbd_negotiate(info);
1654         if (rc) {
1655                 log_rdma_event(ERR, "smbd_negotiate rc=%d\n", rc);
1656                 goto negotiation_failed;
1657         }
1658
1659         rc = allocate_mr_list(info);
1660         if (rc) {
1661                 log_rdma_mr(ERR, "memory registration allocation failed\n");
1662                 goto allocate_mr_failed;
1663         }
1664
1665         return info;
1666
1667 allocate_mr_failed:
1668         /* At this point, need to a full transport shutdown */
1669         server->smbd_conn = info;
1670         smbd_destroy(server);
1671         return NULL;
1672
1673 negotiation_failed:
1674         cancel_delayed_work_sync(&info->idle_timer_work);
1675         destroy_caches_and_workqueue(info);
1676         info->transport_status = SMBD_NEGOTIATE_FAILED;
1677         init_waitqueue_head(&info->conn_wait);
1678         rdma_disconnect(info->id);
1679         wait_event(info->conn_wait,
1680                 info->transport_status == SMBD_DISCONNECTED);
1681
1682 allocate_cache_failed:
1683 rdma_connect_failed:
1684         rdma_destroy_qp(info->id);
1685
1686 create_qp_failed:
1687 alloc_cq_failed:
1688         if (info->send_cq)
1689                 ib_free_cq(info->send_cq);
1690         if (info->recv_cq)
1691                 ib_free_cq(info->recv_cq);
1692
1693 config_failed:
1694         ib_dealloc_pd(info->pd);
1695         rdma_destroy_id(info->id);
1696
1697 create_id_failed:
1698         kfree(info);
1699         return NULL;
1700 }
1701
1702 struct smbd_connection *smbd_get_connection(
1703         struct TCP_Server_Info *server, struct sockaddr *dstaddr)
1704 {
1705         struct smbd_connection *ret;
1706         int port = SMBD_PORT;
1707
1708 try_again:
1709         ret = _smbd_get_connection(server, dstaddr, port);
1710
1711         /* Try SMB_PORT if SMBD_PORT doesn't work */
1712         if (!ret && port == SMBD_PORT) {
1713                 port = SMB_PORT;
1714                 goto try_again;
1715         }
1716         return ret;
1717 }
1718
1719 /*
1720  * Receive data from receive reassembly queue
1721  * All the incoming data packets are placed in reassembly queue
1722  * buf: the buffer to read data into
1723  * size: the length of data to read
1724  * return value: actual data read
1725  * Note: this implementation copies the data from reassebmly queue to receive
1726  * buffers used by upper layer. This is not the optimal code path. A better way
1727  * to do it is to not have upper layer allocate its receive buffers but rather
1728  * borrow the buffer from reassembly queue, and return it after data is
1729  * consumed. But this will require more changes to upper layer code, and also
1730  * need to consider packet boundaries while they still being reassembled.
1731  */
1732 static int smbd_recv_buf(struct smbd_connection *info, char *buf,
1733                 unsigned int size)
1734 {
1735         struct smbd_response *response;
1736         struct smbd_data_transfer *data_transfer;
1737         int to_copy, to_read, data_read, offset;
1738         u32 data_length, remaining_data_length, data_offset;
1739         int rc;
1740
1741 again:
1742         /*
1743          * No need to hold the reassembly queue lock all the time as we are
1744          * the only one reading from the front of the queue. The transport
1745          * may add more entries to the back of the queue at the same time
1746          */
1747         log_read(INFO, "size=%d info->reassembly_data_length=%d\n", size,
1748                 info->reassembly_data_length);
1749         if (info->reassembly_data_length >= size) {
1750                 int queue_length;
1751                 int queue_removed = 0;
1752
1753                 /*
1754                  * Need to make sure reassembly_data_length is read before
1755                  * reading reassembly_queue_length and calling
1756                  * _get_first_reassembly. This call is lock free
1757                  * as we never read at the end of the queue which are being
1758                  * updated in SOFTIRQ as more data is received
1759                  */
1760                 virt_rmb();
1761                 queue_length = info->reassembly_queue_length;
1762                 data_read = 0;
1763                 to_read = size;
1764                 offset = info->first_entry_offset;
1765                 while (data_read < size) {
1766                         response = _get_first_reassembly(info);
1767                         data_transfer = smbd_response_payload(response);
1768                         data_length = le32_to_cpu(data_transfer->data_length);
1769                         remaining_data_length =
1770                                 le32_to_cpu(
1771                                         data_transfer->remaining_data_length);
1772                         data_offset = le32_to_cpu(data_transfer->data_offset);
1773
1774                         /*
1775                          * The upper layer expects RFC1002 length at the
1776                          * beginning of the payload. Return it to indicate
1777                          * the total length of the packet. This minimize the
1778                          * change to upper layer packet processing logic. This
1779                          * will be eventually remove when an intermediate
1780                          * transport layer is added
1781                          */
1782                         if (response->first_segment && size == 4) {
