Merge tag 'edac_updates_for_v6.4' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-block.git] / fs / btrfs / zoned.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/blkdev.h>
6 #include <linux/sched/mm.h>
7 #include <linux/atomic.h>
8 #include <linux/vmalloc.h>
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "zoned.h"
12 #include "rcu-string.h"
13 #include "disk-io.h"
14 #include "block-group.h"
15 #include "transaction.h"
16 #include "dev-replace.h"
17 #include "space-info.h"
18 #include "fs.h"
19 #include "accessors.h"
20 #include "bio.h"
21
22 /* Maximum number of zones to report per blkdev_report_zones() call */
23 #define BTRFS_REPORT_NR_ZONES   4096
24 /* Invalid allocation pointer value for missing devices */
25 #define WP_MISSING_DEV ((u64)-1)
26 /* Pseudo write pointer value for conventional zone */
27 #define WP_CONVENTIONAL ((u64)-2)
28
29 /*
30  * Location of the first zone of superblock logging zone pairs.
31  *
32  * - primary superblock:    0B (zone 0)
33  * - first copy:          512G (zone starting at that offset)
34  * - second copy:           4T (zone starting at that offset)
35  */
36 #define BTRFS_SB_LOG_PRIMARY_OFFSET     (0ULL)
37 #define BTRFS_SB_LOG_FIRST_OFFSET       (512ULL * SZ_1G)
38 #define BTRFS_SB_LOG_SECOND_OFFSET      (4096ULL * SZ_1G)
39
40 #define BTRFS_SB_LOG_FIRST_SHIFT        const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
41 #define BTRFS_SB_LOG_SECOND_SHIFT       const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)
42
43 /* Number of superblock log zones */
44 #define BTRFS_NR_SB_LOG_ZONES 2
45
46 /*
47  * Minimum of active zones we need:
48  *
49  * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors
50  * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group
51  * - 1 zone for tree-log dedicated block group
52  * - 1 zone for relocation
53  */
54 #define BTRFS_MIN_ACTIVE_ZONES          (BTRFS_SUPER_MIRROR_MAX + 5)
55
56 /*
57  * Minimum / maximum supported zone size. Currently, SMR disks have a zone
58  * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range.
59  * We do not expect the zone size to become larger than 8GiB or smaller than
60  * 4MiB in the near future.
61  */
62 #define BTRFS_MAX_ZONE_SIZE             SZ_8G
63 #define BTRFS_MIN_ZONE_SIZE             SZ_4M
64
65 #define SUPER_INFO_SECTORS      ((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT)
66
67 static inline bool sb_zone_is_full(const struct blk_zone *zone)
68 {
69         return (zone->cond == BLK_ZONE_COND_FULL) ||
70                 (zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity);
71 }
72
73 static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
74 {
75         struct blk_zone *zones = data;
76
77         memcpy(&zones[idx], zone, sizeof(*zone));
78
79         return 0;
80 }
81
82 static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
83                             u64 *wp_ret)
84 {
85         bool empty[BTRFS_NR_SB_LOG_ZONES];
86         bool full[BTRFS_NR_SB_LOG_ZONES];
87         sector_t sector;
88         int i;
89
90         for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
91                 ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL);
92                 empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY);
93                 full[i] = sb_zone_is_full(&zones[i]);
94         }
95
96         /*
97          * Possible states of log buffer zones
98          *
99          *           Empty[0]  In use[0]  Full[0]
100          * Empty[1]         *          0        1
101          * In use[1]        x          x        1
102          * Full[1]          0          0        C
103          *
104          * Log position:
105          *   *: Special case, no superblock is written
106          *   0: Use write pointer of zones[0]
107          *   1: Use write pointer of zones[1]
108          *   C: Compare super blocks from zones[0] and zones[1], use the latest
109          *      one determined by generation
110          *   x: Invalid state
111          */
112
113         if (empty[0] && empty[1]) {
114                 /* Special case to distinguish no superblock to read */
115                 *wp_ret = zones[0].start << SECTOR_SHIFT;
116                 return -ENOENT;
117         } else if (full[0] && full[1]) {
118                 /* Compare two super blocks */
119                 struct address_space *mapping = bdev->bd_inode->i_mapping;
120                 struct page *page[BTRFS_NR_SB_LOG_ZONES];
121                 struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
122                 int i;
123
124                 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
125                         u64 bytenr;
126
127                         bytenr = ((zones[i].start + zones[i].len)
128                                    << SECTOR_SHIFT) - BTRFS_SUPER_INFO_SIZE;
129
130                         page[i] = read_cache_page_gfp(mapping,
131                                         bytenr >> PAGE_SHIFT, GFP_NOFS);
132                         if (IS_ERR(page[i])) {
133                                 if (i == 1)
134                                         btrfs_release_disk_super(super[0]);
135                                 return PTR_ERR(page[i]);
136                         }
137                         super[i] = page_address(page[i]);
138                 }
139
140                 if (btrfs_super_generation(super[0]) >
141                     btrfs_super_generation(super[1]))
142                         sector = zones[1].start;
143                 else
144                         sector = zones[0].start;
145
146                 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
147                         btrfs_release_disk_super(super[i]);
148         } else if (!full[0] && (empty[1] || full[1])) {
149                 sector = zones[0].wp;
150         } else if (full[0]) {
151                 sector = zones[1].wp;
152         } else {
153                 return -EUCLEAN;
154         }
155         *wp_ret = sector << SECTOR_SHIFT;
156         return 0;
157 }
158
159 /*
160  * Get the first zone number of the superblock mirror
161  */
162 static inline u32 sb_zone_number(int shift, int mirror)
163 {
164         u64 zone = U64_MAX;
165
166         ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
167         switch (mirror) {
168         case 0: zone = 0; break;
169         case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
170         case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
171         }
172
173         ASSERT(zone <= U32_MAX);
174
175         return (u32)zone;
176 }
177
178 static inline sector_t zone_start_sector(u32 zone_number,
179                                          struct block_device *bdev)
180 {
181         return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev));
182 }
183
184 static inline u64 zone_start_physical(u32 zone_number,
185                                       struct btrfs_zoned_device_info *zone_info)
186 {
187         return (u64)zone_number << zone_info->zone_size_shift;
188 }
189
190 /*
191  * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block
192  * device into static sized chunks and fake a conventional zone on each of
193  * them.
194  */
195 static int emulate_report_zones(struct btrfs_device *device, u64 pos,
196                                 struct blk_zone *zones, unsigned int nr_zones)
197 {
198         const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
199         sector_t bdev_size = bdev_nr_sectors(device->bdev);
200         unsigned int i;
201
202         pos >>= SECTOR_SHIFT;
203         for (i = 0; i < nr_zones; i++) {
204                 zones[i].start = i * zone_sectors + pos;
205                 zones[i].len = zone_sectors;
206                 zones[i].capacity = zone_sectors;
207                 zones[i].wp = zones[i].start + zone_sectors;
208                 zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
209                 zones[i].cond = BLK_ZONE_COND_NOT_WP;
210
211                 if (zones[i].wp >= bdev_size) {
212                         i++;
213                         break;
214                 }
215         }
216
217         return i;
218 }
219
220 static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
221                                struct blk_zone *zones, unsigned int *nr_zones)
222 {
223         struct btrfs_zoned_device_info *zinfo = device->zone_info;
224         int ret;
225
226         if (!*nr_zones)
227                 return 0;
228
229         if (!bdev_is_zoned(device->bdev)) {
230                 ret = emulate_report_zones(device, pos, zones, *nr_zones);
231                 *nr_zones = ret;
232                 return 0;
233         }
234
235         /* Check cache */
236         if (zinfo->zone_cache) {
237                 unsigned int i;
238                 u32 zno;
239
240                 ASSERT(IS_ALIGNED(pos, zinfo->zone_size));
241                 zno = pos >> zinfo->zone_size_shift;
242                 /*
243                  * We cannot report zones beyond the zone end. So, it is OK to
244                  * cap *nr_zones to at the end.
