fs/buffer: convert create_page_buffers to folio_create_buffers
[linux-block.git] / fs / buffer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/buffer.c
4  *
5  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
6  */
7
8 /*
9  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10  *
11  * Removed a lot of unnecessary code and simplified things now that
12  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13  *
14  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
15  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
16  *
17  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18  *
19  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20  */
21
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51 #include <linux/fsverity.h>
52
53 #include "internal.h"
54
55 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
56 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
57                           struct writeback_control *wbc);
58
59 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
60
61 inline void touch_buffer(struct buffer_head *bh)
62 {
63         trace_block_touch_buffer(bh);
64         folio_mark_accessed(bh->b_folio);
65 }
66 EXPORT_SYMBOL(touch_buffer);
67
68 void __lock_buffer(struct buffer_head *bh)
69 {
70         wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
71 }
72 EXPORT_SYMBOL(__lock_buffer);
73
74 void unlock_buffer(struct buffer_head *bh)
75 {
76         clear_bit_unlock(BH_Lock, &bh->b_state);
77         smp_mb__after_atomic();
78         wake_up_bit(&bh->b_state, BH_Lock);
79 }
80 EXPORT_SYMBOL(unlock_buffer);
81
82 /*
83  * Returns if the folio has dirty or writeback buffers. If all the buffers
84  * are unlocked and clean then the folio_test_dirty information is stale. If
85  * any of the buffers are locked, it is assumed they are locked for IO.
86  */
87 void buffer_check_dirty_writeback(struct folio *folio,
88                                      bool *dirty, bool *writeback)
89 {
90         struct buffer_head *head, *bh;
91         *dirty = false;
92         *writeback = false;
93
94         BUG_ON(!folio_test_locked(folio));
95
96         head = folio_buffers(folio);
97         if (!head)
98                 return;
99
100         if (folio_test_writeback(folio))
101                 *writeback = true;
102
103         bh = head;
104         do {
105                 if (buffer_locked(bh))
106                         *writeback = true;
107
108                 if (buffer_dirty(bh))
109                         *dirty = true;
110
111                 bh = bh->b_this_page;
112         } while (bh != head);
113 }
114 EXPORT_SYMBOL(buffer_check_dirty_writeback);
115
116 /*
117  * Block until a buffer comes unlocked.  This doesn't stop it
118  * from becoming locked again - you have to lock it yourself
119  * if you want to preserve its state.
120  */
121 void __wait_on_buffer(struct buffer_head * bh)
122 {
123         wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
124 }
125 EXPORT_SYMBOL(__wait_on_buffer);
126
127 static void buffer_io_error(struct buffer_head *bh, char *msg)
128 {
129         if (!test_bit(BH_Quiet, &bh->b_state))
130                 printk_ratelimited(KERN_ERR
131                         "Buffer I/O error on dev %pg, logical block %llu%s\n",
132                         bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
133 }
134
135 /*
136  * End-of-IO handler helper function which does not touch the bh after
137  * unlocking it.
138  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
139  * a race there is benign: unlock_buffer() only use the bh's address for
140  * hashing after unlocking the buffer, so it doesn't actually touch the bh
141  * itself.
142  */
143 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
144 {
145         if (uptodate) {
146                 set_buffer_uptodate(bh);
147         } else {
148                 /* This happens, due to failed read-ahead attempts. */
149                 clear_buffer_uptodate(bh);
150         }
151         unlock_buffer(bh);
152 }
153
154 /*
155  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
156  * unlock the buffer.
157  */
158 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
159 {
160         __end_buffer_read_notouch(bh, uptodate);
161         put_bh(bh);
162 }
163 EXPORT_SYMBOL(end_buffer_read_sync);
164
165 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
166 {
167         if (uptodate) {
168                 set_buffer_uptodate(bh);
169         } else {
170                 buffer_io_error(bh, ", lost sync page write");
171                 mark_buffer_write_io_error(bh);
172                 clear_buffer_uptodate(bh);
173         }
174         unlock_buffer(bh);
175         put_bh(bh);
176 }
177 EXPORT_SYMBOL(end_buffer_write_sync);
178
179 /*
180  * Various filesystems appear to want __find_get_block to be non-blocking.
181  * But it's the page lock which protects the buffers.  To get around this,
182  * we get exclusion from try_to_free_buffers with the blockdev mapping's
183  * private_lock.
184  *
185  * Hack idea: for the blockdev mapping, private_lock contention
186  * may be quite high.  This code could TryLock the page, and if that
187  * succeeds, there is no need to take private_lock.
188  */
189 static struct buffer_head *
190 __find_get_block_slow(struct block_device *bdev, sector_t block)
191 {
192         struct inode *bd_inode = bdev->bd_inode;
193         struct address_space *bd_mapping = bd_inode->i_mapping;
194         struct buffer_head *ret = NULL;
195         pgoff_t index;
196         struct buffer_head *bh;
197         struct buffer_head *head;
198         struct page *page;
199         int all_mapped = 1;
200         static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
201
202         index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
203         page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
204         if (!page)
205                 goto out;
206
207         spin_lock(&bd_mapping->private_lock);
208         if (!page_has_buffers(page))
209                 goto out_unlock;
210         head = page_buffers(page);
211         bh = head;
212         do {
213                 if (!buffer_mapped(bh))
214                         all_mapped = 0;
215                 else if (bh->b_blocknr == block) {
216                         ret = bh;
217                         get_bh(bh);
218                         goto out_unlock;
219                 }
220                 bh = bh->b_this_page;
221         } while (bh != head);
222
223         /* we might be here because some of the buffers on this page are
224          * not mapped.  This is due to various races between
225          * file io on the block device and getblk.  It gets dealt with
226          * elsewhere, don't buffer_error if we had some unmapped buffers
227          */
228         ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
229         if (all_mapped && __ratelimit(&last_warned)) {
230                 printk("__find_get_block_slow() failed. block=%llu, "
231                        "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
232                        "device %pg blocksize: %d\n",
233                        (unsigned long long)block,
234                        (unsigned long long)bh->b_blocknr,
235                        bh->b_state, bh->b_size, bdev,
236                        1 << bd_inode->i_blkbits);
237         }
238 out_unlock:
239         spin_unlock(&bd_mapping->private_lock);
240         put_page(page);
241 out:
242         return ret;
243 }
244
245 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
246 {
247         unsigned long flags;
248         struct buffer_head *first;
249         struct buffer_head *tmp;
250         struct folio *folio;
251         int folio_uptodate = 1;
252
253         BUG_ON(!buffer_async_read(bh));
254
255         folio = bh->b_folio;
256         if (uptodate) {
257                 set_buffer_uptodate(bh);
258         } else {
259                 clear_buffer_uptodate(bh);
260                 buffer_io_error(bh, ", async page read");
261                 folio_set_error(folio);
262         }
263
264         /*
265          * Be _very_ careful from here on. Bad things can happen if
266          * two buffer heads end IO at almost the same time and both
267          * decide that the page is now completely done.
268          */
269         first = folio_buffers(folio);
270         spin_lock_irqsave(&first->b_uptodate_lock, flags);
271         clear_buffer_async_read(bh);
272         unlock_buffer(bh);
273         tmp = bh;
274         do {
275                 if (!buffer_uptodate(tmp))
276                         folio_uptodate = 0;
277                 if (buffer_async_read(tmp)) {
278                         BUG_ON(!buffer_locked(tmp));
279                         goto still_busy;
280                 }
281                 tmp = tmp->b_this_page;
282         } while (tmp != bh);
283         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
284
285         /*
286          * If all of the buffers are uptodate then we can set the page
287          * uptodate.
288          */
289         if (folio_uptodate)
290                 folio_mark_uptodate(folio);
291         folio_unlock(folio);
292         return;
293
294 still_busy:
295         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
296         return;
297 }
298
299 struct postprocess_bh_ctx {
300         struct work_struct work;
301         struct buffer_head *bh;
302 };
303
304 static void verify_bh(struct work_struct *work)
305 {
306         struct postprocess_bh_ctx *ctx =
307                 container_of(work, struct postprocess_bh_ctx, work);
308         struct buffer_head *bh = ctx->bh;
309         bool valid;
310
311         valid = fsverity_verify_blocks(page_folio(bh->b_page), bh->b_size,
312                                        bh_offset(bh));
313         end_buffer_async_read(bh, valid);
314         kfree(ctx);
315 }
316
317 static bool need_fsverity(struct buffer_head *bh)
318 {
319         struct page *page = bh->b_page;
320         struct inode *inode = page->mapping->host;
321
322         return fsverity_active(inode) &&
323                 /* needed by ext4 */
324                 page->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
325 }
326
327 static void decrypt_bh(struct work_struct *work)
328 {
329         struct postprocess_bh_ctx *ctx =
330                 container_of(work, struct postprocess_bh_ctx, work);
331         struct buffer_head *bh = ctx->bh;
332         int err;
333
334         err = fscrypt_decrypt_pagecache_blocks(page_folio(bh->b_page),
335                                                bh->b_size, bh_offset(bh));
336         if (err == 0 && need_fsverity(bh)) {
337                 /*
338                  * We use different work queues for decryption and for verity
339                  * because verity may require reading metadata pages that need
340                  * decryption, and we shouldn't recurse to the same workqueue.
341                  */
342                 INIT_WORK(&ctx->work, verify_bh);
343                 fsverity_enqueue_verify_work(&ctx->work);
344                 return;
345         }
346         end_buffer_async_read(bh, err == 0);
347         kfree(ctx);
348 }
349
350 /*
351  * I/O completion handler for block_read_full_folio() - pages
352  * which come unlocked at the end of I/O.
353  */
354 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
355 {
356         struct inode *inode = bh->b_folio->mapping->host;
357         bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode);
358         bool verify = need_fsverity(bh);
359
360         /* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */
361         if (uptodate && (decrypt || verify)) {
362                 struct postprocess_bh_ctx *ctx =
363                         kmalloc(sizeof(*ctx), GFP_ATOMIC);
364
365                 if (ctx) {
366                         ctx->bh = bh;
367                         if (decrypt) {
368                                 INIT_WORK(&ctx->work, decrypt_bh);
369                                 fscrypt_enqueue_decrypt_work(&ctx->work);
370                         } else {
371                                 INIT_WORK(&ctx->work, verify_bh);
372                                 fsverity_enqueue_verify_work(&ctx->work);
373                         }
374                         return;
375                 }
376                 uptodate = 0;
377         }
378         end_buffer_async_read(bh, uptodate);
379 }
380
381 /*
382  * Completion handler for block_write_full_page() - pages which are unlocked
383  * during I/O, and which have PageWriteback cleared upon I/O completion.
384  */
385 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
386 {
387         unsigned long flags;
388         struct buffer_head *first;
389         struct buffer_head *tmp;
390         struct folio *folio;
391
392         BUG_ON(!buffer_async_write(bh));
393
394         folio = bh->b_folio;
395         if (uptodate) {
396                 set_buffer_uptodate(bh);
397         } else {
398                 buffer_io_error(bh, ", lost async page write");
399                 mark_buffer_write_io_error(bh);
400                 clear_buffer_uptodate(bh);
401                 folio_set_error(folio);
402         }
403
404         first = folio_buffers(folio);
405         spin_lock_irqsave(&first->b_uptodate_lock, flags);
406
407         clear_buffer_async_write(bh);
408         unlock_buffer(bh);
409         tmp = bh->b_this_page;
410         while (tmp != bh) {
411                 if (buffer_async_write(tmp)) {
412                         BUG_ON(!buffer_locked(tmp));
413                         goto still_busy;
414                 }
415                 tmp = tmp->b_this_page;
416         }
417         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
418         folio_end_writeback(folio);
419         return;
420
421 still_busy:
422         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
423         return;
424 }
425 EXPORT_SYMBOL(end_buffer_async_write);
426
427 /*
428  * If a page's buffers are under async readin (end_buffer_async_read
429  * completion) then there is a possibility that another thread of
430  * control could lock one of the buffers after it has completed
431  * but while some of the other buffers have not completed.  This
432  * locked buffer would confuse end_buffer_async_read() into not unlocking
433  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
434  * that this buffer is not under async I/O.
435  *
436  * The page comes unlocked when it has no locked buffer_async buffers
437  * left.
438  *
439  * PageLocked prevents anyone starting new async I/O reads any of
440  * the buffers.
441  *
442  * PageWriteback is used to prevent simultaneous writeout of the same
443  * page.
444  *
445  * PageLocked prevents anyone from starting writeback of a page which is
446  * under read I/O (PageWriteback is only ever set against a locked page).