1783                                 unsigned int rfc1002_len =
1784                                         data_length + remaining_data_length;
1785                                 *((__be32 *)buf) = cpu_to_be32(rfc1002_len);
1786                                 data_read = 4;
1787                                 response->first_segment = false;
1788                                 log_read(INFO, "returning rfc1002 length %d\n",
1789                                         rfc1002_len);
1790                                 goto read_rfc1002_done;
1791                         }
1792
1793                         to_copy = min_t(int, data_length - offset, to_read);
1794                         memcpy(
1795                                 buf + data_read,
1796                                 (char *)data_transfer + data_offset + offset,
1797                                 to_copy);
1798
1799                         /* move on to the next buffer? */
1800                         if (to_copy == data_length - offset) {
1801                                 queue_length--;
1802                                 /*
1803                                  * No need to lock if we are not at the
1804                                  * end of the queue
1805                                  */
1806                                 if (queue_length)
1807                                         list_del(&response->list);
1808                                 else {
1809                                         spin_lock_irq(
1810                                                 &info->reassembly_queue_lock);
1811                                         list_del(&response->list);
1812                                         spin_unlock_irq(
1813                                                 &info->reassembly_queue_lock);
1814                                 }
1815                                 queue_removed++;
1816                                 info->count_reassembly_queue--;
1817                                 info->count_dequeue_reassembly_queue++;
1818                                 put_receive_buffer(info, response);
1819                                 offset = 0;
1820                                 log_read(INFO, "put_receive_buffer offset=0\n");
1821                         } else
1822                                 offset += to_copy;
1823
1824                         to_read -= to_copy;
1825                         data_read += to_copy;
1826
1827                         log_read(INFO, "_get_first_reassembly memcpy %d bytes data_transfer_length-offset=%d after that to_read=%d data_read=%d offset=%d\n",
1828                                  to_copy, data_length - offset,
1829                                  to_read, data_read, offset);
1830                 }
1831
1832                 spin_lock_irq(&info->reassembly_queue_lock);
1833                 info->reassembly_data_length -= data_read;
1834                 info->reassembly_queue_length -= queue_removed;
1835                 spin_unlock_irq(&info->reassembly_queue_lock);
1836
1837                 info->first_entry_offset = offset;
1838                 log_read(INFO, "returning to thread data_read=%d reassembly_data_length=%d first_entry_offset=%d\n",
1839                          data_read, info->reassembly_data_length,
1840                          info->first_entry_offset);
1841 read_rfc1002_done:
1842                 return data_read;
1843         }
1844
1845         log_read(INFO, "wait_event on more data\n");
1846         rc = wait_event_interruptible(
1847                 info->wait_reassembly_queue,
1848                 info->reassembly_data_length >= size ||
1849                         info->transport_status != SMBD_CONNECTED);
1850         /* Don't return any data if interrupted */
1851         if (rc)
1852                 return rc;
1853
1854         if (info->transport_status != SMBD_CONNECTED) {
1855                 log_read(ERR, "disconnected\n");
1856                 return -ECONNABORTED;
1857         }
1858
1859         goto again;
1860 }
1861
1862 /*
1863  * Receive a page from receive reassembly queue
1864  * page: the page to read data into
1865  * to_read: the length of data to read
1866  * return value: actual data read
1867  */
1868 static int smbd_recv_page(struct smbd_connection *info,
1869                 struct page *page, unsigned int page_offset,
1870                 unsigned int to_read)
1871 {
1872         int ret;
1873         char *to_address;
1874         void *page_address;
1875
1876         /* make sure we have the page ready for read */
1877         ret = wait_event_interruptible(
1878                 info->wait_reassembly_queue,
1879                 info->reassembly_data_length >= to_read ||
1880                         info->transport_status != SMBD_CONNECTED);
1881         if (ret)
1882                 return ret;
1883
1884         /* now we can read from reassembly queue and not sleep */
1885         page_address = kmap_atomic(page);
1886         to_address = (char *) page_address + page_offset;
1887
1888         log_read(INFO, "reading from page=%p address=%p to_read=%d\n",
1889                 page, to_address, to_read);
1890
1891         ret = smbd_recv_buf(info, to_address, to_read);
1892         kunmap_atomic(page_address);
1893
1894         return ret;
1895 }
1896
1897 /*
1898  * Receive data from transport
1899  * msg: a msghdr point to the buffer, can be ITER_KVEC or ITER_BVEC
1900  * return: total bytes read, or 0. SMB Direct will not do partial read.