245                  */
246                 *nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno);
247
248                 for (i = 0; i < *nr_zones; i++) {
249                         struct blk_zone *zone_info;
250
251                         zone_info = &zinfo->zone_cache[zno + i];
252                         if (!zone_info->len)
253                                 break;
254                 }
255
256                 if (i == *nr_zones) {
257                         /* Cache hit on all the zones */
258                         memcpy(zones, zinfo->zone_cache + zno,
259                                sizeof(*zinfo->zone_cache) * *nr_zones);
260                         return 0;
261                 }
262         }
263
264         ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones,
265                                   copy_zone_info_cb, zones);
266         if (ret < 0) {
267                 btrfs_err_in_rcu(device->fs_info,
268                                  "zoned: failed to read zone %llu on %s (devid %llu)",
269                                  pos, rcu_str_deref(device->name),
270                                  device->devid);
271                 return ret;
272         }
273         *nr_zones = ret;
274         if (!ret)
275                 return -EIO;
276
277         /* Populate cache */
278         if (zinfo->zone_cache) {
279                 u32 zno = pos >> zinfo->zone_size_shift;
280
281                 memcpy(zinfo->zone_cache + zno, zones,
282                        sizeof(*zinfo->zone_cache) * *nr_zones);
283         }
284
285         return 0;
286 }
287
288 /* The emulated zone size is determined from the size of device extent */
289 static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
290 {
291         struct btrfs_path *path;
292         struct btrfs_root *root = fs_info->dev_root;
293         struct btrfs_key key;
294         struct extent_buffer *leaf;
295         struct btrfs_dev_extent *dext;
296         int ret = 0;
297
298         key.objectid = 1;
299         key.type = BTRFS_DEV_EXTENT_KEY;
300         key.offset = 0;
301
302         path = btrfs_alloc_path();
303         if (!path)
304                 return -ENOMEM;
305
306         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
307         if (ret < 0)
308                 goto out;
309
310         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
311                 ret = btrfs_next_leaf(root, path);
312                 if (ret < 0)
313                         goto out;
314                 /* No dev extents at all? Not good */
315                 if (ret > 0) {
316                         ret = -EUCLEAN;
317                         goto out;
318                 }
319         }
320
321         leaf = path->nodes[0];
322         dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
323         fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
324         ret = 0;
325
326 out:
327         btrfs_free_path(path);
328
329         return ret;
330 }
331
332 int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
333 {
334         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
335         struct btrfs_device *device;
336         int ret = 0;
337
338         /* fs_info->zone_size might not set yet. Use the incomapt flag here. */
339         if (!btrfs_fs_incompat(fs_info, ZONED))
340                 return 0;
341
342         mutex_lock(&fs_devices->device_list_mutex);
343         list_for_each_entry(device, &fs_devices->devices, dev_list) {
344                 /* We can skip reading of zone info for missing devices */
345                 if (!device->bdev)
346                         continue;
347
348                 ret = btrfs_get_dev_zone_info(device, true);
349                 if (ret)
350                         break;
351         }
352         mutex_unlock(&fs_devices->device_list_mutex);
353
354         return ret;
355 }
356
357 int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache)
358 {
359         struct btrfs_fs_info *fs_info = device->fs_info;
360         struct btrfs_zoned_device_info *zone_info = NULL;
361         struct block_device *bdev = device->bdev;
362         unsigned int max_active_zones;
363         unsigned int nactive;
364         sector_t nr_sectors;
365         sector_t sector = 0;
366         struct blk_zone *zones = NULL;
367         unsigned int i, nreported = 0, nr_zones;
368         sector_t zone_sectors;
369         char *model, *emulated;
370         int ret;
371
372         /*
373          * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not
374          * yet be set.
375          */
376         if (!btrfs_fs_incompat(fs_info, ZONED))
377                 return 0;
378
379         if (device->zone_info)
380                 return 0;
381
382         zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
383         if (!zone_info)
384                 return -ENOMEM;
385
386         device->zone_info = zone_info;
387
388         if (!bdev_is_zoned(bdev)) {
389                 if (!fs_info->zone_size) {
390                         ret = calculate_emulated_zone_size(fs_info);
391                         if (ret)
392                                 goto out;
393                 }
394
395                 ASSERT(fs_info->zone_size);
396                 zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
397         } else {
398                 zone_sectors = bdev_zone_sectors(bdev);
399         }
400
401         ASSERT(is_power_of_two_u64(zone_sectors));
402         zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
403
404         /* We reject devices with a zone size larger than 8GB */
405         if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
406                 btrfs_err_in_rcu(fs_info,
407                 "zoned: %s: zone size %llu larger than supported maximum %llu",
408                                  rcu_str_deref(device->name),
409                                  zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
410                 ret = -EINVAL;
411                 goto out;
412         } else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) {
413                 btrfs_err_in_rcu(fs_info,
414                 "zoned: %s: zone size %llu smaller than supported minimum %u",
415                                  rcu_str_deref(device->name),
416                                  zone_info->zone_size, BTRFS_MIN_ZONE_SIZE);
417                 ret = -EINVAL;
418                 goto out;
419         }
420
421         nr_sectors = bdev_nr_sectors(bdev);
422         zone_info->zone_size_shift = ilog2(zone_info->zone_size);
423         zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
424         if (!IS_ALIGNED(nr_sectors, zone_sectors))
425                 zone_info->nr_zones++;
426
427         max_active_zones = bdev_max_active_zones(bdev);
428         if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) {
429                 btrfs_err_in_rcu(fs_info,
430 "zoned: %s: max active zones %u is too small, need at least %u active zones",
431                                  rcu_str_deref(device->name), max_active_zones,
432                                  BTRFS_MIN_ACTIVE_ZONES);
433                 ret = -EINVAL;
434                 goto out;
435         }
436         zone_info->max_active_zones = max_active_zones;
437
438         zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
439         if (!zone_info->seq_zones) {
440                 ret = -ENOMEM;
441                 goto out;
442         }
443
444         zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
445         if (!zone_info->empty_zones) {
446                 ret = -ENOMEM;
447                 goto out;
448         }
449
450         zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
451         if (!zone_info->active_zones) {
452                 ret = -ENOMEM;
453                 goto out;
454         }
455
456         zones = kvcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
457         if (!zones) {
458                 ret = -ENOMEM;
459                 goto out;
460         }
461
462         /*
463          * Enable zone cache only for a zoned device. On a non-zoned device, we
464          * fill the zone info with emulated CONVENTIONAL zones, so no need to
465          * use the cache.
466          */
467         if (populate_cache && bdev_is_zoned(device->bdev)) {
468                 zone_info->zone_cache = vzalloc(sizeof(struct blk_zone) *
469                                                 zone_info->nr_zones);
470                 if (!zone_info->zone_cache) {
471                         btrfs_err_in_rcu(device->fs_info,
472                                 "zoned: failed to allocate zone cache for %s",
473                                 rcu_str_deref(device->name));
474                         ret = -ENOMEM;
475                         goto out;
476                 }
477         }
478
479         /* Get zones type */
480         nactive = 0;
481         while (sector < nr_sectors) {
482                 nr_zones = BTRFS_REPORT_NR_ZONES;
483                 ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
484                                           &nr_zones);
485                 if (ret)
486                         goto out;
487
488                 for (i = 0; i < nr_zones; i++) {
489                         if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
490                                 __set_bit(nreported, zone_info->seq_zones);
491                         switch (zones[i].cond) {
492                         case BLK_ZONE_COND_EMPTY:
493                                 __set_bit(nreported, zone_info->empty_zones);
494                                 break;
495                         case BLK_ZONE_COND_IMP_OPEN:
496                         case BLK_ZONE_COND_EXP_OPEN:
497                         case BLK_ZONE_COND_CLOSED:
498                                 __set_bit(nreported, zone_info->active_zones);
499                                 nactive++;
500                                 break;
501                         }
502                         nreported++;
503                 }
504                 sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
505         }
506
507         if (nreported != zone_info->nr_zones) {
508                 btrfs_err_in_rcu(device->fs_info,
509                                  "inconsistent number of zones on %s (%u/%u)",
510                                  rcu_str_deref(device->name), nreported,
511                                  zone_info->nr_zones);
512                 ret = -EIO;
513                 goto out;
514         }
515
516         if (max_active_zones) {
517                 if (nactive > max_active_zones) {
518                         btrfs_err_in_rcu(device->fs_info,
519                         "zoned: %u active zones on %s exceeds max_active_zones %u",
520                                          nactive, rcu_str_deref(device->name),
521                                          max_active_zones);
522                         ret = -EIO;
523                         goto out;
524                 }
525                 atomic_set(&zone_info->active_zones_left,
526                            max_active_zones - nactive);
527                 set_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags);
528         }
529
530         /* Validate superblock log */
531         nr_zones = BTRFS_NR_SB_LOG_ZONES;
532         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
533                 u32 sb_zone;
534                 u64 sb_wp;
535                 int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;
536
537                 sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
538                 if (sb_zone + 1 >= zone_info->nr_zones)
539                         continue;
540
541                 ret = btrfs_get_dev_zones(device,
542                                           zone_start_physical(sb_zone, zone_info),
543                                           &zone_info->sb_zones[sb_pos],
544                                           &nr_zones);
545                 if (ret)
546                         goto out;
547
548                 if (nr_zones != BTRFS_NR_SB_LOG_ZONES) {
549                         btrfs_err_in_rcu(device->fs_info,
550         "zoned: failed to read super block log zone info at devid %llu zone %u",
551                                          device->devid, sb_zone);
552                         ret = -EUCLEAN;
553                         goto out;
554                 }
555
556                 /*
557                  * If zones[0] is conventional, always use the beginning of the
558                  * zone to record superblock. No need to validate in that case.
