ef41f285a47542bdd0e8f94aec56e18e7d833fba
[linux-2.6-block.git] / fs / btrfs / volumes.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/kthread.h>
27 #include <asm/div64.h>
28 #include "compat.h"
29 #include "ctree.h"
30 #include "extent_map.h"
31 #include "disk-io.h"
32 #include "transaction.h"
33 #include "print-tree.h"
34 #include "volumes.h"
35 #include "async-thread.h"
36 #include "check-integrity.h"
37
38 static int init_first_rw_device(struct btrfs_trans_handle *trans,
39                                 struct btrfs_root *root,
40                                 struct btrfs_device *device);
41 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
42
43 static DEFINE_MUTEX(uuid_mutex);
44 static LIST_HEAD(fs_uuids);
45
46 static void lock_chunks(struct btrfs_root *root)
47 {
48         mutex_lock(&root->fs_info->chunk_mutex);
49 }
50
51 static void unlock_chunks(struct btrfs_root *root)
52 {
53         mutex_unlock(&root->fs_info->chunk_mutex);
54 }
55
56 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
57 {
58         struct btrfs_device *device;
59         WARN_ON(fs_devices->opened);
60         while (!list_empty(&fs_devices->devices)) {
61                 device = list_entry(fs_devices->devices.next,
62                                     struct btrfs_device, dev_list);
63                 list_del(&device->dev_list);
64                 kfree(device->name);
65                 kfree(device);
66         }
67         kfree(fs_devices);
68 }
69
70 int btrfs_cleanup_fs_uuids(void)
71 {
72         struct btrfs_fs_devices *fs_devices;
73
74         while (!list_empty(&fs_uuids)) {
75                 fs_devices = list_entry(fs_uuids.next,
76                                         struct btrfs_fs_devices, list);
77                 list_del(&fs_devices->list);
78                 free_fs_devices(fs_devices);
79         }
80         return 0;
81 }
82
83 static noinline struct btrfs_device *__find_device(struct list_head *head,
84                                                    u64 devid, u8 *uuid)
85 {
86         struct btrfs_device *dev;
87
88         list_for_each_entry(dev, head, dev_list) {
89                 if (dev->devid == devid &&
90                     (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
91                         return dev;
92                 }
93         }
94         return NULL;
95 }
96
97 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
98 {
99         struct btrfs_fs_devices *fs_devices;
100
101         list_for_each_entry(fs_devices, &fs_uuids, list) {
102                 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
103                         return fs_devices;
104         }
105         return NULL;
106 }
107
108 static void requeue_list(struct btrfs_pending_bios *pending_bios,
109                         struct bio *head, struct bio *tail)
110 {
111
112         struct bio *old_head;
113
114         old_head = pending_bios->head;
115         pending_bios->head = head;
116         if (pending_bios->tail)
117                 tail->bi_next = old_head;
118         else
119                 pending_bios->tail = tail;
120 }
121
122 /*
123  * we try to collect pending bios for a device so we don't get a large
124  * number of procs sending bios down to the same device.  This greatly
125  * improves the schedulers ability to collect and merge the bios.
126  *
127  * But, it also turns into a long list of bios to process and that is sure
128  * to eventually make the worker thread block.  The solution here is to
129  * make some progress and then put this work struct back at the end of
130  * the list if the block device is congested.  This way, multiple devices
131  * can make progress from a single worker thread.
132  */
133 static noinline int run_scheduled_bios(struct btrfs_device *device)
134 {
135         struct bio *pending;
136         struct backing_dev_info *bdi;
137         struct btrfs_fs_info *fs_info;
138         struct btrfs_pending_bios *pending_bios;
139         struct bio *tail;
140         struct bio *cur;
141         int again = 0;
142         unsigned long num_run;
143         unsigned long batch_run = 0;
144         unsigned long limit;
145         unsigned long last_waited = 0;
146         int force_reg = 0;
147         int sync_pending = 0;
148         struct blk_plug plug;
149
150         /*
151          * this function runs all the bios we've collected for
152          * a particular device.  We don't want to wander off to
153          * another device without first sending all of these down.
154          * So, setup a plug here and finish it off before we return
155          */
156         blk_start_plug(&plug);
157
158         bdi = blk_get_backing_dev_info(device->bdev);
159         fs_info = device->dev_root->fs_info;
160         limit = btrfs_async_submit_limit(fs_info);
161         limit = limit * 2 / 3;
162
163 loop:
164         spin_lock(&device->io_lock);
165
166 loop_lock:
167         num_run = 0;
168
169         /* take all the bios off the list at once and process them
170          * later on (without the lock held).  But, remember the
171          * tail and other pointers so the bios can be properly reinserted
172          * into the list if we hit congestion
173          */
174         if (!force_reg && device->pending_sync_bios.head) {
175                 pending_bios = &device->pending_sync_bios;
176                 force_reg = 1;
177         } else {
178                 pending_bios = &device->pending_bios;
179                 force_reg = 0;
180         }
181
182         pending = pending_bios->head;
183         tail = pending_bios->tail;
184         WARN_ON(pending && !tail);
185
186         /*
187          * if pending was null this time around, no bios need processing
188          * at all and we can stop.  Otherwise it'll loop back up again
189          * and do an additional check so no bios are missed.
190          *
191          * device->running_pending is used to synchronize with the
192          * schedule_bio code.
193          */
194         if (device->pending_sync_bios.head == NULL &&
195             device->pending_bios.head == NULL) {
196                 again = 0;
197                 device->running_pending = 0;
198         } else {
199                 again = 1;
200                 device->running_pending = 1;
201         }
202
203         pending_bios->head = NULL;
204         pending_bios->tail = NULL;
205
206         spin_unlock(&device->io_lock);
207
208         while (pending) {
209
210                 rmb();
211                 /* we want to work on both lists, but do more bios on the
212                  * sync list than the regular list
213                  */
214                 if ((num_run > 32 &&
215                     pending_bios != &device->pending_sync_bios &&
216                     device->pending_sync_bios.head) ||
217                    (num_run > 64 && pending_bios == &device->pending_sync_bios &&
218                     device->pending_bios.head)) {
219                         spin_lock(&device->io_lock);
220                         requeue_list(pending_bios, pending, tail);
221                         goto loop_lock;
222                 }
223
224                 cur = pending;
225                 pending = pending->bi_next;
226                 cur->bi_next = NULL;
227                 atomic_dec(&fs_info->nr_async_bios);
228
229                 if (atomic_read(&fs_info->nr_async_bios) < limit &&
230                     waitqueue_active(&fs_info->async_submit_wait))
231                         wake_up(&fs_info->async_submit_wait);
232
233                 BUG_ON(atomic_read(&cur->bi_cnt) == 0);
234
235                 /*
236                  * if we're doing the sync list, record that our
237                  * plug has some sync requests on it
238                  *
239                  * If we're doing the regular list and there are
240                  * sync requests sitting around, unplug before
241                  * we add more
242                  */
243                 if (pending_bios == &device->pending_sync_bios) {
244                         sync_pending = 1;
245                 } else if (sync_pending) {
246                         blk_finish_plug(&plug);
247                         blk_start_plug(&plug);
248                         sync_pending = 0;
249                 }
250
251                 btrfsic_submit_bio(cur->bi_rw, cur);
252                 num_run++;
253                 batch_run++;
254                 if (need_resched())
255                         cond_resched();
256
257                 /*
258                  * we made progress, there is more work to do and the bdi
259                  * is now congested.  Back off and let other work structs
260                  * run instead
261                  */
262                 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
263                     fs_info->fs_devices->open_devices > 1) {
264                         struct io_context *ioc;
265
266                         ioc = current->io_context;
267
268                         /*
269                          * the main goal here is that we don't want to
270                          * block if we're going to be able to submit
271                          * more requests without blocking.
272                          *
273                          * This code does two great things, it pokes into
274                          * the elevator code from a filesystem _and_
275                          * it makes assumptions about how batching works.
276                          */
277                         if (ioc && ioc->nr_batch_requests > 0 &&
278                             time_before(jiffies, ioc->last_waited + HZ/50UL) &&
279                             (last_waited == 0 ||
280                              ioc->last_waited == last_waited)) {
281                                 /*
282                                  * we want to go through our batch of
283                                  * requests and stop.  So, we copy out
284                                  * the ioc->last_waited time and test
285                                  * against it before looping
286                                  */
287                                 last_waited = ioc->last_waited;
288                                 if (need_resched())
289                                         cond_resched();
290                                 continue;
291                         }
292                         spin_lock(&device->io_lock);
293                         requeue_list(pending_bios, pending, tail);
294                         device->running_pending = 1;
295
296                         spin_unlock(&device->io_lock);
297                         btrfs_requeue_work(&device->work);
298                         goto done;
299                 }
300                 /* unplug every 64 requests just for good measure */
301                 if (batch_run % 64 == 0) {
302                         blk_finish_plug(&plug);
303                         blk_start_plug(&plug);
304                         sync_pending = 0;
305                 }
306         }
307
308         cond_resched();
309         if (again)
310                 goto loop;
311
312         spin_lock(&device->io_lock);
313         if (device->pending_bios.head || device->pending_sync_bios.head)
314                 goto loop_lock;
315         spin_unlock(&device->io_lock);
316
317 done:
318         blk_finish_plug(&plug);
319         return 0;
320 }
321
322 static void pending_bios_fn(struct btrfs_work *work)
323 {
324         struct btrfs_device *device;
325
326         device = container_of(work, struct btrfs_device, work);
327         run_scheduled_bios(device);
328 }
329
330 static noinline int device_list_add(const char *path,
331                            struct btrfs_super_block *disk_super,
332                            u64 devid, struct btrfs_fs_devices **fs_devices_ret)
333 {
334         struct btrfs_device *device;
335         struct btrfs_fs_devices *fs_devices;
336         u64 found_transid = btrfs_super_generation(disk_super);
337         char *name;
338
339         fs_devices = find_fsid(disk_super->fsid);
340         if (!fs_devices) {
341                 fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
342                 if (!fs_devices)
343                         return -ENOMEM;
344                 INIT_LIST_HEAD(&fs_devices->devices);
345                 INIT_LIST_HEAD(&fs_devices->alloc_list);
346                 list_add(&fs_devices->list, &fs_uuids);
347                 memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
348                 fs_devices->latest_devid = devid;
349                 fs_devices->latest_trans = found_transid;
350                 mutex_init(&fs_devices->device_list_mutex);
351                 device = NULL;
352         } else {
353                 device = __find_device(&fs_devices->devices, devid,
354                                        disk_super->dev_item.uuid);
355         }
356         if (!device) {
357                 if (fs_devices->opened)
358                         return -EBUSY;
359
360                 device = kzalloc(sizeof(*device), GFP_NOFS);
361                 if (!device) {
362                         /* we can safely leave the fs_devices entry around */
363                         return -ENOMEM;
364                 }
365                 device->devid = devid;
366                 device->work.func = pending_bios_fn;
367                 memcpy(device->uuid, disk_super->dev_item.uuid,
368                        BTRFS_UUID_SIZE);
369                 spin_lock_init(&device->io_lock);
370                 device->name = kstrdup(path, GFP_NOFS);
371                 if (!device->name) {
372                         kfree(device);
373                         return -ENOMEM;
374                 }
375                 INIT_LIST_HEAD(&device->dev_alloc_list);
376
377                 /* init readahead state */
378                 spin_lock_init(&device->reada_lock);
379                 device->reada_curr_zone = NULL;
380                 atomic_set(&device->reada_in_flight, 0);
381                 device->reada_next = 0;
382                 INIT_RADIX_TREE(&device->reada_zones, GFP_NOFS & ~__GFP_WAIT);
383                 INIT_RADIX_TREE(&device->reada_extents, GFP_NOFS & ~__GFP_WAIT);
384
385                 mutex_lock(&fs_devices->device_list_mutex);
386                 list_add_rcu(&device->dev_list, &fs_devices->devices);
387                 mutex_unlock(&fs_devices->device_list_mutex);
388
389                 device->fs_devices = fs_devices;
390                 fs_devices->num_devices++;
391         } else if (!device->name || strcmp(device->name, path)) {
392                 name = kstrdup(path, GFP_NOFS);
393                 if (!name)
394                         return -ENOMEM;
395                 kfree(device->name);
396                 device->name = name;
397                 if (device->missing) {
398                         fs_devices->missing_devices--;
399                         device->missing = 0;
400                 }
401         }
402
403         if (found_transid > fs_devices->latest_trans) {
404                 fs_devices->latest_devid = devid;
405                 fs_devices->latest_trans = found_transid;
406         }
407         *fs_devices_ret = fs_devices;
408         return 0;
409 }
410
411 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
412 {
413         struct btrfs_fs_devices *fs_devices;
414         struct btrfs_device *device;
415         struct btrfs_device *orig_dev;
416
417         fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
418         if (!fs_devices)
419                 return ERR_PTR(-ENOMEM);
420
421         INIT_LIST_HEAD(&fs_devices->devices);
422         INIT_LIST_HEAD(&fs_devices->alloc_list);
423         INIT_LIST_HEAD(&fs_devices->list);
424         mutex_init(&fs_devices->device_list_mutex);
425         fs_devices->latest_devid = orig->latest_devid;
426         fs_devices->latest_trans = orig->latest_trans;
427         memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
428
429         /* We have held the volume lock, it is safe to get the devices. */
430         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
431                 device = kzalloc(sizeof(*device), GFP_NOFS);
432                 if (!device)
433                         goto error;
434
435                 device->name = kstrdup(orig_dev->name, GFP_NOFS);
436                 if (!device->name) {
437                         kfree(device);
438                         goto error;
439                 }
440
441                 device->devid = orig_dev->devid;
442                 device->work.func = pending_bios_fn;
443                 memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
444                 spin_lock_init(&device->io_lock);
445                 INIT_LIST_HEAD(&device->dev_list);
446                 INIT_LIST_HEAD(&device->dev_alloc_list);
447
448                 list_add(&device->dev_list, &fs_devices->devices);
449                 device->fs_devices = fs_devices;
450                 fs_devices->num_devices++;
451         }
452         return fs_devices;
453 error:
454         free_fs_devices(fs_devices);
455         return ERR_PTR(-ENOMEM);
456 }
457
458 int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
459 {
460         struct btrfs_device *device, *next;
461
462         struct block_device *latest_bdev = NULL;
463         u64 latest_devid = 0;
464         u64 latest_transid = 0;
465
466         mutex_lock(&uuid_mutex);
467 again:
468         /* This is the initialized path, it is safe to release the devices. */
469         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
470                 if (device->in_fs_metadata) {
471                         if (!latest_transid ||
472                             device->generation > latest_transid) {
473                                 latest_devid = device->devid;
474                                 latest_transid = device->generation;
475                                 latest_bdev = device->bdev;
476                         }
477                         continue;
478                 }
479
480                 if (device->bdev) {
481                         blkdev_put(device->bdev, device->mode);
482                         device->bdev = NULL;
483                         fs_devices->open_devices--;
484                 }
485                 if (device->writeable) {
486                         list_del_init(&device->dev_alloc_list);
487                         device->writeable = 0;
488                         fs_devices->rw_devices--;
489                 }
490                 list_del_init(&device->dev_list);
491                 fs_devices->num_devices--;
492                 kfree(device->name);
493                 kfree(device);
494         }
495
496         if (fs_devices->seed) {
497                 fs_devices = fs_devices->seed;
498                 goto again;
499         }
500
501         fs_devices->latest_bdev = latest_bdev;
502         fs_devices->latest_devid = latest_devid;
503         fs_devices->latest_trans = latest_transid;
504
505         mutex_unlock(&uuid_mutex);
506         return 0;
507 }
508
509 static void __free_device(struct work_struct *work)
510 {
511         struct btrfs_device *device;
512
513         device = container_of(work, struct btrfs_device, rcu_work);
514
515         if (device->bdev)
516                 blkdev_put(device->bdev, device->mode);
517
518         kfree(device->name);
519         kfree(device);
520 }
521
522 static void free_device(struct rcu_head *head)
523 {
524         struct btrfs_device *device;
525
526         device = container_of(head, struct btrfs_device, rcu);
527
528         INIT_WORK(&device->rcu_work, __free_device);
529         schedule_work(&device->rcu_work);
530 }
531
532 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
533 {
534         struct btrfs_device *device;
535
536         if (--fs_devices->opened > 0)
537                 return 0;
538
539         mutex_lock(&fs_devices->device_list_mutex);
540         list_for_each_entry(device, &fs_devices->devices, dev_list) {
541                 struct btrfs_device *new_device;
542
543                 if (device->bdev)
544                         fs_devices->open_devices--;
545
546                 if (device->writeable) {
547                         list_del_init(&device->dev_alloc_list);
548                         fs_devices->rw_devices--;
549                 }
550
551                 if (device->can_discard)
552                         fs_devices->num_can_discard--;
553
554                 new_device = kmalloc(sizeof(*new_device), GFP_NOFS);
555                 BUG_ON(!new_device);
556                 memcpy(new_device, device, sizeof(*new_device));
557                 new_device->name = kstrdup(device->name, GFP_NOFS);
558                 BUG_ON(device->name && !new_device->name);
559                 new_device->bdev = NULL;
560                 new_device->writeable = 0;
561                 new_device->in_fs_metadata = 0;
562                 new_device->can_discard = 0;
563                 list_replace_rcu(&device->dev_list, &new_device->dev_list);
564
565                 call_rcu(&device->rcu, free_device);
566         }
567         mutex_unlock(&fs_devices->device_list_mutex);
568
569         WARN_ON(fs_devices->open_devices);
570         WARN_ON(fs_devices->rw_devices);
571         fs_devices->opened = 0;
572         fs_devices->seeding = 0;
573
574         return 0;
575 }
576
577 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
578 {
579         struct btrfs_fs_devices *seed_devices = NULL;
580         int ret;
581
582         mutex_lock(&uuid_mutex);
583         ret = __btrfs_close_devices(fs_devices);
584         if (!fs_devices->opened) {
585                 seed_devices = fs_devices->seed;
586                 fs_devices->seed = NULL;
587         }
588         mutex_unlock(&uuid_mutex);
589
590         while (seed_devices) {
591                 fs_devices = seed_devices;
592                 seed_devices = fs_devices->seed;
593                 __btrfs_close_devices(fs_devices);
594                 free_fs_devices(fs_devices);
595         }
596         return ret;
597 }
598
599 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
600                                 fmode_t flags, void *holder)
601 {
602         struct request_queue *q;
603         struct block_device *bdev;
604         struct list_head *head = &fs_devices->devices;
605         struct btrfs_device *device;
606         struct block_device *latest_bdev = NULL;
607         struct buffer_head *bh;
608         struct btrfs_super_block *disk_super;
609         u64 latest_devid = 0;
610         u64 latest_transid = 0;
611         u64 devid;
612         int seeding = 1;
613         int ret = 0;
614
615         flags |= FMODE_EXCL;
616
617         list_for_each_entry(device, head, dev_list) {
618                 if (device->bdev)
619                         continue;
620                 if (!device->name)
621                         continue;
622
623                 bdev = blkdev_get_by_path(device->name, flags, holder);
624                 if (IS_ERR(bdev)) {
625                         printk(KERN_INFO "open %s failed\n", device->name);
626                         goto error;
627                 }
628                 set_blocksize(bdev, 4096);
629
630                 bh = btrfs_read_dev_super(bdev);
631                 if (!bh)
632                         goto error_close;
633
634                 disk_super = (struct btrfs_super_block *)bh->b_data;
635                 devid = btrfs_stack_device_id(&disk_super->dev_item);
636                 if (devid != device->devid)
637                         goto error_brelse;
638
639                 if (memcmp(device->uuid, disk_super->dev_item.uuid,
640                            BTRFS_UUID_SIZE))
641                         goto error_brelse;
642
643                 device->generation = btrfs_super_generation(disk_super);
644                 if (!latest_transid || device->generation > latest_transid) {
645                         latest_devid = devid;
646                         latest_transid = device->generation;
647                         latest_bdev = bdev;
648                 }
649
650                 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
651                         device->writeable = 0;
652                 } else {
653                         device->writeable = !bdev_read_only(bdev);
654                         seeding = 0;
655                 }
656
657                 q = bdev_get_queue(bdev);
