btrfs: zoned: clone zoned device info when cloning a device
[linux-2.6-block.git] / fs / btrfs / zoned.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/blkdev.h>
6 #include <linux/sched/mm.h>
7 #include <linux/atomic.h>
8 #include <linux/vmalloc.h>
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "zoned.h"
12 #include "rcu-string.h"
13 #include "disk-io.h"
14 #include "block-group.h"
15 #include "transaction.h"
16 #include "dev-replace.h"
17 #include "space-info.h"
18
19 /* Maximum number of zones to report per blkdev_report_zones() call */
20 #define BTRFS_REPORT_NR_ZONES   4096
21 /* Invalid allocation pointer value for missing devices */
22 #define WP_MISSING_DEV ((u64)-1)
23 /* Pseudo write pointer value for conventional zone */
24 #define WP_CONVENTIONAL ((u64)-2)
25
26 /*
27  * Location of the first zone of superblock logging zone pairs.
28  *
29  * - primary superblock:    0B (zone 0)
30  * - first copy:          512G (zone starting at that offset)
31  * - second copy:           4T (zone starting at that offset)
32  */
33 #define BTRFS_SB_LOG_PRIMARY_OFFSET     (0ULL)
34 #define BTRFS_SB_LOG_FIRST_OFFSET       (512ULL * SZ_1G)
35 #define BTRFS_SB_LOG_SECOND_OFFSET      (4096ULL * SZ_1G)
36
37 #define BTRFS_SB_LOG_FIRST_SHIFT        const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
38 #define BTRFS_SB_LOG_SECOND_SHIFT       const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)
39
40 /* Number of superblock log zones */
41 #define BTRFS_NR_SB_LOG_ZONES 2
42
43 /*
44  * Minimum of active zones we need:
45  *
46  * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors
47  * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group
48  * - 1 zone for tree-log dedicated block group
49  * - 1 zone for relocation
50  */
51 #define BTRFS_MIN_ACTIVE_ZONES          (BTRFS_SUPER_MIRROR_MAX + 5)
52
53 /*
54  * Minimum / maximum supported zone size. Currently, SMR disks have a zone
55  * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range.
56  * We do not expect the zone size to become larger than 8GiB or smaller than
57  * 4MiB in the near future.
58  */
59 #define BTRFS_MAX_ZONE_SIZE             SZ_8G
60 #define BTRFS_MIN_ZONE_SIZE             SZ_4M
61
62 #define SUPER_INFO_SECTORS      ((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT)
63
64 static inline bool sb_zone_is_full(const struct blk_zone *zone)
65 {
66         return (zone->cond == BLK_ZONE_COND_FULL) ||
67                 (zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity);
68 }
69
70 static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
71 {
72         struct blk_zone *zones = data;
73
74         memcpy(&zones[idx], zone, sizeof(*zone));
75
76         return 0;
77 }
78
79 static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
80                             u64 *wp_ret)
81 {
82         bool empty[BTRFS_NR_SB_LOG_ZONES];
83         bool full[BTRFS_NR_SB_LOG_ZONES];
84         sector_t sector;
85         int i;
86
87         for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
88                 ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL);
89                 empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY);
90                 full[i] = sb_zone_is_full(&zones[i]);
91         }
92
93         /*
94          * Possible states of log buffer zones
95          *
96          *           Empty[0]  In use[0]  Full[0]
97          * Empty[1]         *          0        1
98          * In use[1]        x          x        1
99          * Full[1]          0          0        C
100          *
101          * Log position:
102          *   *: Special case, no superblock is written
103          *   0: Use write pointer of zones[0]
104          *   1: Use write pointer of zones[1]
105          *   C: Compare super blocks from zones[0] and zones[1], use the latest
106          *      one determined by generation
107          *   x: Invalid state
108          */
109
110         if (empty[0] && empty[1]) {
111                 /* Special case to distinguish no superblock to read */
112                 *wp_ret = zones[0].start << SECTOR_SHIFT;
113                 return -ENOENT;
114         } else if (full[0] && full[1]) {
115                 /* Compare two super blocks */
116                 struct address_space *mapping = bdev->bd_inode->i_mapping;
117                 struct page *page[BTRFS_NR_SB_LOG_ZONES];
118                 struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
119                 int i;
120
121                 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
122                         u64 bytenr;
123
124                         bytenr = ((zones[i].start + zones[i].len)
125                                    << SECTOR_SHIFT) - BTRFS_SUPER_INFO_SIZE;
126
127                         page[i] = read_cache_page_gfp(mapping,
128                                         bytenr >> PAGE_SHIFT, GFP_NOFS);
129                         if (IS_ERR(page[i])) {
130                                 if (i == 1)
131                                         btrfs_release_disk_super(super[0]);
132                                 return PTR_ERR(page[i]);
133                         }
134                         super[i] = page_address(page[i]);
135                 }
136
137                 if (super[0]->generation > super[1]->generation)
138                         sector = zones[1].start;
139                 else
140                         sector = zones[0].start;
141
142                 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
143                         btrfs_release_disk_super(super[i]);
144         } else if (!full[0] && (empty[1] || full[1])) {
145                 sector = zones[0].wp;
146         } else if (full[0]) {
147                 sector = zones[1].wp;
148         } else {
149                 return -EUCLEAN;
150         }
151         *wp_ret = sector << SECTOR_SHIFT;
152         return 0;
153 }
154
155 /*
156  * Get the first zone number of the superblock mirror
157  */
158 static inline u32 sb_zone_number(int shift, int mirror)
159 {
160         u64 zone;
161
162         ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
163         switch (mirror) {
164         case 0: zone = 0; break;
165         case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
166         case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
167         }
168
169         ASSERT(zone <= U32_MAX);
170
171         return (u32)zone;
172 }
173
174 static inline sector_t zone_start_sector(u32 zone_number,
175                                          struct block_device *bdev)
176 {
177         return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev));
178 }
179
180 static inline u64 zone_start_physical(u32 zone_number,
181                                       struct btrfs_zoned_device_info *zone_info)
182 {
183         return (u64)zone_number << zone_info->zone_size_shift;
184 }
185
186 /*
187  * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block
188  * device into static sized chunks and fake a conventional zone on each of
189  * them.
190  */
191 static int emulate_report_zones(struct btrfs_device *device, u64 pos,
192                                 struct blk_zone *zones, unsigned int nr_zones)
193 {
194         const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
195         sector_t bdev_size = bdev_nr_sectors(device->bdev);
196         unsigned int i;
197
198         pos >>= SECTOR_SHIFT;
199         for (i = 0; i < nr_zones; i++) {
200                 zones[i].start = i * zone_sectors + pos;
201                 zones[i].len = zone_sectors;
202                 zones[i].capacity = zone_sectors;
203                 zones[i].wp = zones[i].start + zone_sectors;
204                 zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
205                 zones[i].cond = BLK_ZONE_COND_NOT_WP;
206
207                 if (zones[i].wp >= bdev_size) {
208                         i++;
209                         break;
210                 }
211         }
212
213         return i;
214 }
215
216 static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
217                                struct blk_zone *zones, unsigned int *nr_zones)
218 {
219         struct btrfs_zoned_device_info *zinfo = device->zone_info;
220         u32 zno;
221         int ret;
222
223         if (!*nr_zones)
224                 return 0;
225
226         if (!bdev_is_zoned(device->bdev)) {
227                 ret = emulate_report_zones(device, pos, zones, *nr_zones);
228                 *nr_zones = ret;
229                 return 0;
230         }
231
232         /* Check cache */
233         if (zinfo->zone_cache) {
234                 unsigned int i;
235
236                 ASSERT(IS_ALIGNED(pos, zinfo->zone_size));
237                 zno = pos >> zinfo->zone_size_shift;
238                 /*
239                  * We cannot report zones beyond the zone end. So, it is OK to
240                  * cap *nr_zones to at the end.
