Merge tag 'scmi-fixes-5.4' of git://git.kernel.org/pub/scm/linux/kernel/git/sudeep...
[linux-2.6-block.git] / fs / btrfs / volumes.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/bio.h>
8 #include <linux/slab.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "ctree.h"
18 #include "extent_map.h"
19 #include "disk-io.h"
20 #include "transaction.h"
21 #include "print-tree.h"
22 #include "volumes.h"
23 #include "raid56.h"
24 #include "async-thread.h"
25 #include "check-integrity.h"
26 #include "rcu-string.h"
27 #include "math.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30 #include "tree-checker.h"
31 #include "space-info.h"
32
33 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
34         [BTRFS_RAID_RAID10] = {
35                 .sub_stripes    = 2,
36                 .dev_stripes    = 1,
37                 .devs_max       = 0,    /* 0 == as many as possible */
38                 .devs_min       = 4,
39                 .tolerated_failures = 1,
40                 .devs_increment = 2,
41                 .ncopies        = 2,
42                 .nparity        = 0,
43                 .raid_name      = "raid10",
44                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID10,
45                 .mindev_error   = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
46         },
47         [BTRFS_RAID_RAID1] = {
48                 .sub_stripes    = 1,
49                 .dev_stripes    = 1,
50                 .devs_max       = 2,
51                 .devs_min       = 2,
52                 .tolerated_failures = 1,
53                 .devs_increment = 2,
54                 .ncopies        = 2,
55                 .nparity        = 0,
56                 .raid_name      = "raid1",
57                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID1,
58                 .mindev_error   = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
59         },
60         [BTRFS_RAID_DUP] = {
61                 .sub_stripes    = 1,
62                 .dev_stripes    = 2,
63                 .devs_max       = 1,
64                 .devs_min       = 1,
65                 .tolerated_failures = 0,
66                 .devs_increment = 1,
67                 .ncopies        = 2,
68                 .nparity        = 0,
69                 .raid_name      = "dup",
70                 .bg_flag        = BTRFS_BLOCK_GROUP_DUP,
71                 .mindev_error   = 0,
72         },
73         [BTRFS_RAID_RAID0] = {
74                 .sub_stripes    = 1,
75                 .dev_stripes    = 1,
76                 .devs_max       = 0,
77                 .devs_min       = 2,
78                 .tolerated_failures = 0,
79                 .devs_increment = 1,
80                 .ncopies        = 1,
81                 .nparity        = 0,
82                 .raid_name      = "raid0",
83                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID0,
84                 .mindev_error   = 0,
85         },
86         [BTRFS_RAID_SINGLE] = {
87                 .sub_stripes    = 1,
88                 .dev_stripes    = 1,
89                 .devs_max       = 1,
90                 .devs_min       = 1,
91                 .tolerated_failures = 0,
92                 .devs_increment = 1,
93                 .ncopies        = 1,
94                 .nparity        = 0,
95                 .raid_name      = "single",
96                 .bg_flag        = 0,
97                 .mindev_error   = 0,
98         },
99         [BTRFS_RAID_RAID5] = {
100                 .sub_stripes    = 1,
101                 .dev_stripes    = 1,
102                 .devs_max       = 0,
103                 .devs_min       = 2,
104                 .tolerated_failures = 1,
105                 .devs_increment = 1,
106                 .ncopies        = 1,
107                 .nparity        = 1,
108                 .raid_name      = "raid5",
109                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID5,
110                 .mindev_error   = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
111         },
112         [BTRFS_RAID_RAID6] = {
113                 .sub_stripes    = 1,
114                 .dev_stripes    = 1,
115                 .devs_max       = 0,
116                 .devs_min       = 3,
117                 .tolerated_failures = 2,
118                 .devs_increment = 1,
119                 .ncopies        = 1,
120                 .nparity        = 2,
121                 .raid_name      = "raid6",
122                 .bg_flag        = BTRFS_BLOCK_GROUP_RAID6,
123                 .mindev_error   = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
124         },
125 };
126
127 const char *btrfs_bg_type_to_raid_name(u64 flags)
128 {
129         const int index = btrfs_bg_flags_to_raid_index(flags);
130
131         if (index >= BTRFS_NR_RAID_TYPES)
132                 return NULL;
133
134         return btrfs_raid_array[index].raid_name;
135 }
136
137 /*
138  * Fill @buf with textual description of @bg_flags, no more than @size_buf
139  * bytes including terminating null byte.
140  */
141 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
142 {
143         int i;
144         int ret;
145         char *bp = buf;
146         u64 flags = bg_flags;
147         u32 size_bp = size_buf;
148
149         if (!flags) {
150                 strcpy(bp, "NONE");
151                 return;
152         }
153
154 #define DESCRIBE_FLAG(flag, desc)                                               \
155         do {                                                            \
156                 if (flags & (flag)) {                                   \
157                         ret = snprintf(bp, size_bp, "%s|", (desc));     \
158                         if (ret < 0 || ret >= size_bp)                  \
159                                 goto out_overflow;                      \
160                         size_bp -= ret;                                 \
161                         bp += ret;                                      \
162                         flags &= ~(flag);                               \
163                 }                                                       \
164         } while (0)
165
166         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
167         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
168         DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
169
170         DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
171         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
172                 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
173                               btrfs_raid_array[i].raid_name);
174 #undef DESCRIBE_FLAG
175
176         if (flags) {
177                 ret = snprintf(bp, size_bp, "0x%llx|", flags);
178                 size_bp -= ret;
179         }
180
181         if (size_bp < size_buf)
182                 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
183
184         /*
185          * The text is trimmed, it's up to the caller to provide sufficiently
186          * large buffer
187          */
188 out_overflow:;
189 }
190
191 static int init_first_rw_device(struct btrfs_trans_handle *trans);
192 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
193 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
194 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
195 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
196 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
197                              enum btrfs_map_op op,
198                              u64 logical, u64 *length,
199                              struct btrfs_bio **bbio_ret,
200                              int mirror_num, int need_raid_map);
201
202 /*
203  * Device locking
204  * ==============
205  *
206  * There are several mutexes that protect manipulation of devices and low-level
207  * structures like chunks but not block groups, extents or files
208  *
209  * uuid_mutex (global lock)
210  * ------------------------
211  * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
212  * the SCAN_DEV ioctl registration or from mount either implicitly (the first
213  * device) or requested by the device= mount option
214  *
215  * the mutex can be very coarse and can cover long-running operations
216  *
217  * protects: updates to fs_devices counters like missing devices, rw devices,
218  * seeding, structure cloning, opening/closing devices at mount/umount time
219  *
220  * global::fs_devs - add, remove, updates to the global list
221  *
222  * does not protect: manipulation of the fs_devices::devices list!
223  *
224  * btrfs_device::name - renames (write side), read is RCU
225  *
226  * fs_devices::device_list_mutex (per-fs, with RCU)
227  * ------------------------------------------------
228  * protects updates to fs_devices::devices, ie. adding and deleting
229  *
230  * simple list traversal with read-only actions can be done with RCU protection
231  *
232  * may be used to exclude some operations from running concurrently without any
233  * modifications to the list (see write_all_supers)
234  *
235  * balance_mutex
236  * -------------
237  * protects balance structures (status, state) and context accessed from
238  * several places (internally, ioctl)
239  *
240  * chunk_mutex
241  * -----------
242  * protects chunks, adding or removing during allocation, trim or when a new
243  * device is added/removed. Additionally it also protects post_commit_list of
244  * individual devices, since they can be added to the transaction's
245  * post_commit_list only with chunk_mutex held.
246  *
247  * cleaner_mutex
248  * -------------
249  * a big lock that is held by the cleaner thread and prevents running subvolume
250  * cleaning together with relocation or delayed iputs
251  *
252  *
253  * Lock nesting
254  * ============
255  *
256  * uuid_mutex
257  *   volume_mutex
258  *     device_list_mutex
259  *       chunk_mutex
260  *     balance_mutex
261  *
262  *
263  * Exclusive operations, BTRFS_FS_EXCL_OP
264  * ======================================
265  *
266  * Maintains the exclusivity of the following operations that apply to the
267  * whole filesystem and cannot run in parallel.
268  *
269  * - Balance (*)
270  * - Device add
271  * - Device remove
272  * - Device replace (*)
273  * - Resize
274  *
275  * The device operations (as above) can be in one of the following states:
276  *
277  * - Running state
278  * - Paused state
279  * - Completed state
280  *
281  * Only device operations marked with (*) can go into the Paused state for the
282  * following reasons:
283  *
284  * - ioctl (only Balance can be Paused through ioctl)
285  * - filesystem remounted as read-only
286  * - filesystem unmounted and mounted as read-only
287  * - system power-cycle and filesystem mounted as read-only
288  * - filesystem or device errors leading to forced read-only
289  *
290  * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
291  * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
292  * A device operation in Paused or Running state can be canceled or resumed
293  * either by ioctl (Balance only) or when remounted as read-write.
294  * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
295  * completed.
296  */
297
298 DEFINE_MUTEX(uuid_mutex);
299 static LIST_HEAD(fs_uuids);
300 struct list_head *btrfs_get_fs_uuids(void)
301 {
302         return &fs_uuids;
303 }
304
305 /*
306  * alloc_fs_devices - allocate struct btrfs_fs_devices
307  * @fsid:               if not NULL, copy the UUID to fs_devices::fsid
308  * @metadata_fsid:      if not NULL, copy the UUID to fs_devices::metadata_fsid
309  *
310  * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
311  * The returned struct is not linked onto any lists and can be destroyed with
312  * kfree() right away.
313  */
314 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
315                                                  const u8 *metadata_fsid)
316 {
317         struct btrfs_fs_devices *fs_devs;
318
319         fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
320         if (!fs_devs)
321                 return ERR_PTR(-ENOMEM);
322
323         mutex_init(&fs_devs->device_list_mutex);
324
325         INIT_LIST_HEAD(&fs_devs->devices);
326         INIT_LIST_HEAD(&fs_devs->alloc_list);
327         INIT_LIST_HEAD(&fs_devs->fs_list);
328         if (fsid)
329                 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
330
331         if (metadata_fsid)
332                 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
333         else if (fsid)
334                 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
335
336         return fs_devs;
337 }
338
339 void btrfs_free_device(struct btrfs_device *device)
340 {
341         WARN_ON(!list_empty(&device->post_commit_list));
342         rcu_string_free(device->name);
343         extent_io_tree_release(&device->alloc_state);
344         bio_put(device->flush_bio);
345         kfree(device);
346 }
347
348 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
349 {
350         struct btrfs_device *device;
351         WARN_ON(fs_devices->opened);
352         while (!list_empty(&fs_devices->devices)) {
353                 device = list_entry(fs_devices->devices.next,
354                                     struct btrfs_device, dev_list);
355                 list_del(&device->dev_list);
356                 btrfs_free_device(device);
357         }
358         kfree(fs_devices);
359 }
360
361 static void btrfs_kobject_uevent(struct block_device *bdev,
362                                  enum kobject_action action)
363 {
364         int ret;
365
366         ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
367         if (ret)
368                 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
369                         action,
370                         kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
371                         &disk_to_dev(bdev->bd_disk)->kobj);
372 }
373
374 void __exit btrfs_cleanup_fs_uuids(void)
375 {
376         struct btrfs_fs_devices *fs_devices;
377
378         while (!list_empty(&fs_uuids)) {
379                 fs_devices = list_entry(fs_uuids.next,
380                                         struct btrfs_fs_devices, fs_list);
381                 list_del(&fs_devices->fs_list);
382                 free_fs_devices(fs_devices);
383         }
384 }
385
386 /*
387  * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
388  * Returned struct is not linked onto any lists and must be destroyed using
389  * btrfs_free_device.
390  */
391 static struct btrfs_device *__alloc_device(void)
392 {
393         struct btrfs_device *dev;
394
395         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
396         if (!dev)
397                 return ERR_PTR(-ENOMEM);
398
399         /*
400          * Preallocate a bio that's always going to be used for flushing device
401          * barriers and matches the device lifespan
402          */
403         dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
404         if (!dev->flush_bio) {
405                 kfree(dev);
406                 return ERR_PTR(-ENOMEM);
407         }
408
409         INIT_LIST_HEAD(&dev->dev_list);
410         INIT_LIST_HEAD(&dev->dev_alloc_list);
411         INIT_LIST_HEAD(&dev->post_commit_list);
412
413         spin_lock_init(&dev->io_lock);
414
415         atomic_set(&dev->reada_in_flight, 0);
416         atomic_set(&dev->dev_stats_ccnt, 0);
417         btrfs_device_data_ordered_init(dev);
418         INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
419         INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
420         extent_io_tree_init(NULL, &dev->alloc_state, 0, NULL);
421
422         return dev;
423 }
424
425 static noinline struct btrfs_fs_devices *find_fsid(
426                 const u8 *fsid, const u8 *metadata_fsid)
427 {
428         struct btrfs_fs_devices *fs_devices;
429
430         ASSERT(fsid);
431
432         if (metadata_fsid) {
433                 /*
434                  * Handle scanned device having completed its fsid change but
435                  * belonging to a fs_devices that was created by first scanning
436                  * a device which didn't have its fsid/metadata_uuid changed
437                  * at all and the CHANGING_FSID_V2 flag set.
438                  */
439                 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
440                         if (fs_devices->fsid_change &&
441                             memcmp(metadata_fsid, fs_devices->fsid,
442                                    BTRFS_FSID_SIZE) == 0 &&
443                             memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
444                                    BTRFS_FSID_SIZE) == 0) {
445                                 return fs_devices;
446                         }
447                 }
448                 /*
449                  * Handle scanned device having completed its fsid change but
450                  * belonging to a fs_devices that was created by a device that
451                  * has an outdated pair of fsid/metadata_uuid and
452                  * CHANGING_FSID_V2 flag set.
453                  */
454                 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
455                         if (fs_devices->fsid_change &&
456                             memcmp(fs_devices->metadata_uuid,
457                                    fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
458                             memcmp(metadata_fsid, fs_devices->metadata_uuid,
459                                    BTRFS_FSID_SIZE) == 0) {
460                                 return fs_devices;
461                         }
462                 }
463         }
464
465         /* Handle non-split brain cases */
466         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
467                 if (metadata_fsid) {
468                         if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
469                             && memcmp(metadata_fsid, fs_devices->metadata_uuid,
470                                       BTRFS_FSID_SIZE) == 0)
471                                 return fs_devices;
472                 } else {
473                         if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
474                                 return fs_devices;
475                 }
476         }
477         return NULL;
478 }
479
480 static int
481 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
482                       int flush, struct block_device **bdev,
483                       struct buffer_head **bh)
484 {
485         int ret;
486
487         *bdev = blkdev_get_by_path(device_path, flags, holder);
488
489         if (IS_ERR(*bdev)) {
490                 ret = PTR_ERR(*bdev);
491                 goto error;
492         }
493
494         if (flush)
495                 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
496         ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
497         if (ret) {
498                 blkdev_put(*bdev, flags);
499                 goto error;
500         }
501         invalidate_bdev(*bdev);
502         *bh = btrfs_read_dev_super(*bdev);
503         if (IS_ERR(*bh)) {
504                 ret = PTR_ERR(*bh);
505                 blkdev_put(*bdev, flags);
506                 goto error;
507         }
508
509         return 0;
510
511 error:
512         *bdev = NULL;
513         *bh = NULL;
514         return ret;
515 }
516
517 static void requeue_list(struct btrfs_pending_bios *pending_bios,
518                         struct bio *head, struct bio *tail)
519 {
520
521         struct bio *old_head;
522
523         old_head = pending_bios->head;
524         pending_bios->head = head;
525         if (pending_bios->tail)
526                 tail->bi_next = old_head;
527         else
528                 pending_bios->tail = tail;
529 }
530
531 /*
532  * we try to collect pending bios for a device so we don't get a large
533  * number of procs sending bios down to the same device.  This greatly
534  * improves the schedulers ability to collect and merge the bios.
535  *
536  * But, it also turns into a long list of bios to process and that is sure
537  * to eventually make the worker thread block.  The solution here is to
538  * make some progress and then put this work struct back at the end of
539  * the list if the block device is congested.  This way, multiple devices
540  * can make progress from a single worker thread.
541  */
542 static noinline void run_scheduled_bios(struct btrfs_device *device)
543 {
544         struct btrfs_fs_info *fs_info = device->fs_info;
545         struct bio *pending;
546         struct backing_dev_info *bdi;
547         struct btrfs_pending_bios *pending_bios;
548         struct bio *tail;
549         struct bio *cur;
550         int again = 0;
551         unsigned long num_run;
552         unsigned long batch_run = 0;
553         unsigned long last_waited = 0;
554         int force_reg = 0;
555         int sync_pending = 0;
556         struct blk_plug plug;
557
558         /*
559          * this function runs all the bios we've collected for
560          * a particular device.  We don't want to wander off to
561          * another device without first sending all of these down.
562          * So, setup a plug here and finish it off before we return
563          */
564         blk_start_plug(&plug);
565
566         bdi = device->bdev->bd_bdi;
567
568 loop:
569         spin_lock(&device->io_lock);
570
571 loop_lock:
572         num_run = 0;
573
574         /* take all the bios off the list at once and process them
575          * later on (without the lock held).  But, remember the
576          * tail and other pointers so the bios can be properly reinserted
577          * into the list if we hit congestion
578          */
579         if (!force_reg && device->pending_sync_bios.head) {
580                 pending_bios = &device->pending_sync_bios;
581                 force_reg = 1;
582         } else {
583                 pending_bios = &device->pending_bios;
584                 force_reg = 0;
585         }
586
587         pending = pending_bios->head;
588         tail = pending_bios->tail;
589         WARN_ON(pending && !tail);
590
591         /*
592          * if pending was null this time around, no bios need processing
593          * at all and we can stop.  Otherwise it'll loop back up again
594          * and do an additional check so no bios are missed.
595          *
596          * device->running_pending is used to synchronize with the
597          * schedule_bio code.
598          */
599         if (device->pending_sync_bios.head == NULL &&
600             device->pending_bios.head == NULL) {
601                 again = 0;
602                 device->running_pending = 0;
603         } else {
604                 again = 1;
605                 device->running_pending = 1;
606         }
607
608         pending_bios->head = NULL;
609         pending_bios->tail = NULL;
610
611         spin_unlock(&device->io_lock);
612
613         while (pending) {
614
615                 rmb();
616                 /* we want to work on both lists, but do more bios on the
617                  * sync list than the regular list
618                  */
619                 if ((num_run > 32 &&
620                     pending_bios != &device->pending_sync_bios &&
621                     device->pending_sync_bios.head) ||
622                    (num_run > 64 && pending_bios == &device->pending_sync_bios &&
623                     device->pending_bios.head)) {
624                         spin_lock(&device->io_lock);
625                         requeue_list(pending_bios, pending, tail);
626                         goto loop_lock;
627                 }
628
629                 cur = pending;
630                 pending = pending->bi_next;
631                 cur->bi_next = NULL;
632
633                 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
634
635                 /*
636                  * if we're doing the sync list, record that our
637                  * plug has some sync requests on it
638                  *
639                  * If we're doing the regular list and there are
640                  * sync requests sitting around, unplug before
641                  * we add more
642                  */
643                 if (pending_bios == &device->pending_sync_bios) {
644                         sync_pending = 1;
645                 } else if (sync_pending) {
646                         blk_finish_plug(&plug);
647                         blk_start_plug(&plug);
648                         sync_pending = 0;
649                 }
650
651                 btrfsic_submit_bio(cur);
652                 num_run++;
653                 batch_run++;
654
655                 cond_resched();
656
657                 /*
658                  * we made progress, there is more work to do and the bdi
659                  * is now congested.  Back off and let other work structs
660                  * run instead
661                  */
662                 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
663                     fs_info->fs_devices->open_devices > 1) {
664                         struct io_context *ioc;
665
666                         ioc = current->io_context;
667
668                         /*
669                          * the main goal here is that we don't want to
670                          * block if we're going to be able to submit
671                          * more requests without blocking.
672                          *
673                          * This code does two great things, it pokes into
674                          * the elevator code from a filesystem _and_
675                          * it makes assumptions about how batching works.
676                          */
677                         if (ioc && ioc->nr_batch_requests > 0 &&
678                             time_before(jiffies, ioc->last_waited + HZ/50UL) &&
679                             (last_waited == 0 ||
680                              ioc->last_waited == last_waited)) {
681                                 /*
682                                  * we want to go through our batch of
683                                  * requests and stop.  So, we copy out
684                                  * the ioc->last_waited time and test
685                                  * against it before looping
686                                  */
687                                 last_waited = ioc->last_waited;
688                                 cond_resched();
689                                 continue;
690                         }
691                         spin_lock(&device->io_lock);
692                         requeue_list(pending_bios, pending, tail);
693                         device->running_pending = 1;
694
695                         spin_unlock(&device->io_lock);
696                         btrfs_queue_work(fs_info->submit_workers,
697                                          &device->work);
698                         goto done;
699                 }
700         }
701
702         cond_resched();
703         if (again)
704                 goto loop;
705
706         spin_lock(&device->io_lock);
707         if (device->pending_bios.head || device->pending_sync_bios.head)
708                 goto loop_lock;
709         spin_unlock(&device->io_lock);
710
711 done:
712         blk_finish_plug(&plug);
713 }
714
715 static void pending_bios_fn(struct btrfs_work *work)
716 {
717         struct btrfs_device *device;
718
719         device = container_of(work, struct btrfs_device, work);
720         run_scheduled_bios(device);
721 }
722
723 static bool device_path_matched(const char *path, struct btrfs_device *device)
724 {
725         int found;
726
727         rcu_read_lock();
728         found = strcmp(rcu_str_deref(device->name), path);
729         rcu_read_unlock();
730
731         return found == 0;
732 }
733
734 /*
735  *  Search and remove all stale (devices which are not mounted) devices.
736  *  When both inputs are NULL, it will search and release all stale devices.
737  *  path:       Optional. When provided will it release all unmounted devices
738  *              matching this path only.
739  *  skip_dev:   Optional. Will skip this device when searching for the stale
740  *              devices.
741  *  Return:     0 for success or if @path is NULL.
742  *              -EBUSY if @path is a mounted device.
743  *              -ENOENT if @path does not match any device in the list.
744  */
745 static int btrfs_free_stale_devices(const char *path,
746                                      struct btrfs_device *skip_device)
747 {
748         struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
749         struct btrfs_device *device, *tmp_device;
750         int ret = 0;
751
752         if (path)
753                 ret = -ENOENT;
754
755         list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
756
757                 mutex_lock(&fs_devices->device_list_mutex);
758                 list_for_each_entry_safe(device, tmp_device,
759                                          &fs_devices->devices, dev_list) {
760                         if (skip_device && skip_device == device)
761                                 continue;
762                         if (path && !device->name)
763                                 continue;
764                         if (path && !device_path_matched(path, device))
765                                 continue;
766                         if (fs_devices->opened) {
767                                 /* for an already deleted device return 0 */
768                                 if (path && ret != 0)
769                                         ret = -EBUSY;
770                                 break;
771                         }
772
773                         /* delete the stale device */
774                         fs_devices->num_devices--;
775                         list_del(&device->dev_list);
776                         btrfs_free_device(device);
777
778                         ret = 0;
779                         if (fs_devices->num_devices == 0)
780                                 break;
781                 }
782                 mutex_unlock(&fs_devices->device_list_mutex);
783
784                 if (fs_devices->num_devices == 0) {
785                         btrfs_sysfs_remove_fsid(fs_devices);
786                         list_del(&fs_devices->fs_list);
787                         free_fs_devices(fs_devices);
788                 }
789         }
790
791         return ret;
792 }
793
794 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
795                         struct btrfs_device *device, fmode_t flags,
796                         void *holder)
797 {
798         struct request_queue *q;
799         struct block_device *bdev;
800         struct buffer_head *bh;
801         struct btrfs_super_block *disk_super;
802         u64 devid;
803         int ret;
804
805         if (device->bdev)
806                 return -EINVAL;
807         if (!device->name)
808                 return -EINVAL;
809
810         ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
811                                     &bdev, &bh);
812         if (ret)
813                 return ret;
814
815         disk_super = (struct btrfs_super_block *)bh->b_data;
816         devid = btrfs_stack_device_id(&disk_super->dev_item);
817         if (devid != device->devid)
818                 goto error_brelse;
819
820         if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
821                 goto error_brelse;
822
823         device->generation = btrfs_super_generation(disk_super);
824
825         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
826                 if (btrfs_super_incompat_flags(disk_super) &
827                     BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
828                         pr_err(
829                 "BTRFS: Invalid seeding and uuid-changed device detected\n");
830                         goto error_brelse;
831                 }
832
833                 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
834                 fs_devices->seeding = 1;
835         } else {
836                 if (bdev_read_only(bdev))
837                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
838                 else
839                         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
840         }
841
842         q = bdev_get_queue(bdev);
843         if (!blk_queue_nonrot(q))
844                 fs_devices->rotating = 1;
845
846         device->bdev = bdev;
847         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
848         device->mode = flags;
849
850         fs_devices->open_devices++;
851         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
852             device->devid != BTRFS_DEV_REPLACE_DEVID) {
853                 fs_devices->rw_devices++;
854                 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
855         }
856         brelse(bh);
857
858         return 0;
859
860 error_brelse:
861         brelse(bh);
862         blkdev_put(bdev, flags);
863
864         return -EINVAL;
865 }
866
867 /*
868  * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
869  * being created with a disk that has already completed its fsid change.
870  */
871 static struct btrfs_fs_devices *find_fsid_inprogress(
872                                         struct btrfs_super_block *disk_super)
873 {
874         struct btrfs_fs_devices *fs_devices;
875
876         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
877                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
878                            BTRFS_FSID_SIZE) != 0 &&
879                     memcmp(fs_devices->metadata_uuid, disk_super->fsid,
880                            BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
881                         return fs_devices;
882                 }
883         }
884
885         return NULL;
886 }
887
888
889 static struct btrfs_fs_devices *find_fsid_changed(
890                                         struct btrfs_super_block *disk_super)
891 {
892         struct btrfs_fs_devices *fs_devices;
893
894         /*
895          * Handles the case where scanned device is part of an fs that had
896          * multiple successful changes of FSID but curently device didn't
897          * observe it. Meaning our fsid will be different than theirs.
898          */
899         list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
900                 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
901                            BTRFS_FSID_SIZE) != 0 &&
902                     memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
903                            BTRFS_FSID_SIZE) == 0 &&
904                     memcmp(fs_devices->fsid, disk_super->fsid,
905                            BTRFS_FSID_SIZE) != 0) {
906                         return fs_devices;
907                 }
908         }
909
910         return NULL;
911 }
912 /*
913  * Add new device to list of registered devices
914  *
915  * Returns:
916  * device pointer which was just added or updated when successful
917  * error pointer when failed
918  */
919 static noinline struct btrfs_device *device_list_add(const char *path,
920                            struct btrfs_super_block *disk_super,
921                            bool *new_device_added)
922 {
923         struct btrfs_device *device;
924         struct btrfs_fs_devices *fs_devices = NULL;
925         struct rcu_string *name;
926         u64 found_transid = btrfs_super_generation(disk_super);
927         u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
928         bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
929                 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
930         bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
931                                         BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
932
933         if (fsid_change_in_progress) {
934                 if (!has_metadata_uuid) {
935                         /*
936                          * When we have an image which has CHANGING_FSID_V2 set
937                          * it might belong to either a filesystem which has
938                          * disks with completed fsid change or it might belong
939                          * to fs with no UUID changes in effect, handle both.
940                          */
941                         fs_devices = find_fsid_inprogress(disk_super);
942                         if (!fs_devices)
943                                 fs_devices = find_fsid(disk_super->fsid, NULL);
944                 } else {
945                         fs_devices = find_fsid_changed(disk_super);
946                 }
947         } else if (has_metadata_uuid) {
948                 fs_devices = find_fsid(disk_super->fsid,
949                                        disk_super->metadata_uuid);
950         } else {
951                 fs_devices = find_fsid(disk_super->fsid, NULL);
952         }
953
954
955         if (!fs_devices) {
956                 if (has_metadata_uuid)
957                         fs_devices = alloc_fs_devices(disk_super->fsid,
958                                                       disk_super->metadata_uuid);
959                 else
960                         fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
961
962                 if (IS_ERR(fs_devices))
963                         return ERR_CAST(fs_devices);
964
965                 fs_devices->fsid_change = fsid_change_in_progress;
966
967                 mutex_lock(&fs_devices->device_list_mutex);
968                 list_add(&fs_devices->fs_list, &fs_uuids);
969
970                 device = NULL;
971         } else {
972                 mutex_lock(&fs_devices->device_list_mutex);
973                 device = btrfs_find_device(fs_devices, devid,
974                                 disk_super->dev_item.uuid, NULL, false);
975
976                 /*
977                  * If this disk has been pulled into an fs devices created by
978                  * a device which had the CHANGING_FSID_V2 flag then replace the
979                  * metadata_uuid/fsid values of the fs_devices.
980                  */
981                 if (has_metadata_uuid && fs_devices->fsid_change &&
982                     found_transid > fs_devices->latest_generation) {
983                         memcpy(fs_devices->fsid, disk_super->fsid,
984                                         BTRFS_FSID_SIZE);
985                         memcpy(fs_devices->metadata_uuid,
986                                         disk_super->metadata_uuid, BTRFS_FSID_SIZE);
987
988                         fs_devices->fsid_change = false;
989                 }
990         }
991
992         if (!device) {
993                 if (fs_devices->opened) {
994                         mutex_unlock(&fs_devices->device_list_mutex);
995                         return ERR_PTR(-EBUSY);
996                 }
997
998                 device = btrfs_alloc_device(NULL, &devid,
999                                             disk_super->dev_item.uuid);
1000                 if (IS_ERR(device)) {
1001                         mutex_unlock(&fs_devices->device_list_mutex);
1002                         /* we can safely leave the fs_devices entry around */
1003                         return device;
1004                 }
1005
1006                 name = rcu_string_strdup(path, GFP_NOFS);
1007                 if (!name) {
1008                         btrfs_free_device(device);
1009                         mutex_unlock(&fs_devices->device_list_mutex);
1010                         return ERR_PTR(-ENOMEM);
1011                 }
1012                 rcu_assign_pointer(device->name, name);
1013
1014                 list_add_rcu(&device->dev_list, &fs_devices->devices);
1015                 fs_devices->num_devices++;
1016
1017                 device->fs_devices = fs_devices;
1018                 *new_device_added = true;
1019
1020                 if (disk_super->label[0])
1021                         pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
1022                                 disk_super->label, devid, found_transid, path);
1023                 else
1024                         pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
1025                                 disk_super->fsid, devid, found_transid, path);
1026
1027         } else if (!device->name || strcmp(device->name->str, path)) {
1028                 /*
1029                  * When FS is already mounted.
1030                  * 1. If you are here and if the device->name is NULL that
1031                  *    means this device was missing at time of FS mount.
