Merge tag 'sched-core-2024-09-19' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / fs / btrfs / transaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/writeback.h>
11 #include <linux/pagemap.h>
12 #include <linux/blkdev.h>
13 #include <linux/uuid.h>
14 #include <linux/timekeeping.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "disk-io.h"
18 #include "transaction.h"
19 #include "locking.h"
20 #include "tree-log.h"
21 #include "volumes.h"
22 #include "dev-replace.h"
23 #include "qgroup.h"
24 #include "block-group.h"
25 #include "space-info.h"
26 #include "fs.h"
27 #include "accessors.h"
28 #include "extent-tree.h"
29 #include "root-tree.h"
30 #include "dir-item.h"
31 #include "uuid-tree.h"
32 #include "ioctl.h"
33 #include "relocation.h"
34 #include "scrub.h"
35
36 static struct kmem_cache *btrfs_trans_handle_cachep;
37
38 /*
39  * Transaction states and transitions
40  *
41  * No running transaction (fs tree blocks are not modified)
42  * |
43  * | To next stage:
44  * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
45  * V
46  * Transaction N [[TRANS_STATE_RUNNING]]
47  * |
48  * | New trans handles can be attached to transaction N by calling all
49  * | start_transaction() variants.
50  * |
51  * | To next stage:
52  * |  Call btrfs_commit_transaction() on any trans handle attached to
53  * |  transaction N
54  * V
55  * Transaction N [[TRANS_STATE_COMMIT_PREP]]
56  * |
57  * | If there are simultaneous calls to btrfs_commit_transaction() one will win
58  * | the race and the rest will wait for the winner to commit the transaction.
59  * |
60  * | The winner will wait for previous running transaction to completely finish
61  * | if there is one.
62  * |
63  * Transaction N [[TRANS_STATE_COMMIT_START]]
64  * |
65  * | Then one of the following happens:
66  * | - Wait for all other trans handle holders to release.
67  * |   The btrfs_commit_transaction() caller will do the commit work.
68  * | - Wait for current transaction to be committed by others.
69  * |   Other btrfs_commit_transaction() caller will do the commit work.
70  * |
71  * | At this stage, only btrfs_join_transaction*() variants can attach
72  * | to this running transaction.
73  * | All other variants will wait for current one to finish and attach to
74  * | transaction N+1.
75  * |
76  * | To next stage:
77  * |  Caller is chosen to commit transaction N, and all other trans handle
78  * |  haven been released.
79  * V
80  * Transaction N [[TRANS_STATE_COMMIT_DOING]]
81  * |
82  * | The heavy lifting transaction work is started.
83  * | From running delayed refs (modifying extent tree) to creating pending
84  * | snapshots, running qgroups.
85  * | In short, modify supporting trees to reflect modifications of subvolume
86  * | trees.
87  * |
88  * | At this stage, all start_transaction() calls will wait for this
89  * | transaction to finish and attach to transaction N+1.
90  * |
91  * | To next stage:
92  * |  Until all supporting trees are updated.
93  * V
94  * Transaction N [[TRANS_STATE_UNBLOCKED]]
95  * |                                                Transaction N+1
96  * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
97  * | need to write them back to disk and update     |
98  * | super blocks.                                  |
99  * |                                                |
100  * | At this stage, new transaction is allowed to   |
101  * | start.                                         |
102  * | All new start_transaction() calls will be      |
103  * | attached to transid N+1.                       |
104  * |                                                |
105  * | To next stage:                                 |
106  * |  Until all tree blocks are super blocks are    |
107  * |  written to block devices                      |
108  * V                                                |
109  * Transaction N [[TRANS_STATE_COMPLETED]]          V
110  *   All tree blocks and super blocks are written.  Transaction N+1
111  *   This transaction is finished and all its       [[TRANS_STATE_COMMIT_START]]
112  *   data structures will be cleaned up.            | Life goes on
113  */
114 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
115         [TRANS_STATE_RUNNING]           = 0U,
116         [TRANS_STATE_COMMIT_PREP]       = 0U,
117         [TRANS_STATE_COMMIT_START]      = (__TRANS_START | __TRANS_ATTACH),
118         [TRANS_STATE_COMMIT_DOING]      = (__TRANS_START |
119                                            __TRANS_ATTACH |
120                                            __TRANS_JOIN |
121                                            __TRANS_JOIN_NOSTART),
122         [TRANS_STATE_UNBLOCKED]         = (__TRANS_START |
123                                            __TRANS_ATTACH |
124                                            __TRANS_JOIN |
125                                            __TRANS_JOIN_NOLOCK |
126                                            __TRANS_JOIN_NOSTART),
127         [TRANS_STATE_SUPER_COMMITTED]   = (__TRANS_START |
128                                            __TRANS_ATTACH |
129                                            __TRANS_JOIN |
130                                            __TRANS_JOIN_NOLOCK |
131                                            __TRANS_JOIN_NOSTART),
132         [TRANS_STATE_COMPLETED]         = (__TRANS_START |
133                                            __TRANS_ATTACH |
134                                            __TRANS_JOIN |
135                                            __TRANS_JOIN_NOLOCK |
136                                            __TRANS_JOIN_NOSTART),
137 };
138
139 void btrfs_put_transaction(struct btrfs_transaction *transaction)
140 {
141         WARN_ON(refcount_read(&transaction->use_count) == 0);
142         if (refcount_dec_and_test(&transaction->use_count)) {
143                 BUG_ON(!list_empty(&transaction->list));
144                 WARN_ON(!RB_EMPTY_ROOT(
145                                 &transaction->delayed_refs.href_root.rb_root));
146                 WARN_ON(!xa_empty(&transaction->delayed_refs.dirty_extents));
147                 if (transaction->delayed_refs.pending_csums)
148                         btrfs_err(transaction->fs_info,
149                                   "pending csums is %llu",
150                                   transaction->delayed_refs.pending_csums);
151                 /*
152                  * If any block groups are found in ->deleted_bgs then it's
153                  * because the transaction was aborted and a commit did not
154                  * happen (things failed before writing the new superblock
155                  * and calling btrfs_finish_extent_commit()), so we can not
156                  * discard the physical locations of the block groups.
157                  */
158                 while (!list_empty(&transaction->deleted_bgs)) {
159                         struct btrfs_block_group *cache;
160
161                         cache = list_first_entry(&transaction->deleted_bgs,
162                                                  struct btrfs_block_group,
163                                                  bg_list);
164                         list_del_init(&cache->bg_list);
165                         btrfs_unfreeze_block_group(cache);
166                         btrfs_put_block_group(cache);
167                 }
168                 WARN_ON(!list_empty(&transaction->dev_update_list));
169                 kfree(transaction);
170         }
171 }
172
173 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
174 {
175         struct btrfs_transaction *cur_trans = trans->transaction;
176         struct btrfs_fs_info *fs_info = trans->fs_info;
177         struct btrfs_root *root, *tmp;
178
179         /*
180          * At this point no one can be using this transaction to modify any tree
181          * and no one can start another transaction to modify any tree either.
182          */
183         ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
184
185         down_write(&fs_info->commit_root_sem);
186
187         if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
188                 fs_info->last_reloc_trans = trans->transid;
189
190         list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
191                                  dirty_list) {
192                 list_del_init(&root->dirty_list);
193                 free_extent_buffer(root->commit_root);
194                 root->commit_root = btrfs_root_node(root);
195                 extent_io_tree_release(&root->dirty_log_pages);
196                 btrfs_qgroup_clean_swapped_blocks(root);
197         }
198
199         /* We can free old roots now. */
200         spin_lock(&cur_trans->dropped_roots_lock);
201         while (!list_empty(&cur_trans->dropped_roots)) {
202                 root = list_first_entry(&cur_trans->dropped_roots,
203                                         struct btrfs_root, root_list);
204                 list_del_init(&root->root_list);
205                 spin_unlock(&cur_trans->dropped_roots_lock);
206                 btrfs_free_log(trans, root);
207                 btrfs_drop_and_free_fs_root(fs_info, root);
208                 spin_lock(&cur_trans->dropped_roots_lock);
209         }
210         spin_unlock(&cur_trans->dropped_roots_lock);
211
212         up_write(&fs_info->commit_root_sem);
213 }
214
215 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
216                                          unsigned int type)
217 {
218         if (type & TRANS_EXTWRITERS)
219                 atomic_inc(&trans->num_extwriters);
220 }
221
222 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
223                                          unsigned int type)
224 {
225         if (type & TRANS_EXTWRITERS)
226                 atomic_dec(&trans->num_extwriters);
227 }
228
229 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
230                                           unsigned int type)
231 {
232         atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
233 }
234
235 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
236 {
237         return atomic_read(&trans->num_extwriters);
238 }
239
240 /*
241  * To be called after doing the chunk btree updates right after allocating a new
242  * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
243  * chunk after all chunk btree updates and after finishing the second phase of
244  * chunk allocation (btrfs_create_pending_block_groups()) in case some block
245  * group had its chunk item insertion delayed to the second phase.