241                  */
242                 *nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno);
243
244                 for (i = 0; i < *nr_zones; i++) {
245                         struct blk_zone *zone_info;
246
247                         zone_info = &zinfo->zone_cache[zno + i];
248                         if (!zone_info->len)
249                                 break;
250                 }
251
252                 if (i == *nr_zones) {
253                         /* Cache hit on all the zones */
254                         memcpy(zones, zinfo->zone_cache + zno,
255                                sizeof(*zinfo->zone_cache) * *nr_zones);
256                         return 0;
257                 }
258         }
259
260         ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones,
261                                   copy_zone_info_cb, zones);
262         if (ret < 0) {
263                 btrfs_err_in_rcu(device->fs_info,
264                                  "zoned: failed to read zone %llu on %s (devid %llu)",
265                                  pos, rcu_str_deref(device->name),
266                                  device->devid);
267                 return ret;
268         }
269         *nr_zones = ret;
270         if (!ret)
271                 return -EIO;
272
273         /* Populate cache */
274         if (zinfo->zone_cache)
275                 memcpy(zinfo->zone_cache + zno, zones,
276                        sizeof(*zinfo->zone_cache) * *nr_zones);
277
278         return 0;
279 }
280
281 /* The emulated zone size is determined from the size of device extent */
282 static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
283 {
284         struct btrfs_path *path;
285         struct btrfs_root *root = fs_info->dev_root;
286         struct btrfs_key key;
287         struct extent_buffer *leaf;
288         struct btrfs_dev_extent *dext;
289         int ret = 0;
290
291         key.objectid = 1;
292         key.type = BTRFS_DEV_EXTENT_KEY;
293         key.offset = 0;
294
295         path = btrfs_alloc_path();
296         if (!path)
297                 return -ENOMEM;
298
299         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
300         if (ret < 0)
301                 goto out;
302
303         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
304                 ret = btrfs_next_leaf(root, path);
305                 if (ret < 0)
306                         goto out;
307                 /* No dev extents at all? Not good */
308                 if (ret > 0) {
309                         ret = -EUCLEAN;
310                         goto out;
311                 }
312         }
313
314         leaf = path->nodes[0];
315         dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
316         fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
317         ret = 0;
318
319 out:
320         btrfs_free_path(path);
321
322         return ret;
323 }
324
325 int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
326 {
327         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
328         struct btrfs_device *device;
329         int ret = 0;
330
331         /* fs_info->zone_size might not set yet. Use the incomapt flag here. */
332         if (!btrfs_fs_incompat(fs_info, ZONED))
333                 return 0;
334
335         mutex_lock(&fs_devices->device_list_mutex);
336         list_for_each_entry(device, &fs_devices->devices, dev_list) {
337                 /* We can skip reading of zone info for missing devices */
338                 if (!device->bdev)
339                         continue;
340
341                 ret = btrfs_get_dev_zone_info(device, true);
342                 if (ret)
343                         break;
344         }
345         mutex_unlock(&fs_devices->device_list_mutex);
346
347         return ret;
348 }
349
350 int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache)
351 {
352         struct btrfs_fs_info *fs_info = device->fs_info;
353         struct btrfs_zoned_device_info *zone_info = NULL;
354         struct block_device *bdev = device->bdev;
355         unsigned int max_active_zones;
356         unsigned int nactive;
357         sector_t nr_sectors;
358         sector_t sector = 0;
359         struct blk_zone *zones = NULL;
360         unsigned int i, nreported = 0, nr_zones;
361         sector_t zone_sectors;
362         char *model, *emulated;
363         int ret;
364
365         /*
366          * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not
367          * yet be set.
368          */
369         if (!btrfs_fs_incompat(fs_info, ZONED))
370                 return 0;
371
372         if (device->zone_info)
373                 return 0;
374
375         zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
376         if (!zone_info)
377                 return -ENOMEM;
378
379         device->zone_info = zone_info;
380
381         if (!bdev_is_zoned(bdev)) {
382                 if (!fs_info->zone_size) {
383                         ret = calculate_emulated_zone_size(fs_info);
384                         if (ret)
385                                 goto out;
386                 }
387
388                 ASSERT(fs_info->zone_size);
389                 zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
390         } else {
391                 zone_sectors = bdev_zone_sectors(bdev);
392         }
393
394         /* Check if it's power of 2 (see is_power_of_2) */
395         ASSERT(zone_sectors != 0 && (zone_sectors & (zone_sectors - 1)) == 0);
396         zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
397
398         /* We reject devices with a zone size larger than 8GB */
399         if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
400                 btrfs_err_in_rcu(fs_info,
401                 "zoned: %s: zone size %llu larger than supported maximum %llu",
402                                  rcu_str_deref(device->name),
403                                  zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
404                 ret = -EINVAL;
405                 goto out;
406         } else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) {
407                 btrfs_err_in_rcu(fs_info,
408                 "zoned: %s: zone size %llu smaller than supported minimum %u",
409                                  rcu_str_deref(device->name),
410                                  zone_info->zone_size, BTRFS_MIN_ZONE_SIZE);
411                 ret = -EINVAL;
412                 goto out;
413         }
414
415         nr_sectors = bdev_nr_sectors(bdev);
416         zone_info->zone_size_shift = ilog2(zone_info->zone_size);
417         zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
418         /*
419          * We limit max_zone_append_size also by max_segments *
420          * PAGE_SIZE. Technically, we can have multiple pages per segment. But,
421          * since btrfs adds the pages one by one to a bio, and btrfs cannot
422          * increase the metadata reservation even if it increases the number of
423          * extents, it is safe to stick with the limit.
424          *
425          * With the zoned emulation, we can have non-zoned device on the zoned
426          * mode. In this case, we don't have a valid max zone append size. So,
427          * use max_segments * PAGE_SIZE as the pseudo max_zone_append_size.
428          */
429         if (bdev_is_zoned(bdev)) {
430                 zone_info->max_zone_append_size = min_t(u64,
431                         (u64)bdev_max_zone_append_sectors(bdev) << SECTOR_SHIFT,
432                         (u64)bdev_max_segments(bdev) << PAGE_SHIFT);
433         } else {
434                 zone_info->max_zone_append_size =
435                         (u64)bdev_max_segments(bdev) << PAGE_SHIFT;
436         }
437         if (!IS_ALIGNED(nr_sectors, zone_sectors))
438                 zone_info->nr_zones++;
439
440         max_active_zones = bdev_max_active_zones(bdev);
441         if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) {
442                 btrfs_err_in_rcu(fs_info,
443 "zoned: %s: max active zones %u is too small, need at least %u active zones",
444                                  rcu_str_deref(device->name), max_active_zones,
445                                  BTRFS_MIN_ACTIVE_ZONES);
446                 ret = -EINVAL;
447                 goto out;
448         }
449         zone_info->max_active_zones = max_active_zones;
450
451         zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
452         if (!zone_info->seq_zones) {
453                 ret = -ENOMEM;
454                 goto out;
455         }
456
457         zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
458         if (!zone_info->empty_zones) {
459                 ret = -ENOMEM;
460                 goto out;
461         }
462
463         zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
464         if (!zone_info->active_zones) {
465                 ret = -ENOMEM;
466                 goto out;
467         }
468
469         zones = kcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
470         if (!zones) {
471                 ret = -ENOMEM;
472                 goto out;
473         }
474
475         /*
476          * Enable zone cache only for a zoned device. On a non-zoned device, we
477          * fill the zone info with emulated CONVENTIONAL zones, so no need to
478          * use the cache.
479          */
480         if (populate_cache && bdev_is_zoned(device->bdev)) {
481                 zone_info->zone_cache = vzalloc(sizeof(struct blk_zone) *
482                                                 zone_info->nr_zones);
483                 if (!zone_info->zone_cache) {
484                         btrfs_err_in_rcu(device->fs_info,
485                                 "zoned: failed to allocate zone cache for %s",
486                                 rcu_str_deref(device->name));
487                         ret = -ENOMEM;
488                         goto out;
489                 }
490         }
491
492         /* Get zones type */
493         nactive = 0;
494         while (sector < nr_sectors) {
495                 nr_zones = BTRFS_REPORT_NR_ZONES;
496                 ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
497                                           &nr_zones);
498                 if (ret)
499                         goto out;
500
501                 for (i = 0; i < nr_zones; i++) {
502                         if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
503                                 __set_bit(nreported, zone_info->seq_zones);
504                         switch (zones[i].cond) {
505                         case BLK_ZONE_COND_EMPTY:
506                                 __set_bit(nreported, zone_info->empty_zones);
507                                 break;
508                         case BLK_ZONE_COND_IMP_OPEN:
509                         case BLK_ZONE_COND_EXP_OPEN:
510                         case BLK_ZONE_COND_CLOSED:
511                                 __set_bit(nreported, zone_info->active_zones);
512                                 nactive++;
513                                 break;
514                         }
515                         nreported++;
516                 }
517                 sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
518         }
519
520         if (nreported != zone_info->nr_zones) {
521                 btrfs_err_in_rcu(device->fs_info,
522                                  "inconsistent number of zones on %s (%u/%u)",
523                                  rcu_str_deref(device->name), nreported,
524                                  zone_info->nr_zones);
525                 ret = -EIO;
526                 goto out;
527         }
528
529         if (max_active_zones) {
530                 if (nactive > max_active_zones) {
531                         btrfs_err_in_rcu(device->fs_info,
532                         "zoned: %u active zones on %s exceeds max_active_zones %u",
533                                          nactive, rcu_str_deref(device->name),
534                                          max_active_zones);
535                         ret = -EIO;
536                         goto out;
537                 }
538                 atomic_set(&zone_info->active_zones_left,
539                            max_active_zones - nactive);
540         }
541
542         /* Validate superblock log */
543         nr_zones = BTRFS_NR_SB_LOG_ZONES;
544         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
545                 u32 sb_zone;
546                 u64 sb_wp;
547                 int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;
548
549                 sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
550                 if (sb_zone + 1 >= zone_info->nr_zones)
551                         continue;
552
553                 ret = btrfs_get_dev_zones(device,
554                                           zone_start_physical(sb_zone, zone_info),
555                                           &zone_info->sb_zones[sb_pos],
556                                           &nr_zones);
557                 if (ret)
558                         goto out;
559
560                 if (nr_zones != BTRFS_NR_SB_LOG_ZONES) {
561                         btrfs_err_in_rcu(device->fs_info,
562         "zoned: failed to read super block log zone info at devid %llu zone %u",
563                                          device->devid, sb_zone);
564                         ret = -EUCLEAN;
565                         goto out;
566                 }
567
568                 /*
569                  * If zones[0] is conventional, always use the beginning of the
570                  * zone to record superblock. No need to validate in that case.