447  */
448 static void mark_buffer_async_read(struct buffer_head *bh)
449 {
450         bh->b_end_io = end_buffer_async_read_io;
451         set_buffer_async_read(bh);
452 }
453
454 static void mark_buffer_async_write_endio(struct buffer_head *bh,
455                                           bh_end_io_t *handler)
456 {
457         bh->b_end_io = handler;
458         set_buffer_async_write(bh);
459 }
460
461 void mark_buffer_async_write(struct buffer_head *bh)
462 {
463         mark_buffer_async_write_endio(bh, end_buffer_async_write);
464 }
465 EXPORT_SYMBOL(mark_buffer_async_write);
466
467
468 /*
469  * fs/buffer.c contains helper functions for buffer-backed address space's
470  * fsync functions.  A common requirement for buffer-based filesystems is
471  * that certain data from the backing blockdev needs to be written out for
472  * a successful fsync().  For example, ext2 indirect blocks need to be
473  * written back and waited upon before fsync() returns.
474  *
475  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
476  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
477  * management of a list of dependent buffers at ->i_mapping->private_list.
478  *
479  * Locking is a little subtle: try_to_free_buffers() will remove buffers
480  * from their controlling inode's queue when they are being freed.  But
481  * try_to_free_buffers() will be operating against the *blockdev* mapping
482  * at the time, not against the S_ISREG file which depends on those buffers.
483  * So the locking for private_list is via the private_lock in the address_space
484  * which backs the buffers.  Which is different from the address_space 
485  * against which the buffers are listed.  So for a particular address_space,
486  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
487  * mapping->private_list will always be protected by the backing blockdev's
488  * ->private_lock.
489  *
490  * Which introduces a requirement: all buffers on an address_space's
491  * ->private_list must be from the same address_space: the blockdev's.
492  *
493  * address_spaces which do not place buffers at ->private_list via these
494  * utility functions are free to use private_lock and private_list for
495  * whatever they want.  The only requirement is that list_empty(private_list)
496  * be true at clear_inode() time.
497  *
498  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
499  * filesystems should do that.  invalidate_inode_buffers() should just go
500  * BUG_ON(!list_empty).
501  *
502  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
503  * take an address_space, not an inode.  And it should be called
504  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
505  * queued up.
506  *
507  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
508  * list if it is already on a list.  Because if the buffer is on a list,
509  * it *must* already be on the right one.  If not, the filesystem is being
510  * silly.  This will save a ton of locking.  But first we have to ensure
511  * that buffers are taken *off* the old inode's list when they are freed
512  * (presumably in truncate).  That requires careful auditing of all
513  * filesystems (do it inside bforget()).  It could also be done by bringing
514  * b_inode back.
515  */
516
517 /*
518  * The buffer's backing address_space's private_lock must be held
519  */
520 static void __remove_assoc_queue(struct buffer_head *bh)
521 {
522         list_del_init(&bh->b_assoc_buffers);
523         WARN_ON(!bh->b_assoc_map);
524         bh->b_assoc_map = NULL;
525 }
526
527 int inode_has_buffers(struct inode *inode)
528 {
529         return !list_empty(&inode->i_data.private_list);
530 }
531
532 /*
533  * osync is designed to support O_SYNC io.  It waits synchronously for
534  * all already-submitted IO to complete, but does not queue any new
535  * writes to the disk.
536  *
537  * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer
538  * as you dirty the buffers, and then use osync_inode_buffers to wait for
539  * completion.  Any other dirty buffers which are not yet queued for
540  * write will not be flushed to disk by the osync.
541  */
542 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
543 {
544         struct buffer_head *bh;
545         struct list_head *p;
546         int err = 0;
547
548         spin_lock(lock);
549 repeat:
550         list_for_each_prev(p, list) {
551                 bh = BH_ENTRY(p);
552                 if (buffer_locked(bh)) {
553                         get_bh(bh);
554                         spin_unlock(lock);
555                         wait_on_buffer(bh);
556                         if (!buffer_uptodate(bh))
557                                 err = -EIO;
558                         brelse(bh);
559                         spin_lock(lock);
560                         goto repeat;
561                 }
562         }
563         spin_unlock(lock);
564         return err;
565 }
566
567 void emergency_thaw_bdev(struct super_block *sb)
568 {
569         while (sb->s_bdev && !thaw_bdev(sb->s_bdev))
570                 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
571 }
572
573 /**
574  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
575  * @mapping: the mapping which wants those buffers written
576  *
577  * Starts I/O against the buffers at mapping->private_list, and waits upon
578  * that I/O.
579  *
580  * Basically, this is a convenience function for fsync().
581  * @mapping is a file or directory which needs those buffers to be written for
582  * a successful fsync().
583  */
584 int sync_mapping_buffers(struct address_space *mapping)
585 {
586         struct address_space *buffer_mapping = mapping->private_data;
587
588         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
589                 return 0;
590
591         return fsync_buffers_list(&buffer_mapping->private_lock,
592                                         &mapping->private_list);
593 }
594 EXPORT_SYMBOL(sync_mapping_buffers);
595
596 /*
597  * Called when we've recently written block `bblock', and it is known that
598  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
599  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
600  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
601  */
602 void write_boundary_block(struct block_device *bdev,
603                         sector_t bblock, unsigned blocksize)
604 {
605         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
606         if (bh) {
607                 if (buffer_dirty(bh))
608                         write_dirty_buffer(bh, 0);
609                 put_bh(bh);
610         }
611 }
612
613 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
614 {
615         struct address_space *mapping = inode->i_mapping;
616         struct address_space *buffer_mapping = bh->b_folio->mapping;
617
618         mark_buffer_dirty(bh);
619         if (!mapping->private_data) {
620                 mapping->private_data = buffer_mapping;
621         } else {
622                 BUG_ON(mapping->private_data != buffer_mapping);
623         }
624         if (!bh->b_assoc_map) {
625                 spin_lock(&buffer_mapping->private_lock);
626                 list_move_tail(&bh->b_assoc_buffers,
627                                 &mapping->private_list);
628                 bh->b_assoc_map = mapping;
629                 spin_unlock(&buffer_mapping->private_lock);
630         }
631 }
632 EXPORT_SYMBOL(mark_buffer_dirty_inode);
633
634 /*
635  * Add a page to the dirty page list.
636  *
637  * It is a sad fact of life that this function is called from several places
638  * deeply under spinlocking.  It may not sleep.
639  *
640  * If the page has buffers, the uptodate buffers are set dirty, to preserve
641  * dirty-state coherency between the page and the buffers.  It the page does
642  * not have buffers then when they are later attached they will all be set
643  * dirty.
644  *
645  * The buffers are dirtied before the page is dirtied.  There's a small race
646  * window in which a writepage caller may see the page cleanness but not the
647  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
648  * before the buffers, a concurrent writepage caller could clear the page dirty
649  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
650  * page on the dirty page list.
651  *
652  * We use private_lock to lock against try_to_free_buffers while using the
653  * page's buffer list.  Also use this to protect against clean buffers being
654  * added to the page after it was set dirty.
655  *
656  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
657  * address_space though.
658  */
659 bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
660 {
661         struct buffer_head *head;
662         bool newly_dirty;
663
664         spin_lock(&mapping->private_lock);
665         head = folio_buffers(folio);
666         if (head) {
667                 struct buffer_head *bh = head;
668
669                 do {
670                         set_buffer_dirty(bh);
671                         bh = bh->b_this_page;
672                 } while (bh != head);
673         }
674         /*
675          * Lock out page's memcg migration to keep PageDirty
676          * synchronized with per-memcg dirty page counters.
677          */
678         folio_memcg_lock(folio);
679         newly_dirty = !folio_test_set_dirty(folio);
680         spin_unlock(&mapping->private_lock);
681
682         if (newly_dirty)
683                 __folio_mark_dirty(folio, mapping, 1);
684
685         folio_memcg_unlock(folio);
686
687         if (newly_dirty)
688                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
689
690         return newly_dirty;
691 }
692 EXPORT_SYMBOL(block_dirty_folio);
693
694 /*
695  * Write out and wait upon a list of buffers.
696  *
697  * We have conflicting pressures: we want to make sure that all
698  * initially dirty buffers get waited on, but that any subsequently
699  * dirtied buffers don't.  After all, we don't want fsync to last
700  * forever if somebody is actively writing to the file.
701  *
702  * Do this in two main stages: first we copy dirty buffers to a
703  * temporary inode list, queueing the writes as we go.  Then we clean
704  * up, waiting for those writes to complete.
705  * 
706  * During this second stage, any subsequent updates to the file may end
707  * up refiling the buffer on the original inode's dirty list again, so
708  * there is a chance we will end up with a buffer queued for write but
709  * not yet completed on that list.  So, as a final cleanup we go through
710  * the osync code to catch these locked, dirty buffers without requeuing
711  * any newly dirty buffers for write.
712  */
713 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
714 {
715         struct buffer_head *bh;
716         struct list_head tmp;
717         struct address_space *mapping;
718         int err = 0, err2;
719         struct blk_plug plug;
720
721         INIT_LIST_HEAD(&tmp);
722         blk_start_plug(&plug);
723
724         spin_lock(lock);
725         while (!list_empty(list)) {
726                 bh = BH_ENTRY(list->next);
727                 mapping = bh->b_assoc_map;
728                 __remove_assoc_queue(bh);
729                 /* Avoid race with mark_buffer_dirty_inode() which does
730                  * a lockless check and we rely on seeing the dirty bit */
731                 smp_mb();
732                 if (buffer_dirty(bh) || buffer_locked(bh)) {
733                         list_add(&bh->b_assoc_buffers, &tmp);
734                         bh->b_assoc_map = mapping;
735                         if (buffer_dirty(bh)) {
736                                 get_bh(bh);
737                                 spin_unlock(lock);
738                                 /*
739                                  * Ensure any pending I/O completes so that
740                                  * write_dirty_buffer() actually writes the
741                                  * current contents - it is a noop if I/O is
742                                  * still in flight on potentially older
743                                  * contents.
744                                  */
745                                 write_dirty_buffer(bh, REQ_SYNC);
746
747                                 /*
748                                  * Kick off IO for the previous mapping. Note
749                                  * that we will not run the very last mapping,
750                                  * wait_on_buffer() will do that for us
751                                  * through sync_buffer().
752                                  */
753                                 brelse(bh);
754                                 spin_lock(lock);
755                         }
756                 }
757         }
758
759         spin_unlock(lock);
760         blk_finish_plug(&plug);
761         spin_lock(lock);
762
763         while (!list_empty(&tmp)) {
764                 bh = BH_ENTRY(tmp.prev);
765                 get_bh(bh);
766                 mapping = bh->b_assoc_map;
767                 __remove_assoc_queue(bh);
768                 /* Avoid race with mark_buffer_dirty_inode() which does
769                  * a lockless check and we rely on seeing the dirty bit */
770                 smp_mb();
771                 if (buffer_dirty(bh)) {
772                         list_add(&bh->b_assoc_buffers,
773                                  &mapping->private_list);
774                         bh->b_assoc_map = mapping;
775                 }
776                 spin_unlock(lock);
777                 wait_on_buffer(bh);
778                 if (!buffer_uptodate(bh))
779                         err = -EIO;
780                 brelse(bh);
781                 spin_lock(lock);
782         }
783         
784         spin_unlock(lock);
785         err2 = osync_buffers_list(lock, list);
786         if (err)
787                 return err;
788         else
789                 return err2;
790 }
791
792 /*
793  * Invalidate any and all dirty buffers on a given inode.  We are
794  * probably unmounting the fs, but that doesn't mean we have already
795  * done a sync().  Just drop the buffers from the inode list.
796  *
797  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
798  * assumes that all the buffers are against the blockdev.  Not true
799  * for reiserfs.
800  */
801 void invalidate_inode_buffers(struct inode *inode)
802 {
803         if (inode_has_buffers(inode)) {
804                 struct address_space *mapping = &inode->i_data;
805                 struct list_head *list = &mapping->private_list;
806                 struct address_space *buffer_mapping = mapping->private_data;
807
808                 spin_lock(&buffer_mapping->private_lock);
809                 while (!list_empty(list))
810                         __remove_assoc_queue(BH_ENTRY(list->next));
811                 spin_unlock(&buffer_mapping->private_lock);
812         }
813 }
814 EXPORT_SYMBOL(invalidate_inode_buffers);
815
816 /*
817  * Remove any clean buffers from the inode's buffer list.  This is called
818  * when we're trying to free the inode itself.  Those buffers can pin it.