246  */
247 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
248 {
249         struct btrfs_fs_info *fs_info = trans->fs_info;
250
251         if (!trans->chunk_bytes_reserved)
252                 return;
253
254         btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
255                                 trans->chunk_bytes_reserved, NULL);
256         trans->chunk_bytes_reserved = 0;
257 }
258
259 /*
260  * either allocate a new transaction or hop into the existing one
261  */
262 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
263                                      unsigned int type)
264 {
265         struct btrfs_transaction *cur_trans;
266
267         spin_lock(&fs_info->trans_lock);
268 loop:
269         /* The file system has been taken offline. No new transactions. */
270         if (BTRFS_FS_ERROR(fs_info)) {
271                 spin_unlock(&fs_info->trans_lock);
272                 return -EROFS;
273         }
274
275         cur_trans = fs_info->running_transaction;
276         if (cur_trans) {
277                 if (TRANS_ABORTED(cur_trans)) {
278                         spin_unlock(&fs_info->trans_lock);
279                         return cur_trans->aborted;
280                 }
281                 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
282                         spin_unlock(&fs_info->trans_lock);
283                         return -EBUSY;
284                 }
285                 refcount_inc(&cur_trans->use_count);
286                 atomic_inc(&cur_trans->num_writers);
287                 extwriter_counter_inc(cur_trans, type);
288                 spin_unlock(&fs_info->trans_lock);
289                 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
290                 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
291                 return 0;
292         }
293         spin_unlock(&fs_info->trans_lock);
294
295         /*
296          * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the
297          * current transaction, and commit it. If there is no transaction, just
298          * return ENOENT.
299          */
300         if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART)
301                 return -ENOENT;
302
303         /*
304          * JOIN_NOLOCK only happens during the transaction commit, so
305          * it is impossible that ->running_transaction is NULL
306          */
307         BUG_ON(type == TRANS_JOIN_NOLOCK);
308
309         cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
310         if (!cur_trans)
311                 return -ENOMEM;
312
313         btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
314         btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
315
316         spin_lock(&fs_info->trans_lock);
317         if (fs_info->running_transaction) {
318                 /*
319                  * someone started a transaction after we unlocked.  Make sure
320                  * to redo the checks above
321                  */
322                 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
323                 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
324                 kfree(cur_trans);
325                 goto loop;
326         } else if (BTRFS_FS_ERROR(fs_info)) {
327                 spin_unlock(&fs_info->trans_lock);
328                 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
329                 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
330                 kfree(cur_trans);
331                 return -EROFS;
332         }
333
334         cur_trans->fs_info = fs_info;
335         atomic_set(&cur_trans->pending_ordered, 0);
336         init_waitqueue_head(&cur_trans->pending_wait);
337         atomic_set(&cur_trans->num_writers, 1);
338         extwriter_counter_init(cur_trans, type);
339         init_waitqueue_head(&cur_trans->writer_wait);
340         init_waitqueue_head(&cur_trans->commit_wait);
341         cur_trans->state = TRANS_STATE_RUNNING;
342         /*
343          * One for this trans handle, one so it will live on until we
344          * commit the transaction.
345          */
346         refcount_set(&cur_trans->use_count, 2);
347         cur_trans->flags = 0;
348         cur_trans->start_time = ktime_get_seconds();
349
350         memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
351
352         cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
353         xa_init(&cur_trans->delayed_refs.dirty_extents);
354         atomic_set(&cur_trans->delayed_refs.num_entries, 0);
355
356         /*
357          * although the tree mod log is per file system and not per transaction,
358          * the log must never go across transaction boundaries.
359          */
360         smp_mb();
361         if (!list_empty(&fs_info->tree_mod_seq_list))
362                 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
363         if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
364                 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
365         atomic64_set(&fs_info->tree_mod_seq, 0);
366
367         spin_lock_init(&cur_trans->delayed_refs.lock);
368
369         INIT_LIST_HEAD(&cur_trans->pending_snapshots);
370         INIT_LIST_HEAD(&cur_trans->dev_update_list);
371         INIT_LIST_HEAD(&cur_trans->switch_commits);
372         INIT_LIST_HEAD(&cur_trans->dirty_bgs);
373         INIT_LIST_HEAD(&cur_trans->io_bgs);
374         INIT_LIST_HEAD(&cur_trans->dropped_roots);
375         mutex_init(&cur_trans->cache_write_mutex);
376         spin_lock_init(&cur_trans->dirty_bgs_lock);
377         INIT_LIST_HEAD(&cur_trans->deleted_bgs);
378         spin_lock_init(&cur_trans->dropped_roots_lock);
379         list_add_tail(&cur_trans->list, &fs_info->trans_list);
380         extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
381                         IO_TREE_TRANS_DIRTY_PAGES);
382         extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
383                         IO_TREE_FS_PINNED_EXTENTS);
384         btrfs_set_fs_generation(fs_info, fs_info->generation + 1);
385         cur_trans->transid = fs_info->generation;
386         fs_info->running_transaction = cur_trans;
387         cur_trans->aborted = 0;
388         spin_unlock(&fs_info->trans_lock);
389
390         return 0;
391 }
392
393 /*
394  * This does all the record keeping required to make sure that a shareable root
395  * is properly recorded in a given transaction.  This is required to make sure
396  * the old root from before we joined the transaction is deleted when the
397  * transaction commits.
398  */
399 static int record_root_in_trans(struct btrfs_trans_handle *trans,
400                                struct btrfs_root *root,
401                                int force)
402 {
403         struct btrfs_fs_info *fs_info = root->fs_info;
404         int ret = 0;
405
406         if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
407             btrfs_get_root_last_trans(root) < trans->transid) || force) {
408                 WARN_ON(!force && root->commit_root != root->node);
409
410                 /*
411                  * see below for IN_TRANS_SETUP usage rules
412                  * we have the reloc mutex held now, so there
413                  * is only one writer in this function
414                  */
415                 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
416
417                 /* make sure readers find IN_TRANS_SETUP before
418                  * they find our root->last_trans update
419                  */
420                 smp_wmb();
421
422                 spin_lock(&fs_info->fs_roots_radix_lock);
423                 if (btrfs_get_root_last_trans(root) == trans->transid && !force) {
424                         spin_unlock(&fs_info->fs_roots_radix_lock);
425                         return 0;
426                 }
427                 radix_tree_tag_set(&fs_info->fs_roots_radix,
428                                    (unsigned long)btrfs_root_id(root),
429                                    BTRFS_ROOT_TRANS_TAG);
430                 spin_unlock(&fs_info->fs_roots_radix_lock);
431                 btrfs_set_root_last_trans(root, trans->transid);
432
433                 /* this is pretty tricky.  We don't want to
434                  * take the relocation lock in btrfs_record_root_in_trans
435                  * unless we're really doing the first setup for this root in
436                  * this transaction.
437                  *
438                  * Normally we'd use root->last_trans as a flag to decide
439                  * if we want to take the expensive mutex.
440                  *
441                  * But, we have to set root->last_trans before we
442                  * init the relocation root, otherwise, we trip over warnings
443                  * in ctree.c.  The solution used here is to flag ourselves
444                  * with root IN_TRANS_SETUP.  When this is 1, we're still
445                  * fixing up the reloc trees and everyone must wait.
446                  *
447                  * When this is zero, they can trust root->last_trans and fly
448                  * through btrfs_record_root_in_trans without having to take the
449                  * lock.  smp_wmb() makes sure that all the writes above are
450                  * done before we pop in the zero below
451                  */
452                 ret = btrfs_init_reloc_root(trans, root);
453                 smp_mb__before_atomic();
454                 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
455         }
456         return ret;
457 }
458
459
460 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
461                             struct btrfs_root *root)
462 {
463         struct btrfs_fs_info *fs_info = root->fs_info;
464         struct btrfs_transaction *cur_trans = trans->transaction;
465
466         /* Add ourselves to the transaction dropped list */
467         spin_lock(&cur_trans->dropped_roots_lock);
468         list_add_tail(&root->root_list, &cur_trans->dropped_roots);
469         spin_unlock(&cur_trans->dropped_roots_lock);
470
471         /* Make sure we don't try to update the root at commit time */
472         spin_lock(&fs_info->fs_roots_radix_lock);
473         radix_tree_tag_clear(&fs_info->fs_roots_radix,
474                              (unsigned long)btrfs_root_id(root),
475                              BTRFS_ROOT_TRANS_TAG);
476         spin_unlock(&fs_info->fs_roots_radix_lock);
477 }
478
479 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
480                                struct btrfs_root *root)
481 {
482         struct btrfs_fs_info *fs_info = root->fs_info;
483         int ret;
484
485         if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
486                 return 0;
487
488         /*
489          * see record_root_in_trans for comments about IN_TRANS_SETUP usage
490          * and barriers
491          */
492         smp_rmb();
493         if (btrfs_get_root_last_trans(root) == trans->transid &&
494             !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
495                 return 0;
496
497         mutex_lock(&fs_info->reloc_mutex);
498         ret = record_root_in_trans(trans, root, 0);
499         mutex_unlock(&fs_info->reloc_mutex);
500
501         return ret;
502 }
503
504 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
505 {
506         return (trans->state >= TRANS_STATE_COMMIT_START &&
507                 trans->state < TRANS_STATE_UNBLOCKED &&
508                 !TRANS_ABORTED(trans));
509 }
510
511 /* wait for commit against the current transaction to become unblocked
512  * when this is done, it is safe to start a new transaction, but the current
513  * transaction might not be fully on disk.