658                 if (blk_queue_discard(q)) {
659                         device->can_discard = 1;
660                         fs_devices->num_can_discard++;
661                 }
662
663                 device->bdev = bdev;
664                 device->in_fs_metadata = 0;
665                 device->mode = flags;
666
667                 if (!blk_queue_nonrot(bdev_get_queue(bdev)))
668                         fs_devices->rotating = 1;
669
670                 fs_devices->open_devices++;
671                 if (device->writeable) {
672                         fs_devices->rw_devices++;
673                         list_add(&device->dev_alloc_list,
674                                  &fs_devices->alloc_list);
675                 }
676                 brelse(bh);
677                 continue;
678
679 error_brelse:
680                 brelse(bh);
681 error_close:
682                 blkdev_put(bdev, flags);
683 error:
684                 continue;
685         }
686         if (fs_devices->open_devices == 0) {
687                 ret = -EINVAL;
688                 goto out;
689         }
690         fs_devices->seeding = seeding;
691         fs_devices->opened = 1;
692         fs_devices->latest_bdev = latest_bdev;
693         fs_devices->latest_devid = latest_devid;
694         fs_devices->latest_trans = latest_transid;
695         fs_devices->total_rw_bytes = 0;
696 out:
697         return ret;
698 }
699
700 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
701                        fmode_t flags, void *holder)
702 {
703         int ret;
704
705         mutex_lock(&uuid_mutex);
706         if (fs_devices->opened) {
707                 fs_devices->opened++;
708                 ret = 0;
709         } else {
710                 ret = __btrfs_open_devices(fs_devices, flags, holder);
711         }
712         mutex_unlock(&uuid_mutex);
713         return ret;
714 }
715
716 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
717                           struct btrfs_fs_devices **fs_devices_ret)
718 {
719         struct btrfs_super_block *disk_super;
720         struct block_device *bdev;
721         struct buffer_head *bh;
722         int ret;
723         u64 devid;
724         u64 transid;
725
726         flags |= FMODE_EXCL;
727         bdev = blkdev_get_by_path(path, flags, holder);
728
729         if (IS_ERR(bdev)) {
730                 ret = PTR_ERR(bdev);
731                 goto error;
732         }
733
734         mutex_lock(&uuid_mutex);
735         ret = set_blocksize(bdev, 4096);
736         if (ret)
737                 goto error_close;
738         bh = btrfs_read_dev_super(bdev);
739         if (!bh) {
740                 ret = -EINVAL;
741                 goto error_close;
742         }
743         disk_super = (struct btrfs_super_block *)bh->b_data;
744         devid = btrfs_stack_device_id(&disk_super->dev_item);
745         transid = btrfs_super_generation(disk_super);
746         if (disk_super->label[0])
747                 printk(KERN_INFO "device label %s ", disk_super->label);
748         else
749                 printk(KERN_INFO "device fsid %pU ", disk_super->fsid);
750         printk(KERN_CONT "devid %llu transid %llu %s\n",
751                (unsigned long long)devid, (unsigned long long)transid, path);
752         ret = device_list_add(path, disk_super, devid, fs_devices_ret);
753
754         brelse(bh);
755 error_close:
756         mutex_unlock(&uuid_mutex);
757         blkdev_put(bdev, flags);
758 error:
759         return ret;
760 }
761
762 /* helper to account the used device space in the range */
763 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
764                                    u64 end, u64 *length)
765 {
766         struct btrfs_key key;
767         struct btrfs_root *root = device->dev_root;
768         struct btrfs_dev_extent *dev_extent;
769         struct btrfs_path *path;
770         u64 extent_end;
771         int ret;
772         int slot;
773         struct extent_buffer *l;
774
775         *length = 0;
776
777         if (start >= device->total_bytes)
778                 return 0;
779
780         path = btrfs_alloc_path();
781         if (!path)
782                 return -ENOMEM;
783         path->reada = 2;
784
785         key.objectid = device->devid;
786         key.offset = start;
787         key.type = BTRFS_DEV_EXTENT_KEY;
788
789         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
790         if (ret < 0)
791                 goto out;
792         if (ret > 0) {
793                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
794                 if (ret < 0)
795                         goto out;
796         }
797
798         while (1) {
799                 l = path->nodes[0];
800                 slot = path->slots[0];
801                 if (slot >= btrfs_header_nritems(l)) {
802                         ret = btrfs_next_leaf(root, path);
803                         if (ret == 0)
804                                 continue;
805                         if (ret < 0)
806                                 goto out;
807
808                         break;
809                 }
810                 btrfs_item_key_to_cpu(l, &key, slot);
811
812                 if (key.objectid < device->devid)
813                         goto next;
814
815                 if (key.objectid > device->devid)
816                         break;
817
818                 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
819                         goto next;
820
821                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
822                 extent_end = key.offset + btrfs_dev_extent_length(l,
823                                                                   dev_extent);
824                 if (key.offset <= start && extent_end > end) {
825                         *length = end - start + 1;
826                         break;
827                 } else if (key.offset <= start && extent_end > start)
828                         *length += extent_end - start;
829                 else if (key.offset > start && extent_end <= end)
830                         *length += extent_end - key.offset;
831                 else if (key.offset > start && key.offset <= end) {
832                         *length += end - key.offset + 1;
833                         break;
834                 } else if (key.offset > end)
835                         break;
836
837 next:
838                 path->slots[0]++;
839         }
840         ret = 0;
841 out:
842         btrfs_free_path(path);
843         return ret;
844 }
845
846 /*
847  * find_free_dev_extent - find free space in the specified device
848  * @device:     the device which we search the free space in
849  * @num_bytes:  the size of the free space that we need
850  * @start:      store the start of the free space.
851  * @len:        the size of the free space. that we find, or the size of the max
852  *              free space if we don't find suitable free space
853  *
854  * this uses a pretty simple search, the expectation is that it is
855  * called very infrequently and that a given device has a small number
856  * of extents
857  *
858  * @start is used to store the start of the free space if we find. But if we
859  * don't find suitable free space, it will be used to store the start position
860  * of the max free space.
861  *
862  * @len is used to store the size of the free space that we find.
863  * But if we don't find suitable free space, it is used to store the size of
864  * the max free space.
865  */
866 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
867                          u64 *start, u64 *len)
868 {
869         struct btrfs_key key;
870         struct btrfs_root *root = device->dev_root;
871         struct btrfs_dev_extent *dev_extent;
872         struct btrfs_path *path;
873         u64 hole_size;
874         u64 max_hole_start;
875         u64 max_hole_size;
876         u64 extent_end;
877         u64 search_start;
878         u64 search_end = device->total_bytes;
879         int ret;
880         int slot;
881         struct extent_buffer *l;
882
883         /* FIXME use last free of some kind */
884
885         /* we don't want to overwrite the superblock on the drive,
886          * so we make sure to start at an offset of at least 1MB
887          */
888         search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
889
890         max_hole_start = search_start;
891         max_hole_size = 0;
892         hole_size = 0;
893
894         if (search_start >= search_end) {
895                 ret = -ENOSPC;
896                 goto error;
897         }
898
899         path = btrfs_alloc_path();
900         if (!path) {
901                 ret = -ENOMEM;
902                 goto error;
903         }
904         path->reada = 2;
905
906         key.objectid = device->devid;
907         key.offset = search_start;
908         key.type = BTRFS_DEV_EXTENT_KEY;
909
910         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
911         if (ret < 0)
912                 goto out;
913         if (ret > 0) {
914                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
915                 if (ret < 0)
916                         goto out;
917         }
918
919         while (1) {
920                 l = path->nodes[0];
921                 slot = path->slots[0];
922                 if (slot >= btrfs_header_nritems(l)) {
923                         ret = btrfs_next_leaf(root, path);
924                         if (ret == 0)
925                                 continue;
926                         if (ret < 0)
927                                 goto out;
928
929                         break;
930                 }
931                 btrfs_item_key_to_cpu(l, &key, slot);
932
933                 if (key.objectid < device->devid)
934                         goto next;
935
936                 if (key.objectid > device->devid)
937                         break;
938
939                 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
940                         goto next;
941
942                 if (key.offset > search_start) {
943                         hole_size = key.offset - search_start;
944
945                         if (hole_size > max_hole_size) {
946                                 max_hole_start = search_start;
947                                 max_hole_size = hole_size;
948                         }
949
950                         /*
951                          * If this free space is greater than which we need,
952                          * it must be the max free space that we have found
953                          * until now, so max_hole_start must point to the start
954                          * of this free space and the length of this free space
955                          * is stored in max_hole_size. Thus, we return
956                          * max_hole_start and max_hole_size and go back to the
957                          * caller.
958                          */
959                         if (hole_size >= num_bytes) {
960                                 ret = 0;
961                                 goto out;
962                         }
963                 }
964
965                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
966                 extent_end = key.offset + btrfs_dev_extent_length(l,
967                                                                   dev_extent);
968                 if (extent_end > search_start)
969                         search_start = extent_end;
970 next:
971                 path->slots[0]++;
972                 cond_resched();
973         }
974
975         /*
976          * At this point, search_start should be the end of
977          * allocated dev extents, and when shrinking the device,
978          * search_end may be smaller than search_start.
979          */
980         if (search_end > search_start)
981                 hole_size = search_end - search_start;
982
983         if (hole_size > max_hole_size) {
984                 max_hole_start = search_start;
985                 max_hole_size = hole_size;
986         }
987
988         /* See above. */
989         if (hole_size < num_bytes)
990                 ret = -ENOSPC;
991         else
992                 ret = 0;
993
994 out:
995         btrfs_free_path(path);
996 error:
997         *start = max_hole_start;
998         if (len)
999                 *len = max_hole_size;
1000         return ret;
1001 }
1002
1003 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1004                           struct btrfs_device *device,
1005                           u64 start)
1006 {
1007         int ret;
1008         struct btrfs_path *path;
1009         struct btrfs_root *root = device->dev_root;
1010         struct btrfs_key key;
1011         struct btrfs_key found_key;
1012         struct extent_buffer *leaf = NULL;
1013         struct btrfs_dev_extent *extent = NULL;
1014
1015         path = btrfs_alloc_path();
1016         if (!path)
1017                 return -ENOMEM;
1018
1019         key.objectid = device->devid;
1020         key.offset = start;
1021         key.type = BTRFS_DEV_EXTENT_KEY;
1022 again:
1023         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1024         if (ret > 0) {
1025                 ret = btrfs_previous_item(root, path, key.objectid,
1026                                           BTRFS_DEV_EXTENT_KEY);
1027                 if (ret)
1028                         goto out;
1029                 leaf = path->nodes[0];
1030                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1031                 extent = btrfs_item_ptr(leaf, path->slots[0],
1032                                         struct btrfs_dev_extent);
1033                 BUG_ON(found_key.offset > start || found_key.offset +
1034                        btrfs_dev_extent_length(leaf, extent) < start);
1035                 key = found_key;
1036                 btrfs_release_path(path);
1037                 goto again;
1038         } else if (ret == 0) {
1039                 leaf = path->nodes[0];
1040                 extent = btrfs_item_ptr(leaf, path->slots[0],
1041                                         struct btrfs_dev_extent);
1042         }
1043         BUG_ON(ret);
1044
1045         if (device->bytes_used > 0) {
1046                 u64 len = btrfs_dev_extent_length(leaf, extent);
1047                 device->bytes_used -= len;
1048                 spin_lock(&root->fs_info->free_chunk_lock);
1049                 root->fs_info->free_chunk_space += len;
1050                 spin_unlock(&root->fs_info->free_chunk_lock);
1051         }
1052         ret = btrfs_del_item(trans, root, path);
1053
1054 out:
1055         btrfs_free_path(path);
1056         return ret;
1057 }
1058
1059 int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1060                            struct btrfs_device *device,
1061                            u64 chunk_tree, u64 chunk_objectid,
1062                            u64 chunk_offset, u64 start, u64 num_bytes)
1063 {
1064         int ret;
1065         struct btrfs_path *path;
1066         struct btrfs_root *root = device->dev_root;
1067         struct btrfs_dev_extent *extent;
1068         struct extent_buffer *leaf;
1069         struct btrfs_key key;
1070
1071         WARN_ON(!device->in_fs_metadata);
1072         path = btrfs_alloc_path();
1073         if (!path)
1074                 return -ENOMEM;
1075
1076         key.objectid = device->devid;
1077         key.offset = start;
1078         key.type = BTRFS_DEV_EXTENT_KEY;
1079         ret = btrfs_insert_empty_item(trans, root, path, &key,
1080                                       sizeof(*extent));
1081         BUG_ON(ret);
1082
1083         leaf = path->nodes[0];
1084         extent = btrfs_item_ptr(leaf, path->slots[0],
1085                                 struct btrfs_dev_extent);
1086         btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1087         btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1088         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1089
1090         write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1091                     (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
1092                     BTRFS_UUID_SIZE);
1093
1094         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1095         btrfs_mark_buffer_dirty(leaf);
1096         btrfs_free_path(path);
1097         return ret;
1098 }
1099
1100 static noinline int find_next_chunk(struct btrfs_root *root,
1101                                     u64 objectid, u64 *offset)
1102 {
1103         struct btrfs_path *path;
1104         int ret;
1105         struct btrfs_key key;
1106         struct btrfs_chunk *chunk;
1107         struct btrfs_key found_key;
1108
1109         path = btrfs_alloc_path();
1110         if (!path)
1111                 return -ENOMEM;
1112
1113         key.objectid = objectid;
1114         key.offset = (u64)-1;
1115         key.type = BTRFS_CHUNK_ITEM_KEY;
1116
1117         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1118         if (ret < 0)
1119                 goto error;
1120
1121         BUG_ON(ret == 0);
1122
1123         ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
1124         if (ret) {
1125                 *offset = 0;
1126         } else {
1127                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1128                                       path->slots[0]);
1129                 if (found_key.objectid != objectid)
1130                         *offset = 0;
1131                 else {
1132                         chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
1133                                                struct btrfs_chunk);
1134                         *offset = found_key.offset +
1135                                 btrfs_chunk_length(path->nodes[0], chunk);
1136                 }
1137         }
1138         ret = 0;
1139 error:
1140         btrfs_free_path(path);
1141         return ret;
1142 }
1143
1144 static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
1145 {
1146         int ret;
1147         struct btrfs_key key;
1148         struct btrfs_key found_key;
1149         struct btrfs_path *path;
1150
1151         root = root->fs_info->chunk_root;
1152
1153         path = btrfs_alloc_path();
1154         if (!path)
1155                 return -ENOMEM;
1156
1157         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1158         key.type = BTRFS_DEV_ITEM_KEY;
1159         key.offset = (u64)-1;
1160
1161         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1162         if (ret < 0)
1163                 goto error;
1164
1165         BUG_ON(ret == 0);
1166
1167         ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
1168                                   BTRFS_DEV_ITEM_KEY);
1169         if (ret) {
1170                 *objectid = 1;
1171         } else {
1172                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1173                                       path->slots[0]);
1174                 *objectid = found_key.offset + 1;
1175         }
1176         ret = 0;
1177 error:
1178         btrfs_free_path(path);
1179         return ret;
1180 }
1181
1182 /*
1183  * the device information is stored in the chunk root
1184  * the btrfs_device struct should be fully filled in
1185  */
1186 int btrfs_add_device(struct btrfs_trans_handle *trans,
1187                      struct btrfs_root *root,
1188                      struct btrfs_device *device)
1189 {
1190         int ret;
1191         struct btrfs_path *path;
1192         struct btrfs_dev_item *dev_item;
1193         struct extent_buffer *leaf;
1194         struct btrfs_key key;
1195         unsigned long ptr;
1196
1197         root = root->fs_info->chunk_root;
1198
1199         path = btrfs_alloc_path();
1200         if (!path)
1201                 return -ENOMEM;
1202
1203         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1204         key.type = BTRFS_DEV_ITEM_KEY;
1205         key.offset = device->devid;
1206
1207         ret = btrfs_insert_empty_item(trans, root, path, &key,
1208                                       sizeof(*dev_item));
1209         if (ret)
1210                 goto out;
1211
1212         leaf = path->nodes[0];
1213         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1214
1215         btrfs_set_device_id(leaf, dev_item, device->devid);
1216         btrfs_set_device_generation(leaf, dev_item, 0);
1217         btrfs_set_device_type(leaf, dev_item, device->type);
1218         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1219         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1220         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1221         btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1222         btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1223         btrfs_set_device_group(leaf, dev_item, 0);
1224         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1225         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1226         btrfs_set_device_start_offset(leaf, dev_item, 0);
1227
1228         ptr = (unsigned long)btrfs_device_uuid(dev_item);
1229         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1230         ptr = (unsigned long)btrfs_device_fsid(dev_item);
1231         write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1232         btrfs_mark_buffer_dirty(leaf);
1233
1234         ret = 0;
1235 out:
1236         btrfs_free_path(path);
1237         return ret;
1238 }
1239
1240 static int btrfs_rm_dev_item(struct btrfs_root *root,
1241                              struct btrfs_device *device)
1242 {
1243         int ret;
1244         struct btrfs_path *path;
1245         struct btrfs_key key;
1246         struct btrfs_trans_handle *trans;
1247
1248         root = root->fs_info->chunk_root;
1249
1250         path = btrfs_alloc_path();
1251         if (!path)
1252                 return -ENOMEM;
1253
1254         trans = btrfs_start_transaction(root, 0);
1255         if (IS_ERR(trans)) {
1256                 btrfs_free_path(path);
1257                 return PTR_ERR(trans);
1258         }
1259         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1260         key.type = BTRFS_DEV_ITEM_KEY;
1261         key.offset = device->devid;
1262         lock_chunks(root);
1263
1264         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1265         if (ret < 0)
1266                 goto out;
1267
1268         if (ret > 0) {
1269                 ret = -ENOENT;
1270                 goto out;
1271         }
1272
1273         ret = btrfs_del_item(trans, root, path);
1274         if (ret)
1275                 goto out;
1276 out:
1277         btrfs_free_path(path);
1278         unlock_chunks(root);
1279         btrfs_commit_transaction(trans, root);
1280         return ret;
1281 }
1282
1283 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1284 {
1285         struct btrfs_device *device;
1286         struct btrfs_device *next_device;
1287         struct block_device *bdev;
1288         struct buffer_head *bh = NULL;
1289         struct btrfs_super_block *disk_super;
1290         struct btrfs_fs_devices *cur_devices;
1291         u64 all_avail;
1292         u64 devid;
1293         u64 num_devices;
1294         u8 *dev_uuid;
1295         int ret = 0;
1296         bool clear_super = false;
1297
1298         mutex_lock(&uuid_mutex);
1299
1300         all_avail = root->fs_info->avail_data_alloc_bits |
1301                 root->fs_info->avail_system_alloc_bits |
1302                 root->fs_info->avail_metadata_alloc_bits;
1303
1304         if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
1305             root->fs_info->fs_devices->num_devices <= 4) {
1306                 printk(KERN_ERR "btrfs: unable to go below four devices "
1307                        "on raid10\n");
1308                 ret = -EINVAL;
1309                 goto out;
1310         }
1311
1312         if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
1313             root->fs_info->fs_devices->num_devices <= 2) {
1314                 printk(KERN_ERR "btrfs: unable to go below two "
1315                        "devices on raid1\n");
1316                 ret = -EINVAL;
1317                 goto out;
1318         }
1319
1320         if (strcmp(device_path, "missing") == 0) {
1321                 struct list_head *devices;
1322                 struct btrfs_device *tmp;
1323
1324                 device = NULL;
1325                 devices = &root->fs_info->fs_devices->devices;
1326                 /*
1327                  * It is safe to read the devices since the volume_mutex
1328                  * is held.