1032                  * 2. If you are here and if the device->name is different
1033                  *    from 'path' that means either
1034                  *      a. The same device disappeared and reappeared with
1035                  *         different name. or
1036                  *      b. The missing-disk-which-was-replaced, has
1037                  *         reappeared now.
1038                  *
1039                  * We must allow 1 and 2a above. But 2b would be a spurious
1040                  * and unintentional.
1041                  *
1042                  * Further in case of 1 and 2a above, the disk at 'path'
1043                  * would have missed some transaction when it was away and
1044                  * in case of 2a the stale bdev has to be updated as well.
1045                  * 2b must not be allowed at all time.
1046                  */
1047
1048                 /*
1049                  * For now, we do allow update to btrfs_fs_device through the
1050                  * btrfs dev scan cli after FS has been mounted.  We're still
1051                  * tracking a problem where systems fail mount by subvolume id
1052                  * when we reject replacement on a mounted FS.
1053                  */
1054                 if (!fs_devices->opened && found_transid < device->generation) {
1055                         /*
1056                          * That is if the FS is _not_ mounted and if you
1057                          * are here, that means there is more than one
1058                          * disk with same uuid and devid.We keep the one
1059                          * with larger generation number or the last-in if
1060                          * generation are equal.
1061                          */
1062                         mutex_unlock(&fs_devices->device_list_mutex);
1063                         return ERR_PTR(-EEXIST);
1064                 }
1065
1066                 /*
1067                  * We are going to replace the device path for a given devid,
1068                  * make sure it's the same device if the device is mounted
1069                  */
1070                 if (device->bdev) {
1071                         struct block_device *path_bdev;
1072
1073                         path_bdev = lookup_bdev(path);
1074                         if (IS_ERR(path_bdev)) {
1075                                 mutex_unlock(&fs_devices->device_list_mutex);
1076                                 return ERR_CAST(path_bdev);
1077                         }
1078
1079                         if (device->bdev != path_bdev) {
1080                                 bdput(path_bdev);
1081                                 mutex_unlock(&fs_devices->device_list_mutex);
1082                                 btrfs_warn_in_rcu(device->fs_info,
1083                         "duplicate device fsid:devid for %pU:%llu old:%s new:%s",
1084                                         disk_super->fsid, devid,
1085                                         rcu_str_deref(device->name), path);
1086                                 return ERR_PTR(-EEXIST);
1087                         }
1088                         bdput(path_bdev);
1089                         btrfs_info_in_rcu(device->fs_info,
1090                                 "device fsid %pU devid %llu moved old:%s new:%s",
1091                                 disk_super->fsid, devid,
1092                                 rcu_str_deref(device->name), path);
1093                 }
1094
1095                 name = rcu_string_strdup(path, GFP_NOFS);
1096                 if (!name) {
1097                         mutex_unlock(&fs_devices->device_list_mutex);
1098                         return ERR_PTR(-ENOMEM);
1099                 }
1100                 rcu_string_free(device->name);
1101                 rcu_assign_pointer(device->name, name);
1102                 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
1103                         fs_devices->missing_devices--;
1104                         clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
1105                 }
1106         }
1107
1108         /*
1109          * Unmount does not free the btrfs_device struct but would zero
1110          * generation along with most of the other members. So just update
1111          * it back. We need it to pick the disk with largest generation
1112          * (as above).
1113          */
1114         if (!fs_devices->opened) {
1115                 device->generation = found_transid;
1116                 fs_devices->latest_generation = max_t(u64, found_transid,
1117                                                 fs_devices->latest_generation);
1118         }
1119
1120         fs_devices->total_devices = btrfs_super_num_devices(disk_super);
1121
1122         mutex_unlock(&fs_devices->device_list_mutex);
1123         return device;
1124 }
1125
1126 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
1127 {
1128         struct btrfs_fs_devices *fs_devices;
1129         struct btrfs_device *device;
1130         struct btrfs_device *orig_dev;
1131
1132         fs_devices = alloc_fs_devices(orig->fsid, NULL);
1133         if (IS_ERR(fs_devices))
1134                 return fs_devices;
1135
1136         mutex_lock(&orig->device_list_mutex);
1137         fs_devices->total_devices = orig->total_devices;
1138
1139         list_for_each_entry(orig_dev, &orig->devices, dev_list) {
1140                 struct rcu_string *name;
1141
1142                 device = btrfs_alloc_device(NULL, &orig_dev->devid,
1143                                             orig_dev->uuid);
1144                 if (IS_ERR(device))
1145                         goto error;
1146
1147                 /*
1148                  * This is ok to do without rcu read locked because we hold the
1149                  * uuid mutex so nothing we touch in here is going to disappear.
1150                  */
1151                 if (orig_dev->name) {
1152                         name = rcu_string_strdup(orig_dev->name->str,
1153                                         GFP_KERNEL);
1154                         if (!name) {
1155                                 btrfs_free_device(device);
1156                                 goto error;
1157                         }
1158                         rcu_assign_pointer(device->name, name);
1159                 }
1160
1161                 list_add(&device->dev_list, &fs_devices->devices);
1162                 device->fs_devices = fs_devices;
1163                 fs_devices->num_devices++;
1164         }
1165         mutex_unlock(&orig->device_list_mutex);
1166         return fs_devices;
1167 error:
1168         mutex_unlock(&orig->device_list_mutex);
1169         free_fs_devices(fs_devices);
1170         return ERR_PTR(-ENOMEM);
1171 }
1172
1173 /*
1174  * After we have read the system tree and know devids belonging to
1175  * this filesystem, remove the device which does not belong there.
1176  */
1177 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
1178 {
1179         struct btrfs_device *device, *next;
1180         struct btrfs_device *latest_dev = NULL;
1181
1182         mutex_lock(&uuid_mutex);
1183 again:
1184         /* This is the initialized path, it is safe to release the devices. */
1185         list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1186                 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1187                                                         &device->dev_state)) {
1188                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1189                              &device->dev_state) &&
1190                              (!latest_dev ||
1191                               device->generation > latest_dev->generation)) {
1192                                 latest_dev = device;
1193                         }
1194                         continue;
1195                 }
1196
1197                 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
1198                         /*
1199                          * In the first step, keep the device which has
1200                          * the correct fsid and the devid that is used
1201                          * for the dev_replace procedure.
1202                          * In the second step, the dev_replace state is
1203                          * read from the device tree and it is known
1204                          * whether the procedure is really active or
1205                          * not, which means whether this device is
1206                          * used or whether it should be removed.
1207                          */
1208                         if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1209                                                   &device->dev_state)) {
1210                                 continue;
1211                         }
1212                 }
1213                 if (device->bdev) {
1214                         blkdev_put(device->bdev, device->mode);
1215                         device->bdev = NULL;
1216                         fs_devices->open_devices--;
1217                 }
1218                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1219                         list_del_init(&device->dev_alloc_list);
1220                         clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1221                         if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1222                                       &device->dev_state))
1223                                 fs_devices->rw_devices--;
1224                 }
1225                 list_del_init(&device->dev_list);
1226                 fs_devices->num_devices--;
1227                 btrfs_free_device(device);
1228         }
1229
1230         if (fs_devices->seed) {
1231                 fs_devices = fs_devices->seed;
1232                 goto again;
1233         }
1234
1235         fs_devices->latest_bdev = latest_dev->bdev;
1236
1237         mutex_unlock(&uuid_mutex);
1238 }
1239
1240 static void btrfs_close_bdev(struct btrfs_device *device)
1241 {
1242         if (!device->bdev)
1243                 return;
1244
1245         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1246                 sync_blockdev(device->bdev);
1247                 invalidate_bdev(device->bdev);
1248         }
1249
1250         blkdev_put(device->bdev, device->mode);
1251 }
1252
1253 static void btrfs_close_one_device(struct btrfs_device *device)
1254 {
1255         struct btrfs_fs_devices *fs_devices = device->fs_devices;
1256         struct btrfs_device *new_device;
1257         struct rcu_string *name;
1258
1259         if (device->bdev)
1260                 fs_devices->open_devices--;
1261
1262         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1263             device->devid != BTRFS_DEV_REPLACE_DEVID) {
1264                 list_del_init(&device->dev_alloc_list);
1265                 fs_devices->rw_devices--;
1266         }
1267
1268         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1269                 fs_devices->missing_devices--;
1270
1271         btrfs_close_bdev(device);
1272
1273         new_device = btrfs_alloc_device(NULL, &device->devid,
1274                                         device->uuid);
1275         BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1276
1277         /* Safe because we are under uuid_mutex */
1278         if (device->name) {
1279                 name = rcu_string_strdup(device->name->str, GFP_NOFS);
1280                 BUG_ON(!name); /* -ENOMEM */
1281                 rcu_assign_pointer(new_device->name, name);
1282         }
1283
1284         list_replace_rcu(&device->dev_list, &new_device->dev_list);
1285         new_device->fs_devices = device->fs_devices;
1286
1287         synchronize_rcu();
1288         btrfs_free_device(device);
1289 }
1290
1291 static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1292 {
1293         struct btrfs_device *device, *tmp;
1294
1295         if (--fs_devices->opened > 0)
1296                 return 0;
1297
1298         mutex_lock(&fs_devices->device_list_mutex);
1299         list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1300                 btrfs_close_one_device(device);
1301         }
1302         mutex_unlock(&fs_devices->device_list_mutex);
1303
1304         WARN_ON(fs_devices->open_devices);
1305         WARN_ON(fs_devices->rw_devices);
1306         fs_devices->opened = 0;
1307         fs_devices->seeding = 0;
1308
1309         return 0;
1310 }
1311
1312 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1313 {
1314         struct btrfs_fs_devices *seed_devices = NULL;
1315         int ret;
1316
1317         mutex_lock(&uuid_mutex);
1318         ret = close_fs_devices(fs_devices);
1319         if (!fs_devices->opened) {
1320                 seed_devices = fs_devices->seed;
1321                 fs_devices->seed = NULL;
1322         }
1323         mutex_unlock(&uuid_mutex);
1324
1325         while (seed_devices) {
1326                 fs_devices = seed_devices;
1327                 seed_devices = fs_devices->seed;
1328                 close_fs_devices(fs_devices);
1329                 free_fs_devices(fs_devices);
1330         }
1331         return ret;
1332 }
1333
1334 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1335                                 fmode_t flags, void *holder)
1336 {
1337         struct btrfs_device *device;
1338         struct btrfs_device *latest_dev = NULL;
1339         int ret = 0;
1340
1341         flags |= FMODE_EXCL;
1342
1343         list_for_each_entry(device, &fs_devices->devices, dev_list) {
1344                 /* Just open everything we can; ignore failures here */
1345                 if (btrfs_open_one_device(fs_devices, device, flags, holder))
1346                         continue;
1347
1348                 if (!latest_dev ||
1349                     device->generation > latest_dev->generation)
1350                         latest_dev = device;
1351         }
1352         if (fs_devices->open_devices == 0) {
1353                 ret = -EINVAL;
1354                 goto out;
1355         }
1356         fs_devices->opened = 1;
1357         fs_devices->latest_bdev = latest_dev->bdev;
1358         fs_devices->total_rw_bytes = 0;
1359 out:
1360         return ret;
1361 }
1362
1363 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1364 {
1365         struct btrfs_device *dev1, *dev2;
1366
1367         dev1 = list_entry(a, struct btrfs_device, dev_list);
1368         dev2 = list_entry(b, struct btrfs_device, dev_list);
1369
1370         if (dev1->devid < dev2->devid)
1371                 return -1;
1372         else if (dev1->devid > dev2->devid)
1373                 return 1;
1374         return 0;
1375 }
1376
1377 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1378                        fmode_t flags, void *holder)
1379 {
1380         int ret;
1381
1382         lockdep_assert_held(&uuid_mutex);
1383
1384         mutex_lock(&fs_devices->device_list_mutex);
1385         if (fs_devices->opened) {
1386                 fs_devices->opened++;
1387                 ret = 0;
1388         } else {
1389                 list_sort(NULL, &fs_devices->devices, devid_cmp);
1390                 ret = open_fs_devices(fs_devices, flags, holder);
1391         }
1392         mutex_unlock(&fs_devices->device_list_mutex);
1393
1394         return ret;
1395 }
1396
1397 static void btrfs_release_disk_super(struct page *page)
1398 {
1399         kunmap(page);
1400         put_page(page);
1401 }
1402
1403 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1404                                  struct page **page,
1405                                  struct btrfs_super_block **disk_super)
1406 {
1407         void *p;
1408         pgoff_t index;
1409
1410         /* make sure our super fits in the device */
1411         if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1412                 return 1;
1413
1414         /* make sure our super fits in the page */
1415         if (sizeof(**disk_super) > PAGE_SIZE)
1416                 return 1;
1417
1418         /* make sure our super doesn't straddle pages on disk */
1419         index = bytenr >> PAGE_SHIFT;
1420         if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1421                 return 1;
1422
1423         /* pull in the page with our super */
1424         *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1425                                    index, GFP_KERNEL);
1426
1427         if (IS_ERR_OR_NULL(*page))
1428                 return 1;
1429
1430         p = kmap(*page);
1431
1432         /* align our pointer to the offset of the super block */
1433         *disk_super = p + offset_in_page(bytenr);
1434
1435         if (btrfs_super_bytenr(*disk_super) != bytenr ||
1436             btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1437                 btrfs_release_disk_super(*page);
1438                 return 1;
1439         }
1440
1441         if ((*disk_super)->label[0] &&
1442                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1443                 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1444
1445         return 0;
1446 }
1447
1448 int btrfs_forget_devices(const char *path)
1449 {
1450         int ret;
1451
1452         mutex_lock(&uuid_mutex);
1453         ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1454         mutex_unlock(&uuid_mutex);
1455
1456         return ret;
1457 }
1458
1459 /*
1460  * Look for a btrfs signature on a device. This may be called out of the mount path
1461  * and we are not allowed to call set_blocksize during the scan. The superblock
1462  * is read via pagecache
1463  */
1464 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1465                                            void *holder)
1466 {
1467         struct btrfs_super_block *disk_super;
1468         bool new_device_added = false;
1469         struct btrfs_device *device = NULL;
1470         struct block_device *bdev;
1471         struct page *page;
1472         u64 bytenr;
1473
1474         lockdep_assert_held(&uuid_mutex);
1475
1476         /*
1477          * we would like to check all the supers, but that would make
1478          * a btrfs mount succeed after a mkfs from a different FS.
1479          * So, we need to add a special mount option to scan for
1480          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1481          */
1482         bytenr = btrfs_sb_offset(0);
1483         flags |= FMODE_EXCL;
1484
1485         bdev = blkdev_get_by_path(path, flags, holder);
1486         if (IS_ERR(bdev))
1487                 return ERR_CAST(bdev);
1488
1489         if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1490                 device = ERR_PTR(-EINVAL);
1491                 goto error_bdev_put;
1492         }
1493
1494         device = device_list_add(path, disk_super, &new_device_added);
1495         if (!IS_ERR(device)) {
1496                 if (new_device_added)
1497                         btrfs_free_stale_devices(path, device);
1498         }
1499
1500         btrfs_release_disk_super(page);
1501
1502 error_bdev_put:
1503         blkdev_put(bdev, flags);
1504
1505         return device;
1506 }
1507
1508 /*
1509  * Try to find a chunk that intersects [start, start + len] range and when one
1510  * such is found, record the end of it in *start
1511  */
1512 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1513                                     u64 len)
1514 {
1515         u64 physical_start, physical_end;
1516
1517         lockdep_assert_held(&device->fs_info->chunk_mutex);
1518
1519         if (!find_first_extent_bit(&device->alloc_state, *start,
1520                                    &physical_start, &physical_end,
1521                                    CHUNK_ALLOCATED, NULL)) {
1522
1523                 if (in_range(physical_start, *start, len) ||
1524                     in_range(*start, physical_start,
1525                              physical_end - physical_start)) {
1526                         *start = physical_end + 1;
1527                         return true;
1528                 }
1529         }
1530         return false;
1531 }
1532
1533
1534 /*
1535  * find_free_dev_extent_start - find free space in the specified device
1536  * @device:       the device which we search the free space in
1537  * @num_bytes:    the size of the free space that we need
1538  * @search_start: the position from which to begin the search
1539  * @start:        store the start of the free space.
1540  * @len:          the size of the free space. that we find, or the size
1541  *                of the max free space if we don't find suitable free space
1542  *
1543  * this uses a pretty simple search, the expectation is that it is
1544  * called very infrequently and that a given device has a small number
1545  * of extents
1546  *
1547  * @start is used to store the start of the free space if we find. But if we
1548  * don't find suitable free space, it will be used to store the start position
1549  * of the max free space.
1550  *
1551  * @len is used to store the size of the free space that we find.
1552  * But if we don't find suitable free space, it is used to store the size of
1553  * the max free space.
1554  */
1555 int find_free_dev_extent_start(struct btrfs_device *device, u64 num_bytes,
1556                                u64 search_start, u64 *start, u64 *len)
1557 {
1558         struct btrfs_fs_info *fs_info = device->fs_info;
1559         struct btrfs_root *root = fs_info->dev_root;
1560         struct btrfs_key key;
1561         struct btrfs_dev_extent *dev_extent;
1562         struct btrfs_path *path;
1563         u64 hole_size;
1564         u64 max_hole_start;
1565         u64 max_hole_size;
1566         u64 extent_end;
1567         u64 search_end = device->total_bytes;
1568         int ret;
1569         int slot;
1570         struct extent_buffer *l;
1571
1572         /*
1573          * We don't want to overwrite the superblock on the drive nor any area
1574          * used by the boot loader (grub for example), so we make sure to start
1575          * at an offset of at least 1MB.
1576          */
1577         search_start = max_t(u64, search_start, SZ_1M);
1578
1579         path = btrfs_alloc_path();
1580         if (!path)
1581                 return -ENOMEM;
1582
1583         max_hole_start = search_start;
1584         max_hole_size = 0;
1585
1586 again:
1587         if (search_start >= search_end ||
1588                 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1589                 ret = -ENOSPC;
1590                 goto out;
1591         }
1592
1593         path->reada = READA_FORWARD;
1594         path->search_commit_root = 1;
1595         path->skip_locking = 1;
1596
1597         key.objectid = device->devid;
1598         key.offset = search_start;
1599         key.type = BTRFS_DEV_EXTENT_KEY;
1600
1601         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1602         if (ret < 0)
1603                 goto out;
1604         if (ret > 0) {
1605                 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1606                 if (ret < 0)
1607                         goto out;
1608         }
1609
1610         while (1) {
1611                 l = path->nodes[0];
1612                 slot = path->slots[0];
1613                 if (slot >= btrfs_header_nritems(l)) {
1614                         ret = btrfs_next_leaf(root, path);
1615                         if (ret == 0)
1616                                 continue;
1617                         if (ret < 0)
1618                                 goto out;
1619
1620                         break;
1621                 }
1622                 btrfs_item_key_to_cpu(l, &key, slot);
1623
1624                 if (key.objectid < device->devid)
1625                         goto next;
1626
1627                 if (key.objectid > device->devid)
1628                         break;
1629
1630                 if (key.type != BTRFS_DEV_EXTENT_KEY)
1631                         goto next;
1632
1633                 if (key.offset > search_start) {
1634                         hole_size = key.offset - search_start;
1635
1636                         /*
1637                          * Have to check before we set max_hole_start, otherwise
1638                          * we could end up sending back this offset anyway.
1639                          */
1640                         if (contains_pending_extent(device, &search_start,
1641                                                     hole_size)) {
1642                                 if (key.offset >= search_start)
1643                                         hole_size = key.offset - search_start;
1644                                 else
1645                                         hole_size = 0;
1646                         }
1647
1648                         if (hole_size > max_hole_size) {
1649                                 max_hole_start = search_start;
1650                                 max_hole_size = hole_size;
1651                         }
1652
1653                         /*
1654                          * If this free space is greater than which we need,
1655                          * it must be the max free space that we have found
1656                          * until now, so max_hole_start must point to the start
1657                          * of this free space and the length of this free space
1658                          * is stored in max_hole_size. Thus, we return
1659                          * max_hole_start and max_hole_size and go back to the
1660                          * caller.
1661                          */
1662                         if (hole_size >= num_bytes) {
1663                                 ret = 0;
1664                                 goto out;
1665                         }
1666                 }
1667
1668                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1669                 extent_end = key.offset + btrfs_dev_extent_length(l,
1670                                                                   dev_extent);
1671                 if (extent_end > search_start)
1672                         search_start = extent_end;
1673 next:
1674                 path->slots[0]++;
1675                 cond_resched();
1676         }
1677
1678         /*
1679          * At this point, search_start should be the end of
1680          * allocated dev extents, and when shrinking the device,
1681          * search_end may be smaller than search_start.
1682          */
1683         if (search_end > search_start) {
1684                 hole_size = search_end - search_start;
1685
1686                 if (contains_pending_extent(device, &search_start, hole_size)) {
1687                         btrfs_release_path(path);
1688                         goto again;
1689                 }
1690
1691                 if (hole_size > max_hole_size) {
1692                         max_hole_start = search_start;
1693                         max_hole_size = hole_size;
1694                 }
1695         }
1696
1697         /* See above. */
1698         if (max_hole_size < num_bytes)
1699                 ret = -ENOSPC;
1700         else
1701                 ret = 0;
1702
1703 out:
1704         btrfs_free_path(path);
1705         *start = max_hole_start;
1706         if (len)
1707                 *len = max_hole_size;
1708         return ret;
1709 }
1710
1711 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1712                          u64 *start, u64 *len)
1713 {
1714         /* FIXME use last free of some kind */
1715         return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1716 }
1717
1718 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1719                           struct btrfs_device *device,
1720                           u64 start, u64 *dev_extent_len)
1721 {
1722         struct btrfs_fs_info *fs_info = device->fs_info;
1723         struct btrfs_root *root = fs_info->dev_root;
1724         int ret;
1725         struct btrfs_path *path;
1726         struct btrfs_key key;
1727         struct btrfs_key found_key;
1728         struct extent_buffer *leaf = NULL;
1729         struct btrfs_dev_extent *extent = NULL;
1730
1731         path = btrfs_alloc_path();
1732         if (!path)
1733                 return -ENOMEM;
1734
1735         key.objectid = device->devid;
1736         key.offset = start;
1737         key.type = BTRFS_DEV_EXTENT_KEY;
1738 again:
1739         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1740         if (ret > 0) {
1741                 ret = btrfs_previous_item(root, path, key.objectid,
1742                                           BTRFS_DEV_EXTENT_KEY);
1743                 if (ret)
1744                         goto out;
1745                 leaf = path->nodes[0];
1746                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1747                 extent = btrfs_item_ptr(leaf, path->slots[0],
1748                                         struct btrfs_dev_extent);
1749                 BUG_ON(found_key.offset > start || found_key.offset +
1750                        btrfs_dev_extent_length(leaf, extent) < start);
1751                 key = found_key;
1752                 btrfs_release_path(path);
1753                 goto again;
1754         } else if (ret == 0) {
1755                 leaf = path->nodes[0];
1756                 extent = btrfs_item_ptr(leaf, path->slots[0],
1757                                         struct btrfs_dev_extent);
1758         } else {
1759                 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1760                 goto out;
1761         }
1762
1763         *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1764
1765         ret = btrfs_del_item(trans, root, path);
1766         if (ret) {
1767                 btrfs_handle_fs_error(fs_info, ret,
1768                                       "Failed to remove dev extent item");
1769         } else {
1770                 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1771         }
1772 out:
1773         btrfs_free_path(path);
1774         return ret;
1775 }
1776
1777 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1778                                   struct btrfs_device *device,
1779                                   u64 chunk_offset, u64 start, u64 num_bytes)
1780 {
1781         int ret;
1782         struct btrfs_path *path;
1783         struct btrfs_fs_info *fs_info = device->fs_info;
1784         struct btrfs_root *root = fs_info->dev_root;
1785         struct btrfs_dev_extent *extent;
1786         struct extent_buffer *leaf;
1787         struct btrfs_key key;
1788
1789         WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1790         WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1791         path = btrfs_alloc_path();
1792         if (!path)
1793                 return -ENOMEM;
1794
1795         key.objectid = device->devid;
1796         key.offset = start;
1797         key.type = BTRFS_DEV_EXTENT_KEY;
1798         ret = btrfs_insert_empty_item(trans, root, path, &key,
1799                                       sizeof(*extent));
1800         if (ret)
1801                 goto out;
1802
1803         leaf = path->nodes[0];
1804         extent = btrfs_item_ptr(leaf, path->slots[0],
1805                                 struct btrfs_dev_extent);
1806         btrfs_set_dev_extent_chunk_tree(leaf, extent,
1807                                         BTRFS_CHUNK_TREE_OBJECTID);
1808         btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1809                                             BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1810         btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1811
1812         btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1813         btrfs_mark_buffer_dirty(leaf);
1814 out:
1815         btrfs_free_path(path);
1816         return ret;
1817 }
1818
1819 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1820 {
1821         struct extent_map_tree *em_tree;
1822         struct extent_map *em;
1823         struct rb_node *n;
1824         u64 ret = 0;
1825
1826         em_tree = &fs_info->mapping_tree;
1827         read_lock(&em_tree->lock);
1828         n = rb_last(&em_tree->map.rb_root);
1829         if (n) {
1830                 em = rb_entry(n, struct extent_map, rb_node);
1831                 ret = em->start + em->len;
1832         }
1833         read_unlock(&em_tree->lock);
1834
1835         return ret;
1836 }
1837
1838 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1839                                     u64 *devid_ret)
1840 {
1841         int ret;
1842         struct btrfs_key key;
1843         struct btrfs_key found_key;
1844         struct btrfs_path *path;
1845
1846         path = btrfs_alloc_path();
1847         if (!path)
1848                 return -ENOMEM;
1849
1850         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1851         key.type = BTRFS_DEV_ITEM_KEY;
1852         key.offset = (u64)-1;
1853
1854         ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1855         if (ret < 0)
1856                 goto error;
1857
1858         BUG_ON(ret == 0); /* Corruption */
1859
1860         ret = btrfs_previous_item(fs_info->chunk_root, path,
1861                                   BTRFS_DEV_ITEMS_OBJECTID,
1862                                   BTRFS_DEV_ITEM_KEY);
1863         if (ret) {
1864                 *devid_ret = 1;
1865         } else {
1866                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1867                                       path->slots[0]);
1868                 *devid_ret = found_key.offset + 1;
1869         }
1870         ret = 0;
1871 error:
1872         btrfs_free_path(path);
1873         return ret;
1874 }
1875
1876 /*
1877  * the device information is stored in the chunk root
1878  * the btrfs_device struct should be fully filled in
1879  */
1880 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1881                             struct btrfs_device *device)
1882 {
1883         int ret;
1884         struct btrfs_path *path;
1885         struct btrfs_dev_item *dev_item;
1886         struct extent_buffer *leaf;
1887         struct btrfs_key key;
1888         unsigned long ptr;
1889
1890         path = btrfs_alloc_path();
1891         if (!path)
1892                 return -ENOMEM;
1893
1894         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1895         key.type = BTRFS_DEV_ITEM_KEY;
1896         key.offset = device->devid;
1897
1898         ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1899                                       &key, sizeof(*dev_item));
1900         if (ret)
1901                 goto out;
1902
1903         leaf = path->nodes[0];
1904         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1905
1906         btrfs_set_device_id(leaf, dev_item, device->devid);
1907         btrfs_set_device_generation(leaf, dev_item, 0);
1908         btrfs_set_device_type(leaf, dev_item, device->type);
1909         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1910         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1911         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1912         btrfs_set_device_total_bytes(leaf, dev_item,
1913                                      btrfs_device_get_disk_total_bytes(device));
1914         btrfs_set_device_bytes_used(leaf, dev_item,
1915                                     btrfs_device_get_bytes_used(device));
1916         btrfs_set_device_group(leaf, dev_item, 0);
1917         btrfs_set_device_seek_speed(leaf, dev_item, 0);
1918         btrfs_set_device_bandwidth(leaf, dev_item, 0);
1919         btrfs_set_device_start_offset(leaf, dev_item, 0);
1920
1921         ptr = btrfs_device_uuid(dev_item);
1922         write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1923         ptr = btrfs_device_fsid(dev_item);
1924         write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1925                             ptr, BTRFS_FSID_SIZE);
1926         btrfs_mark_buffer_dirty(leaf);
1927
1928         ret = 0;
1929 out:
1930         btrfs_free_path(path);
1931         return ret;
1932 }
1933
1934 /*
1935  * Function to update ctime/mtime for a given device path.
1936  * Mainly used for ctime/mtime based probe like libblkid.
1937  */
1938 static void update_dev_time(const char *path_name)
1939 {
1940         struct file *filp;
1941
1942         filp = filp_open(path_name, O_RDWR, 0);
1943         if (IS_ERR(filp))
1944                 return;
1945         file_update_time(filp);
1946         filp_close(filp, NULL);
1947 }
1948
1949 static int btrfs_rm_dev_item(struct btrfs_device *device)
1950 {
1951         struct btrfs_root *root = device->fs_info->chunk_root;
1952         int ret;
1953         struct btrfs_path *path;
1954         struct btrfs_key key;
1955         struct btrfs_trans_handle *trans;
1956
1957         path = btrfs_alloc_path();
1958         if (!path)
1959                 return -ENOMEM;
1960
1961         trans = btrfs_start_transaction(root, 0);
1962         if (IS_ERR(trans)) {
1963                 btrfs_free_path(path);
1964                 return PTR_ERR(trans);
1965         }
1966         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1967         key.type = BTRFS_DEV_ITEM_KEY;
1968         key.offset = device->devid;
1969
1970         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1971         if (ret) {
1972                 if (ret > 0)
1973                         ret = -ENOENT;
1974                 btrfs_abort_transaction(trans, ret);
1975                 btrfs_end_transaction(trans);
1976                 goto out;
1977         }
1978
1979         ret = btrfs_del_item(trans, root, path);
1980         if (ret) {
1981                 btrfs_abort_transaction(trans, ret);
1982                 btrfs_end_transaction(trans);
1983         }
1984
1985 out:
1986         btrfs_free_path(path);
1987         if (!ret)
1988                 ret = btrfs_commit_transaction(trans);
1989         return ret;
1990 }
1991
1992 /*
1993  * Verify that @num_devices satisfies the RAID profile constraints in the whole
1994  * filesystem. It's up to the caller to adjust that number regarding eg. device
1995  * replace.