571                  */
572                 if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
573                     BLK_ZONE_TYPE_CONVENTIONAL)
574                         continue;
575
576                 ret = sb_write_pointer(device->bdev,
577                                        &zone_info->sb_zones[sb_pos], &sb_wp);
578                 if (ret != -ENOENT && ret) {
579                         btrfs_err_in_rcu(device->fs_info,
580                         "zoned: super block log zone corrupted devid %llu zone %u",
581                                          device->devid, sb_zone);
582                         ret = -EUCLEAN;
583                         goto out;
584                 }
585         }
586
587
588         kfree(zones);
589
590         switch (bdev_zoned_model(bdev)) {
591         case BLK_ZONED_HM:
592                 model = "host-managed zoned";
593                 emulated = "";
594                 break;
595         case BLK_ZONED_HA:
596                 model = "host-aware zoned";
597                 emulated = "";
598                 break;
599         case BLK_ZONED_NONE:
600                 model = "regular";
601                 emulated = "emulated ";
602                 break;
603         default:
604                 /* Just in case */
605                 btrfs_err_in_rcu(fs_info, "zoned: unsupported model %d on %s",
606                                  bdev_zoned_model(bdev),
607                                  rcu_str_deref(device->name));
608                 ret = -EOPNOTSUPP;
609                 goto out_free_zone_info;
610         }
611
612         btrfs_info_in_rcu(fs_info,
613                 "%s block device %s, %u %szones of %llu bytes",
614                 model, rcu_str_deref(device->name), zone_info->nr_zones,
615                 emulated, zone_info->zone_size);
616
617         return 0;
618
619 out:
620         kfree(zones);
621 out_free_zone_info:
622         btrfs_destroy_dev_zone_info(device);
623
624         return ret;
625 }
626
627 void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
628 {
629         struct btrfs_zoned_device_info *zone_info = device->zone_info;
630
631         if (!zone_info)
632                 return;
633
634         bitmap_free(zone_info->active_zones);
635         bitmap_free(zone_info->seq_zones);
636         bitmap_free(zone_info->empty_zones);
637         vfree(zone_info->zone_cache);
638         kfree(zone_info);
639         device->zone_info = NULL;
640 }
641
642 struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev)
643 {
644         struct btrfs_zoned_device_info *zone_info;
645
646         zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL);
647         if (!zone_info)
648                 return NULL;
649
650         zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
651         if (!zone_info->seq_zones)
652                 goto out;
653
654         bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones,
655                     zone_info->nr_zones);
656
657         zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
658         if (!zone_info->empty_zones)
659                 goto out;
660
661         bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones,
662                     zone_info->nr_zones);
663
664         zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
665         if (!zone_info->active_zones)
666                 goto out;
667
668         bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones,
669                     zone_info->nr_zones);
670         zone_info->zone_cache = NULL;
671
672         return zone_info;
673
674 out:
675         bitmap_free(zone_info->seq_zones);
676         bitmap_free(zone_info->empty_zones);
677         bitmap_free(zone_info->active_zones);
678         kfree(zone_info);
679         return NULL;
680 }
681
682 int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos,
683                        struct blk_zone *zone)
684 {
685         unsigned int nr_zones = 1;
686         int ret;
687
688         ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
689         if (ret != 0 || !nr_zones)
690                 return ret ? ret : -EIO;
691
692         return 0;
693 }
694
695 static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info)
696 {
697         struct btrfs_device *device;
698
699         list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
700                 if (device->bdev &&
701                     bdev_zoned_model(device->bdev) == BLK_ZONED_HM) {
702                         btrfs_err(fs_info,
703                                 "zoned: mode not enabled but zoned device found: %pg",
704                                 device->bdev);
705                         return -EINVAL;
706                 }
707         }
708
709         return 0;
710 }
711
712 int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
713 {
714         struct btrfs_device *device;
715         u64 zone_size = 0;
716         u64 max_zone_append_size = 0;
717         int ret;
718
719         /*
720          * Host-Managed devices can't be used without the ZONED flag.  With the
721          * ZONED all devices can be used, using zone emulation if required.
722          */
723         if (!btrfs_fs_incompat(fs_info, ZONED))
724                 return btrfs_check_for_zoned_device(fs_info);
725
726         list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
727                 struct btrfs_zoned_device_info *zone_info = device->zone_info;
728
729                 if (!device->bdev)
730                         continue;
731
732                 if (!zone_size) {
733                         zone_size = zone_info->zone_size;
734                 } else if (zone_info->zone_size != zone_size) {
735                         btrfs_err(fs_info,
736                 "zoned: unequal block device zone sizes: have %llu found %llu",
737                                   zone_info->zone_size, zone_size);
738                         return -EINVAL;
739                 }
740                 if (!max_zone_append_size ||
741                     (zone_info->max_zone_append_size &&
742                      zone_info->max_zone_append_size < max_zone_append_size))
743                         max_zone_append_size = zone_info->max_zone_append_size;
744         }
745
746         /*
747          * stripe_size is always aligned to BTRFS_STRIPE_LEN in
748          * btrfs_create_chunk(). Since we want stripe_len == zone_size,
749          * check the alignment here.
750          */
751         if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
752                 btrfs_err(fs_info,
753                           "zoned: zone size %llu not aligned to stripe %u",
754                           zone_size, BTRFS_STRIPE_LEN);
755                 return -EINVAL;
756         }
757
758         if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
759                 btrfs_err(fs_info, "zoned: mixed block groups not supported");
760                 return -EINVAL;
761         }
762
763         fs_info->zone_size = zone_size;
764         fs_info->max_zone_append_size = ALIGN_DOWN(max_zone_append_size,
765                                                    fs_info->sectorsize);
766         fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
767         if (fs_info->max_zone_append_size < fs_info->max_extent_size)
768                 fs_info->max_extent_size = fs_info->max_zone_append_size;
769
770         /*
771          * Check mount options here, because we might change fs_info->zoned
772          * from fs_info->zone_size.
773          */
774         ret = btrfs_check_mountopts_zoned(fs_info);
775         if (ret)
776                 return ret;
777
778         btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
779         return 0;
780 }
781
782 int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info)
783 {
784         if (!btrfs_is_zoned(info))
785                 return 0;
786
787         /*
788          * Space cache writing is not COWed. Disable that to avoid write errors
789          * in sequential zones.
790          */
791         if (btrfs_test_opt(info, SPACE_CACHE)) {
792                 btrfs_err(info, "zoned: space cache v1 is not supported");
793                 return -EINVAL;
794         }
795
796         if (btrfs_test_opt(info, NODATACOW)) {
797                 btrfs_err(info, "zoned: NODATACOW not supported");
798                 return -EINVAL;
799         }
800
801         return 0;
802 }
803
804 static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
805                            int rw, u64 *bytenr_ret)
806 {
807         u64 wp;
808         int ret;
809
810         if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
811                 *bytenr_ret = zones[0].start << SECTOR_SHIFT;
812                 return 0;
813         }
814
815         ret = sb_write_pointer(bdev, zones, &wp);
816         if (ret != -ENOENT && ret < 0)
817                 return ret;
818
819         if (rw == WRITE) {
820                 struct blk_zone *reset = NULL;
821
822                 if (wp == zones[0].start << SECTOR_SHIFT)
823                         reset = &zones[0];
824                 else if (wp == zones[1].start << SECTOR_SHIFT)
825                         reset = &zones[1];
826
827                 if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
828                         ASSERT(sb_zone_is_full(reset));
829
830                         ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
831                                                reset->start, reset->len,
832                                                GFP_NOFS);
833                         if (ret)
834                                 return ret;
835
836                         reset->cond = BLK_ZONE_COND_EMPTY;
837                         reset->wp = reset->start;
838                 }
839         } else if (ret != -ENOENT) {
840                 /*
841                  * For READ, we want the previous one. Move write pointer to
842                  * the end of a zone, if it is at the head of a zone.
843                  */
844                 u64 zone_end = 0;
845
846                 if (wp == zones[0].start << SECTOR_SHIFT)
847                         zone_end = zones[1].start + zones[1].capacity;
848                 else if (wp == zones[1].start << SECTOR_SHIFT)
849                         zone_end = zones[0].start + zones[0].capacity;
850                 if (zone_end)
851                         wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT,
852                                         BTRFS_SUPER_INFO_SIZE);
853
854                 wp -= BTRFS_SUPER_INFO_SIZE;
855         }
856
857         *bytenr_ret = wp;
858         return 0;
859
860 }
861
862 int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
863                                u64 *bytenr_ret)
864 {
865         struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
866         sector_t zone_sectors;
867         u32 sb_zone;
868         int ret;
869         u8 zone_sectors_shift;
870         sector_t nr_sectors;
871         u32 nr_zones;
872
873         if (!bdev_is_zoned(bdev)) {
874                 *bytenr_ret = btrfs_sb_offset(mirror);
875                 return 0;
876         }
877
878         ASSERT(rw == READ || rw == WRITE);
879
880         zone_sectors = bdev_zone_sectors(bdev);
881         if (!is_power_of_2(zone_sectors))
882                 return -EINVAL;
883         zone_sectors_shift = ilog2(zone_sectors);
884         nr_sectors = bdev_nr_sectors(bdev);
885         nr_zones = nr_sectors >> zone_sectors_shift;
886
887         sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
888         if (sb_zone + 1 >= nr_zones)
889                 return -ENOENT;
890
891         ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev),
892                                   BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb,
893                                   zones);
894         if (ret < 0)
895                 return ret;
896         if (ret != BTRFS_NR_SB_LOG_ZONES)
897                 return -EIO;
898
899         return sb_log_location(bdev, zones, rw, bytenr_ret);
900 }
901
902 int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
903                           u64 *bytenr_ret)
904 {
905         struct btrfs_zoned_device_info *zinfo = device->zone_info;
906         u32 zone_num;
907
908         /*
909          * For a zoned filesystem on a non-zoned block device, use the same
910          * super block locations as regular filesystem. Doing so, the super
911          * block can always be retrieved and the zoned flag of the volume
912          * detected from the super block information.