559                  */
560                 if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
561                     BLK_ZONE_TYPE_CONVENTIONAL)
562                         continue;
563
564                 ret = sb_write_pointer(device->bdev,
565                                        &zone_info->sb_zones[sb_pos], &sb_wp);
566                 if (ret != -ENOENT && ret) {
567                         btrfs_err_in_rcu(device->fs_info,
568                         "zoned: super block log zone corrupted devid %llu zone %u",
569                                          device->devid, sb_zone);
570                         ret = -EUCLEAN;
571                         goto out;
572                 }
573         }
574
575
576         kvfree(zones);
577
578         switch (bdev_zoned_model(bdev)) {
579         case BLK_ZONED_HM:
580                 model = "host-managed zoned";
581                 emulated = "";
582                 break;
583         case BLK_ZONED_HA:
584                 model = "host-aware zoned";
585                 emulated = "";
586                 break;
587         case BLK_ZONED_NONE:
588                 model = "regular";
589                 emulated = "emulated ";
590                 break;
591         default:
592                 /* Just in case */
593                 btrfs_err_in_rcu(fs_info, "zoned: unsupported model %d on %s",
594                                  bdev_zoned_model(bdev),
595                                  rcu_str_deref(device->name));
596                 ret = -EOPNOTSUPP;
597                 goto out_free_zone_info;
598         }
599
600         btrfs_info_in_rcu(fs_info,
601                 "%s block device %s, %u %szones of %llu bytes",
602                 model, rcu_str_deref(device->name), zone_info->nr_zones,
603                 emulated, zone_info->zone_size);
604
605         return 0;
606
607 out:
608         kvfree(zones);
609 out_free_zone_info:
610         btrfs_destroy_dev_zone_info(device);
611
612         return ret;
613 }
614
615 void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
616 {
617         struct btrfs_zoned_device_info *zone_info = device->zone_info;
618
619         if (!zone_info)
620                 return;
621
622         bitmap_free(zone_info->active_zones);
623         bitmap_free(zone_info->seq_zones);
624         bitmap_free(zone_info->empty_zones);
625         vfree(zone_info->zone_cache);
626         kfree(zone_info);
627         device->zone_info = NULL;
628 }
629
630 struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev)
631 {
632         struct btrfs_zoned_device_info *zone_info;
633
634         zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL);
635         if (!zone_info)
636                 return NULL;
637
638         zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
639         if (!zone_info->seq_zones)
640                 goto out;
641
642         bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones,
643                     zone_info->nr_zones);
644
645         zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
646         if (!zone_info->empty_zones)
647                 goto out;
648
649         bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones,
650                     zone_info->nr_zones);
651
652         zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
653         if (!zone_info->active_zones)
654                 goto out;
655
656         bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones,
657                     zone_info->nr_zones);
658         zone_info->zone_cache = NULL;
659
660         return zone_info;
661
662 out:
663         bitmap_free(zone_info->seq_zones);
664         bitmap_free(zone_info->empty_zones);
665         bitmap_free(zone_info->active_zones);
666         kfree(zone_info);
667         return NULL;
668 }
669
670 int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos,
671                        struct blk_zone *zone)
672 {
673         unsigned int nr_zones = 1;
674         int ret;
675
676         ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
677         if (ret != 0 || !nr_zones)
678                 return ret ? ret : -EIO;
679
680         return 0;
681 }
682
683 static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info)
684 {
685         struct btrfs_device *device;
686
687         list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
688                 if (device->bdev &&
689                     bdev_zoned_model(device->bdev) == BLK_ZONED_HM) {
690                         btrfs_err(fs_info,
691                                 "zoned: mode not enabled but zoned device found: %pg",
692                                 device->bdev);
693                         return -EINVAL;
694                 }
695         }
696
697         return 0;
698 }
699
700 int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
701 {
702         struct queue_limits *lim = &fs_info->limits;
703         struct btrfs_device *device;
704         u64 zone_size = 0;
705         int ret;
706
707         /*
708          * Host-Managed devices can't be used without the ZONED flag.  With the
709          * ZONED all devices can be used, using zone emulation if required.
710          */
711         if (!btrfs_fs_incompat(fs_info, ZONED))
712                 return btrfs_check_for_zoned_device(fs_info);
713
714         blk_set_stacking_limits(lim);
715
716         list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
717                 struct btrfs_zoned_device_info *zone_info = device->zone_info;
718
719                 if (!device->bdev)
720                         continue;
721
722                 if (!zone_size) {
723                         zone_size = zone_info->zone_size;
724                 } else if (zone_info->zone_size != zone_size) {
725                         btrfs_err(fs_info,
726                 "zoned: unequal block device zone sizes: have %llu found %llu",
727                                   zone_info->zone_size, zone_size);
728                         return -EINVAL;
729                 }
730
731                 /*
732                  * With the zoned emulation, we can have non-zoned device on the
733                  * zoned mode. In this case, we don't have a valid max zone
734                  * append size.
735                  */
736                 if (bdev_is_zoned(device->bdev)) {
737                         blk_stack_limits(lim,
738                                          &bdev_get_queue(device->bdev)->limits,
739                                          0);
740                 }
741         }
742
743         /*
744          * stripe_size is always aligned to BTRFS_STRIPE_LEN in
745          * btrfs_create_chunk(). Since we want stripe_len == zone_size,
746          * check the alignment here.
747          */
748         if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
749                 btrfs_err(fs_info,
750                           "zoned: zone size %llu not aligned to stripe %u",
751                           zone_size, BTRFS_STRIPE_LEN);
752                 return -EINVAL;
753         }
754
755         if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
756                 btrfs_err(fs_info, "zoned: mixed block groups not supported");
757                 return -EINVAL;
758         }
759
760         fs_info->zone_size = zone_size;
761         /*
762          * Also limit max_zone_append_size by max_segments * PAGE_SIZE.
763          * Technically, we can have multiple pages per segment. But, since
764          * we add the pages one by one to a bio, and cannot increase the
765          * metadata reservation even if it increases the number of extents, it
766          * is safe to stick with the limit.
767          */
768         fs_info->max_zone_append_size = ALIGN_DOWN(
769                 min3((u64)lim->max_zone_append_sectors << SECTOR_SHIFT,
770                      (u64)lim->max_sectors << SECTOR_SHIFT,
771                      (u64)lim->max_segments << PAGE_SHIFT),
772                 fs_info->sectorsize);
773         fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
774         if (fs_info->max_zone_append_size < fs_info->max_extent_size)
775                 fs_info->max_extent_size = fs_info->max_zone_append_size;
776
777         /*
778          * Check mount options here, because we might change fs_info->zoned
779          * from fs_info->zone_size.
780          */
781         ret = btrfs_check_mountopts_zoned(fs_info);
782         if (ret)
783                 return ret;
784
785         btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
786         return 0;
787 }
788
789 int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info)
790 {
791         if (!btrfs_is_zoned(info))
792                 return 0;
793
794         /*
795          * Space cache writing is not COWed. Disable that to avoid write errors
796          * in sequential zones.
797          */
798         if (btrfs_test_opt(info, SPACE_CACHE)) {
799                 btrfs_err(info, "zoned: space cache v1 is not supported");
800                 return -EINVAL;
801         }
802
803         if (btrfs_test_opt(info, NODATACOW)) {
804                 btrfs_err(info, "zoned: NODATACOW not supported");
805                 return -EINVAL;
806         }
807
808         return 0;
809 }
810
811 static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
812                            int rw, u64 *bytenr_ret)
813 {
814         u64 wp;
815         int ret;
816
817         if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
818                 *bytenr_ret = zones[0].start << SECTOR_SHIFT;
819                 return 0;
820         }
821
822         ret = sb_write_pointer(bdev, zones, &wp);
823         if (ret != -ENOENT && ret < 0)
824                 return ret;
825
826         if (rw == WRITE) {
827                 struct blk_zone *reset = NULL;
828
829                 if (wp == zones[0].start << SECTOR_SHIFT)
830                         reset = &zones[0];
831                 else if (wp == zones[1].start << SECTOR_SHIFT)
832                         reset = &zones[1];
833
834                 if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
835                         ASSERT(sb_zone_is_full(reset));
836
837                         ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
838                                                reset->start, reset->len,
839                                                GFP_NOFS);
840                         if (ret)
841                                 return ret;
842
843                         reset->cond = BLK_ZONE_COND_EMPTY;
844                         reset->wp = reset->start;
845                 }
846         } else if (ret != -ENOENT) {
847                 /*
848                  * For READ, we want the previous one. Move write pointer to
849                  * the end of a zone, if it is at the head of a zone.
850                  */
851                 u64 zone_end = 0;
852
853                 if (wp == zones[0].start << SECTOR_SHIFT)
854                         zone_end = zones[1].start + zones[1].capacity;
855                 else if (wp == zones[1].start << SECTOR_SHIFT)
856                         zone_end = zones[0].start + zones[0].capacity;
857                 if (zone_end)
858                         wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT,
859                                         BTRFS_SUPER_INFO_SIZE);
860
861                 wp -= BTRFS_SUPER_INFO_SIZE;
862         }
863
864         *bytenr_ret = wp;
865         return 0;
866
867 }
868
869 int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
870                                u64 *bytenr_ret)
871 {
872         struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
873         sector_t zone_sectors;
874         u32 sb_zone;
875         int ret;
876         u8 zone_sectors_shift;
877         sector_t nr_sectors;
878         u32 nr_zones;
879
880         if (!bdev_is_zoned(bdev)) {
881                 *bytenr_ret = btrfs_sb_offset(mirror);
882                 return 0;
883         }
884
885         ASSERT(rw == READ || rw == WRITE);
886
887         zone_sectors = bdev_zone_sectors(bdev);
888         if (!is_power_of_2(zone_sectors))
889                 return -EINVAL;
890         zone_sectors_shift = ilog2(zone_sectors);
891         nr_sectors = bdev_nr_sectors(bdev);
892         nr_zones = nr_sectors >> zone_sectors_shift;
893
894         sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
895         if (sb_zone + 1 >= nr_zones)
896                 return -ENOENT;
897
898         ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev),
899                                   BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb,
900                                   zones);
901         if (ret < 0)
902                 return ret;
903         if (ret != BTRFS_NR_SB_LOG_ZONES)
904                 return -EIO;
905
906         return sb_log_location(bdev, zones, rw, bytenr_ret);
907 }
908
909 int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
910                           u64 *bytenr_ret)
911 {
912         struct btrfs_zoned_device_info *zinfo = device->zone_info;
913         u32 zone_num;
914
915         /*
916          * For a zoned filesystem on a non-zoned block device, use the same
917          * super block locations as regular filesystem. Doing so, the super
918          * block can always be retrieved and the zoned flag of the volume
919          * detected from the super block information.