1996  */
1997 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1998                 u64 num_devices)
1999 {
2000         u64 all_avail;
2001         unsigned seq;
2002         int i;
2003
2004         do {
2005                 seq = read_seqbegin(&fs_info->profiles_lock);
2006
2007                 all_avail = fs_info->avail_data_alloc_bits |
2008                             fs_info->avail_system_alloc_bits |
2009                             fs_info->avail_metadata_alloc_bits;
2010         } while (read_seqretry(&fs_info->profiles_lock, seq));
2011
2012         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2013                 if (!(all_avail & btrfs_raid_array[i].bg_flag))
2014                         continue;
2015
2016                 if (num_devices < btrfs_raid_array[i].devs_min) {
2017                         int ret = btrfs_raid_array[i].mindev_error;
2018
2019                         if (ret)
2020                                 return ret;
2021                 }
2022         }
2023
2024         return 0;
2025 }
2026
2027 static struct btrfs_device * btrfs_find_next_active_device(
2028                 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
2029 {
2030         struct btrfs_device *next_device;
2031
2032         list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
2033                 if (next_device != device &&
2034                     !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
2035                     && next_device->bdev)
2036                         return next_device;
2037         }
2038
2039         return NULL;
2040 }
2041
2042 /*
2043  * Helper function to check if the given device is part of s_bdev / latest_bdev
2044  * and replace it with the provided or the next active device, in the context
2045  * where this function called, there should be always be another device (or
2046  * this_dev) which is active.
2047  */
2048 void btrfs_assign_next_active_device(struct btrfs_device *device,
2049                                      struct btrfs_device *this_dev)
2050 {
2051         struct btrfs_fs_info *fs_info = device->fs_info;
2052         struct btrfs_device *next_device;
2053
2054         if (this_dev)
2055                 next_device = this_dev;
2056         else
2057                 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
2058                                                                 device);
2059         ASSERT(next_device);
2060
2061         if (fs_info->sb->s_bdev &&
2062                         (fs_info->sb->s_bdev == device->bdev))
2063                 fs_info->sb->s_bdev = next_device->bdev;
2064
2065         if (fs_info->fs_devices->latest_bdev == device->bdev)
2066                 fs_info->fs_devices->latest_bdev = next_device->bdev;
2067 }
2068
2069 /*
2070  * Return btrfs_fs_devices::num_devices excluding the device that's being
2071  * currently replaced.
2072  */
2073 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
2074 {
2075         u64 num_devices = fs_info->fs_devices->num_devices;
2076
2077         down_read(&fs_info->dev_replace.rwsem);
2078         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
2079                 ASSERT(num_devices > 1);
2080                 num_devices--;
2081         }
2082         up_read(&fs_info->dev_replace.rwsem);
2083
2084         return num_devices;
2085 }
2086
2087 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
2088                 u64 devid)
2089 {
2090         struct btrfs_device *device;
2091         struct btrfs_fs_devices *cur_devices;
2092         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2093         u64 num_devices;
2094         int ret = 0;
2095
2096         mutex_lock(&uuid_mutex);
2097
2098         num_devices = btrfs_num_devices(fs_info);
2099
2100         ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
2101         if (ret)
2102                 goto out;
2103
2104         device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
2105
2106         if (IS_ERR(device)) {
2107                 if (PTR_ERR(device) == -ENOENT &&
2108                     strcmp(device_path, "missing") == 0)
2109                         ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2110                 else
2111                         ret = PTR_ERR(device);
2112                 goto out;
2113         }
2114
2115         if (btrfs_pinned_by_swapfile(fs_info, device)) {
2116                 btrfs_warn_in_rcu(fs_info,
2117                   "cannot remove device %s (devid %llu) due to active swapfile",
2118                                   rcu_str_deref(device->name), device->devid);
2119                 ret = -ETXTBSY;
2120                 goto out;
2121         }
2122
2123         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2124                 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
2125                 goto out;
2126         }
2127
2128         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
2129             fs_info->fs_devices->rw_devices == 1) {
2130                 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
2131                 goto out;
2132         }
2133
2134         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2135                 mutex_lock(&fs_info->chunk_mutex);
2136                 list_del_init(&device->dev_alloc_list);
2137                 device->fs_devices->rw_devices--;
2138                 mutex_unlock(&fs_info->chunk_mutex);
2139         }
2140
2141         mutex_unlock(&uuid_mutex);
2142         ret = btrfs_shrink_device(device, 0);
2143         mutex_lock(&uuid_mutex);
2144         if (ret)
2145                 goto error_undo;
2146
2147         /*
2148          * TODO: the superblock still includes this device in its num_devices
2149          * counter although write_all_supers() is not locked out. This
2150          * could give a filesystem state which requires a degraded mount.
2151          */
2152         ret = btrfs_rm_dev_item(device);
2153         if (ret)
2154                 goto error_undo;
2155
2156         clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2157         btrfs_scrub_cancel_dev(device);
2158
2159         /*
2160          * the device list mutex makes sure that we don't change
2161          * the device list while someone else is writing out all
2162          * the device supers. Whoever is writing all supers, should
2163          * lock the device list mutex before getting the number of
2164          * devices in the super block (super_copy). Conversely,
2165          * whoever updates the number of devices in the super block
2166          * (super_copy) should hold the device list mutex.
2167          */
2168
2169         /*
2170          * In normal cases the cur_devices == fs_devices. But in case
2171          * of deleting a seed device, the cur_devices should point to
2172          * its own fs_devices listed under the fs_devices->seed.
2173          */
2174         cur_devices = device->fs_devices;
2175         mutex_lock(&fs_devices->device_list_mutex);
2176         list_del_rcu(&device->dev_list);
2177
2178         cur_devices->num_devices--;
2179         cur_devices->total_devices--;
2180         /* Update total_devices of the parent fs_devices if it's seed */
2181         if (cur_devices != fs_devices)
2182                 fs_devices->total_devices--;
2183
2184         if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2185                 cur_devices->missing_devices--;
2186
2187         btrfs_assign_next_active_device(device, NULL);
2188
2189         if (device->bdev) {
2190                 cur_devices->open_devices--;
2191                 /* remove sysfs entry */
2192                 btrfs_sysfs_rm_device_link(fs_devices, device);
2193         }
2194
2195         num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2196         btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2197         mutex_unlock(&fs_devices->device_list_mutex);
2198
2199         /*
2200          * at this point, the device is zero sized and detached from
2201          * the devices list.  All that's left is to zero out the old
2202          * supers and free the device.
2203          */
2204         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2205                 btrfs_scratch_superblocks(device->bdev, device->name->str);
2206
2207         btrfs_close_bdev(device);
2208         synchronize_rcu();
2209         btrfs_free_device(device);
2210
2211         if (cur_devices->open_devices == 0) {
2212                 while (fs_devices) {
2213                         if (fs_devices->seed == cur_devices) {
2214                                 fs_devices->seed = cur_devices->seed;
2215                                 break;
2216                         }
2217                         fs_devices = fs_devices->seed;
2218                 }
2219                 cur_devices->seed = NULL;
2220                 close_fs_devices(cur_devices);
2221                 free_fs_devices(cur_devices);
2222         }
2223
2224 out:
2225         mutex_unlock(&uuid_mutex);
2226         return ret;
2227
2228 error_undo:
2229         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2230                 mutex_lock(&fs_info->chunk_mutex);
2231                 list_add(&device->dev_alloc_list,
2232                          &fs_devices->alloc_list);
2233                 device->fs_devices->rw_devices++;
2234                 mutex_unlock(&fs_info->chunk_mutex);
2235         }
2236         goto out;
2237 }
2238
2239 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2240 {
2241         struct btrfs_fs_devices *fs_devices;
2242
2243         lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2244
2245         /*
2246          * in case of fs with no seed, srcdev->fs_devices will point
2247          * to fs_devices of fs_info. However when the dev being replaced is
2248          * a seed dev it will point to the seed's local fs_devices. In short
2249          * srcdev will have its correct fs_devices in both the cases.
2250          */
2251         fs_devices = srcdev->fs_devices;
2252
2253         list_del_rcu(&srcdev->dev_list);
2254         list_del(&srcdev->dev_alloc_list);
2255         fs_devices->num_devices--;
2256         if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2257                 fs_devices->missing_devices--;
2258
2259         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2260                 fs_devices->rw_devices--;
2261
2262         if (srcdev->bdev)
2263                 fs_devices->open_devices--;
2264 }
2265
2266 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2267 {
2268         struct btrfs_fs_info *fs_info = srcdev->fs_info;
2269         struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2270
2271         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2272                 /* zero out the old super if it is writable */
2273                 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2274         }
2275
2276         btrfs_close_bdev(srcdev);
2277         synchronize_rcu();
2278         btrfs_free_device(srcdev);
2279
2280         /* if this is no devs we rather delete the fs_devices */
2281         if (!fs_devices->num_devices) {
2282                 struct btrfs_fs_devices *tmp_fs_devices;
2283
2284                 /*
2285                  * On a mounted FS, num_devices can't be zero unless it's a
2286                  * seed. In case of a seed device being replaced, the replace
2287                  * target added to the sprout FS, so there will be no more
2288                  * device left under the seed FS.
2289                  */
2290                 ASSERT(fs_devices->seeding);
2291
2292                 tmp_fs_devices = fs_info->fs_devices;
2293                 while (tmp_fs_devices) {
2294                         if (tmp_fs_devices->seed == fs_devices) {
2295                                 tmp_fs_devices->seed = fs_devices->seed;
2296                                 break;
2297                         }
2298                         tmp_fs_devices = tmp_fs_devices->seed;
2299                 }
2300                 fs_devices->seed = NULL;
2301                 close_fs_devices(fs_devices);
2302                 free_fs_devices(fs_devices);
2303         }
2304 }
2305
2306 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2307 {
2308         struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2309
2310         WARN_ON(!tgtdev);
2311         mutex_lock(&fs_devices->device_list_mutex);
2312
2313         btrfs_sysfs_rm_device_link(fs_devices, tgtdev);
2314
2315         if (tgtdev->bdev)
2316                 fs_devices->open_devices--;
2317
2318         fs_devices->num_devices--;
2319
2320         btrfs_assign_next_active_device(tgtdev, NULL);
2321
2322         list_del_rcu(&tgtdev->dev_list);
2323
2324         mutex_unlock(&fs_devices->device_list_mutex);
2325
2326         /*
2327          * The update_dev_time() with in btrfs_scratch_superblocks()
2328          * may lead to a call to btrfs_show_devname() which will try
2329          * to hold device_list_mutex. And here this device
2330          * is already out of device list, so we don't have to hold
2331          * the device_list_mutex lock.
2332          */
2333         btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2334
2335         btrfs_close_bdev(tgtdev);
2336         synchronize_rcu();
2337         btrfs_free_device(tgtdev);
2338 }
2339
2340 static struct btrfs_device *btrfs_find_device_by_path(
2341                 struct btrfs_fs_info *fs_info, const char *device_path)
2342 {
2343         int ret = 0;
2344         struct btrfs_super_block *disk_super;
2345         u64 devid;
2346         u8 *dev_uuid;
2347         struct block_device *bdev;
2348         struct buffer_head *bh;
2349         struct btrfs_device *device;
2350
2351         ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2352                                     fs_info->bdev_holder, 0, &bdev, &bh);
2353         if (ret)
2354                 return ERR_PTR(ret);
2355         disk_super = (struct btrfs_super_block *)bh->b_data;
2356         devid = btrfs_stack_device_id(&disk_super->dev_item);
2357         dev_uuid = disk_super->dev_item.uuid;
2358         if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2359                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2360                                            disk_super->metadata_uuid, true);
2361         else
2362                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2363                                            disk_super->fsid, true);
2364
2365         brelse(bh);
2366         if (!device)
2367                 device = ERR_PTR(-ENOENT);
2368         blkdev_put(bdev, FMODE_READ);
2369         return device;
2370 }
2371
2372 /*
2373  * Lookup a device given by device id, or the path if the id is 0.
2374  */
2375 struct btrfs_device *btrfs_find_device_by_devspec(
2376                 struct btrfs_fs_info *fs_info, u64 devid,
2377                 const char *device_path)
2378 {
2379         struct btrfs_device *device;
2380
2381         if (devid) {
2382                 device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2383                                            NULL, true);
2384                 if (!device)
2385                         return ERR_PTR(-ENOENT);
2386                 return device;
2387         }
2388
2389         if (!device_path || !device_path[0])
2390                 return ERR_PTR(-EINVAL);
2391
2392         if (strcmp(device_path, "missing") == 0) {
2393                 /* Find first missing device */
2394                 list_for_each_entry(device, &fs_info->fs_devices->devices,
2395                                     dev_list) {
2396                         if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2397                                      &device->dev_state) && !device->bdev)
2398                                 return device;
2399                 }
2400                 return ERR_PTR(-ENOENT);
2401         }
2402
2403         return btrfs_find_device_by_path(fs_info, device_path);
2404 }
2405
2406 /*
2407  * does all the dirty work required for changing file system's UUID.
2408  */
2409 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2410 {
2411         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2412         struct btrfs_fs_devices *old_devices;
2413         struct btrfs_fs_devices *seed_devices;
2414         struct btrfs_super_block *disk_super = fs_info->super_copy;
2415         struct btrfs_device *device;
2416         u64 super_flags;
2417
2418         lockdep_assert_held(&uuid_mutex);
2419         if (!fs_devices->seeding)
2420                 return -EINVAL;
2421
2422         seed_devices = alloc_fs_devices(NULL, NULL);
2423         if (IS_ERR(seed_devices))
2424                 return PTR_ERR(seed_devices);
2425
2426         old_devices = clone_fs_devices(fs_devices);
2427         if (IS_ERR(old_devices)) {
2428                 kfree(seed_devices);
2429                 return PTR_ERR(old_devices);
2430         }
2431
2432         list_add(&old_devices->fs_list, &fs_uuids);
2433
2434         memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2435         seed_devices->opened = 1;
2436         INIT_LIST_HEAD(&seed_devices->devices);
2437         INIT_LIST_HEAD(&seed_devices->alloc_list);
2438         mutex_init(&seed_devices->device_list_mutex);
2439
2440         mutex_lock(&fs_devices->device_list_mutex);
2441         list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2442                               synchronize_rcu);
2443         list_for_each_entry(device, &seed_devices->devices, dev_list)
2444                 device->fs_devices = seed_devices;
2445
2446         mutex_lock(&fs_info->chunk_mutex);
2447         list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2448         mutex_unlock(&fs_info->chunk_mutex);
2449
2450         fs_devices->seeding = 0;
2451         fs_devices->num_devices = 0;
2452         fs_devices->open_devices = 0;
2453         fs_devices->missing_devices = 0;
2454         fs_devices->rotating = 0;
2455         fs_devices->seed = seed_devices;
2456
2457         generate_random_uuid(fs_devices->fsid);
2458         memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2459         memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2460         mutex_unlock(&fs_devices->device_list_mutex);
2461
2462         super_flags = btrfs_super_flags(disk_super) &
2463                       ~BTRFS_SUPER_FLAG_SEEDING;
2464         btrfs_set_super_flags(disk_super, super_flags);
2465
2466         return 0;
2467 }
2468
2469 /*
2470  * Store the expected generation for seed devices in device items.
2471  */
2472 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2473 {
2474         struct btrfs_fs_info *fs_info = trans->fs_info;
2475         struct btrfs_root *root = fs_info->chunk_root;
2476         struct btrfs_path *path;
2477         struct extent_buffer *leaf;
2478         struct btrfs_dev_item *dev_item;
2479         struct btrfs_device *device;
2480         struct btrfs_key key;
2481         u8 fs_uuid[BTRFS_FSID_SIZE];
2482         u8 dev_uuid[BTRFS_UUID_SIZE];
2483         u64 devid;
2484         int ret;
2485
2486         path = btrfs_alloc_path();
2487         if (!path)
2488                 return -ENOMEM;
2489
2490         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2491         key.offset = 0;
2492         key.type = BTRFS_DEV_ITEM_KEY;
2493
2494         while (1) {
2495                 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2496                 if (ret < 0)
2497                         goto error;
2498
2499                 leaf = path->nodes[0];
2500 next_slot:
2501                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2502                         ret = btrfs_next_leaf(root, path);
2503                         if (ret > 0)
2504                                 break;
2505                         if (ret < 0)
2506                                 goto error;
2507                         leaf = path->nodes[0];
2508                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2509                         btrfs_release_path(path);
2510                         continue;
2511                 }
2512
2513                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2514                 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2515                     key.type != BTRFS_DEV_ITEM_KEY)
2516                         break;
2517
2518                 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2519                                           struct btrfs_dev_item);
2520                 devid = btrfs_device_id(leaf, dev_item);
2521                 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2522                                    BTRFS_UUID_SIZE);
2523                 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2524                                    BTRFS_FSID_SIZE);
2525                 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2526                                            fs_uuid, true);
2527                 BUG_ON(!device); /* Logic error */
2528
2529                 if (device->fs_devices->seeding) {
2530                         btrfs_set_device_generation(leaf, dev_item,
2531                                                     device->generation);
2532                         btrfs_mark_buffer_dirty(leaf);
2533                 }
2534
2535                 path->slots[0]++;
2536                 goto next_slot;
2537         }
2538         ret = 0;
2539 error:
2540         btrfs_free_path(path);
2541         return ret;
2542 }
2543
2544 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2545 {
2546         struct btrfs_root *root = fs_info->dev_root;
2547         struct request_queue *q;
2548         struct btrfs_trans_handle *trans;
2549         struct btrfs_device *device;
2550         struct block_device *bdev;
2551         struct super_block *sb = fs_info->sb;
2552         struct rcu_string *name;
2553         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2554         u64 orig_super_total_bytes;
2555         u64 orig_super_num_devices;
2556         int seeding_dev = 0;
2557         int ret = 0;
2558         bool unlocked = false;
2559
2560         if (sb_rdonly(sb) && !fs_devices->seeding)
2561                 return -EROFS;
2562
2563         bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2564                                   fs_info->bdev_holder);
2565         if (IS_ERR(bdev))
2566                 return PTR_ERR(bdev);
2567
2568         if (fs_devices->seeding) {
2569                 seeding_dev = 1;
2570                 down_write(&sb->s_umount);
2571                 mutex_lock(&uuid_mutex);
2572         }
2573
2574         filemap_write_and_wait(bdev->bd_inode->i_mapping);
2575
2576         mutex_lock(&fs_devices->device_list_mutex);
2577         list_for_each_entry(device, &fs_devices->devices, dev_list) {
2578                 if (device->bdev == bdev) {
2579                         ret = -EEXIST;
2580                         mutex_unlock(
2581                                 &fs_devices->device_list_mutex);
2582                         goto error;
2583                 }
2584         }
2585         mutex_unlock(&fs_devices->device_list_mutex);
2586
2587         device = btrfs_alloc_device(fs_info, NULL, NULL);
2588         if (IS_ERR(device)) {
2589                 /* we can safely leave the fs_devices entry around */
2590                 ret = PTR_ERR(device);
2591                 goto error;
2592         }
2593
2594         name = rcu_string_strdup(device_path, GFP_KERNEL);
2595         if (!name) {
2596                 ret = -ENOMEM;
2597                 goto error_free_device;
2598         }
2599         rcu_assign_pointer(device->name, name);
2600
2601         trans = btrfs_start_transaction(root, 0);
2602         if (IS_ERR(trans)) {
2603                 ret = PTR_ERR(trans);
2604                 goto error_free_device;
2605         }
2606
2607         q = bdev_get_queue(bdev);
2608         set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2609         device->generation = trans->transid;
2610         device->io_width = fs_info->sectorsize;
2611         device->io_align = fs_info->sectorsize;
2612         device->sector_size = fs_info->sectorsize;
2613         device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2614                                          fs_info->sectorsize);
2615         device->disk_total_bytes = device->total_bytes;
2616         device->commit_total_bytes = device->total_bytes;
2617         device->fs_info = fs_info;
2618         device->bdev = bdev;
2619         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2620         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2621         device->mode = FMODE_EXCL;
2622         device->dev_stats_valid = 1;
2623         set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2624
2625         if (seeding_dev) {
2626                 sb->s_flags &= ~SB_RDONLY;
2627                 ret = btrfs_prepare_sprout(fs_info);
2628                 if (ret) {
2629                         btrfs_abort_transaction(trans, ret);
2630                         goto error_trans;
2631                 }
2632         }
2633
2634         device->fs_devices = fs_devices;
2635
2636         mutex_lock(&fs_devices->device_list_mutex);
2637         mutex_lock(&fs_info->chunk_mutex);
2638         list_add_rcu(&device->dev_list, &fs_devices->devices);
2639         list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2640         fs_devices->num_devices++;
2641         fs_devices->open_devices++;
2642         fs_devices->rw_devices++;
2643         fs_devices->total_devices++;
2644         fs_devices->total_rw_bytes += device->total_bytes;
2645
2646         atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2647
2648         if (!blk_queue_nonrot(q))
2649                 fs_devices->rotating = 1;
2650
2651         orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2652         btrfs_set_super_total_bytes(fs_info->super_copy,
2653                 round_down(orig_super_total_bytes + device->total_bytes,
2654                            fs_info->sectorsize));
2655
2656         orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2657         btrfs_set_super_num_devices(fs_info->super_copy,
2658                                     orig_super_num_devices + 1);
2659
2660         /* add sysfs device entry */
2661         btrfs_sysfs_add_device_link(fs_devices, device);
2662
2663         /*
2664          * we've got more storage, clear any full flags on the space
2665          * infos
2666          */
2667         btrfs_clear_space_info_full(fs_info);
2668
2669         mutex_unlock(&fs_info->chunk_mutex);
2670         mutex_unlock(&fs_devices->device_list_mutex);
2671
2672         if (seeding_dev) {
2673                 mutex_lock(&fs_info->chunk_mutex);
2674                 ret = init_first_rw_device(trans);
2675                 mutex_unlock(&fs_info->chunk_mutex);
2676                 if (ret) {
2677                         btrfs_abort_transaction(trans, ret);
2678                         goto error_sysfs;
2679                 }
2680         }
2681
2682         ret = btrfs_add_dev_item(trans, device);
2683         if (ret) {
2684                 btrfs_abort_transaction(trans, ret);
2685                 goto error_sysfs;
2686         }
2687
2688         if (seeding_dev) {
2689                 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2690
2691                 ret = btrfs_finish_sprout(trans);
2692                 if (ret) {
2693                         btrfs_abort_transaction(trans, ret);
2694                         goto error_sysfs;
2695                 }
2696
2697                 /* Sprouting would change fsid of the mounted root,
2698                  * so rename the fsid on the sysfs
2699                  */
2700                 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2701                                                 fs_info->fs_devices->fsid);
2702                 if (kobject_rename(&fs_devices->fsid_kobj, fsid_buf))
2703                         btrfs_warn(fs_info,
2704                                    "sysfs: failed to create fsid for sprout");
2705         }
2706
2707         ret = btrfs_commit_transaction(trans);
2708
2709         if (seeding_dev) {
2710                 mutex_unlock(&uuid_mutex);
2711                 up_write(&sb->s_umount);
2712                 unlocked = true;
2713
2714                 if (ret) /* transaction commit */
2715                         return ret;
2716
2717                 ret = btrfs_relocate_sys_chunks(fs_info);
2718                 if (ret < 0)
2719                         btrfs_handle_fs_error(fs_info, ret,
2720                                     "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2721                 trans = btrfs_attach_transaction(root);
2722                 if (IS_ERR(trans)) {
2723                         if (PTR_ERR(trans) == -ENOENT)
2724                                 return 0;
2725                         ret = PTR_ERR(trans);
2726                         trans = NULL;
2727                         goto error_sysfs;
2728                 }
2729                 ret = btrfs_commit_transaction(trans);
2730         }
2731
2732         /* Update ctime/mtime for libblkid */
2733         update_dev_time(device_path);
2734         return ret;
2735
2736 error_sysfs:
2737         btrfs_sysfs_rm_device_link(fs_devices, device);
2738         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2739         mutex_lock(&fs_info->chunk_mutex);
2740         list_del_rcu(&device->dev_list);
2741         list_del(&device->dev_alloc_list);
2742         fs_info->fs_devices->num_devices--;
2743         fs_info->fs_devices->open_devices--;
2744         fs_info->fs_devices->rw_devices--;
2745         fs_info->fs_devices->total_devices--;
2746         fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2747         atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2748         btrfs_set_super_total_bytes(fs_info->super_copy,
2749                                     orig_super_total_bytes);
2750         btrfs_set_super_num_devices(fs_info->super_copy,
2751                                     orig_super_num_devices);
2752         mutex_unlock(&fs_info->chunk_mutex);
2753         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2754 error_trans:
2755         if (seeding_dev)
2756                 sb->s_flags |= SB_RDONLY;
2757         if (trans)
2758                 btrfs_end_transaction(trans);
2759 error_free_device:
2760         btrfs_free_device(device);
2761 error:
2762         blkdev_put(bdev, FMODE_EXCL);
2763         if (seeding_dev && !unlocked) {
2764                 mutex_unlock(&uuid_mutex);
2765                 up_write(&sb->s_umount);
2766         }
2767         return ret;
2768 }
2769
2770 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2771                                         struct btrfs_device *device)
2772 {
2773         int ret;
2774         struct btrfs_path *path;
2775         struct btrfs_root *root = device->fs_info->chunk_root;
2776         struct btrfs_dev_item *dev_item;
2777         struct extent_buffer *leaf;
2778         struct btrfs_key key;
2779
2780         path = btrfs_alloc_path();
2781         if (!path)
2782                 return -ENOMEM;
2783
2784         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2785         key.type = BTRFS_DEV_ITEM_KEY;
2786         key.offset = device->devid;
2787
2788         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2789         if (ret < 0)
2790                 goto out;
2791
2792         if (ret > 0) {
2793                 ret = -ENOENT;
2794                 goto out;
2795         }
2796
2797         leaf = path->nodes[0];
2798         dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2799
2800         btrfs_set_device_id(leaf, dev_item, device->devid);
2801         btrfs_set_device_type(leaf, dev_item, device->type);
2802         btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2803         btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2804         btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2805         btrfs_set_device_total_bytes(leaf, dev_item,
2806                                      btrfs_device_get_disk_total_bytes(device));
2807         btrfs_set_device_bytes_used(leaf, dev_item,
2808                                     btrfs_device_get_bytes_used(device));
2809         btrfs_mark_buffer_dirty(leaf);
2810
2811 out:
2812         btrfs_free_path(path);
2813         return ret;
2814 }
2815
2816 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2817                       struct btrfs_device *device, u64 new_size)
2818 {
2819         struct btrfs_fs_info *fs_info = device->fs_info;
2820         struct btrfs_super_block *super_copy = fs_info->super_copy;
2821         u64 old_total;
2822         u64 diff;
2823
2824         if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2825                 return -EACCES;
2826
2827         new_size = round_down(new_size, fs_info->sectorsize);
2828
2829         mutex_lock(&fs_info->chunk_mutex);
2830         old_total = btrfs_super_total_bytes(super_copy);
2831         diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2832
2833         if (new_size <= device->total_bytes ||
2834             test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2835                 mutex_unlock(&fs_info->chunk_mutex);
2836                 return -EINVAL;
2837         }
2838
2839         btrfs_set_super_total_bytes(super_copy,
2840                         round_down(old_total + diff, fs_info->sectorsize));
2841         device->fs_devices->total_rw_bytes += diff;
2842
2843         btrfs_device_set_total_bytes(device, new_size);
2844         btrfs_device_set_disk_total_bytes(device, new_size);
2845         btrfs_clear_space_info_full(device->fs_info);
2846         if (list_empty(&device->post_commit_list))
2847                 list_add_tail(&device->post_commit_list,
2848                               &trans->transaction->dev_update_list);
2849         mutex_unlock(&fs_info->chunk_mutex);
2850
2851         return btrfs_update_device(trans, device);
2852 }
2853
2854 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2855 {
2856         struct btrfs_fs_info *fs_info = trans->fs_info;
2857         struct btrfs_root *root = fs_info->chunk_root;
2858         int ret;
2859         struct btrfs_path *path;
2860         struct btrfs_key key;
2861
2862         path = btrfs_alloc_path();
2863         if (!path)
2864                 return -ENOMEM;
2865
2866         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2867         key.offset = chunk_offset;
2868         key.type = BTRFS_CHUNK_ITEM_KEY;
2869
2870         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2871         if (ret < 0)
2872                 goto out;
2873         else if (ret > 0) { /* Logic error or corruption */
2874                 btrfs_handle_fs_error(fs_info, -ENOENT,
2875                                       "Failed lookup while freeing chunk.");
2876                 ret = -ENOENT;
2877                 goto out;
2878         }
2879
2880         ret = btrfs_del_item(trans, root, path);
2881         if (ret < 0)
2882                 btrfs_handle_fs_error(fs_info, ret,
2883                                       "Failed to delete chunk item.");
2884 out:
2885         btrfs_free_path(path);
2886         return ret;
2887 }
2888
2889 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2890 {
2891         struct btrfs_super_block *super_copy = fs_info->super_copy;
2892         struct btrfs_disk_key *disk_key;
2893         struct btrfs_chunk *chunk;
2894         u8 *ptr;
2895         int ret = 0;
2896         u32 num_stripes;
2897         u32 array_size;
2898         u32 len = 0;
2899         u32 cur;
2900         struct btrfs_key key;
2901
2902         mutex_lock(&fs_info->chunk_mutex);
2903         array_size = btrfs_super_sys_array_size(super_copy);
2904
2905         ptr = super_copy->sys_chunk_array;
2906         cur = 0;
2907
2908         while (cur < array_size) {
2909                 disk_key = (struct btrfs_disk_key *)ptr;
2910                 btrfs_disk_key_to_cpu(&key, disk_key);
2911
2912                 len = sizeof(*disk_key);
2913
2914                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2915                         chunk = (struct btrfs_chunk *)(ptr + len);
2916                         num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2917                         len += btrfs_chunk_item_size(num_stripes);
2918                 } else {
2919                         ret = -EIO;
2920                         break;
2921                 }
2922                 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2923                     key.offset == chunk_offset) {
2924                         memmove(ptr, ptr + len, array_size - (cur + len));
2925                         array_size -= len;
2926                         btrfs_set_super_sys_array_size(super_copy, array_size);
2927                 } else {
2928                         ptr += len;
2929                         cur += len;
2930                 }
2931         }
2932         mutex_unlock(&fs_info->chunk_mutex);
2933         return ret;
2934 }
2935
2936 /*
2937  * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2938  * @logical: Logical block offset in bytes.
2939  * @length: Length of extent in bytes.
2940  *
2941  * Return: Chunk mapping or ERR_PTR.
2942  */
2943 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2944                                        u64 logical, u64 length)
2945 {
2946         struct extent_map_tree *em_tree;
2947         struct extent_map *em;
2948
2949         em_tree = &fs_info->mapping_tree;
2950         read_lock(&em_tree->lock);
2951         em = lookup_extent_mapping(em_tree, logical, length);
2952         read_unlock(&em_tree->lock);
2953
2954         if (!em) {
2955                 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2956                            logical, length);
2957                 return ERR_PTR(-EINVAL);
2958         }
2959
2960         if (em->start > logical || em->start + em->len < logical) {
2961                 btrfs_crit(fs_info,
2962                            "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2963                            logical, length, em->start, em->start + em->len);
2964                 free_extent_map(em);
2965                 return ERR_PTR(-EINVAL);
2966         }
2967
2968         /* callers are responsible for dropping em's ref. */
2969         return em;
2970 }
2971
2972 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2973 {
2974         struct btrfs_fs_info *fs_info = trans->fs_info;
2975         struct extent_map *em;
2976         struct map_lookup *map;
2977         u64 dev_extent_len = 0;
2978         int i, ret = 0;
2979         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2980
2981         em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
2982         if (IS_ERR(em)) {
2983                 /*
2984                  * This is a logic error, but we don't want to just rely on the
2985                  * user having built with ASSERT enabled, so if ASSERT doesn't
2986                  * do anything we still error out.