913          */
914         if (!bdev_is_zoned(device->bdev)) {
915                 *bytenr_ret = btrfs_sb_offset(mirror);
916                 return 0;
917         }
918
919         zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
920         if (zone_num + 1 >= zinfo->nr_zones)
921                 return -ENOENT;
922
923         return sb_log_location(device->bdev,
924                                &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
925                                rw, bytenr_ret);
926 }
927
928 static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
929                                   int mirror)
930 {
931         u32 zone_num;
932
933         if (!zinfo)
934                 return false;
935
936         zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
937         if (zone_num + 1 >= zinfo->nr_zones)
938                 return false;
939
940         if (!test_bit(zone_num, zinfo->seq_zones))
941                 return false;
942
943         return true;
944 }
945
946 int btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
947 {
948         struct btrfs_zoned_device_info *zinfo = device->zone_info;
949         struct blk_zone *zone;
950         int i;
951
952         if (!is_sb_log_zone(zinfo, mirror))
953                 return 0;
954
955         zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
956         for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
957                 /* Advance the next zone */
958                 if (zone->cond == BLK_ZONE_COND_FULL) {
959                         zone++;
960                         continue;
961                 }
962
963                 if (zone->cond == BLK_ZONE_COND_EMPTY)
964                         zone->cond = BLK_ZONE_COND_IMP_OPEN;
965
966                 zone->wp += SUPER_INFO_SECTORS;
967
968                 if (sb_zone_is_full(zone)) {
969                         /*
970                          * No room left to write new superblock. Since
971                          * superblock is written with REQ_SYNC, it is safe to
972                          * finish the zone now.
973                          *
974                          * If the write pointer is exactly at the capacity,
975                          * explicit ZONE_FINISH is not necessary.
976                          */
977                         if (zone->wp != zone->start + zone->capacity) {
978                                 int ret;
979
980                                 ret = blkdev_zone_mgmt(device->bdev,
981                                                 REQ_OP_ZONE_FINISH, zone->start,
982                                                 zone->len, GFP_NOFS);
983                                 if (ret)
984                                         return ret;
985                         }
986
987                         zone->wp = zone->start + zone->len;
988                         zone->cond = BLK_ZONE_COND_FULL;
989                 }
990                 return 0;
991         }
992
993         /* All the zones are FULL. Should not reach here. */
994         ASSERT(0);
995         return -EIO;
996 }
997
998 int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
999 {
1000         sector_t zone_sectors;
1001         sector_t nr_sectors;
1002         u8 zone_sectors_shift;
1003         u32 sb_zone;
1004         u32 nr_zones;
1005
1006         zone_sectors = bdev_zone_sectors(bdev);
1007         zone_sectors_shift = ilog2(zone_sectors);
1008         nr_sectors = bdev_nr_sectors(bdev);
1009         nr_zones = nr_sectors >> zone_sectors_shift;
1010
1011         sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
1012         if (sb_zone + 1 >= nr_zones)
1013                 return -ENOENT;
1014
1015         return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1016                                 zone_start_sector(sb_zone, bdev),
1017                                 zone_sectors * BTRFS_NR_SB_LOG_ZONES, GFP_NOFS);
1018 }
1019
1020 /**
1021  * btrfs_find_allocatable_zones - find allocatable zones within a given region
1022  *
1023  * @device:     the device to allocate a region on
1024  * @hole_start: the position of the hole to allocate the region
1025  * @num_bytes:  size of wanted region
1026  * @hole_end:   the end of the hole
1027  * @return:     position of allocatable zones
1028  *
1029  * Allocatable region should not contain any superblock locations.
1030  */
1031 u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
1032                                  u64 hole_end, u64 num_bytes)
1033 {
1034         struct btrfs_zoned_device_info *zinfo = device->zone_info;
1035         const u8 shift = zinfo->zone_size_shift;
1036         u64 nzones = num_bytes >> shift;
1037         u64 pos = hole_start;
1038         u64 begin, end;
1039         bool have_sb;
1040         int i;
1041
1042         ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
1043         ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));
1044
1045         while (pos < hole_end) {
1046                 begin = pos >> shift;
1047                 end = begin + nzones;
1048
1049                 if (end > zinfo->nr_zones)
1050                         return hole_end;
1051
1052                 /* Check if zones in the region are all empty */
1053                 if (btrfs_dev_is_sequential(device, pos) &&
1054                     find_next_zero_bit(zinfo->empty_zones, end, begin) != end) {
1055                         pos += zinfo->zone_size;
1056                         continue;
1057                 }
1058
1059                 have_sb = false;
1060                 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1061                         u32 sb_zone;
1062                         u64 sb_pos;
1063
1064                         sb_zone = sb_zone_number(shift, i);
1065                         if (!(end <= sb_zone ||
1066                               sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
1067                                 have_sb = true;
1068                                 pos = zone_start_physical(
1069                                         sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo);
1070                                 break;
1071                         }
1072
1073                         /* We also need to exclude regular superblock positions */
1074                         sb_pos = btrfs_sb_offset(i);
1075                         if (!(pos + num_bytes <= sb_pos ||
1076                               sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
1077                                 have_sb = true;
1078                                 pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
1079                                             zinfo->zone_size);
1080                                 break;
1081                         }
1082                 }
1083                 if (!have_sb)
1084                         break;
1085         }
1086
1087         return pos;
1088 }
1089
1090 static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos)
1091 {
1092         struct btrfs_zoned_device_info *zone_info = device->zone_info;
1093         unsigned int zno = (pos >> zone_info->zone_size_shift);
1094
1095         /* We can use any number of zones */
1096         if (zone_info->max_active_zones == 0)
1097                 return true;
1098
1099         if (!test_bit(zno, zone_info->active_zones)) {
1100                 /* Active zone left? */
1101                 if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0)
1102                         return false;
1103                 if (test_and_set_bit(zno, zone_info->active_zones)) {
1104                         /* Someone already set the bit */
1105                         atomic_inc(&zone_info->active_zones_left);
1106                 }
1107         }
1108
1109         return true;
1110 }
1111
1112 static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos)
1113 {
1114         struct btrfs_zoned_device_info *zone_info = device->zone_info;
1115         unsigned int zno = (pos >> zone_info->zone_size_shift);
1116
1117         /* We can use any number of zones */
1118         if (zone_info->max_active_zones == 0)
1119                 return;
1120
1121         if (test_and_clear_bit(zno, zone_info->active_zones))
1122                 atomic_inc(&zone_info->active_zones_left);
1123 }
1124
1125 int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
1126                             u64 length, u64 *bytes)
1127 {
1128         int ret;
1129
1130         *bytes = 0;
1131         ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
1132                                physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT,
1133                                GFP_NOFS);
1134         if (ret)
1135                 return ret;
1136
1137         *bytes = length;
1138         while (length) {
1139                 btrfs_dev_set_zone_empty(device, physical);
1140                 btrfs_dev_clear_active_zone(device, physical);
1141                 physical += device->zone_info->zone_size;
1142                 length -= device->zone_info->zone_size;
1143         }
1144
1145         return 0;
1146 }
1147
1148 int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
1149 {
1150         struct btrfs_zoned_device_info *zinfo = device->zone_info;
1151         const u8 shift = zinfo->zone_size_shift;
1152         unsigned long begin = start >> shift;
1153         unsigned long end = (start + size) >> shift;
1154         u64 pos;
1155         int ret;
1156
1157         ASSERT(IS_ALIGNED(start, zinfo->zone_size));
1158         ASSERT(IS_ALIGNED(size, zinfo->zone_size));
1159
1160         if (end > zinfo->nr_zones)
1161                 return -ERANGE;
1162
1163         /* All the zones are conventional */
1164         if (find_next_bit(zinfo->seq_zones, begin, end) == end)
1165                 return 0;
1166
1167         /* All the zones are sequential and empty */
1168         if (find_next_zero_bit(zinfo->seq_zones, begin, end) == end &&
1169             find_next_zero_bit(zinfo->empty_zones, begin, end) == end)
1170                 return 0;
1171
1172         for (pos = start; pos < start + size; pos += zinfo->zone_size) {
1173                 u64 reset_bytes;
1174
1175                 if (!btrfs_dev_is_sequential(device, pos) ||
1176                     btrfs_dev_is_empty_zone(device, pos))
1177                         continue;
1178
1179                 /* Free regions should be empty */
1180                 btrfs_warn_in_rcu(
1181                         device->fs_info,
1182                 "zoned: resetting device %s (devid %llu) zone %llu for allocation",
1183                         rcu_str_deref(device->name), device->devid, pos >> shift);
1184                 WARN_ON_ONCE(1);
1185
1186                 ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
1187                                               &reset_bytes);
1188                 if (ret)
1189                         return ret;
1190         }
1191
1192         return 0;
1193 }
1194
1195 /*
1196  * Calculate an allocation pointer from the extent allocation information
1197  * for a block group consist of conventional zones. It is pointed to the
1198  * end of the highest addressed extent in the block group as an allocation
1199  * offset.
1200  */
1201 static int calculate_alloc_pointer(struct btrfs_block_group *cache,
1202                                    u64 *offset_ret, bool new)
1203 {
1204         struct btrfs_fs_info *fs_info = cache->fs_info;
1205         struct btrfs_root *root;
1206         struct btrfs_path *path;
1207         struct btrfs_key key;
1208         struct btrfs_key found_key;
1209         int ret;
1210         u64 length;
1211
1212         /*
1213          * Avoid  tree lookups for a new block group, there's no use for it.