1329                  */
1330                 list_for_each_entry(tmp, devices, dev_list) {
1331                         if (tmp->in_fs_metadata && !tmp->bdev) {
1332                                 device = tmp;
1333                                 break;
1334                         }
1335                 }
1336                 bdev = NULL;
1337                 bh = NULL;
1338                 disk_super = NULL;
1339                 if (!device) {
1340                         printk(KERN_ERR "btrfs: no missing devices found to "
1341                                "remove\n");
1342                         goto out;
1343                 }
1344         } else {
1345                 bdev = blkdev_get_by_path(device_path, FMODE_READ | FMODE_EXCL,
1346                                           root->fs_info->bdev_holder);
1347                 if (IS_ERR(bdev)) {
1348                         ret = PTR_ERR(bdev);
1349                         goto out;
1350                 }
1351
1352                 set_blocksize(bdev, 4096);
1353                 bh = btrfs_read_dev_super(bdev);
1354                 if (!bh) {
1355                         ret = -EINVAL;
1356                         goto error_close;
1357                 }
1358                 disk_super = (struct btrfs_super_block *)bh->b_data;
1359                 devid = btrfs_stack_device_id(&disk_super->dev_item);
1360                 dev_uuid = disk_super->dev_item.uuid;
1361                 device = btrfs_find_device(root, devid, dev_uuid,
1362                                            disk_super->fsid);
1363                 if (!device) {
1364                         ret = -ENOENT;
1365                         goto error_brelse;
1366                 }
1367         }
1368
1369         if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1370                 printk(KERN_ERR "btrfs: unable to remove the only writeable "
1371                        "device\n");
1372                 ret = -EINVAL;
1373                 goto error_brelse;
1374         }
1375
1376         if (device->writeable) {
1377                 lock_chunks(root);
1378                 list_del_init(&device->dev_alloc_list);
1379                 unlock_chunks(root);
1380                 root->fs_info->fs_devices->rw_devices--;
1381                 clear_super = true;
1382         }
1383
1384         ret = btrfs_shrink_device(device, 0);
1385         if (ret)
1386                 goto error_undo;
1387
1388         ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1389         if (ret)
1390                 goto error_undo;
1391
1392         spin_lock(&root->fs_info->free_chunk_lock);
1393         root->fs_info->free_chunk_space = device->total_bytes -
1394                 device->bytes_used;
1395         spin_unlock(&root->fs_info->free_chunk_lock);
1396
1397         device->in_fs_metadata = 0;
1398         btrfs_scrub_cancel_dev(root, device);
1399
1400         /*
1401          * the device list mutex makes sure that we don't change
1402          * the device list while someone else is writing out all
1403          * the device supers.
1404          */
1405
1406         cur_devices = device->fs_devices;
1407         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1408         list_del_rcu(&device->dev_list);
1409
1410         device->fs_devices->num_devices--;
1411
1412         if (device->missing)
1413                 root->fs_info->fs_devices->missing_devices--;
1414
1415         next_device = list_entry(root->fs_info->fs_devices->devices.next,
1416                                  struct btrfs_device, dev_list);
1417         if (device->bdev == root->fs_info->sb->s_bdev)
1418                 root->fs_info->sb->s_bdev = next_device->bdev;
1419         if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1420                 root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1421
1422         if (device->bdev)
1423                 device->fs_devices->open_devices--;
1424
1425         call_rcu(&device->rcu, free_device);
1426         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1427
1428         num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1429         btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1430
1431         if (cur_devices->open_devices == 0) {
1432                 struct btrfs_fs_devices *fs_devices;
1433                 fs_devices = root->fs_info->fs_devices;
1434                 while (fs_devices) {
1435                         if (fs_devices->seed == cur_devices)
1436                                 break;
1437                         fs_devices = fs_devices->seed;
1438                 }
1439                 fs_devices->seed = cur_devices->seed;
1440                 cur_devices->seed = NULL;
1441                 lock_chunks(root);
1442                 __btrfs_close_devices(cur_devices);
1443                 unlock_chunks(root);
1444                 free_fs_devices(cur_devices);
1445         }
1446
1447         /*
1448          * at this point, the device is zero sized.  We want to
1449          * remove it from the devices list and zero out the old super
1450          */
1451         if (clear_super) {
1452                 /* make sure this device isn't detected as part of
1453                  * the FS anymore
1454                  */
1455                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1456                 set_buffer_dirty(bh);
1457                 sync_dirty_buffer(bh);
1458         }
1459
1460         ret = 0;
1461
1462 error_brelse:
1463         brelse(bh);
1464 error_close:
1465         if (bdev)
1466                 blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1467 out:
1468         mutex_unlock(&uuid_mutex);
1469         return ret;
1470 error_undo:
1471         if (device->writeable) {
1472                 lock_chunks(root);
1473                 list_add(&device->dev_alloc_list,
1474                          &root->fs_info->fs_devices->alloc_list);
1475                 unlock_chunks(root);
1476                 root->fs_info->fs_devices->rw_devices++;
1477         }
1478         goto error_brelse;
1479 }
1480
1481 /*
1482  * does all the dirty work required for changing file system's UUID.
1483  */
1484 static int btrfs_prepare_sprout(struct btrfs_root *root)
1485 {
1486         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1487         struct btrfs_fs_devices *old_devices;
1488         struct btrfs_fs_devices *seed_devices;
1489         struct btrfs_super_block *disk_super = root->fs_info->super_copy;
1490         struct btrfs_device *device;
1491         u64 super_flags;
1492
1493         BUG_ON(!mutex_is_locked(&uuid_mutex));
1494         if (!fs_devices->seeding)
1495                 return -EINVAL;
1496
1497         seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1498         if (!seed_devices)
1499                 return -ENOMEM;
1500
1501         old_devices = clone_fs_devices(fs_devices);
1502         if (IS_ERR(old_devices)) {
1503                 kfree(seed_devices);
1504                 return PTR_ERR(old_devices);
1505         }
1506
1507         list_add(&old_devices->list, &fs_uuids);
1508
1509         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1510         seed_devices->opened = 1;
1511         INIT_LIST_HEAD(&seed_devices->devices);
1512         INIT_LIST_HEAD(&seed_devices->alloc_list);
1513         mutex_init(&seed_devices->device_list_mutex);
1514
1515         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1516         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1517                               synchronize_rcu);
1518         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1519
1520         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1521         list_for_each_entry(device, &seed_devices->devices, dev_list) {
1522                 device->fs_devices = seed_devices;
1523         }
1524
1525         fs_devices->seeding = 0;
1526         fs_devices->num_devices = 0;
1527         fs_devices->open_devices = 0;
1528         fs_devices->seed = seed_devices;
1529
1530         generate_random_uuid(fs_devices->fsid);
1531         memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1532         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1533         super_flags = btrfs_super_flags(disk_super) &
1534                       ~BTRFS_SUPER_FLAG_SEEDING;
1535         btrfs_set_super_flags(disk_super, super_flags);
1536
1537         return 0;
1538 }
1539
1540 /*
1541  * strore the expected generation for seed devices in device items.
1542  */
1543 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1544                                struct btrfs_root *root)
1545 {
1546         struct btrfs_path *path;
1547         struct extent_buffer *leaf;
1548         struct btrfs_dev_item *dev_item;
1549         struct btrfs_device *device;
1550         struct btrfs_key key;
1551         u8 fs_uuid[BTRFS_UUID_SIZE];
1552         u8 dev_uuid[BTRFS_UUID_SIZE];
1553         u64 devid;
1554         int ret;
1555
1556         path = btrfs_alloc_path();
1557         if (!path)
1558                 return -ENOMEM;
1559
1560         root = root->fs_info->chunk_root;
1561         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1562         key.offset = 0;
1563         key.type = BTRFS_DEV_ITEM_KEY;
1564
1565         while (1) {
1566                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1567                 if (ret < 0)
1568                         goto error;
1569
1570                 leaf = path->nodes[0];
1571 next_slot:
1572                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1573                         ret = btrfs_next_leaf(root, path);
1574                         if (ret > 0)
1575                                 break;
1576                         if (ret < 0)
1577                                 goto error;
1578                         leaf = path->nodes[0];
1579                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1580                         btrfs_release_path(path);
1581                         continue;
1582                 }
1583
1584                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1585                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1586                     key.type != BTRFS_DEV_ITEM_KEY)
1587                         break;
1588
1589                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
1590                                           struct btrfs_dev_item);
1591                 devid = btrfs_device_id(leaf, dev_item);
1592                 read_extent_buffer(leaf, dev_uuid,
1593                                    (unsigned long)btrfs_device_uuid(dev_item),
1594                                    BTRFS_UUID_SIZE);
1595                 read_extent_buffer(leaf, fs_uuid,
1596                                    (unsigned long)btrfs_device_fsid(dev_item),
1597                                    BTRFS_UUID_SIZE);
1598                 device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1599                 BUG_ON(!device);
1600
1601                 if (device->fs_devices->seeding) {
1602                         btrfs_set_device_generation(leaf, dev_item,
1603                                                     device->generation);
1604                         btrfs_mark_buffer_dirty(leaf);
1605                 }
1606
1607                 path->slots[0]++;
1608                 goto next_slot;
1609         }
1610         ret = 0;
1611 error:
1612         btrfs_free_path(path);
1613         return ret;
1614 }
1615
1616 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1617 {
1618         struct request_queue *q;
1619         struct btrfs_trans_handle *trans;
1620         struct btrfs_device *device;
1621         struct block_device *bdev;
1622         struct list_head *devices;
1623         struct super_block *sb = root->fs_info->sb;
1624         u64 total_bytes;
1625         int seeding_dev = 0;
1626         int ret = 0;
1627
1628         if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1629                 return -EINVAL;
1630
1631         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
1632                                   root->fs_info->bdev_holder);
1633         if (IS_ERR(bdev))
1634                 return PTR_ERR(bdev);
1635
1636         if (root->fs_info->fs_devices->seeding) {
1637                 seeding_dev = 1;
1638                 down_write(&sb->s_umount);
1639                 mutex_lock(&uuid_mutex);
1640         }
1641
1642         filemap_write_and_wait(bdev->bd_inode->i_mapping);
1643
1644         devices = &root->fs_info->fs_devices->devices;
1645         /*
1646          * we have the volume lock, so we don't need the extra
1647          * device list mutex while reading the list here.