2987                  */
2988                 ASSERT(0);
2989                 return PTR_ERR(em);
2990         }
2991         map = em->map_lookup;
2992         mutex_lock(&fs_info->chunk_mutex);
2993         check_system_chunk(trans, map->type);
2994         mutex_unlock(&fs_info->chunk_mutex);
2995
2996         /*
2997          * Take the device list mutex to prevent races with the final phase of
2998          * a device replace operation that replaces the device object associated
2999          * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
3000          */
3001         mutex_lock(&fs_devices->device_list_mutex);
3002         for (i = 0; i < map->num_stripes; i++) {
3003                 struct btrfs_device *device = map->stripes[i].dev;
3004                 ret = btrfs_free_dev_extent(trans, device,
3005                                             map->stripes[i].physical,
3006                                             &dev_extent_len);
3007                 if (ret) {
3008                         mutex_unlock(&fs_devices->device_list_mutex);
3009                         btrfs_abort_transaction(trans, ret);
3010                         goto out;
3011                 }
3012
3013                 if (device->bytes_used > 0) {
3014                         mutex_lock(&fs_info->chunk_mutex);
3015                         btrfs_device_set_bytes_used(device,
3016                                         device->bytes_used - dev_extent_len);
3017                         atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
3018                         btrfs_clear_space_info_full(fs_info);
3019                         mutex_unlock(&fs_info->chunk_mutex);
3020                 }
3021
3022                 ret = btrfs_update_device(trans, device);
3023                 if (ret) {
3024                         mutex_unlock(&fs_devices->device_list_mutex);
3025                         btrfs_abort_transaction(trans, ret);
3026                         goto out;
3027                 }
3028         }
3029         mutex_unlock(&fs_devices->device_list_mutex);
3030
3031         ret = btrfs_free_chunk(trans, chunk_offset);
3032         if (ret) {
3033                 btrfs_abort_transaction(trans, ret);
3034                 goto out;
3035         }
3036
3037         trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
3038
3039         if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
3040                 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
3041                 if (ret) {
3042                         btrfs_abort_transaction(trans, ret);
3043                         goto out;
3044                 }
3045         }
3046
3047         ret = btrfs_remove_block_group(trans, chunk_offset, em);
3048         if (ret) {
3049                 btrfs_abort_transaction(trans, ret);
3050                 goto out;
3051         }
3052
3053 out:
3054         /* once for us */
3055         free_extent_map(em);
3056         return ret;
3057 }
3058
3059 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
3060 {
3061         struct btrfs_root *root = fs_info->chunk_root;
3062         struct btrfs_trans_handle *trans;
3063         int ret;
3064
3065         /*
3066          * Prevent races with automatic removal of unused block groups.
3067          * After we relocate and before we remove the chunk with offset
3068          * chunk_offset, automatic removal of the block group can kick in,
3069          * resulting in a failure when calling btrfs_remove_chunk() below.
3070          *
3071          * Make sure to acquire this mutex before doing a tree search (dev
3072          * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3073          * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3074          * we release the path used to search the chunk/dev tree and before
3075          * the current task acquires this mutex and calls us.
3076          */
3077         lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
3078
3079         ret = btrfs_can_relocate(fs_info, chunk_offset);
3080         if (ret)
3081                 return -ENOSPC;
3082
3083         /* step one, relocate all the extents inside this chunk */
3084         btrfs_scrub_pause(fs_info);
3085         ret = btrfs_relocate_block_group(fs_info, chunk_offset);
3086         btrfs_scrub_continue(fs_info);
3087         if (ret)
3088                 return ret;
3089
3090         trans = btrfs_start_trans_remove_block_group(root->fs_info,
3091                                                      chunk_offset);
3092         if (IS_ERR(trans)) {
3093                 ret = PTR_ERR(trans);
3094                 btrfs_handle_fs_error(root->fs_info, ret, NULL);
3095                 return ret;
3096         }
3097
3098         /*
3099          * step two, delete the device extents and the
3100          * chunk tree entries
3101          */
3102         ret = btrfs_remove_chunk(trans, chunk_offset);
3103         btrfs_end_transaction(trans);
3104         return ret;
3105 }
3106
3107 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
3108 {
3109         struct btrfs_root *chunk_root = fs_info->chunk_root;
3110         struct btrfs_path *path;
3111         struct extent_buffer *leaf;
3112         struct btrfs_chunk *chunk;
3113         struct btrfs_key key;
3114         struct btrfs_key found_key;
3115         u64 chunk_type;
3116         bool retried = false;
3117         int failed = 0;
3118         int ret;
3119
3120         path = btrfs_alloc_path();
3121         if (!path)
3122                 return -ENOMEM;
3123
3124 again:
3125         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3126         key.offset = (u64)-1;
3127         key.type = BTRFS_CHUNK_ITEM_KEY;
3128
3129         while (1) {
3130                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3131                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3132                 if (ret < 0) {
3133                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3134                         goto error;
3135                 }
3136                 BUG_ON(ret == 0); /* Corruption */
3137
3138                 ret = btrfs_previous_item(chunk_root, path, key.objectid,
3139                                           key.type);
3140                 if (ret)
3141                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3142                 if (ret < 0)
3143                         goto error;
3144                 if (ret > 0)
3145                         break;
3146
3147                 leaf = path->nodes[0];
3148                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3149
3150                 chunk = btrfs_item_ptr(leaf, path->slots[0],
3151                                        struct btrfs_chunk);
3152                 chunk_type = btrfs_chunk_type(leaf, chunk);
3153                 btrfs_release_path(path);
3154
3155                 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3156                         ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3157                         if (ret == -ENOSPC)
3158                                 failed++;
3159                         else
3160                                 BUG_ON(ret);
3161                 }
3162                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3163
3164                 if (found_key.offset == 0)
3165                         break;
3166                 key.offset = found_key.offset - 1;
3167         }
3168         ret = 0;
3169         if (failed && !retried) {
3170                 failed = 0;
3171                 retried = true;
3172                 goto again;
3173         } else if (WARN_ON(failed && retried)) {
3174                 ret = -ENOSPC;
3175         }
3176 error:
3177         btrfs_free_path(path);
3178         return ret;
3179 }
3180
3181 /*
3182  * return 1 : allocate a data chunk successfully,
3183  * return <0: errors during allocating a data chunk,
3184  * return 0 : no need to allocate a data chunk.
3185  */
3186 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3187                                       u64 chunk_offset)
3188 {
3189         struct btrfs_block_group_cache *cache;
3190         u64 bytes_used;
3191         u64 chunk_type;
3192
3193         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3194         ASSERT(cache);
3195         chunk_type = cache->flags;
3196         btrfs_put_block_group(cache);
3197
3198         if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
3199                 spin_lock(&fs_info->data_sinfo->lock);
3200                 bytes_used = fs_info->data_sinfo->bytes_used;
3201                 spin_unlock(&fs_info->data_sinfo->lock);
3202
3203                 if (!bytes_used) {
3204                         struct btrfs_trans_handle *trans;
3205                         int ret;
3206
3207                         trans = btrfs_join_transaction(fs_info->tree_root);
3208                         if (IS_ERR(trans))
3209                                 return PTR_ERR(trans);
3210
3211                         ret = btrfs_force_chunk_alloc(trans,
3212                                                       BTRFS_BLOCK_GROUP_DATA);
3213                         btrfs_end_transaction(trans);
3214                         if (ret < 0)
3215                                 return ret;
3216                         return 1;
3217                 }
3218         }
3219         return 0;
3220 }
3221
3222 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3223                                struct btrfs_balance_control *bctl)
3224 {
3225         struct btrfs_root *root = fs_info->tree_root;
3226         struct btrfs_trans_handle *trans;
3227         struct btrfs_balance_item *item;
3228         struct btrfs_disk_balance_args disk_bargs;
3229         struct btrfs_path *path;
3230         struct extent_buffer *leaf;
3231         struct btrfs_key key;
3232         int ret, err;
3233
3234         path = btrfs_alloc_path();
3235         if (!path)
3236                 return -ENOMEM;
3237
3238         trans = btrfs_start_transaction(root, 0);
3239         if (IS_ERR(trans)) {
3240                 btrfs_free_path(path);
3241                 return PTR_ERR(trans);
3242         }
3243
3244         key.objectid = BTRFS_BALANCE_OBJECTID;
3245         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3246         key.offset = 0;
3247
3248         ret = btrfs_insert_empty_item(trans, root, path, &key,
3249                                       sizeof(*item));
3250         if (ret)
3251                 goto out;
3252
3253         leaf = path->nodes[0];
3254         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3255
3256         memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3257
3258         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3259         btrfs_set_balance_data(leaf, item, &disk_bargs);
3260         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3261         btrfs_set_balance_meta(leaf, item, &disk_bargs);
3262         btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3263         btrfs_set_balance_sys(leaf, item, &disk_bargs);
3264
3265         btrfs_set_balance_flags(leaf, item, bctl->flags);
3266
3267         btrfs_mark_buffer_dirty(leaf);
3268 out:
3269         btrfs_free_path(path);
3270         err = btrfs_commit_transaction(trans);
3271         if (err && !ret)
3272                 ret = err;
3273         return ret;
3274 }
3275
3276 static int del_balance_item(struct btrfs_fs_info *fs_info)
3277 {
3278         struct btrfs_root *root = fs_info->tree_root;
3279         struct btrfs_trans_handle *trans;
3280         struct btrfs_path *path;
3281         struct btrfs_key key;
3282         int ret, err;
3283
3284         path = btrfs_alloc_path();
3285         if (!path)
3286                 return -ENOMEM;
3287
3288         trans = btrfs_start_transaction(root, 0);
3289         if (IS_ERR(trans)) {
3290                 btrfs_free_path(path);
3291                 return PTR_ERR(trans);
3292         }
3293
3294         key.objectid = BTRFS_BALANCE_OBJECTID;
3295         key.type = BTRFS_TEMPORARY_ITEM_KEY;
3296         key.offset = 0;
3297
3298         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3299         if (ret < 0)
3300                 goto out;
3301         if (ret > 0) {
3302                 ret = -ENOENT;
3303                 goto out;
3304         }
3305
3306         ret = btrfs_del_item(trans, root, path);
3307 out:
3308         btrfs_free_path(path);
3309         err = btrfs_commit_transaction(trans);
3310         if (err && !ret)
3311                 ret = err;
3312         return ret;
3313 }
3314
3315 /*
3316  * This is a heuristic used to reduce the number of chunks balanced on
3317  * resume after balance was interrupted.
3318  */
3319 static void update_balance_args(struct btrfs_balance_control *bctl)
3320 {
3321         /*
3322          * Turn on soft mode for chunk types that were being converted.
3323          */
3324         if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3325                 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3326         if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3327                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3328         if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3329                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3330
3331         /*
3332          * Turn on usage filter if is not already used.  The idea is
3333          * that chunks that we have already balanced should be
3334          * reasonably full.  Don't do it for chunks that are being
3335          * converted - that will keep us from relocating unconverted
3336          * (albeit full) chunks.
3337          */
3338         if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3339             !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3340             !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3341                 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3342                 bctl->data.usage = 90;
3343         }
3344         if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3345             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3346             !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3347                 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3348                 bctl->sys.usage = 90;
3349         }
3350         if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3351             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3352             !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3353                 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3354                 bctl->meta.usage = 90;
3355         }
3356 }
3357
3358 /*
3359  * Clear the balance status in fs_info and delete the balance item from disk.
3360  */
3361 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3362 {
3363         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3364         int ret;
3365
3366         BUG_ON(!fs_info->balance_ctl);
3367
3368         spin_lock(&fs_info->balance_lock);
3369         fs_info->balance_ctl = NULL;
3370         spin_unlock(&fs_info->balance_lock);
3371
3372         kfree(bctl);
3373         ret = del_balance_item(fs_info);
3374         if (ret)
3375                 btrfs_handle_fs_error(fs_info, ret, NULL);
3376 }
3377
3378 /*
3379  * Balance filters.  Return 1 if chunk should be filtered out
3380  * (should not be balanced).
3381  */
3382 static int chunk_profiles_filter(u64 chunk_type,
3383                                  struct btrfs_balance_args *bargs)
3384 {
3385         chunk_type = chunk_to_extended(chunk_type) &
3386                                 BTRFS_EXTENDED_PROFILE_MASK;
3387
3388         if (bargs->profiles & chunk_type)
3389                 return 0;
3390
3391         return 1;
3392 }
3393
3394 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3395                               struct btrfs_balance_args *bargs)
3396 {
3397         struct btrfs_block_group_cache *cache;
3398         u64 chunk_used;
3399         u64 user_thresh_min;
3400         u64 user_thresh_max;
3401         int ret = 1;
3402
3403         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3404         chunk_used = btrfs_block_group_used(&cache->item);
3405
3406         if (bargs->usage_min == 0)
3407                 user_thresh_min = 0;
3408         else
3409                 user_thresh_min = div_factor_fine(cache->key.offset,
3410                                         bargs->usage_min);
3411
3412         if (bargs->usage_max == 0)
3413                 user_thresh_max = 1;
3414         else if (bargs->usage_max > 100)
3415                 user_thresh_max = cache->key.offset;
3416         else
3417                 user_thresh_max = div_factor_fine(cache->key.offset,
3418                                         bargs->usage_max);
3419
3420         if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3421                 ret = 0;
3422
3423         btrfs_put_block_group(cache);
3424         return ret;
3425 }
3426
3427 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3428                 u64 chunk_offset, struct btrfs_balance_args *bargs)
3429 {
3430         struct btrfs_block_group_cache *cache;
3431         u64 chunk_used, user_thresh;
3432         int ret = 1;
3433
3434         cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3435         chunk_used = btrfs_block_group_used(&cache->item);
3436
3437         if (bargs->usage_min == 0)
3438                 user_thresh = 1;
3439         else if (bargs->usage > 100)
3440                 user_thresh = cache->key.offset;
3441         else
3442                 user_thresh = div_factor_fine(cache->key.offset,
3443                                               bargs->usage);
3444
3445         if (chunk_used < user_thresh)
3446                 ret = 0;
3447
3448         btrfs_put_block_group(cache);
3449         return ret;
3450 }
3451
3452 static int chunk_devid_filter(struct extent_buffer *leaf,
3453                               struct btrfs_chunk *chunk,
3454                               struct btrfs_balance_args *bargs)
3455 {
3456         struct btrfs_stripe *stripe;
3457         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3458         int i;
3459
3460         for (i = 0; i < num_stripes; i++) {
3461                 stripe = btrfs_stripe_nr(chunk, i);
3462                 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3463                         return 0;
3464         }
3465
3466         return 1;
3467 }
3468
3469 static u64 calc_data_stripes(u64 type, int num_stripes)
3470 {
3471         const int index = btrfs_bg_flags_to_raid_index(type);
3472         const int ncopies = btrfs_raid_array[index].ncopies;
3473         const int nparity = btrfs_raid_array[index].nparity;
3474
3475         if (nparity)
3476                 return num_stripes - nparity;
3477         else
3478                 return num_stripes / ncopies;
3479 }
3480
3481 /* [pstart, pend) */
3482 static int chunk_drange_filter(struct extent_buffer *leaf,
3483                                struct btrfs_chunk *chunk,
3484                                struct btrfs_balance_args *bargs)
3485 {
3486         struct btrfs_stripe *stripe;
3487         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3488         u64 stripe_offset;
3489         u64 stripe_length;
3490         u64 type;
3491         int factor;
3492         int i;
3493
3494         if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3495                 return 0;
3496
3497         type = btrfs_chunk_type(leaf, chunk);
3498         factor = calc_data_stripes(type, num_stripes);
3499
3500         for (i = 0; i < num_stripes; i++) {
3501                 stripe = btrfs_stripe_nr(chunk, i);
3502                 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3503                         continue;
3504
3505                 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3506                 stripe_length = btrfs_chunk_length(leaf, chunk);
3507                 stripe_length = div_u64(stripe_length, factor);
3508
3509                 if (stripe_offset < bargs->pend &&
3510                     stripe_offset + stripe_length > bargs->pstart)
3511                         return 0;
3512         }
3513
3514         return 1;
3515 }
3516
3517 /* [vstart, vend) */
3518 static int chunk_vrange_filter(struct extent_buffer *leaf,
3519                                struct btrfs_chunk *chunk,
3520                                u64 chunk_offset,
3521                                struct btrfs_balance_args *bargs)
3522 {
3523         if (chunk_offset < bargs->vend &&
3524             chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3525                 /* at least part of the chunk is inside this vrange */
3526                 return 0;
3527
3528         return 1;
3529 }
3530
3531 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3532                                struct btrfs_chunk *chunk,
3533                                struct btrfs_balance_args *bargs)
3534 {
3535         int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3536
3537         if (bargs->stripes_min <= num_stripes
3538                         && num_stripes <= bargs->stripes_max)
3539                 return 0;
3540
3541         return 1;
3542 }
3543
3544 static int chunk_soft_convert_filter(u64 chunk_type,
3545                                      struct btrfs_balance_args *bargs)
3546 {
3547         if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3548                 return 0;
3549
3550         chunk_type = chunk_to_extended(chunk_type) &
3551                                 BTRFS_EXTENDED_PROFILE_MASK;
3552
3553         if (bargs->target == chunk_type)
3554                 return 1;
3555
3556         return 0;
3557 }
3558
3559 static int should_balance_chunk(struct extent_buffer *leaf,
3560                                 struct btrfs_chunk *chunk, u64 chunk_offset)
3561 {
3562         struct btrfs_fs_info *fs_info = leaf->fs_info;
3563         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3564         struct btrfs_balance_args *bargs = NULL;
3565         u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3566
3567         /* type filter */
3568         if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3569               (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3570                 return 0;
3571         }
3572
3573         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3574                 bargs = &bctl->data;
3575         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3576                 bargs = &bctl->sys;
3577         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3578                 bargs = &bctl->meta;
3579
3580         /* profiles filter */
3581         if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3582             chunk_profiles_filter(chunk_type, bargs)) {
3583                 return 0;
3584         }
3585
3586         /* usage filter */
3587         if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3588             chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3589                 return 0;
3590         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3591             chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3592                 return 0;
3593         }
3594
3595         /* devid filter */
3596         if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3597             chunk_devid_filter(leaf, chunk, bargs)) {
3598                 return 0;
3599         }
3600
3601         /* drange filter, makes sense only with devid filter */
3602         if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3603             chunk_drange_filter(leaf, chunk, bargs)) {
3604                 return 0;
3605         }
3606
3607         /* vrange filter */
3608         if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3609             chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3610                 return 0;
3611         }
3612
3613         /* stripes filter */
3614         if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3615             chunk_stripes_range_filter(leaf, chunk, bargs)) {
3616                 return 0;
3617         }
3618
3619         /* soft profile changing mode */
3620         if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3621             chunk_soft_convert_filter(chunk_type, bargs)) {
3622                 return 0;
3623         }
3624
3625         /*
3626          * limited by count, must be the last filter
3627          */
3628         if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3629                 if (bargs->limit == 0)
3630                         return 0;
3631                 else
3632                         bargs->limit--;
3633         } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3634                 /*
3635                  * Same logic as the 'limit' filter; the minimum cannot be
3636                  * determined here because we do not have the global information
3637                  * about the count of all chunks that satisfy the filters.
3638                  */
3639                 if (bargs->limit_max == 0)
3640                         return 0;
3641                 else
3642                         bargs->limit_max--;
3643         }
3644
3645         return 1;
3646 }
3647
3648 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3649 {
3650         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3651         struct btrfs_root *chunk_root = fs_info->chunk_root;
3652         u64 chunk_type;
3653         struct btrfs_chunk *chunk;
3654         struct btrfs_path *path = NULL;
3655         struct btrfs_key key;
3656         struct btrfs_key found_key;
3657         struct extent_buffer *leaf;
3658         int slot;
3659         int ret;
3660         int enospc_errors = 0;
3661         bool counting = true;
3662         /* The single value limit and min/max limits use the same bytes in the */
3663         u64 limit_data = bctl->data.limit;
3664         u64 limit_meta = bctl->meta.limit;
3665         u64 limit_sys = bctl->sys.limit;
3666         u32 count_data = 0;
3667         u32 count_meta = 0;
3668         u32 count_sys = 0;
3669         int chunk_reserved = 0;
3670
3671         path = btrfs_alloc_path();
3672         if (!path) {
3673                 ret = -ENOMEM;
3674                 goto error;
3675         }
3676
3677         /* zero out stat counters */
3678         spin_lock(&fs_info->balance_lock);
3679         memset(&bctl->stat, 0, sizeof(bctl->stat));
3680         spin_unlock(&fs_info->balance_lock);
3681 again:
3682         if (!counting) {
3683                 /*
3684                  * The single value limit and min/max limits use the same bytes
3685                  * in the
3686                  */
3687                 bctl->data.limit = limit_data;
3688                 bctl->meta.limit = limit_meta;
3689                 bctl->sys.limit = limit_sys;
3690         }
3691         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3692         key.offset = (u64)-1;
3693         key.type = BTRFS_CHUNK_ITEM_KEY;
3694
3695         while (1) {
3696                 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3697                     atomic_read(&fs_info->balance_cancel_req)) {
3698                         ret = -ECANCELED;
3699                         goto error;
3700                 }
3701
3702                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3703                 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3704                 if (ret < 0) {
3705                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3706                         goto error;
3707                 }
3708
3709                 /*
3710                  * this shouldn't happen, it means the last relocate
3711                  * failed
3712                  */
3713                 if (ret == 0)
3714                         BUG(); /* FIXME break ? */
3715
3716                 ret = btrfs_previous_item(chunk_root, path, 0,
3717                                           BTRFS_CHUNK_ITEM_KEY);
3718                 if (ret) {
3719                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3720                         ret = 0;
3721                         break;
3722                 }
3723
3724                 leaf = path->nodes[0];
3725                 slot = path->slots[0];
3726                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3727
3728                 if (found_key.objectid != key.objectid) {
3729                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3730                         break;
3731                 }
3732
3733                 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3734                 chunk_type = btrfs_chunk_type(leaf, chunk);
3735
3736                 if (!counting) {
3737                         spin_lock(&fs_info->balance_lock);
3738                         bctl->stat.considered++;
3739                         spin_unlock(&fs_info->balance_lock);
3740                 }
3741
3742                 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3743
3744                 btrfs_release_path(path);
3745                 if (!ret) {
3746                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3747                         goto loop;
3748                 }
3749
3750                 if (counting) {
3751                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3752                         spin_lock(&fs_info->balance_lock);
3753                         bctl->stat.expected++;
3754                         spin_unlock(&fs_info->balance_lock);
3755
3756                         if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3757                                 count_data++;
3758                         else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3759                                 count_sys++;
3760                         else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3761                                 count_meta++;
3762
3763                         goto loop;
3764                 }
3765
3766                 /*
3767                  * Apply limit_min filter, no need to check if the LIMITS
3768                  * filter is used, limit_min is 0 by default
3769                  */
3770                 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3771                                         count_data < bctl->data.limit_min)
3772                                 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3773                                         count_meta < bctl->meta.limit_min)
3774                                 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3775                                         count_sys < bctl->sys.limit_min)) {
3776                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3777                         goto loop;
3778                 }
3779
3780                 if (!chunk_reserved) {
3781                         /*
3782                          * We may be relocating the only data chunk we have,
3783                          * which could potentially end up with losing data's
3784                          * raid profile, so lets allocate an empty one in
3785                          * advance.
3786                          */
3787                         ret = btrfs_may_alloc_data_chunk(fs_info,
3788                                                          found_key.offset);
3789                         if (ret < 0) {
3790                                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3791                                 goto error;
3792                         } else if (ret == 1) {
3793                                 chunk_reserved = 1;
3794                         }
3795                 }
3796
3797                 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3798                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3799                 if (ret == -ENOSPC) {
3800                         enospc_errors++;
3801                 } else if (ret == -ETXTBSY) {
3802                         btrfs_info(fs_info,
3803            "skipping relocation of block group %llu due to active swapfile",
3804                                    found_key.offset);
3805                         ret = 0;
3806                 } else if (ret) {
3807                         goto error;
3808                 } else {
3809                         spin_lock(&fs_info->balance_lock);
3810                         bctl->stat.completed++;
3811                         spin_unlock(&fs_info->balance_lock);
3812                 }
3813 loop:
3814                 if (found_key.offset == 0)
3815                         break;
3816                 key.offset = found_key.offset - 1;
3817         }
3818
3819         if (counting) {
3820                 btrfs_release_path(path);
3821                 counting = false;
3822                 goto again;
3823         }
3824 error:
3825         btrfs_free_path(path);
3826         if (enospc_errors) {
3827                 btrfs_info(fs_info, "%d enospc errors during balance",
3828                            enospc_errors);
3829                 if (!ret)
3830                         ret = -ENOSPC;
3831         }
3832
3833         return ret;
3834 }
3835
3836 /**
3837  * alloc_profile_is_valid - see if a given profile is valid and reduced
3838  * @flags: profile to validate
3839  * @extended: if true @flags is treated as an extended profile
3840  */
3841 static int alloc_profile_is_valid(u64 flags, int extended)
3842 {
3843         u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3844                                BTRFS_BLOCK_GROUP_PROFILE_MASK);
3845
3846         flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3847
3848         /* 1) check that all other bits are zeroed */
3849         if (flags & ~mask)
3850                 return 0;
3851
3852         /* 2) see if profile is reduced */
3853         if (flags == 0)
3854                 return !extended; /* "0" is valid for usual profiles */
3855
3856         /* true if exactly one bit set */
3857         return is_power_of_2(flags);
3858 }
3859
3860 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3861 {
3862         /* cancel requested || normal exit path */
3863         return atomic_read(&fs_info->balance_cancel_req) ||
3864                 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3865                  atomic_read(&fs_info->balance_cancel_req) == 0);
3866 }
3867
3868 /* Non-zero return value signifies invalidity */
3869 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3870                 u64 allowed)
3871 {
3872         return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3873                 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3874                  (bctl_arg->target & ~allowed)));
3875 }
3876
3877 /*
3878  * Fill @buf with textual description of balance filter flags @bargs, up to
3879  * @size_buf including the terminating null. The output may be trimmed if it
3880  * does not fit into the provided buffer.
3881  */
3882 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3883                                  u32 size_buf)
3884 {
3885         int ret;
3886         u32 size_bp = size_buf;
3887         char *bp = buf;
3888         u64 flags = bargs->flags;
3889         char tmp_buf[128] = {'\0'};
3890
3891         if (!flags)
3892                 return;
3893
3894 #define CHECK_APPEND_NOARG(a)                                           \
3895         do {                                                            \
3896                 ret = snprintf(bp, size_bp, (a));                       \
3897                 if (ret < 0 || ret >= size_bp)                          \
3898                         goto out_overflow;                              \
3899                 size_bp -= ret;                                         \
3900                 bp += ret;                                              \
3901         } while (0)
3902
3903 #define CHECK_APPEND_1ARG(a, v1)                                        \
3904         do {                                                            \
3905                 ret = snprintf(bp, size_bp, (a), (v1));                 \
3906                 if (ret < 0 || ret >= size_bp)                          \
3907                         goto out_overflow;                              \
3908                 size_bp -= ret;                                         \
3909                 bp += ret;                                              \
3910         } while (0)
3911
3912 #define CHECK_APPEND_2ARG(a, v1, v2)                                    \
3913         do {                                                            \
3914                 ret = snprintf(bp, size_bp, (a), (v1), (v2));           \
3915                 if (ret < 0 || ret >= size_bp)                          \
3916                         goto out_overflow;                              \
3917                 size_bp -= ret;                                         \
3918                 bp += ret;                                              \
3919         } while (0)
3920
3921         if (flags & BTRFS_BALANCE_ARGS_CONVERT)
3922                 CHECK_APPEND_1ARG("convert=%s,",
3923                                   btrfs_bg_type_to_raid_name(bargs->target));
3924
3925         if (flags & BTRFS_BALANCE_ARGS_SOFT)
3926                 CHECK_APPEND_NOARG("soft,");
3927
3928         if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
3929                 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
3930                                             sizeof(tmp_buf));
3931                 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
3932         }
3933
3934         if (flags & BTRFS_BALANCE_ARGS_USAGE)
3935                 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
3936
3937         if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
3938                 CHECK_APPEND_2ARG("usage=%u..%u,",
3939                                   bargs->usage_min, bargs->usage_max);
3940
3941         if (flags & BTRFS_BALANCE_ARGS_DEVID)
3942                 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
3943
3944         if (flags & BTRFS_BALANCE_ARGS_DRANGE)
3945                 CHECK_APPEND_2ARG("drange=%llu..%llu,",
3946                                   bargs->pstart, bargs->pend);
3947
3948         if (flags & BTRFS_BALANCE_ARGS_VRANGE)
3949                 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
3950                                   bargs->vstart, bargs->vend);
3951
3952         if (flags & BTRFS_BALANCE_ARGS_LIMIT)
3953                 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
3954
3955         if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
3956                 CHECK_APPEND_2ARG("limit=%u..%u,",
3957                                 bargs->limit_min, bargs->limit_max);
3958
3959         if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
3960                 CHECK_APPEND_2ARG("stripes=%u..%u,",
3961                                   bargs->stripes_min, bargs->stripes_max);
3962
3963 #undef CHECK_APPEND_2ARG
3964 #undef CHECK_APPEND_1ARG
3965 #undef CHECK_APPEND_NOARG
3966
3967 out_overflow:
3968
3969         if (size_bp < size_buf)
3970                 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
3971         else
3972                 buf[0] = '\0';
3973 }
3974
3975 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
3976 {
3977         u32 size_buf = 1024;
3978         char tmp_buf[192] = {'\0'};
3979         char *buf;
3980         char *bp;
3981         u32 size_bp = size_buf;
3982         int ret;
3983         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3984
3985         buf = kzalloc(size_buf, GFP_KERNEL);
3986         if (!buf)
3987                 return;
3988
3989         bp = buf;
3990
3991 #define CHECK_APPEND_1ARG(a, v1)                                        \
3992         do {                                                            \
3993                 ret = snprintf(bp, size_bp, (a), (v1));                 \
3994                 if (ret < 0 || ret >= size_bp)                          \
3995                         goto out_overflow;                              \
3996                 size_bp -= ret;                                         \
3997                 bp += ret;                                              \
3998         } while (0)
3999
4000         if (bctl->flags & BTRFS_BALANCE_FORCE)
4001                 CHECK_APPEND_1ARG("%s", "-f ");
4002
4003         if (bctl->flags & BTRFS_BALANCE_DATA) {
4004                 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
4005                 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
4006         }
4007
4008         if (bctl->flags & BTRFS_BALANCE_METADATA) {
4009                 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
4010                 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
4011         }
4012
4013         if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
4014                 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
4015                 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
4016         }
4017
4018 #undef CHECK_APPEND_1ARG
4019
4020 out_overflow:
4021
4022         if (size_bp < size_buf)
4023                 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
4024         btrfs_info(fs_info, "balance: %s %s",
4025                    (bctl->flags & BTRFS_BALANCE_RESUME) ?