920          */
921         if (!bdev_is_zoned(device->bdev)) {
922                 *bytenr_ret = btrfs_sb_offset(mirror);
923                 return 0;
924         }
925
926         zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
927         if (zone_num + 1 >= zinfo->nr_zones)
928                 return -ENOENT;
929
930         return sb_log_location(device->bdev,
931                                &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
932                                rw, bytenr_ret);
933 }
934
935 static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
936                                   int mirror)
937 {
938         u32 zone_num;
939
940         if (!zinfo)
941                 return false;
942
943         zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
944         if (zone_num + 1 >= zinfo->nr_zones)
945                 return false;
946
947         if (!test_bit(zone_num, zinfo->seq_zones))
948                 return false;
949
950         return true;
951 }
952
953 int btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
954 {
955         struct btrfs_zoned_device_info *zinfo = device->zone_info;
956         struct blk_zone *zone;
957         int i;
958
959         if (!is_sb_log_zone(zinfo, mirror))
960                 return 0;
961
962         zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
963         for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
964                 /* Advance the next zone */
965                 if (zone->cond == BLK_ZONE_COND_FULL) {
966                         zone++;
967                         continue;
968                 }
969
970                 if (zone->cond == BLK_ZONE_COND_EMPTY)
971                         zone->cond = BLK_ZONE_COND_IMP_OPEN;
972
973                 zone->wp += SUPER_INFO_SECTORS;
974
975                 if (sb_zone_is_full(zone)) {
976                         /*
977                          * No room left to write new superblock. Since
978                          * superblock is written with REQ_SYNC, it is safe to
979                          * finish the zone now.
980                          *
981                          * If the write pointer is exactly at the capacity,
982                          * explicit ZONE_FINISH is not necessary.
983                          */
984                         if (zone->wp != zone->start + zone->capacity) {
985                                 int ret;
986
987                                 ret = blkdev_zone_mgmt(device->bdev,
988                                                 REQ_OP_ZONE_FINISH, zone->start,
989                                                 zone->len, GFP_NOFS);
990                                 if (ret)
991                                         return ret;
992                         }
993
994                         zone->wp = zone->start + zone->len;
995                         zone->cond = BLK_ZONE_COND_FULL;
996                 }
997                 return 0;
998         }
999
1000         /* All the zones are FULL. Should not reach here. */
1001         ASSERT(0);
1002         return -EIO;
1003 }
1004
1005 int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
1006 {
1007         sector_t zone_sectors;
1008         sector_t nr_sectors;
1009         u8 zone_sectors_shift;
1010         u32 sb_zone;
1011         u32 nr_zones;
1012
1013         zone_sectors = bdev_zone_sectors(bdev);
1014         zone_sectors_shift = ilog2(zone_sectors);
1015         nr_sectors = bdev_nr_sectors(bdev);
1016         nr_zones = nr_sectors >> zone_sectors_shift;
1017
1018         sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
1019         if (sb_zone + 1 >= nr_zones)
1020                 return -ENOENT;
1021
1022         return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1023                                 zone_start_sector(sb_zone, bdev),
1024                                 zone_sectors * BTRFS_NR_SB_LOG_ZONES, GFP_NOFS);
1025 }
1026
1027 /*
1028  * Find allocatable zones within a given region.
1029  *
1030  * @device:     the device to allocate a region on
1031  * @hole_start: the position of the hole to allocate the region
1032  * @num_bytes:  size of wanted region
1033  * @hole_end:   the end of the hole
1034  * @return:     position of allocatable zones
1035  *
1036  * Allocatable region should not contain any superblock locations.
1037  */
1038 u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
1039                                  u64 hole_end, u64 num_bytes)
1040 {
1041         struct btrfs_zoned_device_info *zinfo = device->zone_info;
1042         const u8 shift = zinfo->zone_size_shift;
1043         u64 nzones = num_bytes >> shift;
1044         u64 pos = hole_start;
1045         u64 begin, end;
1046         bool have_sb;
1047         int i;
1048
1049         ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
1050         ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));
1051
1052         while (pos < hole_end) {
1053                 begin = pos >> shift;
1054                 end = begin + nzones;
1055
1056                 if (end > zinfo->nr_zones)
1057                         return hole_end;
1058
1059                 /* Check if zones in the region are all empty */
1060                 if (btrfs_dev_is_sequential(device, pos) &&
1061                     find_next_zero_bit(zinfo->empty_zones, end, begin) != end) {
1062                         pos += zinfo->zone_size;
1063                         continue;
1064                 }
1065
1066                 have_sb = false;
1067                 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1068                         u32 sb_zone;
1069                         u64 sb_pos;
1070
1071                         sb_zone = sb_zone_number(shift, i);
1072                         if (!(end <= sb_zone ||
1073                               sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
1074                                 have_sb = true;
1075                                 pos = zone_start_physical(
1076                                         sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo);
1077                                 break;
1078                         }
1079
1080                         /* We also need to exclude regular superblock positions */
1081                         sb_pos = btrfs_sb_offset(i);
1082                         if (!(pos + num_bytes <= sb_pos ||
1083                               sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
1084                                 have_sb = true;
1085                                 pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
1086                                             zinfo->zone_size);
1087                                 break;
1088                         }
1089                 }
1090                 if (!have_sb)
1091                         break;
1092         }
1093
1094         return pos;
1095 }
1096
1097 static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos)
1098 {
1099         struct btrfs_zoned_device_info *zone_info = device->zone_info;
1100         unsigned int zno = (pos >> zone_info->zone_size_shift);
1101
1102         /* We can use any number of zones */
1103         if (zone_info->max_active_zones == 0)
1104                 return true;
1105
1106         if (!test_bit(zno, zone_info->active_zones)) {
1107                 /* Active zone left? */
1108                 if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0)
1109                         return false;
1110                 if (test_and_set_bit(zno, zone_info->active_zones)) {
1111                         /* Someone already set the bit */
1112                         atomic_inc(&zone_info->active_zones_left);
1113                 }
1114         }
1115
1116         return true;
1117 }
1118
1119 static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos)
1120 {
1121         struct btrfs_zoned_device_info *zone_info = device->zone_info;
1122         unsigned int zno = (pos >> zone_info->zone_size_shift);
1123
1124         /* We can use any number of zones */
1125         if (zone_info->max_active_zones == 0)
1126                 return;
1127
1128         if (test_and_clear_bit(zno, zone_info->active_zones))
1129                 atomic_inc(&zone_info->active_zones_left);
1130 }
1131
1132 int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
1133                             u64 length, u64 *bytes)
1134 {
1135         int ret;
1136
1137         *bytes = 0;
1138         ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
1139                                physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT,
1140                                GFP_NOFS);
1141         if (ret)
1142                 return ret;
1143
1144         *bytes = length;
1145         while (length) {
1146                 btrfs_dev_set_zone_empty(device, physical);
1147                 btrfs_dev_clear_active_zone(device, physical);
1148                 physical += device->zone_info->zone_size;
1149                 length -= device->zone_info->zone_size;
1150         }
1151
1152         return 0;
1153 }
1154
1155 int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
1156 {
1157         struct btrfs_zoned_device_info *zinfo = device->zone_info;
1158         const u8 shift = zinfo->zone_size_shift;
1159         unsigned long begin = start >> shift;
1160         unsigned long end = (start + size) >> shift;
1161         u64 pos;
1162         int ret;
1163
1164         ASSERT(IS_ALIGNED(start, zinfo->zone_size));
1165         ASSERT(IS_ALIGNED(size, zinfo->zone_size));
1166
1167         if (end > zinfo->nr_zones)
1168                 return -ERANGE;
1169
1170         /* All the zones are conventional */
1171         if (find_next_bit(zinfo->seq_zones, begin, end) == end)
1172                 return 0;
1173
1174         /* All the zones are sequential and empty */
1175         if (find_next_zero_bit(zinfo->seq_zones, begin, end) == end &&
1176             find_next_zero_bit(zinfo->empty_zones, begin, end) == end)
1177                 return 0;
1178
1179         for (pos = start; pos < start + size; pos += zinfo->zone_size) {
1180                 u64 reset_bytes;
1181
1182                 if (!btrfs_dev_is_sequential(device, pos) ||
1183                     btrfs_dev_is_empty_zone(device, pos))
1184                         continue;
1185
1186                 /* Free regions should be empty */
1187                 btrfs_warn_in_rcu(
1188                         device->fs_info,
1189                 "zoned: resetting device %s (devid %llu) zone %llu for allocation",
1190                         rcu_str_deref(device->name), device->devid, pos >> shift);
1191                 WARN_ON_ONCE(1);
1192
1193                 ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
1194                                               &reset_bytes);
1195                 if (ret)
1196                         return ret;
1197         }
1198
1199         return 0;
1200 }
1201
1202 /*
1203  * Calculate an allocation pointer from the extent allocation information
1204  * for a block group consist of conventional zones. It is pointed to the
1205  * end of the highest addressed extent in the block group as an allocation
1206  * offset.
1207  */
1208 static int calculate_alloc_pointer(struct btrfs_block_group *cache,
1209                                    u64 *offset_ret, bool new)
1210 {
1211         struct btrfs_fs_info *fs_info = cache->fs_info;
1212         struct btrfs_root *root;
1213         struct btrfs_path *path;
1214         struct btrfs_key key;
1215         struct btrfs_key found_key;
1216         int ret;
1217         u64 length;
1218
1219         /*
1220          * Avoid  tree lookups for a new block group, there's no use for it.
1221          * It must always be 0.
1222          *
1223          * Also, we have a lock chain of extent buffer lock -> chunk mutex.
1224          * For new a block group, this function is called from
1225          * btrfs_make_block_group() which is already taking the chunk mutex.