1901  */
1902 int smbd_recv(struct smbd_connection *info, struct msghdr *msg)
1903 {
1904         char *buf;
1905         struct page *page;
1906         unsigned int to_read, page_offset;
1907         int rc;
1908
1909         if (iov_iter_rw(&msg->msg_iter) == WRITE) {
1910                 /* It's a bug in upper layer to get there */
1911                 cifs_dbg(VFS, "Invalid msg iter dir %u\n",
1912                          iov_iter_rw(&msg->msg_iter));
1913                 rc = -EINVAL;
1914                 goto out;
1915         }
1916
1917         switch (iov_iter_type(&msg->msg_iter)) {
1918         case ITER_KVEC:
1919                 buf = msg->msg_iter.kvec->iov_base;
1920                 to_read = msg->msg_iter.kvec->iov_len;
1921                 rc = smbd_recv_buf(info, buf, to_read);
1922                 break;
1923
1924         case ITER_BVEC:
1925                 page = msg->msg_iter.bvec->bv_page;
1926                 page_offset = msg->msg_iter.bvec->bv_offset;
1927                 to_read = msg->msg_iter.bvec->bv_len;
1928                 rc = smbd_recv_page(info, page, page_offset, to_read);
1929                 break;
1930
1931         default:
1932                 /* It's a bug in upper layer to get there */
1933                 cifs_dbg(VFS, "Invalid msg type %d\n",
1934                          iov_iter_type(&msg->msg_iter));
1935                 rc = -EINVAL;
1936         }
1937
1938 out:
1939         /* SMBDirect will read it all or nothing */
1940         if (rc > 0)
1941                 msg->msg_iter.count = 0;
1942         return rc;
1943 }
1944
1945 /*
1946  * Send data to transport
1947  * Each rqst is transported as a SMBDirect payload
1948  * rqst: the data to write
1949  * return value: 0 if successfully write, otherwise error code
1950  */
1951 int smbd_send(struct TCP_Server_Info *server,
1952         int num_rqst, struct smb_rqst *rqst_array)
1953 {
1954         struct smbd_connection *info = server->smbd_conn;
1955         struct smb_rqst *rqst;
1956         struct iov_iter iter;
1957         unsigned int remaining_data_length, klen;
1958         int rc, i, rqst_idx;
1959
1960         if (info->transport_status != SMBD_CONNECTED)
1961                 return -EAGAIN;
1962
1963         /*
1964          * Add in the page array if there is one. The caller needs to set
1965          * rq_tailsz to PAGE_SIZE when the buffer has multiple pages and
1966          * ends at page boundary
1967          */
1968         remaining_data_length = 0;
1969         for (i = 0; i < num_rqst; i++)
1970                 remaining_data_length += smb_rqst_len(server, &rqst_array[i]);
1971
1972         if (unlikely(remaining_data_length > info->max_fragmented_send_size)) {
1973                 /* assertion: payload never exceeds negotiated maximum */
1974                 log_write(ERR, "payload size %d > max size %d\n",
1975                         remaining_data_length, info->max_fragmented_send_size);
1976                 return -EINVAL;
1977         }
1978
1979         log_write(INFO, "num_rqst=%d total length=%u\n",
1980                         num_rqst, remaining_data_length);
1981
1982         rqst_idx = 0;
1983         do {
1984                 rqst = &rqst_array[rqst_idx];
1985
1986                 cifs_dbg(FYI, "Sending smb (RDMA): idx=%d smb_len=%lu\n",
1987                          rqst_idx, smb_rqst_len(server, rqst));
1988                 for (i = 0; i < rqst->rq_nvec; i++)
1989                         dump_smb(rqst->rq_iov[i].iov_base, rqst->rq_iov[i].iov_len);
1990
1991                 log_write(INFO, "RDMA-WR[%u] nvec=%d len=%u iter=%zu rqlen=%lu\n",
1992                           rqst_idx, rqst->rq_nvec, remaining_data_length,
1993                           iov_iter_count(&rqst->rq_iter), smb_rqst_len(server, rqst));
1994
1995                 /* Send the metadata pages. */
1996                 klen = 0;
1997                 for (i = 0; i < rqst->rq_nvec; i++)
1998                         klen += rqst->rq_iov[i].iov_len;
1999                 iov_iter_kvec(&iter, ITER_SOURCE, rqst->rq_iov, rqst->rq_nvec, klen);
2000
2001                 rc = smbd_post_send_iter(info, &iter, &remaining_data_length);
2002                 if (rc < 0)
2003                         break;
2004
2005                 if (iov_iter_count(&rqst->rq_iter) > 0) {
2006                         /* And then the data pages if there are any */
2007                         rc = smbd_post_send_iter(info, &rqst->rq_iter,
2008                                                  &remaining_data_length);
2009                         if (rc < 0)
2010                                 break;
2011                 }
2012
2013         } while (++rqst_idx < num_rqst);
2014
2015         /*
2016          * As an optimization, we don't wait for individual I/O to finish
2017          * before sending the next one.