4026                    "resume" : "start", buf);
4027
4028         kfree(buf);
4029 }
4030
4031 /*
4032  * Should be called with balance mutexe held
4033  */
4034 int btrfs_balance(struct btrfs_fs_info *fs_info,
4035                   struct btrfs_balance_control *bctl,
4036                   struct btrfs_ioctl_balance_args *bargs)
4037 {
4038         u64 meta_target, data_target;
4039         u64 allowed;
4040         int mixed = 0;
4041         int ret;
4042         u64 num_devices;
4043         unsigned seq;
4044         bool reducing_integrity;
4045         int i;
4046
4047         if (btrfs_fs_closing(fs_info) ||
4048             atomic_read(&fs_info->balance_pause_req) ||
4049             atomic_read(&fs_info->balance_cancel_req)) {
4050                 ret = -EINVAL;
4051                 goto out;
4052         }
4053
4054         allowed = btrfs_super_incompat_flags(fs_info->super_copy);
4055         if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
4056                 mixed = 1;
4057
4058         /*
4059          * In case of mixed groups both data and meta should be picked,
4060          * and identical options should be given for both of them.
4061          */
4062         allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
4063         if (mixed && (bctl->flags & allowed)) {
4064                 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
4065                     !(bctl->flags & BTRFS_BALANCE_METADATA) ||
4066                     memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
4067                         btrfs_err(fs_info,
4068           "balance: mixed groups data and metadata options must be the same");
4069                         ret = -EINVAL;
4070                         goto out;
4071                 }
4072         }
4073
4074         num_devices = btrfs_num_devices(fs_info);
4075         allowed = 0;
4076         for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
4077                 if (num_devices >= btrfs_raid_array[i].devs_min)
4078                         allowed |= btrfs_raid_array[i].bg_flag;
4079
4080         if (validate_convert_profile(&bctl->data, allowed)) {
4081                 btrfs_err(fs_info,
4082                           "balance: invalid convert data profile %s",
4083                           btrfs_bg_type_to_raid_name(bctl->data.target));
4084                 ret = -EINVAL;
4085                 goto out;
4086         }
4087         if (validate_convert_profile(&bctl->meta, allowed)) {
4088                 btrfs_err(fs_info,
4089                           "balance: invalid convert metadata profile %s",
4090                           btrfs_bg_type_to_raid_name(bctl->meta.target));
4091                 ret = -EINVAL;
4092                 goto out;
4093         }
4094         if (validate_convert_profile(&bctl->sys, allowed)) {
4095                 btrfs_err(fs_info,
4096                           "balance: invalid convert system profile %s",
4097                           btrfs_bg_type_to_raid_name(bctl->sys.target));
4098                 ret = -EINVAL;
4099                 goto out;
4100         }
4101
4102         /*
4103          * Allow to reduce metadata or system integrity only if force set for
4104          * profiles with redundancy (copies, parity)
4105          */
4106         allowed = 0;
4107         for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
4108                 if (btrfs_raid_array[i].ncopies >= 2 ||
4109                     btrfs_raid_array[i].tolerated_failures >= 1)
4110                         allowed |= btrfs_raid_array[i].bg_flag;
4111         }
4112         do {
4113                 seq = read_seqbegin(&fs_info->profiles_lock);
4114
4115                 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4116                      (fs_info->avail_system_alloc_bits & allowed) &&
4117                      !(bctl->sys.target & allowed)) ||
4118                     ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
4119                      (fs_info->avail_metadata_alloc_bits & allowed) &&
4120                      !(bctl->meta.target & allowed)))
4121                         reducing_integrity = true;
4122                 else
4123                         reducing_integrity = false;
4124
4125                 /* if we're not converting, the target field is uninitialized */
4126                 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4127                         bctl->meta.target : fs_info->avail_metadata_alloc_bits;
4128                 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
4129                         bctl->data.target : fs_info->avail_data_alloc_bits;
4130         } while (read_seqretry(&fs_info->profiles_lock, seq));
4131
4132         if (reducing_integrity) {
4133                 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4134                         btrfs_info(fs_info,
4135                                    "balance: force reducing metadata integrity");
4136                 } else {
4137                         btrfs_err(fs_info,
4138           "balance: reduces metadata integrity, use --force if you want this");
4139                         ret = -EINVAL;
4140                         goto out;
4141                 }
4142         }
4143
4144         if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4145                 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4146                 btrfs_warn(fs_info,
4147         "balance: metadata profile %s has lower redundancy than data profile %s",
4148                                 btrfs_bg_type_to_raid_name(meta_target),
4149                                 btrfs_bg_type_to_raid_name(data_target));
4150         }
4151
4152         if (fs_info->send_in_progress) {
4153                 btrfs_warn_rl(fs_info,
4154 "cannot run balance while send operations are in progress (%d in progress)",
4155                               fs_info->send_in_progress);
4156                 ret = -EAGAIN;
4157                 goto out;
4158         }
4159
4160         ret = insert_balance_item(fs_info, bctl);
4161         if (ret && ret != -EEXIST)
4162                 goto out;
4163
4164         if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4165                 BUG_ON(ret == -EEXIST);
4166                 BUG_ON(fs_info->balance_ctl);
4167                 spin_lock(&fs_info->balance_lock);
4168                 fs_info->balance_ctl = bctl;
4169                 spin_unlock(&fs_info->balance_lock);
4170         } else {
4171                 BUG_ON(ret != -EEXIST);
4172                 spin_lock(&fs_info->balance_lock);
4173                 update_balance_args(bctl);
4174                 spin_unlock(&fs_info->balance_lock);
4175         }
4176
4177         ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4178         set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4179         describe_balance_start_or_resume(fs_info);
4180         mutex_unlock(&fs_info->balance_mutex);
4181
4182         ret = __btrfs_balance(fs_info);
4183
4184         mutex_lock(&fs_info->balance_mutex);
4185         if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4186                 btrfs_info(fs_info, "balance: paused");
4187         else if (ret == -ECANCELED && atomic_read(&fs_info->balance_cancel_req))
4188                 btrfs_info(fs_info, "balance: canceled");
4189         else
4190                 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4191
4192         clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4193
4194         if (bargs) {
4195                 memset(bargs, 0, sizeof(*bargs));
4196                 btrfs_update_ioctl_balance_args(fs_info, bargs);
4197         }
4198
4199         if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4200             balance_need_close(fs_info)) {
4201                 reset_balance_state(fs_info);
4202                 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4203         }
4204
4205         wake_up(&fs_info->balance_wait_q);
4206
4207         return ret;
4208 out:
4209         if (bctl->flags & BTRFS_BALANCE_RESUME)
4210                 reset_balance_state(fs_info);
4211         else
4212                 kfree(bctl);
4213         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4214
4215         return ret;
4216 }
4217
4218 static int balance_kthread(void *data)
4219 {
4220         struct btrfs_fs_info *fs_info = data;
4221         int ret = 0;
4222
4223         mutex_lock(&fs_info->balance_mutex);
4224         if (fs_info->balance_ctl)
4225                 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4226         mutex_unlock(&fs_info->balance_mutex);
4227
4228         return ret;
4229 }
4230
4231 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4232 {
4233         struct task_struct *tsk;
4234
4235         mutex_lock(&fs_info->balance_mutex);
4236         if (!fs_info->balance_ctl) {
4237                 mutex_unlock(&fs_info->balance_mutex);
4238                 return 0;
4239         }
4240         mutex_unlock(&fs_info->balance_mutex);
4241
4242         if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4243                 btrfs_info(fs_info, "balance: resume skipped");
4244                 return 0;
4245         }
4246
4247         /*
4248          * A ro->rw remount sequence should continue with the paused balance
4249          * regardless of who pauses it, system or the user as of now, so set
4250          * the resume flag.
4251          */
4252         spin_lock(&fs_info->balance_lock);
4253         fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4254         spin_unlock(&fs_info->balance_lock);
4255
4256         tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4257         return PTR_ERR_OR_ZERO(tsk);
4258 }
4259
4260 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4261 {
4262         struct btrfs_balance_control *bctl;
4263         struct btrfs_balance_item *item;
4264         struct btrfs_disk_balance_args disk_bargs;
4265         struct btrfs_path *path;
4266         struct extent_buffer *leaf;
4267         struct btrfs_key key;
4268         int ret;
4269
4270         path = btrfs_alloc_path();
4271         if (!path)
4272                 return -ENOMEM;
4273
4274         key.objectid = BTRFS_BALANCE_OBJECTID;
4275         key.type = BTRFS_TEMPORARY_ITEM_KEY;
4276         key.offset = 0;
4277
4278         ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4279         if (ret < 0)
4280                 goto out;
4281         if (ret > 0) { /* ret = -ENOENT; */
4282                 ret = 0;
4283                 goto out;
4284         }
4285
4286         bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4287         if (!bctl) {
4288                 ret = -ENOMEM;
4289                 goto out;
4290         }
4291
4292         leaf = path->nodes[0];
4293         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4294
4295         bctl->flags = btrfs_balance_flags(leaf, item);
4296         bctl->flags |= BTRFS_BALANCE_RESUME;
4297
4298         btrfs_balance_data(leaf, item, &disk_bargs);
4299         btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4300         btrfs_balance_meta(leaf, item, &disk_bargs);
4301         btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4302         btrfs_balance_sys(leaf, item, &disk_bargs);
4303         btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4304
4305         /*
4306          * This should never happen, as the paused balance state is recovered
4307          * during mount without any chance of other exclusive ops to collide.
4308          *
4309          * This gives the exclusive op status to balance and keeps in paused
4310          * state until user intervention (cancel or umount). If the ownership
4311          * cannot be assigned, show a message but do not fail. The balance
4312          * is in a paused state and must have fs_info::balance_ctl properly
4313          * set up.
4314          */
4315         if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
4316                 btrfs_warn(fs_info,
4317         "balance: cannot set exclusive op status, resume manually");
4318
4319         mutex_lock(&fs_info->balance_mutex);
4320         BUG_ON(fs_info->balance_ctl);
4321         spin_lock(&fs_info->balance_lock);
4322         fs_info->balance_ctl = bctl;
4323         spin_unlock(&fs_info->balance_lock);
4324         mutex_unlock(&fs_info->balance_mutex);
4325 out:
4326         btrfs_free_path(path);
4327         return ret;
4328 }
4329
4330 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4331 {
4332         int ret = 0;
4333
4334         mutex_lock(&fs_info->balance_mutex);
4335         if (!fs_info->balance_ctl) {
4336                 mutex_unlock(&fs_info->balance_mutex);
4337                 return -ENOTCONN;
4338         }
4339
4340         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4341                 atomic_inc(&fs_info->balance_pause_req);
4342                 mutex_unlock(&fs_info->balance_mutex);
4343
4344                 wait_event(fs_info->balance_wait_q,
4345                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4346
4347                 mutex_lock(&fs_info->balance_mutex);
4348                 /* we are good with balance_ctl ripped off from under us */
4349                 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4350                 atomic_dec(&fs_info->balance_pause_req);
4351         } else {
4352                 ret = -ENOTCONN;
4353         }
4354
4355         mutex_unlock(&fs_info->balance_mutex);
4356         return ret;
4357 }
4358
4359 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4360 {
4361         mutex_lock(&fs_info->balance_mutex);
4362         if (!fs_info->balance_ctl) {
4363                 mutex_unlock(&fs_info->balance_mutex);
4364                 return -ENOTCONN;
4365         }
4366
4367         /*
4368          * A paused balance with the item stored on disk can be resumed at
4369          * mount time if the mount is read-write. Otherwise it's still paused
4370          * and we must not allow cancelling as it deletes the item.
4371          */
4372         if (sb_rdonly(fs_info->sb)) {
4373                 mutex_unlock(&fs_info->balance_mutex);
4374                 return -EROFS;
4375         }
4376
4377         atomic_inc(&fs_info->balance_cancel_req);
4378         /*
4379          * if we are running just wait and return, balance item is
4380          * deleted in btrfs_balance in this case
4381          */
4382         if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4383                 mutex_unlock(&fs_info->balance_mutex);
4384                 wait_event(fs_info->balance_wait_q,
4385                            !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4386                 mutex_lock(&fs_info->balance_mutex);
4387         } else {
4388                 mutex_unlock(&fs_info->balance_mutex);
4389                 /*
4390                  * Lock released to allow other waiters to continue, we'll
4391                  * reexamine the status again.
4392                  */
4393                 mutex_lock(&fs_info->balance_mutex);
4394
4395                 if (fs_info->balance_ctl) {
4396                         reset_balance_state(fs_info);
4397                         clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4398                         btrfs_info(fs_info, "balance: canceled");
4399                 }
4400         }
4401
4402         BUG_ON(fs_info->balance_ctl ||
4403                 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4404         atomic_dec(&fs_info->balance_cancel_req);
4405         mutex_unlock(&fs_info->balance_mutex);
4406         return 0;
4407 }
4408
4409 static int btrfs_uuid_scan_kthread(void *data)
4410 {
4411         struct btrfs_fs_info *fs_info = data;
4412         struct btrfs_root *root = fs_info->tree_root;
4413         struct btrfs_key key;
4414         struct btrfs_path *path = NULL;
4415         int ret = 0;
4416         struct extent_buffer *eb;
4417         int slot;
4418         struct btrfs_root_item root_item;
4419         u32 item_size;
4420         struct btrfs_trans_handle *trans = NULL;
4421
4422         path = btrfs_alloc_path();
4423         if (!path) {
4424                 ret = -ENOMEM;
4425                 goto out;
4426         }
4427
4428         key.objectid = 0;
4429         key.type = BTRFS_ROOT_ITEM_KEY;
4430         key.offset = 0;
4431
4432         while (1) {
4433                 ret = btrfs_search_forward(root, &key, path,
4434                                 BTRFS_OLDEST_GENERATION);
4435                 if (ret) {
4436                         if (ret > 0)
4437                                 ret = 0;
4438                         break;
4439                 }
4440
4441                 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4442                     (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4443                      key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4444                     key.objectid > BTRFS_LAST_FREE_OBJECTID)
4445                         goto skip;
4446
4447                 eb = path->nodes[0];
4448                 slot = path->slots[0];
4449                 item_size = btrfs_item_size_nr(eb, slot);
4450                 if (item_size < sizeof(root_item))
4451                         goto skip;
4452
4453                 read_extent_buffer(eb, &root_item,
4454                                    btrfs_item_ptr_offset(eb, slot),
4455                                    (int)sizeof(root_item));
4456                 if (btrfs_root_refs(&root_item) == 0)
4457                         goto skip;
4458
4459                 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4460                     !btrfs_is_empty_uuid(root_item.received_uuid)) {
4461                         if (trans)
4462                                 goto update_tree;
4463
4464                         btrfs_release_path(path);
4465                         /*
4466                          * 1 - subvol uuid item
4467                          * 1 - received_subvol uuid item
4468                          */
4469                         trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4470                         if (IS_ERR(trans)) {
4471                                 ret = PTR_ERR(trans);
4472                                 break;
4473                         }
4474                         continue;
4475                 } else {
4476                         goto skip;
4477                 }
4478 update_tree:
4479                 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4480                         ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4481                                                   BTRFS_UUID_KEY_SUBVOL,
4482                                                   key.objectid);
4483                         if (ret < 0) {
4484                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4485                                         ret);
4486                                 break;
4487                         }
4488                 }
4489
4490                 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4491                         ret = btrfs_uuid_tree_add(trans,
4492                                                   root_item.received_uuid,
4493                                                  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4494                                                   key.objectid);
4495                         if (ret < 0) {
4496                                 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4497                                         ret);
4498                                 break;
4499                         }
4500                 }
4501
4502 skip:
4503                 if (trans) {
4504                         ret = btrfs_end_transaction(trans);
4505                         trans = NULL;
4506                         if (ret)
4507                                 break;
4508                 }
4509
4510                 btrfs_release_path(path);
4511                 if (key.offset < (u64)-1) {
4512                         key.offset++;
4513                 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4514                         key.offset = 0;
4515                         key.type = BTRFS_ROOT_ITEM_KEY;
4516                 } else if (key.objectid < (u64)-1) {
4517                         key.offset = 0;
4518                         key.type = BTRFS_ROOT_ITEM_KEY;
4519                         key.objectid++;
4520                 } else {
4521                         break;
4522                 }
4523                 cond_resched();
4524         }
4525
4526 out:
4527         btrfs_free_path(path);
4528         if (trans && !IS_ERR(trans))
4529                 btrfs_end_transaction(trans);
4530         if (ret)
4531                 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4532         else
4533                 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4534         up(&fs_info->uuid_tree_rescan_sem);
4535         return 0;
4536 }
4537
4538 /*
4539  * Callback for btrfs_uuid_tree_iterate().
4540  * returns:
4541  * 0    check succeeded, the entry is not outdated.
4542  * < 0  if an error occurred.
4543  * > 0  if the check failed, which means the caller shall remove the entry.
4544  */
4545 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4546                                        u8 *uuid, u8 type, u64 subid)
4547 {
4548         struct btrfs_key key;
4549         int ret = 0;
4550         struct btrfs_root *subvol_root;
4551
4552         if (type != BTRFS_UUID_KEY_SUBVOL &&
4553             type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4554                 goto out;
4555
4556         key.objectid = subid;
4557         key.type = BTRFS_ROOT_ITEM_KEY;
4558         key.offset = (u64)-1;
4559         subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4560         if (IS_ERR(subvol_root)) {
4561                 ret = PTR_ERR(subvol_root);
4562                 if (ret == -ENOENT)
4563                         ret = 1;
4564                 goto out;
4565         }
4566
4567         switch (type) {
4568         case BTRFS_UUID_KEY_SUBVOL:
4569                 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4570                         ret = 1;
4571                 break;
4572         case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4573                 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4574                            BTRFS_UUID_SIZE))
4575                         ret = 1;
4576                 break;
4577         }
4578
4579 out:
4580         return ret;
4581 }
4582
4583 static int btrfs_uuid_rescan_kthread(void *data)
4584 {
4585         struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4586         int ret;
4587
4588         /*
4589          * 1st step is to iterate through the existing UUID tree and
4590          * to delete all entries that contain outdated data.
4591          * 2nd step is to add all missing entries to the UUID tree.
4592          */
4593         ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4594         if (ret < 0) {
4595                 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4596                 up(&fs_info->uuid_tree_rescan_sem);
4597                 return ret;
4598         }
4599         return btrfs_uuid_scan_kthread(data);
4600 }
4601
4602 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4603 {
4604         struct btrfs_trans_handle *trans;
4605         struct btrfs_root *tree_root = fs_info->tree_root;
4606         struct btrfs_root *uuid_root;
4607         struct task_struct *task;
4608         int ret;
4609
4610         /*
4611          * 1 - root node
4612          * 1 - root item
4613          */
4614         trans = btrfs_start_transaction(tree_root, 2);
4615         if (IS_ERR(trans))
4616                 return PTR_ERR(trans);
4617
4618         uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4619         if (IS_ERR(uuid_root)) {
4620                 ret = PTR_ERR(uuid_root);
4621                 btrfs_abort_transaction(trans, ret);
4622                 btrfs_end_transaction(trans);
4623                 return ret;
4624         }
4625
4626         fs_info->uuid_root = uuid_root;
4627
4628         ret = btrfs_commit_transaction(trans);
4629         if (ret)
4630                 return ret;
4631
4632         down(&fs_info->uuid_tree_rescan_sem);
4633         task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4634         if (IS_ERR(task)) {
4635                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4636                 btrfs_warn(fs_info, "failed to start uuid_scan task");
4637                 up(&fs_info->uuid_tree_rescan_sem);
4638                 return PTR_ERR(task);
4639         }
4640
4641         return 0;
4642 }
4643
4644 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4645 {
4646         struct task_struct *task;
4647
4648         down(&fs_info->uuid_tree_rescan_sem);
4649         task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4650         if (IS_ERR(task)) {
4651                 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4652                 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4653                 up(&fs_info->uuid_tree_rescan_sem);
4654                 return PTR_ERR(task);
4655         }
4656
4657         return 0;
4658 }
4659
4660 /*
4661  * shrinking a device means finding all of the device extents past
4662  * the new size, and then following the back refs to the chunks.
4663  * The chunk relocation code actually frees the device extent
4664  */
4665 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4666 {
4667         struct btrfs_fs_info *fs_info = device->fs_info;
4668         struct btrfs_root *root = fs_info->dev_root;
4669         struct btrfs_trans_handle *trans;
4670         struct btrfs_dev_extent *dev_extent = NULL;
4671         struct btrfs_path *path;
4672         u64 length;
4673         u64 chunk_offset;
4674         int ret;
4675         int slot;
4676         int failed = 0;
4677         bool retried = false;
4678         struct extent_buffer *l;
4679         struct btrfs_key key;
4680         struct btrfs_super_block *super_copy = fs_info->super_copy;
4681         u64 old_total = btrfs_super_total_bytes(super_copy);
4682         u64 old_size = btrfs_device_get_total_bytes(device);
4683         u64 diff;
4684         u64 start;
4685
4686         new_size = round_down(new_size, fs_info->sectorsize);
4687         start = new_size;
4688         diff = round_down(old_size - new_size, fs_info->sectorsize);
4689
4690         if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4691                 return -EINVAL;
4692
4693         path = btrfs_alloc_path();
4694         if (!path)
4695                 return -ENOMEM;
4696
4697         path->reada = READA_BACK;
4698
4699         trans = btrfs_start_transaction(root, 0);
4700         if (IS_ERR(trans)) {
4701                 btrfs_free_path(path);
4702                 return PTR_ERR(trans);
4703         }
4704
4705         mutex_lock(&fs_info->chunk_mutex);
4706
4707         btrfs_device_set_total_bytes(device, new_size);
4708         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4709                 device->fs_devices->total_rw_bytes -= diff;
4710                 atomic64_sub(diff, &fs_info->free_chunk_space);
4711         }
4712
4713         /*
4714          * Once the device's size has been set to the new size, ensure all
4715          * in-memory chunks are synced to disk so that the loop below sees them
4716          * and relocates them accordingly.
4717          */
4718         if (contains_pending_extent(device, &start, diff)) {
4719                 mutex_unlock(&fs_info->chunk_mutex);
4720                 ret = btrfs_commit_transaction(trans);
4721                 if (ret)
4722                         goto done;
4723         } else {
4724                 mutex_unlock(&fs_info->chunk_mutex);
4725                 btrfs_end_transaction(trans);
4726         }
4727
4728 again:
4729         key.objectid = device->devid;
4730         key.offset = (u64)-1;
4731         key.type = BTRFS_DEV_EXTENT_KEY;
4732
4733         do {
4734                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4735                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4736                 if (ret < 0) {
4737                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4738                         goto done;
4739                 }
4740
4741                 ret = btrfs_previous_item(root, path, 0, key.type);
4742                 if (ret)
4743                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4744                 if (ret < 0)
4745                         goto done;
4746                 if (ret) {
4747                         ret = 0;
4748                         btrfs_release_path(path);
4749                         break;
4750                 }
4751
4752                 l = path->nodes[0];
4753                 slot = path->slots[0];
4754                 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4755
4756                 if (key.objectid != device->devid) {
4757                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4758                         btrfs_release_path(path);
4759                         break;
4760                 }
4761
4762                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4763                 length = btrfs_dev_extent_length(l, dev_extent);
4764
4765                 if (key.offset + length <= new_size) {
4766                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4767                         btrfs_release_path(path);
4768                         break;
4769                 }
4770
4771                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4772                 btrfs_release_path(path);
4773
4774                 /*
4775                  * We may be relocating the only data chunk we have,
4776                  * which could potentially end up with losing data's
4777                  * raid profile, so lets allocate an empty one in
4778                  * advance.
4779                  */
4780                 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4781                 if (ret < 0) {
4782                         mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4783                         goto done;
4784                 }
4785
4786                 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4787                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4788                 if (ret == -ENOSPC) {
4789                         failed++;
4790                 } else if (ret) {
4791                         if (ret == -ETXTBSY) {
4792                                 btrfs_warn(fs_info,
4793                    "could not shrink block group %llu due to active swapfile",
4794                                            chunk_offset);
4795                         }
4796                         goto done;
4797                 }
4798         } while (key.offset-- > 0);
4799
4800         if (failed && !retried) {
4801                 failed = 0;
4802                 retried = true;
4803                 goto again;
4804         } else if (failed && retried) {
4805                 ret = -ENOSPC;
4806                 goto done;
4807         }
4808
4809         /* Shrinking succeeded, else we would be at "done". */
4810         trans = btrfs_start_transaction(root, 0);
4811         if (IS_ERR(trans)) {
4812                 ret = PTR_ERR(trans);
4813                 goto done;
4814         }
4815
4816         mutex_lock(&fs_info->chunk_mutex);
4817         btrfs_device_set_disk_total_bytes(device, new_size);
4818         if (list_empty(&device->post_commit_list))
4819                 list_add_tail(&device->post_commit_list,
4820                               &trans->transaction->dev_update_list);
4821
4822         WARN_ON(diff > old_total);
4823         btrfs_set_super_total_bytes(super_copy,
4824                         round_down(old_total - diff, fs_info->sectorsize));
4825         mutex_unlock(&fs_info->chunk_mutex);
4826
4827         /* Now btrfs_update_device() will change the on-disk size. */
4828         ret = btrfs_update_device(trans, device);
4829         if (ret < 0) {
4830                 btrfs_abort_transaction(trans, ret);
4831                 btrfs_end_transaction(trans);
4832         } else {
4833                 ret = btrfs_commit_transaction(trans);
4834         }
4835 done:
4836         btrfs_free_path(path);
4837         if (ret) {
4838                 mutex_lock(&fs_info->chunk_mutex);
4839                 btrfs_device_set_total_bytes(device, old_size);
4840                 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4841                         device->fs_devices->total_rw_bytes += diff;
4842                 atomic64_add(diff, &fs_info->free_chunk_space);
4843                 mutex_unlock(&fs_info->chunk_mutex);
4844         }
4845         return ret;
4846 }
4847
4848 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4849                            struct btrfs_key *key,
4850                            struct btrfs_chunk *chunk, int item_size)
4851 {
4852         struct btrfs_super_block *super_copy = fs_info->super_copy;
4853         struct btrfs_disk_key disk_key;
4854         u32 array_size;
4855         u8 *ptr;
4856
4857         mutex_lock(&fs_info->chunk_mutex);
4858         array_size = btrfs_super_sys_array_size(super_copy);
4859         if (array_size + item_size + sizeof(disk_key)
4860                         > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4861                 mutex_unlock(&fs_info->chunk_mutex);
4862                 return -EFBIG;
4863         }
4864
4865         ptr = super_copy->sys_chunk_array + array_size;
4866         btrfs_cpu_key_to_disk(&disk_key, key);
4867         memcpy(ptr, &disk_key, sizeof(disk_key));
4868         ptr += sizeof(disk_key);
4869         memcpy(ptr, chunk, item_size);
4870         item_size += sizeof(disk_key);
4871         btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4872         mutex_unlock(&fs_info->chunk_mutex);
4873
4874         return 0;
4875 }
4876
4877 /*
4878  * sort the devices in descending order by max_avail, total_avail
4879  */
4880 static int btrfs_cmp_device_info(const void *a, const void *b)
4881 {
4882         const struct btrfs_device_info *di_a = a;
4883         const struct btrfs_device_info *di_b = b;
4884
4885         if (di_a->max_avail > di_b->max_avail)
4886                 return -1;
4887         if (di_a->max_avail < di_b->max_avail)
4888                 return 1;
4889         if (di_a->total_avail > di_b->total_avail)
4890                 return -1;
4891         if (di_a->total_avail < di_b->total_avail)
4892                 return 1;
4893         return 0;
4894 }
4895
4896 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4897 {
4898         if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4899                 return;
4900
4901         btrfs_set_fs_incompat(info, RAID56);
4902 }
4903
4904 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4905                                u64 start, u64 type)
4906 {
4907         struct btrfs_fs_info *info = trans->fs_info;
4908         struct btrfs_fs_devices *fs_devices = info->fs_devices;
4909         struct btrfs_device *device;
4910         struct map_lookup *map = NULL;
4911         struct extent_map_tree *em_tree;
4912         struct extent_map *em;
4913         struct btrfs_device_info *devices_info = NULL;
4914         u64 total_avail;
4915         int num_stripes;        /* total number of stripes to allocate */
4916         int data_stripes;       /* number of stripes that count for
4917                                    block group size */
4918         int sub_stripes;        /* sub_stripes info for map */
4919         int dev_stripes;        /* stripes per dev */
4920         int devs_max;           /* max devs to use */
4921         int devs_min;           /* min devs needed */
4922         int devs_increment;     /* ndevs has to be a multiple of this */
4923         int ncopies;            /* how many copies to data has */
4924         int nparity;            /* number of stripes worth of bytes to
4925                                    store parity information */
4926         int ret;
4927         u64 max_stripe_size;
4928         u64 max_chunk_size;
4929         u64 stripe_size;
4930         u64 chunk_size;
4931         int ndevs;
4932         int i;
4933         int j;
4934         int index;
4935
4936         BUG_ON(!alloc_profile_is_valid(type, 0));
4937
4938         if (list_empty(&fs_devices->alloc_list)) {
4939                 if (btrfs_test_opt(info, ENOSPC_DEBUG))
4940                         btrfs_debug(info, "%s: no writable device", __func__);
4941                 return -ENOSPC;
4942         }
4943
4944         index = btrfs_bg_flags_to_raid_index(type);
4945
4946         sub_stripes = btrfs_raid_array[index].sub_stripes;
4947         dev_stripes = btrfs_raid_array[index].dev_stripes;
4948         devs_max = btrfs_raid_array[index].devs_max;
4949         if (!devs_max)
4950                 devs_max = BTRFS_MAX_DEVS(info);
4951         devs_min = btrfs_raid_array[index].devs_min;
4952         devs_increment = btrfs_raid_array[index].devs_increment;
4953         ncopies = btrfs_raid_array[index].ncopies;
4954         nparity = btrfs_raid_array[index].nparity;
4955
4956         if (type & BTRFS_BLOCK_GROUP_DATA) {
4957                 max_stripe_size = SZ_1G;
4958                 max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4959         } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4960                 /* for larger filesystems, use larger metadata chunks */
4961                 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4962                         max_stripe_size = SZ_1G;
4963                 else
4964                         max_stripe_size = SZ_256M;
4965                 max_chunk_size = max_stripe_size;
4966         } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4967                 max_stripe_size = SZ_32M;
4968                 max_chunk_size = 2 * max_stripe_size;
4969         } else {
4970                 btrfs_err(info, "invalid chunk type 0x%llx requested",
4971                        type);
4972                 BUG();
4973         }
4974
4975         /* We don't want a chunk larger than 10% of writable space */
4976         max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4977                              max_chunk_size);
4978
4979         devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4980                                GFP_NOFS);
4981         if (!devices_info)
4982                 return -ENOMEM;
4983
4984         /*
4985          * in the first pass through the devices list, we gather information
4986          * about the available holes on each device.