1214          * It must always be 0.
1215          *
1216          * Also, we have a lock chain of extent buffer lock -> chunk mutex.
1217          * For new a block group, this function is called from
1218          * btrfs_make_block_group() which is already taking the chunk mutex.
1219          * Thus, we cannot call calculate_alloc_pointer() which takes extent
1220          * buffer locks to avoid deadlock.
1221          */
1222         if (new) {
1223                 *offset_ret = 0;
1224                 return 0;
1225         }
1226
1227         path = btrfs_alloc_path();
1228         if (!path)
1229                 return -ENOMEM;
1230
1231         key.objectid = cache->start + cache->length;
1232         key.type = 0;
1233         key.offset = 0;
1234
1235         root = btrfs_extent_root(fs_info, key.objectid);
1236         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1237         /* We should not find the exact match */
1238         if (!ret)
1239                 ret = -EUCLEAN;
1240         if (ret < 0)
1241                 goto out;
1242
1243         ret = btrfs_previous_extent_item(root, path, cache->start);
1244         if (ret) {
1245                 if (ret == 1) {
1246                         ret = 0;
1247                         *offset_ret = 0;
1248                 }
1249                 goto out;
1250         }
1251
1252         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
1253
1254         if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
1255                 length = found_key.offset;
1256         else
1257                 length = fs_info->nodesize;
1258
1259         if (!(found_key.objectid >= cache->start &&
1260                found_key.objectid + length <= cache->start + cache->length)) {
1261                 ret = -EUCLEAN;
1262                 goto out;
1263         }
1264         *offset_ret = found_key.objectid + length - cache->start;
1265         ret = 0;
1266
1267 out:
1268         btrfs_free_path(path);
1269         return ret;
1270 }
1271
1272 int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
1273 {
1274         struct btrfs_fs_info *fs_info = cache->fs_info;
1275         struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1276         struct extent_map *em;
1277         struct map_lookup *map;
1278         struct btrfs_device *device;
1279         u64 logical = cache->start;
1280         u64 length = cache->length;
1281         int ret;
1282         int i;
1283         unsigned int nofs_flag;
1284         u64 *alloc_offsets = NULL;
1285         u64 *caps = NULL;
1286         u64 *physical = NULL;
1287         unsigned long *active = NULL;
1288         u64 last_alloc = 0;
1289         u32 num_sequential = 0, num_conventional = 0;
1290
1291         if (!btrfs_is_zoned(fs_info))
1292                 return 0;
1293
1294         /* Sanity check */
1295         if (!IS_ALIGNED(length, fs_info->zone_size)) {
1296                 btrfs_err(fs_info,
1297                 "zoned: block group %llu len %llu unaligned to zone size %llu",
1298                           logical, length, fs_info->zone_size);
1299                 return -EIO;
1300         }
1301
1302         /* Get the chunk mapping */
1303         read_lock(&em_tree->lock);
1304         em = lookup_extent_mapping(em_tree, logical, length);
1305         read_unlock(&em_tree->lock);
1306
1307         if (!em)
1308                 return -EINVAL;
1309
1310         map = em->map_lookup;
1311
1312         cache->physical_map = kmemdup(map, map_lookup_size(map->num_stripes), GFP_NOFS);
1313         if (!cache->physical_map) {
1314                 ret = -ENOMEM;
1315                 goto out;
1316         }
1317
1318         alloc_offsets = kcalloc(map->num_stripes, sizeof(*alloc_offsets), GFP_NOFS);
1319         if (!alloc_offsets) {
1320                 ret = -ENOMEM;
1321                 goto out;
1322         }
1323
1324         caps = kcalloc(map->num_stripes, sizeof(*caps), GFP_NOFS);
1325         if (!caps) {
1326                 ret = -ENOMEM;
1327                 goto out;
1328         }
1329
1330         physical = kcalloc(map->num_stripes, sizeof(*physical), GFP_NOFS);
1331         if (!physical) {
1332                 ret = -ENOMEM;
1333                 goto out;
1334         }
1335
1336         active = bitmap_zalloc(map->num_stripes, GFP_NOFS);
1337         if (!active) {
1338                 ret = -ENOMEM;
1339                 goto out;
1340         }
1341
1342         for (i = 0; i < map->num_stripes; i++) {
1343                 bool is_sequential;
1344                 struct blk_zone zone;
1345                 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1346                 int dev_replace_is_ongoing = 0;
1347
1348                 device = map->stripes[i].dev;
1349                 physical[i] = map->stripes[i].physical;
1350
1351                 if (device->bdev == NULL) {
1352                         alloc_offsets[i] = WP_MISSING_DEV;
1353                         continue;
1354                 }
1355
1356                 is_sequential = btrfs_dev_is_sequential(device, physical[i]);
1357                 if (is_sequential)
1358                         num_sequential++;
1359                 else
1360                         num_conventional++;
1361
1362                 /*
1363                  * Consider a zone as active if we can allow any number of
1364                  * active zones.
1365                  */
1366                 if (!device->zone_info->max_active_zones)
1367                         __set_bit(i, active);
1368
1369                 if (!is_sequential) {
1370                         alloc_offsets[i] = WP_CONVENTIONAL;
1371                         continue;
1372                 }
1373
1374                 /*
1375                  * This zone will be used for allocation, so mark this zone
1376                  * non-empty.
1377                  */
1378                 btrfs_dev_clear_zone_empty(device, physical[i]);
1379
1380                 down_read(&dev_replace->rwsem);
1381                 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
1382                 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
1383                         btrfs_dev_clear_zone_empty(dev_replace->tgtdev, physical[i]);
1384                 up_read(&dev_replace->rwsem);
1385
1386                 /*
1387                  * The group is mapped to a sequential zone. Get the zone write
1388                  * pointer to determine the allocation offset within the zone.
1389                  */
1390                 WARN_ON(!IS_ALIGNED(physical[i], fs_info->zone_size));
1391                 nofs_flag = memalloc_nofs_save();
1392                 ret = btrfs_get_dev_zone(device, physical[i], &zone);
1393                 memalloc_nofs_restore(nofs_flag);
1394                 if (ret == -EIO || ret == -EOPNOTSUPP) {
1395                         ret = 0;
1396                         alloc_offsets[i] = WP_MISSING_DEV;
1397                         continue;
1398                 } else if (ret) {
1399                         goto out;
1400                 }
1401
1402                 if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) {
1403                         btrfs_err_in_rcu(fs_info,
1404         "zoned: unexpected conventional zone %llu on device %s (devid %llu)",
1405                                 zone.start << SECTOR_SHIFT,
1406                                 rcu_str_deref(device->name), device->devid);
1407                         ret = -EIO;
1408                         goto out;
1409                 }
1410
1411                 caps[i] = (zone.capacity << SECTOR_SHIFT);
1412
1413                 switch (zone.cond) {
1414                 case BLK_ZONE_COND_OFFLINE:
1415                 case BLK_ZONE_COND_READONLY:
1416                         btrfs_err(fs_info,
1417                 "zoned: offline/readonly zone %llu on device %s (devid %llu)",
1418                                   physical[i] >> device->zone_info->zone_size_shift,
1419                                   rcu_str_deref(device->name), device->devid);
1420                         alloc_offsets[i] = WP_MISSING_DEV;
1421                         break;
1422                 case BLK_ZONE_COND_EMPTY:
1423                         alloc_offsets[i] = 0;
1424                         break;
1425                 case BLK_ZONE_COND_FULL:
1426                         alloc_offsets[i] = caps[i];
1427                         break;
1428                 default:
1429                         /* Partially used zone */
1430                         alloc_offsets[i] =
1431                                         ((zone.wp - zone.start) << SECTOR_SHIFT);
1432                         __set_bit(i, active);
1433                         break;
1434                 }
1435         }
1436
1437         if (num_sequential > 0)
1438                 cache->seq_zone = true;
1439
1440         if (num_conventional > 0) {
1441                 /* Zone capacity is always zone size in emulation */
1442                 cache->zone_capacity = cache->length;
1443                 ret = calculate_alloc_pointer(cache, &last_alloc, new);
1444                 if (ret) {
1445                         btrfs_err(fs_info,
1446                         "zoned: failed to determine allocation offset of bg %llu",
1447                                   cache->start);
1448                         goto out;
1449                 } else if (map->num_stripes == num_conventional) {
1450                         cache->alloc_offset = last_alloc;
1451                         set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
1452                         goto out;
1453                 }
1454         }
1455
1456         switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
1457         case 0: /* single */
1458                 if (alloc_offsets[0] == WP_MISSING_DEV) {
1459                         btrfs_err(fs_info,
1460                         "zoned: cannot recover write pointer for zone %llu",
1461                                 physical[0]);
1462                         ret = -EIO;
1463                         goto out;
1464                 }
1465                 cache->alloc_offset = alloc_offsets[0];
1466                 cache->zone_capacity = caps[0];
1467                 if (test_bit(0, active))
1468                         set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
1469                 break;
1470         case BTRFS_BLOCK_GROUP_DUP:
1471                 if (map->type & BTRFS_BLOCK_GROUP_DATA) {
1472                         btrfs_err(fs_info, "zoned: profile DUP not yet supported on data bg");
1473                         ret = -EINVAL;
1474                         goto out;
1475                 }
1476                 if (alloc_offsets[0] == WP_MISSING_DEV) {
1477                         btrfs_err(fs_info,
1478                         "zoned: cannot recover write pointer for zone %llu",
1479                                 physical[0]);
1480                         ret = -EIO;
1481                         goto out;
1482                 }
1483                 if (alloc_offsets[1] == WP_MISSING_DEV) {
1484                         btrfs_err(fs_info,
1485                         "zoned: cannot recover write pointer for zone %llu",
1486                                 physical[1]);
1487                         ret = -EIO;
1488                         goto out;
1489                 }
1490                 if (alloc_offsets[0] != alloc_offsets[1]) {
1491                         btrfs_err(fs_info,
1492                         "zoned: write pointer offset mismatch of zones in DUP profile");
1493                         ret = -EIO;
1494                         goto out;
1495                 }
1496                 if (test_bit(0, active) != test_bit(1, active)) {
1497                         if (!btrfs_zone_activate(cache)) {
1498                                 ret = -EIO;
1499                                 goto out;
1500                         }
1501                 } else {