514  */
515 static void wait_current_trans(struct btrfs_fs_info *fs_info)
516 {
517         struct btrfs_transaction *cur_trans;
518
519         spin_lock(&fs_info->trans_lock);
520         cur_trans = fs_info->running_transaction;
521         if (cur_trans && is_transaction_blocked(cur_trans)) {
522                 refcount_inc(&cur_trans->use_count);
523                 spin_unlock(&fs_info->trans_lock);
524
525                 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
526                 wait_event(fs_info->transaction_wait,
527                            cur_trans->state >= TRANS_STATE_UNBLOCKED ||
528                            TRANS_ABORTED(cur_trans));
529                 btrfs_put_transaction(cur_trans);
530         } else {
531                 spin_unlock(&fs_info->trans_lock);
532         }
533 }
534
535 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
536 {
537         if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
538                 return 0;
539
540         if (type == TRANS_START)
541                 return 1;
542
543         return 0;
544 }
545
546 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
547 {
548         struct btrfs_fs_info *fs_info = root->fs_info;
549
550         if (!fs_info->reloc_ctl ||
551             !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
552             btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
553             root->reloc_root)
554                 return false;
555
556         return true;
557 }
558
559 static int btrfs_reserve_trans_metadata(struct btrfs_fs_info *fs_info,
560                                         enum btrfs_reserve_flush_enum flush,
561                                         u64 num_bytes,
562                                         u64 *delayed_refs_bytes)
563 {
564         struct btrfs_space_info *si = fs_info->trans_block_rsv.space_info;
565         u64 bytes = num_bytes + *delayed_refs_bytes;
566         int ret;
567
568         /*
569          * We want to reserve all the bytes we may need all at once, so we only
570          * do 1 enospc flushing cycle per transaction start.
571          */
572         ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
573
574         /*
575          * If we are an emergency flush, which can steal from the global block
576          * reserve, then attempt to not reserve space for the delayed refs, as
577          * we will consume space for them from the global block reserve.
578          */
579         if (ret && flush == BTRFS_RESERVE_FLUSH_ALL_STEAL) {
580                 bytes -= *delayed_refs_bytes;
581                 *delayed_refs_bytes = 0;
582                 ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
583         }
584
585         return ret;
586 }
587
588 static struct btrfs_trans_handle *
589 start_transaction(struct btrfs_root *root, unsigned int num_items,
590                   unsigned int type, enum btrfs_reserve_flush_enum flush,
591                   bool enforce_qgroups)
592 {
593         struct btrfs_fs_info *fs_info = root->fs_info;
594         struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
595         struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
596         struct btrfs_trans_handle *h;
597         struct btrfs_transaction *cur_trans;
598         u64 num_bytes = 0;
599         u64 qgroup_reserved = 0;
600         u64 delayed_refs_bytes = 0;
601         bool reloc_reserved = false;
602         bool do_chunk_alloc = false;
603         int ret;
604
605         if (BTRFS_FS_ERROR(fs_info))
606                 return ERR_PTR(-EROFS);
607
608         if (current->journal_info) {
609                 WARN_ON(type & TRANS_EXTWRITERS);
610                 h = current->journal_info;
611                 refcount_inc(&h->use_count);
612                 WARN_ON(refcount_read(&h->use_count) > 2);
613                 h->orig_rsv = h->block_rsv;
614                 h->block_rsv = NULL;
615                 goto got_it;
616         }
617
618         /*
619          * Do the reservation before we join the transaction so we can do all
620          * the appropriate flushing if need be.
621          */
622         if (num_items && root != fs_info->chunk_root) {
623                 qgroup_reserved = num_items * fs_info->nodesize;
624                 /*
625                  * Use prealloc for now, as there might be a currently running
626                  * transaction that could free this reserved space prematurely
627                  * by committing.
628                  */
629                 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserved,
630                                                          enforce_qgroups, false);
631                 if (ret)
632                         return ERR_PTR(ret);
633
634                 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
635                 /*
636                  * If we plan to insert/update/delete "num_items" from a btree,
637                  * we will also generate delayed refs for extent buffers in the
638                  * respective btree paths, so reserve space for the delayed refs
639                  * that will be generated by the caller as it modifies btrees.
640                  * Try to reserve them to avoid excessive use of the global
641                  * block reserve.
642                  */
643                 delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info, num_items);
644
645                 /*
646                  * Do the reservation for the relocation root creation
647                  */
648                 if (need_reserve_reloc_root(root)) {
649                         num_bytes += fs_info->nodesize;
650                         reloc_reserved = true;
651                 }
652
653                 ret = btrfs_reserve_trans_metadata(fs_info, flush, num_bytes,
654                                                    &delayed_refs_bytes);
655                 if (ret)
656                         goto reserve_fail;
657
658                 btrfs_block_rsv_add_bytes(trans_rsv, num_bytes, true);
659
660                 if (trans_rsv->space_info->force_alloc)
661                         do_chunk_alloc = true;
662         } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
663                    !btrfs_block_rsv_full(delayed_refs_rsv)) {
664                 /*
665                  * Some people call with btrfs_start_transaction(root, 0)
666                  * because they can be throttled, but have some other mechanism
667                  * for reserving space.  We still want these guys to refill the
668                  * delayed block_rsv so just add 1 items worth of reservation
669                  * here.
670                  */
671                 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
672                 if (ret)
673                         goto reserve_fail;
674         }
675 again:
676         h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
677         if (!h) {
678                 ret = -ENOMEM;
679                 goto alloc_fail;
680         }
681
682         /*
683          * If we are JOIN_NOLOCK we're already committing a transaction and
684          * waiting on this guy, so we don't need to do the sb_start_intwrite
685          * because we're already holding a ref.  We need this because we could
686          * have raced in and did an fsync() on a file which can kick a commit
687          * and then we deadlock with somebody doing a freeze.
688          *
689          * If we are ATTACH, it means we just want to catch the current
690          * transaction and commit it, so we needn't do sb_start_intwrite(). 
691          */
692         if (type & __TRANS_FREEZABLE)
693                 sb_start_intwrite(fs_info->sb);
694
695         if (may_wait_transaction(fs_info, type))
696                 wait_current_trans(fs_info);
697
698         do {
699                 ret = join_transaction(fs_info, type);
700                 if (ret == -EBUSY) {
701                         wait_current_trans(fs_info);
702                         if (unlikely(type == TRANS_ATTACH ||
703                                      type == TRANS_JOIN_NOSTART))
704                                 ret = -ENOENT;
705                 }
706         } while (ret == -EBUSY);
707
708         if (ret < 0)
709                 goto join_fail;
710
711         cur_trans = fs_info->running_transaction;
712
713         h->transid = cur_trans->transid;
714         h->transaction = cur_trans;
715         refcount_set(&h->use_count, 1);
716         h->fs_info = root->fs_info;
717
718         h->type = type;
719         INIT_LIST_HEAD(&h->new_bgs);
720         btrfs_init_metadata_block_rsv(fs_info, &h->delayed_rsv, BTRFS_BLOCK_RSV_DELOPS);
721
722         smp_mb();
723         if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
724             may_wait_transaction(fs_info, type)) {
725                 current->journal_info = h;
726                 btrfs_commit_transaction(h);
727                 goto again;
728         }
729
730         if (num_bytes) {
731                 trace_btrfs_space_reservation(fs_info, "transaction",
732                                               h->transid, num_bytes, 1);
733                 h->block_rsv = trans_rsv;
734                 h->bytes_reserved = num_bytes;
735                 if (delayed_refs_bytes > 0) {
736                         trace_btrfs_space_reservation(fs_info,
737                                                       "local_delayed_refs_rsv",
738                                                       h->transid,
739                                                       delayed_refs_bytes, 1);
740                         h->delayed_refs_bytes_reserved = delayed_refs_bytes;
741                         btrfs_block_rsv_add_bytes(&h->delayed_rsv, delayed_refs_bytes, true);
742                         delayed_refs_bytes = 0;
743                 }
744                 h->reloc_reserved = reloc_reserved;
745         }
746
747 got_it:
748         if (!current->journal_info)
749                 current->journal_info = h;
750
751         /*
752          * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
753          * ALLOC_FORCE the first run through, and then we won't allocate for
754          * anybody else who races in later.  We don't care about the return
755          * value here.
756          */
757         if (do_chunk_alloc && num_bytes) {
758                 u64 flags = h->block_rsv->space_info->flags;
759
760                 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
761                                   CHUNK_ALLOC_NO_FORCE);
762         }
763
764         /*
765          * btrfs_record_root_in_trans() needs to alloc new extents, and may
766          * call btrfs_join_transaction() while we're also starting a
767          * transaction.
768          *
769          * Thus it need to be called after current->journal_info initialized,
770          * or we can deadlock.
771          */
772         ret = btrfs_record_root_in_trans(h, root);
773         if (ret) {
774                 /*
775                  * The transaction handle is fully initialized and linked with
776                  * other structures so it needs to be ended in case of errors,
777                  * not just freed.
778                  */
779                 btrfs_end_transaction(h);
780                 goto reserve_fail;
781         }
782         /*
783          * Now that we have found a transaction to be a part of, convert the
784          * qgroup reservation from prealloc to pertrans. A different transaction
785          * can't race in and free our pertrans out from under us.