1226          * Thus, we cannot call calculate_alloc_pointer() which takes extent
1227          * buffer locks to avoid deadlock.
1228          */
1229         if (new) {
1230                 *offset_ret = 0;
1231                 return 0;
1232         }
1233
1234         path = btrfs_alloc_path();
1235         if (!path)
1236                 return -ENOMEM;
1237
1238         key.objectid = cache->start + cache->length;
1239         key.type = 0;
1240         key.offset = 0;
1241
1242         root = btrfs_extent_root(fs_info, key.objectid);
1243         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1244         /* We should not find the exact match */
1245         if (!ret)
1246                 ret = -EUCLEAN;
1247         if (ret < 0)
1248                 goto out;
1249
1250         ret = btrfs_previous_extent_item(root, path, cache->start);
1251         if (ret) {
1252                 if (ret == 1) {
1253                         ret = 0;
1254                         *offset_ret = 0;
1255                 }
1256                 goto out;
1257         }
1258
1259         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
1260
1261         if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
1262                 length = found_key.offset;
1263         else
1264                 length = fs_info->nodesize;
1265
1266         if (!(found_key.objectid >= cache->start &&
1267                found_key.objectid + length <= cache->start + cache->length)) {
1268                 ret = -EUCLEAN;
1269                 goto out;
1270         }
1271         *offset_ret = found_key.objectid + length - cache->start;
1272         ret = 0;
1273
1274 out:
1275         btrfs_free_path(path);
1276         return ret;
1277 }
1278
1279 int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
1280 {
1281         struct btrfs_fs_info *fs_info = cache->fs_info;
1282         struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1283         struct extent_map *em;
1284         struct map_lookup *map;
1285         struct btrfs_device *device;
1286         u64 logical = cache->start;
1287         u64 length = cache->length;
1288         int ret;
1289         int i;
1290         unsigned int nofs_flag;
1291         u64 *alloc_offsets = NULL;
1292         u64 *caps = NULL;
1293         u64 *physical = NULL;
1294         unsigned long *active = NULL;
1295         u64 last_alloc = 0;
1296         u32 num_sequential = 0, num_conventional = 0;
1297
1298         if (!btrfs_is_zoned(fs_info))
1299                 return 0;
1300
1301         /* Sanity check */
1302         if (!IS_ALIGNED(length, fs_info->zone_size)) {
1303                 btrfs_err(fs_info,
1304                 "zoned: block group %llu len %llu unaligned to zone size %llu",
1305                           logical, length, fs_info->zone_size);
1306                 return -EIO;
1307         }
1308
1309         /* Get the chunk mapping */
1310         read_lock(&em_tree->lock);
1311         em = lookup_extent_mapping(em_tree, logical, length);
1312         read_unlock(&em_tree->lock);
1313
1314         if (!em)
1315                 return -EINVAL;
1316
1317         map = em->map_lookup;
1318
1319         cache->physical_map = kmemdup(map, map_lookup_size(map->num_stripes), GFP_NOFS);
1320         if (!cache->physical_map) {
1321                 ret = -ENOMEM;
1322                 goto out;
1323         }
1324
1325         alloc_offsets = kcalloc(map->num_stripes, sizeof(*alloc_offsets), GFP_NOFS);
1326         if (!alloc_offsets) {
1327                 ret = -ENOMEM;
1328                 goto out;
1329         }
1330
1331         caps = kcalloc(map->num_stripes, sizeof(*caps), GFP_NOFS);
1332         if (!caps) {
1333                 ret = -ENOMEM;
1334                 goto out;
1335         }
1336
1337         physical = kcalloc(map->num_stripes, sizeof(*physical), GFP_NOFS);
1338         if (!physical) {
1339                 ret = -ENOMEM;
1340                 goto out;
1341         }
1342
1343         active = bitmap_zalloc(map->num_stripes, GFP_NOFS);
1344         if (!active) {
1345                 ret = -ENOMEM;
1346                 goto out;
1347         }
1348
1349         for (i = 0; i < map->num_stripes; i++) {
1350                 bool is_sequential;
1351                 struct blk_zone zone;
1352                 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1353                 int dev_replace_is_ongoing = 0;
1354
1355                 device = map->stripes[i].dev;
1356                 physical[i] = map->stripes[i].physical;
1357
1358                 if (device->bdev == NULL) {
1359                         alloc_offsets[i] = WP_MISSING_DEV;
1360                         continue;
1361                 }
1362
1363                 is_sequential = btrfs_dev_is_sequential(device, physical[i]);
1364                 if (is_sequential)
1365                         num_sequential++;
1366                 else
1367                         num_conventional++;
1368
1369                 /*
1370                  * Consider a zone as active if we can allow any number of
1371                  * active zones.
1372                  */
1373                 if (!device->zone_info->max_active_zones)
1374                         __set_bit(i, active);
1375
1376                 if (!is_sequential) {
1377                         alloc_offsets[i] = WP_CONVENTIONAL;
1378                         continue;
1379                 }
1380
1381                 /*
1382                  * This zone will be used for allocation, so mark this zone
1383                  * non-empty.
1384                  */
1385                 btrfs_dev_clear_zone_empty(device, physical[i]);
1386
1387                 down_read(&dev_replace->rwsem);
1388                 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
1389                 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
1390                         btrfs_dev_clear_zone_empty(dev_replace->tgtdev, physical[i]);
1391                 up_read(&dev_replace->rwsem);
1392
1393                 /*
1394                  * The group is mapped to a sequential zone. Get the zone write
1395                  * pointer to determine the allocation offset within the zone.
1396                  */
1397                 WARN_ON(!IS_ALIGNED(physical[i], fs_info->zone_size));
1398                 nofs_flag = memalloc_nofs_save();
1399                 ret = btrfs_get_dev_zone(device, physical[i], &zone);
1400                 memalloc_nofs_restore(nofs_flag);
1401                 if (ret == -EIO || ret == -EOPNOTSUPP) {
1402                         ret = 0;
1403                         alloc_offsets[i] = WP_MISSING_DEV;
1404                         continue;
1405                 } else if (ret) {
1406                         goto out;
1407                 }
1408
1409                 if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) {
1410                         btrfs_err_in_rcu(fs_info,
1411         "zoned: unexpected conventional zone %llu on device %s (devid %llu)",
1412                                 zone.start << SECTOR_SHIFT,
1413                                 rcu_str_deref(device->name), device->devid);
1414                         ret = -EIO;
1415                         goto out;
1416                 }
1417
1418                 caps[i] = (zone.capacity << SECTOR_SHIFT);
1419
1420                 switch (zone.cond) {
1421                 case BLK_ZONE_COND_OFFLINE:
1422                 case BLK_ZONE_COND_READONLY:
1423                         btrfs_err(fs_info,
1424                 "zoned: offline/readonly zone %llu on device %s (devid %llu)",
1425                                   physical[i] >> device->zone_info->zone_size_shift,
1426                                   rcu_str_deref(device->name), device->devid);
1427                         alloc_offsets[i] = WP_MISSING_DEV;
1428                         break;
1429                 case BLK_ZONE_COND_EMPTY:
1430                         alloc_offsets[i] = 0;
1431                         break;
1432                 case BLK_ZONE_COND_FULL:
1433                         alloc_offsets[i] = caps[i];
1434                         break;
1435                 default:
1436                         /* Partially used zone */
1437                         alloc_offsets[i] =
1438                                         ((zone.wp - zone.start) << SECTOR_SHIFT);
1439                         __set_bit(i, active);
1440                         break;
1441                 }
1442         }
1443
1444         if (num_sequential > 0)
1445                 set_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1446
1447         if (num_conventional > 0) {
1448                 /* Zone capacity is always zone size in emulation */
1449                 cache->zone_capacity = cache->length;
1450                 ret = calculate_alloc_pointer(cache, &last_alloc, new);
1451                 if (ret) {
1452                         btrfs_err(fs_info,
1453                         "zoned: failed to determine allocation offset of bg %llu",
1454                                   cache->start);
1455                         goto out;
1456                 } else if (map->num_stripes == num_conventional) {
1457                         cache->alloc_offset = last_alloc;
1458                         set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
1459                         goto out;
1460                 }
1461         }
1462
1463         switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
1464         case 0: /* single */
1465                 if (alloc_offsets[0] == WP_MISSING_DEV) {
1466                         btrfs_err(fs_info,
1467                         "zoned: cannot recover write pointer for zone %llu",
1468                                 physical[0]);
1469                         ret = -EIO;
1470                         goto out;
1471                 }
1472                 cache->alloc_offset = alloc_offsets[0];
1473                 cache->zone_capacity = caps[0];
1474                 if (test_bit(0, active))
1475                         set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
1476                 break;
1477         case BTRFS_BLOCK_GROUP_DUP:
1478                 if (map->type & BTRFS_BLOCK_GROUP_DATA) {
1479                         btrfs_err(fs_info, "zoned: profile DUP not yet supported on data bg");
1480                         ret = -EINVAL;
1481                         goto out;
1482                 }
1483                 if (alloc_offsets[0] == WP_MISSING_DEV) {
1484                         btrfs_err(fs_info,
1485                         "zoned: cannot recover write pointer for zone %llu",
1486                                 physical[0]);
1487                         ret = -EIO;
1488                         goto out;
1489                 }
1490                 if (alloc_offsets[1] == WP_MISSING_DEV) {
1491                         btrfs_err(fs_info,
1492                         "zoned: cannot recover write pointer for zone %llu",
1493                                 physical[1]);
1494                         ret = -EIO;
1495                         goto out;
1496                 }
1497                 if (alloc_offsets[0] != alloc_offsets[1]) {
1498                         btrfs_err(fs_info,
1499                         "zoned: write pointer offset mismatch of zones in DUP profile");
1500                         ret = -EIO;
1501                         goto out;
1502                 }
1503                 if (test_bit(0, active) != test_bit(1, active)) {
1504                         if (!btrfs_zone_activate(cache)) {
1505                                 ret = -EIO;
1506                                 goto out;
1507                         }
1508                 } else {
1509                         if (test_bit(0, active))
1510                                 set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
1511                                         &cache->runtime_flags);
1512                 }
1513                 cache->alloc_offset = alloc_offsets[0];
1514                 cache->zone_capacity = min(caps[0], caps[1]);
1515                 break;
1516         case BTRFS_BLOCK_GROUP_RAID1:
1517         case BTRFS_BLOCK_GROUP_RAID0:
1518         case BTRFS_BLOCK_GROUP_RAID10:
1519         case BTRFS_BLOCK_GROUP_RAID5:
1520         case BTRFS_BLOCK_GROUP_RAID6:
1521                 /* non-single profiles are not supported yet */
1522         default:
1523                 btrfs_err(fs_info, "zoned: profile %s not yet supported",
1524                           btrfs_bg_type_to_raid_name(map->type));
1525                 ret = -EINVAL;
1526                 goto out;
1527         }
1528
1529 out:
1530         if (cache->alloc_offset > fs_info->zone_size) {
1531                 btrfs_err(fs_info,
1532                         "zoned: invalid write pointer %llu in block group %llu",
1533                         cache->alloc_offset, cache->start);
1534                 ret = -EIO;
1535         }
1536
1537         if (cache->alloc_offset > cache->zone_capacity) {
1538                 btrfs_err(fs_info,
1539 "zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu",
1540                           cache->alloc_offset, cache->zone_capacity,
1541                           cache->start);
1542                 ret = -EIO;
1543         }
1544
1545         /* An extent is allocated after the write pointer */
1546         if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
1547                 btrfs_err(fs_info,
1548                           "zoned: got wrong write pointer in BG %llu: %llu > %llu",
1549                           logical, last_alloc, cache->alloc_offset);
1550                 ret = -EIO;
1551         }
1552
1553         if (!ret) {
1554                 cache->meta_write_pointer = cache->alloc_offset + cache->start;
1555                 if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) {
1556                         btrfs_get_block_group(cache);
1557                         spin_lock(&fs_info->zone_active_bgs_lock);
1558                         list_add_tail(&cache->active_bg_list,
1559                                       &fs_info->zone_active_bgs);
1560                         spin_unlock(&fs_info->zone_active_bgs_lock);
1561                 }
1562         } else {
1563                 kfree(cache->physical_map);
1564                 cache->physical_map = NULL;
1565         }
1566         bitmap_free(active);
1567         kfree(physical);
1568         kfree(caps);
1569         kfree(alloc_offsets);
1570         free_extent_map(em);
1571
1572         return ret;
1573 }
1574
1575 void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
1576 {
1577         u64 unusable, free;
1578
1579         if (!btrfs_is_zoned(cache->fs_info))
1580                 return;
1581
1582         WARN_ON(cache->bytes_super != 0);
1583
1584         /* Check for block groups never get activated */
1585         if (test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &cache->fs_info->flags) &&
1586             cache->flags & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM) &&
1587             !test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags) &&
1588             cache->alloc_offset == 0) {
1589                 unusable = cache->length;
1590                 free = 0;
1591         } else {
1592                 unusable = (cache->alloc_offset - cache->used) +
1593                            (cache->length - cache->zone_capacity);
1594                 free = cache->zone_capacity - cache->alloc_offset;
1595         }
1596
1597         /* We only need ->free_space in ALLOC_SEQ block groups */
1598         cache->cached = BTRFS_CACHE_FINISHED;
1599         cache->free_space_ctl->free_space = free;
1600         cache->zone_unusable = unusable;
1601 }
1602
1603 void btrfs_redirty_list_add(struct btrfs_transaction *trans,
1604                             struct extent_buffer *eb)
1605 {
1606         struct btrfs_fs_info *fs_info = eb->fs_info;
1607
1608         if (!btrfs_is_zoned(fs_info) ||
1609             btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN) ||
1610             !list_empty(&eb->release_list))
1611                 return;
1612
1613         set_extent_buffer_dirty(eb);
1614         set_extent_bits_nowait(&trans->dirty_pages, eb->start,
1615                                eb->start + eb->len - 1, EXTENT_DIRTY);
1616         memzero_extent_buffer(eb, 0, eb->len);
1617         set_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags);
1618
1619         spin_lock(&trans->releasing_ebs_lock);
1620         list_add_tail(&eb->release_list, &trans->releasing_ebs);
1621         spin_unlock(&trans->releasing_ebs_lock);
1622         atomic_inc(&eb->refs);
1623 }
1624
1625 void btrfs_free_redirty_list(struct btrfs_transaction *trans)
1626 {
1627         spin_lock(&trans->releasing_ebs_lock);
1628         while (!list_empty(&trans->releasing_ebs)) {
1629                 struct extent_buffer *eb;
1630
1631                 eb = list_first_entry(&trans->releasing_ebs,
1632                                       struct extent_buffer, release_list);
1633                 list_del_init(&eb->release_list);
1634                 free_extent_buffer(eb);
1635         }
1636         spin_unlock(&trans->releasing_ebs_lock);
1637 }
1638
1639 bool btrfs_use_zone_append(struct btrfs_bio *bbio)
1640 {
1641         u64 start = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT);
1642         struct btrfs_inode *inode = bbio->inode;
1643         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1644         struct btrfs_block_group *cache;
1645         bool ret = false;
1646
1647         if (!btrfs_is_zoned(fs_info))
1648                 return false;
1649
1650         if (!is_data_inode(&inode->vfs_inode))
1651                 return false;
1652
1653         if (btrfs_op(&bbio->bio) != BTRFS_MAP_WRITE)
1654                 return false;
1655
1656         /*
1657          * Using REQ_OP_ZONE_APPNED for relocation can break assumptions on the
1658          * extent layout the relocation code has.
1659          * Furthermore we have set aside own block-group from which only the
1660          * relocation "process" can allocate and make sure only one process at a
1661          * time can add pages to an extent that gets relocated, so it's safe to
1662          * use regular REQ_OP_WRITE for this special case.
1663          */
1664         if (btrfs_is_data_reloc_root(inode->root))
1665                 return false;
1666
1667         cache = btrfs_lookup_block_group(fs_info, start);
1668         ASSERT(cache);
1669         if (!cache)
1670                 return false;
1671
1672         ret = !!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1673         btrfs_put_block_group(cache);
1674
1675         return ret;
1676 }
1677
1678 void btrfs_record_physical_zoned(struct btrfs_bio *bbio)
1679 {
1680         const u64 physical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
1681         struct btrfs_ordered_extent *ordered;
1682
1683         ordered = btrfs_lookup_ordered_extent(bbio->inode, bbio->file_offset);
1684         if (WARN_ON(!ordered))
1685                 return;
1686
1687         ordered->physical = physical;
1688         btrfs_put_ordered_extent(ordered);
1689 }
1690
1691 void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered)
1692 {
1693         struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1694         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1695         struct extent_map_tree *em_tree;
1696         struct extent_map *em;
1697         struct btrfs_ordered_sum *sum;
1698         u64 orig_logical = ordered->disk_bytenr;
1699         struct map_lookup *map;
1700         u64 physical = ordered->physical;
1701         u64 chunk_start_phys;
1702         u64 logical;
1703
1704         em = btrfs_get_chunk_map(fs_info, orig_logical, 1);
1705         if (IS_ERR(em))
1706                 return;
1707         map = em->map_lookup;
1708         chunk_start_phys = map->stripes[0].physical;
1709
1710         if (WARN_ON_ONCE(map->num_stripes > 1) ||
1711             WARN_ON_ONCE((map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) != 0) ||
1712             WARN_ON_ONCE(physical < chunk_start_phys) ||
1713             WARN_ON_ONCE(physical > chunk_start_phys + em->orig_block_len)) {
1714                 free_extent_map(em);
1715                 return;
1716         }
1717         logical = em->start + (physical - map->stripes[0].physical);
1718         free_extent_map(em);
1719
1720         if (orig_logical == logical)
1721                 return;
1722
1723         ordered->disk_bytenr = logical;
1724
1725         em_tree = &inode->extent_tree;
1726         write_lock(&em_tree->lock);
1727         em = search_extent_mapping(em_tree, ordered->file_offset,
1728                                    ordered->num_bytes);
1729         em->block_start = logical;
1730         free_extent_map(em);
1731         write_unlock(&em_tree->lock);
1732
1733         list_for_each_entry(sum, &ordered->list, list) {
1734                 if (logical < orig_logical)
1735                         sum->bytenr -= orig_logical - logical;
1736                 else
1737                         sum->bytenr += logical - orig_logical;
1738         }
1739 }
1740
1741 bool btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
1742                                     struct extent_buffer *eb,
1743                                     struct btrfs_block_group **cache_ret)
1744 {
1745         struct btrfs_block_group *cache;
1746         bool ret = true;
1747
1748         if (!btrfs_is_zoned(fs_info))
1749                 return true;
1750
1751         cache = btrfs_lookup_block_group(fs_info, eb->start);
1752         if (!cache)
1753                 return true;
1754
1755         if (cache->meta_write_pointer != eb->start) {
1756                 btrfs_put_block_group(cache);
1757                 cache = NULL;
1758                 ret = false;
1759         } else {
1760                 cache->meta_write_pointer = eb->start + eb->len;
1761         }
1762
1763         *cache_ret = cache;
1764
1765         return ret;
1766 }
1767
1768 void btrfs_revert_meta_write_pointer(struct btrfs_block_group *cache,
1769                                      struct extent_buffer *eb)
1770 {
1771         if (!btrfs_is_zoned(eb->fs_info) || !cache)
1772                 return;
1773
1774         ASSERT(cache->meta_write_pointer == eb->start + eb->len);
1775         cache->meta_write_pointer = eb->start;
1776 }
1777
1778 int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
1779 {
1780         if (!btrfs_dev_is_sequential(device, physical))
1781                 return -EOPNOTSUPP;
1782
1783         return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
1784                                     length >> SECTOR_SHIFT, GFP_NOFS, 0);
1785 }
1786
1787 static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
1788                           struct blk_zone *zone)
1789 {
1790         struct btrfs_io_context *bioc = NULL;
1791         u64 mapped_length = PAGE_SIZE;
1792         unsigned int nofs_flag;
1793         int nmirrors;
1794         int i, ret;
1795
1796         ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
1797                                &mapped_length, &bioc);
1798         if (ret || !bioc || mapped_length < PAGE_SIZE) {
1799                 ret = -EIO;
1800                 goto out_put_bioc;
1801         }
1802
1803         if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1804                 ret = -EINVAL;
1805                 goto out_put_bioc;
1806         }
1807
1808         nofs_flag = memalloc_nofs_save();
1809         nmirrors = (int)bioc->num_stripes;
1810         for (i = 0; i < nmirrors; i++) {
1811                 u64 physical = bioc->stripes[i].physical;
1812                 struct btrfs_device *dev = bioc->stripes[i].dev;
1813
1814                 /* Missing device */
1815                 if (!dev->bdev)
1816                         continue;
1817
1818                 ret = btrfs_get_dev_zone(dev, physical, zone);
1819                 /* Failing device */
1820                 if (ret == -EIO || ret == -EOPNOTSUPP)
1821                         continue;
1822                 break;
1823         }
1824         memalloc_nofs_restore(nofs_flag);
1825 out_put_bioc:
1826         btrfs_put_bioc(bioc);
1827         return ret;
1828 }
1829
1830 /*
1831  * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by
1832  * filling zeros between @physical_pos to a write pointer of dev-replace
1833  * source device.