4987          */
4988         ndevs = 0;
4989         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4990                 u64 max_avail;
4991                 u64 dev_offset;
4992
4993                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4994                         WARN(1, KERN_ERR
4995                                "BTRFS: read-only device in alloc_list\n");
4996                         continue;
4997                 }
4998
4999                 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
5000                                         &device->dev_state) ||
5001                     test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
5002                         continue;
5003
5004                 if (device->total_bytes > device->bytes_used)
5005                         total_avail = device->total_bytes - device->bytes_used;
5006                 else
5007                         total_avail = 0;
5008
5009                 /* If there is no space on this device, skip it. */
5010                 if (total_avail == 0)
5011                         continue;
5012
5013                 ret = find_free_dev_extent(device,
5014                                            max_stripe_size * dev_stripes,
5015                                            &dev_offset, &max_avail);
5016                 if (ret && ret != -ENOSPC)
5017                         goto error;
5018
5019                 if (ret == 0)
5020                         max_avail = max_stripe_size * dev_stripes;
5021
5022                 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) {
5023                         if (btrfs_test_opt(info, ENOSPC_DEBUG))
5024                                 btrfs_debug(info,
5025                         "%s: devid %llu has no free space, have=%llu want=%u",
5026                                             __func__, device->devid, max_avail,
5027                                             BTRFS_STRIPE_LEN * dev_stripes);
5028                         continue;
5029                 }
5030
5031                 if (ndevs == fs_devices->rw_devices) {
5032                         WARN(1, "%s: found more than %llu devices\n",
5033                              __func__, fs_devices->rw_devices);
5034                         break;
5035                 }
5036                 devices_info[ndevs].dev_offset = dev_offset;
5037                 devices_info[ndevs].max_avail = max_avail;
5038                 devices_info[ndevs].total_avail = total_avail;
5039                 devices_info[ndevs].dev = device;
5040                 ++ndevs;
5041         }
5042
5043         /*
5044          * now sort the devices by hole size / available space
5045          */
5046         sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
5047              btrfs_cmp_device_info, NULL);
5048
5049         /* round down to number of usable stripes */
5050         ndevs = round_down(ndevs, devs_increment);
5051
5052         if (ndevs < devs_min) {
5053                 ret = -ENOSPC;
5054                 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
5055                         btrfs_debug(info,
5056         "%s: not enough devices with free space: have=%d minimum required=%d",
5057                                     __func__, ndevs, devs_min);
5058                 }
5059                 goto error;
5060         }
5061
5062         ndevs = min(ndevs, devs_max);
5063
5064         /*
5065          * The primary goal is to maximize the number of stripes, so use as
5066          * many devices as possible, even if the stripes are not maximum sized.
5067          *
5068          * The DUP profile stores more than one stripe per device, the
5069          * max_avail is the total size so we have to adjust.
5070          */
5071         stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
5072         num_stripes = ndevs * dev_stripes;
5073
5074         /*
5075          * this will have to be fixed for RAID1 and RAID10 over
5076          * more drives
5077          */
5078         data_stripes = (num_stripes - nparity) / ncopies;
5079
5080         /*
5081          * Use the number of data stripes to figure out how big this chunk
5082          * is really going to be in terms of logical address space,
5083          * and compare that answer with the max chunk size. If it's higher,
5084          * we try to reduce stripe_size.
5085          */
5086         if (stripe_size * data_stripes > max_chunk_size) {
5087                 /*
5088                  * Reduce stripe_size, round it up to a 16MB boundary again and
5089                  * then use it, unless it ends up being even bigger than the
5090                  * previous value we had already.
5091                  */
5092                 stripe_size = min(round_up(div_u64(max_chunk_size,
5093                                                    data_stripes), SZ_16M),
5094                                   stripe_size);
5095         }
5096
5097         /* align to BTRFS_STRIPE_LEN */
5098         stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
5099
5100         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
5101         if (!map) {
5102                 ret = -ENOMEM;
5103                 goto error;
5104         }
5105         map->num_stripes = num_stripes;
5106
5107         for (i = 0; i < ndevs; ++i) {
5108                 for (j = 0; j < dev_stripes; ++j) {
5109                         int s = i * dev_stripes + j;
5110                         map->stripes[s].dev = devices_info[i].dev;
5111                         map->stripes[s].physical = devices_info[i].dev_offset +
5112                                                    j * stripe_size;
5113                 }
5114         }
5115         map->stripe_len = BTRFS_STRIPE_LEN;
5116         map->io_align = BTRFS_STRIPE_LEN;
5117         map->io_width = BTRFS_STRIPE_LEN;
5118         map->type = type;
5119         map->sub_stripes = sub_stripes;
5120
5121         chunk_size = stripe_size * data_stripes;
5122
5123         trace_btrfs_chunk_alloc(info, map, start, chunk_size);
5124
5125         em = alloc_extent_map();
5126         if (!em) {
5127                 kfree(map);
5128                 ret = -ENOMEM;
5129                 goto error;
5130         }
5131         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5132         em->map_lookup = map;
5133         em->start = start;
5134         em->len = chunk_size;
5135         em->block_start = 0;
5136         em->block_len = em->len;
5137         em->orig_block_len = stripe_size;
5138
5139         em_tree = &info->mapping_tree;
5140         write_lock(&em_tree->lock);
5141         ret = add_extent_mapping(em_tree, em, 0);
5142         if (ret) {
5143                 write_unlock(&em_tree->lock);
5144                 free_extent_map(em);
5145                 goto error;
5146         }
5147         write_unlock(&em_tree->lock);
5148
5149         ret = btrfs_make_block_group(trans, 0, type, start, chunk_size);
5150         if (ret)
5151                 goto error_del_extent;
5152
5153         for (i = 0; i < map->num_stripes; i++) {
5154                 struct btrfs_device *dev = map->stripes[i].dev;
5155
5156                 btrfs_device_set_bytes_used(dev, dev->bytes_used + stripe_size);
5157                 if (list_empty(&dev->post_commit_list))
5158                         list_add_tail(&dev->post_commit_list,
5159                                       &trans->transaction->dev_update_list);
5160         }
5161
5162         atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
5163
5164         free_extent_map(em);
5165         check_raid56_incompat_flag(info, type);
5166
5167         kfree(devices_info);
5168         return 0;
5169
5170 error_del_extent:
5171         write_lock(&em_tree->lock);
5172         remove_extent_mapping(em_tree, em);
5173         write_unlock(&em_tree->lock);
5174
5175         /* One for our allocation */
5176         free_extent_map(em);
5177         /* One for the tree reference */
5178         free_extent_map(em);
5179 error:
5180         kfree(devices_info);
5181         return ret;
5182 }
5183
5184 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5185                              u64 chunk_offset, u64 chunk_size)
5186 {
5187         struct btrfs_fs_info *fs_info = trans->fs_info;
5188         struct btrfs_root *extent_root = fs_info->extent_root;
5189         struct btrfs_root *chunk_root = fs_info->chunk_root;
5190         struct btrfs_key key;
5191         struct btrfs_device *device;
5192         struct btrfs_chunk *chunk;
5193         struct btrfs_stripe *stripe;
5194         struct extent_map *em;
5195         struct map_lookup *map;
5196         size_t item_size;
5197         u64 dev_offset;
5198         u64 stripe_size;
5199         int i = 0;
5200         int ret = 0;
5201
5202         em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5203         if (IS_ERR(em))
5204                 return PTR_ERR(em);
5205
5206         map = em->map_lookup;
5207         item_size = btrfs_chunk_item_size(map->num_stripes);
5208         stripe_size = em->orig_block_len;
5209
5210         chunk = kzalloc(item_size, GFP_NOFS);
5211         if (!chunk) {
5212                 ret = -ENOMEM;
5213                 goto out;
5214         }
5215
5216         /*
5217          * Take the device list mutex to prevent races with the final phase of
5218          * a device replace operation that replaces the device object associated
5219          * with the map's stripes, because the device object's id can change
5220          * at any time during that final phase of the device replace operation
5221          * (dev-replace.c:btrfs_dev_replace_finishing()).
5222          */
5223         mutex_lock(&fs_info->fs_devices->device_list_mutex);
5224         for (i = 0; i < map->num_stripes; i++) {
5225                 device = map->stripes[i].dev;
5226                 dev_offset = map->stripes[i].physical;
5227
5228                 ret = btrfs_update_device(trans, device);
5229                 if (ret)
5230                         break;
5231                 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5232                                              dev_offset, stripe_size);
5233                 if (ret)
5234                         break;
5235         }
5236         if (ret) {
5237                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5238                 goto out;
5239         }
5240
5241         stripe = &chunk->stripe;
5242         for (i = 0; i < map->num_stripes; i++) {
5243                 device = map->stripes[i].dev;
5244                 dev_offset = map->stripes[i].physical;
5245
5246                 btrfs_set_stack_stripe_devid(stripe, device->devid);
5247                 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5248                 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5249                 stripe++;
5250         }
5251         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5252
5253         btrfs_set_stack_chunk_length(chunk, chunk_size);
5254         btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5255         btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5256         btrfs_set_stack_chunk_type(chunk, map->type);
5257         btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5258         btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5259         btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5260         btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5261         btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5262
5263         key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5264         key.type = BTRFS_CHUNK_ITEM_KEY;
5265         key.offset = chunk_offset;
5266
5267         ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5268         if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5269                 /*
5270                  * TODO: Cleanup of inserted chunk root in case of
5271                  * failure.
5272                  */
5273                 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5274         }
5275
5276 out:
5277         kfree(chunk);
5278         free_extent_map(em);
5279         return ret;
5280 }
5281
5282 /*
5283  * Chunk allocation falls into two parts. The first part does work
5284  * that makes the new allocated chunk usable, but does not do any operation
5285  * that modifies the chunk tree. The second part does the work that
5286  * requires modifying the chunk tree. This division is important for the
5287  * bootstrap process of adding storage to a seed btrfs.
5288  */
5289 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
5290 {
5291         u64 chunk_offset;
5292
5293         lockdep_assert_held(&trans->fs_info->chunk_mutex);
5294         chunk_offset = find_next_chunk(trans->fs_info);
5295         return __btrfs_alloc_chunk(trans, chunk_offset, type);
5296 }
5297
5298 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5299 {
5300         struct btrfs_fs_info *fs_info = trans->fs_info;
5301         u64 chunk_offset;
5302         u64 sys_chunk_offset;
5303         u64 alloc_profile;
5304         int ret;
5305
5306         chunk_offset = find_next_chunk(fs_info);
5307         alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5308         ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5309         if (ret)
5310                 return ret;
5311
5312         sys_chunk_offset = find_next_chunk(fs_info);
5313         alloc_profile = btrfs_system_alloc_profile(fs_info);
5314         ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5315         return ret;
5316 }
5317
5318 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5319 {
5320         const int index = btrfs_bg_flags_to_raid_index(map->type);
5321
5322         return btrfs_raid_array[index].tolerated_failures;
5323 }
5324
5325 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5326 {
5327         struct extent_map *em;
5328         struct map_lookup *map;
5329         int readonly = 0;
5330         int miss_ndevs = 0;
5331         int i;
5332
5333         em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5334         if (IS_ERR(em))
5335                 return 1;
5336
5337         map = em->map_lookup;
5338         for (i = 0; i < map->num_stripes; i++) {
5339                 if (test_bit(BTRFS_DEV_STATE_MISSING,
5340                                         &map->stripes[i].dev->dev_state)) {
5341                         miss_ndevs++;
5342                         continue;
5343                 }
5344                 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5345                                         &map->stripes[i].dev->dev_state)) {
5346                         readonly = 1;
5347                         goto end;
5348                 }
5349         }
5350
5351         /*
5352          * If the number of missing devices is larger than max errors,
5353          * we can not write the data into that chunk successfully, so
5354          * set it readonly.
5355          */
5356         if (miss_ndevs > btrfs_chunk_max_errors(map))
5357                 readonly = 1;
5358 end:
5359         free_extent_map(em);
5360         return readonly;
5361 }
5362
5363 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5364 {
5365         struct extent_map *em;
5366
5367         while (1) {
5368                 write_lock(&tree->lock);
5369                 em = lookup_extent_mapping(tree, 0, (u64)-1);
5370                 if (em)
5371                         remove_extent_mapping(tree, em);
5372                 write_unlock(&tree->lock);
5373                 if (!em)
5374                         break;
5375                 /* once for us */
5376                 free_extent_map(em);
5377                 /* once for the tree */
5378                 free_extent_map(em);
5379         }
5380 }
5381
5382 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5383 {
5384         struct extent_map *em;
5385         struct map_lookup *map;
5386         int ret;
5387
5388         em = btrfs_get_chunk_map(fs_info, logical, len);
5389         if (IS_ERR(em))
5390                 /*
5391                  * We could return errors for these cases, but that could get
5392                  * ugly and we'd probably do the same thing which is just not do
5393                  * anything else and exit, so return 1 so the callers don't try
5394                  * to use other copies.
5395                  */
5396                 return 1;
5397
5398         map = em->map_lookup;
5399         if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5400                 ret = map->num_stripes;
5401         else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5402                 ret = map->sub_stripes;
5403         else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5404                 ret = 2;
5405         else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5406                 /*
5407                  * There could be two corrupted data stripes, we need
5408                  * to loop retry in order to rebuild the correct data.
5409                  *
5410                  * Fail a stripe at a time on every retry except the
5411                  * stripe under reconstruction.
5412                  */
5413                 ret = map->num_stripes;
5414         else
5415                 ret = 1;
5416         free_extent_map(em);
5417
5418         down_read(&fs_info->dev_replace.rwsem);
5419         if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5420             fs_info->dev_replace.tgtdev)
5421                 ret++;
5422         up_read(&fs_info->dev_replace.rwsem);
5423
5424         return ret;
5425 }
5426
5427 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5428                                     u64 logical)
5429 {
5430         struct extent_map *em;
5431         struct map_lookup *map;
5432         unsigned long len = fs_info->sectorsize;
5433
5434         em = btrfs_get_chunk_map(fs_info, logical, len);
5435
5436         if (!WARN_ON(IS_ERR(em))) {
5437                 map = em->map_lookup;
5438                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5439                         len = map->stripe_len * nr_data_stripes(map);
5440                 free_extent_map(em);
5441         }
5442         return len;
5443 }
5444
5445 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5446 {
5447         struct extent_map *em;
5448         struct map_lookup *map;
5449         int ret = 0;
5450
5451         em = btrfs_get_chunk_map(fs_info, logical, len);
5452
5453         if(!WARN_ON(IS_ERR(em))) {
5454                 map = em->map_lookup;
5455                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5456                         ret = 1;
5457                 free_extent_map(em);
5458         }
5459         return ret;
5460 }
5461
5462 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5463                             struct map_lookup *map, int first,
5464                             int dev_replace_is_ongoing)
5465 {
5466         int i;
5467         int num_stripes;
5468         int preferred_mirror;
5469         int tolerance;
5470         struct btrfs_device *srcdev;
5471
5472         ASSERT((map->type &
5473                  (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5474
5475         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5476                 num_stripes = map->sub_stripes;
5477         else
5478                 num_stripes = map->num_stripes;
5479
5480         preferred_mirror = first + current->pid % num_stripes;
5481
5482         if (dev_replace_is_ongoing &&
5483             fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5484              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5485                 srcdev = fs_info->dev_replace.srcdev;
5486         else
5487                 srcdev = NULL;
5488
5489         /*
5490          * try to avoid the drive that is the source drive for a
5491          * dev-replace procedure, only choose it if no other non-missing
5492          * mirror is available
5493          */
5494         for (tolerance = 0; tolerance < 2; tolerance++) {
5495                 if (map->stripes[preferred_mirror].dev->bdev &&
5496                     (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5497                         return preferred_mirror;
5498                 for (i = first; i < first + num_stripes; i++) {
5499                         if (map->stripes[i].dev->bdev &&
5500                             (tolerance || map->stripes[i].dev != srcdev))
5501                                 return i;
5502                 }
5503         }
5504
5505         /* we couldn't find one that doesn't fail.  Just return something
5506          * and the io error handling code will clean up eventually
5507          */
5508         return preferred_mirror;
5509 }
5510
5511 static inline int parity_smaller(u64 a, u64 b)
5512 {
5513         return a > b;
5514 }
5515
5516 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5517 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5518 {
5519         struct btrfs_bio_stripe s;
5520         int i;
5521         u64 l;
5522         int again = 1;
5523
5524         while (again) {
5525                 again = 0;
5526                 for (i = 0; i < num_stripes - 1; i++) {
5527                         if (parity_smaller(bbio->raid_map[i],
5528                                            bbio->raid_map[i+1])) {
5529                                 s = bbio->stripes[i];
5530                                 l = bbio->raid_map[i];
5531                                 bbio->stripes[i] = bbio->stripes[i+1];
5532                                 bbio->raid_map[i] = bbio->raid_map[i+1];
5533                                 bbio->stripes[i+1] = s;
5534                                 bbio->raid_map[i+1] = l;
5535
5536                                 again = 1;
5537                         }
5538                 }
5539         }
5540 }
5541
5542 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5543 {
5544         struct btrfs_bio *bbio = kzalloc(
5545                  /* the size of the btrfs_bio */
5546                 sizeof(struct btrfs_bio) +
5547                 /* plus the variable array for the stripes */
5548                 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5549                 /* plus the variable array for the tgt dev */
5550                 sizeof(int) * (real_stripes) +
5551                 /*
5552                  * plus the raid_map, which includes both the tgt dev
5553                  * and the stripes
5554                  */
5555                 sizeof(u64) * (total_stripes),
5556                 GFP_NOFS|__GFP_NOFAIL);
5557
5558         atomic_set(&bbio->error, 0);
5559         refcount_set(&bbio->refs, 1);
5560
5561         return bbio;
5562 }
5563
5564 void btrfs_get_bbio(struct btrfs_bio *bbio)
5565 {
5566         WARN_ON(!refcount_read(&bbio->refs));
5567         refcount_inc(&bbio->refs);
5568 }
5569
5570 void btrfs_put_bbio(struct btrfs_bio *bbio)
5571 {
5572         if (!bbio)
5573                 return;
5574         if (refcount_dec_and_test(&bbio->refs))
5575                 kfree(bbio);
5576 }
5577
5578 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5579 /*
5580  * Please note that, discard won't be sent to target device of device
5581  * replace.
5582  */
5583 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5584                                          u64 logical, u64 length,
5585                                          struct btrfs_bio **bbio_ret)
5586 {
5587         struct extent_map *em;
5588         struct map_lookup *map;
5589         struct btrfs_bio *bbio;
5590         u64 offset;
5591         u64 stripe_nr;
5592         u64 stripe_nr_end;
5593         u64 stripe_end_offset;
5594         u64 stripe_cnt;
5595         u64 stripe_len;
5596         u64 stripe_offset;
5597         u64 num_stripes;
5598         u32 stripe_index;
5599         u32 factor = 0;
5600         u32 sub_stripes = 0;
5601         u64 stripes_per_dev = 0;
5602         u32 remaining_stripes = 0;
5603         u32 last_stripe = 0;
5604         int ret = 0;
5605         int i;
5606
5607         /* discard always return a bbio */
5608         ASSERT(bbio_ret);
5609
5610         em = btrfs_get_chunk_map(fs_info, logical, length);
5611         if (IS_ERR(em))
5612                 return PTR_ERR(em);
5613
5614         map = em->map_lookup;
5615         /* we don't discard raid56 yet */
5616         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5617                 ret = -EOPNOTSUPP;
5618                 goto out;
5619         }
5620
5621         offset = logical - em->start;
5622         length = min_t(u64, em->len - offset, length);
5623
5624         stripe_len = map->stripe_len;
5625         /*
5626          * stripe_nr counts the total number of stripes we have to stride
5627          * to get to this block
5628          */
5629         stripe_nr = div64_u64(offset, stripe_len);
5630
5631         /* stripe_offset is the offset of this block in its stripe */
5632         stripe_offset = offset - stripe_nr * stripe_len;
5633
5634         stripe_nr_end = round_up(offset + length, map->stripe_len);
5635         stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5636         stripe_cnt = stripe_nr_end - stripe_nr;
5637         stripe_end_offset = stripe_nr_end * map->stripe_len -
5638                             (offset + length);
5639         /*
5640          * after this, stripe_nr is the number of stripes on this
5641          * device we have to walk to find the data, and stripe_index is
5642          * the number of our device in the stripe array
5643          */
5644         num_stripes = 1;
5645         stripe_index = 0;
5646         if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5647                          BTRFS_BLOCK_GROUP_RAID10)) {
5648                 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5649                         sub_stripes = 1;
5650                 else
5651                         sub_stripes = map->sub_stripes;
5652
5653                 factor = map->num_stripes / sub_stripes;
5654                 num_stripes = min_t(u64, map->num_stripes,
5655                                     sub_stripes * stripe_cnt);
5656                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5657                 stripe_index *= sub_stripes;
5658                 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5659                                               &remaining_stripes);
5660                 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5661                 last_stripe *= sub_stripes;
5662         } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5663                                 BTRFS_BLOCK_GROUP_DUP)) {
5664                 num_stripes = map->num_stripes;
5665         } else {
5666                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5667                                         &stripe_index);
5668         }
5669
5670         bbio = alloc_btrfs_bio(num_stripes, 0);
5671         if (!bbio) {
5672                 ret = -ENOMEM;
5673                 goto out;
5674         }
5675
5676         for (i = 0; i < num_stripes; i++) {
5677                 bbio->stripes[i].physical =
5678                         map->stripes[stripe_index].physical +
5679                         stripe_offset + stripe_nr * map->stripe_len;
5680                 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5681
5682                 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5683                                  BTRFS_BLOCK_GROUP_RAID10)) {
5684                         bbio->stripes[i].length = stripes_per_dev *
5685                                 map->stripe_len;
5686
5687                         if (i / sub_stripes < remaining_stripes)
5688                                 bbio->stripes[i].length +=
5689                                         map->stripe_len;
5690
5691                         /*
5692                          * Special for the first stripe and
5693                          * the last stripe:
5694                          *
5695                          * |-------|...|-------|
5696                          *     |----------|
5697                          *    off     end_off
5698                          */
5699                         if (i < sub_stripes)
5700                                 bbio->stripes[i].length -=
5701                                         stripe_offset;
5702
5703                         if (stripe_index >= last_stripe &&
5704                             stripe_index <= (last_stripe +
5705                                              sub_stripes - 1))
5706                                 bbio->stripes[i].length -=
5707                                         stripe_end_offset;
5708
5709                         if (i == sub_stripes - 1)
5710                                 stripe_offset = 0;
5711                 } else {
5712                         bbio->stripes[i].length = length;
5713                 }
5714
5715                 stripe_index++;
5716                 if (stripe_index == map->num_stripes) {
5717                         stripe_index = 0;
5718                         stripe_nr++;
5719                 }
5720         }
5721
5722         *bbio_ret = bbio;
5723         bbio->map_type = map->type;
5724         bbio->num_stripes = num_stripes;
5725 out:
5726         free_extent_map(em);
5727         return ret;
5728 }
5729
5730 /*
5731  * In dev-replace case, for repair case (that's the only case where the mirror
5732  * is selected explicitly when calling btrfs_map_block), blocks left of the
5733  * left cursor can also be read from the target drive.
5734  *
5735  * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5736  * array of stripes.
5737  * For READ, it also needs to be supported using the same mirror number.
5738  *
5739  * If the requested block is not left of the left cursor, EIO is returned. This
5740  * can happen because btrfs_num_copies() returns one more in the dev-replace
5741  * case.
5742  */
5743 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5744                                          u64 logical, u64 length,
5745                                          u64 srcdev_devid, int *mirror_num,
5746                                          u64 *physical)
5747 {
5748         struct btrfs_bio *bbio = NULL;
5749         int num_stripes;
5750         int index_srcdev = 0;
5751         int found = 0;
5752         u64 physical_of_found = 0;
5753         int i;
5754         int ret = 0;
5755
5756         ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5757                                 logical, &length, &bbio, 0, 0);
5758         if (ret) {
5759                 ASSERT(bbio == NULL);
5760                 return ret;
5761         }
5762
5763         num_stripes = bbio->num_stripes;
5764         if (*mirror_num > num_stripes) {
5765                 /*
5766                  * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5767                  * that means that the requested area is not left of the left
5768                  * cursor
5769                  */
5770                 btrfs_put_bbio(bbio);
5771                 return -EIO;
5772         }
5773
5774         /*
5775          * process the rest of the function using the mirror_num of the source
5776          * drive. Therefore look it up first.  At the end, patch the device
5777          * pointer to the one of the target drive.
5778          */
5779         for (i = 0; i < num_stripes; i++) {
5780                 if (bbio->stripes[i].dev->devid != srcdev_devid)
5781                         continue;
5782
5783                 /*
5784                  * In case of DUP, in order to keep it simple, only add the
5785                  * mirror with the lowest physical address
5786                  */
5787                 if (found &&
5788                     physical_of_found <= bbio->stripes[i].physical)
5789                         continue;
5790
5791                 index_srcdev = i;
5792                 found = 1;
5793                 physical_of_found = bbio->stripes[i].physical;
5794         }
5795
5796         btrfs_put_bbio(bbio);
5797
5798         ASSERT(found);
5799         if (!found)
5800                 return -EIO;
5801
5802         *mirror_num = index_srcdev + 1;
5803         *physical = physical_of_found;
5804         return ret;
5805 }
5806
5807 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5808                                       struct btrfs_bio **bbio_ret,
5809                                       struct btrfs_dev_replace *dev_replace,
5810                                       int *num_stripes_ret, int *max_errors_ret)
5811 {
5812         struct btrfs_bio *bbio = *bbio_ret;
5813         u64 srcdev_devid = dev_replace->srcdev->devid;
5814         int tgtdev_indexes = 0;
5815         int num_stripes = *num_stripes_ret;
5816         int max_errors = *max_errors_ret;
5817         int i;
5818
5819         if (op == BTRFS_MAP_WRITE) {
5820                 int index_where_to_add;
5821
5822                 /*
5823                  * duplicate the write operations while the dev replace
5824                  * procedure is running. Since the copying of the old disk to
5825                  * the new disk takes place at run time while the filesystem is
5826                  * mounted writable, the regular write operations to the old
5827                  * disk have to be duplicated to go to the new disk as well.
5828                  *
5829                  * Note that device->missing is handled by the caller, and that
5830                  * the write to the old disk is already set up in the stripes
5831                  * array.
5832                  */
5833                 index_where_to_add = num_stripes;
5834                 for (i = 0; i < num_stripes; i++) {
5835                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5836                                 /* write to new disk, too */
5837                                 struct btrfs_bio_stripe *new =
5838                                         bbio->stripes + index_where_to_add;
5839                                 struct btrfs_bio_stripe *old =
5840                                         bbio->stripes + i;
5841
5842                                 new->physical = old->physical;
5843                                 new->length = old->length;
5844                                 new->dev = dev_replace->tgtdev;
5845                                 bbio->tgtdev_map[i] = index_where_to_add;
5846                                 index_where_to_add++;
5847                                 max_errors++;
5848                                 tgtdev_indexes++;
5849                         }
5850                 }
5851                 num_stripes = index_where_to_add;
5852         } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5853                 int index_srcdev = 0;
5854                 int found = 0;
5855                 u64 physical_of_found = 0;
5856
5857                 /*
5858                  * During the dev-replace procedure, the target drive can also
5859                  * be used to read data in case it is needed to repair a corrupt
5860                  * block elsewhere. This is possible if the requested area is
5861                  * left of the left cursor. In this area, the target drive is a
5862                  * full copy of the source drive.
5863                  */
5864                 for (i = 0; i < num_stripes; i++) {
5865                         if (bbio->stripes[i].dev->devid == srcdev_devid) {
5866                                 /*
5867                                  * In case of DUP, in order to keep it simple,
5868                                  * only add the mirror with the lowest physical
5869                                  * address
5870                                  */
5871                                 if (found &&
5872                                     physical_of_found <=
5873                                      bbio->stripes[i].physical)
5874                                         continue;
5875                                 index_srcdev = i;
5876                                 found = 1;
5877                                 physical_of_found = bbio->stripes[i].physical;
5878                         }
5879                 }
5880                 if (found) {
5881                         struct btrfs_bio_stripe *tgtdev_stripe =
5882                                 bbio->stripes + num_stripes;
5883
5884                         tgtdev_stripe->physical = physical_of_found;
5885                         tgtdev_stripe->length =
5886                                 bbio->stripes[index_srcdev].length;
5887                         tgtdev_stripe->dev = dev_replace->tgtdev;
5888                         bbio->tgtdev_map[index_srcdev] = num_stripes;
5889
5890                         tgtdev_indexes++;
5891                         num_stripes++;
5892                 }
5893         }
5894
5895         *num_stripes_ret = num_stripes;
5896         *max_errors_ret = max_errors;
5897         bbio->num_tgtdevs = tgtdev_indexes;
5898         *bbio_ret = bbio;
5899 }
5900
5901 static bool need_full_stripe(enum btrfs_map_op op)
5902 {
5903         return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5904 }
5905
5906 /*
5907  * btrfs_get_io_geometry - calculates the geomery of a particular (address, len)
5908  *                     tuple. This information is used to calculate how big a
5909  *                     particular bio can get before it straddles a stripe.