1502                         if (test_bit(0, active))
1503                                 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
1504                                         &cache->runtime_flags);
1505                 }
1506                 cache->alloc_offset = alloc_offsets[0];
1507                 cache->zone_capacity = min(caps[0], caps[1]);
1508                 break;
1509         case BTRFS_BLOCK_GROUP_RAID1:
1510         case BTRFS_BLOCK_GROUP_RAID0:
1511         case BTRFS_BLOCK_GROUP_RAID10:
1512         case BTRFS_BLOCK_GROUP_RAID5:
1513         case BTRFS_BLOCK_GROUP_RAID6:
1514                 /* non-single profiles are not supported yet */
1515         default:
1516                 btrfs_err(fs_info, "zoned: profile %s not yet supported",
1517                           btrfs_bg_type_to_raid_name(map->type));
1518                 ret = -EINVAL;
1519                 goto out;
1520         }
1521
1522 out:
1523         if (cache->alloc_offset > fs_info->zone_size) {
1524                 btrfs_err(fs_info,
1525                         "zoned: invalid write pointer %llu in block group %llu",
1526                         cache->alloc_offset, cache->start);
1527                 ret = -EIO;
1528         }
1529
1530         if (cache->alloc_offset > cache->zone_capacity) {
1531                 btrfs_err(fs_info,
1532 "zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu",
1533                           cache->alloc_offset, cache->zone_capacity,
1534                           cache->start);
1535                 ret = -EIO;
1536         }
1537
1538         /* An extent is allocated after the write pointer */
1539         if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
1540                 btrfs_err(fs_info,
1541                           "zoned: got wrong write pointer in BG %llu: %llu > %llu",
1542                           logical, last_alloc, cache->alloc_offset);
1543                 ret = -EIO;
1544         }
1545
1546         if (!ret) {
1547                 cache->meta_write_pointer = cache->alloc_offset + cache->start;
1548                 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) {
1549                         btrfs_get_block_group(cache);
1550                         spin_lock(&fs_info->zone_active_bgs_lock);
1551                         list_add_tail(&cache->active_bg_list,
1552                                       &fs_info->zone_active_bgs);
1553                         spin_unlock(&fs_info->zone_active_bgs_lock);
1554                 }
1555         } else {
1556                 kfree(cache->physical_map);
1557                 cache->physical_map = NULL;
1558         }
1559         bitmap_free(active);
1560         kfree(physical);
1561         kfree(caps);
1562         kfree(alloc_offsets);
1563         free_extent_map(em);
1564
1565         return ret;
1566 }
1567
1568 void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
1569 {
1570         u64 unusable, free;
1571
1572         if (!btrfs_is_zoned(cache->fs_info))
1573                 return;
1574
1575         WARN_ON(cache->bytes_super != 0);
1576         unusable = (cache->alloc_offset - cache->used) +
1577                    (cache->length - cache->zone_capacity);
1578         free = cache->zone_capacity - cache->alloc_offset;
1579
1580         /* We only need ->free_space in ALLOC_SEQ block groups */
1581         cache->cached = BTRFS_CACHE_FINISHED;
1582         cache->free_space_ctl->free_space = free;
1583         cache->zone_unusable = unusable;
1584 }
1585
1586 void btrfs_redirty_list_add(struct btrfs_transaction *trans,
1587                             struct extent_buffer *eb)
1588 {
1589         struct btrfs_fs_info *fs_info = eb->fs_info;
1590
1591         if (!btrfs_is_zoned(fs_info) ||
1592             btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN) ||
1593             !list_empty(&eb->release_list))
1594                 return;
1595
1596         set_extent_buffer_dirty(eb);
1597         set_extent_bits_nowait(&trans->dirty_pages, eb->start,
1598                                eb->start + eb->len - 1, EXTENT_DIRTY);
1599         memzero_extent_buffer(eb, 0, eb->len);
1600         set_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags);
1601
1602         spin_lock(&trans->releasing_ebs_lock);
1603         list_add_tail(&eb->release_list, &trans->releasing_ebs);
1604         spin_unlock(&trans->releasing_ebs_lock);
1605         atomic_inc(&eb->refs);
1606 }
1607
1608 void btrfs_free_redirty_list(struct btrfs_transaction *trans)
1609 {
1610         spin_lock(&trans->releasing_ebs_lock);
1611         while (!list_empty(&trans->releasing_ebs)) {
1612                 struct extent_buffer *eb;
1613
1614                 eb = list_first_entry(&trans->releasing_ebs,
1615                                       struct extent_buffer, release_list);
1616                 list_del_init(&eb->release_list);
1617                 free_extent_buffer(eb);
1618         }
1619         spin_unlock(&trans->releasing_ebs_lock);
1620 }
1621
1622 bool btrfs_use_zone_append(struct btrfs_inode *inode, u64 start)
1623 {
1624         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1625         struct btrfs_block_group *cache;
1626         bool ret = false;
1627
1628         if (!btrfs_is_zoned(fs_info))
1629                 return false;
1630
1631         if (!is_data_inode(&inode->vfs_inode))
1632                 return false;
1633
1634         /*
1635          * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the
1636          * extent layout the relocation code has.
1637          * Furthermore we have set aside own block-group from which only the
1638          * relocation "process" can allocate and make sure only one process at a
1639          * time can add pages to an extent that gets relocated, so it's safe to
1640          * use regular REQ_OP_WRITE for this special case.
1641          */
1642         if (btrfs_is_data_reloc_root(inode->root))
1643                 return false;
1644
1645         cache = btrfs_lookup_block_group(fs_info, start);
1646         ASSERT(cache);
1647         if (!cache)
1648                 return false;
1649
1650         ret = cache->seq_zone;
1651         btrfs_put_block_group(cache);
1652
1653         return ret;
1654 }
1655
1656 void btrfs_record_physical_zoned(struct inode *inode, u64 file_offset,
1657                                  struct bio *bio)
1658 {
1659         struct btrfs_ordered_extent *ordered;
1660         const u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT;
1661
1662         if (bio_op(bio) != REQ_OP_ZONE_APPEND)
1663                 return;
1664
1665         ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), file_offset);
1666         if (WARN_ON(!ordered))
1667                 return;
1668
1669         ordered->physical = physical;
1670         ordered->bdev = bio->bi_bdev;
1671
1672         btrfs_put_ordered_extent(ordered);
1673 }
1674
1675 void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered)
1676 {
1677         struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1678         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1679         struct extent_map_tree *em_tree;
1680         struct extent_map *em;
1681         struct btrfs_ordered_sum *sum;
1682         u64 orig_logical = ordered->disk_bytenr;
1683         u64 *logical = NULL;
1684         int nr, stripe_len;
1685
1686         /* Zoned devices should not have partitions. So, we can assume it is 0 */
1687         ASSERT(!bdev_is_partition(ordered->bdev));
1688         if (WARN_ON(!ordered->bdev))
1689                 return;
1690
1691         if (WARN_ON(btrfs_rmap_block(fs_info, orig_logical, ordered->bdev,
1692                                      ordered->physical, &logical, &nr,
1693                                      &stripe_len)))
1694                 goto out;
1695
1696         WARN_ON(nr != 1);
1697
1698         if (orig_logical == *logical)
1699                 goto out;
1700
1701         ordered->disk_bytenr = *logical;
1702
1703         em_tree = &inode->extent_tree;
1704         write_lock(&em_tree->lock);
1705         em = search_extent_mapping(em_tree, ordered->file_offset,
1706                                    ordered->num_bytes);
1707         em->block_start = *logical;
1708         free_extent_map(em);
1709         write_unlock(&em_tree->lock);
1710
1711         list_for_each_entry(sum, &ordered->list, list) {
1712                 if (*logical < orig_logical)
1713                         sum->bytenr -= orig_logical - *logical;
1714                 else
1715                         sum->bytenr += *logical - orig_logical;
1716         }
1717
1718 out:
1719         kfree(logical);
1720 }
1721
1722 bool btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
1723                                     struct extent_buffer *eb,
1724                                     struct btrfs_block_group **cache_ret)
1725 {
1726         struct btrfs_block_group *cache;
1727         bool ret = true;
1728
1729         if (!btrfs_is_zoned(fs_info))
1730                 return true;
1731
1732         cache = btrfs_lookup_block_group(fs_info, eb->start);
1733         if (!cache)
1734                 return true;
1735
1736         if (cache->meta_write_pointer != eb->start) {
1737                 btrfs_put_block_group(cache);
1738                 cache = NULL;
1739                 ret = false;
1740         } else {
1741                 cache->meta_write_pointer = eb->start + eb->len;
1742         }
1743
1744         *cache_ret = cache;
1745
1746         return ret;
1747 }
1748
1749 void btrfs_revert_meta_write_pointer(struct btrfs_block_group *cache,
1750                                      struct extent_buffer *eb)
1751 {
1752         if (!btrfs_is_zoned(eb->fs_info) || !cache)
1753                 return;
1754
1755         ASSERT(cache->meta_write_pointer == eb->start + eb->len);
1756         cache->meta_write_pointer = eb->start;
1757 }
1758
1759 int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
1760 {
1761         if (!btrfs_dev_is_sequential(device, physical))
1762                 return -EOPNOTSUPP;
1763
1764         return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
1765                                     length >> SECTOR_SHIFT, GFP_NOFS, 0);
1766 }
1767
1768 static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
1769                           struct blk_zone *zone)
1770 {
1771         struct btrfs_io_context *bioc = NULL;
1772         u64 mapped_length = PAGE_SIZE;
1773         unsigned int nofs_flag;
1774         int nmirrors;
1775         int i, ret;
1776
1777         ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
1778                                &mapped_length, &bioc);
1779         if (ret || !bioc || mapped_length < PAGE_SIZE) {
1780                 ret = -EIO;
1781                 goto out_put_bioc;
1782         }
1783
1784         if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1785                 ret = -EINVAL;
1786                 goto out_put_bioc;
1787         }
1788
1789         nofs_flag = memalloc_nofs_save();
1790         nmirrors = (int)bioc->num_stripes;
1791         for (i = 0; i < nmirrors; i++) {
1792                 u64 physical = bioc->stripes[i].physical;
1793                 struct btrfs_device *dev = bioc->stripes[i].dev;
1794
1795                 /* Missing device */
1796                 if (!dev->bdev)
1797                         continue;
1798
1799                 ret = btrfs_get_dev_zone(dev, physical, zone);
1800                 /* Failing device */
1801                 if (ret == -EIO || ret == -EOPNOTSUPP)
1802                         continue;
1803                 break;
1804         }
1805         memalloc_nofs_restore(nofs_flag);
1806 out_put_bioc:
1807         btrfs_put_bioc(bioc);
1808         return ret;
1809 }
1810
1811 /*
1812  * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by
1813  * filling zeros between @physical_pos to a write pointer of dev-replace
1814  * source device.