1834  */
1835 int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
1836                                     u64 physical_start, u64 physical_pos)
1837 {
1838         struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
1839         struct blk_zone zone;
1840         u64 length;
1841         u64 wp;
1842         int ret;
1843
1844         if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
1845                 return 0;
1846
1847         ret = read_zone_info(fs_info, logical, &zone);
1848         if (ret)
1849                 return ret;
1850
1851         wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);
1852
1853         if (physical_pos == wp)
1854                 return 0;
1855
1856         if (physical_pos > wp)
1857                 return -EUCLEAN;
1858
1859         length = wp - physical_pos;
1860         return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
1861 }
1862
1863 /*
1864  * Activate block group and underlying device zones
1865  *
1866  * @block_group: the block group to activate
1867  *
1868  * Return: true on success, false otherwise
1869  */
1870 bool btrfs_zone_activate(struct btrfs_block_group *block_group)
1871 {
1872         struct btrfs_fs_info *fs_info = block_group->fs_info;
1873         struct btrfs_space_info *space_info = block_group->space_info;
1874         struct map_lookup *map;
1875         struct btrfs_device *device;
1876         u64 physical;
1877         bool ret;
1878         int i;
1879
1880         if (!btrfs_is_zoned(block_group->fs_info))
1881                 return true;
1882
1883         map = block_group->physical_map;
1884
1885         spin_lock(&space_info->lock);
1886         spin_lock(&block_group->lock);
1887         if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
1888                 ret = true;
1889                 goto out_unlock;
1890         }
1891
1892         /* No space left */
1893         if (btrfs_zoned_bg_is_full(block_group)) {
1894                 ret = false;
1895                 goto out_unlock;
1896         }
1897
1898         for (i = 0; i < map->num_stripes; i++) {
1899                 device = map->stripes[i].dev;
1900                 physical = map->stripes[i].physical;
1901
1902                 if (device->zone_info->max_active_zones == 0)
1903                         continue;
1904
1905                 if (!btrfs_dev_set_active_zone(device, physical)) {
1906                         /* Cannot activate the zone */
1907                         ret = false;
1908                         goto out_unlock;
1909                 }
1910         }
1911
1912         /* Successfully activated all the zones */
1913         set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
1914         WARN_ON(block_group->alloc_offset != 0);
1915         if (block_group->zone_unusable == block_group->length) {
1916                 block_group->zone_unusable = block_group->length - block_group->zone_capacity;
1917                 space_info->bytes_zone_unusable -= block_group->zone_capacity;
1918         }
1919         spin_unlock(&block_group->lock);
1920         btrfs_try_granting_tickets(fs_info, space_info);
1921         spin_unlock(&space_info->lock);
1922
1923         /* For the active block group list */
1924         btrfs_get_block_group(block_group);
1925
1926         spin_lock(&fs_info->zone_active_bgs_lock);
1927         list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs);
1928         spin_unlock(&fs_info->zone_active_bgs_lock);
1929
1930         return true;
1931
1932 out_unlock:
1933         spin_unlock(&block_group->lock);
1934         spin_unlock(&space_info->lock);
1935         return ret;
1936 }
1937
1938 static void wait_eb_writebacks(struct btrfs_block_group *block_group)
1939 {
1940         struct btrfs_fs_info *fs_info = block_group->fs_info;
1941         const u64 end = block_group->start + block_group->length;
1942         struct radix_tree_iter iter;
1943         struct extent_buffer *eb;
1944         void __rcu **slot;
1945
1946         rcu_read_lock();
1947         radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter,
1948                                  block_group->start >> fs_info->sectorsize_bits) {
1949                 eb = radix_tree_deref_slot(slot);
1950                 if (!eb)
1951                         continue;
1952                 if (radix_tree_deref_retry(eb)) {
1953                         slot = radix_tree_iter_retry(&iter);
1954                         continue;
1955                 }
1956
1957                 if (eb->start < block_group->start)
1958                         continue;
1959                 if (eb->start >= end)
1960                         break;
1961
1962                 slot = radix_tree_iter_resume(slot, &iter);
1963                 rcu_read_unlock();
1964                 wait_on_extent_buffer_writeback(eb);
1965                 rcu_read_lock();
1966         }
1967         rcu_read_unlock();
1968 }
1969
1970 static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written)
1971 {
1972         struct btrfs_fs_info *fs_info = block_group->fs_info;
1973         struct map_lookup *map;
1974         const bool is_metadata = (block_group->flags &
1975                         (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM));
1976         int ret = 0;
1977         int i;
1978
1979         spin_lock(&block_group->lock);
1980         if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
1981                 spin_unlock(&block_group->lock);
1982                 return 0;
1983         }
1984
1985         /* Check if we have unwritten allocated space */
1986         if (is_metadata &&
1987             block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) {
1988                 spin_unlock(&block_group->lock);
1989                 return -EAGAIN;
1990         }
1991
1992         /*
1993          * If we are sure that the block group is full (= no more room left for
1994          * new allocation) and the IO for the last usable block is completed, we
1995          * don't need to wait for the other IOs. This holds because we ensure
1996          * the sequential IO submissions using the ZONE_APPEND command for data
1997          * and block_group->meta_write_pointer for metadata.
1998          */
1999         if (!fully_written) {
2000                 spin_unlock(&block_group->lock);
2001
2002                 ret = btrfs_inc_block_group_ro(block_group, false);
2003                 if (ret)
2004                         return ret;
2005
2006                 /* Ensure all writes in this block group finish */
2007                 btrfs_wait_block_group_reservations(block_group);
2008                 /* No need to wait for NOCOW writers. Zoned mode does not allow that */
2009                 btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group->start,
2010                                          block_group->length);
2011                 /* Wait for extent buffers to be written. */
2012                 if (is_metadata)
2013                         wait_eb_writebacks(block_group);
2014
2015                 spin_lock(&block_group->lock);
2016
2017                 /*
2018                  * Bail out if someone already deactivated the block group, or
2019                  * allocated space is left in the block group.