5910  *
5911  * @fs_info - the filesystem
5912  * @logical - address that we want to figure out the geometry of
5913  * @len     - the length of IO we are going to perform, starting at @logical
5914  * @op      - type of operation - write or read
5915  * @io_geom - pointer used to return values
5916  *
5917  * Returns < 0 in case a chunk for the given logical address cannot be found,
5918  * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
5919  */
5920 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5921                         u64 logical, u64 len, struct btrfs_io_geometry *io_geom)
5922 {
5923         struct extent_map *em;
5924         struct map_lookup *map;
5925         u64 offset;
5926         u64 stripe_offset;
5927         u64 stripe_nr;
5928         u64 stripe_len;
5929         u64 raid56_full_stripe_start = (u64)-1;
5930         int data_stripes;
5931         int ret = 0;
5932
5933         ASSERT(op != BTRFS_MAP_DISCARD);
5934
5935         em = btrfs_get_chunk_map(fs_info, logical, len);
5936         if (IS_ERR(em))
5937                 return PTR_ERR(em);
5938
5939         map = em->map_lookup;
5940         /* Offset of this logical address in the chunk */
5941         offset = logical - em->start;
5942         /* Len of a stripe in a chunk */
5943         stripe_len = map->stripe_len;
5944         /* Stripe wher this block falls in */
5945         stripe_nr = div64_u64(offset, stripe_len);
5946         /* Offset of stripe in the chunk */
5947         stripe_offset = stripe_nr * stripe_len;
5948         if (offset < stripe_offset) {
5949                 btrfs_crit(fs_info,
5950 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
5951                         stripe_offset, offset, em->start, logical, stripe_len);
5952                 ret = -EINVAL;
5953                 goto out;
5954         }
5955
5956         /* stripe_offset is the offset of this block in its stripe */
5957         stripe_offset = offset - stripe_offset;
5958         data_stripes = nr_data_stripes(map);
5959
5960         if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5961                 u64 max_len = stripe_len - stripe_offset;
5962
5963                 /*
5964                  * In case of raid56, we need to know the stripe aligned start
5965                  */
5966                 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5967                         unsigned long full_stripe_len = stripe_len * data_stripes;
5968                         raid56_full_stripe_start = offset;
5969
5970                         /*
5971                          * Allow a write of a full stripe, but make sure we
5972                          * don't allow straddling of stripes
5973                          */
5974                         raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5975                                         full_stripe_len);
5976                         raid56_full_stripe_start *= full_stripe_len;
5977
5978                         /*
5979                          * For writes to RAID[56], allow a full stripeset across
5980                          * all disks. For other RAID types and for RAID[56]
5981                          * reads, just allow a single stripe (on a single disk).
5982                          */
5983                         if (op == BTRFS_MAP_WRITE) {
5984                                 max_len = stripe_len * data_stripes -
5985                                           (offset - raid56_full_stripe_start);
5986                         }
5987                 }
5988                 len = min_t(u64, em->len - offset, max_len);
5989         } else {
5990                 len = em->len - offset;
5991         }
5992
5993         io_geom->len = len;
5994         io_geom->offset = offset;
5995         io_geom->stripe_len = stripe_len;
5996         io_geom->stripe_nr = stripe_nr;
5997         io_geom->stripe_offset = stripe_offset;
5998         io_geom->raid56_stripe_offset = raid56_full_stripe_start;
5999
6000 out:
6001         /* once for us */
6002         free_extent_map(em);
6003         return ret;
6004 }
6005
6006 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
6007                              enum btrfs_map_op op,
6008                              u64 logical, u64 *length,
6009                              struct btrfs_bio **bbio_ret,
6010                              int mirror_num, int need_raid_map)
6011 {
6012         struct extent_map *em;
6013         struct map_lookup *map;
6014         u64 offset;
6015         u64 stripe_offset;
6016         u64 stripe_nr;
6017         u64 stripe_len;
6018         u32 stripe_index;
6019         int data_stripes;
6020         int i;
6021         int ret = 0;
6022         int num_stripes;
6023         int max_errors = 0;
6024         int tgtdev_indexes = 0;
6025         struct btrfs_bio *bbio = NULL;
6026         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
6027         int dev_replace_is_ongoing = 0;
6028         int num_alloc_stripes;
6029         int patch_the_first_stripe_for_dev_replace = 0;
6030         u64 physical_to_patch_in_first_stripe = 0;
6031         u64 raid56_full_stripe_start = (u64)-1;
6032         struct btrfs_io_geometry geom;
6033
6034         ASSERT(bbio_ret);
6035
6036         if (op == BTRFS_MAP_DISCARD)
6037                 return __btrfs_map_block_for_discard(fs_info, logical,
6038                                                      *length, bbio_ret);
6039
6040         ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom);
6041         if (ret < 0)
6042                 return ret;
6043
6044         em = btrfs_get_chunk_map(fs_info, logical, *length);
6045         ASSERT(em);
6046         map = em->map_lookup;
6047
6048         *length = geom.len;
6049         offset = geom.offset;
6050         stripe_len = geom.stripe_len;
6051         stripe_nr = geom.stripe_nr;
6052         stripe_offset = geom.stripe_offset;
6053         raid56_full_stripe_start = geom.raid56_stripe_offset;
6054         data_stripes = nr_data_stripes(map);
6055
6056         down_read(&dev_replace->rwsem);
6057         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
6058         /*
6059          * Hold the semaphore for read during the whole operation, write is
6060          * requested at commit time but must wait.
6061          */
6062         if (!dev_replace_is_ongoing)
6063                 up_read(&dev_replace->rwsem);
6064
6065         if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
6066             !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
6067                 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
6068                                                     dev_replace->srcdev->devid,
6069                                                     &mirror_num,
6070                                             &physical_to_patch_in_first_stripe);
6071                 if (ret)
6072                         goto out;
6073                 else
6074                         patch_the_first_stripe_for_dev_replace = 1;
6075         } else if (mirror_num > map->num_stripes) {
6076                 mirror_num = 0;
6077         }
6078
6079         num_stripes = 1;
6080         stripe_index = 0;
6081         if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6082                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6083                                 &stripe_index);
6084                 if (!need_full_stripe(op))
6085                         mirror_num = 1;
6086         } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
6087                 if (need_full_stripe(op))
6088                         num_stripes = map->num_stripes;
6089                 else if (mirror_num)
6090                         stripe_index = mirror_num - 1;
6091                 else {
6092                         stripe_index = find_live_mirror(fs_info, map, 0,
6093                                             dev_replace_is_ongoing);
6094                         mirror_num = stripe_index + 1;
6095                 }
6096
6097         } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
6098                 if (need_full_stripe(op)) {
6099                         num_stripes = map->num_stripes;
6100                 } else if (mirror_num) {
6101                         stripe_index = mirror_num - 1;
6102                 } else {
6103                         mirror_num = 1;
6104                 }
6105
6106         } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6107                 u32 factor = map->num_stripes / map->sub_stripes;
6108
6109                 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
6110                 stripe_index *= map->sub_stripes;
6111
6112                 if (need_full_stripe(op))
6113                         num_stripes = map->sub_stripes;
6114                 else if (mirror_num)
6115                         stripe_index += mirror_num - 1;
6116                 else {
6117                         int old_stripe_index = stripe_index;
6118                         stripe_index = find_live_mirror(fs_info, map,
6119                                               stripe_index,
6120                                               dev_replace_is_ongoing);
6121                         mirror_num = stripe_index - old_stripe_index + 1;
6122                 }
6123
6124         } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6125                 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6126                         /* push stripe_nr back to the start of the full stripe */
6127                         stripe_nr = div64_u64(raid56_full_stripe_start,
6128                                         stripe_len * data_stripes);
6129
6130                         /* RAID[56] write or recovery. Return all stripes */
6131                         num_stripes = map->num_stripes;
6132                         max_errors = nr_parity_stripes(map);
6133
6134                         *length = map->stripe_len;
6135                         stripe_index = 0;
6136                         stripe_offset = 0;
6137                 } else {
6138                         /*
6139                          * Mirror #0 or #1 means the original data block.
6140                          * Mirror #2 is RAID5 parity block.
6141                          * Mirror #3 is RAID6 Q block.
6142                          */
6143                         stripe_nr = div_u64_rem(stripe_nr,
6144                                         data_stripes, &stripe_index);
6145                         if (mirror_num > 1)
6146                                 stripe_index = data_stripes + mirror_num - 2;
6147
6148                         /* We distribute the parity blocks across stripes */
6149                         div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6150                                         &stripe_index);
6151                         if (!need_full_stripe(op) && mirror_num <= 1)
6152                                 mirror_num = 1;
6153                 }
6154         } else {
6155                 /*
6156                  * after this, stripe_nr is the number of stripes on this
6157                  * device we have to walk to find the data, and stripe_index is
6158                  * the number of our device in the stripe array
6159                  */
6160                 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6161                                 &stripe_index);
6162                 mirror_num = stripe_index + 1;
6163         }
6164         if (stripe_index >= map->num_stripes) {
6165                 btrfs_crit(fs_info,
6166                            "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6167                            stripe_index, map->num_stripes);
6168                 ret = -EINVAL;
6169                 goto out;
6170         }
6171
6172         num_alloc_stripes = num_stripes;
6173         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6174                 if (op == BTRFS_MAP_WRITE)
6175                         num_alloc_stripes <<= 1;
6176                 if (op == BTRFS_MAP_GET_READ_MIRRORS)
6177                         num_alloc_stripes++;
6178                 tgtdev_indexes = num_stripes;
6179         }
6180
6181         bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6182         if (!bbio) {
6183                 ret = -ENOMEM;
6184                 goto out;
6185         }
6186         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
6187                 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
6188
6189         /* build raid_map */
6190         if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6191             (need_full_stripe(op) || mirror_num > 1)) {
6192                 u64 tmp;
6193                 unsigned rot;
6194
6195                 bbio->raid_map = (u64 *)((void *)bbio->stripes +
6196                                  sizeof(struct btrfs_bio_stripe) *
6197                                  num_alloc_stripes +
6198                                  sizeof(int) * tgtdev_indexes);
6199
6200                 /* Work out the disk rotation on this stripe-set */
6201                 div_u64_rem(stripe_nr, num_stripes, &rot);
6202
6203                 /* Fill in the logical address of each stripe */
6204                 tmp = stripe_nr * data_stripes;
6205                 for (i = 0; i < data_stripes; i++)
6206                         bbio->raid_map[(i+rot) % num_stripes] =
6207                                 em->start + (tmp + i) * map->stripe_len;
6208
6209                 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6210                 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6211                         bbio->raid_map[(i+rot+1) % num_stripes] =
6212                                 RAID6_Q_STRIPE;
6213         }
6214
6215
6216         for (i = 0; i < num_stripes; i++) {
6217                 bbio->stripes[i].physical =
6218                         map->stripes[stripe_index].physical +
6219                         stripe_offset +
6220                         stripe_nr * map->stripe_len;
6221                 bbio->stripes[i].dev =
6222                         map->stripes[stripe_index].dev;
6223                 stripe_index++;
6224         }
6225
6226         if (need_full_stripe(op))
6227                 max_errors = btrfs_chunk_max_errors(map);
6228
6229         if (bbio->raid_map)
6230                 sort_parity_stripes(bbio, num_stripes);
6231
6232         if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6233             need_full_stripe(op)) {
6234                 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
6235                                           &max_errors);
6236         }
6237
6238         *bbio_ret = bbio;
6239         bbio->map_type = map->type;
6240         bbio->num_stripes = num_stripes;
6241         bbio->max_errors = max_errors;
6242         bbio->mirror_num = mirror_num;
6243
6244         /*
6245          * this is the case that REQ_READ && dev_replace_is_ongoing &&
6246          * mirror_num == num_stripes + 1 && dev_replace target drive is
6247          * available as a mirror
6248          */
6249         if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6250                 WARN_ON(num_stripes > 1);
6251                 bbio->stripes[0].dev = dev_replace->tgtdev;
6252                 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6253                 bbio->mirror_num = map->num_stripes + 1;
6254         }
6255 out:
6256         if (dev_replace_is_ongoing) {
6257                 lockdep_assert_held(&dev_replace->rwsem);
6258                 /* Unlock and let waiting writers proceed */
6259                 up_read(&dev_replace->rwsem);
6260         }
6261         free_extent_map(em);
6262         return ret;
6263 }
6264
6265 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6266                       u64 logical, u64 *length,
6267                       struct btrfs_bio **bbio_ret, int mirror_num)
6268 {
6269         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6270                                  mirror_num, 0);
6271 }
6272
6273 /* For Scrub/replace */
6274 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6275                      u64 logical, u64 *length,
6276                      struct btrfs_bio **bbio_ret)
6277 {
6278         return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6279 }
6280
6281 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
6282                      u64 physical, u64 **logical, int *naddrs, int *stripe_len)
6283 {
6284         struct extent_map *em;
6285         struct map_lookup *map;
6286         u64 *buf;
6287         u64 bytenr;
6288         u64 length;
6289         u64 stripe_nr;
6290         u64 rmap_len;
6291         int i, j, nr = 0;
6292
6293         em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
6294         if (IS_ERR(em))
6295                 return -EIO;
6296
6297         map = em->map_lookup;
6298         length = em->len;
6299         rmap_len = map->stripe_len;
6300
6301         if (map->type & BTRFS_BLOCK_GROUP_RAID10)
6302                 length = div_u64(length, map->num_stripes / map->sub_stripes);
6303         else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6304                 length = div_u64(length, map->num_stripes);
6305         else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6306                 length = div_u64(length, nr_data_stripes(map));
6307                 rmap_len = map->stripe_len * nr_data_stripes(map);
6308         }
6309
6310         buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
6311         BUG_ON(!buf); /* -ENOMEM */
6312
6313         for (i = 0; i < map->num_stripes; i++) {
6314                 if (map->stripes[i].physical > physical ||
6315                     map->stripes[i].physical + length <= physical)
6316                         continue;
6317
6318                 stripe_nr = physical - map->stripes[i].physical;
6319                 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
6320
6321                 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6322                         stripe_nr = stripe_nr * map->num_stripes + i;
6323                         stripe_nr = div_u64(stripe_nr, map->sub_stripes);
6324                 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6325                         stripe_nr = stripe_nr * map->num_stripes + i;
6326                 } /* else if RAID[56], multiply by nr_data_stripes().
6327                    * Alternatively, just use rmap_len below instead of
6328                    * map->stripe_len */
6329
6330                 bytenr = chunk_start + stripe_nr * rmap_len;
6331                 WARN_ON(nr >= map->num_stripes);
6332                 for (j = 0; j < nr; j++) {
6333                         if (buf[j] == bytenr)
6334                                 break;
6335                 }
6336                 if (j == nr) {
6337                         WARN_ON(nr >= map->num_stripes);
6338                         buf[nr++] = bytenr;
6339                 }
6340         }
6341
6342         *logical = buf;
6343         *naddrs = nr;
6344         *stripe_len = rmap_len;
6345
6346         free_extent_map(em);
6347         return 0;
6348 }
6349
6350 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6351 {
6352         bio->bi_private = bbio->private;
6353         bio->bi_end_io = bbio->end_io;
6354         bio_endio(bio);
6355
6356         btrfs_put_bbio(bbio);
6357 }
6358
6359 static void btrfs_end_bio(struct bio *bio)
6360 {
6361         struct btrfs_bio *bbio = bio->bi_private;
6362         int is_orig_bio = 0;
6363
6364         if (bio->bi_status) {
6365                 atomic_inc(&bbio->error);
6366                 if (bio->bi_status == BLK_STS_IOERR ||
6367                     bio->bi_status == BLK_STS_TARGET) {
6368                         unsigned int stripe_index =
6369                                 btrfs_io_bio(bio)->stripe_index;
6370                         struct btrfs_device *dev;
6371
6372                         BUG_ON(stripe_index >= bbio->num_stripes);
6373                         dev = bbio->stripes[stripe_index].dev;
6374                         if (dev->bdev) {
6375                                 if (bio_op(bio) == REQ_OP_WRITE)
6376                                         btrfs_dev_stat_inc_and_print(dev,
6377                                                 BTRFS_DEV_STAT_WRITE_ERRS);
6378                                 else if (!(bio->bi_opf & REQ_RAHEAD))
6379                                         btrfs_dev_stat_inc_and_print(dev,
6380                                                 BTRFS_DEV_STAT_READ_ERRS);
6381                                 if (bio->bi_opf & REQ_PREFLUSH)
6382                                         btrfs_dev_stat_inc_and_print(dev,
6383                                                 BTRFS_DEV_STAT_FLUSH_ERRS);
6384                         }
6385                 }
6386         }
6387
6388         if (bio == bbio->orig_bio)
6389                 is_orig_bio = 1;
6390
6391         btrfs_bio_counter_dec(bbio->fs_info);
6392
6393         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6394                 if (!is_orig_bio) {
6395                         bio_put(bio);
6396                         bio = bbio->orig_bio;
6397                 }
6398
6399                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6400                 /* only send an error to the higher layers if it is
6401                  * beyond the tolerance of the btrfs bio
6402                  */
6403                 if (atomic_read(&bbio->error) > bbio->max_errors) {
6404                         bio->bi_status = BLK_STS_IOERR;
6405                 } else {
6406                         /*
6407                          * this bio is actually up to date, we didn't
6408                          * go over the max number of errors
6409                          */
6410                         bio->bi_status = BLK_STS_OK;
6411                 }
6412
6413                 btrfs_end_bbio(bbio, bio);
6414         } else if (!is_orig_bio) {
6415                 bio_put(bio);
6416         }
6417 }
6418
6419 /*
6420  * see run_scheduled_bios for a description of why bios are collected for
6421  * async submit.
6422  *
6423  * This will add one bio to the pending list for a device and make sure
6424  * the work struct is scheduled.
6425  */
6426 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6427                                         struct bio *bio)
6428 {
6429         struct btrfs_fs_info *fs_info = device->fs_info;
6430         int should_queue = 1;
6431         struct btrfs_pending_bios *pending_bios;
6432
6433         /* don't bother with additional async steps for reads, right now */
6434         if (bio_op(bio) == REQ_OP_READ) {
6435                 btrfsic_submit_bio(bio);
6436                 return;
6437         }
6438
6439         WARN_ON(bio->bi_next);
6440         bio->bi_next = NULL;
6441
6442         spin_lock(&device->io_lock);
6443         if (op_is_sync(bio->bi_opf))
6444                 pending_bios = &device->pending_sync_bios;
6445         else
6446                 pending_bios = &device->pending_bios;
6447
6448         if (pending_bios->tail)
6449                 pending_bios->tail->bi_next = bio;
6450
6451         pending_bios->tail = bio;
6452         if (!pending_bios->head)
6453                 pending_bios->head = bio;
6454         if (device->running_pending)
6455                 should_queue = 0;
6456
6457         spin_unlock(&device->io_lock);
6458
6459         if (should_queue)
6460                 btrfs_queue_work(fs_info->submit_workers, &device->work);
6461 }
6462
6463 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6464                               u64 physical, int dev_nr, int async)
6465 {
6466         struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6467         struct btrfs_fs_info *fs_info = bbio->fs_info;
6468
6469         bio->bi_private = bbio;
6470         btrfs_io_bio(bio)->stripe_index = dev_nr;
6471         bio->bi_end_io = btrfs_end_bio;
6472         bio->bi_iter.bi_sector = physical >> 9;
6473         btrfs_debug_in_rcu(fs_info,
6474         "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6475                 bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6476                 (u_long)dev->bdev->bd_dev, rcu_str_deref(dev->name), dev->devid,
6477                 bio->bi_iter.bi_size);
6478         bio_set_dev(bio, dev->bdev);
6479
6480         btrfs_bio_counter_inc_noblocked(fs_info);
6481
6482         if (async)
6483                 btrfs_schedule_bio(dev, bio);
6484         else
6485                 btrfsic_submit_bio(bio);
6486 }
6487
6488 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6489 {
6490         atomic_inc(&bbio->error);
6491         if (atomic_dec_and_test(&bbio->stripes_pending)) {
6492                 /* Should be the original bio. */
6493                 WARN_ON(bio != bbio->orig_bio);
6494
6495                 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6496                 bio->bi_iter.bi_sector = logical >> 9;
6497                 if (atomic_read(&bbio->error) > bbio->max_errors)
6498                         bio->bi_status = BLK_STS_IOERR;
6499                 else
6500                         bio->bi_status = BLK_STS_OK;
6501                 btrfs_end_bbio(bbio, bio);
6502         }
6503 }
6504
6505 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6506                            int mirror_num, int async_submit)
6507 {
6508         struct btrfs_device *dev;
6509         struct bio *first_bio = bio;
6510         u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6511         u64 length = 0;
6512         u64 map_length;
6513         int ret;
6514         int dev_nr;
6515         int total_devs;
6516         struct btrfs_bio *bbio = NULL;
6517
6518         length = bio->bi_iter.bi_size;
6519         map_length = length;
6520
6521         btrfs_bio_counter_inc_blocked(fs_info);
6522         ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6523                                 &map_length, &bbio, mirror_num, 1);
6524         if (ret) {
6525                 btrfs_bio_counter_dec(fs_info);
6526                 return errno_to_blk_status(ret);
6527         }
6528
6529         total_devs = bbio->num_stripes;
6530         bbio->orig_bio = first_bio;
6531         bbio->private = first_bio->bi_private;
6532         bbio->end_io = first_bio->bi_end_io;
6533         bbio->fs_info = fs_info;
6534         atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6535
6536         if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6537             ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6538                 /* In this case, map_length has been set to the length of
6539                    a single stripe; not the whole write */
6540                 if (bio_op(bio) == REQ_OP_WRITE) {
6541                         ret = raid56_parity_write(fs_info, bio, bbio,
6542                                                   map_length);
6543                 } else {
6544                         ret = raid56_parity_recover(fs_info, bio, bbio,
6545                                                     map_length, mirror_num, 1);
6546                 }
6547
6548                 btrfs_bio_counter_dec(fs_info);
6549                 return errno_to_blk_status(ret);
6550         }
6551
6552         if (map_length < length) {
6553                 btrfs_crit(fs_info,
6554                            "mapping failed logical %llu bio len %llu len %llu",
6555                            logical, length, map_length);
6556                 BUG();
6557         }
6558
6559         for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6560                 dev = bbio->stripes[dev_nr].dev;
6561                 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6562                                                    &dev->dev_state) ||
6563                     (bio_op(first_bio) == REQ_OP_WRITE &&
6564                     !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6565                         bbio_error(bbio, first_bio, logical);
6566                         continue;
6567                 }
6568
6569                 if (dev_nr < total_devs - 1)
6570                         bio = btrfs_bio_clone(first_bio);
6571                 else
6572                         bio = first_bio;
6573
6574                 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6575                                   dev_nr, async_submit);
6576         }
6577         btrfs_bio_counter_dec(fs_info);
6578         return BLK_STS_OK;
6579 }
6580
6581 /*
6582  * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6583  * return NULL.
6584  *
6585  * If devid and uuid are both specified, the match must be exact, otherwise
6586  * only devid is used.
6587  *
6588  * If @seed is true, traverse through the seed devices.
6589  */
6590 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6591                                        u64 devid, u8 *uuid, u8 *fsid,
6592                                        bool seed)
6593 {
6594         struct btrfs_device *device;
6595
6596         while (fs_devices) {
6597                 if (!fsid ||
6598                     !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6599                         list_for_each_entry(device, &fs_devices->devices,
6600                                             dev_list) {
6601                                 if (device->devid == devid &&
6602                                     (!uuid || memcmp(device->uuid, uuid,
6603                                                      BTRFS_UUID_SIZE) == 0))
6604                                         return device;
6605                         }
6606                 }
6607                 if (seed)
6608                         fs_devices = fs_devices->seed;
6609                 else
6610                         return NULL;
6611         }
6612         return NULL;
6613 }
6614
6615 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6616                                             u64 devid, u8 *dev_uuid)
6617 {
6618         struct btrfs_device *device;
6619
6620         device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6621         if (IS_ERR(device))
6622                 return device;
6623
6624         list_add(&device->dev_list, &fs_devices->devices);
6625         device->fs_devices = fs_devices;
6626         fs_devices->num_devices++;
6627
6628         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6629         fs_devices->missing_devices++;
6630
6631         return device;
6632 }
6633
6634 /**
6635  * btrfs_alloc_device - allocate struct btrfs_device
6636  * @fs_info:    used only for generating a new devid, can be NULL if
6637  *              devid is provided (i.e. @devid != NULL).
6638  * @devid:      a pointer to devid for this device.  If NULL a new devid
6639  *              is generated.
6640  * @uuid:       a pointer to UUID for this device.  If NULL a new UUID
6641  *              is generated.
6642  *
6643  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6644  * on error.  Returned struct is not linked onto any lists and must be
6645  * destroyed with btrfs_free_device.
6646  */
6647 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6648                                         const u64 *devid,
6649                                         const u8 *uuid)
6650 {
6651         struct btrfs_device *dev;
6652         u64 tmp;
6653
6654         if (WARN_ON(!devid && !fs_info))
6655                 return ERR_PTR(-EINVAL);
6656
6657         dev = __alloc_device();
6658         if (IS_ERR(dev))
6659                 return dev;
6660
6661         if (devid)
6662                 tmp = *devid;
6663         else {
6664                 int ret;
6665
6666                 ret = find_next_devid(fs_info, &tmp);
6667                 if (ret) {
6668                         btrfs_free_device(dev);
6669                         return ERR_PTR(ret);
6670                 }
6671         }
6672         dev->devid = tmp;
6673
6674         if (uuid)
6675                 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6676         else
6677                 generate_random_uuid(dev->uuid);
6678
6679         btrfs_init_work(&dev->work, btrfs_submit_helper,
6680                         pending_bios_fn, NULL, NULL);
6681
6682         return dev;
6683 }
6684
6685 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6686                                         u64 devid, u8 *uuid, bool error)
6687 {
6688         if (error)
6689                 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6690                               devid, uuid);
6691         else
6692                 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6693                               devid, uuid);
6694 }
6695
6696 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6697 {
6698         int index = btrfs_bg_flags_to_raid_index(type);
6699         int ncopies = btrfs_raid_array[index].ncopies;
6700         int data_stripes;
6701
6702         switch (type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
6703         case BTRFS_BLOCK_GROUP_RAID5:
6704                 data_stripes = num_stripes - 1;
6705                 break;
6706         case BTRFS_BLOCK_GROUP_RAID6:
6707                 data_stripes = num_stripes - 2;
6708                 break;
6709         default:
6710                 data_stripes = num_stripes / ncopies;
6711                 break;
6712         }
6713         return div_u64(chunk_len, data_stripes);
6714 }
6715
6716 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6717                           struct btrfs_chunk *chunk)
6718 {
6719         struct btrfs_fs_info *fs_info = leaf->fs_info;
6720         struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6721         struct map_lookup *map;
6722         struct extent_map *em;
6723         u64 logical;
6724         u64 length;
6725         u64 devid;
6726         u8 uuid[BTRFS_UUID_SIZE];
6727         int num_stripes;
6728         int ret;
6729         int i;
6730
6731         logical = key->offset;
6732         length = btrfs_chunk_length(leaf, chunk);
6733         num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6734
6735         /*
6736          * Only need to verify chunk item if we're reading from sys chunk array,
6737          * as chunk item in tree block is already verified by tree-checker.
6738          */
6739         if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6740                 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6741                 if (ret)
6742                         return ret;
6743         }
6744
6745         read_lock(&map_tree->lock);
6746         em = lookup_extent_mapping(map_tree, logical, 1);
6747         read_unlock(&map_tree->lock);
6748
6749         /* already mapped? */
6750         if (em && em->start <= logical && em->start + em->len > logical) {
6751                 free_extent_map(em);
6752                 return 0;
6753         } else if (em) {
6754                 free_extent_map(em);
6755         }
6756
6757         em = alloc_extent_map();
6758         if (!em)
6759                 return -ENOMEM;
6760         map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6761         if (!map) {
6762                 free_extent_map(em);
6763                 return -ENOMEM;
6764         }
6765
6766         set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6767         em->map_lookup = map;
6768         em->start = logical;
6769         em->len = length;
6770         em->orig_start = 0;
6771         em->block_start = 0;
6772         em->block_len = em->len;
6773
6774         map->num_stripes = num_stripes;
6775         map->io_width = btrfs_chunk_io_width(leaf, chunk);
6776         map->io_align = btrfs_chunk_io_align(leaf, chunk);
6777         map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6778         map->type = btrfs_chunk_type(leaf, chunk);
6779         map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6780         map->verified_stripes = 0;
6781         em->orig_block_len = calc_stripe_length(map->type, em->len,
6782                                                 map->num_stripes);
6783         for (i = 0; i < num_stripes; i++) {
6784                 map->stripes[i].physical =
6785                         btrfs_stripe_offset_nr(leaf, chunk, i);
6786                 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6787                 read_extent_buffer(leaf, uuid, (unsigned long)
6788                                    btrfs_stripe_dev_uuid_nr(chunk, i),
6789                                    BTRFS_UUID_SIZE);
6790                 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6791                                                         devid, uuid, NULL, true);
6792                 if (!map->stripes[i].dev &&
6793                     !btrfs_test_opt(fs_info, DEGRADED)) {
6794                         free_extent_map(em);
6795                         btrfs_report_missing_device(fs_info, devid, uuid, true);
6796                         return -ENOENT;
6797                 }
6798                 if (!map->stripes[i].dev) {
6799                         map->stripes[i].dev =
6800                                 add_missing_dev(fs_info->fs_devices, devid,
6801                                                 uuid);
6802                         if (IS_ERR(map->stripes[i].dev)) {
6803                                 free_extent_map(em);
6804                                 btrfs_err(fs_info,
6805                                         "failed to init missing dev %llu: %ld",
6806                                         devid, PTR_ERR(map->stripes[i].dev));
6807                                 return PTR_ERR(map->stripes[i].dev);
6808                         }
6809                         btrfs_report_missing_device(fs_info, devid, uuid, false);
6810                 }
6811                 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6812                                 &(map->stripes[i].dev->dev_state));
6813
6814         }
6815
6816         write_lock(&map_tree->lock);
6817         ret = add_extent_mapping(map_tree, em, 0);
6818         write_unlock(&map_tree->lock);
6819         if (ret < 0) {
6820                 btrfs_err(fs_info,
6821                           "failed to add chunk map, start=%llu len=%llu: %d",
6822                           em->start, em->len, ret);
6823         }
6824         free_extent_map(em);
6825
6826         return ret;
6827 }
6828
6829 static void fill_device_from_item(struct extent_buffer *leaf,
6830                                  struct btrfs_dev_item *dev_item,
6831                                  struct btrfs_device *device)
6832 {
6833         unsigned long ptr;
6834
6835         device->devid = btrfs_device_id(leaf, dev_item);
6836         device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6837         device->total_bytes = device->disk_total_bytes;
6838         device->commit_total_bytes = device->disk_total_bytes;
6839         device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6840         device->commit_bytes_used = device->bytes_used;
6841         device->type = btrfs_device_type(leaf, dev_item);
6842         device->io_align = btrfs_device_io_align(leaf, dev_item);
6843         device->io_width = btrfs_device_io_width(leaf, dev_item);
6844         device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6845         WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6846         clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6847
6848         ptr = btrfs_device_uuid(dev_item);
6849         read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6850 }
6851
6852 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6853                                                   u8 *fsid)
6854 {
6855         struct btrfs_fs_devices *fs_devices;
6856         int ret;
6857
6858         lockdep_assert_held(&uuid_mutex);
6859         ASSERT(fsid);
6860
6861         fs_devices = fs_info->fs_devices->seed;
6862         while (fs_devices) {
6863                 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6864                         return fs_devices;
6865
6866                 fs_devices = fs_devices->seed;
6867         }
6868
6869         fs_devices = find_fsid(fsid, NULL);
6870         if (!fs_devices) {
6871                 if (!btrfs_test_opt(fs_info, DEGRADED))
6872                         return ERR_PTR(-ENOENT);
6873
6874                 fs_devices = alloc_fs_devices(fsid, NULL);
6875                 if (IS_ERR(fs_devices))
6876                         return fs_devices;
6877
6878                 fs_devices->seeding = 1;
6879                 fs_devices->opened = 1;
6880                 return fs_devices;
6881         }
6882
6883         fs_devices = clone_fs_devices(fs_devices);
6884         if (IS_ERR(fs_devices))
6885                 return fs_devices;
6886
6887         ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6888         if (ret) {
6889                 free_fs_devices(fs_devices);
6890                 fs_devices = ERR_PTR(ret);
6891                 goto out;
6892         }
6893
6894         if (!fs_devices->seeding) {
6895                 close_fs_devices(fs_devices);
6896                 free_fs_devices(fs_devices);
6897                 fs_devices = ERR_PTR(-EINVAL);
6898                 goto out;
6899         }
6900
6901         fs_devices->seed = fs_info->fs_devices->seed;
6902         fs_info->fs_devices->seed = fs_devices;
6903 out:
6904         return fs_devices;
6905 }
6906
6907 static int read_one_dev(struct extent_buffer *leaf,
6908                         struct btrfs_dev_item *dev_item)
6909 {
6910         struct btrfs_fs_info *fs_info = leaf->fs_info;
6911         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6912         struct btrfs_device *device;
6913         u64 devid;
6914         int ret;
6915         u8 fs_uuid[BTRFS_FSID_SIZE];
6916         u8 dev_uuid[BTRFS_UUID_SIZE];
6917
6918         devid = btrfs_device_id(leaf, dev_item);
6919         read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6920                            BTRFS_UUID_SIZE);
6921         read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6922                            BTRFS_FSID_SIZE);
6923
6924         if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6925                 fs_devices = open_seed_devices(fs_info, fs_uuid);
6926                 if (IS_ERR(fs_devices))
6927                         return PTR_ERR(fs_devices);
6928         }
6929
6930         device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
6931                                    fs_uuid, true);
6932         if (!device) {
6933                 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6934                         btrfs_report_missing_device(fs_info, devid,
6935                                                         dev_uuid, true);
6936                         return -ENOENT;
6937                 }
6938
6939                 device = add_missing_dev(fs_devices, devid, dev_uuid);
6940                 if (IS_ERR(device)) {
6941                         btrfs_err(fs_info,
6942                                 "failed to add missing dev %llu: %ld",
6943                                 devid, PTR_ERR(device));
6944                         return PTR_ERR(device);
6945                 }
6946                 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6947         } else {
6948                 if (!device->bdev) {
6949                         if (!btrfs_test_opt(fs_info, DEGRADED)) {
6950                                 btrfs_report_missing_device(fs_info,
6951                                                 devid, dev_uuid, true);
6952                                 return -ENOENT;
6953                         }
6954                         btrfs_report_missing_device(fs_info, devid,
6955                                                         dev_uuid, false);
6956                 }
6957
6958                 if (!device->bdev &&
6959                     !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6960                         /*
6961                          * this happens when a device that was properly setup
6962                          * in the device info lists suddenly goes bad.