2018          * Send them all and wait for pending send count to get to 0
2019          * that means all the I/Os have been out and we are good to return
2020          */
2021
2022         wait_event(info->wait_send_pending,
2023                 atomic_read(&info->send_pending) == 0);
2024
2025         return rc;
2026 }
2027
2028 static void register_mr_done(struct ib_cq *cq, struct ib_wc *wc)
2029 {
2030         struct smbd_mr *mr;
2031         struct ib_cqe *cqe;
2032
2033         if (wc->status) {
2034                 log_rdma_mr(ERR, "status=%d\n", wc->status);
2035                 cqe = wc->wr_cqe;
2036                 mr = container_of(cqe, struct smbd_mr, cqe);
2037                 smbd_disconnect_rdma_connection(mr->conn);
2038         }
2039 }
2040
2041 /*
2042  * The work queue function that recovers MRs
2043  * We need to call ib_dereg_mr() and ib_alloc_mr() before this MR can be used
2044  * again. Both calls are slow, so finish them in a workqueue. This will not
2045  * block I/O path.
2046  * There is one workqueue that recovers MRs, there is no need to lock as the
2047  * I/O requests calling smbd_register_mr will never update the links in the
2048  * mr_list.
2049  */
2050 static void smbd_mr_recovery_work(struct work_struct *work)
2051 {
2052         struct smbd_connection *info =
2053                 container_of(work, struct smbd_connection, mr_recovery_work);
2054         struct smbd_mr *smbdirect_mr;
2055         int rc;
2056
2057         list_for_each_entry(smbdirect_mr, &info->mr_list, list) {
2058                 if (smbdirect_mr->state == MR_ERROR) {
2059
2060                         /* recover this MR entry */
2061                         rc = ib_dereg_mr(smbdirect_mr->mr);
2062                         if (rc) {
2063                                 log_rdma_mr(ERR,
2064                                         "ib_dereg_mr failed rc=%x\n",
2065                                         rc);
2066                                 smbd_disconnect_rdma_connection(info);
2067                                 continue;
2068                         }
2069
2070                         smbdirect_mr->mr = ib_alloc_mr(
2071                                 info->pd, info->mr_type,
2072                                 info->max_frmr_depth);
2073                         if (IS_ERR(smbdirect_mr->mr)) {
2074                                 log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n",
2075                                             info->mr_type,
2076                                             info->max_frmr_depth);
2077                                 smbd_disconnect_rdma_connection(info);
2078                                 continue;
2079                         }
2080                 } else
2081                         /* This MR is being used, don't recover it */
2082                         continue;
2083
2084                 smbdirect_mr->state = MR_READY;
2085
2086                 /* smbdirect_mr->state is updated by this function
2087                  * and is read and updated by I/O issuing CPUs trying
2088                  * to get a MR, the call to atomic_inc_return
2089                  * implicates a memory barrier and guarantees this
2090                  * value is updated before waking up any calls to
2091                  * get_mr() from the I/O issuing CPUs
2092                  */
2093                 if (atomic_inc_return(&info->mr_ready_count) == 1)
2094                         wake_up_interruptible(&info->wait_mr);
2095         }
2096 }
2097
2098 static void destroy_mr_list(struct smbd_connection *info)
2099 {
2100         struct smbd_mr *mr, *tmp;
2101
2102         cancel_work_sync(&info->mr_recovery_work);
2103         list_for_each_entry_safe(mr, tmp, &info->mr_list, list) {
2104                 if (mr->state == MR_INVALIDATED)
2105                         ib_dma_unmap_sg(info->id->device, mr->sgt.sgl,
2106                                 mr->sgt.nents, mr->dir);
2107                 ib_dereg_mr(mr->mr);
2108                 kfree(mr->sgt.sgl);
2109                 kfree(mr);
2110         }
2111 }
2112
2113 /*
2114  * Allocate MRs used for RDMA read/write
2115  * The number of MRs will not exceed hardware capability in responder_resources
2116  * All MRs are kept in mr_list. The MR can be recovered after it's used
2117  * Recovery is done in smbd_mr_recovery_work. The content of list entry changes
2118  * as MRs are used and recovered for I/O, but the list links will not change
2119  */
2120 static int allocate_mr_list(struct smbd_connection *info)
2121 {
2122         int i;
2123         struct smbd_mr *smbdirect_mr, *tmp;
2124
2125         INIT_LIST_HEAD(&info->mr_list);
2126         init_waitqueue_head(&info->wait_mr);
2127         spin_lock_init(&info->mr_list_lock);
2128         atomic_set(&info->mr_ready_count, 0);
2129         atomic_set(&info->mr_used_count, 0);