819  *
820  * Returns true if all buffers were removed.
821  */
822 int remove_inode_buffers(struct inode *inode)
823 {
824         int ret = 1;
825
826         if (inode_has_buffers(inode)) {
827                 struct address_space *mapping = &inode->i_data;
828                 struct list_head *list = &mapping->private_list;
829                 struct address_space *buffer_mapping = mapping->private_data;
830
831                 spin_lock(&buffer_mapping->private_lock);
832                 while (!list_empty(list)) {
833                         struct buffer_head *bh = BH_ENTRY(list->next);
834                         if (buffer_dirty(bh)) {
835                                 ret = 0;
836                                 break;
837                         }
838                         __remove_assoc_queue(bh);
839                 }
840                 spin_unlock(&buffer_mapping->private_lock);
841         }
842         return ret;
843 }
844
845 /*
846  * Create the appropriate buffers when given a folio for data area and
847  * the size of each buffer.. Use the bh->b_this_page linked list to
848  * follow the buffers created.  Return NULL if unable to create more
849  * buffers.
850  *
851  * The retry flag is used to differentiate async IO (paging, swapping)
852  * which may not fail from ordinary buffer allocations.
853  */
854 struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size,
855                                         bool retry)
856 {
857         struct buffer_head *bh, *head;
858         gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
859         long offset;
860         struct mem_cgroup *memcg, *old_memcg;
861
862         if (retry)
863                 gfp |= __GFP_NOFAIL;
864
865         /* The folio lock pins the memcg */
866         memcg = folio_memcg(folio);
867         old_memcg = set_active_memcg(memcg);
868
869         head = NULL;
870         offset = folio_size(folio);
871         while ((offset -= size) >= 0) {
872                 bh = alloc_buffer_head(gfp);
873                 if (!bh)
874                         goto no_grow;
875
876                 bh->b_this_page = head;
877                 bh->b_blocknr = -1;
878                 head = bh;
879
880                 bh->b_size = size;
881
882                 /* Link the buffer to its folio */
883                 folio_set_bh(bh, folio, offset);
884         }
885 out:
886         set_active_memcg(old_memcg);
887         return head;
888 /*
889  * In case anything failed, we just free everything we got.
890  */
891 no_grow:
892         if (head) {
893                 do {
894                         bh = head;
895                         head = head->b_this_page;
896                         free_buffer_head(bh);
897                 } while (head);
898         }
899
900         goto out;
901 }
902 EXPORT_SYMBOL_GPL(folio_alloc_buffers);
903
904 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
905                                        bool retry)
906 {
907         return folio_alloc_buffers(page_folio(page), size, retry);
908 }
909 EXPORT_SYMBOL_GPL(alloc_page_buffers);
910
911 static inline void
912 link_dev_buffers(struct page *page, struct buffer_head *head)
913 {
914         struct buffer_head *bh, *tail;
915
916         bh = head;
917         do {
918                 tail = bh;
919                 bh = bh->b_this_page;
920         } while (bh);
921         tail->b_this_page = head;
922         attach_page_private(page, head);
923 }
924
925 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
926 {
927         sector_t retval = ~((sector_t)0);
928         loff_t sz = bdev_nr_bytes(bdev);
929
930         if (sz) {
931                 unsigned int sizebits = blksize_bits(size);
932                 retval = (sz >> sizebits);
933         }
934         return retval;
935 }
936
937 /*
938  * Initialise the state of a blockdev page's buffers.
939  */ 
940 static sector_t
941 init_page_buffers(struct page *page, struct block_device *bdev,
942                         sector_t block, int size)
943 {
944         struct buffer_head *head = page_buffers(page);
945         struct buffer_head *bh = head;
946         int uptodate = PageUptodate(page);
947         sector_t end_block = blkdev_max_block(bdev, size);
948
949         do {
950                 if (!buffer_mapped(bh)) {
951                         bh->b_end_io = NULL;
952                         bh->b_private = NULL;
953                         bh->b_bdev = bdev;
954                         bh->b_blocknr = block;
955                         if (uptodate)
956                                 set_buffer_uptodate(bh);
957                         if (block < end_block)
958                                 set_buffer_mapped(bh);
959                 }
960                 block++;
961                 bh = bh->b_this_page;
962         } while (bh != head);
963
964         /*
965          * Caller needs to validate requested block against end of device.
966          */
967         return end_block;
968 }
969
970 /*
971  * Create the page-cache page that contains the requested block.
972  *
973  * This is used purely for blockdev mappings.
974  */
975 static int
976 grow_dev_page(struct block_device *bdev, sector_t block,
977               pgoff_t index, int size, int sizebits, gfp_t gfp)
978 {
979         struct inode *inode = bdev->bd_inode;
980         struct page *page;
981         struct buffer_head *bh;
982         sector_t end_block;
983         int ret = 0;
984         gfp_t gfp_mask;
985
986         gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
987
988         /*
989          * XXX: __getblk_slow() can not really deal with failure and
990          * will endlessly loop on improvised global reclaim.  Prefer
991          * looping in the allocator rather than here, at least that
992          * code knows what it's doing.
993          */
994         gfp_mask |= __GFP_NOFAIL;
995
996         page = find_or_create_page(inode->i_mapping, index, gfp_mask);
997
998         BUG_ON(!PageLocked(page));
999
1000         if (page_has_buffers(page)) {
1001                 bh = page_buffers(page);
1002                 if (bh->b_size == size) {
1003                         end_block = init_page_buffers(page, bdev,
1004                                                 (sector_t)index << sizebits,
1005                                                 size);
1006                         goto done;
1007                 }
1008                 if (!try_to_free_buffers(page_folio(page)))
1009                         goto failed;
1010         }
1011
1012         /*
1013          * Allocate some buffers for this page
1014          */
1015         bh = alloc_page_buffers(page, size, true);
1016
1017         /*
1018          * Link the page to the buffers and initialise them.  Take the
1019          * lock to be atomic wrt __find_get_block(), which does not
1020          * run under the page lock.
1021          */
1022         spin_lock(&inode->i_mapping->private_lock);
1023         link_dev_buffers(page, bh);
1024         end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1025                         size);
1026         spin_unlock(&inode->i_mapping->private_lock);
1027 done:
1028         ret = (block < end_block) ? 1 : -ENXIO;
1029 failed:
1030         unlock_page(page);
1031         put_page(page);
1032         return ret;
1033 }
1034
1035 /*
1036  * Create buffers for the specified block device block's page.  If
1037  * that page was dirty, the buffers are set dirty also.
1038  */
1039 static int
1040 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1041 {
1042         pgoff_t index;
1043         int sizebits;
1044
1045         sizebits = PAGE_SHIFT - __ffs(size);
1046         index = block >> sizebits;
1047
1048         /*
1049          * Check for a block which wants to lie outside our maximum possible
1050          * pagecache index.  (this comparison is done using sector_t types).
1051          */
1052         if (unlikely(index != block >> sizebits)) {
1053                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1054                         "device %pg\n",
1055                         __func__, (unsigned long long)block,
1056                         bdev);
1057                 return -EIO;
1058         }
1059
1060         /* Create a page with the proper size buffers.. */
1061         return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1062 }
1063
1064 static struct buffer_head *
1065 __getblk_slow(struct block_device *bdev, sector_t block,
1066              unsigned size, gfp_t gfp)
1067 {
1068         /* Size must be multiple of hard sectorsize */
1069         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1070                         (size < 512 || size > PAGE_SIZE))) {
1071                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1072                                         size);
1073                 printk(KERN_ERR "logical block size: %d\n",
1074                                         bdev_logical_block_size(bdev));
1075
1076                 dump_stack();
1077                 return NULL;
1078         }
1079
1080         for (;;) {
1081                 struct buffer_head *bh;
1082                 int ret;
1083
1084                 bh = __find_get_block(bdev, block, size);
1085                 if (bh)
1086                         return bh;
1087
1088                 ret = grow_buffers(bdev, block, size, gfp);
1089                 if (ret < 0)
1090                         return NULL;
1091         }
1092 }
1093
1094 /*
1095  * The relationship between dirty buffers and dirty pages:
1096  *
1097  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1098  * the page is tagged dirty in the page cache.
1099  *
1100  * At all times, the dirtiness of the buffers represents the dirtiness of
1101  * subsections of the page.  If the page has buffers, the page dirty bit is
1102  * merely a hint about the true dirty state.
1103  *
1104  * When a page is set dirty in its entirety, all its buffers are marked dirty
1105  * (if the page has buffers).
1106  *
1107  * When a buffer is marked dirty, its page is dirtied, but the page's other
1108  * buffers are not.
1109  *
1110  * Also.  When blockdev buffers are explicitly read with bread(), they
1111  * individually become uptodate.  But their backing page remains not
1112  * uptodate - even if all of its buffers are uptodate.  A subsequent
1113  * block_read_full_folio() against that folio will discover all the uptodate
1114  * buffers, will set the folio uptodate and will perform no I/O.
1115  */
1116
1117 /**
1118  * mark_buffer_dirty - mark a buffer_head as needing writeout
1119  * @bh: the buffer_head to mark dirty
1120  *
1121  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1122  * its backing page dirty, then tag the page as dirty in the page cache
1123  * and then attach the address_space's inode to its superblock's dirty
1124  * inode list.
1125  *
1126  * mark_buffer_dirty() is atomic.  It takes bh->b_folio->mapping->private_lock,
1127  * i_pages lock and mapping->host->i_lock.
1128  */
1129 void mark_buffer_dirty(struct buffer_head *bh)
1130 {
1131         WARN_ON_ONCE(!buffer_uptodate(bh));
1132
1133         trace_block_dirty_buffer(bh);
1134
1135         /*
1136          * Very *carefully* optimize the it-is-already-dirty case.
1137          *
1138          * Don't let the final "is it dirty" escape to before we
1139          * perhaps modified the buffer.
1140          */
1141         if (buffer_dirty(bh)) {
1142                 smp_mb();
1143                 if (buffer_dirty(bh))
1144                         return;
1145         }
1146
1147         if (!test_set_buffer_dirty(bh)) {
1148                 struct folio *folio = bh->b_folio;
1149                 struct address_space *mapping = NULL;
1150
1151                 folio_memcg_lock(folio);
1152                 if (!folio_test_set_dirty(folio)) {
1153                         mapping = folio->mapping;
1154                         if (mapping)
1155                                 __folio_mark_dirty(folio, mapping, 0);
1156                 }
1157                 folio_memcg_unlock(folio);
1158                 if (mapping)
1159                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1160         }
1161 }
1162 EXPORT_SYMBOL(mark_buffer_dirty);
1163
1164 void mark_buffer_write_io_error(struct buffer_head *bh)
1165 {
1166         struct super_block *sb;
1167
1168         set_buffer_write_io_error(bh);
1169         /* FIXME: do we need to set this in both places? */
1170         if (bh->b_folio && bh->b_folio->mapping)
1171                 mapping_set_error(bh->b_folio->mapping, -EIO);
1172         if (bh->b_assoc_map)
1173                 mapping_set_error(bh->b_assoc_map, -EIO);
1174         rcu_read_lock();
1175         sb = READ_ONCE(bh->b_bdev->bd_super);
1176         if (sb)
1177                 errseq_set(&sb->s_wb_err, -EIO);
1178         rcu_read_unlock();
1179 }
1180 EXPORT_SYMBOL(mark_buffer_write_io_error);
1181
1182 /*
1183  * Decrement a buffer_head's reference count.  If all buffers against a page
1184  * have zero reference count, are clean and unlocked, and if the page is clean
1185  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1186  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1187  * a page but it ends up not being freed, and buffers may later be reattached).
1188  */
1189 void __brelse(struct buffer_head * buf)
1190 {
1191         if (atomic_read(&buf->b_count)) {
1192                 put_bh(buf);
1193                 return;
1194         }
1195         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1196 }
1197 EXPORT_SYMBOL(__brelse);
1198
1199 /*
1200  * bforget() is like brelse(), except it discards any
1201  * potentially dirty data.