1648          */
1649         list_for_each_entry(device, devices, dev_list) {
1650                 if (device->bdev == bdev) {
1651                         ret = -EEXIST;
1652                         goto error;
1653                 }
1654         }
1655
1656         device = kzalloc(sizeof(*device), GFP_NOFS);
1657         if (!device) {
1658                 /* we can safely leave the fs_devices entry around */
1659                 ret = -ENOMEM;
1660                 goto error;
1661         }
1662
1663         device->name = kstrdup(device_path, GFP_NOFS);
1664         if (!device->name) {
1665                 kfree(device);
1666                 ret = -ENOMEM;
1667                 goto error;
1668         }
1669
1670         ret = find_next_devid(root, &device->devid);
1671         if (ret) {
1672                 kfree(device->name);
1673                 kfree(device);
1674                 goto error;
1675         }
1676
1677         trans = btrfs_start_transaction(root, 0);
1678         if (IS_ERR(trans)) {
1679                 kfree(device->name);
1680                 kfree(device);
1681                 ret = PTR_ERR(trans);
1682                 goto error;
1683         }
1684
1685         lock_chunks(root);
1686
1687         q = bdev_get_queue(bdev);
1688         if (blk_queue_discard(q))
1689                 device->can_discard = 1;
1690         device->writeable = 1;
1691         device->work.func = pending_bios_fn;
1692         generate_random_uuid(device->uuid);
1693         spin_lock_init(&device->io_lock);
1694         device->generation = trans->transid;
1695         device->io_width = root->sectorsize;
1696         device->io_align = root->sectorsize;
1697         device->sector_size = root->sectorsize;
1698         device->total_bytes = i_size_read(bdev->bd_inode);
1699         device->disk_total_bytes = device->total_bytes;
1700         device->dev_root = root->fs_info->dev_root;
1701         device->bdev = bdev;
1702         device->in_fs_metadata = 1;
1703         device->mode = FMODE_EXCL;
1704         set_blocksize(device->bdev, 4096);
1705
1706         if (seeding_dev) {
1707                 sb->s_flags &= ~MS_RDONLY;
1708                 ret = btrfs_prepare_sprout(root);
1709                 BUG_ON(ret);
1710         }
1711
1712         device->fs_devices = root->fs_info->fs_devices;
1713
1714         /*
1715          * we don't want write_supers to jump in here with our device
1716          * half setup
1717          */
1718         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1719         list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
1720         list_add(&device->dev_alloc_list,
1721                  &root->fs_info->fs_devices->alloc_list);
1722         root->fs_info->fs_devices->num_devices++;
1723         root->fs_info->fs_devices->open_devices++;
1724         root->fs_info->fs_devices->rw_devices++;
1725         if (device->can_discard)
1726                 root->fs_info->fs_devices->num_can_discard++;
1727         root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
1728
1729         spin_lock(&root->fs_info->free_chunk_lock);
1730         root->fs_info->free_chunk_space += device->total_bytes;
1731         spin_unlock(&root->fs_info->free_chunk_lock);
1732
1733         if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1734                 root->fs_info->fs_devices->rotating = 1;
1735
1736         total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
1737         btrfs_set_super_total_bytes(root->fs_info->super_copy,
1738                                     total_bytes + device->total_bytes);
1739
1740         total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
1741         btrfs_set_super_num_devices(root->fs_info->super_copy,
1742                                     total_bytes + 1);
1743         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1744
1745         if (seeding_dev) {
1746                 ret = init_first_rw_device(trans, root, device);
1747                 BUG_ON(ret);
1748                 ret = btrfs_finish_sprout(trans, root);
1749                 BUG_ON(ret);
1750         } else {
1751                 ret = btrfs_add_device(trans, root, device);
1752         }
1753
1754         /*
1755          * we've got more storage, clear any full flags on the space
1756          * infos
1757          */
1758         btrfs_clear_space_info_full(root->fs_info);
1759
1760         unlock_chunks(root);
1761         btrfs_commit_transaction(trans, root);
1762
1763         if (seeding_dev) {
1764                 mutex_unlock(&uuid_mutex);
1765                 up_write(&sb->s_umount);
1766
1767                 ret = btrfs_relocate_sys_chunks(root);
1768                 BUG_ON(ret);
1769         }
1770
1771         return ret;
1772 error:
1773         blkdev_put(bdev, FMODE_EXCL);
1774         if (seeding_dev) {
1775                 mutex_unlock(&uuid_mutex);
1776                 up_write(&sb->s_umount);
1777         }
1778         return ret;
1779 }
1780
1781 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1782                                         struct btrfs_device *device)
1783 {
1784         int ret;
1785         struct btrfs_path *path;
1786         struct btrfs_root *root;
1787         struct btrfs_dev_item *dev_item;
1788         struct extent_buffer *leaf;
1789         struct btrfs_key key;
1790
1791         root = device->dev_root->fs_info->chunk_root;
1792
1793         path = btrfs_alloc_path();
1794         if (!path)
1795                 return -ENOMEM;
1796
1797         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1798         key.type = BTRFS_DEV_ITEM_KEY;
1799         key.offset = device->devid;
1800
1801         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1802         if (ret < 0)
1803                 goto out;
1804
1805         if (ret > 0) {
1806                 ret = -ENOENT;
1807                 goto out;
1808         }
1809
1810         leaf = path->nodes[0];
1811         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1812
1813         btrfs_set_device_id(leaf, dev_item, device->devid);
1814         btrfs_set_device_type(leaf, dev_item, device->type);
1815         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1816         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1817         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1818         btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
1819         btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1820         btrfs_mark_buffer_dirty(leaf);
1821
1822 out:
1823         btrfs_free_path(path);
1824         return ret;
1825 }
1826
1827 static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
1828                       struct btrfs_device *device, u64 new_size)
1829 {
1830         struct btrfs_super_block *super_copy =
1831                 device->dev_root->fs_info->super_copy;
1832         u64 old_total = btrfs_super_total_bytes(super_copy);
1833         u64 diff = new_size - device->total_bytes;
1834
1835         if (!device->writeable)
1836                 return -EACCES;
1837         if (new_size <= device->total_bytes)
1838                 return -EINVAL;
1839
1840         btrfs_set_super_total_bytes(super_copy, old_total + diff);
1841         device->fs_devices->total_rw_bytes += diff;
1842
1843         device->total_bytes = new_size;
1844         device->disk_total_bytes = new_size;
1845         btrfs_clear_space_info_full(device->dev_root->fs_info);
1846
1847         return btrfs_update_device(trans, device);
1848 }
1849
1850 int btrfs_grow_device(struct btrfs_trans_handle *trans,
1851                       struct btrfs_device *device, u64 new_size)
1852 {
1853         int ret;
1854         lock_chunks(device->dev_root);
1855         ret = __btrfs_grow_device(trans, device, new_size);
1856         unlock_chunks(device->dev_root);
1857         return ret;
1858 }
1859
1860 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1861                             struct btrfs_root *root,
1862                             u64 chunk_tree, u64 chunk_objectid,
1863                             u64 chunk_offset)
1864 {
1865         int ret;
1866         struct btrfs_path *path;
1867         struct btrfs_key key;
1868
1869         root = root->fs_info->chunk_root;
1870         path = btrfs_alloc_path();
1871         if (!path)
1872                 return -ENOMEM;
1873
1874         key.objectid = chunk_objectid;
1875         key.offset = chunk_offset;
1876         key.type = BTRFS_CHUNK_ITEM_KEY;
1877
1878         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1879         BUG_ON(ret);
1880
1881         ret = btrfs_del_item(trans, root, path);
1882
1883         btrfs_free_path(path);
1884         return ret;
1885 }
1886
1887 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
1888                         chunk_offset)
1889 {
1890         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
1891         struct btrfs_disk_key *disk_key;
1892         struct btrfs_chunk *chunk;
1893         u8 *ptr;
1894         int ret = 0;
1895         u32 num_stripes;
1896         u32 array_size;
1897         u32 len = 0;
1898         u32 cur;
1899         struct btrfs_key key;
1900
1901         array_size = btrfs_super_sys_array_size(super_copy);
1902
1903         ptr = super_copy->sys_chunk_array;
1904         cur = 0;
1905
1906         while (cur < array_size) {
1907                 disk_key = (struct btrfs_disk_key *)ptr;
1908                 btrfs_disk_key_to_cpu(&key, disk_key);
1909
1910                 len = sizeof(*disk_key);
1911
1912                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1913                         chunk = (struct btrfs_chunk *)(ptr + len);
1914                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1915                         len += btrfs_chunk_item_size(num_stripes);
1916                 } else {
1917                         ret = -EIO;
1918                         break;
1919                 }
1920                 if (key.objectid == chunk_objectid &&
1921                     key.offset == chunk_offset) {
1922                         memmove(ptr, ptr + len, array_size - (cur + len));
1923                         array_size -= len;
1924                         btrfs_set_super_sys_array_size(super_copy, array_size);
1925                 } else {
1926                         ptr += len;
1927                         cur += len;
1928                 }
1929         }
1930         return ret;
1931 }
1932
1933 static int btrfs_relocate_chunk(struct btrfs_root *root,
1934                          u64 chunk_tree, u64 chunk_objectid,
1935                          u64 chunk_offset)
1936 {
1937         struct extent_map_tree *em_tree;
1938         struct btrfs_root *extent_root;
1939         struct btrfs_trans_handle *trans;
1940         struct extent_map *em;
1941         struct map_lookup *map;
1942         int ret;
1943         int i;
1944
1945         root = root->fs_info->chunk_root;
1946         extent_root = root->fs_info->extent_root;
1947         em_tree = &root->fs_info->mapping_tree.map_tree;
1948
1949         ret = btrfs_can_relocate(extent_root, chunk_offset);
1950         if (ret)
1951                 return -ENOSPC;
1952
1953         /* step one, relocate all the extents inside this chunk */
1954         ret = btrfs_relocate_block_group(extent_root, chunk_offset);
1955         if (ret)
1956                 return ret;
1957
1958         trans = btrfs_start_transaction(root, 0);
1959         BUG_ON(IS_ERR(trans));
1960
1961         lock_chunks(root);
1962
1963         /*
1964          * step two, delete the device extents and the
1965          * chunk tree entries
1966          */
1967         read_lock(&em_tree->lock);
1968         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1969         read_unlock(&em_tree->lock);
1970
1971         BUG_ON(!em || em->start > chunk_offset ||
1972                em->start + em->len < chunk_offset);
1973         map = (struct map_lookup *)em->bdev;
1974
1975         for (i = 0; i < map->num_stripes; i++) {
1976                 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
1977                                             map->stripes[i].physical);
1978                 BUG_ON(ret);
1979
1980                 if (map->stripes[i].dev) {
1981                         ret = btrfs_update_device(trans, map->stripes[i].dev);
1982                         BUG_ON(ret);
1983                 }
1984         }
1985         ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
1986                                chunk_offset);
1987
1988         BUG_ON(ret);
1989
1990         trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
1991
1992         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
1993                 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
1994                 BUG_ON(ret);
1995         }
1996
1997         ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
1998         BUG_ON(ret);
1999
2000         write_lock(&em_tree->lock);
2001         remove_extent_mapping(em_tree, em);
2002         write_unlock(&em_tree->lock);
2003
2004         kfree(map);
2005         em->bdev = NULL;
2006
2007         /* once for the tree */
2008         free_extent_map(em);
2009         /* once for us */
2010         free_extent_map(em);
2011
2012         unlock_chunks(root);
2013         btrfs_end_transaction(trans, root);
2014         return 0;
2015 }
2016
2017 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2018 {
2019         struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2020         struct btrfs_path *path;
2021         struct extent_buffer *leaf;
2022         struct btrfs_chunk *chunk;
2023         struct btrfs_key key;
2024         struct btrfs_key found_key;
2025         u64 chunk_tree = chunk_root->root_key.objectid;
2026         u64 chunk_type;
2027         bool retried = false;
2028         int failed = 0;
2029         int ret;
2030
2031         path = btrfs_alloc_path();
2032         if (!path)
2033                 return -ENOMEM;
2034
2035 again:
2036         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2037         key.offset = (u64)-1;
2038         key.type = BTRFS_CHUNK_ITEM_KEY;
2039
2040         while (1) {
2041                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2042                 if (ret < 0)
2043                         goto error;
2044                 BUG_ON(ret == 0);
2045
2046                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2047                                           key.type);
2048                 if (ret < 0)
2049                         goto error;
2050                 if (ret > 0)
2051                         break;
2052
2053                 leaf = path->nodes[0];
2054                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2055
2056                 chunk = btrfs_item_ptr(leaf, path->slots[0],
2057                                        struct btrfs_chunk);
2058                 chunk_type = btrfs_chunk_type(leaf, chunk);
2059                 btrfs_release_path(path);
2060
2061                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2062                         ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2063                                                    found_key.objectid,
2064                                                    found_key.offset);
2065                         if (ret == -ENOSPC)
2066                                 failed++;
2067                         else if (ret)
2068                                 BUG();
2069                 }
2070
2071                 if (found_key.offset == 0)
2072                         break;
2073                 key.offset = found_key.offset - 1;
2074         }
2075         ret = 0;
2076         if (failed && !retried) {
2077                 failed = 0;
2078                 retried = true;
2079                 goto again;
2080         } else if (failed && retried) {
2081                 WARN_ON(1);
2082                 ret = -ENOSPC;
2083         }
2084 error:
2085         btrfs_free_path(path);
2086         return ret;
2087 }
2088
2089 static int insert_balance_item(struct btrfs_root *root,
2090                                struct btrfs_balance_control *bctl)
2091 {
2092         struct btrfs_trans_handle *trans;
2093         struct btrfs_balance_item *item;
2094         struct btrfs_disk_balance_args disk_bargs;
2095         struct btrfs_path *path;
2096         struct extent_buffer *leaf;
2097         struct btrfs_key key;
2098         int ret, err;
2099
2100         path = btrfs_alloc_path();
2101         if (!path)
2102                 return -ENOMEM;
2103
2104         trans = btrfs_start_transaction(root, 0);
2105         if (IS_ERR(trans)) {
2106                 btrfs_free_path(path);
2107                 return PTR_ERR(trans);
2108         }
2109
2110         key.objectid = BTRFS_BALANCE_OBJECTID;
2111         key.type = BTRFS_BALANCE_ITEM_KEY;
2112         key.offset = 0;
2113
2114         ret = btrfs_insert_empty_item(trans, root, path, &key,
2115                                       sizeof(*item));
2116         if (ret)
2117                 goto out;
2118
2119         leaf = path->nodes[0];
2120         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2121
2122         memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2123
2124         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2125         btrfs_set_balance_data(leaf, item, &disk_bargs);
2126         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2127         btrfs_set_balance_meta(leaf, item, &disk_bargs);
2128         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2129         btrfs_set_balance_sys(leaf, item, &disk_bargs);
2130
2131         btrfs_set_balance_flags(leaf, item, bctl->flags);
2132
2133         btrfs_mark_buffer_dirty(leaf);
2134 out:
2135         btrfs_free_path(path);
2136         err = btrfs_commit_transaction(trans, root);
2137         if (err && !ret)
2138                 ret = err;
2139         return ret;
2140 }
2141
2142 static int del_balance_item(struct btrfs_root *root)
2143 {
2144         struct btrfs_trans_handle *trans;
2145         struct btrfs_path *path;
2146         struct btrfs_key key;
2147         int ret, err;
2148
2149         path = btrfs_alloc_path();
2150         if (!path)
2151                 return -ENOMEM;
2152
2153         trans = btrfs_start_transaction(root, 0);
2154         if (IS_ERR(trans)) {
2155                 btrfs_free_path(path);
2156                 return PTR_ERR(trans);
2157         }
2158
2159         key.objectid = BTRFS_BALANCE_OBJECTID;
2160         key.type = BTRFS_BALANCE_ITEM_KEY;
2161         key.offset = 0;
2162
2163         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2164         if (ret < 0)
2165                 goto out;
2166         if (ret > 0) {
2167                 ret = -ENOENT;
2168                 goto out;
2169         }
2170
2171         ret = btrfs_del_item(trans, root, path);
2172 out:
2173         btrfs_free_path(path);
2174         err = btrfs_commit_transaction(trans, root);
2175         if (err && !ret)
2176                 ret = err;
2177         return ret;
2178 }
2179
2180 /*
2181  * This is a heuristic used to reduce the number of chunks balanced on
2182  * resume after balance was interrupted.
2183  */
2184 static void update_balance_args(struct btrfs_balance_control *bctl)
2185 {
2186         /*
2187          * Turn on soft mode for chunk types that were being converted.
2188          */
2189         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2190                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2191         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2192                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2193         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2194                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2195
2196         /*
2197          * Turn on usage filter if is not already used.  The idea is
2198          * that chunks that we have already balanced should be
2199          * reasonably full.  Don't do it for chunks that are being
2200          * converted - that will keep us from relocating unconverted
2201          * (albeit full) chunks.
2202          */
2203         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2204             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2205                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2206                 bctl->data.usage = 90;
2207         }
2208         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2209             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2210                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2211                 bctl->sys.usage = 90;
2212         }
2213         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2214             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2215                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2216                 bctl->meta.usage = 90;
2217         }
2218 }
2219
2220 /*
2221  * Should be called with both balance and volume mutexes held to
2222  * serialize other volume operations (add_dev/rm_dev/resize) with
2223  * restriper.  Same goes for unset_balance_control.
2224  */
2225 static void set_balance_control(struct btrfs_balance_control *bctl)
2226 {
2227         struct btrfs_fs_info *fs_info = bctl->fs_info;
2228
2229         BUG_ON(fs_info->balance_ctl);
2230
2231         spin_lock(&fs_info->balance_lock);
2232         fs_info->balance_ctl = bctl;
2233         spin_unlock(&fs_info->balance_lock);
2234 }
2235
2236 static void unset_balance_control(struct btrfs_fs_info *fs_info)
2237 {
2238         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2239
2240         BUG_ON(!fs_info->balance_ctl);
2241
2242         spin_lock(&fs_info->balance_lock);
2243         fs_info->balance_ctl = NULL;
2244         spin_unlock(&fs_info->balance_lock);
2245
2246         kfree(bctl);
2247 }
2248
2249 /*
2250  * Balance filters.  Return 1 if chunk should be filtered out
2251  * (should not be balanced).