2020                  */
2021                 if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2022                               &block_group->runtime_flags)) {
2023                         spin_unlock(&block_group->lock);
2024                         btrfs_dec_block_group_ro(block_group);
2025                         return 0;
2026                 }
2027
2028                 if (block_group->reserved) {
2029                         spin_unlock(&block_group->lock);
2030                         btrfs_dec_block_group_ro(block_group);
2031                         return -EAGAIN;
2032                 }
2033         }
2034
2035         clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2036         block_group->alloc_offset = block_group->zone_capacity;
2037         block_group->free_space_ctl->free_space = 0;
2038         btrfs_clear_treelog_bg(block_group);
2039         btrfs_clear_data_reloc_bg(block_group);
2040         spin_unlock(&block_group->lock);
2041
2042         map = block_group->physical_map;
2043         for (i = 0; i < map->num_stripes; i++) {
2044                 struct btrfs_device *device = map->stripes[i].dev;
2045                 const u64 physical = map->stripes[i].physical;
2046
2047                 if (device->zone_info->max_active_zones == 0)
2048                         continue;
2049
2050                 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH,
2051                                        physical >> SECTOR_SHIFT,
2052                                        device->zone_info->zone_size >> SECTOR_SHIFT,
2053                                        GFP_NOFS);
2054
2055                 if (ret)
2056                         return ret;
2057
2058                 btrfs_dev_clear_active_zone(device, physical);
2059         }
2060
2061         if (!fully_written)
2062                 btrfs_dec_block_group_ro(block_group);
2063
2064         spin_lock(&fs_info->zone_active_bgs_lock);
2065         ASSERT(!list_empty(&block_group->active_bg_list));
2066         list_del_init(&block_group->active_bg_list);
2067         spin_unlock(&fs_info->zone_active_bgs_lock);
2068
2069         /* For active_bg_list */
2070         btrfs_put_block_group(block_group);
2071
2072         clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2073
2074         return 0;
2075 }
2076
2077 int btrfs_zone_finish(struct btrfs_block_group *block_group)
2078 {
2079         if (!btrfs_is_zoned(block_group->fs_info))
2080                 return 0;
2081
2082         return do_zone_finish(block_group, false);
2083 }
2084
2085 bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags)
2086 {
2087         struct btrfs_fs_info *fs_info = fs_devices->fs_info;
2088         struct btrfs_device *device;
2089         bool ret = false;
2090
2091         if (!btrfs_is_zoned(fs_info))
2092                 return true;
2093
2094         /* Check if there is a device with active zones left */
2095         mutex_lock(&fs_info->chunk_mutex);
2096         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
2097                 struct btrfs_zoned_device_info *zinfo = device->zone_info;
2098
2099                 if (!device->bdev)
2100                         continue;
2101
2102                 if (!zinfo->max_active_zones) {
2103                         ret = true;
2104                         break;
2105                 }
2106
2107                 switch (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
2108                 case 0: /* single */
2109                         ret = (atomic_read(&zinfo->active_zones_left) >= 1);
2110                         break;
2111                 case BTRFS_BLOCK_GROUP_DUP:
2112                         ret = (atomic_read(&zinfo->active_zones_left) >= 2);
2113                         break;
2114                 }
2115                 if (ret)
2116                         break;
2117         }
2118         mutex_unlock(&fs_info->chunk_mutex);
2119
2120         if (!ret)
2121                 set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2122
2123         return ret;
2124 }
2125
2126 void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length)
2127 {
2128         struct btrfs_block_group *block_group;
2129         u64 min_alloc_bytes;
2130
2131         if (!btrfs_is_zoned(fs_info))
2132                 return;
2133
2134         block_group = btrfs_lookup_block_group(fs_info, logical);
2135         ASSERT(block_group);
2136
2137         /* No MIXED_BG on zoned btrfs. */
2138         if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
2139                 min_alloc_bytes = fs_info->sectorsize;
2140         else
2141                 min_alloc_bytes = fs_info->nodesize;
2142
2143         /* Bail out if we can allocate more data from this block group. */
2144         if (logical + length + min_alloc_bytes <=
2145             block_group->start + block_group->zone_capacity)
2146                 goto out;
2147
2148         do_zone_finish(block_group, true);
2149
2150 out:
2151         btrfs_put_block_group(block_group);
2152 }
2153
2154 static void btrfs_zone_finish_endio_workfn(struct work_struct *work)
2155 {
2156         struct btrfs_block_group *bg =
2157                 container_of(work, struct btrfs_block_group, zone_finish_work);
2158
2159         wait_on_extent_buffer_writeback(bg->last_eb);
2160         free_extent_buffer(bg->last_eb);
2161         btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length);
2162         btrfs_put_block_group(bg);
2163 }
2164
2165 void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg,
2166                                    struct extent_buffer *eb)
2167 {
2168         if (!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &bg->runtime_flags) ||
2169             eb->start + eb->len * 2 <= bg->start + bg->zone_capacity)
2170                 return;
2171
2172         if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) {
2173                 btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing",
2174                           bg->start);
2175                 return;
2176         }
2177
2178         /* For the work */
2179         btrfs_get_block_group(bg);
2180         atomic_inc(&eb->refs);
2181         bg->last_eb = eb;
2182         INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn);
2183         queue_work(system_unbound_wq, &bg->zone_finish_work);
2184 }
2185
2186 void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg)
2187 {
2188         struct btrfs_fs_info *fs_info = bg->fs_info;
2189
2190         spin_lock(&fs_info->relocation_bg_lock);
2191         if (fs_info->data_reloc_bg == bg->start)
2192                 fs_info->data_reloc_bg = 0;
2193         spin_unlock(&fs_info->relocation_bg_lock);
2194 }
2195
2196 void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info)
2197 {
2198         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2199         struct btrfs_device *device;
2200
2201         if (!btrfs_is_zoned(fs_info))
2202                 return;
2203
2204         mutex_lock(&fs_devices->device_list_mutex);
2205         list_for_each_entry(device, &fs_devices->devices, dev_list) {
2206                 if (device->zone_info) {
2207                         vfree(device->zone_info->zone_cache);
2208                         device->zone_info->zone_cache = NULL;
2209                 }
2210         }
2211         mutex_unlock(&fs_devices->device_list_mutex);
2212 }
2213
2214 bool btrfs_zoned_should_reclaim(struct btrfs_fs_info *fs_info)
2215 {
2216         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2217         struct btrfs_device *device;
2218         u64 used = 0;
2219         u64 total = 0;
2220         u64 factor;
2221
2222         ASSERT(btrfs_is_zoned(fs_info));
2223
2224         if (fs_info->bg_reclaim_threshold == 0)
2225                 return false;
2226
2227         mutex_lock(&fs_devices->device_list_mutex);
2228         list_for_each_entry(device, &fs_devices->devices, dev_list) {
2229                 if (!device->bdev)
2230                         continue;
2231
2232                 total += device->disk_total_bytes;
2233                 used += device->bytes_used;
2234         }
2235         mutex_unlock(&fs_devices->device_list_mutex);
2236
2237         factor = div64_u64(used * 100, total);
2238         return factor >= fs_info->bg_reclaim_threshold;
2239 }
2240
2241 void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical,
2242                                        u64 length)
2243 {
2244         struct btrfs_block_group *block_group;
2245
2246         if (!btrfs_is_zoned(fs_info))
2247                 return;
2248
2249         block_group = btrfs_lookup_block_group(fs_info, logical);
2250         /* It should be called on a previous data relocation block group. */
2251         ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA));
2252
2253         spin_lock(&block_group->lock);
2254         if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))
2255                 goto out;
2256
2257         /* All relocation extents are written. */
2258         if (block_group->start + block_group->alloc_offset == logical + length) {
2259                 /* Now, release this block group for further allocations. */
2260                 clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2261                           &block_group->runtime_flags);
2262         }
2263
2264 out:
2265         spin_unlock(&block_group->lock);
2266         btrfs_put_block_group(block_group);
2267 }
2268
2269 int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info)
2270 {
2271         struct btrfs_block_group *block_group;
2272         struct btrfs_block_group *min_bg = NULL;
2273         u64 min_avail = U64_MAX;
2274         int ret;
2275
2276         spin_lock(&fs_info->zone_active_bgs_lock);
2277         list_for_each_entry(block_group, &fs_info->zone_active_bgs,
2278                             active_bg_list) {
2279                 u64 avail;
2280
2281                 spin_lock(&block_group->lock);
2282                 if (block_group->reserved || block_group->alloc_offset == 0 ||
2283                     (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM)) {
2284                         spin_unlock(&block_group->lock);
2285                         continue;
2286                 }
2287
2288                 avail = block_group->zone_capacity - block_group->alloc_offset;
2289                 if (min_avail > avail) {
2290                         if (min_bg)
2291                                 btrfs_put_block_group(min_bg);
2292                         min_bg = block_group;
2293                         min_avail = avail;
2294                         btrfs_get_block_group(min_bg);
2295                 }
2296                 spin_unlock(&block_group->lock);
2297         }
2298         spin_unlock(&fs_info->zone_active_bgs_lock);
2299
2300         if (!min_bg)
2301                 return 0;
2302
2303         ret = btrfs_zone_finish(min_bg);
2304         btrfs_put_block_group(min_bg);
2305
2306         return ret < 0 ? ret : 1;
2307 }
2308
2309 int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info,
2310                                 struct btrfs_space_info *space_info,
2311                                 bool do_finish)
2312 {
2313         struct btrfs_block_group *bg;
2314         int index;
2315
2316         if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
2317                 return 0;
2318
2319         for (;;) {
2320                 int ret;
2321                 bool need_finish = false;
2322
2323                 down_read(&space_info->groups_sem);
2324                 for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) {
2325                         list_for_each_entry(bg, &space_info->block_groups[index],
2326                                             list) {
2327                                 if (!spin_trylock(&bg->lock))
2328                                         continue;
2329                                 if (btrfs_zoned_bg_is_full(bg) ||
2330                                     test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2331                                              &bg->runtime_flags)) {
2332                                         spin_unlock(&bg->lock);
2333                                         continue;
2334                                 }
2335                                 spin_unlock(&bg->lock);
2336
2337                                 if (btrfs_zone_activate(bg)) {
2338                                         up_read(&space_info->groups_sem);
2339                                         return 1;
2340                                 }
2341
2342                                 need_finish = true;
2343                         }
2344                 }
2345                 up_read(&space_info->groups_sem);
2346
2347                 if (!do_finish || !need_finish)
2348                         break;
2349
2350                 ret = btrfs_zone_finish_one_bg(fs_info);
2351                 if (ret == 0)
2352                         break;
2353                 if (ret < 0)
2354                         return ret;
2355         }
2356
2357         return 0;
2358 }