1202  */
1203 void __bforget(struct buffer_head *bh)
1204 {
1205         clear_buffer_dirty(bh);
1206         if (bh->b_assoc_map) {
1207                 struct address_space *buffer_mapping = bh->b_folio->mapping;
1208
1209                 spin_lock(&buffer_mapping->private_lock);
1210                 list_del_init(&bh->b_assoc_buffers);
1211                 bh->b_assoc_map = NULL;
1212                 spin_unlock(&buffer_mapping->private_lock);
1213         }
1214         __brelse(bh);
1215 }
1216 EXPORT_SYMBOL(__bforget);
1217
1218 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1219 {
1220         lock_buffer(bh);
1221         if (buffer_uptodate(bh)) {
1222                 unlock_buffer(bh);
1223                 return bh;
1224         } else {
1225                 get_bh(bh);
1226                 bh->b_end_io = end_buffer_read_sync;
1227                 submit_bh(REQ_OP_READ, bh);
1228                 wait_on_buffer(bh);
1229                 if (buffer_uptodate(bh))
1230                         return bh;
1231         }
1232         brelse(bh);
1233         return NULL;
1234 }
1235
1236 /*
1237  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1238  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1239  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1240  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1241  * CPU's LRUs at the same time.
1242  *
1243  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1244  * sb_find_get_block().
1245  *
1246  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1247  * a local interrupt disable for that.
1248  */
1249
1250 #define BH_LRU_SIZE     16
1251
1252 struct bh_lru {
1253         struct buffer_head *bhs[BH_LRU_SIZE];
1254 };
1255
1256 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1257
1258 #ifdef CONFIG_SMP
1259 #define bh_lru_lock()   local_irq_disable()
1260 #define bh_lru_unlock() local_irq_enable()
1261 #else
1262 #define bh_lru_lock()   preempt_disable()
1263 #define bh_lru_unlock() preempt_enable()
1264 #endif
1265
1266 static inline void check_irqs_on(void)
1267 {
1268 #ifdef irqs_disabled
1269         BUG_ON(irqs_disabled());
1270 #endif
1271 }
1272
1273 /*
1274  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1275  * inserted at the front, and the buffer_head at the back if any is evicted.
1276  * Or, if already in the LRU it is moved to the front.
1277  */
1278 static void bh_lru_install(struct buffer_head *bh)
1279 {
1280         struct buffer_head *evictee = bh;
1281         struct bh_lru *b;
1282         int i;
1283
1284         check_irqs_on();
1285         bh_lru_lock();
1286
1287         /*
1288          * the refcount of buffer_head in bh_lru prevents dropping the
1289          * attached page(i.e., try_to_free_buffers) so it could cause
1290          * failing page migration.
1291          * Skip putting upcoming bh into bh_lru until migration is done.
1292          */
1293         if (lru_cache_disabled()) {
1294                 bh_lru_unlock();
1295                 return;
1296         }
1297
1298         b = this_cpu_ptr(&bh_lrus);
1299         for (i = 0; i < BH_LRU_SIZE; i++) {
1300                 swap(evictee, b->bhs[i]);
1301                 if (evictee == bh) {
1302                         bh_lru_unlock();
1303                         return;
1304                 }
1305         }
1306
1307         get_bh(bh);
1308         bh_lru_unlock();
1309         brelse(evictee);
1310 }
1311
1312 /*
1313  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1314  */
1315 static struct buffer_head *
1316 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1317 {
1318         struct buffer_head *ret = NULL;
1319         unsigned int i;
1320
1321         check_irqs_on();
1322         bh_lru_lock();
1323         for (i = 0; i < BH_LRU_SIZE; i++) {
1324                 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1325
1326                 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1327                     bh->b_size == size) {
1328                         if (i) {
1329                                 while (i) {
1330                                         __this_cpu_write(bh_lrus.bhs[i],
1331                                                 __this_cpu_read(bh_lrus.bhs[i - 1]));
1332                                         i--;
1333                                 }
1334                                 __this_cpu_write(bh_lrus.bhs[0], bh);
1335                         }
1336                         get_bh(bh);
1337                         ret = bh;
1338                         break;
1339                 }
1340         }
1341         bh_lru_unlock();
1342         return ret;
1343 }
1344
1345 /*
1346  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1347  * it in the LRU and mark it as accessed.  If it is not present then return
1348  * NULL
1349  */
1350 struct buffer_head *
1351 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1352 {
1353         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1354
1355         if (bh == NULL) {
1356                 /* __find_get_block_slow will mark the page accessed */
1357                 bh = __find_get_block_slow(bdev, block);
1358                 if (bh)
1359                         bh_lru_install(bh);
1360         } else
1361                 touch_buffer(bh);
1362
1363         return bh;
1364 }
1365 EXPORT_SYMBOL(__find_get_block);
1366
1367 /*
1368  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1369  * which corresponds to the passed block_device, block and size. The
1370  * returned buffer has its reference count incremented.
1371  *
1372  * __getblk_gfp() will lock up the machine if grow_dev_page's
1373  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1374  */
1375 struct buffer_head *
1376 __getblk_gfp(struct block_device *bdev, sector_t block,
1377              unsigned size, gfp_t gfp)
1378 {
1379         struct buffer_head *bh = __find_get_block(bdev, block, size);
1380
1381         might_sleep();
1382         if (bh == NULL)
1383                 bh = __getblk_slow(bdev, block, size, gfp);
1384         return bh;
1385 }
1386 EXPORT_SYMBOL(__getblk_gfp);
1387
1388 /*
1389  * Do async read-ahead on a buffer..
1390  */
1391 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1392 {
1393         struct buffer_head *bh = __getblk(bdev, block, size);
1394         if (likely(bh)) {
1395                 bh_readahead(bh, REQ_RAHEAD);
1396                 brelse(bh);
1397         }
1398 }
1399 EXPORT_SYMBOL(__breadahead);
1400
1401 /**
1402  *  __bread_gfp() - reads a specified block and returns the bh
1403  *  @bdev: the block_device to read from
1404  *  @block: number of block
1405  *  @size: size (in bytes) to read
1406  *  @gfp: page allocation flag
1407  *
1408  *  Reads a specified block, and returns buffer head that contains it.
1409  *  The page cache can be allocated from non-movable area
1410  *  not to prevent page migration if you set gfp to zero.
1411  *  It returns NULL if the block was unreadable.
1412  */
1413 struct buffer_head *
1414 __bread_gfp(struct block_device *bdev, sector_t block,
1415                    unsigned size, gfp_t gfp)
1416 {
1417         struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1418
1419         if (likely(bh) && !buffer_uptodate(bh))
1420                 bh = __bread_slow(bh);
1421         return bh;
1422 }
1423 EXPORT_SYMBOL(__bread_gfp);
1424
1425 static void __invalidate_bh_lrus(struct bh_lru *b)
1426 {
1427         int i;
1428
1429         for (i = 0; i < BH_LRU_SIZE; i++) {
1430                 brelse(b->bhs[i]);
1431                 b->bhs[i] = NULL;
1432         }
1433 }
1434 /*
1435  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1436  * This doesn't race because it runs in each cpu either in irq
1437  * or with preempt disabled.
1438  */
1439 static void invalidate_bh_lru(void *arg)
1440 {
1441         struct bh_lru *b = &get_cpu_var(bh_lrus);
1442
1443         __invalidate_bh_lrus(b);
1444         put_cpu_var(bh_lrus);
1445 }
1446
1447 bool has_bh_in_lru(int cpu, void *dummy)
1448 {
1449         struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1450         int i;
1451         
1452         for (i = 0; i < BH_LRU_SIZE; i++) {
1453                 if (b->bhs[i])
1454                         return true;
1455         }
1456
1457         return false;
1458 }
1459
1460 void invalidate_bh_lrus(void)
1461 {
1462         on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1463 }
1464 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1465
1466 /*
1467  * It's called from workqueue context so we need a bh_lru_lock to close
1468  * the race with preemption/irq.
1469  */
1470 void invalidate_bh_lrus_cpu(void)
1471 {
1472         struct bh_lru *b;
1473
1474         bh_lru_lock();
1475         b = this_cpu_ptr(&bh_lrus);
1476         __invalidate_bh_lrus(b);
1477         bh_lru_unlock();
1478 }
1479
1480 void set_bh_page(struct buffer_head *bh,
1481                 struct page *page, unsigned long offset)
1482 {
1483         bh->b_page = page;
1484         BUG_ON(offset >= PAGE_SIZE);
1485         if (PageHighMem(page))
1486                 /*
1487                  * This catches illegal uses and preserves the offset:
1488                  */
1489                 bh->b_data = (char *)(0 + offset);
1490         else
1491                 bh->b_data = page_address(page) + offset;
1492 }
1493 EXPORT_SYMBOL(set_bh_page);
1494
1495 void folio_set_bh(struct buffer_head *bh, struct folio *folio,
1496                   unsigned long offset)
1497 {
1498         bh->b_folio = folio;
1499         BUG_ON(offset >= folio_size(folio));
1500         if (folio_test_highmem(folio))
1501                 /*
1502                  * This catches illegal uses and preserves the offset:
1503                  */
1504                 bh->b_data = (char *)(0 + offset);
1505         else
1506                 bh->b_data = folio_address(folio) + offset;
1507 }
1508 EXPORT_SYMBOL(folio_set_bh);
1509
1510 /*
1511  * Called when truncating a buffer on a page completely.
1512  */
1513
1514 /* Bits that are cleared during an invalidate */
1515 #define BUFFER_FLAGS_DISCARD \
1516         (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1517          1 << BH_Delay | 1 << BH_Unwritten)
1518
1519 static void discard_buffer(struct buffer_head * bh)
1520 {
1521         unsigned long b_state;
1522
1523         lock_buffer(bh);
1524         clear_buffer_dirty(bh);
1525         bh->b_bdev = NULL;
1526         b_state = READ_ONCE(bh->b_state);
1527         do {
1528         } while (!try_cmpxchg(&bh->b_state, &b_state,
1529                               b_state & ~BUFFER_FLAGS_DISCARD));
1530         unlock_buffer(bh);
1531 }
1532
1533 /**
1534  * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1535  * @folio: The folio which is affected.
1536  * @offset: start of the range to invalidate
1537  * @length: length of the range to invalidate
1538  *
1539  * block_invalidate_folio() is called when all or part of the folio has been
1540  * invalidated by a truncate operation.
1541  *
1542  * block_invalidate_folio() does not have to release all buffers, but it must
1543  * ensure that no dirty buffer is left outside @offset and that no I/O
1544  * is underway against any of the blocks which are outside the truncation
1545  * point.  Because the caller is about to free (and possibly reuse) those
1546  * blocks on-disk.
1547  */
1548 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
1549 {
1550         struct buffer_head *head, *bh, *next;
1551         size_t curr_off = 0;
1552         size_t stop = length + offset;
1553
1554         BUG_ON(!folio_test_locked(folio));
1555
1556         /*
1557          * Check for overflow
1558          */
1559         BUG_ON(stop > folio_size(folio) || stop < length);
1560
1561         head = folio_buffers(folio);
1562         if (!head)
1563                 return;
1564
1565         bh = head;
1566         do {
1567                 size_t next_off = curr_off + bh->b_size;
1568                 next = bh->b_this_page;
1569
1570                 /*
1571                  * Are we still fully in range ?
1572                  */
1573                 if (next_off > stop)
1574                         goto out;
1575
1576                 /*
1577                  * is this block fully invalidated?
1578                  */
1579                 if (offset <= curr_off)
1580                         discard_buffer(bh);
1581                 curr_off = next_off;
1582                 bh = next;
1583         } while (bh != head);
1584
1585         /*
1586          * We release buffers only if the entire folio is being invalidated.
1587          * The get_block cached value has been unconditionally invalidated,
1588          * so real IO is not possible anymore.
1589          */
1590         if (length == folio_size(folio))
1591                 filemap_release_folio(folio, 0);
1592 out:
1593         return;
1594 }
1595 EXPORT_SYMBOL(block_invalidate_folio);
1596
1597 /*
1598  * We attach and possibly dirty the buffers atomically wrt
1599  * block_dirty_folio() via private_lock.  try_to_free_buffers
1600  * is already excluded via the folio lock.