1815  */
1816 int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
1817                                     u64 physical_start, u64 physical_pos)
1818 {
1819         struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
1820         struct blk_zone zone;
1821         u64 length;
1822         u64 wp;
1823         int ret;
1824
1825         if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
1826                 return 0;
1827
1828         ret = read_zone_info(fs_info, logical, &zone);
1829         if (ret)
1830                 return ret;
1831
1832         wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);
1833
1834         if (physical_pos == wp)
1835                 return 0;
1836
1837         if (physical_pos > wp)
1838                 return -EUCLEAN;
1839
1840         length = wp - physical_pos;
1841         return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
1842 }
1843
1844 struct btrfs_device *btrfs_zoned_get_device(struct btrfs_fs_info *fs_info,
1845                                             u64 logical, u64 length)
1846 {
1847         struct btrfs_device *device;
1848         struct extent_map *em;
1849         struct map_lookup *map;
1850
1851         em = btrfs_get_chunk_map(fs_info, logical, length);
1852         if (IS_ERR(em))
1853                 return ERR_CAST(em);
1854
1855         map = em->map_lookup;
1856         /* We only support single profile for now */
1857         device = map->stripes[0].dev;
1858
1859         free_extent_map(em);
1860
1861         return device;
1862 }
1863
1864 /**
1865  * Activate block group and underlying device zones
1866  *
1867  * @block_group: the block group to activate
1868  *
1869  * Return: true on success, false otherwise
1870  */
1871 bool btrfs_zone_activate(struct btrfs_block_group *block_group)
1872 {
1873         struct btrfs_fs_info *fs_info = block_group->fs_info;
1874         struct btrfs_space_info *space_info = block_group->space_info;
1875         struct map_lookup *map;
1876         struct btrfs_device *device;
1877         u64 physical;
1878         bool ret;
1879         int i;
1880
1881         if (!btrfs_is_zoned(block_group->fs_info))
1882                 return true;
1883
1884         map = block_group->physical_map;
1885
1886         spin_lock(&space_info->lock);
1887         spin_lock(&block_group->lock);
1888         if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
1889                 ret = true;
1890                 goto out_unlock;
1891         }
1892
1893         /* No space left */
1894         if (btrfs_zoned_bg_is_full(block_group)) {
1895                 ret = false;
1896                 goto out_unlock;
1897         }
1898
1899         for (i = 0; i < map->num_stripes; i++) {
1900                 device = map->stripes[i].dev;
1901                 physical = map->stripes[i].physical;
1902
1903                 if (device->zone_info->max_active_zones == 0)
1904                         continue;
1905
1906                 if (!btrfs_dev_set_active_zone(device, physical)) {
1907                         /* Cannot activate the zone */
1908                         ret = false;
1909                         goto out_unlock;
1910                 }
1911         }
1912
1913         /* Successfully activated all the zones */
1914         set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
1915         space_info->active_total_bytes += block_group->length;
1916         spin_unlock(&block_group->lock);
1917         btrfs_try_granting_tickets(fs_info, space_info);
1918         spin_unlock(&space_info->lock);
1919
1920         /* For the active block group list */
1921         btrfs_get_block_group(block_group);
1922
1923         spin_lock(&fs_info->zone_active_bgs_lock);
1924         list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs);
1925         spin_unlock(&fs_info->zone_active_bgs_lock);
1926
1927         return true;
1928
1929 out_unlock:
1930         spin_unlock(&block_group->lock);
1931         spin_unlock(&space_info->lock);
1932         return ret;
1933 }
1934
1935 static void wait_eb_writebacks(struct btrfs_block_group *block_group)
1936 {
1937         struct btrfs_fs_info *fs_info = block_group->fs_info;
1938         const u64 end = block_group->start + block_group->length;
1939         struct radix_tree_iter iter;
1940         struct extent_buffer *eb;
1941         void __rcu **slot;
1942
1943         rcu_read_lock();
1944         radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter,
1945                                  block_group->start >> fs_info->sectorsize_bits) {
1946                 eb = radix_tree_deref_slot(slot);
1947                 if (!eb)
1948                         continue;
1949                 if (radix_tree_deref_retry(eb)) {
1950                         slot = radix_tree_iter_retry(&iter);
1951                         continue;
1952                 }
1953
1954                 if (eb->start < block_group->start)
1955                         continue;
1956                 if (eb->start >= end)
1957                         break;
1958
1959                 slot = radix_tree_iter_resume(slot, &iter);
1960                 rcu_read_unlock();
1961                 wait_on_extent_buffer_writeback(eb);
1962                 rcu_read_lock();
1963         }
1964         rcu_read_unlock();
1965 }
1966
1967 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written)
1968 {
1969         struct btrfs_fs_info *fs_info = block_group->fs_info;
1970         struct map_lookup *map;
1971         const bool is_metadata = (block_group->flags &
1972                         (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM));
1973         int ret = 0;
1974         int i;
1975
1976         spin_lock(&block_group->lock);
1977         if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
1978                 spin_unlock(&block_group->lock);
1979                 return 0;
1980         }
1981
1982         /* Check if we have unwritten allocated space */
1983         if (is_metadata &&
1984             block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) {
1985                 spin_unlock(&block_group->lock);
1986                 return -EAGAIN;
1987         }
1988
1989         /*
1990          * If we are sure that the block group is full (= no more room left for
1991          * new allocation) and the IO for the last usable block is completed, we
1992          * don't need to wait for the other IOs. This holds because we ensure
1993          * the sequential IO submissions using the ZONE_APPEND command for data
1994          * and block_group->meta_write_pointer for metadata.
1995          */
1996         if (!fully_written) {
1997                 spin_unlock(&block_group->lock);
1998
1999                 ret = btrfs_inc_block_group_ro(block_group, false);
2000                 if (ret)
2001                         return ret;
2002
2003                 /* Ensure all writes in this block group finish */
2004                 btrfs_wait_block_group_reservations(block_group);
2005                 /* No need to wait for NOCOW writers. Zoned mode does not allow that */
2006                 btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group->start,
2007                                          block_group->length);
2008                 /* Wait for extent buffers to be written. */
2009                 if (is_metadata)
2010                         wait_eb_writebacks(block_group);
2011
2012                 spin_lock(&block_group->lock);
2013
2014                 /*
2015                  * Bail out if someone already deactivated the block group, or
2016                  * allocated space is left in the block group.