2130         init_waitqueue_head(&info->wait_for_mr_cleanup);
2131         INIT_WORK(&info->mr_recovery_work, smbd_mr_recovery_work);
2132         /* Allocate more MRs (2x) than hardware responder_resources */
2133         for (i = 0; i < info->responder_resources * 2; i++) {
2134                 smbdirect_mr = kzalloc(sizeof(*smbdirect_mr), GFP_KERNEL);
2135                 if (!smbdirect_mr)
2136                         goto out;
2137                 smbdirect_mr->mr = ib_alloc_mr(info->pd, info->mr_type,
2138                                         info->max_frmr_depth);
2139                 if (IS_ERR(smbdirect_mr->mr)) {
2140                         log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x max_frmr_depth=%x\n",
2141                                     info->mr_type, info->max_frmr_depth);
2142                         goto out;
2143                 }
2144                 smbdirect_mr->sgt.sgl = kcalloc(info->max_frmr_depth,
2145                                                 sizeof(struct scatterlist),
2146                                                 GFP_KERNEL);
2147                 if (!smbdirect_mr->sgt.sgl) {
2148                         log_rdma_mr(ERR, "failed to allocate sgl\n");
2149                         ib_dereg_mr(smbdirect_mr->mr);
2150                         goto out;
2151                 }
2152                 smbdirect_mr->state = MR_READY;
2153                 smbdirect_mr->conn = info;
2154
2155                 list_add_tail(&smbdirect_mr->list, &info->mr_list);
2156                 atomic_inc(&info->mr_ready_count);
2157         }
2158         return 0;
2159
2160 out:
2161         kfree(smbdirect_mr);
2162
2163         list_for_each_entry_safe(smbdirect_mr, tmp, &info->mr_list, list) {
2164                 list_del(&smbdirect_mr->list);
2165                 ib_dereg_mr(smbdirect_mr->mr);
2166                 kfree(smbdirect_mr->sgt.sgl);
2167                 kfree(smbdirect_mr);
2168         }
2169         return -ENOMEM;
2170 }
2171
2172 /*
2173  * Get a MR from mr_list. This function waits until there is at least one
2174  * MR available in the list. It may access the list while the
2175  * smbd_mr_recovery_work is recovering the MR list. This doesn't need a lock
2176  * as they never modify the same places. However, there may be several CPUs
2177  * issueing I/O trying to get MR at the same time, mr_list_lock is used to
2178  * protect this situation.
2179  */
2180 static struct smbd_mr *get_mr(struct smbd_connection *info)
2181 {
2182         struct smbd_mr *ret;
2183         int rc;
2184 again:
2185         rc = wait_event_interruptible(info->wait_mr,
2186                 atomic_read(&info->mr_ready_count) ||
2187                 info->transport_status != SMBD_CONNECTED);
2188         if (rc) {
2189                 log_rdma_mr(ERR, "wait_event_interruptible rc=%x\n", rc);
2190                 return NULL;
2191         }
2192
2193         if (info->transport_status != SMBD_CONNECTED) {
2194                 log_rdma_mr(ERR, "info->transport_status=%x\n",
2195                         info->transport_status);
2196                 return NULL;
2197         }
2198
2199         spin_lock(&info->mr_list_lock);
2200         list_for_each_entry(ret, &info->mr_list, list) {
2201                 if (ret->state == MR_READY) {
2202                         ret->state = MR_REGISTERED;
2203                         spin_unlock(&info->mr_list_lock);
2204                         atomic_dec(&info->mr_ready_count);
2205                         atomic_inc(&info->mr_used_count);
2206                         return ret;
2207                 }
2208         }
2209
2210         spin_unlock(&info->mr_list_lock);
2211         /*
2212          * It is possible that we could fail to get MR because other processes may
2213          * try to acquire a MR at the same time. If this is the case, retry it.
2214          */
2215         goto again;
2216 }
2217
2218 /*
2219  * Transcribe the pages from an iterator into an MR scatterlist.
2220  */
2221 static int smbd_iter_to_mr(struct smbd_connection *info,
2222                            struct iov_iter *iter,
2223                            struct sg_table *sgt,
2224                            unsigned int max_sg)
2225 {
2226         int ret;
2227
2228         memset(sgt->sgl, 0, max_sg * sizeof(struct scatterlist));
2229
2230         ret = netfs_extract_iter_to_sg(iter, iov_iter_count(iter), sgt, max_sg, 0);
2231         WARN_ON(ret < 0);
2232         if (sgt->nents > 0)
2233                 sg_mark_end(&sgt->sgl[sgt->nents - 1]);
2234         return ret;
2235 }
2236
2237 /*
2238  * Register memory for RDMA read/write
2239  * iter: the buffer to register memory with
2240  * writing: true if this is a RDMA write (SMB read), false for RDMA read
2241  * need_invalidate: true if this MR needs to be locally invalidated after I/O
2242  * return value: the MR registered, NULL if failed.