1601  */
1602 void folio_create_empty_buffers(struct folio *folio, unsigned long blocksize,
1603                                 unsigned long b_state)
1604 {
1605         struct buffer_head *bh, *head, *tail;
1606
1607         head = folio_alloc_buffers(folio, blocksize, true);
1608         bh = head;
1609         do {
1610                 bh->b_state |= b_state;
1611                 tail = bh;
1612                 bh = bh->b_this_page;
1613         } while (bh);
1614         tail->b_this_page = head;
1615
1616         spin_lock(&folio->mapping->private_lock);
1617         if (folio_test_uptodate(folio) || folio_test_dirty(folio)) {
1618                 bh = head;
1619                 do {
1620                         if (folio_test_dirty(folio))
1621                                 set_buffer_dirty(bh);
1622                         if (folio_test_uptodate(folio))
1623                                 set_buffer_uptodate(bh);
1624                         bh = bh->b_this_page;
1625                 } while (bh != head);
1626         }
1627         folio_attach_private(folio, head);
1628         spin_unlock(&folio->mapping->private_lock);
1629 }
1630 EXPORT_SYMBOL(folio_create_empty_buffers);
1631
1632 void create_empty_buffers(struct page *page,
1633                         unsigned long blocksize, unsigned long b_state)
1634 {
1635         folio_create_empty_buffers(page_folio(page), blocksize, b_state);
1636 }
1637 EXPORT_SYMBOL(create_empty_buffers);
1638
1639 /**
1640  * clean_bdev_aliases: clean a range of buffers in block device
1641  * @bdev: Block device to clean buffers in
1642  * @block: Start of a range of blocks to clean
1643  * @len: Number of blocks to clean
1644  *
1645  * We are taking a range of blocks for data and we don't want writeback of any
1646  * buffer-cache aliases starting from return from this function and until the
1647  * moment when something will explicitly mark the buffer dirty (hopefully that
1648  * will not happen until we will free that block ;-) We don't even need to mark
1649  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1650  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1651  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1652  * would confuse anyone who might pick it with bread() afterwards...
1653  *
1654  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1655  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1656  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1657  * need to.  That happens here.
1658  */
1659 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1660 {
1661         struct inode *bd_inode = bdev->bd_inode;
1662         struct address_space *bd_mapping = bd_inode->i_mapping;
1663         struct folio_batch fbatch;
1664         pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1665         pgoff_t end;
1666         int i, count;
1667         struct buffer_head *bh;
1668         struct buffer_head *head;
1669
1670         end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1671         folio_batch_init(&fbatch);
1672         while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) {
1673                 count = folio_batch_count(&fbatch);
1674                 for (i = 0; i < count; i++) {
1675                         struct folio *folio = fbatch.folios[i];
1676
1677                         if (!folio_buffers(folio))
1678                                 continue;
1679                         /*
1680                          * We use folio lock instead of bd_mapping->private_lock
1681                          * to pin buffers here since we can afford to sleep and
1682                          * it scales better than a global spinlock lock.
1683                          */
1684                         folio_lock(folio);
1685                         /* Recheck when the folio is locked which pins bhs */
1686                         head = folio_buffers(folio);
1687                         if (!head)
1688                                 goto unlock_page;
1689                         bh = head;
1690                         do {
1691                                 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1692                                         goto next;
1693                                 if (bh->b_blocknr >= block + len)
1694                                         break;
1695                                 clear_buffer_dirty(bh);
1696                                 wait_on_buffer(bh);
1697                                 clear_buffer_req(bh);
1698 next:
1699                                 bh = bh->b_this_page;
1700                         } while (bh != head);
1701 unlock_page:
1702                         folio_unlock(folio);
1703                 }
1704                 folio_batch_release(&fbatch);
1705                 cond_resched();
1706                 /* End of range already reached? */
1707                 if (index > end || !index)
1708                         break;
1709         }
1710 }
1711 EXPORT_SYMBOL(clean_bdev_aliases);
1712
1713 /*
1714  * Size is a power-of-two in the range 512..PAGE_SIZE,
1715  * and the case we care about most is PAGE_SIZE.
1716  *
1717  * So this *could* possibly be written with those
1718  * constraints in mind (relevant mostly if some
1719  * architecture has a slow bit-scan instruction)
1720  */
1721 static inline int block_size_bits(unsigned int blocksize)
1722 {
1723         return ilog2(blocksize);
1724 }
1725
1726 static struct buffer_head *folio_create_buffers(struct folio *folio,
1727                                                 struct inode *inode,
1728                                                 unsigned int b_state)
1729 {
1730         BUG_ON(!folio_test_locked(folio));
1731
1732         if (!folio_buffers(folio))
1733                 folio_create_empty_buffers(folio,
1734                                            1 << READ_ONCE(inode->i_blkbits),
1735                                            b_state);
1736         return folio_buffers(folio);
1737 }
1738
1739 /*
1740  * NOTE! All mapped/uptodate combinations are valid:
1741  *
1742  *      Mapped  Uptodate        Meaning
1743  *
1744  *      No      No              "unknown" - must do get_block()
1745  *      No      Yes             "hole" - zero-filled
1746  *      Yes     No              "allocated" - allocated on disk, not read in
1747  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1748  *
1749  * "Dirty" is valid only with the last case (mapped+uptodate).
1750  */
1751
1752 /*
1753  * While block_write_full_page is writing back the dirty buffers under
1754  * the page lock, whoever dirtied the buffers may decide to clean them
1755  * again at any time.  We handle that by only looking at the buffer
1756  * state inside lock_buffer().
1757  *
1758  * If block_write_full_page() is called for regular writeback
1759  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1760  * locked buffer.   This only can happen if someone has written the buffer
1761  * directly, with submit_bh().  At the address_space level PageWriteback
1762  * prevents this contention from occurring.
1763  *
1764  * If block_write_full_page() is called with wbc->sync_mode ==
1765  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1766  * causes the writes to be flagged as synchronous writes.
1767  */
1768 int __block_write_full_page(struct inode *inode, struct page *page,
1769                         get_block_t *get_block, struct writeback_control *wbc,
1770                         bh_end_io_t *handler)
1771 {
1772         int err;
1773         sector_t block;
1774         sector_t last_block;
1775         struct buffer_head *bh, *head;
1776         unsigned int blocksize, bbits;
1777         int nr_underway = 0;
1778         blk_opf_t write_flags = wbc_to_write_flags(wbc);
1779
1780         head = folio_create_buffers(page_folio(page), inode,
1781                                     (1 << BH_Dirty) | (1 << BH_Uptodate));
1782
1783         /*
1784          * Be very careful.  We have no exclusion from block_dirty_folio
1785          * here, and the (potentially unmapped) buffers may become dirty at
1786          * any time.  If a buffer becomes dirty here after we've inspected it
1787          * then we just miss that fact, and the page stays dirty.
1788          *
1789          * Buffers outside i_size may be dirtied by block_dirty_folio;
1790          * handle that here by just cleaning them.
1791          */
1792
1793         bh = head;
1794         blocksize = bh->b_size;
1795         bbits = block_size_bits(blocksize);
1796
1797         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1798         last_block = (i_size_read(inode) - 1) >> bbits;
1799
1800         /*
1801          * Get all the dirty buffers mapped to disk addresses and
1802          * handle any aliases from the underlying blockdev's mapping.
1803          */
1804         do {
1805                 if (block > last_block) {
1806                         /*
1807                          * mapped buffers outside i_size will occur, because
1808                          * this page can be outside i_size when there is a
1809                          * truncate in progress.
1810                          */
1811                         /*
1812                          * The buffer was zeroed by block_write_full_page()
1813                          */
1814                         clear_buffer_dirty(bh);
1815                         set_buffer_uptodate(bh);
1816                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1817                            buffer_dirty(bh)) {
1818                         WARN_ON(bh->b_size != blocksize);
1819                         err = get_block(inode, block, bh, 1);
1820                         if (err)
1821                                 goto recover;
1822                         clear_buffer_delay(bh);
1823                         if (buffer_new(bh)) {
1824                                 /* blockdev mappings never come here */
1825                                 clear_buffer_new(bh);
1826                                 clean_bdev_bh_alias(bh);
1827                         }
1828                 }
1829                 bh = bh->b_this_page;
1830                 block++;
1831         } while (bh != head);
1832
1833         do {
1834                 if (!buffer_mapped(bh))
1835                         continue;
1836                 /*
1837                  * If it's a fully non-blocking write attempt and we cannot
1838                  * lock the buffer then redirty the page.  Note that this can
1839                  * potentially cause a busy-wait loop from writeback threads
1840                  * and kswapd activity, but those code paths have their own
1841                  * higher-level throttling.
1842                  */
1843                 if (wbc->sync_mode != WB_SYNC_NONE) {
1844                         lock_buffer(bh);
1845                 } else if (!trylock_buffer(bh)) {
1846                         redirty_page_for_writepage(wbc, page);
1847                         continue;
1848                 }
1849                 if (test_clear_buffer_dirty(bh)) {
1850                         mark_buffer_async_write_endio(bh, handler);
1851                 } else {
1852                         unlock_buffer(bh);
1853                 }
1854         } while ((bh = bh->b_this_page) != head);
1855
1856         /*
1857          * The page and its buffers are protected by PageWriteback(), so we can
1858          * drop the bh refcounts early.
1859          */
1860         BUG_ON(PageWriteback(page));
1861         set_page_writeback(page);
1862
1863         do {
1864                 struct buffer_head *next = bh->b_this_page;
1865                 if (buffer_async_write(bh)) {
1866                         submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1867                         nr_underway++;
1868                 }
1869                 bh = next;
1870         } while (bh != head);
1871         unlock_page(page);
1872
1873         err = 0;
1874 done:
1875         if (nr_underway == 0) {
1876                 /*
1877                  * The page was marked dirty, but the buffers were
1878                  * clean.  Someone wrote them back by hand with
1879                  * write_dirty_buffer/submit_bh.  A rare case.
1880                  */
1881                 end_page_writeback(page);
1882
1883                 /*
1884                  * The page and buffer_heads can be released at any time from
1885                  * here on.
1886                  */
1887         }
1888         return err;
1889
1890 recover:
1891         /*
1892          * ENOSPC, or some other error.  We may already have added some
1893          * blocks to the file, so we need to write these out to avoid
1894          * exposing stale data.
1895          * The page is currently locked and not marked for writeback
1896          */
1897         bh = head;
1898         /* Recovery: lock and submit the mapped buffers */
1899         do {
1900                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1901                     !buffer_delay(bh)) {
1902                         lock_buffer(bh);
1903                         mark_buffer_async_write_endio(bh, handler);
1904                 } else {
1905                         /*
1906                          * The buffer may have been set dirty during
1907                          * attachment to a dirty page.
1908                          */
1909                         clear_buffer_dirty(bh);
1910                 }
1911         } while ((bh = bh->b_this_page) != head);
1912         SetPageError(page);
1913         BUG_ON(PageWriteback(page));
1914         mapping_set_error(page->mapping, err);
1915         set_page_writeback(page);
1916         do {
1917                 struct buffer_head *next = bh->b_this_page;
1918                 if (buffer_async_write(bh)) {
1919                         clear_buffer_dirty(bh);
1920                         submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1921                         nr_underway++;
1922                 }
1923                 bh = next;
1924         } while (bh != head);
1925         unlock_page(page);
1926         goto done;
1927 }
1928 EXPORT_SYMBOL(__block_write_full_page);
1929
1930 /*
1931  * If a page has any new buffers, zero them out here, and mark them uptodate
1932  * and dirty so they'll be written out (in order to prevent uninitialised
1933  * block data from leaking). And clear the new bit.
1934  */
1935 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1936 {
1937         unsigned int block_start, block_end;
1938         struct buffer_head *head, *bh;
1939
1940         BUG_ON(!PageLocked(page));
1941         if (!page_has_buffers(page))
1942                 return;
1943
1944         bh = head = page_buffers(page);
1945         block_start = 0;
1946         do {
1947                 block_end = block_start + bh->b_size;
1948
1949                 if (buffer_new(bh)) {
1950                         if (block_end > from && block_start < to) {
1951                                 if (!PageUptodate(page)) {
1952                                         unsigned start, size;
1953
1954                                         start = max(from, block_start);
1955                                         size = min(to, block_end) - start;
1956
1957                                         zero_user(page, start, size);
1958                                         set_buffer_uptodate(bh);
1959                                 }
1960
1961                                 clear_buffer_new(bh);
1962                                 mark_buffer_dirty(bh);
1963                         }
1964                 }
1965
1966                 block_start = block_end;
1967                 bh = bh->b_this_page;
1968         } while (bh != head);
1969 }
1970 EXPORT_SYMBOL(page_zero_new_buffers);
1971
1972 static void
1973 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1974                 const struct iomap *iomap)
1975 {
1976         loff_t offset = block << inode->i_blkbits;
1977
1978         bh->b_bdev = iomap->bdev;
1979
1980         /*
1981          * Block points to offset in file we need to map, iomap contains
1982          * the offset at which the map starts. If the map ends before the
1983          * current block, then do not map the buffer and let the caller
1984          * handle it.