2252  */
2253 static int chunk_profiles_filter(u64 chunk_profile,
2254                                  struct btrfs_balance_args *bargs)
2255 {
2256         chunk_profile &= BTRFS_BLOCK_GROUP_PROFILE_MASK;
2257
2258         if (chunk_profile == 0)
2259                 chunk_profile = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
2260
2261         if (bargs->profiles & chunk_profile)
2262                 return 0;
2263
2264         return 1;
2265 }
2266
2267 static u64 div_factor_fine(u64 num, int factor)
2268 {
2269         if (factor <= 0)
2270                 return 0;
2271         if (factor >= 100)
2272                 return num;
2273
2274         num *= factor;
2275         do_div(num, 100);
2276         return num;
2277 }
2278
2279 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2280                               struct btrfs_balance_args *bargs)
2281 {
2282         struct btrfs_block_group_cache *cache;
2283         u64 chunk_used, user_thresh;
2284         int ret = 1;
2285
2286         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2287         chunk_used = btrfs_block_group_used(&cache->item);
2288
2289         user_thresh = div_factor_fine(cache->key.offset, bargs->usage);
2290         if (chunk_used < user_thresh)
2291                 ret = 0;
2292
2293         btrfs_put_block_group(cache);
2294         return ret;
2295 }
2296
2297 static int chunk_devid_filter(struct extent_buffer *leaf,
2298                               struct btrfs_chunk *chunk,
2299                               struct btrfs_balance_args *bargs)
2300 {
2301         struct btrfs_stripe *stripe;
2302         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2303         int i;
2304
2305         for (i = 0; i < num_stripes; i++) {
2306                 stripe = btrfs_stripe_nr(chunk, i);
2307                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2308                         return 0;
2309         }
2310
2311         return 1;
2312 }
2313
2314 /* [pstart, pend) */
2315 static int chunk_drange_filter(struct extent_buffer *leaf,
2316                                struct btrfs_chunk *chunk,
2317                                u64 chunk_offset,
2318                                struct btrfs_balance_args *bargs)
2319 {
2320         struct btrfs_stripe *stripe;
2321         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2322         u64 stripe_offset;
2323         u64 stripe_length;
2324         int factor;
2325         int i;
2326
2327         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2328                 return 0;
2329
2330         if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
2331              BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10))
2332                 factor = 2;
2333         else
2334                 factor = 1;
2335         factor = num_stripes / factor;
2336
2337         for (i = 0; i < num_stripes; i++) {
2338                 stripe = btrfs_stripe_nr(chunk, i);
2339                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2340                         continue;
2341
2342                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
2343                 stripe_length = btrfs_chunk_length(leaf, chunk);
2344                 do_div(stripe_length, factor);
2345
2346                 if (stripe_offset < bargs->pend &&
2347                     stripe_offset + stripe_length > bargs->pstart)
2348                         return 0;
2349         }
2350
2351         return 1;
2352 }
2353
2354 /* [vstart, vend) */
2355 static int chunk_vrange_filter(struct extent_buffer *leaf,
2356                                struct btrfs_chunk *chunk,
2357                                u64 chunk_offset,
2358                                struct btrfs_balance_args *bargs)
2359 {
2360         if (chunk_offset < bargs->vend &&
2361             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
2362                 /* at least part of the chunk is inside this vrange */
2363                 return 0;
2364
2365         return 1;
2366 }
2367
2368 static int chunk_soft_convert_filter(u64 chunk_profile,
2369                                      struct btrfs_balance_args *bargs)
2370 {
2371         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
2372                 return 0;
2373
2374         chunk_profile &= BTRFS_BLOCK_GROUP_PROFILE_MASK;
2375
2376         if (chunk_profile == 0)
2377                 chunk_profile = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
2378
2379         if (bargs->target & chunk_profile)
2380                 return 1;
2381
2382         return 0;
2383 }
2384
2385 static int should_balance_chunk(struct btrfs_root *root,
2386                                 struct extent_buffer *leaf,
2387                                 struct btrfs_chunk *chunk, u64 chunk_offset)
2388 {
2389         struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
2390         struct btrfs_balance_args *bargs = NULL;
2391         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
2392
2393         /* type filter */
2394         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
2395               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
2396                 return 0;
2397         }
2398
2399         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
2400                 bargs = &bctl->data;
2401         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
2402                 bargs = &bctl->sys;
2403         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
2404                 bargs = &bctl->meta;
2405
2406         /* profiles filter */
2407         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
2408             chunk_profiles_filter(chunk_type, bargs)) {
2409                 return 0;
2410         }
2411
2412         /* usage filter */
2413         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
2414             chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
2415                 return 0;
2416         }
2417
2418         /* devid filter */
2419         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
2420             chunk_devid_filter(leaf, chunk, bargs)) {
2421                 return 0;
2422         }
2423
2424         /* drange filter, makes sense only with devid filter */
2425         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
2426             chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
2427                 return 0;
2428         }
2429
2430         /* vrange filter */
2431         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
2432             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
2433                 return 0;
2434         }
2435
2436         /* soft profile changing mode */
2437         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
2438             chunk_soft_convert_filter(chunk_type, bargs)) {
2439                 return 0;
2440         }
2441
2442         return 1;
2443 }
2444
2445 static u64 div_factor(u64 num, int factor)
2446 {
2447         if (factor == 10)
2448                 return num;
2449         num *= factor;
2450         do_div(num, 10);
2451         return num;
2452 }
2453
2454 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
2455 {
2456         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2457         struct btrfs_root *chunk_root = fs_info->chunk_root;
2458         struct btrfs_root *dev_root = fs_info->dev_root;
2459         struct list_head *devices;
2460         struct btrfs_device *device;
2461         u64 old_size;
2462         u64 size_to_free;
2463         struct btrfs_chunk *chunk;
2464         struct btrfs_path *path;
2465         struct btrfs_key key;
2466         struct btrfs_key found_key;
2467         struct btrfs_trans_handle *trans;
2468         struct extent_buffer *leaf;
2469         int slot;
2470         int ret;
2471         int enospc_errors = 0;
2472         bool counting = true;
2473
2474         /* step one make some room on all the devices */
2475         devices = &fs_info->fs_devices->devices;
2476         list_for_each_entry(device, devices, dev_list) {
2477                 old_size = device->total_bytes;
2478                 size_to_free = div_factor(old_size, 1);
2479                 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2480                 if (!device->writeable ||
2481                     device->total_bytes - device->bytes_used > size_to_free)
2482                         continue;
2483
2484                 ret = btrfs_shrink_device(device, old_size - size_to_free);
2485                 if (ret == -ENOSPC)
2486                         break;
2487                 BUG_ON(ret);
2488
2489                 trans = btrfs_start_transaction(dev_root, 0);
2490                 BUG_ON(IS_ERR(trans));
2491
2492                 ret = btrfs_grow_device(trans, device, old_size);
2493                 BUG_ON(ret);
2494
2495                 btrfs_end_transaction(trans, dev_root);
2496         }
2497
2498         /* step two, relocate all the chunks */
2499         path = btrfs_alloc_path();
2500         if (!path) {
2501                 ret = -ENOMEM;
2502                 goto error;
2503         }
2504
2505         /* zero out stat counters */
2506         spin_lock(&fs_info->balance_lock);
2507         memset(&bctl->stat, 0, sizeof(bctl->stat));
2508         spin_unlock(&fs_info->balance_lock);
2509 again:
2510         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2511         key.offset = (u64)-1;
2512         key.type = BTRFS_CHUNK_ITEM_KEY;
2513
2514         while (1) {
2515                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
2516                     atomic_read(&fs_info->balance_cancel_req)) {
2517                         ret = -ECANCELED;
2518                         goto error;
2519                 }
2520
2521                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2522                 if (ret < 0)
2523                         goto error;
2524
2525                 /*
2526                  * this shouldn't happen, it means the last relocate
2527                  * failed
2528                  */
2529                 if (ret == 0)
2530                         BUG(); /* FIXME break ? */
2531
2532                 ret = btrfs_previous_item(chunk_root, path, 0,
2533                                           BTRFS_CHUNK_ITEM_KEY);
2534                 if (ret) {
2535                         ret = 0;
2536                         break;
2537                 }
2538
2539                 leaf = path->nodes[0];
2540                 slot = path->slots[0];
2541                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2542
2543                 if (found_key.objectid != key.objectid)
2544                         break;
2545
2546                 /* chunk zero is special */
2547                 if (found_key.offset == 0)
2548                         break;
2549
2550                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
2551
2552                 if (!counting) {
2553                         spin_lock(&fs_info->balance_lock);
2554                         bctl->stat.considered++;
2555                         spin_unlock(&fs_info->balance_lock);
2556                 }
2557
2558                 ret = should_balance_chunk(chunk_root, leaf, chunk,
2559                                            found_key.offset);
2560                 btrfs_release_path(path);
2561                 if (!ret)
2562                         goto loop;
2563
2564                 if (counting) {
2565                         spin_lock(&fs_info->balance_lock);
2566                         bctl->stat.expected++;
2567                         spin_unlock(&fs_info->balance_lock);
2568                         goto loop;
2569                 }
2570
2571                 ret = btrfs_relocate_chunk(chunk_root,
2572                                            chunk_root->root_key.objectid,
2573                                            found_key.objectid,
2574                                            found_key.offset);
2575                 if (ret && ret != -ENOSPC)
2576                         goto error;
2577                 if (ret == -ENOSPC) {
2578                         enospc_errors++;
2579                 } else {
2580                         spin_lock(&fs_info->balance_lock);
2581                         bctl->stat.completed++;
2582                         spin_unlock(&fs_info->balance_lock);
2583                 }
2584 loop:
2585                 key.offset = found_key.offset - 1;
2586         }
2587
2588         if (counting) {
2589                 btrfs_release_path(path);
2590                 counting = false;
2591                 goto again;
2592         }
2593 error:
2594         btrfs_free_path(path);
2595         if (enospc_errors) {
2596                 printk(KERN_INFO "btrfs: %d enospc errors during balance\n",
2597                        enospc_errors);
2598                 if (!ret)
2599                         ret = -ENOSPC;
2600         }
2601
2602         return ret;
2603 }
2604
2605 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
2606 {
2607         /* cancel requested || normal exit path */
2608         return atomic_read(&fs_info->balance_cancel_req) ||
2609                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
2610                  atomic_read(&fs_info->balance_cancel_req) == 0);
2611 }
2612
2613 static void __cancel_balance(struct btrfs_fs_info *fs_info)
2614 {
2615         int ret;
2616
2617         unset_balance_control(fs_info);
2618         ret = del_balance_item(fs_info->tree_root);
2619         BUG_ON(ret);
2620 }
2621
2622 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
2623                                struct btrfs_ioctl_balance_args *bargs);
2624
2625 /*
2626  * Should be called with both balance and volume mutexes held
2627  */
2628 int btrfs_balance(struct btrfs_balance_control *bctl,
2629                   struct btrfs_ioctl_balance_args *bargs)
2630 {
2631         struct btrfs_fs_info *fs_info = bctl->fs_info;
2632         u64 allowed;
2633         int ret;
2634
2635         if (btrfs_fs_closing(fs_info) ||
2636             atomic_read(&fs_info->balance_pause_req) ||
2637             atomic_read(&fs_info->balance_cancel_req)) {
2638                 ret = -EINVAL;
2639                 goto out;
2640         }
2641
2642         /*
2643          * In case of mixed groups both data and meta should be picked,
2644          * and identical options should be given for both of them.
2645          */
2646         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
2647         if ((allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2648             (bctl->flags & (BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA))) {
2649                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
2650                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
2651                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
2652                         printk(KERN_ERR "btrfs: with mixed groups data and "
2653                                "metadata balance options must be the same\n");
2654                         ret = -EINVAL;
2655                         goto out;
2656                 }
2657         }
2658
2659         /*
2660          * Profile changing sanity checks.  Skip them if a simple
2661          * balance is requested.
2662          */
2663         if (!((bctl->data.flags | bctl->sys.flags | bctl->meta.flags) &
2664               BTRFS_BALANCE_ARGS_CONVERT))
2665                 goto do_balance;
2666
2667         allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
2668         if (fs_info->fs_devices->num_devices == 1)
2669                 allowed |= BTRFS_BLOCK_GROUP_DUP;
2670         else if (fs_info->fs_devices->num_devices < 4)
2671                 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
2672         else
2673                 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
2674                                 BTRFS_BLOCK_GROUP_RAID10);
2675
2676         if (!profile_is_valid(bctl->data.target, 1) ||
2677             bctl->data.target & ~allowed) {
2678                 printk(KERN_ERR "btrfs: unable to start balance with target "
2679                        "data profile %llu\n",
2680                        (unsigned long long)bctl->data.target);
2681                 ret = -EINVAL;
2682                 goto out;
2683         }
2684         if (!profile_is_valid(bctl->meta.target, 1) ||
2685             bctl->meta.target & ~allowed) {
2686                 printk(KERN_ERR "btrfs: unable to start balance with target "
2687                        "metadata profile %llu\n",
2688                        (unsigned long long)bctl->meta.target);
2689                 ret = -EINVAL;
2690                 goto out;
2691         }
2692         if (!profile_is_valid(bctl->sys.target, 1) ||
2693             bctl->sys.target & ~allowed) {
2694                 printk(KERN_ERR "btrfs: unable to start balance with target "
2695                        "system profile %llu\n",
2696                        (unsigned long long)bctl->sys.target);
2697                 ret = -EINVAL;
2698                 goto out;
2699         }
2700
2701         if (bctl->data.target & BTRFS_BLOCK_GROUP_DUP) {
2702                 printk(KERN_ERR "btrfs: dup for data is not allowed\n");
2703                 ret = -EINVAL;
2704                 goto out;
2705         }
2706
2707         /* allow to reduce meta or sys integrity only if force set */
2708         allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
2709                         BTRFS_BLOCK_GROUP_RAID10;
2710         if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2711              (fs_info->avail_system_alloc_bits & allowed) &&
2712              !(bctl->sys.target & allowed)) ||
2713             ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
2714              (fs_info->avail_metadata_alloc_bits & allowed) &&
2715              !(bctl->meta.target & allowed))) {
2716                 if (bctl->flags & BTRFS_BALANCE_FORCE) {
2717                         printk(KERN_INFO "btrfs: force reducing metadata "
2718                                "integrity\n");
2719                 } else {
2720                         printk(KERN_ERR "btrfs: balance will reduce metadata "
2721                                "integrity, use force if you want this\n");
2722                         ret = -EINVAL;
2723                         goto out;
2724                 }
2725         }
2726
2727 do_balance:
2728         ret = insert_balance_item(fs_info->tree_root, bctl);
2729         if (ret && ret != -EEXIST)
2730                 goto out;
2731
2732         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
2733                 BUG_ON(ret == -EEXIST);
2734                 set_balance_control(bctl);
2735         } else {
2736                 BUG_ON(ret != -EEXIST);
2737                 spin_lock(&fs_info->balance_lock);
2738                 update_balance_args(bctl);
2739                 spin_unlock(&fs_info->balance_lock);
2740         }
2741
2742         atomic_inc(&fs_info->balance_running);
2743         mutex_unlock(&fs_info->balance_mutex);
2744
2745         ret = __btrfs_balance(fs_info);
2746
2747         mutex_lock(&fs_info->balance_mutex);
2748         atomic_dec(&fs_info->balance_running);
2749
2750         if (bargs) {
2751                 memset(bargs, 0, sizeof(*bargs));
2752                 update_ioctl_balance_args(fs_info, 0, bargs);
2753         }
2754
2755         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
2756             balance_need_close(fs_info)) {
2757                 __cancel_balance(fs_info);
2758         }
2759
2760         wake_up(&fs_info->balance_wait_q);
2761
2762         return ret;
2763 out:
2764         if (bctl->flags & BTRFS_BALANCE_RESUME)
2765                 __cancel_balance(fs_info);
2766         else
2767                 kfree(bctl);
2768         return ret;
2769 }
2770
2771 static int balance_kthread(void *data)
2772 {
2773         struct btrfs_balance_control *bctl =
2774                         (struct btrfs_balance_control *)data;
2775         struct btrfs_fs_info *fs_info = bctl->fs_info;
2776         int ret = 0;
2777
2778         mutex_lock(&fs_info->volume_mutex);
2779         mutex_lock(&fs_info->balance_mutex);
2780
2781         set_balance_control(bctl);
2782
2783         if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
2784                 printk(KERN_INFO "btrfs: force skipping balance\n");
2785         } else {
2786                 printk(KERN_INFO "btrfs: continuing balance\n");
2787                 ret = btrfs_balance(bctl, NULL);
2788         }
2789
2790         mutex_unlock(&fs_info->balance_mutex);
2791         mutex_unlock(&fs_info->volume_mutex);
2792         return ret;
2793 }
2794
2795 int btrfs_recover_balance(struct btrfs_root *tree_root)
2796 {
2797         struct task_struct *tsk;
2798         struct btrfs_balance_control *bctl;
2799         struct btrfs_balance_item *item;
2800         struct btrfs_disk_balance_args disk_bargs;
2801         struct btrfs_path *path;
2802         struct extent_buffer *leaf;
2803         struct btrfs_key key;
2804         int ret;
2805
2806         path = btrfs_alloc_path();
2807         if (!path)
2808                 return -ENOMEM;
2809
2810         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
2811         if (!bctl) {
2812                 ret = -ENOMEM;
2813                 goto out;
2814         }
2815
2816         key.objectid = BTRFS_BALANCE_OBJECTID;
2817         key.type = BTRFS_BALANCE_ITEM_KEY;
2818         key.offset = 0;
2819
2820         ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2821         if (ret < 0)
2822                 goto out_bctl;
2823         if (ret > 0) { /* ret = -ENOENT; */
2824                 ret = 0;
2825                 goto out_bctl;
2826         }
2827
2828         leaf = path->nodes[0];
2829         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2830
2831         bctl->fs_info = tree_root->fs_info;
2832         bctl->flags = btrfs_balance_flags(leaf, item) | BTRFS_BALANCE_RESUME;
2833
2834         btrfs_balance_data(leaf, item, &disk_bargs);
2835         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
2836         btrfs_balance_meta(leaf, item, &disk_bargs);
2837         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
2838         btrfs_balance_sys(leaf, item, &disk_bargs);
2839         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
2840
2841         tsk = kthread_run(balance_kthread, bctl, "btrfs-balance");
2842         if (IS_ERR(tsk))
2843                 ret = PTR_ERR(tsk);
2844         else
2845                 goto out;
2846
2847 out_bctl:
2848         kfree(bctl);
2849 out:
2850         btrfs_free_path(path);
2851         return ret;
2852 }
2853
2854 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
2855 {
2856         int ret = 0;
2857
2858         mutex_lock(&fs_info->balance_mutex);
2859         if (!fs_info->balance_ctl) {
2860                 mutex_unlock(&fs_info->balance_mutex);
2861                 return -ENOTCONN;
2862         }
2863
2864         if (atomic_read(&fs_info->balance_running)) {
2865                 atomic_inc(&fs_info->balance_pause_req);
2866                 mutex_unlock(&fs_info->balance_mutex);
2867
2868                 wait_event(fs_info->balance_wait_q,
2869                            atomic_read(&fs_info->balance_running) == 0);
2870
2871                 mutex_lock(&fs_info->balance_mutex);
2872                 /* we are good with balance_ctl ripped off from under us */
2873                 BUG_ON(atomic_read(&fs_info->balance_running));
2874                 atomic_dec(&fs_info->balance_pause_req);
2875         } else {
2876                 ret = -ENOTCONN;
2877         }
2878
2879         mutex_unlock(&fs_info->balance_mutex);
2880         return ret;
2881 }
2882
2883 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
2884 {
2885         mutex_lock(&fs_info->balance_mutex);
2886         if (!fs_info->balance_ctl) {
2887                 mutex_unlock(&fs_info->balance_mutex);
2888                 return -ENOTCONN;
2889         }
2890
2891         atomic_inc(&fs_info->balance_cancel_req);
2892         /*
2893          * if we are running just wait and return, balance item is
2894          * deleted in btrfs_balance in this case
2895          */
2896         if (atomic_read(&fs_info->balance_running)) {
2897                 mutex_unlock(&fs_info->balance_mutex);
2898                 wait_event(fs_info->balance_wait_q,
2899                            atomic_read(&fs_info->balance_running) == 0);
2900                 mutex_lock(&fs_info->balance_mutex);
2901         } else {
2902                 /* __cancel_balance needs volume_mutex */
2903                 mutex_unlock(&fs_info->balance_mutex);
2904                 mutex_lock(&fs_info->volume_mutex);
2905                 mutex_lock(&fs_info->balance_mutex);
2906
2907                 if (fs_info->balance_ctl)
2908                         __cancel_balance(fs_info);
2909
2910                 mutex_unlock(&fs_info->volume_mutex);
2911         }
2912
2913         BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
2914         atomic_dec(&fs_info->balance_cancel_req);
2915         mutex_unlock(&fs_info->balance_mutex);
2916         return 0;
2917 }
2918
2919 /*
2920  * shrinking a device means finding all of the device extents past
2921  * the new size, and then following the back refs to the chunks.