2017                  */
2018                 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2019                               &block_group->runtime_flags)) {
2020                         spin_unlock(&block_group->lock);
2021                         btrfs_dec_block_group_ro(block_group);
2022                         return 0;
2023                 }
2024
2025                 if (block_group->reserved) {
2026                         spin_unlock(&block_group->lock);
2027                         btrfs_dec_block_group_ro(block_group);
2028                         return -EAGAIN;
2029                 }
2030         }
2031
2032         clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2033         block_group->alloc_offset = block_group->zone_capacity;
2034         block_group->free_space_ctl->free_space = 0;
2035         btrfs_clear_treelog_bg(block_group);
2036         btrfs_clear_data_reloc_bg(block_group);
2037         spin_unlock(&block_group->lock);
2038
2039         map = block_group->physical_map;
2040         for (i = 0; i < map->num_stripes; i++) {
2041                 struct btrfs_device *device = map->stripes[i].dev;
2042                 const u64 physical = map->stripes[i].physical;
2043
2044                 if (device->zone_info->max_active_zones == 0)
2045                         continue;
2046
2047                 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH,
2048                                        physical >> SECTOR_SHIFT,
2049                                        device->zone_info->zone_size >> SECTOR_SHIFT,
2050                                        GFP_NOFS);
2051
2052                 if (ret)
2053                         return ret;
2054
2055                 btrfs_dev_clear_active_zone(device, physical);
2056         }
2057
2058         if (!fully_written)
2059                 btrfs_dec_block_group_ro(block_group);
2060
2061         spin_lock(&fs_info->zone_active_bgs_lock);
2062         ASSERT(!list_empty(&block_group->active_bg_list));
2063         list_del_init(&block_group->active_bg_list);
2064         spin_unlock(&fs_info->zone_active_bgs_lock);
2065
2066         /* For active_bg_list */
2067         btrfs_put_block_group(block_group);
2068
2069         clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2070
2071         return 0;
2072 }
2073
2074 int btrfs_zone_finish(struct btrfs_block_group *block_group)
2075 {
2076         if (!btrfs_is_zoned(block_group->fs_info))
2077                 return 0;
2078
2079         return do_zone_finish(block_group, false);
2080 }
2081
2082 bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags)
2083 {
2084         struct btrfs_fs_info *fs_info = fs_devices->fs_info;
2085         struct btrfs_device *device;
2086         bool ret = false;
2087
2088         if (!btrfs_is_zoned(fs_info))
2089                 return true;
2090
2091         /* Check if there is a device with active zones left */
2092         mutex_lock(&fs_info->chunk_mutex);
2093         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
2094                 struct btrfs_zoned_device_info *zinfo = device->zone_info;
2095
2096                 if (!device->bdev)
2097                         continue;
2098
2099                 if (!zinfo->max_active_zones ||
2100                     atomic_read(&zinfo->active_zones_left)) {
2101                         ret = true;
2102                         break;
2103                 }
2104         }
2105         mutex_unlock(&fs_info->chunk_mutex);
2106
2107         if (!ret)
2108                 set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2109
2110         return ret;
2111 }
2112
2113 void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length)
2114 {
2115         struct btrfs_block_group *block_group;
2116         u64 min_alloc_bytes;
2117
2118         if (!btrfs_is_zoned(fs_info))
2119                 return;
2120
2121         block_group = btrfs_lookup_block_group(fs_info, logical);
2122         ASSERT(block_group);
2123
2124         /* No MIXED_BG on zoned btrfs. */
2125         if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
2126                 min_alloc_bytes = fs_info->sectorsize;
2127         else
2128                 min_alloc_bytes = fs_info->nodesize;
2129
2130         /* Bail out if we can allocate more data from this block group. */
2131         if (logical + length + min_alloc_bytes <=
2132             block_group->start + block_group->zone_capacity)
2133                 goto out;
2134
2135         do_zone_finish(block_group, true);
2136
2137 out:
2138         btrfs_put_block_group(block_group);
2139 }
2140
2141 static void btrfs_zone_finish_endio_workfn(struct work_struct *work)
2142 {
2143         struct btrfs_block_group *bg =
2144                 container_of(work, struct btrfs_block_group, zone_finish_work);
2145
2146         wait_on_extent_buffer_writeback(bg->last_eb);
2147         free_extent_buffer(bg->last_eb);
2148         btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length);
2149         btrfs_put_block_group(bg);
2150 }
2151
2152 void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg,
2153                                    struct extent_buffer *eb)
2154 {
2155         if (!bg->seq_zone || eb->start + eb->len * 2 <= bg->start + bg->zone_capacity)
2156                 return;
2157
2158         if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) {
2159                 btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing",
2160                           bg->start);
2161                 return;
2162         }
2163
2164         /* For the work */
2165         btrfs_get_block_group(bg);
2166         atomic_inc(&eb->refs);
2167         bg->last_eb = eb;
2168         INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn);
2169         queue_work(system_unbound_wq, &bg->zone_finish_work);
2170 }
2171
2172 void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg)
2173 {
2174         struct btrfs_fs_info *fs_info = bg->fs_info;
2175
2176         spin_lock(&fs_info->relocation_bg_lock);
2177         if (fs_info->data_reloc_bg == bg->start)
2178                 fs_info->data_reloc_bg = 0;
2179         spin_unlock(&fs_info->relocation_bg_lock);
2180 }
2181
2182 void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info)
2183 {
2184         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2185         struct btrfs_device *device;
2186
2187         if (!btrfs_is_zoned(fs_info))
2188                 return;
2189
2190         mutex_lock(&fs_devices->device_list_mutex);
2191         list_for_each_entry(device, &fs_devices->devices, dev_list) {
2192                 if (device->zone_info) {
2193                         vfree(device->zone_info->zone_cache);
2194                         device->zone_info->zone_cache = NULL;
2195                 }
2196         }
2197         mutex_unlock(&fs_devices->device_list_mutex);
2198 }
2199
2200 bool btrfs_zoned_should_reclaim(struct btrfs_fs_info *fs_info)
2201 {
2202         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2203         struct btrfs_device *device;
2204         u64 used = 0;
2205         u64 total = 0;
2206         u64 factor;
2207
2208         ASSERT(btrfs_is_zoned(fs_info));
2209
2210         if (fs_info->bg_reclaim_threshold == 0)
2211                 return false;
2212
2213         mutex_lock(&fs_devices->device_list_mutex);
2214         list_for_each_entry(device, &fs_devices->devices, dev_list) {
2215                 if (!device->bdev)
2216                         continue;
2217
2218                 total += device->disk_total_bytes;
2219                 used += device->bytes_used;
2220         }
2221         mutex_unlock(&fs_devices->device_list_mutex);
2222
2223         factor = div64_u64(used * 100, total);
2224         return factor >= fs_info->bg_reclaim_threshold;
2225 }
2226
2227 void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical,
2228                                        u64 length)
2229 {
2230         struct btrfs_block_group *block_group;
2231
2232         if (!btrfs_is_zoned(fs_info))
2233                 return;
2234
2235         block_group = btrfs_lookup_block_group(fs_info, logical);
2236         /* It should be called on a previous data relocation block group. */
2237         ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA));
2238
2239         spin_lock(&block_group->lock);
2240         if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))
2241                 goto out;
2242
2243         /* All relocation extents are written. */
2244         if (block_group->start + block_group->alloc_offset == logical + length) {
2245                 /* Now, release this block group for further allocations. */
2246                 clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2247                           &block_group->runtime_flags);
2248         }
2249
2250 out:
2251         spin_unlock(&block_group->lock);
2252         btrfs_put_block_group(block_group);
2253 }
2254
2255 int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info)
2256 {
2257         struct btrfs_block_group *block_group;
2258         struct btrfs_block_group *min_bg = NULL;
2259         u64 min_avail = U64_MAX;
2260         int ret;
2261
2262         spin_lock(&fs_info->zone_active_bgs_lock);
2263         list_for_each_entry(block_group, &fs_info->zone_active_bgs,
2264                             active_bg_list) {
2265                 u64 avail;
2266
2267                 spin_lock(&block_group->lock);
2268                 if (block_group->reserved ||
2269                     (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM)) {
2270                         spin_unlock(&block_group->lock);
2271                         continue;
2272                 }
2273
2274                 avail = block_group->zone_capacity - block_group->alloc_offset;
2275                 if (min_avail > avail) {
2276                         if (min_bg)
2277                                 btrfs_put_block_group(min_bg);
2278                         min_bg = block_group;
2279                         min_avail = avail;
2280                         btrfs_get_block_group(min_bg);
2281                 }
2282                 spin_unlock(&block_group->lock);
2283         }
2284         spin_unlock(&fs_info->zone_active_bgs_lock);
2285
2286         if (!min_bg)
2287                 return 0;
2288
2289         ret = btrfs_zone_finish(min_bg);
2290         btrfs_put_block_group(min_bg);
2291
2292         return ret < 0 ? ret : 1;
2293 }
2294
2295 int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info,
2296                                 struct btrfs_space_info *space_info,
2297                                 bool do_finish)
2298 {
2299         struct btrfs_block_group *bg;
2300         int index;
2301
2302         if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
2303                 return 0;
2304
2305         /* No more block groups to activate */
2306         if (space_info->active_total_bytes == space_info->total_bytes)
2307                 return 0;
2308
2309         for (;;) {
2310                 int ret;
2311                 bool need_finish = false;
2312
2313                 down_read(&space_info->groups_sem);
2314                 for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) {
2315                         list_for_each_entry(bg, &space_info->block_groups[index],
2316                                             list) {
2317                                 if (!spin_trylock(&bg->lock))
2318                                         continue;
2319                                 if (btrfs_zoned_bg_is_full(bg) ||
2320                                     test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2321                                              &bg->runtime_flags)) {
2322                                         spin_unlock(&bg->lock);
2323                                         continue;
2324                                 }
2325                                 spin_unlock(&bg->lock);
2326
2327                                 if (btrfs_zone_activate(bg)) {
2328                                         up_read(&space_info->groups_sem);
2329                                         return 1;
2330                                 }
2331
2332                                 need_finish = true;
2333                         }
2334                 }
2335                 up_read(&space_info->groups_sem);
2336
2337                 if (!do_finish || !need_finish)
2338                         break;
2339
2340                 ret = btrfs_zone_finish_one_bg(fs_info);
2341                 if (ret == 0)
2342                         break;
2343                 if (ret < 0)
2344                         return ret;
2345         }
2346
2347         return 0;
2348 }