1985          */
1986         BUG_ON(offset >= iomap->offset + iomap->length);
1987
1988         switch (iomap->type) {
1989         case IOMAP_HOLE:
1990                 /*
1991                  * If the buffer is not up to date or beyond the current EOF,
1992                  * we need to mark it as new to ensure sub-block zeroing is
1993                  * executed if necessary.
1994                  */
1995                 if (!buffer_uptodate(bh) ||
1996                     (offset >= i_size_read(inode)))
1997                         set_buffer_new(bh);
1998                 break;
1999         case IOMAP_DELALLOC:
2000                 if (!buffer_uptodate(bh) ||
2001                     (offset >= i_size_read(inode)))
2002                         set_buffer_new(bh);
2003                 set_buffer_uptodate(bh);
2004                 set_buffer_mapped(bh);
2005                 set_buffer_delay(bh);
2006                 break;
2007         case IOMAP_UNWRITTEN:
2008                 /*
2009                  * For unwritten regions, we always need to ensure that regions
2010                  * in the block we are not writing to are zeroed. Mark the
2011                  * buffer as new to ensure this.
2012                  */
2013                 set_buffer_new(bh);
2014                 set_buffer_unwritten(bh);
2015                 fallthrough;
2016         case IOMAP_MAPPED:
2017                 if ((iomap->flags & IOMAP_F_NEW) ||
2018                     offset >= i_size_read(inode))
2019                         set_buffer_new(bh);
2020                 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
2021                                 inode->i_blkbits;
2022                 set_buffer_mapped(bh);
2023                 break;
2024         }
2025 }
2026
2027 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
2028                 get_block_t *get_block, const struct iomap *iomap)
2029 {
2030         unsigned from = pos & (PAGE_SIZE - 1);
2031         unsigned to = from + len;
2032         struct inode *inode = folio->mapping->host;
2033         unsigned block_start, block_end;
2034         sector_t block;
2035         int err = 0;
2036         unsigned blocksize, bbits;
2037         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2038
2039         BUG_ON(!folio_test_locked(folio));
2040         BUG_ON(from > PAGE_SIZE);
2041         BUG_ON(to > PAGE_SIZE);
2042         BUG_ON(from > to);
2043
2044         head = folio_create_buffers(folio, inode, 0);
2045         blocksize = head->b_size;
2046         bbits = block_size_bits(blocksize);
2047
2048         block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
2049
2050         for(bh = head, block_start = 0; bh != head || !block_start;
2051             block++, block_start=block_end, bh = bh->b_this_page) {
2052                 block_end = block_start + blocksize;
2053                 if (block_end <= from || block_start >= to) {
2054                         if (folio_test_uptodate(folio)) {
2055                                 if (!buffer_uptodate(bh))
2056                                         set_buffer_uptodate(bh);
2057                         }
2058                         continue;
2059                 }
2060                 if (buffer_new(bh))
2061                         clear_buffer_new(bh);
2062                 if (!buffer_mapped(bh)) {
2063                         WARN_ON(bh->b_size != blocksize);
2064                         if (get_block) {
2065                                 err = get_block(inode, block, bh, 1);
2066                                 if (err)
2067                                         break;
2068                         } else {
2069                                 iomap_to_bh(inode, block, bh, iomap);
2070                         }
2071
2072                         if (buffer_new(bh)) {
2073                                 clean_bdev_bh_alias(bh);
2074                                 if (folio_test_uptodate(folio)) {
2075                                         clear_buffer_new(bh);
2076                                         set_buffer_uptodate(bh);
2077                                         mark_buffer_dirty(bh);
2078                                         continue;
2079                                 }
2080                                 if (block_end > to || block_start < from)
2081                                         folio_zero_segments(folio,
2082                                                 to, block_end,
2083                                                 block_start, from);
2084                                 continue;
2085                         }
2086                 }
2087                 if (folio_test_uptodate(folio)) {
2088                         if (!buffer_uptodate(bh))
2089                                 set_buffer_uptodate(bh);
2090                         continue; 
2091                 }
2092                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2093                     !buffer_unwritten(bh) &&
2094                      (block_start < from || block_end > to)) {
2095                         bh_read_nowait(bh, 0);
2096                         *wait_bh++=bh;
2097                 }
2098         }
2099         /*
2100          * If we issued read requests - let them complete.
2101          */
2102         while(wait_bh > wait) {
2103                 wait_on_buffer(*--wait_bh);
2104                 if (!buffer_uptodate(*wait_bh))
2105                         err = -EIO;
2106         }
2107         if (unlikely(err))
2108                 page_zero_new_buffers(&folio->page, from, to);
2109         return err;
2110 }
2111
2112 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2113                 get_block_t *get_block)
2114 {
2115         return __block_write_begin_int(page_folio(page), pos, len, get_block,
2116                                        NULL);
2117 }
2118 EXPORT_SYMBOL(__block_write_begin);
2119
2120 static int __block_commit_write(struct inode *inode, struct page *page,
2121                 unsigned from, unsigned to)
2122 {
2123         unsigned block_start, block_end;
2124         int partial = 0;
2125         unsigned blocksize;
2126         struct buffer_head *bh, *head;
2127
2128         bh = head = page_buffers(page);
2129         blocksize = bh->b_size;
2130
2131         block_start = 0;
2132         do {
2133                 block_end = block_start + blocksize;
2134                 if (block_end <= from || block_start >= to) {
2135                         if (!buffer_uptodate(bh))
2136                                 partial = 1;
2137                 } else {
2138                         set_buffer_uptodate(bh);
2139                         mark_buffer_dirty(bh);
2140                 }
2141                 if (buffer_new(bh))
2142                         clear_buffer_new(bh);
2143
2144                 block_start = block_end;
2145                 bh = bh->b_this_page;
2146         } while (bh != head);
2147
2148         /*
2149          * If this is a partial write which happened to make all buffers
2150          * uptodate then we can optimize away a bogus read_folio() for
2151          * the next read(). Here we 'discover' whether the page went
2152          * uptodate as a result of this (potentially partial) write.
2153          */
2154         if (!partial)
2155                 SetPageUptodate(page);
2156         return 0;
2157 }
2158
2159 /*
2160  * block_write_begin takes care of the basic task of block allocation and
2161  * bringing partial write blocks uptodate first.
2162  *
2163  * The filesystem needs to handle block truncation upon failure.
2164  */
2165 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2166                 struct page **pagep, get_block_t *get_block)
2167 {
2168         pgoff_t index = pos >> PAGE_SHIFT;
2169         struct page *page;
2170         int status;
2171
2172         page = grab_cache_page_write_begin(mapping, index);
2173         if (!page)
2174                 return -ENOMEM;
2175
2176         status = __block_write_begin(page, pos, len, get_block);
2177         if (unlikely(status)) {
2178                 unlock_page(page);
2179                 put_page(page);
2180                 page = NULL;
2181         }
2182
2183         *pagep = page;
2184         return status;
2185 }
2186 EXPORT_SYMBOL(block_write_begin);
2187
2188 int block_write_end(struct file *file, struct address_space *mapping,
2189                         loff_t pos, unsigned len, unsigned copied,
2190                         struct page *page, void *fsdata)
2191 {
2192         struct inode *inode = mapping->host;
2193         unsigned start;
2194
2195         start = pos & (PAGE_SIZE - 1);
2196
2197         if (unlikely(copied < len)) {
2198                 /*
2199                  * The buffers that were written will now be uptodate, so
2200                  * we don't have to worry about a read_folio reading them
2201                  * and overwriting a partial write. However if we have
2202                  * encountered a short write and only partially written
2203                  * into a buffer, it will not be marked uptodate, so a
2204                  * read_folio might come in and destroy our partial write.
2205                  *
2206                  * Do the simplest thing, and just treat any short write to a
2207                  * non uptodate page as a zero-length write, and force the
2208                  * caller to redo the whole thing.
2209                  */
2210                 if (!PageUptodate(page))
2211                         copied = 0;
2212
2213                 page_zero_new_buffers(page, start+copied, start+len);
2214         }
2215         flush_dcache_page(page);
2216
2217         /* This could be a short (even 0-length) commit */
2218         __block_commit_write(inode, page, start, start+copied);
2219
2220         return copied;
2221 }
2222 EXPORT_SYMBOL(block_write_end);
2223
2224 int generic_write_end(struct file *file, struct address_space *mapping,
2225                         loff_t pos, unsigned len, unsigned copied,
2226                         struct page *page, void *fsdata)
2227 {
2228         struct inode *inode = mapping->host;
2229         loff_t old_size = inode->i_size;
2230         bool i_size_changed = false;
2231
2232         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2233
2234         /*
2235          * No need to use i_size_read() here, the i_size cannot change under us
2236          * because we hold i_rwsem.
2237          *
2238          * But it's important to update i_size while still holding page lock:
2239          * page writeout could otherwise come in and zero beyond i_size.
2240          */
2241         if (pos + copied > inode->i_size) {
2242                 i_size_write(inode, pos + copied);
2243                 i_size_changed = true;
2244         }
2245
2246         unlock_page(page);
2247         put_page(page);
2248
2249         if (old_size < pos)
2250                 pagecache_isize_extended(inode, old_size, pos);
2251         /*
2252          * Don't mark the inode dirty under page lock. First, it unnecessarily
2253          * makes the holding time of page lock longer. Second, it forces lock
2254          * ordering of page lock and transaction start for journaling
2255          * filesystems.
2256          */
2257         if (i_size_changed)
2258                 mark_inode_dirty(inode);
2259         return copied;
2260 }
2261 EXPORT_SYMBOL(generic_write_end);
2262
2263 /*
2264  * block_is_partially_uptodate checks whether buffers within a folio are
2265  * uptodate or not.
2266  *
2267  * Returns true if all buffers which correspond to the specified part
2268  * of the folio are uptodate.
2269  */
2270 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
2271 {
2272         unsigned block_start, block_end, blocksize;
2273         unsigned to;
2274         struct buffer_head *bh, *head;
2275         bool ret = true;
2276
2277         head = folio_buffers(folio);
2278         if (!head)
2279                 return false;
2280         blocksize = head->b_size;
2281         to = min_t(unsigned, folio_size(folio) - from, count);
2282         to = from + to;
2283         if (from < blocksize && to > folio_size(folio) - blocksize)
2284                 return false;
2285
2286         bh = head;
2287         block_start = 0;
2288         do {
2289                 block_end = block_start + blocksize;
2290                 if (block_end > from && block_start < to) {
2291                         if (!buffer_uptodate(bh)) {
2292                                 ret = false;
2293                                 break;
2294                         }
2295                         if (block_end >= to)
2296                                 break;
2297                 }
2298                 block_start = block_end;
2299                 bh = bh->b_this_page;
2300         } while (bh != head);
2301
2302         return ret;
2303 }
2304 EXPORT_SYMBOL(block_is_partially_uptodate);
2305
2306 /*
2307  * Generic "read_folio" function for block devices that have the normal
2308  * get_block functionality. This is most of the block device filesystems.
2309  * Reads the folio asynchronously --- the unlock_buffer() and
2310  * set/clear_buffer_uptodate() functions propagate buffer state into the
2311  * folio once IO has completed.
2312  */
2313 int block_read_full_folio(struct folio *folio, get_block_t *get_block)
2314 {
2315         struct inode *inode = folio->mapping->host;
2316         sector_t iblock, lblock;
2317         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2318         unsigned int blocksize, bbits;
2319         int nr, i;
2320         int fully_mapped = 1;
2321         bool page_error = false;
2322         loff_t limit = i_size_read(inode);
2323
2324         /* This is needed for ext4. */
2325         if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2326                 limit = inode->i_sb->s_maxbytes;
2327
2328         VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2329
2330         head = folio_create_buffers(folio, inode, 0);
2331         blocksize = head->b_size;
2332         bbits = block_size_bits(blocksize);
2333
2334         iblock = (sector_t)folio->index << (PAGE_SHIFT - bbits);
2335         lblock = (limit+blocksize-1) >> bbits;
2336         bh = head;
2337         nr = 0;
2338         i = 0;
2339
2340         do {
2341                 if (buffer_uptodate(bh))
2342                         continue;
2343
2344                 if (!buffer_mapped(bh)) {
2345                         int err = 0;
2346
2347                         fully_mapped = 0;
2348                         if (iblock < lblock) {
2349                                 WARN_ON(bh->b_size != blocksize);
2350                                 err = get_block(inode, iblock, bh, 0);
2351                                 if (err) {
2352                                         folio_set_error(folio);
2353                                         page_error = true;
2354                                 }
2355                         }
2356                         if (!buffer_mapped(bh)) {
2357                                 folio_zero_range(folio, i * blocksize,
2358                                                 blocksize);
2359                                 if (!err)
2360                                         set_buffer_uptodate(bh);
2361                                 continue;
2362                         }
2363                         /*
2364                          * get_block() might have updated the buffer
2365                          * synchronously
2366                          */
2367                         if (buffer_uptodate(bh))
2368                                 continue;
2369                 }
2370                 arr[nr++] = bh;
2371         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2372
2373         if (fully_mapped)
2374                 folio_set_mappedtodisk(folio);
2375
2376         if (!nr) {
2377                 /*
2378                  * All buffers are uptodate - we can set the folio uptodate
2379                  * as well. But not if get_block() returned an error.