2922  * The chunk relocation code actually frees the device extent
2923  */
2924 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
2925 {
2926         struct btrfs_trans_handle *trans;
2927         struct btrfs_root *root = device->dev_root;
2928         struct btrfs_dev_extent *dev_extent = NULL;
2929         struct btrfs_path *path;
2930         u64 length;
2931         u64 chunk_tree;
2932         u64 chunk_objectid;
2933         u64 chunk_offset;
2934         int ret;
2935         int slot;
2936         int failed = 0;
2937         bool retried = false;
2938         struct extent_buffer *l;
2939         struct btrfs_key key;
2940         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2941         u64 old_total = btrfs_super_total_bytes(super_copy);
2942         u64 old_size = device->total_bytes;
2943         u64 diff = device->total_bytes - new_size;
2944
2945         if (new_size >= device->total_bytes)
2946                 return -EINVAL;
2947
2948         path = btrfs_alloc_path();
2949         if (!path)
2950                 return -ENOMEM;
2951
2952         path->reada = 2;
2953
2954         lock_chunks(root);
2955
2956         device->total_bytes = new_size;
2957         if (device->writeable) {
2958                 device->fs_devices->total_rw_bytes -= diff;
2959                 spin_lock(&root->fs_info->free_chunk_lock);
2960                 root->fs_info->free_chunk_space -= diff;
2961                 spin_unlock(&root->fs_info->free_chunk_lock);
2962         }
2963         unlock_chunks(root);
2964
2965 again:
2966         key.objectid = device->devid;
2967         key.offset = (u64)-1;
2968         key.type = BTRFS_DEV_EXTENT_KEY;
2969
2970         while (1) {
2971                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2972                 if (ret < 0)
2973                         goto done;
2974
2975                 ret = btrfs_previous_item(root, path, 0, key.type);
2976                 if (ret < 0)
2977                         goto done;
2978                 if (ret) {
2979                         ret = 0;
2980                         btrfs_release_path(path);
2981                         break;
2982                 }
2983
2984                 l = path->nodes[0];
2985                 slot = path->slots[0];
2986                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
2987
2988                 if (key.objectid != device->devid) {
2989                         btrfs_release_path(path);
2990                         break;
2991                 }
2992
2993                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2994                 length = btrfs_dev_extent_length(l, dev_extent);
2995
2996                 if (key.offset + length <= new_size) {
2997                         btrfs_release_path(path);
2998                         break;
2999                 }
3000
3001                 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3002                 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3003                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3004                 btrfs_release_path(path);
3005
3006                 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
3007                                            chunk_offset);
3008                 if (ret && ret != -ENOSPC)
3009                         goto done;
3010                 if (ret == -ENOSPC)
3011                         failed++;
3012                 key.offset -= 1;
3013         }
3014
3015         if (failed && !retried) {
3016                 failed = 0;
3017                 retried = true;
3018                 goto again;
3019         } else if (failed && retried) {
3020                 ret = -ENOSPC;
3021                 lock_chunks(root);
3022
3023                 device->total_bytes = old_size;
3024                 if (device->writeable)
3025                         device->fs_devices->total_rw_bytes += diff;
3026                 spin_lock(&root->fs_info->free_chunk_lock);
3027                 root->fs_info->free_chunk_space += diff;
3028                 spin_unlock(&root->fs_info->free_chunk_lock);
3029                 unlock_chunks(root);
3030                 goto done;
3031         }
3032
3033         /* Shrinking succeeded, else we would be at "done". */
3034         trans = btrfs_start_transaction(root, 0);
3035         if (IS_ERR(trans)) {
3036                 ret = PTR_ERR(trans);
3037                 goto done;
3038         }
3039
3040         lock_chunks(root);
3041
3042         device->disk_total_bytes = new_size;
3043         /* Now btrfs_update_device() will change the on-disk size. */
3044         ret = btrfs_update_device(trans, device);
3045         if (ret) {
3046                 unlock_chunks(root);
3047                 btrfs_end_transaction(trans, root);
3048                 goto done;
3049         }
3050         WARN_ON(diff > old_total);
3051         btrfs_set_super_total_bytes(super_copy, old_total - diff);
3052         unlock_chunks(root);
3053         btrfs_end_transaction(trans, root);
3054 done:
3055         btrfs_free_path(path);
3056         return ret;
3057 }
3058
3059 static int btrfs_add_system_chunk(struct btrfs_root *root,
3060                            struct btrfs_key *key,
3061                            struct btrfs_chunk *chunk, int item_size)
3062 {
3063         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3064         struct btrfs_disk_key disk_key;
3065         u32 array_size;
3066         u8 *ptr;
3067
3068         array_size = btrfs_super_sys_array_size(super_copy);
3069         if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
3070                 return -EFBIG;
3071
3072         ptr = super_copy->sys_chunk_array + array_size;
3073         btrfs_cpu_key_to_disk(&disk_key, key);
3074         memcpy(ptr, &disk_key, sizeof(disk_key));
3075         ptr += sizeof(disk_key);
3076         memcpy(ptr, chunk, item_size);
3077         item_size += sizeof(disk_key);
3078         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
3079         return 0;
3080 }
3081
3082 /*
3083  * sort the devices in descending order by max_avail, total_avail
3084  */
3085 static int btrfs_cmp_device_info(const void *a, const void *b)
3086 {
3087         const struct btrfs_device_info *di_a = a;
3088         const struct btrfs_device_info *di_b = b;
3089
3090         if (di_a->max_avail > di_b->max_avail)
3091                 return -1;
3092         if (di_a->max_avail < di_b->max_avail)
3093                 return 1;
3094         if (di_a->total_avail > di_b->total_avail)
3095                 return -1;
3096         if (di_a->total_avail < di_b->total_avail)
3097                 return 1;
3098         return 0;
3099 }
3100
3101 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
3102                                struct btrfs_root *extent_root,
3103                                struct map_lookup **map_ret,
3104                                u64 *num_bytes_out, u64 *stripe_size_out,
3105                                u64 start, u64 type)
3106 {
3107         struct btrfs_fs_info *info = extent_root->fs_info;
3108         struct btrfs_fs_devices *fs_devices = info->fs_devices;
3109         struct list_head *cur;
3110         struct map_lookup *map = NULL;
3111         struct extent_map_tree *em_tree;
3112         struct extent_map *em;
3113         struct btrfs_device_info *devices_info = NULL;
3114         u64 total_avail;
3115         int num_stripes;        /* total number of stripes to allocate */
3116         int sub_stripes;        /* sub_stripes info for map */
3117         int dev_stripes;        /* stripes per dev */
3118         int devs_max;           /* max devs to use */
3119         int devs_min;           /* min devs needed */
3120         int devs_increment;     /* ndevs has to be a multiple of this */
3121         int ncopies;            /* how many copies to data has */
3122         int ret;
3123         u64 max_stripe_size;
3124         u64 max_chunk_size;
3125         u64 stripe_size;
3126         u64 num_bytes;
3127         int ndevs;
3128         int i;
3129         int j;
3130
3131         if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
3132             (type & BTRFS_BLOCK_GROUP_DUP)) {
3133                 WARN_ON(1);
3134                 type &= ~BTRFS_BLOCK_GROUP_DUP;
3135         }
3136
3137         if (list_empty(&fs_devices->alloc_list))
3138                 return -ENOSPC;
3139
3140         sub_stripes = 1;
3141         dev_stripes = 1;
3142         devs_increment = 1;
3143         ncopies = 1;
3144         devs_max = 0;   /* 0 == as many as possible */
3145         devs_min = 1;
3146
3147         /*
3148          * define the properties of each RAID type.
3149          * FIXME: move this to a global table and use it in all RAID
3150          * calculation code
3151          */
3152         if (type & (BTRFS_BLOCK_GROUP_DUP)) {
3153                 dev_stripes = 2;
3154                 ncopies = 2;
3155                 devs_max = 1;
3156         } else if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
3157                 devs_min = 2;
3158         } else if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
3159                 devs_increment = 2;
3160                 ncopies = 2;
3161                 devs_max = 2;
3162                 devs_min = 2;
3163         } else if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
3164                 sub_stripes = 2;
3165                 devs_increment = 2;
3166                 ncopies = 2;
3167                 devs_min = 4;
3168         } else {
3169                 devs_max = 1;
3170         }
3171
3172         if (type & BTRFS_BLOCK_GROUP_DATA) {
3173                 max_stripe_size = 1024 * 1024 * 1024;
3174                 max_chunk_size = 10 * max_stripe_size;
3175         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
3176                 /* for larger filesystems, use larger metadata chunks */
3177                 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
3178                         max_stripe_size = 1024 * 1024 * 1024;
3179                 else
3180                         max_stripe_size = 256 * 1024 * 1024;
3181                 max_chunk_size = max_stripe_size;
3182         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
3183                 max_stripe_size = 32 * 1024 * 1024;
3184                 max_chunk_size = 2 * max_stripe_size;
3185         } else {
3186                 printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n",
3187                        type);
3188                 BUG_ON(1);
3189         }
3190
3191         /* we don't want a chunk larger than 10% of writeable space */
3192         max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
3193                              max_chunk_size);
3194
3195         devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
3196                                GFP_NOFS);
3197         if (!devices_info)
3198                 return -ENOMEM;
3199
3200         cur = fs_devices->alloc_list.next;
3201
3202         /*
3203          * in the first pass through the devices list, we gather information
3204          * about the available holes on each device.
3205          */
3206         ndevs = 0;
3207         while (cur != &fs_devices->alloc_list) {
3208                 struct btrfs_device *device;
3209                 u64 max_avail;
3210                 u64 dev_offset;
3211
3212                 device = list_entry(cur, struct btrfs_device, dev_alloc_list);
3213
3214                 cur = cur->next;
3215
3216                 if (!device->writeable) {
3217                         printk(KERN_ERR
3218                                "btrfs: read-only device in alloc_list\n");
3219                         WARN_ON(1);
3220                         continue;
3221                 }
3222
3223                 if (!device->in_fs_metadata)
3224                         continue;
3225
3226                 if (device->total_bytes > device->bytes_used)
3227                         total_avail = device->total_bytes - device->bytes_used;
3228                 else
3229                         total_avail = 0;
3230
3231                 /* If there is no space on this device, skip it. */
3232                 if (total_avail == 0)
3233                         continue;
3234
3235                 ret = find_free_dev_extent(device,
3236                                            max_stripe_size * dev_stripes,
3237                                            &dev_offset, &max_avail);
3238                 if (ret && ret != -ENOSPC)
3239                         goto error;
3240
3241                 if (ret == 0)
3242                         max_avail = max_stripe_size * dev_stripes;
3243
3244                 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
3245                         continue;
3246
3247                 devices_info[ndevs].dev_offset = dev_offset;
3248                 devices_info[ndevs].max_avail = max_avail;
3249                 devices_info[ndevs].total_avail = total_avail;
3250                 devices_info[ndevs].dev = device;
3251                 ++ndevs;
3252         }
3253
3254         /*
3255          * now sort the devices by hole size / available space
3256          */
3257         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
3258              btrfs_cmp_device_info, NULL);
3259
3260         /* round down to number of usable stripes */
3261         ndevs -= ndevs % devs_increment;
3262
3263         if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
3264                 ret = -ENOSPC;
3265                 goto error;
3266         }
3267
3268         if (devs_max && ndevs > devs_max)
3269                 ndevs = devs_max;
3270         /*
3271          * the primary goal is to maximize the number of stripes, so use as many
3272          * devices as possible, even if the stripes are not maximum sized.
3273          */
3274         stripe_size = devices_info[ndevs-1].max_avail;
3275         num_stripes = ndevs * dev_stripes;
3276
3277         if (stripe_size * num_stripes > max_chunk_size * ncopies) {
3278                 stripe_size = max_chunk_size * ncopies;
3279                 do_div(stripe_size, num_stripes);
3280         }
3281
3282         do_div(stripe_size, dev_stripes);
3283         do_div(stripe_size, BTRFS_STRIPE_LEN);
3284         stripe_size *= BTRFS_STRIPE_LEN;
3285
3286         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
3287         if (!map) {
3288                 ret = -ENOMEM;
3289                 goto error;
3290         }
3291         map->num_stripes = num_stripes;
3292
3293         for (i = 0; i < ndevs; ++i) {
3294                 for (j = 0; j < dev_stripes; ++j) {
3295                         int s = i * dev_stripes + j;
3296                         map->stripes[s].dev = devices_info[i].dev;
3297                         map->stripes[s].physical = devices_info[i].dev_offset +
3298                                                    j * stripe_size;
3299                 }
3300         }
3301         map->sector_size = extent_root->sectorsize;
3302         map->stripe_len = BTRFS_STRIPE_LEN;
3303         map->io_align = BTRFS_STRIPE_LEN;
3304         map->io_width = BTRFS_STRIPE_LEN;
3305         map->type = type;
3306         map->sub_stripes = sub_stripes;
3307
3308         *map_ret = map;
3309         num_bytes = stripe_size * (num_stripes / ncopies);
3310
3311         *stripe_size_out = stripe_size;
3312         *num_bytes_out = num_bytes;
3313
3314         trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
3315
3316         em = alloc_extent_map();
3317         if (!em) {
3318                 ret = -ENOMEM;
3319                 goto error;
3320         }
3321         em->bdev = (struct block_device *)map;
3322         em->start = start;
3323         em->len = num_bytes;
3324         em->block_start = 0;
3325         em->block_len = em->len;
3326
3327         em_tree = &extent_root->fs_info->mapping_tree.map_tree;
3328         write_lock(&em_tree->lock);
3329         ret = add_extent_mapping(em_tree, em);
3330         write_unlock(&em_tree->lock);
3331         BUG_ON(ret);
3332         free_extent_map(em);
3333
3334         ret = btrfs_make_block_group(trans, extent_root, 0, type,
3335                                      BTRFS_FIRST_CHUNK_TREE_OBJECTID,
3336                                      start, num_bytes);
3337         BUG_ON(ret);
3338
3339         for (i = 0; i < map->num_stripes; ++i) {
3340                 struct btrfs_device *device;
3341                 u64 dev_offset;
3342
3343                 device = map->stripes[i].dev;
3344                 dev_offset = map->stripes[i].physical;
3345
3346                 ret = btrfs_alloc_dev_extent(trans, device,
3347                                 info->chunk_root->root_key.objectid,
3348                                 BTRFS_FIRST_CHUNK_TREE_OBJECTID,
3349                                 start, dev_offset, stripe_size);
3350                 BUG_ON(ret);
3351         }
3352
3353         kfree(devices_info);
3354         return 0;
3355
3356 error:
3357         kfree(map);
3358         kfree(devices_info);
3359         return ret;
3360 }
3361
3362 static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
3363                                 struct btrfs_root *extent_root,
3364                                 struct map_lookup *map, u64 chunk_offset,
3365                                 u64 chunk_size, u64 stripe_size)
3366 {
3367         u64 dev_offset;
3368         struct btrfs_key key;
3369         struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
3370         struct btrfs_device *device;
3371         struct btrfs_chunk *chunk;
3372         struct btrfs_stripe *stripe;
3373         size_t item_size = btrfs_chunk_item_size(map->num_stripes);
3374         int index = 0;
3375         int ret;
3376
3377         chunk = kzalloc(item_size, GFP_NOFS);
3378         if (!chunk)
3379                 return -ENOMEM;
3380
3381         index = 0;
3382         while (index < map->num_stripes) {
3383                 device = map->stripes[index].dev;
3384                 device->bytes_used += stripe_size;
3385                 ret = btrfs_update_device(trans, device);
3386                 BUG_ON(ret);
3387                 index++;
3388         }
3389
3390         spin_lock(&extent_root->fs_info->free_chunk_lock);
3391         extent_root->fs_info->free_chunk_space -= (stripe_size *
3392                                                    map->num_stripes);
3393         spin_unlock(&extent_root->fs_info->free_chunk_lock);
3394
3395         index = 0;
3396         stripe = &chunk->stripe;
3397         while (index < map->num_stripes) {
3398                 device = map->stripes[index].dev;
3399                 dev_offset = map->stripes[index].physical;
3400
3401                 btrfs_set_stack_stripe_devid(stripe, device->devid);
3402                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
3403                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
3404                 stripe++;
3405                 index++;
3406         }
3407
3408         btrfs_set_stack_chunk_length(chunk, chunk_size);
3409         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
3410         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
3411         btrfs_set_stack_chunk_type(chunk, map->type);
3412         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
3413         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
3414         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
3415         btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
3416         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
3417
3418         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3419         key.type = BTRFS_CHUNK_ITEM_KEY;
3420         key.offset = chunk_offset;
3421
3422         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
3423         BUG_ON(ret);
3424
3425         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3426                 ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
3427                                              item_size);
3428                 BUG_ON(ret);
3429         }
3430
3431         kfree(chunk);
3432         return 0;
3433 }
3434
3435 /*
3436  * Chunk allocation falls into two parts. The first part does works
3437  * that make the new allocated chunk useable, but not do any operation
3438  * that modifies the chunk tree. The second part does the works that
3439  * require modifying the chunk tree. This division is important for the
3440  * bootstrap process of adding storage to a seed btrfs.