786          */
787         if (qgroup_reserved)
788                 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
789
790         return h;
791
792 join_fail:
793         if (type & __TRANS_FREEZABLE)
794                 sb_end_intwrite(fs_info->sb);
795         kmem_cache_free(btrfs_trans_handle_cachep, h);
796 alloc_fail:
797         if (num_bytes)
798                 btrfs_block_rsv_release(fs_info, trans_rsv, num_bytes, NULL);
799         if (delayed_refs_bytes)
800                 btrfs_space_info_free_bytes_may_use(fs_info, trans_rsv->space_info,
801                                                     delayed_refs_bytes);
802 reserve_fail:
803         btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
804         return ERR_PTR(ret);
805 }
806
807 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
808                                                    unsigned int num_items)
809 {
810         return start_transaction(root, num_items, TRANS_START,
811                                  BTRFS_RESERVE_FLUSH_ALL, true);
812 }
813
814 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
815                                         struct btrfs_root *root,
816                                         unsigned int num_items)
817 {
818         return start_transaction(root, num_items, TRANS_START,
819                                  BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
820 }
821
822 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
823 {
824         return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
825                                  true);
826 }
827
828 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
829 {
830         return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
831                                  BTRFS_RESERVE_NO_FLUSH, true);
832 }
833
834 /*
835  * Similar to regular join but it never starts a transaction when none is
836  * running or when there's a running one at a state >= TRANS_STATE_UNBLOCKED.
837  * This is similar to btrfs_attach_transaction() but it allows the join to
838  * happen if the transaction commit already started but it's not yet in the
839  * "doing" phase (the state is < TRANS_STATE_COMMIT_DOING).
840  */
841 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
842 {
843         return start_transaction(root, 0, TRANS_JOIN_NOSTART,
844                                  BTRFS_RESERVE_NO_FLUSH, true);
845 }
846
847 /*
848  * Catch the running transaction.
849  *
850  * It is used when we want to commit the current the transaction, but
851  * don't want to start a new one.
852  *
853  * Note: If this function return -ENOENT, it just means there is no
854  * running transaction. But it is possible that the inactive transaction
855  * is still in the memory, not fully on disk. If you hope there is no
856  * inactive transaction in the fs when -ENOENT is returned, you should
857  * invoke
858  *     btrfs_attach_transaction_barrier()
859  */
860 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
861 {
862         return start_transaction(root, 0, TRANS_ATTACH,
863                                  BTRFS_RESERVE_NO_FLUSH, true);
864 }
865
866 /*
867  * Catch the running transaction.
868  *
869  * It is similar to the above function, the difference is this one
870  * will wait for all the inactive transactions until they fully
871  * complete.
872  */
873 struct btrfs_trans_handle *
874 btrfs_attach_transaction_barrier(struct btrfs_root *root)
875 {
876         struct btrfs_trans_handle *trans;
877
878         trans = start_transaction(root, 0, TRANS_ATTACH,
879                                   BTRFS_RESERVE_NO_FLUSH, true);
880         if (trans == ERR_PTR(-ENOENT)) {
881                 int ret;
882
883                 ret = btrfs_wait_for_commit(root->fs_info, 0);
884                 if (ret)
885                         return ERR_PTR(ret);
886         }
887
888         return trans;
889 }
890
891 /* Wait for a transaction commit to reach at least the given state. */
892 static noinline void wait_for_commit(struct btrfs_transaction *commit,
893                                      const enum btrfs_trans_state min_state)
894 {
895         struct btrfs_fs_info *fs_info = commit->fs_info;
896         u64 transid = commit->transid;
897         bool put = false;
898
899         /*
900          * At the moment this function is called with min_state either being
901          * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
902          */
903         if (min_state == TRANS_STATE_COMPLETED)
904                 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
905         else
906                 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
907
908         while (1) {
909                 wait_event(commit->commit_wait, commit->state >= min_state);
910                 if (put)
911                         btrfs_put_transaction(commit);
912
913                 if (min_state < TRANS_STATE_COMPLETED)
914                         break;
915
916                 /*
917                  * A transaction isn't really completed until all of the
918                  * previous transactions are completed, but with fsync we can
919                  * end up with SUPER_COMMITTED transactions before a COMPLETED
920                  * transaction. Wait for those.
921                  */
922
923                 spin_lock(&fs_info->trans_lock);
924                 commit = list_first_entry_or_null(&fs_info->trans_list,
925                                                   struct btrfs_transaction,
926                                                   list);
927                 if (!commit || commit->transid > transid) {
928                         spin_unlock(&fs_info->trans_lock);
929                         break;
930                 }
931                 refcount_inc(&commit->use_count);
932                 put = true;
933                 spin_unlock(&fs_info->trans_lock);
934         }
935 }
936
937 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
938 {
939         struct btrfs_transaction *cur_trans = NULL, *t;
940         int ret = 0;
941
942         if (transid) {
943                 if (transid <= btrfs_get_last_trans_committed(fs_info))
944                         goto out;
945
946                 /* find specified transaction */
947                 spin_lock(&fs_info->trans_lock);
948                 list_for_each_entry(t, &fs_info->trans_list, list) {
949                         if (t->transid == transid) {
950                                 cur_trans = t;
951                                 refcount_inc(&cur_trans->use_count);
952                                 ret = 0;
953                                 break;
954                         }
955                         if (t->transid > transid) {
956                                 ret = 0;
957                                 break;
958                         }
959                 }
960                 spin_unlock(&fs_info->trans_lock);
961
962                 /*
963                  * The specified transaction doesn't exist, or we
964                  * raced with btrfs_commit_transaction
965                  */
966                 if (!cur_trans) {
967                         if (transid > btrfs_get_last_trans_committed(fs_info))
968                                 ret = -EINVAL;
969                         goto out;
970                 }
971         } else {
972                 /* find newest transaction that is committing | committed */
973                 spin_lock(&fs_info->trans_lock);
974                 list_for_each_entry_reverse(t, &fs_info->trans_list,
975                                             list) {
976                         if (t->state >= TRANS_STATE_COMMIT_START) {
977                                 if (t->state == TRANS_STATE_COMPLETED)
978                                         break;
979                                 cur_trans = t;
980                                 refcount_inc(&cur_trans->use_count);
981                                 break;
982                         }
983                 }
984                 spin_unlock(&fs_info->trans_lock);
985                 if (!cur_trans)
986                         goto out;  /* nothing committing|committed */
987         }
988
989         wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
990         ret = cur_trans->aborted;
991         btrfs_put_transaction(cur_trans);
992 out:
993         return ret;
994 }
995
996 void btrfs_throttle(struct btrfs_fs_info *fs_info)
997 {
998         wait_current_trans(fs_info);
999 }
1000
1001 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
1002 {
1003         struct btrfs_transaction *cur_trans = trans->transaction;
1004
1005         if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
1006             test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
1007                 return true;
1008
1009         if (btrfs_check_space_for_delayed_refs(trans->fs_info))
1010                 return true;
1011
1012         return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50);
1013 }
1014
1015 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
1016
1017 {
1018         struct btrfs_fs_info *fs_info = trans->fs_info;
1019
1020         if (!trans->block_rsv) {
1021                 ASSERT(!trans->bytes_reserved);
1022                 ASSERT(!trans->delayed_refs_bytes_reserved);
1023                 return;
1024         }
1025
1026         if (!trans->bytes_reserved) {
1027                 ASSERT(!trans->delayed_refs_bytes_reserved);
1028                 return;
1029         }
1030
1031         ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
1032         trace_btrfs_space_reservation(fs_info, "transaction",
1033                                       trans->transid, trans->bytes_reserved, 0);
1034         btrfs_block_rsv_release(fs_info, trans->block_rsv,
1035                                 trans->bytes_reserved, NULL);
1036         trans->bytes_reserved = 0;
1037
1038         if (!trans->delayed_refs_bytes_reserved)
1039                 return;
1040
1041         trace_btrfs_space_reservation(fs_info, "local_delayed_refs_rsv",
1042                                       trans->transid,
1043                                       trans->delayed_refs_bytes_reserved, 0);
1044         btrfs_block_rsv_release(fs_info, &trans->delayed_rsv,
1045                                 trans->delayed_refs_bytes_reserved, NULL);
1046         trans->delayed_refs_bytes_reserved = 0;
1047 }
1048
1049 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
1050                                    int throttle)
1051 {
1052         struct btrfs_fs_info *info = trans->fs_info;
1053         struct btrfs_transaction *cur_trans = trans->transaction;
1054         int ret = 0;
1055
1056         if (refcount_read(&trans->use_count) > 1) {
1057                 refcount_dec(&trans->use_count);
1058                 trans->block_rsv = trans->orig_rsv;
1059                 return 0;
1060         }
1061
1062         btrfs_trans_release_metadata(trans);
1063         trans->block_rsv = NULL;
1064
1065         btrfs_create_pending_block_groups(trans);
1066
1067         btrfs_trans_release_chunk_metadata(trans);
1068
1069         if (trans->type & __TRANS_FREEZABLE)
1070                 sb_end_intwrite(info->sb);
1071
1072         WARN_ON(cur_trans != info->running_transaction);
1073         WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1074         atomic_dec(&cur_trans->num_writers);
1075         extwriter_counter_dec(cur_trans, trans->type);
1076
1077         cond_wake_up(&cur_trans->writer_wait);
1078
1079         btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
1080         btrfs_lockdep_release(info, btrfs_trans_num_writers);
1081
1082         btrfs_put_transaction(cur_trans);
1083
1084         if (current->journal_info == trans)
1085                 current->journal_info = NULL;
1086
1087         if (throttle)
1088                 btrfs_run_delayed_iputs(info);
1089
1090         if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1091                 wake_up_process(info->transaction_kthread);
1092                 if (TRANS_ABORTED(trans))
1093                         ret = trans->aborted;
1094                 else
1095                         ret = -EROFS;
1096         }
1097
1098         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1099         return ret;
1100 }
1101
1102 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1103 {
1104         return __btrfs_end_transaction(trans, 0);
1105 }
1106
1107 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1108 {
1109         return __btrfs_end_transaction(trans, 1);
1110 }
1111
1112 /*
1113  * when btree blocks are allocated, they have some corresponding bits set for
1114  * them in one of two extent_io trees.  This is used to make sure all of
1115  * those extents are sent to disk but does not wait on them
1116  */
1117 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1118                                struct extent_io_tree *dirty_pages, int mark)
1119 {
1120         int ret = 0;
1121         struct address_space *mapping = fs_info->btree_inode->i_mapping;
1122         struct extent_state *cached_state = NULL;
1123         u64 start = 0;
1124         u64 end;
1125
1126         while (find_first_extent_bit(dirty_pages, start, &start, &end,
1127                                      mark, &cached_state)) {
1128                 bool wait_writeback = false;
1129
1130                 ret = convert_extent_bit(dirty_pages, start, end,
1131                                          EXTENT_NEED_WAIT,
1132                                          mark, &cached_state);
1133                 /*
1134                  * convert_extent_bit can return -ENOMEM, which is most of the
1135                  * time a temporary error. So when it happens, ignore the error
1136                  * and wait for writeback of this range to finish - because we
1137                  * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1138                  * to __btrfs_wait_marked_extents() would not know that
1139                  * writeback for this range started and therefore wouldn't
1140                  * wait for it to finish - we don't want to commit a
1141                  * superblock that points to btree nodes/leafs for which
1142                  * writeback hasn't finished yet (and without errors).