6963                          * device->bdev is NULL, and so we have to set
6964                          * device->missing to one here
6965                          */
6966                         device->fs_devices->missing_devices++;
6967                         set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6968                 }
6969
6970                 /* Move the device to its own fs_devices */
6971                 if (device->fs_devices != fs_devices) {
6972                         ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6973                                                         &device->dev_state));
6974
6975                         list_move(&device->dev_list, &fs_devices->devices);
6976                         device->fs_devices->num_devices--;
6977                         fs_devices->num_devices++;
6978
6979                         device->fs_devices->missing_devices--;
6980                         fs_devices->missing_devices++;
6981
6982                         device->fs_devices = fs_devices;
6983                 }
6984         }
6985
6986         if (device->fs_devices != fs_info->fs_devices) {
6987                 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6988                 if (device->generation !=
6989                     btrfs_device_generation(leaf, dev_item))
6990                         return -EINVAL;
6991         }
6992
6993         fill_device_from_item(leaf, dev_item, device);
6994         set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6995         if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6996            !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6997                 device->fs_devices->total_rw_bytes += device->total_bytes;
6998                 atomic64_add(device->total_bytes - device->bytes_used,
6999                                 &fs_info->free_chunk_space);
7000         }
7001         ret = 0;
7002         return ret;
7003 }
7004
7005 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
7006 {
7007         struct btrfs_root *root = fs_info->tree_root;
7008         struct btrfs_super_block *super_copy = fs_info->super_copy;
7009         struct extent_buffer *sb;
7010         struct btrfs_disk_key *disk_key;
7011         struct btrfs_chunk *chunk;
7012         u8 *array_ptr;
7013         unsigned long sb_array_offset;
7014         int ret = 0;
7015         u32 num_stripes;
7016         u32 array_size;
7017         u32 len = 0;
7018         u32 cur_offset;
7019         u64 type;
7020         struct btrfs_key key;
7021
7022         ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
7023         /*
7024          * This will create extent buffer of nodesize, superblock size is
7025          * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
7026          * overallocate but we can keep it as-is, only the first page is used.
7027          */
7028         sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
7029         if (IS_ERR(sb))
7030                 return PTR_ERR(sb);
7031         set_extent_buffer_uptodate(sb);
7032         btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
7033         /*
7034          * The sb extent buffer is artificial and just used to read the system array.
7035          * set_extent_buffer_uptodate() call does not properly mark all it's
7036          * pages up-to-date when the page is larger: extent does not cover the
7037          * whole page and consequently check_page_uptodate does not find all
7038          * the page's extents up-to-date (the hole beyond sb),
7039          * write_extent_buffer then triggers a WARN_ON.
7040          *
7041          * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
7042          * but sb spans only this function. Add an explicit SetPageUptodate call
7043          * to silence the warning eg. on PowerPC 64.
7044          */
7045         if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
7046                 SetPageUptodate(sb->pages[0]);
7047
7048         write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
7049         array_size = btrfs_super_sys_array_size(super_copy);
7050
7051         array_ptr = super_copy->sys_chunk_array;
7052         sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
7053         cur_offset = 0;
7054
7055         while (cur_offset < array_size) {
7056                 disk_key = (struct btrfs_disk_key *)array_ptr;
7057                 len = sizeof(*disk_key);
7058                 if (cur_offset + len > array_size)
7059                         goto out_short_read;
7060
7061                 btrfs_disk_key_to_cpu(&key, disk_key);
7062
7063                 array_ptr += len;
7064                 sb_array_offset += len;
7065                 cur_offset += len;
7066
7067                 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
7068                         chunk = (struct btrfs_chunk *)sb_array_offset;
7069                         /*
7070                          * At least one btrfs_chunk with one stripe must be
7071                          * present, exact stripe count check comes afterwards
7072                          */
7073                         len = btrfs_chunk_item_size(1);
7074                         if (cur_offset + len > array_size)
7075                                 goto out_short_read;
7076
7077                         num_stripes = btrfs_chunk_num_stripes(sb, chunk);
7078                         if (!num_stripes) {
7079                                 btrfs_err(fs_info,
7080                                         "invalid number of stripes %u in sys_array at offset %u",
7081                                         num_stripes, cur_offset);
7082                                 ret = -EIO;
7083                                 break;
7084                         }
7085
7086                         type = btrfs_chunk_type(sb, chunk);
7087                         if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
7088                                 btrfs_err(fs_info,
7089                             "invalid chunk type %llu in sys_array at offset %u",
7090                                         type, cur_offset);
7091                                 ret = -EIO;
7092                                 break;
7093                         }
7094
7095                         len = btrfs_chunk_item_size(num_stripes);
7096                         if (cur_offset + len > array_size)
7097                                 goto out_short_read;
7098
7099                         ret = read_one_chunk(&key, sb, chunk);
7100                         if (ret)
7101                                 break;
7102                 } else {
7103                         btrfs_err(fs_info,
7104                             "unexpected item type %u in sys_array at offset %u",
7105                                   (u32)key.type, cur_offset);
7106                         ret = -EIO;
7107                         break;
7108                 }
7109                 array_ptr += len;
7110                 sb_array_offset += len;
7111                 cur_offset += len;
7112         }
7113         clear_extent_buffer_uptodate(sb);
7114         free_extent_buffer_stale(sb);
7115         return ret;
7116
7117 out_short_read:
7118         btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
7119                         len, cur_offset);
7120         clear_extent_buffer_uptodate(sb);
7121         free_extent_buffer_stale(sb);
7122         return -EIO;
7123 }
7124
7125 /*
7126  * Check if all chunks in the fs are OK for read-write degraded mount
7127  *
7128  * If the @failing_dev is specified, it's accounted as missing.
7129  *
7130  * Return true if all chunks meet the minimal RW mount requirements.
7131  * Return false if any chunk doesn't meet the minimal RW mount requirements.
7132  */
7133 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
7134                                         struct btrfs_device *failing_dev)
7135 {
7136         struct extent_map_tree *map_tree = &fs_info->mapping_tree;
7137         struct extent_map *em;
7138         u64 next_start = 0;
7139         bool ret = true;
7140
7141         read_lock(&map_tree->lock);
7142         em = lookup_extent_mapping(map_tree, 0, (u64)-1);
7143         read_unlock(&map_tree->lock);
7144         /* No chunk at all? Return false anyway */
7145         if (!em) {
7146                 ret = false;
7147                 goto out;
7148         }
7149         while (em) {
7150                 struct map_lookup *map;
7151                 int missing = 0;
7152                 int max_tolerated;
7153                 int i;
7154
7155                 map = em->map_lookup;
7156                 max_tolerated =
7157                         btrfs_get_num_tolerated_disk_barrier_failures(
7158                                         map->type);
7159                 for (i = 0; i < map->num_stripes; i++) {
7160                         struct btrfs_device *dev = map->stripes[i].dev;
7161
7162                         if (!dev || !dev->bdev ||
7163                             test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
7164                             dev->last_flush_error)
7165                                 missing++;
7166                         else if (failing_dev && failing_dev == dev)
7167                                 missing++;
7168                 }
7169                 if (missing > max_tolerated) {
7170                         if (!failing_dev)
7171                                 btrfs_warn(fs_info,
7172         "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7173                                    em->start, missing, max_tolerated);
7174                         free_extent_map(em);
7175                         ret = false;
7176                         goto out;
7177                 }
7178                 next_start = extent_map_end(em);
7179                 free_extent_map(em);
7180
7181                 read_lock(&map_tree->lock);
7182                 em = lookup_extent_mapping(map_tree, next_start,
7183                                            (u64)(-1) - next_start);
7184                 read_unlock(&map_tree->lock);
7185         }
7186 out:
7187         return ret;
7188 }
7189
7190 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
7191 {
7192         struct btrfs_root *root = fs_info->chunk_root;
7193         struct btrfs_path *path;
7194         struct extent_buffer *leaf;
7195         struct btrfs_key key;
7196         struct btrfs_key found_key;
7197         int ret;
7198         int slot;
7199         u64 total_dev = 0;
7200
7201         path = btrfs_alloc_path();
7202         if (!path)
7203                 return -ENOMEM;
7204
7205         /*
7206          * uuid_mutex is needed only if we are mounting a sprout FS
7207          * otherwise we don't need it.
7208          */
7209         mutex_lock(&uuid_mutex);
7210         mutex_lock(&fs_info->chunk_mutex);
7211
7212         /*
7213          * Read all device items, and then all the chunk items. All
7214          * device items are found before any chunk item (their object id
7215          * is smaller than the lowest possible object id for a chunk
7216          * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7217          */
7218         key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
7219         key.offset = 0;
7220         key.type = 0;
7221         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7222         if (ret < 0)
7223                 goto error;
7224         while (1) {
7225                 leaf = path->nodes[0];
7226                 slot = path->slots[0];
7227                 if (slot >= btrfs_header_nritems(leaf)) {
7228                         ret = btrfs_next_leaf(root, path);
7229                         if (ret == 0)
7230                                 continue;
7231                         if (ret < 0)
7232                                 goto error;
7233                         break;
7234                 }
7235                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7236                 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
7237                         struct btrfs_dev_item *dev_item;
7238                         dev_item = btrfs_item_ptr(leaf, slot,
7239                                                   struct btrfs_dev_item);
7240                         ret = read_one_dev(leaf, dev_item);
7241                         if (ret)
7242                                 goto error;
7243                         total_dev++;
7244                 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7245                         struct btrfs_chunk *chunk;
7246                         chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7247                         ret = read_one_chunk(&found_key, leaf, chunk);
7248                         if (ret)
7249                                 goto error;
7250                 }
7251                 path->slots[0]++;
7252         }
7253
7254         /*
7255          * After loading chunk tree, we've got all device information,
7256          * do another round of validation checks.
7257          */
7258         if (total_dev != fs_info->fs_devices->total_devices) {
7259                 btrfs_err(fs_info,
7260            "super_num_devices %llu mismatch with num_devices %llu found here",
7261                           btrfs_super_num_devices(fs_info->super_copy),
7262                           total_dev);
7263                 ret = -EINVAL;
7264                 goto error;
7265         }
7266         if (btrfs_super_total_bytes(fs_info->super_copy) <
7267             fs_info->fs_devices->total_rw_bytes) {
7268                 btrfs_err(fs_info,
7269         "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7270                           btrfs_super_total_bytes(fs_info->super_copy),
7271                           fs_info->fs_devices->total_rw_bytes);
7272                 ret = -EINVAL;
7273                 goto error;
7274         }
7275         ret = 0;
7276 error:
7277         mutex_unlock(&fs_info->chunk_mutex);
7278         mutex_unlock(&uuid_mutex);
7279
7280         btrfs_free_path(path);
7281         return ret;
7282 }
7283
7284 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7285 {
7286         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7287         struct btrfs_device *device;
7288
7289         while (fs_devices) {
7290                 mutex_lock(&fs_devices->device_list_mutex);
7291                 list_for_each_entry(device, &fs_devices->devices, dev_list)
7292                         device->fs_info = fs_info;
7293                 mutex_unlock(&fs_devices->device_list_mutex);
7294
7295                 fs_devices = fs_devices->seed;
7296         }
7297 }
7298
7299 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
7300 {
7301         int i;
7302
7303         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7304                 btrfs_dev_stat_reset(dev, i);
7305 }
7306
7307 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7308 {
7309         struct btrfs_key key;
7310         struct btrfs_key found_key;
7311         struct btrfs_root *dev_root = fs_info->dev_root;
7312         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7313         struct extent_buffer *eb;
7314         int slot;
7315         int ret = 0;
7316         struct btrfs_device *device;
7317         struct btrfs_path *path = NULL;
7318         int i;
7319
7320         path = btrfs_alloc_path();
7321         if (!path) {
7322                 ret = -ENOMEM;
7323                 goto out;
7324         }
7325
7326         mutex_lock(&fs_devices->device_list_mutex);
7327         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7328                 int item_size;
7329                 struct btrfs_dev_stats_item *ptr;
7330
7331                 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7332                 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7333                 key.offset = device->devid;
7334                 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7335                 if (ret) {
7336                         __btrfs_reset_dev_stats(device);
7337                         device->dev_stats_valid = 1;
7338                         btrfs_release_path(path);
7339                         continue;
7340                 }
7341                 slot = path->slots[0];
7342                 eb = path->nodes[0];
7343                 btrfs_item_key_to_cpu(eb, &found_key, slot);
7344                 item_size = btrfs_item_size_nr(eb, slot);
7345
7346                 ptr = btrfs_item_ptr(eb, slot,
7347                                      struct btrfs_dev_stats_item);
7348
7349                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7350                         if (item_size >= (1 + i) * sizeof(__le64))
7351                                 btrfs_dev_stat_set(device, i,
7352                                         btrfs_dev_stats_value(eb, ptr, i));
7353                         else
7354                                 btrfs_dev_stat_reset(device, i);
7355                 }
7356
7357                 device->dev_stats_valid = 1;
7358                 btrfs_dev_stat_print_on_load(device);
7359                 btrfs_release_path(path);
7360         }
7361         mutex_unlock(&fs_devices->device_list_mutex);
7362
7363 out:
7364         btrfs_free_path(path);
7365         return ret < 0 ? ret : 0;
7366 }
7367
7368 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7369                                 struct btrfs_device *device)
7370 {
7371         struct btrfs_fs_info *fs_info = trans->fs_info;
7372         struct btrfs_root *dev_root = fs_info->dev_root;
7373         struct btrfs_path *path;
7374         struct btrfs_key key;
7375         struct extent_buffer *eb;
7376         struct btrfs_dev_stats_item *ptr;
7377         int ret;
7378         int i;
7379
7380         key.objectid = BTRFS_DEV_STATS_OBJECTID;
7381         key.type = BTRFS_PERSISTENT_ITEM_KEY;
7382         key.offset = device->devid;
7383
7384         path = btrfs_alloc_path();
7385         if (!path)
7386                 return -ENOMEM;
7387         ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7388         if (ret < 0) {
7389                 btrfs_warn_in_rcu(fs_info,
7390                         "error %d while searching for dev_stats item for device %s",
7391                               ret, rcu_str_deref(device->name));
7392                 goto out;
7393         }
7394
7395         if (ret == 0 &&
7396             btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7397                 /* need to delete old one and insert a new one */
7398                 ret = btrfs_del_item(trans, dev_root, path);
7399                 if (ret != 0) {
7400                         btrfs_warn_in_rcu(fs_info,
7401                                 "delete too small dev_stats item for device %s failed %d",
7402                                       rcu_str_deref(device->name), ret);
7403                         goto out;
7404                 }
7405                 ret = 1;
7406         }
7407
7408         if (ret == 1) {
7409                 /* need to insert a new item */
7410                 btrfs_release_path(path);
7411                 ret = btrfs_insert_empty_item(trans, dev_root, path,
7412                                               &key, sizeof(*ptr));
7413                 if (ret < 0) {
7414                         btrfs_warn_in_rcu(fs_info,
7415                                 "insert dev_stats item for device %s failed %d",
7416                                 rcu_str_deref(device->name), ret);
7417                         goto out;
7418                 }
7419         }
7420
7421         eb = path->nodes[0];
7422         ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7423         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7424                 btrfs_set_dev_stats_value(eb, ptr, i,
7425                                           btrfs_dev_stat_read(device, i));
7426         btrfs_mark_buffer_dirty(eb);
7427
7428 out:
7429         btrfs_free_path(path);
7430         return ret;
7431 }
7432
7433 /*
7434  * called from commit_transaction. Writes all changed device stats to disk.
7435  */
7436 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7437 {
7438         struct btrfs_fs_info *fs_info = trans->fs_info;
7439         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7440         struct btrfs_device *device;
7441         int stats_cnt;
7442         int ret = 0;
7443
7444         mutex_lock(&fs_devices->device_list_mutex);
7445         list_for_each_entry(device, &fs_devices->devices, dev_list) {
7446                 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7447                 if (!device->dev_stats_valid || stats_cnt == 0)
7448                         continue;
7449
7450
7451                 /*
7452                  * There is a LOAD-LOAD control dependency between the value of
7453                  * dev_stats_ccnt and updating the on-disk values which requires
7454                  * reading the in-memory counters. Such control dependencies
7455                  * require explicit read memory barriers.
7456                  *
7457                  * This memory barriers pairs with smp_mb__before_atomic in
7458                  * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7459                  * barrier implied by atomic_xchg in
7460                  * btrfs_dev_stats_read_and_reset
7461                  */
7462                 smp_rmb();
7463
7464                 ret = update_dev_stat_item(trans, device);
7465                 if (!ret)
7466                         atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7467         }
7468         mutex_unlock(&fs_devices->device_list_mutex);
7469
7470         return ret;
7471 }
7472
7473 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7474 {
7475         btrfs_dev_stat_inc(dev, index);
7476         btrfs_dev_stat_print_on_error(dev);
7477 }
7478
7479 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7480 {
7481         if (!dev->dev_stats_valid)
7482                 return;
7483         btrfs_err_rl_in_rcu(dev->fs_info,
7484                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7485                            rcu_str_deref(dev->name),
7486                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7487                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7488                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7489                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7490                            btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7491 }
7492
7493 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7494 {
7495         int i;
7496
7497         for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7498                 if (btrfs_dev_stat_read(dev, i) != 0)
7499                         break;
7500         if (i == BTRFS_DEV_STAT_VALUES_MAX)
7501                 return; /* all values == 0, suppress message */
7502
7503         btrfs_info_in_rcu(dev->fs_info,
7504                 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7505                rcu_str_deref(dev->name),
7506                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7507                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7508                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7509                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7510                btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7511 }
7512
7513 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7514                         struct btrfs_ioctl_get_dev_stats *stats)
7515 {
7516         struct btrfs_device *dev;
7517         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7518         int i;
7519
7520         mutex_lock(&fs_devices->device_list_mutex);
7521         dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL,
7522                                 true);
7523         mutex_unlock(&fs_devices->device_list_mutex);
7524
7525         if (!dev) {
7526                 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7527                 return -ENODEV;
7528         } else if (!dev->dev_stats_valid) {
7529                 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7530                 return -ENODEV;
7531         } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7532                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7533                         if (stats->nr_items > i)
7534                                 stats->values[i] =
7535                                         btrfs_dev_stat_read_and_reset(dev, i);
7536                         else
7537                                 btrfs_dev_stat_reset(dev, i);
7538                 }
7539         } else {
7540                 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7541                         if (stats->nr_items > i)
7542                                 stats->values[i] = btrfs_dev_stat_read(dev, i);
7543         }
7544         if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7545                 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7546         return 0;
7547 }
7548
7549 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7550 {
7551         struct buffer_head *bh;
7552         struct btrfs_super_block *disk_super;
7553         int copy_num;
7554
7555         if (!bdev)
7556                 return;
7557
7558         for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7559                 copy_num++) {
7560
7561                 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7562                         continue;
7563
7564                 disk_super = (struct btrfs_super_block *)bh->b_data;
7565
7566                 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7567                 set_buffer_dirty(bh);
7568                 sync_dirty_buffer(bh);
7569                 brelse(bh);
7570         }
7571
7572         /* Notify udev that device has changed */
7573         btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7574
7575         /* Update ctime/mtime for device path for libblkid */
7576         update_dev_time(device_path);
7577 }
7578
7579 /*
7580  * Update the size and bytes used for each device where it changed.  This is
7581  * delayed since we would otherwise get errors while writing out the
7582  * superblocks.
7583  *
7584  * Must be invoked during transaction commit.
7585  */
7586 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7587 {
7588         struct btrfs_device *curr, *next;
7589
7590         ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7591
7592         if (list_empty(&trans->dev_update_list))
7593                 return;
7594
7595         /*
7596          * We don't need the device_list_mutex here.  This list is owned by the
7597          * transaction and the transaction must complete before the device is
7598          * released.
7599          */
7600         mutex_lock(&trans->fs_info->chunk_mutex);
7601         list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7602                                  post_commit_list) {
7603                 list_del_init(&curr->post_commit_list);
7604                 curr->commit_total_bytes = curr->disk_total_bytes;
7605                 curr->commit_bytes_used = curr->bytes_used;
7606         }
7607         mutex_unlock(&trans->fs_info->chunk_mutex);
7608 }
7609
7610 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7611 {
7612         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7613         while (fs_devices) {
7614                 fs_devices->fs_info = fs_info;
7615                 fs_devices = fs_devices->seed;
7616         }
7617 }
7618
7619 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7620 {
7621         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7622         while (fs_devices) {
7623                 fs_devices->fs_info = NULL;
7624                 fs_devices = fs_devices->seed;
7625         }
7626 }
7627
7628 /*
7629  * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7630  */
7631 int btrfs_bg_type_to_factor(u64 flags)
7632 {
7633         const int index = btrfs_bg_flags_to_raid_index(flags);
7634
7635         return btrfs_raid_array[index].ncopies;
7636 }
7637
7638
7639
7640 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7641                                  u64 chunk_offset, u64 devid,
7642                                  u64 physical_offset, u64 physical_len)
7643 {
7644         struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7645         struct extent_map *em;
7646         struct map_lookup *map;
7647         struct btrfs_device *dev;
7648         u64 stripe_len;
7649         bool found = false;
7650         int ret = 0;
7651         int i;
7652
7653         read_lock(&em_tree->lock);
7654         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7655         read_unlock(&em_tree->lock);
7656
7657         if (!em) {
7658                 btrfs_err(fs_info,
7659 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7660                           physical_offset, devid);
7661                 ret = -EUCLEAN;
7662                 goto out;
7663         }
7664
7665         map = em->map_lookup;
7666         stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7667         if (physical_len != stripe_len) {
7668                 btrfs_err(fs_info,
7669 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7670                           physical_offset, devid, em->start, physical_len,
7671                           stripe_len);
7672                 ret = -EUCLEAN;
7673                 goto out;
7674         }
7675
7676         for (i = 0; i < map->num_stripes; i++) {
7677                 if (map->stripes[i].dev->devid == devid &&
7678                     map->stripes[i].physical == physical_offset) {
7679                         found = true;
7680                         if (map->verified_stripes >= map->num_stripes) {
7681                                 btrfs_err(fs_info,
7682                                 "too many dev extents for chunk %llu found",
7683                                           em->start);
7684                                 ret = -EUCLEAN;
7685                                 goto out;
7686                         }
7687                         map->verified_stripes++;
7688                         break;
7689                 }
7690         }
7691         if (!found) {
7692                 btrfs_err(fs_info,
7693         "dev extent physical offset %llu devid %llu has no corresponding chunk",
7694                         physical_offset, devid);
7695                 ret = -EUCLEAN;
7696         }
7697
7698         /* Make sure no dev extent is beyond device bondary */
7699         dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
7700         if (!dev) {
7701                 btrfs_err(fs_info, "failed to find devid %llu", devid);
7702                 ret = -EUCLEAN;
7703                 goto out;
7704         }
7705
7706         /* It's possible this device is a dummy for seed device */
7707         if (dev->disk_total_bytes == 0) {
7708                 dev = btrfs_find_device(fs_info->fs_devices->seed, devid, NULL,
7709                                         NULL, false);
7710                 if (!dev) {
7711                         btrfs_err(fs_info, "failed to find seed devid %llu",
7712                                   devid);
7713                         ret = -EUCLEAN;
7714                         goto out;
7715                 }
7716         }
7717
7718         if (physical_offset + physical_len > dev->disk_total_bytes) {
7719                 btrfs_err(fs_info,
7720 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7721                           devid, physical_offset, physical_len,
7722                           dev->disk_total_bytes);
7723                 ret = -EUCLEAN;
7724                 goto out;
7725         }
7726 out:
7727         free_extent_map(em);
7728         return ret;
7729 }
7730
7731 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7732 {
7733         struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7734         struct extent_map *em;
7735         struct rb_node *node;
7736         int ret = 0;
7737
7738         read_lock(&em_tree->lock);
7739         for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7740                 em = rb_entry(node, struct extent_map, rb_node);
7741                 if (em->map_lookup->num_stripes !=
7742                     em->map_lookup->verified_stripes) {
7743                         btrfs_err(fs_info,
7744                         "chunk %llu has missing dev extent, have %d expect %d",
7745                                   em->start, em->map_lookup->verified_stripes,
7746                                   em->map_lookup->num_stripes);
7747                         ret = -EUCLEAN;
7748                         goto out;
7749                 }
7750         }
7751 out:
7752         read_unlock(&em_tree->lock);
7753         return ret;
7754 }
7755
7756 /*
7757  * Ensure that all dev extents are mapped to correct chunk, otherwise
7758  * later chunk allocation/free would cause unexpected behavior.
7759  *
7760  * NOTE: This will iterate through the whole device tree, which should be of
7761  * the same size level as the chunk tree.  This slightly increases mount time.
7762  */
7763 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7764 {
7765         struct btrfs_path *path;
7766         struct btrfs_root *root = fs_info->dev_root;
7767         struct btrfs_key key;
7768         u64 prev_devid = 0;
7769         u64 prev_dev_ext_end = 0;
7770         int ret = 0;
7771
7772         key.objectid = 1;
7773         key.type = BTRFS_DEV_EXTENT_KEY;
7774         key.offset = 0;
7775
7776         path = btrfs_alloc_path();
7777         if (!path)
7778                 return -ENOMEM;
7779
7780         path->reada = READA_FORWARD;
7781         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7782         if (ret < 0)
7783                 goto out;
7784
7785         if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7786                 ret = btrfs_next_item(root, path);
7787                 if (ret < 0)
7788                         goto out;
7789                 /* No dev extents at all? Not good */
7790                 if (ret > 0) {
7791                         ret = -EUCLEAN;
7792                         goto out;
7793                 }
7794         }
7795         while (1) {
7796                 struct extent_buffer *leaf = path->nodes[0];
7797                 struct btrfs_dev_extent *dext;
7798                 int slot = path->slots[0];
7799                 u64 chunk_offset;
7800                 u64 physical_offset;
7801                 u64 physical_len;
7802                 u64 devid;
7803
7804                 btrfs_item_key_to_cpu(leaf, &key, slot);
7805                 if (key.type != BTRFS_DEV_EXTENT_KEY)
7806                         break;
7807                 devid = key.objectid;
7808                 physical_offset = key.offset;
7809
7810                 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7811                 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7812                 physical_len = btrfs_dev_extent_length(leaf, dext);
7813
7814                 /* Check if this dev extent overlaps with the previous one */
7815                 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7816                         btrfs_err(fs_info,
7817 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7818                                   devid, physical_offset, prev_dev_ext_end);
7819                         ret = -EUCLEAN;
7820                         goto out;
7821                 }
7822
7823                 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7824                                             physical_offset, physical_len);
7825                 if (ret < 0)
7826                         goto out;
7827                 prev_devid = devid;
7828                 prev_dev_ext_end = physical_offset + physical_len;
7829
7830                 ret = btrfs_next_item(root, path);
7831                 if (ret < 0)
7832                         goto out;
7833                 if (ret > 0) {
7834                         ret = 0;
7835                         break;
7836                 }
7837         }
7838
7839         /* Ensure all chunks have corresponding dev extents */
7840         ret = verify_chunk_dev_extent_mapping(fs_info);
7841 out:
7842         btrfs_free_path(path);
7843         return ret;
7844 }
7845
7846 /*
7847  * Check whether the given block group or device is pinned by any inode being
7848  * used as a swapfile.
7849  */
7850 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7851 {
7852         struct btrfs_swapfile_pin *sp;
7853         struct rb_node *node;
7854
7855         spin_lock(&fs_info->swapfile_pins_lock);
7856         node = fs_info->swapfile_pins.rb_node;
7857         while (node) {
7858                 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7859                 if (ptr < sp->ptr)
7860                         node = node->rb_left;
7861                 else if (ptr > sp->ptr)
7862                         node = node->rb_right;
7863                 else
7864                         break;
7865         }
7866         spin_unlock(&fs_info->swapfile_pins_lock);
7867         return node != NULL;
7868 }