2380                  */
2381                 if (!page_error)
2382                         folio_mark_uptodate(folio);
2383                 folio_unlock(folio);
2384                 return 0;
2385         }
2386
2387         /* Stage two: lock the buffers */
2388         for (i = 0; i < nr; i++) {
2389                 bh = arr[i];
2390                 lock_buffer(bh);
2391                 mark_buffer_async_read(bh);
2392         }
2393
2394         /*
2395          * Stage 3: start the IO.  Check for uptodateness
2396          * inside the buffer lock in case another process reading
2397          * the underlying blockdev brought it uptodate (the sct fix).
2398          */
2399         for (i = 0; i < nr; i++) {
2400                 bh = arr[i];
2401                 if (buffer_uptodate(bh))
2402                         end_buffer_async_read(bh, 1);
2403                 else
2404                         submit_bh(REQ_OP_READ, bh);
2405         }
2406         return 0;
2407 }
2408 EXPORT_SYMBOL(block_read_full_folio);
2409
2410 /* utility function for filesystems that need to do work on expanding
2411  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2412  * deal with the hole.  
2413  */
2414 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2415 {
2416         struct address_space *mapping = inode->i_mapping;
2417         const struct address_space_operations *aops = mapping->a_ops;
2418         struct page *page;
2419         void *fsdata = NULL;
2420         int err;
2421
2422         err = inode_newsize_ok(inode, size);
2423         if (err)
2424                 goto out;
2425
2426         err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata);
2427         if (err)
2428                 goto out;
2429
2430         err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata);
2431         BUG_ON(err > 0);
2432
2433 out:
2434         return err;
2435 }
2436 EXPORT_SYMBOL(generic_cont_expand_simple);
2437
2438 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2439                             loff_t pos, loff_t *bytes)
2440 {
2441         struct inode *inode = mapping->host;
2442         const struct address_space_operations *aops = mapping->a_ops;
2443         unsigned int blocksize = i_blocksize(inode);
2444         struct page *page;
2445         void *fsdata = NULL;
2446         pgoff_t index, curidx;
2447         loff_t curpos;
2448         unsigned zerofrom, offset, len;
2449         int err = 0;
2450
2451         index = pos >> PAGE_SHIFT;
2452         offset = pos & ~PAGE_MASK;
2453
2454         while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2455                 zerofrom = curpos & ~PAGE_MASK;
2456                 if (zerofrom & (blocksize-1)) {
2457                         *bytes |= (blocksize-1);
2458                         (*bytes)++;
2459                 }
2460                 len = PAGE_SIZE - zerofrom;
2461
2462                 err = aops->write_begin(file, mapping, curpos, len,
2463                                             &page, &fsdata);
2464                 if (err)
2465                         goto out;
2466                 zero_user(page, zerofrom, len);
2467                 err = aops->write_end(file, mapping, curpos, len, len,
2468                                                 page, fsdata);
2469                 if (err < 0)
2470                         goto out;
2471                 BUG_ON(err != len);
2472                 err = 0;
2473
2474                 balance_dirty_pages_ratelimited(mapping);
2475
2476                 if (fatal_signal_pending(current)) {
2477                         err = -EINTR;
2478                         goto out;
2479                 }
2480         }
2481
2482         /* page covers the boundary, find the boundary offset */
2483         if (index == curidx) {
2484                 zerofrom = curpos & ~PAGE_MASK;
2485                 /* if we will expand the thing last block will be filled */
2486                 if (offset <= zerofrom) {
2487                         goto out;
2488                 }
2489                 if (zerofrom & (blocksize-1)) {
2490                         *bytes |= (blocksize-1);
2491                         (*bytes)++;
2492                 }
2493                 len = offset - zerofrom;
2494
2495                 err = aops->write_begin(file, mapping, curpos, len,
2496                                             &page, &fsdata);
2497                 if (err)
2498                         goto out;
2499                 zero_user(page, zerofrom, len);
2500                 err = aops->write_end(file, mapping, curpos, len, len,
2501                                                 page, fsdata);
2502                 if (err < 0)
2503                         goto out;
2504                 BUG_ON(err != len);
2505                 err = 0;
2506         }
2507 out:
2508         return err;
2509 }
2510
2511 /*
2512  * For moronic filesystems that do not allow holes in file.
2513  * We may have to extend the file.
2514  */
2515 int cont_write_begin(struct file *file, struct address_space *mapping,
2516                         loff_t pos, unsigned len,
2517                         struct page **pagep, void **fsdata,
2518                         get_block_t *get_block, loff_t *bytes)
2519 {
2520         struct inode *inode = mapping->host;
2521         unsigned int blocksize = i_blocksize(inode);
2522         unsigned int zerofrom;
2523         int err;
2524
2525         err = cont_expand_zero(file, mapping, pos, bytes);
2526         if (err)
2527                 return err;
2528
2529         zerofrom = *bytes & ~PAGE_MASK;
2530         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2531                 *bytes |= (blocksize-1);
2532                 (*bytes)++;
2533         }
2534
2535         return block_write_begin(mapping, pos, len, pagep, get_block);
2536 }
2537 EXPORT_SYMBOL(cont_write_begin);
2538
2539 int block_commit_write(struct page *page, unsigned from, unsigned to)
2540 {
2541         struct inode *inode = page->mapping->host;
2542         __block_commit_write(inode,page,from,to);
2543         return 0;
2544 }
2545 EXPORT_SYMBOL(block_commit_write);
2546
2547 /*
2548  * block_page_mkwrite() is not allowed to change the file size as it gets
2549  * called from a page fault handler when a page is first dirtied. Hence we must
2550  * be careful to check for EOF conditions here. We set the page up correctly
2551  * for a written page which means we get ENOSPC checking when writing into
2552  * holes and correct delalloc and unwritten extent mapping on filesystems that
2553  * support these features.
2554  *
2555  * We are not allowed to take the i_mutex here so we have to play games to
2556  * protect against truncate races as the page could now be beyond EOF.  Because
2557  * truncate writes the inode size before removing pages, once we have the
2558  * page lock we can determine safely if the page is beyond EOF. If it is not
2559  * beyond EOF, then the page is guaranteed safe against truncation until we
2560  * unlock the page.
2561  *
2562  * Direct callers of this function should protect against filesystem freezing
2563  * using sb_start_pagefault() - sb_end_pagefault() functions.
2564  */
2565 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2566                          get_block_t get_block)
2567 {
2568         struct page *page = vmf->page;
2569         struct inode *inode = file_inode(vma->vm_file);
2570         unsigned long end;
2571         loff_t size;
2572         int ret;
2573
2574         lock_page(page);
2575         size = i_size_read(inode);
2576         if ((page->mapping != inode->i_mapping) ||
2577             (page_offset(page) > size)) {
2578                 /* We overload EFAULT to mean page got truncated */
2579                 ret = -EFAULT;
2580                 goto out_unlock;
2581         }
2582
2583         /* page is wholly or partially inside EOF */
2584         if (((page->index + 1) << PAGE_SHIFT) > size)
2585                 end = size & ~PAGE_MASK;
2586         else
2587                 end = PAGE_SIZE;
2588
2589         ret = __block_write_begin(page, 0, end, get_block);
2590         if (!ret)
2591                 ret = block_commit_write(page, 0, end);
2592
2593         if (unlikely(ret < 0))
2594                 goto out_unlock;
2595         set_page_dirty(page);
2596         wait_for_stable_page(page);
2597         return 0;
2598 out_unlock:
2599         unlock_page(page);
2600         return ret;
2601 }
2602 EXPORT_SYMBOL(block_page_mkwrite);
2603
2604 int block_truncate_page(struct address_space *mapping,
2605                         loff_t from, get_block_t *get_block)
2606 {
2607         pgoff_t index = from >> PAGE_SHIFT;
2608         unsigned offset = from & (PAGE_SIZE-1);
2609         unsigned blocksize;
2610         sector_t iblock;
2611         unsigned length, pos;
2612         struct inode *inode = mapping->host;
2613         struct page *page;
2614         struct buffer_head *bh;
2615         int err;
2616
2617         blocksize = i_blocksize(inode);
2618         length = offset & (blocksize - 1);
2619
2620         /* Block boundary? Nothing to do */
2621         if (!length)
2622                 return 0;
2623
2624         length = blocksize - length;
2625         iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2626         
2627         page = grab_cache_page(mapping, index);
2628         err = -ENOMEM;
2629         if (!page)
2630                 goto out;
2631
2632         if (!page_has_buffers(page))
2633                 create_empty_buffers(page, blocksize, 0);
2634
2635         /* Find the buffer that contains "offset" */
2636         bh = page_buffers(page);
2637         pos = blocksize;
2638         while (offset >= pos) {
2639                 bh = bh->b_this_page;
2640                 iblock++;
2641                 pos += blocksize;
2642         }
2643
2644         err = 0;
2645         if (!buffer_mapped(bh)) {
2646                 WARN_ON(bh->b_size != blocksize);
2647                 err = get_block(inode, iblock, bh, 0);
2648                 if (err)
2649                         goto unlock;
2650                 /* unmapped? It's a hole - nothing to do */
2651                 if (!buffer_mapped(bh))
2652                         goto unlock;
2653         }
2654
2655         /* Ok, it's mapped. Make sure it's up-to-date */
2656         if (PageUptodate(page))
2657                 set_buffer_uptodate(bh);
2658
2659         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2660                 err = bh_read(bh, 0);
2661                 /* Uhhuh. Read error. Complain and punt. */
2662                 if (err < 0)
2663                         goto unlock;
2664         }
2665
2666         zero_user(page, offset, length);
2667         mark_buffer_dirty(bh);
2668         err = 0;
2669
2670 unlock:
2671         unlock_page(page);
2672         put_page(page);
2673 out:
2674         return err;
2675 }
2676 EXPORT_SYMBOL(block_truncate_page);
2677
2678 /*
2679  * The generic ->writepage function for buffer-backed address_spaces
2680  */
2681 int block_write_full_page(struct page *page, get_block_t *get_block,
2682                         struct writeback_control *wbc)
2683 {
2684         struct inode * const inode = page->mapping->host;
2685         loff_t i_size = i_size_read(inode);
2686         const pgoff_t end_index = i_size >> PAGE_SHIFT;
2687         unsigned offset;
2688
2689         /* Is the page fully inside i_size? */
2690         if (page->index < end_index)
2691                 return __block_write_full_page(inode, page, get_block, wbc,
2692                                                end_buffer_async_write);
2693
2694         /* Is the page fully outside i_size? (truncate in progress) */
2695         offset = i_size & (PAGE_SIZE-1);
2696         if (page->index >= end_index+1 || !offset) {
2697                 unlock_page(page);
2698                 return 0; /* don't care */
2699         }
2700
2701         /*
2702          * The page straddles i_size.  It must be zeroed out on each and every
2703          * writepage invocation because it may be mmapped.  "A file is mapped
2704          * in multiples of the page size.  For a file that is not a multiple of
2705          * the  page size, the remaining memory is zeroed when mapped, and
2706          * writes to that region are not written out to the file."