1143                  * We cleanup any entries left in the io tree when committing
1144                  * the transaction (through extent_io_tree_release()).
1145                  */
1146                 if (ret == -ENOMEM) {
1147                         ret = 0;
1148                         wait_writeback = true;
1149                 }
1150                 if (!ret)
1151                         ret = filemap_fdatawrite_range(mapping, start, end);
1152                 if (!ret && wait_writeback)
1153                         ret = filemap_fdatawait_range(mapping, start, end);
1154                 free_extent_state(cached_state);
1155                 if (ret)
1156                         break;
1157                 cached_state = NULL;
1158                 cond_resched();
1159                 start = end + 1;
1160         }
1161         return ret;
1162 }
1163
1164 /*
1165  * when btree blocks are allocated, they have some corresponding bits set for
1166  * them in one of two extent_io trees.  This is used to make sure all of
1167  * those extents are on disk for transaction or log commit.  We wait
1168  * on all the pages and clear them from the dirty pages state tree
1169  */
1170 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1171                                        struct extent_io_tree *dirty_pages)
1172 {
1173         struct address_space *mapping = fs_info->btree_inode->i_mapping;
1174         struct extent_state *cached_state = NULL;
1175         u64 start = 0;
1176         u64 end;
1177         int ret = 0;
1178
1179         while (find_first_extent_bit(dirty_pages, start, &start, &end,
1180                                      EXTENT_NEED_WAIT, &cached_state)) {
1181                 /*
1182                  * Ignore -ENOMEM errors returned by clear_extent_bit().
1183                  * When committing the transaction, we'll remove any entries
1184                  * left in the io tree. For a log commit, we don't remove them
1185                  * after committing the log because the tree can be accessed
1186                  * concurrently - we do it only at transaction commit time when
1187                  * it's safe to do it (through extent_io_tree_release()).
1188                  */
1189                 ret = clear_extent_bit(dirty_pages, start, end,
1190                                        EXTENT_NEED_WAIT, &cached_state);
1191                 if (ret == -ENOMEM)
1192                         ret = 0;
1193                 if (!ret)
1194                         ret = filemap_fdatawait_range(mapping, start, end);
1195                 free_extent_state(cached_state);
1196                 if (ret)
1197                         break;
1198                 cached_state = NULL;
1199                 cond_resched();
1200                 start = end + 1;
1201         }
1202         return ret;
1203 }
1204
1205 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1206                        struct extent_io_tree *dirty_pages)
1207 {
1208         bool errors = false;
1209         int err;
1210
1211         err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1212         if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1213                 errors = true;
1214
1215         if (errors && !err)
1216                 err = -EIO;
1217         return err;
1218 }
1219
1220 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1221 {
1222         struct btrfs_fs_info *fs_info = log_root->fs_info;
1223         struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1224         bool errors = false;
1225         int err;
1226
1227         ASSERT(btrfs_root_id(log_root) == BTRFS_TREE_LOG_OBJECTID);
1228
1229         err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1230         if ((mark & EXTENT_DIRTY) &&
1231             test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1232                 errors = true;
1233
1234         if ((mark & EXTENT_NEW) &&
1235             test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1236                 errors = true;
1237
1238         if (errors && !err)
1239                 err = -EIO;
1240         return err;
1241 }
1242
1243 /*
1244  * When btree blocks are allocated the corresponding extents are marked dirty.
1245  * This function ensures such extents are persisted on disk for transaction or
1246  * log commit.
1247  *
1248  * @trans: transaction whose dirty pages we'd like to write
1249  */
1250 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1251 {
1252         int ret;
1253         int ret2;
1254         struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1255         struct btrfs_fs_info *fs_info = trans->fs_info;
1256         struct blk_plug plug;
1257
1258         blk_start_plug(&plug);
1259         ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1260         blk_finish_plug(&plug);
1261         ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1262
1263         extent_io_tree_release(&trans->transaction->dirty_pages);
1264
1265         if (ret)
1266                 return ret;
1267         else if (ret2)
1268                 return ret2;
1269         else
1270                 return 0;
1271 }
1272
1273 /*
1274  * this is used to update the root pointer in the tree of tree roots.
1275  *
1276  * But, in the case of the extent allocation tree, updating the root
1277  * pointer may allocate blocks which may change the root of the extent
1278  * allocation tree.
1279  *
1280  * So, this loops and repeats and makes sure the cowonly root didn't
1281  * change while the root pointer was being updated in the metadata.
1282  */
1283 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1284                                struct btrfs_root *root)
1285 {
1286         int ret;
1287         u64 old_root_bytenr;
1288         u64 old_root_used;
1289         struct btrfs_fs_info *fs_info = root->fs_info;
1290         struct btrfs_root *tree_root = fs_info->tree_root;
1291
1292         old_root_used = btrfs_root_used(&root->root_item);
1293
1294         while (1) {
1295                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1296                 if (old_root_bytenr == root->node->start &&
1297                     old_root_used == btrfs_root_used(&root->root_item))
1298                         break;
1299
1300                 btrfs_set_root_node(&root->root_item, root->node);
1301                 ret = btrfs_update_root(trans, tree_root,
1302                                         &root->root_key,
1303                                         &root->root_item);
1304                 if (ret)
1305                         return ret;
1306
1307                 old_root_used = btrfs_root_used(&root->root_item);
1308         }
1309
1310         return 0;
1311 }
1312
1313 /*
1314  * update all the cowonly tree roots on disk
1315  *
1316  * The error handling in this function may not be obvious. Any of the
1317  * failures will cause the file system to go offline. We still need
1318  * to clean up the delayed refs.
1319  */
1320 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1321 {
1322         struct btrfs_fs_info *fs_info = trans->fs_info;
1323         struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1324         struct list_head *io_bgs = &trans->transaction->io_bgs;
1325         struct list_head *next;
1326         struct extent_buffer *eb;
1327         int ret;
1328
1329         /*
1330          * At this point no one can be using this transaction to modify any tree
1331          * and no one can start another transaction to modify any tree either.
1332          */
1333         ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1334
1335         eb = btrfs_lock_root_node(fs_info->tree_root);
1336         ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1337                               0, &eb, BTRFS_NESTING_COW);
1338         btrfs_tree_unlock(eb);
1339         free_extent_buffer(eb);
1340
1341         if (ret)
1342                 return ret;
1343
1344         ret = btrfs_run_dev_stats(trans);
1345         if (ret)
1346                 return ret;
1347         ret = btrfs_run_dev_replace(trans);
1348         if (ret)
1349                 return ret;
1350         ret = btrfs_run_qgroups(trans);
1351         if (ret)
1352                 return ret;
1353
1354         ret = btrfs_setup_space_cache(trans);
1355         if (ret)
1356                 return ret;
1357
1358 again:
1359         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1360                 struct btrfs_root *root;
1361                 next = fs_info->dirty_cowonly_roots.next;
1362                 list_del_init(next);
1363                 root = list_entry(next, struct btrfs_root, dirty_list);
1364                 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1365
1366                 list_add_tail(&root->dirty_list,
1367                               &trans->transaction->switch_commits);
1368                 ret = update_cowonly_root(trans, root);
1369                 if (ret)
1370                         return ret;
1371         }
1372
1373         /* Now flush any delayed refs generated by updating all of the roots */
1374         ret = btrfs_run_delayed_refs(trans, U64_MAX);
1375         if (ret)
1376                 return ret;
1377
1378         while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1379                 ret = btrfs_write_dirty_block_groups(trans);
1380                 if (ret)
1381                         return ret;
1382
1383                 /*
1384                  * We're writing the dirty block groups, which could generate
1385                  * delayed refs, which could generate more dirty block groups,
1386                  * so we want to keep this flushing in this loop to make sure
1387                  * everything gets run.