2243  */
2244 struct smbd_mr *smbd_register_mr(struct smbd_connection *info,
2245                                  struct iov_iter *iter,
2246                                  bool writing, bool need_invalidate)
2247 {
2248         struct smbd_mr *smbdirect_mr;
2249         int rc, num_pages;
2250         enum dma_data_direction dir;
2251         struct ib_reg_wr *reg_wr;
2252
2253         num_pages = iov_iter_npages(iter, info->max_frmr_depth + 1);
2254         if (num_pages > info->max_frmr_depth) {
2255                 log_rdma_mr(ERR, "num_pages=%d max_frmr_depth=%d\n",
2256                         num_pages, info->max_frmr_depth);
2257                 WARN_ON_ONCE(1);
2258                 return NULL;
2259         }
2260
2261         smbdirect_mr = get_mr(info);
2262         if (!smbdirect_mr) {
2263                 log_rdma_mr(ERR, "get_mr returning NULL\n");
2264                 return NULL;
2265         }
2266
2267         dir = writing ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
2268         smbdirect_mr->dir = dir;
2269         smbdirect_mr->need_invalidate = need_invalidate;
2270         smbdirect_mr->sgt.nents = 0;
2271         smbdirect_mr->sgt.orig_nents = 0;
2272
2273         log_rdma_mr(INFO, "num_pages=0x%x count=0x%zx depth=%u\n",
2274                     num_pages, iov_iter_count(iter), info->max_frmr_depth);
2275         smbd_iter_to_mr(info, iter, &smbdirect_mr->sgt, info->max_frmr_depth);
2276
2277         rc = ib_dma_map_sg(info->id->device, smbdirect_mr->sgt.sgl,
2278                            smbdirect_mr->sgt.nents, dir);
2279         if (!rc) {
2280                 log_rdma_mr(ERR, "ib_dma_map_sg num_pages=%x dir=%x rc=%x\n",
2281                         num_pages, dir, rc);
2282                 goto dma_map_error;
2283         }
2284
2285         rc = ib_map_mr_sg(smbdirect_mr->mr, smbdirect_mr->sgt.sgl,
2286                           smbdirect_mr->sgt.nents, NULL, PAGE_SIZE);
2287         if (rc != smbdirect_mr->sgt.nents) {
2288                 log_rdma_mr(ERR,
2289                         "ib_map_mr_sg failed rc = %d nents = %x\n",
2290                         rc, smbdirect_mr->sgt.nents);
2291                 goto map_mr_error;
2292         }
2293
2294         ib_update_fast_reg_key(smbdirect_mr->mr,
2295                 ib_inc_rkey(smbdirect_mr->mr->rkey));
2296         reg_wr = &smbdirect_mr->wr;
2297         reg_wr->wr.opcode = IB_WR_REG_MR;
2298         smbdirect_mr->cqe.done = register_mr_done;
2299         reg_wr->wr.wr_cqe = &smbdirect_mr->cqe;
2300         reg_wr->wr.num_sge = 0;
2301         reg_wr->wr.send_flags = IB_SEND_SIGNALED;
2302         reg_wr->mr = smbdirect_mr->mr;
2303         reg_wr->key = smbdirect_mr->mr->rkey;
2304         reg_wr->access = writing ?
2305                         IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
2306                         IB_ACCESS_REMOTE_READ;
2307
2308         /*
2309          * There is no need for waiting for complemtion on ib_post_send
2310          * on IB_WR_REG_MR. Hardware enforces a barrier and order of execution
2311          * on the next ib_post_send when we actaully send I/O to remote peer
2312          */
2313         rc = ib_post_send(info->id->qp, &reg_wr->wr, NULL);
2314         if (!rc)
2315                 return smbdirect_mr;
2316
2317         log_rdma_mr(ERR, "ib_post_send failed rc=%x reg_wr->key=%x\n",
2318                 rc, reg_wr->key);
2319
2320         /* If all failed, attempt to recover this MR by setting it MR_ERROR*/
2321 map_mr_error:
2322         ib_dma_unmap_sg(info->id->device, smbdirect_mr->sgt.sgl,
2323                         smbdirect_mr->sgt.nents, smbdirect_mr->dir);
2324
2325 dma_map_error:
2326         smbdirect_mr->state = MR_ERROR;
2327         if (atomic_dec_and_test(&info->mr_used_count))
2328                 wake_up(&info->wait_for_mr_cleanup);
2329
2330         smbd_disconnect_rdma_connection(info);
2331
2332         return NULL;
2333 }
2334
2335 static void local_inv_done(struct ib_cq *cq, struct ib_wc *wc)
2336 {
2337         struct smbd_mr *smbdirect_mr;
2338         struct ib_cqe *cqe;
2339
2340         cqe = wc->wr_cqe;
2341         smbdirect_mr = container_of(cqe, struct smbd_mr, cqe);
2342         smbdirect_mr->state = MR_INVALIDATED;
2343         if (wc->status != IB_WC_SUCCESS) {
2344                 log_rdma_mr(ERR, "invalidate failed status=%x\n", wc->status);
2345                 smbdirect_mr->state = MR_ERROR;
2346         }
2347         complete(&smbdirect_mr->invalidate_done);
2348 }
2349
2350 /*
2351  * Deregister a MR after I/O is done
2352  * This function may wait if remote invalidation is not used
2353  * and we have to locally invalidate the buffer to prevent data is being