2707          */
2708         zero_user_segment(page, offset, PAGE_SIZE);
2709         return __block_write_full_page(inode, page, get_block, wbc,
2710                                                         end_buffer_async_write);
2711 }
2712 EXPORT_SYMBOL(block_write_full_page);
2713
2714 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2715                             get_block_t *get_block)
2716 {
2717         struct inode *inode = mapping->host;
2718         struct buffer_head tmp = {
2719                 .b_size = i_blocksize(inode),
2720         };
2721
2722         get_block(inode, block, &tmp, 0);
2723         return tmp.b_blocknr;
2724 }
2725 EXPORT_SYMBOL(generic_block_bmap);
2726
2727 static void end_bio_bh_io_sync(struct bio *bio)
2728 {
2729         struct buffer_head *bh = bio->bi_private;
2730
2731         if (unlikely(bio_flagged(bio, BIO_QUIET)))
2732                 set_bit(BH_Quiet, &bh->b_state);
2733
2734         bh->b_end_io(bh, !bio->bi_status);
2735         bio_put(bio);
2736 }
2737
2738 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
2739                           struct writeback_control *wbc)
2740 {
2741         const enum req_op op = opf & REQ_OP_MASK;
2742         struct bio *bio;
2743
2744         BUG_ON(!buffer_locked(bh));
2745         BUG_ON(!buffer_mapped(bh));
2746         BUG_ON(!bh->b_end_io);
2747         BUG_ON(buffer_delay(bh));
2748         BUG_ON(buffer_unwritten(bh));
2749
2750         /*
2751          * Only clear out a write error when rewriting
2752          */
2753         if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
2754                 clear_buffer_write_io_error(bh);
2755
2756         if (buffer_meta(bh))
2757                 opf |= REQ_META;
2758         if (buffer_prio(bh))
2759                 opf |= REQ_PRIO;
2760
2761         bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO);
2762
2763         fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
2764
2765         bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2766
2767         bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
2768         BUG_ON(bio->bi_iter.bi_size != bh->b_size);
2769
2770         bio->bi_end_io = end_bio_bh_io_sync;
2771         bio->bi_private = bh;
2772
2773         /* Take care of bh's that straddle the end of the device */
2774         guard_bio_eod(bio);
2775
2776         if (wbc) {
2777                 wbc_init_bio(wbc, bio);
2778                 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
2779         }
2780
2781         submit_bio(bio);
2782 }
2783
2784 void submit_bh(blk_opf_t opf, struct buffer_head *bh)
2785 {
2786         submit_bh_wbc(opf, bh, NULL);
2787 }
2788 EXPORT_SYMBOL(submit_bh);
2789
2790 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2791 {
2792         lock_buffer(bh);
2793         if (!test_clear_buffer_dirty(bh)) {
2794                 unlock_buffer(bh);
2795                 return;
2796         }
2797         bh->b_end_io = end_buffer_write_sync;
2798         get_bh(bh);
2799         submit_bh(REQ_OP_WRITE | op_flags, bh);
2800 }
2801 EXPORT_SYMBOL(write_dirty_buffer);
2802
2803 /*
2804  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2805  * and then start new I/O and then wait upon it.  The caller must have a ref on
2806  * the buffer_head.
2807  */
2808 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2809 {
2810         WARN_ON(atomic_read(&bh->b_count) < 1);
2811         lock_buffer(bh);
2812         if (test_clear_buffer_dirty(bh)) {
2813                 /*
2814                  * The bh should be mapped, but it might not be if the
2815                  * device was hot-removed. Not much we can do but fail the I/O.
2816                  */
2817                 if (!buffer_mapped(bh)) {
2818                         unlock_buffer(bh);
2819                         return -EIO;
2820                 }
2821
2822                 get_bh(bh);
2823                 bh->b_end_io = end_buffer_write_sync;
2824                 submit_bh(REQ_OP_WRITE | op_flags, bh);
2825                 wait_on_buffer(bh);
2826                 if (!buffer_uptodate(bh))
2827                         return -EIO;
2828         } else {
2829                 unlock_buffer(bh);
2830         }
2831         return 0;
2832 }
2833 EXPORT_SYMBOL(__sync_dirty_buffer);
2834
2835 int sync_dirty_buffer(struct buffer_head *bh)
2836 {
2837         return __sync_dirty_buffer(bh, REQ_SYNC);
2838 }
2839 EXPORT_SYMBOL(sync_dirty_buffer);
2840
2841 /*
2842  * try_to_free_buffers() checks if all the buffers on this particular folio
2843  * are unused, and releases them if so.
2844  *
2845  * Exclusion against try_to_free_buffers may be obtained by either
2846  * locking the folio or by holding its mapping's private_lock.
2847  *
2848  * If the folio is dirty but all the buffers are clean then we need to
2849  * be sure to mark the folio clean as well.  This is because the folio
2850  * may be against a block device, and a later reattachment of buffers
2851  * to a dirty folio will set *all* buffers dirty.  Which would corrupt
2852  * filesystem data on the same device.
2853  *
2854  * The same applies to regular filesystem folios: if all the buffers are
2855  * clean then we set the folio clean and proceed.  To do that, we require
2856  * total exclusion from block_dirty_folio().  That is obtained with
2857  * private_lock.
2858  *
2859  * try_to_free_buffers() is non-blocking.
2860  */
2861 static inline int buffer_busy(struct buffer_head *bh)
2862 {
2863         return atomic_read(&bh->b_count) |
2864                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2865 }
2866
2867 static bool
2868 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
2869 {
2870         struct buffer_head *head = folio_buffers(folio);
2871         struct buffer_head *bh;
2872
2873         bh = head;
2874         do {
2875                 if (buffer_busy(bh))
2876                         goto failed;
2877                 bh = bh->b_this_page;
2878         } while (bh != head);
2879
2880         do {
2881                 struct buffer_head *next = bh->b_this_page;
2882
2883                 if (bh->b_assoc_map)
2884                         __remove_assoc_queue(bh);
2885                 bh = next;
2886         } while (bh != head);
2887         *buffers_to_free = head;
2888         folio_detach_private(folio);
2889         return true;
2890 failed:
2891         return false;
2892 }
2893
2894 bool try_to_free_buffers(struct folio *folio)
2895 {
2896         struct address_space * const mapping = folio->mapping;
2897         struct buffer_head *buffers_to_free = NULL;
2898         bool ret = 0;
2899
2900         BUG_ON(!folio_test_locked(folio));
2901         if (folio_test_writeback(folio))
2902                 return false;
2903
2904         if (mapping == NULL) {          /* can this still happen? */
2905                 ret = drop_buffers(folio, &buffers_to_free);
2906                 goto out;
2907         }
2908
2909         spin_lock(&mapping->private_lock);
2910         ret = drop_buffers(folio, &buffers_to_free);
2911
2912         /*
2913          * If the filesystem writes its buffers by hand (eg ext3)
2914          * then we can have clean buffers against a dirty folio.  We
2915          * clean the folio here; otherwise the VM will never notice
2916          * that the filesystem did any IO at all.
2917          *
2918          * Also, during truncate, discard_buffer will have marked all
2919          * the folio's buffers clean.  We discover that here and clean
2920          * the folio also.
2921          *
2922          * private_lock must be held over this entire operation in order
2923          * to synchronise against block_dirty_folio and prevent the
2924          * dirty bit from being lost.
2925          */
2926         if (ret)
2927                 folio_cancel_dirty(folio);
2928         spin_unlock(&mapping->private_lock);
2929 out:
2930         if (buffers_to_free) {
2931                 struct buffer_head *bh = buffers_to_free;
2932
2933                 do {
2934                         struct buffer_head *next = bh->b_this_page;
2935                         free_buffer_head(bh);
2936                         bh = next;
2937                 } while (bh != buffers_to_free);
2938         }
2939         return ret;
2940 }
2941 EXPORT_SYMBOL(try_to_free_buffers);
2942
2943 /*
2944  * Buffer-head allocation
2945  */
2946 static struct kmem_cache *bh_cachep __read_mostly;
2947
2948 /*
2949  * Once the number of bh's in the machine exceeds this level, we start
2950  * stripping them in writeback.
2951  */
2952 static unsigned long max_buffer_heads;
2953
2954 int buffer_heads_over_limit;
2955
2956 struct bh_accounting {
2957         int nr;                 /* Number of live bh's */
2958         int ratelimit;          /* Limit cacheline bouncing */
2959 };
2960
2961 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
2962
2963 static void recalc_bh_state(void)
2964 {
2965         int i;
2966         int tot = 0;
2967
2968         if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
2969                 return;
2970         __this_cpu_write(bh_accounting.ratelimit, 0);
2971         for_each_online_cpu(i)
2972                 tot += per_cpu(bh_accounting, i).nr;
2973         buffer_heads_over_limit = (tot > max_buffer_heads);
2974 }
2975
2976 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
2977 {
2978         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
2979         if (ret) {
2980                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
2981                 spin_lock_init(&ret->b_uptodate_lock);
2982                 preempt_disable();
2983                 __this_cpu_inc(bh_accounting.nr);
2984                 recalc_bh_state();
2985                 preempt_enable();
2986         }
2987         return ret;
2988 }
2989 EXPORT_SYMBOL(alloc_buffer_head);
2990
2991 void free_buffer_head(struct buffer_head *bh)
2992 {
2993         BUG_ON(!list_empty(&bh->b_assoc_buffers));
2994         kmem_cache_free(bh_cachep, bh);
2995         preempt_disable();
2996         __this_cpu_dec(bh_accounting.nr);
2997         recalc_bh_state();
2998         preempt_enable();
2999 }
3000 EXPORT_SYMBOL(free_buffer_head);
3001
3002 static int buffer_exit_cpu_dead(unsigned int cpu)
3003 {
3004         int i;
3005         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3006
3007         for (i = 0; i < BH_LRU_SIZE; i++) {
3008                 brelse(b->bhs[i]);
3009                 b->bhs[i] = NULL;
3010         }
3011         this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3012         per_cpu(bh_accounting, cpu).nr = 0;
3013         return 0;
3014 }
3015
3016 /**
3017  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3018  * @bh: struct buffer_head
3019  *
3020  * Return true if the buffer is up-to-date and false,
3021  * with the buffer locked, if not.
3022  */
3023 int bh_uptodate_or_lock(struct buffer_head *bh)
3024 {
3025         if (!buffer_uptodate(bh)) {
3026                 lock_buffer(bh);
3027                 if (!buffer_uptodate(bh))
3028                         return 0;
3029                 unlock_buffer(bh);
3030         }
3031         return 1;
3032 }
3033 EXPORT_SYMBOL(bh_uptodate_or_lock);
3034
3035 /**
3036  * __bh_read - Submit read for a locked buffer
3037  * @bh: struct buffer_head
3038  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3039  * @wait: wait until reading finish
3040  *
3041  * Returns zero on success or don't wait, and -EIO on error.
3042  */
3043 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
3044 {
3045         int ret = 0;
3046
3047         BUG_ON(!buffer_locked(bh));
3048
3049         get_bh(bh);
3050         bh->b_end_io = end_buffer_read_sync;
3051         submit_bh(REQ_OP_READ | op_flags, bh);
3052         if (wait) {
3053                 wait_on_buffer(bh);
3054                 if (!buffer_uptodate(bh))
3055                         ret = -EIO;
3056         }
3057         return ret;
3058 }
3059 EXPORT_SYMBOL(__bh_read);
3060
3061 /**
3062  * __bh_read_batch - Submit read for a batch of unlocked buffers
3063  * @nr: entry number of the buffer batch
3064  * @bhs: a batch of struct buffer_head
3065  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3066  * @force_lock: force to get a lock on the buffer if set, otherwise drops any
3067  *              buffer that cannot lock.
3068  *
3069  * Returns zero on success or don't wait, and -EIO on error.
3070  */
3071 void __bh_read_batch(int nr, struct buffer_head *bhs[],
3072                      blk_opf_t op_flags, bool force_lock)
3073 {
3074         int i;
3075
3076         for (i = 0; i < nr; i++) {
3077                 struct buffer_head *bh = bhs[i];
3078
3079                 if (buffer_uptodate(bh))
3080                         continue;
3081
3082                 if (force_lock)
3083                         lock_buffer(bh);
3084                 else
3085                         if (!trylock_buffer(bh))
3086                                 continue;
3087
3088                 if (buffer_uptodate(bh)) {
3089                         unlock_buffer(bh);
3090                         continue;
3091                 }
3092
3093                 bh->b_end_io = end_buffer_read_sync;
3094                 get_bh(bh);
3095                 submit_bh(REQ_OP_READ | op_flags, bh);
3096         }
3097 }
3098 EXPORT_SYMBOL(__bh_read_batch);
3099
3100 void __init buffer_init(void)
3101 {
3102         unsigned long nrpages;
3103         int ret;
3104
3105         bh_cachep = kmem_cache_create("buffer_head",
3106                         sizeof(struct buffer_head), 0,
3107                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3108                                 SLAB_MEM_SPREAD),
3109                                 NULL);
3110
3111         /*
3112          * Limit the bh occupancy to 10% of ZONE_NORMAL
3113          */
3114         nrpages = (nr_free_buffer_pages() * 10) / 100;
3115         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3116         ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3117                                         NULL, buffer_exit_cpu_dead);
3118         WARN_ON(ret < 0);
3119 }