1388                  */
1389                 ret = btrfs_run_delayed_refs(trans, U64_MAX);
1390                 if (ret)
1391                         return ret;
1392         }
1393
1394         if (!list_empty(&fs_info->dirty_cowonly_roots))
1395                 goto again;
1396
1397         /* Update dev-replace pointer once everything is committed */
1398         fs_info->dev_replace.committed_cursor_left =
1399                 fs_info->dev_replace.cursor_left_last_write_of_item;
1400
1401         return 0;
1402 }
1403
1404 /*
1405  * If we had a pending drop we need to see if there are any others left in our
1406  * dead roots list, and if not clear our bit and wake any waiters.
1407  */
1408 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1409 {
1410         /*
1411          * We put the drop in progress roots at the front of the list, so if the
1412          * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1413          * up.
1414          */
1415         spin_lock(&fs_info->trans_lock);
1416         if (!list_empty(&fs_info->dead_roots)) {
1417                 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1418                                                            struct btrfs_root,
1419                                                            root_list);
1420                 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1421                         spin_unlock(&fs_info->trans_lock);
1422                         return;
1423                 }
1424         }
1425         spin_unlock(&fs_info->trans_lock);
1426
1427         btrfs_wake_unfinished_drop(fs_info);
1428 }
1429
1430 /*
1431  * dead roots are old snapshots that need to be deleted.  This allocates
1432  * a dirty root struct and adds it into the list of dead roots that need to
1433  * be deleted
1434  */
1435 void btrfs_add_dead_root(struct btrfs_root *root)
1436 {
1437         struct btrfs_fs_info *fs_info = root->fs_info;
1438
1439         spin_lock(&fs_info->trans_lock);
1440         if (list_empty(&root->root_list)) {
1441                 btrfs_grab_root(root);
1442
1443                 /* We want to process the partially complete drops first. */
1444                 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1445                         list_add(&root->root_list, &fs_info->dead_roots);
1446                 else
1447                         list_add_tail(&root->root_list, &fs_info->dead_roots);
1448         }
1449         spin_unlock(&fs_info->trans_lock);
1450 }
1451
1452 /*
1453  * Update each subvolume root and its relocation root, if it exists, in the tree
1454  * of tree roots. Also free log roots if they exist.
1455  */
1456 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1457 {
1458         struct btrfs_fs_info *fs_info = trans->fs_info;
1459         struct btrfs_root *gang[8];
1460         int i;
1461         int ret;
1462
1463         /*
1464          * At this point no one can be using this transaction to modify any tree
1465          * and no one can start another transaction to modify any tree either.
1466          */
1467         ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1468
1469         spin_lock(&fs_info->fs_roots_radix_lock);
1470         while (1) {
1471                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1472                                                  (void **)gang, 0,
1473                                                  ARRAY_SIZE(gang),
1474                                                  BTRFS_ROOT_TRANS_TAG);
1475                 if (ret == 0)
1476                         break;
1477                 for (i = 0; i < ret; i++) {
1478                         struct btrfs_root *root = gang[i];
1479                         int ret2;
1480
1481                         /*
1482                          * At this point we can neither have tasks logging inodes
1483                          * from a root nor trying to commit a log tree.
1484                          */
1485                         ASSERT(atomic_read(&root->log_writers) == 0);
1486                         ASSERT(atomic_read(&root->log_commit[0]) == 0);
1487                         ASSERT(atomic_read(&root->log_commit[1]) == 0);
1488
1489                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
1490                                         (unsigned long)btrfs_root_id(root),
1491                                         BTRFS_ROOT_TRANS_TAG);
1492                         btrfs_qgroup_free_meta_all_pertrans(root);
1493                         spin_unlock(&fs_info->fs_roots_radix_lock);
1494
1495                         btrfs_free_log(trans, root);
1496                         ret2 = btrfs_update_reloc_root(trans, root);
1497                         if (ret2)
1498                                 return ret2;
1499
1500                         /* see comments in should_cow_block() */
1501                         clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1502                         smp_mb__after_atomic();
1503
1504                         if (root->commit_root != root->node) {
1505                                 list_add_tail(&root->dirty_list,
1506                                         &trans->transaction->switch_commits);
1507                                 btrfs_set_root_node(&root->root_item,
1508                                                     root->node);
1509                         }
1510
1511                         ret2 = btrfs_update_root(trans, fs_info->tree_root,
1512                                                 &root->root_key,
1513                                                 &root->root_item);
1514                         if (ret2)
1515                                 return ret2;
1516                         spin_lock(&fs_info->fs_roots_radix_lock);
1517                 }
1518         }
1519         spin_unlock(&fs_info->fs_roots_radix_lock);
1520         return 0;
1521 }
1522
1523 /*
1524  * Do all special snapshot related qgroup dirty hack.
1525  *
1526  * Will do all needed qgroup inherit and dirty hack like switch commit
1527  * roots inside one transaction and write all btree into disk, to make
1528  * qgroup works.
1529  */
1530 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1531                                    struct btrfs_root *src,
1532                                    struct btrfs_root *parent,
1533                                    struct btrfs_qgroup_inherit *inherit,
1534                                    u64 dst_objectid)
1535 {
1536         struct btrfs_fs_info *fs_info = src->fs_info;
1537         int ret;
1538
1539         /*
1540          * Save some performance in the case that qgroups are not enabled. If
1541          * this check races with the ioctl, rescan will kick in anyway.
1542          */
1543         if (!btrfs_qgroup_full_accounting(fs_info))
1544                 return 0;
1545
1546         /*
1547          * Ensure dirty @src will be committed.  Or, after coming
1548          * commit_fs_roots() and switch_commit_roots(), any dirty but not
1549          * recorded root will never be updated again, causing an outdated root
1550          * item.
1551          */
1552         ret = record_root_in_trans(trans, src, 1);
1553         if (ret)
1554                 return ret;
1555
1556         /*
1557          * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1558          * src root, so we must run the delayed refs here.
1559          *
1560          * However this isn't particularly fool proof, because there's no
1561          * synchronization keeping us from changing the tree after this point
1562          * before we do the qgroup_inherit, or even from making changes while
1563          * we're doing the qgroup_inherit.  But that's a problem for the future,
1564          * for now flush the delayed refs to narrow the race window where the
1565          * qgroup counters could end up wrong.
1566          */
1567         ret = btrfs_run_delayed_refs(trans, U64_MAX);
1568         if (ret) {
1569                 btrfs_abort_transaction(trans, ret);
1570                 return ret;
1571         }
1572
1573         ret = commit_fs_roots(trans);
1574         if (ret)
1575                 goto out;
1576         ret = btrfs_qgroup_account_extents(trans);
1577         if (ret < 0)
1578                 goto out;
1579
1580         /* Now qgroup are all updated, we can inherit it to new qgroups */
1581         ret = btrfs_qgroup_inherit(trans, btrfs_root_id(src), dst_objectid,
1582                                    btrfs_root_id(parent), inherit);
1583         if (ret < 0)
1584                 goto out;
1585
1586         /*
1587          * Now we do a simplified commit transaction, which will:
1588          * 1) commit all subvolume and extent tree
1589          *    To ensure all subvolume and extent tree have a valid
1590          *    commit_root to accounting later insert_dir_item()
1591          * 2) write all btree blocks onto disk
1592          *    This is to make sure later btree modification will be cowed
1593          *    Or commit_root can be populated and cause wrong qgroup numbers
1594          * In this simplified commit, we don't really care about other trees
1595          * like chunk and root tree, as they won't affect qgroup.
1596          * And we don't write super to avoid half committed status.
1597          */
1598         ret = commit_cowonly_roots(trans);
1599         if (ret)
1600                 goto out;
1601         switch_commit_roots(trans);
1602         ret = btrfs_write_and_wait_transaction(trans);
1603         if (ret)
1604                 btrfs_handle_fs_error(fs_info, ret,
1605                         "Error while writing out transaction for qgroup");
1606
1607 out:
1608         /*
1609          * Force parent root to be updated, as we recorded it before so its
1610          * last_trans == cur_transid.
1611          * Or it won't be committed again onto disk after later
1612          * insert_dir_item()
1613          */
1614         if (!ret)
1615                 ret = record_root_in_trans(trans, parent, 1);
1616         return ret;
1617 }
1618
1619 /*
1620  * new snapshots need to be created at a very specific time in the
1621  * transaction commit.  This does the actual creation.
1622  *
1623  * Note:
1624  * If the error which may affect the commitment of the current transaction
1625  * happens, we should return the error number. If the error which just affect
1626  * the creation of the pending snapshots, just return 0.
1627  */
1628 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1629                                    struct btrfs_pending_snapshot *pending)
1630 {
1631
1632         struct btrfs_fs_info *fs_info = trans->fs_info;
1633         struct btrfs_key key;
1634         struct btrfs_root_item *new_root_item;
1635         struct btrfs_root *tree_root = fs_info->tree_root;
1636         struct btrfs_root *root = pending->root;
1637         struct btrfs_root *parent_root;
1638         struct btrfs_block_rsv *rsv;
1639         struct inode *parent_inode = &pending->dir->vfs_inode;
1640         struct btrfs_path *path;
1641         struct btrfs_dir_item *dir_item;
1642         struct extent_buffer *tmp;
1643         struct extent_buffer *old;
1644         struct timespec64 cur_time;
1645         int ret = 0;
1646         u64 to_reserve = 0;
1647         u64 index = 0;
1648         u64 objectid;
1649         u64 root_flags;
1650         unsigned int nofs_flags;
1651         struct fscrypt_name fname;
1652
1653         ASSERT(pending->path);
1654         path = pending->path;
1655
1656         ASSERT(pending->root_item);
1657         new_root_item = pending->root_item;
1658
1659         /*
1660          * We're inside a transaction and must make sure that any potential
1661          * allocations with GFP_KERNEL in fscrypt won't recurse back to
1662          * filesystem.