2354  * modified by remote peer after upper layer consumes it
2355  */
2356 int smbd_deregister_mr(struct smbd_mr *smbdirect_mr)
2357 {
2358         struct ib_send_wr *wr;
2359         struct smbd_connection *info = smbdirect_mr->conn;
2360         int rc = 0;
2361
2362         if (smbdirect_mr->need_invalidate) {
2363                 /* Need to finish local invalidation before returning */
2364                 wr = &smbdirect_mr->inv_wr;
2365                 wr->opcode = IB_WR_LOCAL_INV;
2366                 smbdirect_mr->cqe.done = local_inv_done;
2367                 wr->wr_cqe = &smbdirect_mr->cqe;
2368                 wr->num_sge = 0;
2369                 wr->ex.invalidate_rkey = smbdirect_mr->mr->rkey;
2370                 wr->send_flags = IB_SEND_SIGNALED;
2371
2372                 init_completion(&smbdirect_mr->invalidate_done);
2373                 rc = ib_post_send(info->id->qp, wr, NULL);
2374                 if (rc) {
2375                         log_rdma_mr(ERR, "ib_post_send failed rc=%x\n", rc);
2376                         smbd_disconnect_rdma_connection(info);
2377                         goto done;
2378                 }
2379                 wait_for_completion(&smbdirect_mr->invalidate_done);
2380                 smbdirect_mr->need_invalidate = false;
2381         } else
2382                 /*
2383                  * For remote invalidation, just set it to MR_INVALIDATED
2384                  * and defer to mr_recovery_work to recover the MR for next use
2385                  */
2386                 smbdirect_mr->state = MR_INVALIDATED;
2387
2388         if (smbdirect_mr->state == MR_INVALIDATED) {
2389                 ib_dma_unmap_sg(
2390                         info->id->device, smbdirect_mr->sgt.sgl,
2391                         smbdirect_mr->sgt.nents,
2392                         smbdirect_mr->dir);
2393                 smbdirect_mr->state = MR_READY;
2394                 if (atomic_inc_return(&info->mr_ready_count) == 1)
2395                         wake_up_interruptible(&info->wait_mr);
2396         } else
2397                 /*
2398                  * Schedule the work to do MR recovery for future I/Os MR
2399                  * recovery is slow and don't want it to block current I/O
2400                  */
2401                 queue_work(info->workqueue, &info->mr_recovery_work);
2402
2403 done:
2404         if (atomic_dec_and_test(&info->mr_used_count))
2405                 wake_up(&info->wait_for_mr_cleanup);
2406
2407         return rc;
2408 }
2409
2410 static bool smb_set_sge(struct smb_extract_to_rdma *rdma,
2411                         struct page *lowest_page, size_t off, size_t len)
2412 {
2413         struct ib_sge *sge = &rdma->sge[rdma->nr_sge];
2414         u64 addr;
2415
2416         addr = ib_dma_map_page(rdma->device, lowest_page,
2417                                off, len, rdma->direction);
2418         if (ib_dma_mapping_error(rdma->device, addr))
2419                 return false;
2420
2421         sge->addr   = addr;
2422         sge->length = len;
2423         sge->lkey   = rdma->local_dma_lkey;
2424         rdma->nr_sge++;
2425         return true;
2426 }
2427
2428 /*
2429  * Extract page fragments from a BVEC-class iterator and add them to an RDMA
2430  * element list.  The pages are not pinned.
2431  */
2432 static ssize_t smb_extract_bvec_to_rdma(struct iov_iter *iter,
2433                                         struct smb_extract_to_rdma *rdma,
2434                                         ssize_t maxsize)
2435 {
2436         const struct bio_vec *bv = iter->bvec;
2437         unsigned long start = iter->iov_offset;
2438         unsigned int i;
2439         ssize_t ret = 0;
2440
2441         for (i = 0; i < iter->nr_segs; i++) {
2442                 size_t off, len;
2443
2444                 len = bv[i].bv_len;
2445                 if (start >= len) {
2446                         start -= len;
2447                         continue;
2448                 }
2449
2450                 len = min_t(size_t, maxsize, len - start);
2451                 off = bv[i].bv_offset + start;
2452
2453                 if (!smb_set_sge(rdma, bv[i].bv_page, off, len))
2454                         return -EIO;
2455
2456                 ret += len;
2457                 maxsize -= len;
2458                 if (rdma->nr_sge >= rdma->max_sge || maxsize <= 0)
2459                         break;
2460                 start = 0;
2461         }
2462
2463         return ret;
2464 }
2465
2466 /*
2467  * Extract fragments from a KVEC-class iterator and add them to an RDMA list.
2468  * This can deal with vmalloc'd buffers as well as kmalloc'd or static buffers.
2469  * The pages are not pinned.