3441  */
3442 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
3443                       struct btrfs_root *extent_root, u64 type)
3444 {
3445         u64 chunk_offset;
3446         u64 chunk_size;
3447         u64 stripe_size;
3448         struct map_lookup *map;
3449         struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
3450         int ret;
3451
3452         ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
3453                               &chunk_offset);
3454         if (ret)
3455                 return ret;
3456
3457         ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
3458                                   &stripe_size, chunk_offset, type);
3459         if (ret)
3460                 return ret;
3461
3462         ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
3463                                    chunk_size, stripe_size);
3464         BUG_ON(ret);
3465         return 0;
3466 }
3467
3468 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
3469                                          struct btrfs_root *root,
3470                                          struct btrfs_device *device)
3471 {
3472         u64 chunk_offset;
3473         u64 sys_chunk_offset;
3474         u64 chunk_size;
3475         u64 sys_chunk_size;
3476         u64 stripe_size;
3477         u64 sys_stripe_size;
3478         u64 alloc_profile;
3479         struct map_lookup *map;
3480         struct map_lookup *sys_map;
3481         struct btrfs_fs_info *fs_info = root->fs_info;
3482         struct btrfs_root *extent_root = fs_info->extent_root;
3483         int ret;
3484
3485         ret = find_next_chunk(fs_info->chunk_root,
3486                               BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
3487         if (ret)
3488                 return ret;
3489
3490         alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
3491                                 fs_info->avail_metadata_alloc_bits;
3492         alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
3493
3494         ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
3495                                   &stripe_size, chunk_offset, alloc_profile);
3496         BUG_ON(ret);
3497
3498         sys_chunk_offset = chunk_offset + chunk_size;
3499
3500         alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
3501                                 fs_info->avail_system_alloc_bits;
3502         alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
3503
3504         ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
3505                                   &sys_chunk_size, &sys_stripe_size,
3506                                   sys_chunk_offset, alloc_profile);
3507         BUG_ON(ret);
3508
3509         ret = btrfs_add_device(trans, fs_info->chunk_root, device);
3510         BUG_ON(ret);
3511
3512         /*
3513          * Modifying chunk tree needs allocating new blocks from both
3514          * system block group and metadata block group. So we only can
3515          * do operations require modifying the chunk tree after both
3516          * block groups were created.
3517          */
3518         ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
3519                                    chunk_size, stripe_size);
3520         BUG_ON(ret);
3521
3522         ret = __finish_chunk_alloc(trans, extent_root, sys_map,
3523                                    sys_chunk_offset, sys_chunk_size,
3524                                    sys_stripe_size);
3525         BUG_ON(ret);
3526         return 0;
3527 }
3528
3529 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
3530 {
3531         struct extent_map *em;
3532         struct map_lookup *map;
3533         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3534         int readonly = 0;
3535         int i;
3536
3537         read_lock(&map_tree->map_tree.lock);
3538         em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3539         read_unlock(&map_tree->map_tree.lock);
3540         if (!em)
3541                 return 1;
3542
3543         if (btrfs_test_opt(root, DEGRADED)) {
3544                 free_extent_map(em);
3545                 return 0;
3546         }
3547
3548         map = (struct map_lookup *)em->bdev;
3549         for (i = 0; i < map->num_stripes; i++) {
3550                 if (!map->stripes[i].dev->writeable) {
3551                         readonly = 1;
3552                         break;
3553                 }
3554         }
3555         free_extent_map(em);
3556         return readonly;
3557 }
3558
3559 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
3560 {
3561         extent_map_tree_init(&tree->map_tree);
3562 }
3563
3564 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
3565 {
3566         struct extent_map *em;
3567
3568         while (1) {
3569                 write_lock(&tree->map_tree.lock);
3570                 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
3571                 if (em)
3572                         remove_extent_mapping(&tree->map_tree, em);
3573                 write_unlock(&tree->map_tree.lock);
3574                 if (!em)
3575                         break;
3576                 kfree(em->bdev);
3577                 /* once for us */
3578                 free_extent_map(em);
3579                 /* once for the tree */
3580                 free_extent_map(em);
3581         }
3582 }
3583
3584 int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
3585 {
3586         struct extent_map *em;
3587         struct map_lookup *map;
3588         struct extent_map_tree *em_tree = &map_tree->map_tree;
3589         int ret;
3590
3591         read_lock(&em_tree->lock);
3592         em = lookup_extent_mapping(em_tree, logical, len);
3593         read_unlock(&em_tree->lock);
3594         BUG_ON(!em);
3595
3596         BUG_ON(em->start > logical || em->start + em->len < logical);
3597         map = (struct map_lookup *)em->bdev;
3598         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
3599                 ret = map->num_stripes;
3600         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3601                 ret = map->sub_stripes;
3602         else
3603                 ret = 1;
3604         free_extent_map(em);
3605         return ret;
3606 }
3607
3608 static int find_live_mirror(struct map_lookup *map, int first, int num,
3609                             int optimal)
3610 {
3611         int i;
3612         if (map->stripes[optimal].dev->bdev)
3613                 return optimal;
3614         for (i = first; i < first + num; i++) {
3615                 if (map->stripes[i].dev->bdev)
3616                         return i;
3617         }
3618         /* we couldn't find one that doesn't fail.  Just return something
3619          * and the io error handling code will clean up eventually
3620          */
3621         return optimal;
3622 }
3623
3624 static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3625                              u64 logical, u64 *length,
3626                              struct btrfs_bio **bbio_ret,
3627                              int mirror_num)
3628 {
3629         struct extent_map *em;
3630         struct map_lookup *map;
3631         struct extent_map_tree *em_tree = &map_tree->map_tree;
3632         u64 offset;
3633         u64 stripe_offset;
3634         u64 stripe_end_offset;
3635         u64 stripe_nr;
3636         u64 stripe_nr_orig;
3637         u64 stripe_nr_end;
3638         int stripe_index;
3639         int i;
3640         int ret = 0;
3641         int num_stripes;
3642         int max_errors = 0;
3643         struct btrfs_bio *bbio = NULL;
3644
3645         read_lock(&em_tree->lock);
3646         em = lookup_extent_mapping(em_tree, logical, *length);
3647         read_unlock(&em_tree->lock);
3648
3649         if (!em) {
3650                 printk(KERN_CRIT "unable to find logical %llu len %llu\n",
3651                        (unsigned long long)logical,
3652                        (unsigned long long)*length);
3653                 BUG();
3654         }
3655
3656         BUG_ON(em->start > logical || em->start + em->len < logical);
3657         map = (struct map_lookup *)em->bdev;
3658         offset = logical - em->start;
3659
3660         if (mirror_num > map->num_stripes)
3661                 mirror_num = 0;
3662
3663         stripe_nr = offset;
3664         /*
3665          * stripe_nr counts the total number of stripes we have to stride
3666          * to get to this block
3667          */
3668         do_div(stripe_nr, map->stripe_len);
3669
3670         stripe_offset = stripe_nr * map->stripe_len;
3671         BUG_ON(offset < stripe_offset);
3672
3673         /* stripe_offset is the offset of this block in its stripe*/
3674         stripe_offset = offset - stripe_offset;
3675
3676         if (rw & REQ_DISCARD)
3677                 *length = min_t(u64, em->len - offset, *length);
3678         else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
3679                 /* we limit the length of each bio to what fits in a stripe */
3680                 *length = min_t(u64, em->len - offset,
3681                                 map->stripe_len - stripe_offset);
3682         } else {
3683                 *length = em->len - offset;
3684         }
3685
3686         if (!bbio_ret)
3687                 goto out;
3688
3689         num_stripes = 1;
3690         stripe_index = 0;
3691         stripe_nr_orig = stripe_nr;
3692         stripe_nr_end = (offset + *length + map->stripe_len - 1) &
3693                         (~(map->stripe_len - 1));
3694         do_div(stripe_nr_end, map->stripe_len);
3695         stripe_end_offset = stripe_nr_end * map->stripe_len -
3696                             (offset + *length);
3697         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3698                 if (rw & REQ_DISCARD)
3699                         num_stripes = min_t(u64, map->num_stripes,
3700                                             stripe_nr_end - stripe_nr_orig);
3701                 stripe_index = do_div(stripe_nr, map->num_stripes);
3702         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3703                 if (rw & (REQ_WRITE | REQ_DISCARD))
3704                         num_stripes = map->num_stripes;
3705                 else if (mirror_num)
3706                         stripe_index = mirror_num - 1;
3707                 else {
3708                         stripe_index = find_live_mirror(map, 0,
3709                                             map->num_stripes,
3710                                             current->pid % map->num_stripes);
3711                         mirror_num = stripe_index + 1;
3712                 }
3713
3714         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3715                 if (rw & (REQ_WRITE | REQ_DISCARD)) {
3716                         num_stripes = map->num_stripes;
3717                 } else if (mirror_num) {
3718                         stripe_index = mirror_num - 1;
3719                 } else {
3720                         mirror_num = 1;
3721                 }
3722
3723         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3724                 int factor = map->num_stripes / map->sub_stripes;
3725
3726                 stripe_index = do_div(stripe_nr, factor);
3727                 stripe_index *= map->sub_stripes;
3728
3729                 if (rw & REQ_WRITE)
3730                         num_stripes = map->sub_stripes;
3731                 else if (rw & REQ_DISCARD)
3732                         num_stripes = min_t(u64, map->sub_stripes *
3733                                             (stripe_nr_end - stripe_nr_orig),
3734                                             map->num_stripes);
3735                 else if (mirror_num)
3736                         stripe_index += mirror_num - 1;
3737                 else {
3738                         stripe_index = find_live_mirror(map, stripe_index,
3739                                               map->sub_stripes, stripe_index +
3740                                               current->pid % map->sub_stripes);
3741                         mirror_num = stripe_index + 1;
3742                 }
3743         } else {
3744                 /*
3745                  * after this do_div call, stripe_nr is the number of stripes
3746                  * on this device we have to walk to find the data, and
3747                  * stripe_index is the number of our device in the stripe array
3748                  */
3749                 stripe_index = do_div(stripe_nr, map->num_stripes);
3750                 mirror_num = stripe_index + 1;
3751         }
3752         BUG_ON(stripe_index >= map->num_stripes);
3753
3754         bbio = kzalloc(btrfs_bio_size(num_stripes), GFP_NOFS);
3755         if (!bbio) {
3756                 ret = -ENOMEM;
3757                 goto out;
3758         }
3759         atomic_set(&bbio->error, 0);
3760
3761         if (rw & REQ_DISCARD) {
3762                 int factor = 0;
3763                 int sub_stripes = 0;
3764                 u64 stripes_per_dev = 0;
3765                 u32 remaining_stripes = 0;
3766
3767                 if (map->type &
3768                     (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
3769                         if (map->type & BTRFS_BLOCK_GROUP_RAID0)
3770                                 sub_stripes = 1;
3771                         else
3772                                 sub_stripes = map->sub_stripes;
3773
3774                         factor = map->num_stripes / sub_stripes;
3775                         stripes_per_dev = div_u64_rem(stripe_nr_end -
3776                                                       stripe_nr_orig,
3777                                                       factor,
3778                                                       &remaining_stripes);
3779                 }
3780
3781                 for (i = 0; i < num_stripes; i++) {
3782                         bbio->stripes[i].physical =
3783                                 map->stripes[stripe_index].physical +
3784                                 stripe_offset + stripe_nr * map->stripe_len;
3785                         bbio->stripes[i].dev = map->stripes[stripe_index].dev;
3786
3787                         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3788                                          BTRFS_BLOCK_GROUP_RAID10)) {
3789                                 bbio->stripes[i].length = stripes_per_dev *
3790                                                           map->stripe_len;
3791                                 if (i / sub_stripes < remaining_stripes)
3792                                         bbio->stripes[i].length +=
3793                                                 map->stripe_len;
3794                                 if (i < sub_stripes)
3795                                         bbio->stripes[i].length -=
3796                                                 stripe_offset;
3797                                 if ((i / sub_stripes + 1) %
3798                                     sub_stripes == remaining_stripes)
3799                                         bbio->stripes[i].length -=
3800                                                 stripe_end_offset;
3801                                 if (i == sub_stripes - 1)
3802                                         stripe_offset = 0;
3803                         } else
3804                                 bbio->stripes[i].length = *length;
3805
3806                         stripe_index++;
3807                         if (stripe_index == map->num_stripes) {
3808                                 /* This could only happen for RAID0/10 */
3809                                 stripe_index = 0;
3810                                 stripe_nr++;
3811                         }
3812                 }
3813         } else {
3814                 for (i = 0; i < num_stripes; i++) {
3815                         bbio->stripes[i].physical =
3816                                 map->stripes[stripe_index].physical +
3817                                 stripe_offset +
3818                                 stripe_nr * map->stripe_len;
3819                         bbio->stripes[i].dev =
3820                                 map->stripes[stripe_index].dev;
3821                         stripe_index++;
3822                 }
3823         }
3824
3825         if (rw & REQ_WRITE) {
3826                 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
3827                                  BTRFS_BLOCK_GROUP_RAID10 |
3828                                  BTRFS_BLOCK_GROUP_DUP)) {
3829                         max_errors = 1;
3830                 }
3831         }
3832
3833         *bbio_ret = bbio;
3834         bbio->num_stripes = num_stripes;
3835         bbio->max_errors = max_errors;
3836         bbio->mirror_num = mirror_num;
3837 out:
3838         free_extent_map(em);
3839         return ret;
3840 }
3841
3842 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
3843                       u64 logical, u64 *length,
3844                       struct btrfs_bio **bbio_ret, int mirror_num)
3845 {
3846         return __btrfs_map_block(map_tree, rw, logical, length, bbio_ret,
3847                                  mirror_num);
3848 }
3849
3850 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
3851                      u64 chunk_start, u64 physical, u64 devid,
3852                      u64 **logical, int *naddrs, int *stripe_len)
3853 {
3854         struct extent_map_tree *em_tree = &map_tree->map_tree;
3855         struct extent_map *em;
3856         struct map_lookup *map;
3857         u64 *buf;
3858         u64 bytenr;
3859         u64 length;
3860         u64 stripe_nr;
3861         int i, j, nr = 0;
3862
3863         read_lock(&em_tree->lock);
3864         em = lookup_extent_mapping(em_tree, chunk_start, 1);
3865         read_unlock(&em_tree->lock);
3866
3867         BUG_ON(!em || em->start != chunk_start);
3868         map = (struct map_lookup *)em->bdev;
3869
3870         length = em->len;
3871         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
3872                 do_div(length, map->num_stripes / map->sub_stripes);
3873         else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
3874                 do_div(length, map->num_stripes);
3875
3876         buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
3877         BUG_ON(!buf);
3878
3879         for (i = 0; i < map->num_stripes; i++) {
3880                 if (devid && map->stripes[i].dev->devid != devid)
3881                         continue;
3882                 if (map->stripes[i].physical > physical ||
3883                     map->stripes[i].physical + length <= physical)
3884                         continue;
3885
3886                 stripe_nr = physical - map->stripes[i].physical;
3887                 do_div(stripe_nr, map->stripe_len);
3888
3889                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3890                         stripe_nr = stripe_nr * map->num_stripes + i;
3891                         do_div(stripe_nr, map->sub_stripes);
3892                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3893                         stripe_nr = stripe_nr * map->num_stripes + i;
3894                 }
3895                 bytenr = chunk_start + stripe_nr * map->stripe_len;
3896                 WARN_ON(nr >= map->num_stripes);
3897                 for (j = 0; j < nr; j++) {
3898                         if (buf[j] == bytenr)
3899                                 break;
3900                 }
3901                 if (j == nr) {
3902                         WARN_ON(nr >= map->num_stripes);
3903                         buf[nr++] = bytenr;
3904                 }
3905         }
3906
3907         *logical = buf;
3908         *naddrs = nr;
3909         *stripe_len = map->stripe_len;
3910
3911         free_extent_map(em);
3912         return 0;
3913 }
3914
3915 static void btrfs_end_bio(struct bio *bio, int err)
3916 {
3917         struct btrfs_bio *bbio = bio->bi_private;
3918         int is_orig_bio = 0;
3919
3920         if (err)
3921                 atomic_inc(&bbio->error);
3922
3923         if (bio == bbio->orig_bio)
3924                 is_orig_bio = 1;
3925
3926         if (atomic_dec_and_test(&bbio->stripes_pending)) {
3927                 if (!is_orig_bio) {
3928                         bio_put(bio);
3929                         bio = bbio->orig_bio;
3930                 }
3931                 bio->bi_private = bbio->private;
3932                 bio->bi_end_io = bbio->end_io;
3933                 bio->bi_bdev = (struct block_device *)
3934                                         (unsigned long)bbio->mirror_num;
3935                 /* only send an error to the higher layers if it is
3936                  * beyond the tolerance of the multi-bio
3937                  */
3938                 if (atomic_read(&bbio->error) > bbio->max_errors) {
3939                         err = -EIO;
3940                 } else {
3941                         /*
3942                          * this bio is actually up to date, we didn't
3943                          * go over the max number of errors
3944                          */
3945                         set_bit(BIO_UPTODATE, &bio->bi_flags);
3946                         err = 0;
3947                 }
3948                 kfree(bbio);
3949
3950                 bio_endio(bio, err);
3951         } else if (!is_orig_bio) {
3952                 bio_put(bio);
3953         }
3954 }
3955
3956 struct async_sched {
3957         struct bio *bio;
3958         int rw;
3959         struct btrfs_fs_info *info;
3960         struct btrfs_work work;
3961 };
3962
3963 /*
3964  * see run_scheduled_bios for a description of why bios are collected for
3965  * async submit.
3966  *
3967  * This will add one bio to the pending list for a device and make sure
3968  * the work struct is scheduled.