1663          */
1664         nofs_flags = memalloc_nofs_save();
1665         pending->error = fscrypt_setup_filename(parent_inode,
1666                                                 &pending->dentry->d_name, 0,
1667                                                 &fname);
1668         memalloc_nofs_restore(nofs_flags);
1669         if (pending->error)
1670                 goto free_pending;
1671
1672         pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1673         if (pending->error)
1674                 goto free_fname;
1675
1676         /*
1677          * Make qgroup to skip current new snapshot's qgroupid, as it is
1678          * accounted by later btrfs_qgroup_inherit().
1679          */
1680         btrfs_set_skip_qgroup(trans, objectid);
1681
1682         btrfs_reloc_pre_snapshot(pending, &to_reserve);
1683
1684         if (to_reserve > 0) {
1685                 pending->error = btrfs_block_rsv_add(fs_info,
1686                                                      &pending->block_rsv,
1687                                                      to_reserve,
1688                                                      BTRFS_RESERVE_NO_FLUSH);
1689                 if (pending->error)
1690                         goto clear_skip_qgroup;
1691         }
1692
1693         key.objectid = objectid;
1694         key.offset = (u64)-1;
1695         key.type = BTRFS_ROOT_ITEM_KEY;
1696
1697         rsv = trans->block_rsv;
1698         trans->block_rsv = &pending->block_rsv;
1699         trans->bytes_reserved = trans->block_rsv->reserved;
1700         trace_btrfs_space_reservation(fs_info, "transaction",
1701                                       trans->transid,
1702                                       trans->bytes_reserved, 1);
1703         parent_root = BTRFS_I(parent_inode)->root;
1704         ret = record_root_in_trans(trans, parent_root, 0);
1705         if (ret)
1706                 goto fail;
1707         cur_time = current_time(parent_inode);
1708
1709         /*
1710          * insert the directory item
1711          */
1712         ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1713         if (ret) {
1714                 btrfs_abort_transaction(trans, ret);
1715                 goto fail;
1716         }
1717
1718         /* check if there is a file/dir which has the same name. */
1719         dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1720                                          btrfs_ino(BTRFS_I(parent_inode)),
1721                                          &fname.disk_name, 0);
1722         if (dir_item != NULL && !IS_ERR(dir_item)) {
1723                 pending->error = -EEXIST;
1724                 goto dir_item_existed;
1725         } else if (IS_ERR(dir_item)) {
1726                 ret = PTR_ERR(dir_item);
1727                 btrfs_abort_transaction(trans, ret);
1728                 goto fail;
1729         }
1730         btrfs_release_path(path);
1731
1732         ret = btrfs_create_qgroup(trans, objectid);
1733         if (ret && ret != -EEXIST) {
1734                 btrfs_abort_transaction(trans, ret);
1735                 goto fail;
1736         }
1737
1738         /*
1739          * pull in the delayed directory update
1740          * and the delayed inode item
1741          * otherwise we corrupt the FS during
1742          * snapshot
1743          */
1744         ret = btrfs_run_delayed_items(trans);
1745         if (ret) {      /* Transaction aborted */
1746                 btrfs_abort_transaction(trans, ret);
1747                 goto fail;
1748         }
1749
1750         ret = record_root_in_trans(trans, root, 0);
1751         if (ret) {
1752                 btrfs_abort_transaction(trans, ret);
1753                 goto fail;
1754         }
1755         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1756         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1757         btrfs_check_and_init_root_item(new_root_item);
1758
1759         root_flags = btrfs_root_flags(new_root_item);
1760         if (pending->readonly)
1761                 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1762         else
1763                 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1764         btrfs_set_root_flags(new_root_item, root_flags);
1765
1766         btrfs_set_root_generation_v2(new_root_item,
1767                         trans->transid);
1768         generate_random_guid(new_root_item->uuid);
1769         memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1770                         BTRFS_UUID_SIZE);
1771         if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1772                 memset(new_root_item->received_uuid, 0,
1773                        sizeof(new_root_item->received_uuid));
1774                 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1775                 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1776                 btrfs_set_root_stransid(new_root_item, 0);
1777                 btrfs_set_root_rtransid(new_root_item, 0);
1778         }
1779         btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1780         btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1781         btrfs_set_root_otransid(new_root_item, trans->transid);
1782
1783         old = btrfs_lock_root_node(root);
1784         ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1785                               BTRFS_NESTING_COW);
1786         if (ret) {
1787                 btrfs_tree_unlock(old);
1788                 free_extent_buffer(old);
1789                 btrfs_abort_transaction(trans, ret);
1790                 goto fail;
1791         }
1792
1793         ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1794         /* clean up in any case */
1795         btrfs_tree_unlock(old);
1796         free_extent_buffer(old);
1797         if (ret) {
1798                 btrfs_abort_transaction(trans, ret);
1799                 goto fail;
1800         }
1801         /* see comments in should_cow_block() */
1802         set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1803         smp_wmb();
1804
1805         btrfs_set_root_node(new_root_item, tmp);
1806         /* record when the snapshot was created in key.offset */
1807         key.offset = trans->transid;
1808         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1809         btrfs_tree_unlock(tmp);
1810         free_extent_buffer(tmp);
1811         if (ret) {
1812                 btrfs_abort_transaction(trans, ret);
1813                 goto fail;
1814         }
1815
1816         /*
1817          * insert root back/forward references
1818          */
1819         ret = btrfs_add_root_ref(trans, objectid,
1820                                  btrfs_root_id(parent_root),
1821                                  btrfs_ino(BTRFS_I(parent_inode)), index,
1822                                  &fname.disk_name);
1823         if (ret) {
1824                 btrfs_abort_transaction(trans, ret);
1825                 goto fail;
1826         }
1827
1828         key.offset = (u64)-1;
1829         pending->snap = btrfs_get_new_fs_root(fs_info, objectid, &pending->anon_dev);
1830         if (IS_ERR(pending->snap)) {
1831                 ret = PTR_ERR(pending->snap);
1832                 pending->snap = NULL;
1833                 btrfs_abort_transaction(trans, ret);
1834                 goto fail;
1835         }
1836
1837         ret = btrfs_reloc_post_snapshot(trans, pending);
1838         if (ret) {
1839                 btrfs_abort_transaction(trans, ret);
1840                 goto fail;
1841         }
1842
1843         /*
1844          * Do special qgroup accounting for snapshot, as we do some qgroup
1845          * snapshot hack to do fast snapshot.
1846          * To co-operate with that hack, we do hack again.
1847          * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1848          */
1849         if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_FULL)
1850                 ret = qgroup_account_snapshot(trans, root, parent_root,
1851                                               pending->inherit, objectid);
1852         else if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE)
1853                 ret = btrfs_qgroup_inherit(trans, btrfs_root_id(root), objectid,
1854                                            btrfs_root_id(parent_root), pending->inherit);
1855         if (ret < 0)
1856                 goto fail;
1857
1858         ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1859                                     BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
1860                                     index);
1861         if (ret) {
1862                 btrfs_abort_transaction(trans, ret);
1863                 goto fail;
1864         }
1865
1866         btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1867                                                   fname.disk_name.len * 2);
1868         inode_set_mtime_to_ts(parent_inode,
1869                               inode_set_ctime_current(parent_inode));
1870         ret = btrfs_update_inode_fallback(trans, BTRFS_I(parent_inode));
1871         if (ret) {
1872                 btrfs_abort_transaction(trans, ret);
1873                 goto fail;
1874         }
1875         ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1876                                   BTRFS_UUID_KEY_SUBVOL,
1877                                   objectid);
1878         if (ret) {
1879                 btrfs_abort_transaction(trans, ret);
1880                 goto fail;
1881         }
1882         if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1883                 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1884                                           BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1885                                           objectid);
1886                 if (ret && ret != -EEXIST) {
1887                         btrfs_abort_transaction(trans, ret);
1888                         goto fail;
1889                 }
1890         }
1891
1892 fail:
1893         pending->error = ret;
1894 dir_item_existed:
1895         trans->block_rsv = rsv;
1896         trans->bytes_reserved = 0;
1897 clear_skip_qgroup:
1898         btrfs_clear_skip_qgroup(trans);
1899 free_fname:
1900         fscrypt_free_filename(&fname);
1901 free_pending:
1902         kfree(new_root_item);
1903         pending->root_item = NULL;
1904         btrfs_free_path(path);
1905         pending->path = NULL;
1906
1907         return ret;
1908 }
1909
1910 /*
1911  * create all the snapshots we've scheduled for creation
1912  */
1913 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1914 {
1915         struct btrfs_pending_snapshot *pending, *next;
1916         struct list_head *head = &trans->transaction->pending_snapshots;
1917         int ret = 0;
1918
1919         list_for_each_entry_safe(pending, next, head, list) {
1920                 list_del(&pending->list);
1921                 ret = create_pending_snapshot(trans, pending);
1922                 if (ret)
1923                         break;
1924         }
1925         return ret;
1926 }
1927
1928 static void update_super_roots(struct btrfs_fs_info *fs_info)
1929 {
1930         struct btrfs_root_item *root_item;
1931         struct btrfs_super_block *super;
1932
1933         super = fs_info->super_copy;
1934
1935         root_item = &fs_info->chunk_root->root_item;
1936         super->chunk_root = root_item->bytenr;
1937         super->chunk_root_generation = root_item->generation;
1938         super->chunk_root_level = root_item->level;
1939
1940         root_item = &fs_info->tree_root->root_item;
1941         super->root = root_item->bytenr;
1942         super->generation = root_item->generation;
1943         super->root_level = root_item->level;
1944         if (btrfs_test_opt(fs_info, SPACE_CACHE))
1945                 super->cache_generation = root_item->generation;
1946         else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1947                 super->cache_generation = 0;
1948         if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1949                 super->uuid_tree_generation = root_item->generation;
1950 }
1951
1952 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1953 {
1954         struct btrfs_transaction *trans;
1955         int ret = 0;
1956
1957         spin_lock(&info->trans_lock);
1958         trans = info->running_transaction;
1959         if (trans)
1960                 ret = is_transaction_blocked(trans);
1961         spin_unlock(&info->trans_lock);
1962         return ret;
1963 }
1964
1965 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1966 {
1967         struct btrfs_fs_info *fs_info = trans->fs_info;
1968         struct btrfs_transaction *cur_trans;
1969
1970         /* Kick the transaction kthread. */
1971         set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1972         wake_up_process(fs_info->transaction_kthread);
1973
1974         /* take transaction reference */
1975         cur_trans = trans->transaction;
1976         refcount_inc(&cur_trans->use_count);
1977
1978         btrfs_end_transaction(trans);
1979
1980         /*
1981          * Wait for the current transaction commit to start and block
1982          * subsequent transaction joins
1983          */
1984         btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
1985         wait_event(fs_info->transaction_blocked_wait,
1986                    cur_trans->state >= TRANS_STATE_COMMIT_START ||
1987                    TRANS_ABORTED(cur_trans));
1988         btrfs_put_transaction(cur_trans);
1989 }
1990
1991 /*
1992  * If there is a running transaction commit it or if it's already committing,
1993  * wait for its commit to complete. Does not start and commit a new transaction
1994  * if there isn't any running.