2470  */
2471 static ssize_t smb_extract_kvec_to_rdma(struct iov_iter *iter,
2472                                         struct smb_extract_to_rdma *rdma,
2473                                         ssize_t maxsize)
2474 {
2475         const struct kvec *kv = iter->kvec;
2476         unsigned long start = iter->iov_offset;
2477         unsigned int i;
2478         ssize_t ret = 0;
2479
2480         for (i = 0; i < iter->nr_segs; i++) {
2481                 struct page *page;
2482                 unsigned long kaddr;
2483                 size_t off, len, seg;
2484
2485                 len = kv[i].iov_len;
2486                 if (start >= len) {
2487                         start -= len;
2488                         continue;
2489                 }
2490
2491                 kaddr = (unsigned long)kv[i].iov_base + start;
2492                 off = kaddr & ~PAGE_MASK;
2493                 len = min_t(size_t, maxsize, len - start);
2494                 kaddr &= PAGE_MASK;
2495
2496                 maxsize -= len;
2497                 do {
2498                         seg = min_t(size_t, len, PAGE_SIZE - off);
2499
2500                         if (is_vmalloc_or_module_addr((void *)kaddr))
2501                                 page = vmalloc_to_page((void *)kaddr);
2502                         else
2503                                 page = virt_to_page(kaddr);
2504
2505                         if (!smb_set_sge(rdma, page, off, seg))
2506                                 return -EIO;
2507
2508                         ret += seg;
2509                         len -= seg;
2510                         kaddr += PAGE_SIZE;
2511                         off = 0;
2512                 } while (len > 0 && rdma->nr_sge < rdma->max_sge);
2513
2514                 if (rdma->nr_sge >= rdma->max_sge || maxsize <= 0)
2515                         break;
2516                 start = 0;
2517         }
2518
2519         return ret;
2520 }
2521
2522 /*
2523  * Extract folio fragments from an XARRAY-class iterator and add them to an
2524  * RDMA list.  The folios are not pinned.
2525  */
2526 static ssize_t smb_extract_xarray_to_rdma(struct iov_iter *iter,
2527                                           struct smb_extract_to_rdma *rdma,
2528                                           ssize_t maxsize)
2529 {
2530         struct xarray *xa = iter->xarray;
2531         struct folio *folio;
2532         loff_t start = iter->xarray_start + iter->iov_offset;
2533         pgoff_t index = start / PAGE_SIZE;
2534         ssize_t ret = 0;
2535         size_t off, len;
2536         XA_STATE(xas, xa, index);
2537
2538         rcu_read_lock();
2539
2540         xas_for_each(&xas, folio, ULONG_MAX) {
2541                 if (xas_retry(&xas, folio))
2542                         continue;
2543                 if (WARN_ON(xa_is_value(folio)))
2544                         break;
2545                 if (WARN_ON(folio_test_hugetlb(folio)))
2546                         break;
2547
2548                 off = offset_in_folio(folio, start);
2549                 len = min_t(size_t, maxsize, folio_size(folio) - off);
2550
2551                 if (!smb_set_sge(rdma, folio_page(folio, 0), off, len)) {
2552                         rcu_read_unlock();
2553                         return -EIO;
2554                 }
2555
2556                 maxsize -= len;
2557                 ret += len;
2558                 if (rdma->nr_sge >= rdma->max_sge || maxsize <= 0)
2559                         break;
2560         }
2561
2562         rcu_read_unlock();
2563         return ret;
2564 }
2565
2566 /*
2567  * Extract page fragments from up to the given amount of the source iterator
2568  * and build up an RDMA list that refers to all of those bits.  The RDMA list
2569  * is appended to, up to the maximum number of elements set in the parameter
2570  * block.
2571  *
2572  * The extracted page fragments are not pinned or ref'd in any way; if an
2573  * IOVEC/UBUF-type iterator is to be used, it should be converted to a
2574  * BVEC-type iterator and the pages pinned, ref'd or otherwise held in some
2575  * way.
2576  */
2577 static ssize_t smb_extract_iter_to_rdma(struct iov_iter *iter, size_t len,
2578                                         struct smb_extract_to_rdma *rdma)
2579 {
2580         ssize_t ret;
2581         int before = rdma->nr_sge;
2582
2583         switch (iov_iter_type(iter)) {
2584         case ITER_BVEC:
2585                 ret = smb_extract_bvec_to_rdma(iter, rdma, len);
2586                 break;
2587         case ITER_KVEC:
2588                 ret = smb_extract_kvec_to_rdma(iter, rdma, len);
2589                 break;
2590         case ITER_XARRAY:
2591                 ret = smb_extract_xarray_to_rdma(iter, rdma, len);
2592                 break;
2593         default:
2594                 WARN_ON_ONCE(1);
2595                 return -EIO;
2596         }
2597
2598         if (ret > 0) {
2599                 iov_iter_advance(iter, ret);
2600         } else if (ret < 0) {
2601                 while (rdma->nr_sge > before) {
2602                         struct ib_sge *sge = &rdma->sge[rdma->nr_sge--];
2603
2604                         ib_dma_unmap_single(rdma->device, sge->addr, sge->length,
2605                                             rdma->direction);
2606                         sge->addr = 0;
2607                 }
2608         }
2609
2610         return ret;
2611 }