3969  */
3970 static noinline int schedule_bio(struct btrfs_root *root,
3971                                  struct btrfs_device *device,
3972                                  int rw, struct bio *bio)
3973 {
3974         int should_queue = 1;
3975         struct btrfs_pending_bios *pending_bios;
3976
3977         /* don't bother with additional async steps for reads, right now */
3978         if (!(rw & REQ_WRITE)) {
3979                 bio_get(bio);
3980                 btrfsic_submit_bio(rw, bio);
3981                 bio_put(bio);
3982                 return 0;
3983         }
3984
3985         /*
3986          * nr_async_bios allows us to reliably return congestion to the
3987          * higher layers.  Otherwise, the async bio makes it appear we have
3988          * made progress against dirty pages when we've really just put it
3989          * on a queue for later
3990          */
3991         atomic_inc(&root->fs_info->nr_async_bios);
3992         WARN_ON(bio->bi_next);
3993         bio->bi_next = NULL;
3994         bio->bi_rw |= rw;
3995
3996         spin_lock(&device->io_lock);
3997         if (bio->bi_rw & REQ_SYNC)
3998                 pending_bios = &device->pending_sync_bios;
3999         else
4000                 pending_bios = &device->pending_bios;
4001
4002         if (pending_bios->tail)
4003                 pending_bios->tail->bi_next = bio;
4004
4005         pending_bios->tail = bio;
4006         if (!pending_bios->head)
4007                 pending_bios->head = bio;
4008         if (device->running_pending)
4009                 should_queue = 0;
4010
4011         spin_unlock(&device->io_lock);
4012
4013         if (should_queue)
4014                 btrfs_queue_worker(&root->fs_info->submit_workers,
4015                                    &device->work);
4016         return 0;
4017 }
4018
4019 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
4020                   int mirror_num, int async_submit)
4021 {
4022         struct btrfs_mapping_tree *map_tree;
4023         struct btrfs_device *dev;
4024         struct bio *first_bio = bio;
4025         u64 logical = (u64)bio->bi_sector << 9;
4026         u64 length = 0;
4027         u64 map_length;
4028         int ret;
4029         int dev_nr = 0;
4030         int total_devs = 1;
4031         struct btrfs_bio *bbio = NULL;
4032
4033         length = bio->bi_size;
4034         map_tree = &root->fs_info->mapping_tree;
4035         map_length = length;
4036
4037         ret = btrfs_map_block(map_tree, rw, logical, &map_length, &bbio,
4038                               mirror_num);
4039         BUG_ON(ret);
4040
4041         total_devs = bbio->num_stripes;
4042         if (map_length < length) {
4043                 printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
4044                        "len %llu\n", (unsigned long long)logical,
4045                        (unsigned long long)length,
4046                        (unsigned long long)map_length);
4047                 BUG();
4048         }
4049
4050         bbio->orig_bio = first_bio;
4051         bbio->private = first_bio->bi_private;
4052         bbio->end_io = first_bio->bi_end_io;
4053         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
4054
4055         while (dev_nr < total_devs) {
4056                 if (dev_nr < total_devs - 1) {
4057                         bio = bio_clone(first_bio, GFP_NOFS);
4058                         BUG_ON(!bio);
4059                 } else {
4060                         bio = first_bio;
4061                 }
4062                 bio->bi_private = bbio;
4063                 bio->bi_end_io = btrfs_end_bio;
4064                 bio->bi_sector = bbio->stripes[dev_nr].physical >> 9;
4065                 dev = bbio->stripes[dev_nr].dev;
4066                 if (dev && dev->bdev && (rw != WRITE || dev->writeable)) {
4067                         pr_debug("btrfs_map_bio: rw %d, secor=%llu, dev=%lu "
4068                                  "(%s id %llu), size=%u\n", rw,
4069                                  (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
4070                                  dev->name, dev->devid, bio->bi_size);
4071                         bio->bi_bdev = dev->bdev;
4072                         if (async_submit)
4073                                 schedule_bio(root, dev, rw, bio);
4074                         else
4075                                 btrfsic_submit_bio(rw, bio);
4076                 } else {
4077                         bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
4078                         bio->bi_sector = logical >> 9;
4079                         bio_endio(bio, -EIO);
4080                 }
4081                 dev_nr++;
4082         }
4083         return 0;
4084 }
4085
4086 struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
4087                                        u8 *uuid, u8 *fsid)
4088 {
4089         struct btrfs_device *device;
4090         struct btrfs_fs_devices *cur_devices;
4091
4092         cur_devices = root->fs_info->fs_devices;
4093         while (cur_devices) {
4094                 if (!fsid ||
4095                     !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
4096                         device = __find_device(&cur_devices->devices,
4097                                                devid, uuid);
4098                         if (device)
4099                                 return device;
4100                 }
4101                 cur_devices = cur_devices->seed;
4102         }
4103         return NULL;
4104 }
4105
4106 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
4107                                             u64 devid, u8 *dev_uuid)
4108 {
4109         struct btrfs_device *device;
4110         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
4111
4112         device = kzalloc(sizeof(*device), GFP_NOFS);
4113         if (!device)
4114                 return NULL;
4115         list_add(&device->dev_list,
4116                  &fs_devices->devices);
4117         device->dev_root = root->fs_info->dev_root;
4118         device->devid = devid;
4119         device->work.func = pending_bios_fn;
4120         device->fs_devices = fs_devices;
4121         device->missing = 1;
4122         fs_devices->num_devices++;
4123         fs_devices->missing_devices++;
4124         spin_lock_init(&device->io_lock);
4125         INIT_LIST_HEAD(&device->dev_alloc_list);
4126         memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
4127         return device;
4128 }
4129
4130 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
4131                           struct extent_buffer *leaf,
4132                           struct btrfs_chunk *chunk)
4133 {
4134         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4135         struct map_lookup *map;
4136         struct extent_map *em;
4137         u64 logical;
4138         u64 length;
4139         u64 devid;
4140         u8 uuid[BTRFS_UUID_SIZE];
4141         int num_stripes;
4142         int ret;
4143         int i;
4144
4145         logical = key->offset;
4146         length = btrfs_chunk_length(leaf, chunk);
4147
4148         read_lock(&map_tree->map_tree.lock);
4149         em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
4150         read_unlock(&map_tree->map_tree.lock);
4151
4152         /* already mapped? */
4153         if (em && em->start <= logical && em->start + em->len > logical) {
4154                 free_extent_map(em);
4155                 return 0;
4156         } else if (em) {
4157                 free_extent_map(em);
4158         }
4159
4160         em = alloc_extent_map();
4161         if (!em)
4162                 return -ENOMEM;
4163         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
4164         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4165         if (!map) {
4166                 free_extent_map(em);
4167                 return -ENOMEM;
4168         }
4169
4170         em->bdev = (struct block_device *)map;
4171         em->start = logical;
4172         em->len = length;
4173         em->block_start = 0;
4174         em->block_len = em->len;
4175
4176         map->num_stripes = num_stripes;
4177         map->io_width = btrfs_chunk_io_width(leaf, chunk);
4178         map->io_align = btrfs_chunk_io_align(leaf, chunk);
4179         map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
4180         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
4181         map->type = btrfs_chunk_type(leaf, chunk);
4182         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
4183         for (i = 0; i < num_stripes; i++) {
4184                 map->stripes[i].physical =
4185                         btrfs_stripe_offset_nr(leaf, chunk, i);
4186                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
4187                 read_extent_buffer(leaf, uuid, (unsigned long)
4188                                    btrfs_stripe_dev_uuid_nr(chunk, i),
4189                                    BTRFS_UUID_SIZE);
4190                 map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
4191                                                         NULL);
4192                 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
4193                         kfree(map);
4194                         free_extent_map(em);
4195                         return -EIO;
4196                 }
4197                 if (!map->stripes[i].dev) {
4198                         map->stripes[i].dev =
4199                                 add_missing_dev(root, devid, uuid);
4200                         if (!map->stripes[i].dev) {
4201                                 kfree(map);
4202                                 free_extent_map(em);
4203                                 return -EIO;
4204                         }
4205                 }
4206                 map->stripes[i].dev->in_fs_metadata = 1;
4207         }
4208
4209         write_lock(&map_tree->map_tree.lock);
4210         ret = add_extent_mapping(&map_tree->map_tree, em);
4211         write_unlock(&map_tree->map_tree.lock);
4212         BUG_ON(ret);
4213         free_extent_map(em);
4214
4215         return 0;
4216 }
4217
4218 static int fill_device_from_item(struct extent_buffer *leaf,
4219                                  struct btrfs_dev_item *dev_item,
4220                                  struct btrfs_device *device)
4221 {
4222         unsigned long ptr;
4223
4224         device->devid = btrfs_device_id(leaf, dev_item);
4225         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
4226         device->total_bytes = device->disk_total_bytes;
4227         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
4228         device->type = btrfs_device_type(leaf, dev_item);
4229         device->io_align = btrfs_device_io_align(leaf, dev_item);
4230         device->io_width = btrfs_device_io_width(leaf, dev_item);
4231         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
4232
4233         ptr = (unsigned long)btrfs_device_uuid(dev_item);
4234         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
4235
4236         return 0;
4237 }
4238
4239 static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
4240 {
4241         struct btrfs_fs_devices *fs_devices;
4242         int ret;
4243
4244         BUG_ON(!mutex_is_locked(&uuid_mutex));
4245
4246         fs_devices = root->fs_info->fs_devices->seed;
4247         while (fs_devices) {
4248                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
4249                         ret = 0;
4250                         goto out;
4251                 }
4252                 fs_devices = fs_devices->seed;
4253         }
4254
4255         fs_devices = find_fsid(fsid);
4256         if (!fs_devices) {
4257                 ret = -ENOENT;
4258                 goto out;
4259         }
4260
4261         fs_devices = clone_fs_devices(fs_devices);
4262         if (IS_ERR(fs_devices)) {
4263                 ret = PTR_ERR(fs_devices);
4264                 goto out;
4265         }
4266
4267         ret = __btrfs_open_devices(fs_devices, FMODE_READ,
4268                                    root->fs_info->bdev_holder);
4269         if (ret)
4270                 goto out;
4271
4272         if (!fs_devices->seeding) {
4273                 __btrfs_close_devices(fs_devices);
4274                 free_fs_devices(fs_devices);
4275                 ret = -EINVAL;
4276                 goto out;
4277         }
4278
4279         fs_devices->seed = root->fs_info->fs_devices->seed;
4280         root->fs_info->fs_devices->seed = fs_devices;
4281 out:
4282         return ret;
4283 }
4284
4285 static int read_one_dev(struct btrfs_root *root,
4286                         struct extent_buffer *leaf,
4287                         struct btrfs_dev_item *dev_item)
4288 {
4289         struct btrfs_device *device;
4290         u64 devid;
4291         int ret;
4292         u8 fs_uuid[BTRFS_UUID_SIZE];
4293         u8 dev_uuid[BTRFS_UUID_SIZE];
4294
4295         devid = btrfs_device_id(leaf, dev_item);
4296         read_extent_buffer(leaf, dev_uuid,
4297                            (unsigned long)btrfs_device_uuid(dev_item),
4298                            BTRFS_UUID_SIZE);
4299         read_extent_buffer(leaf, fs_uuid,
4300                            (unsigned long)btrfs_device_fsid(dev_item),
4301                            BTRFS_UUID_SIZE);
4302
4303         if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
4304                 ret = open_seed_devices(root, fs_uuid);
4305                 if (ret && !btrfs_test_opt(root, DEGRADED))
4306                         return ret;
4307         }
4308
4309         device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
4310         if (!device || !device->bdev) {
4311                 if (!btrfs_test_opt(root, DEGRADED))
4312                         return -EIO;
4313
4314                 if (!device) {
4315                         printk(KERN_WARNING "warning devid %llu missing\n",
4316                                (unsigned long long)devid);
4317                         device = add_missing_dev(root, devid, dev_uuid);
4318                         if (!device)
4319                                 return -ENOMEM;
4320                 } else if (!device->missing) {
4321                         /*
4322                          * this happens when a device that was properly setup
4323                          * in the device info lists suddenly goes bad.
4324                          * device->bdev is NULL, and so we have to set
4325                          * device->missing to one here
4326                          */
4327                         root->fs_info->fs_devices->missing_devices++;
4328                         device->missing = 1;
4329                 }
4330         }
4331
4332         if (device->fs_devices != root->fs_info->fs_devices) {
4333                 BUG_ON(device->writeable);
4334                 if (device->generation !=
4335                     btrfs_device_generation(leaf, dev_item))
4336                         return -EINVAL;
4337         }
4338
4339         fill_device_from_item(leaf, dev_item, device);
4340         device->dev_root = root->fs_info->dev_root;
4341         device->in_fs_metadata = 1;
4342         if (device->writeable) {
4343                 device->fs_devices->total_rw_bytes += device->total_bytes;
4344                 spin_lock(&root->fs_info->free_chunk_lock);
4345                 root->fs_info->free_chunk_space += device->total_bytes -
4346                         device->bytes_used;
4347                 spin_unlock(&root->fs_info->free_chunk_lock);
4348         }
4349         ret = 0;
4350         return ret;
4351 }
4352
4353 int btrfs_read_sys_array(struct btrfs_root *root)
4354 {
4355         struct btrfs_super_block *super_copy = root->fs_info->super_copy;
4356         struct extent_buffer *sb;
4357         struct btrfs_disk_key *disk_key;
4358         struct btrfs_chunk *chunk;
4359         u8 *ptr;
4360         unsigned long sb_ptr;
4361         int ret = 0;
4362         u32 num_stripes;
4363         u32 array_size;
4364         u32 len = 0;
4365         u32 cur;
4366         struct btrfs_key key;
4367
4368         sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
4369                                           BTRFS_SUPER_INFO_SIZE);
4370         if (!sb)
4371                 return -ENOMEM;
4372         btrfs_set_buffer_uptodate(sb);
4373         btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
4374         /*
4375          * The sb extent buffer is artifical and just used to read the system array.
4376          * btrfs_set_buffer_uptodate() call does not properly mark all it's
4377          * pages up-to-date when the page is larger: extent does not cover the
4378          * whole page and consequently check_page_uptodate does not find all
4379          * the page's extents up-to-date (the hole beyond sb),
4380          * write_extent_buffer then triggers a WARN_ON.
4381          *
4382          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
4383          * but sb spans only this function. Add an explicit SetPageUptodate call
4384          * to silence the warning eg. on PowerPC 64.
4385          */
4386         if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
4387                 SetPageUptodate(sb->first_page);
4388
4389         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
4390         array_size = btrfs_super_sys_array_size(super_copy);
4391
4392         ptr = super_copy->sys_chunk_array;
4393         sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
4394         cur = 0;
4395
4396         while (cur < array_size) {
4397                 disk_key = (struct btrfs_disk_key *)ptr;
4398                 btrfs_disk_key_to_cpu(&key, disk_key);
4399
4400                 len = sizeof(*disk_key); ptr += len;
4401                 sb_ptr += len;
4402                 cur += len;
4403
4404                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
4405                         chunk = (struct btrfs_chunk *)sb_ptr;
4406                         ret = read_one_chunk(root, &key, sb, chunk);
4407                         if (ret)
4408                                 break;
4409                         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
4410                         len = btrfs_chunk_item_size(num_stripes);
4411                 } else {
4412                         ret = -EIO;
4413                         break;
4414                 }
4415                 ptr += len;
4416                 sb_ptr += len;
4417                 cur += len;
4418         }
4419         free_extent_buffer(sb);
4420         return ret;
4421 }
4422
4423 int btrfs_read_chunk_tree(struct btrfs_root *root)
4424 {
4425         struct btrfs_path *path;
4426         struct extent_buffer *leaf;
4427         struct btrfs_key key;
4428         struct btrfs_key found_key;
4429         int ret;
4430         int slot;
4431
4432         root = root->fs_info->chunk_root;
4433
4434         path = btrfs_alloc_path();
4435         if (!path)
4436                 return -ENOMEM;
4437
4438         mutex_lock(&uuid_mutex);
4439         lock_chunks(root);
4440
4441         /* first we search for all of the device items, and then we
4442          * read in all of the chunk items.  This way we can create chunk
4443          * mappings that reference all of the devices that are afound
4444          */
4445         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
4446         key.offset = 0;
4447         key.type = 0;
4448 again:
4449         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4450         if (ret < 0)
4451                 goto error;
4452         while (1) {
4453                 leaf = path->nodes[0];
4454                 slot = path->slots[0];
4455                 if (slot >= btrfs_header_nritems(leaf)) {
4456                         ret = btrfs_next_leaf(root, path);
4457                         if (ret == 0)
4458                                 continue;
4459                         if (ret < 0)
4460                                 goto error;
4461                         break;
4462                 }
4463                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4464                 if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
4465                         if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
4466                                 break;
4467                         if (found_key.type == BTRFS_DEV_ITEM_KEY) {
4468                                 struct btrfs_dev_item *dev_item;
4469                                 dev_item = btrfs_item_ptr(leaf, slot,
4470                                                   struct btrfs_dev_item);
4471                                 ret = read_one_dev(root, leaf, dev_item);
4472                                 if (ret)
4473                                         goto error;
4474                         }
4475                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
4476                         struct btrfs_chunk *chunk;
4477                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
4478                         ret = read_one_chunk(root, &found_key, leaf, chunk);
4479                         if (ret)
4480                                 goto error;
4481                 }
4482                 path->slots[0]++;
4483         }
4484         if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
4485                 key.objectid = 0;
4486                 btrfs_release_path(path);
4487                 goto again;
4488         }
4489         ret = 0;
4490 error:
4491         unlock_chunks(root);
4492         mutex_unlock(&uuid_mutex);
4493
4494         btrfs_free_path(path);
4495         return ret;
4496 }