1995  */
1996 int btrfs_commit_current_transaction(struct btrfs_root *root)
1997 {
1998         struct btrfs_trans_handle *trans;
1999
2000         trans = btrfs_attach_transaction_barrier(root);
2001         if (IS_ERR(trans)) {
2002                 int ret = PTR_ERR(trans);
2003
2004                 return (ret == -ENOENT) ? 0 : ret;
2005         }
2006
2007         return btrfs_commit_transaction(trans);
2008 }
2009
2010 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
2011 {
2012         struct btrfs_fs_info *fs_info = trans->fs_info;
2013         struct btrfs_transaction *cur_trans = trans->transaction;
2014
2015         WARN_ON(refcount_read(&trans->use_count) > 1);
2016
2017         btrfs_abort_transaction(trans, err);
2018
2019         spin_lock(&fs_info->trans_lock);
2020
2021         /*
2022          * If the transaction is removed from the list, it means this
2023          * transaction has been committed successfully, so it is impossible
2024          * to call the cleanup function.
2025          */
2026         BUG_ON(list_empty(&cur_trans->list));
2027
2028         if (cur_trans == fs_info->running_transaction) {
2029                 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2030                 spin_unlock(&fs_info->trans_lock);
2031
2032                 /*
2033                  * The thread has already released the lockdep map as reader
2034                  * already in btrfs_commit_transaction().
2035                  */
2036                 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2037                 wait_event(cur_trans->writer_wait,
2038                            atomic_read(&cur_trans->num_writers) == 1);
2039
2040                 spin_lock(&fs_info->trans_lock);
2041         }
2042
2043         /*
2044          * Now that we know no one else is still using the transaction we can
2045          * remove the transaction from the list of transactions. This avoids
2046          * the transaction kthread from cleaning up the transaction while some
2047          * other task is still using it, which could result in a use-after-free
2048          * on things like log trees, as it forces the transaction kthread to
2049          * wait for this transaction to be cleaned up by us.
2050          */
2051         list_del_init(&cur_trans->list);
2052
2053         spin_unlock(&fs_info->trans_lock);
2054
2055         btrfs_cleanup_one_transaction(trans->transaction, fs_info);
2056
2057         spin_lock(&fs_info->trans_lock);
2058         if (cur_trans == fs_info->running_transaction)
2059                 fs_info->running_transaction = NULL;
2060         spin_unlock(&fs_info->trans_lock);
2061
2062         if (trans->type & __TRANS_FREEZABLE)
2063                 sb_end_intwrite(fs_info->sb);
2064         btrfs_put_transaction(cur_trans);
2065         btrfs_put_transaction(cur_trans);
2066
2067         trace_btrfs_transaction_commit(fs_info);
2068
2069         if (current->journal_info == trans)
2070                 current->journal_info = NULL;
2071
2072         /*
2073          * If relocation is running, we can't cancel scrub because that will
2074          * result in a deadlock. Before relocating a block group, relocation
2075          * pauses scrub, then starts and commits a transaction before unpausing
2076          * scrub. If the transaction commit is being done by the relocation
2077          * task or triggered by another task and the relocation task is waiting
2078          * for the commit, and we end up here due to an error in the commit
2079          * path, then calling btrfs_scrub_cancel() will deadlock, as we are
2080          * asking for scrub to stop while having it asked to be paused higher
2081          * above in relocation code.
2082          */
2083         if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
2084                 btrfs_scrub_cancel(fs_info);
2085
2086         kmem_cache_free(btrfs_trans_handle_cachep, trans);
2087 }
2088
2089 /*
2090  * Release reserved delayed ref space of all pending block groups of the
2091  * transaction and remove them from the list
2092  */
2093 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2094 {
2095        struct btrfs_fs_info *fs_info = trans->fs_info;
2096        struct btrfs_block_group *block_group, *tmp;
2097
2098        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2099                btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info);
2100                list_del_init(&block_group->bg_list);
2101        }
2102 }
2103
2104 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2105 {
2106         /*
2107          * We use try_to_writeback_inodes_sb() here because if we used
2108          * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2109          * Currently are holding the fs freeze lock, if we do an async flush
2110          * we'll do btrfs_join_transaction() and deadlock because we need to
2111          * wait for the fs freeze lock.  Using the direct flushing we benefit
2112          * from already being in a transaction and our join_transaction doesn't
2113          * have to re-take the fs freeze lock.
2114          *
2115          * Note that try_to_writeback_inodes_sb() will only trigger writeback
2116          * if it can read lock sb->s_umount. It will always be able to lock it,
2117          * except when the filesystem is being unmounted or being frozen, but in
2118          * those cases sync_filesystem() is called, which results in calling
2119          * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2120          * Note that we don't call writeback_inodes_sb() directly, because it
2121          * will emit a warning if sb->s_umount is not locked.
2122          */
2123         if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2124                 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2125         return 0;
2126 }
2127
2128 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2129 {
2130         if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2131                 btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL);
2132 }
2133
2134 /*
2135  * Add a pending snapshot associated with the given transaction handle to the
2136  * respective handle. This must be called after the transaction commit started
2137  * and while holding fs_info->trans_lock.
2138  * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2139  * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2140  * returns an error.
2141  */
2142 static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2143 {
2144         struct btrfs_transaction *cur_trans = trans->transaction;
2145
2146         if (!trans->pending_snapshot)
2147                 return;
2148
2149         lockdep_assert_held(&trans->fs_info->trans_lock);
2150         ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_PREP);
2151
2152         list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2153 }
2154
2155 static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2156 {
2157         fs_info->commit_stats.commit_count++;
2158         fs_info->commit_stats.last_commit_dur = interval;
2159         fs_info->commit_stats.max_commit_dur =
2160                         max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2161         fs_info->commit_stats.total_commit_dur += interval;
2162 }
2163
2164 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2165 {
2166         struct btrfs_fs_info *fs_info = trans->fs_info;
2167         struct btrfs_transaction *cur_trans = trans->transaction;
2168         struct btrfs_transaction *prev_trans = NULL;
2169         int ret;
2170         ktime_t start_time;
2171         ktime_t interval;
2172
2173         ASSERT(refcount_read(&trans->use_count) == 1);
2174         btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2175
2176         clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
2177
2178         /* Stop the commit early if ->aborted is set */
2179         if (TRANS_ABORTED(cur_trans)) {
2180                 ret = cur_trans->aborted;
2181                 goto lockdep_trans_commit_start_release;
2182         }
2183
2184         btrfs_trans_release_metadata(trans);
2185         trans->block_rsv = NULL;
2186
2187         /*
2188          * We only want one transaction commit doing the flushing so we do not
2189          * waste a bunch of time on lock contention on the extent root node.
2190          */
2191         if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2192                               &cur_trans->delayed_refs.flags)) {
2193                 /*
2194                  * Make a pass through all the delayed refs we have so far.
2195                  * Any running threads may add more while we are here.
2196                  */
2197                 ret = btrfs_run_delayed_refs(trans, 0);
2198                 if (ret)
2199                         goto lockdep_trans_commit_start_release;
2200         }
2201
2202         btrfs_create_pending_block_groups(trans);
2203
2204         if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2205                 int run_it = 0;
2206
2207                 /* this mutex is also taken before trying to set
2208                  * block groups readonly.  We need to make sure
2209                  * that nobody has set a block group readonly
2210                  * after a extents from that block group have been
2211                  * allocated for cache files.  btrfs_set_block_group_ro
2212                  * will wait for the transaction to commit if it
2213                  * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2214                  *
2215                  * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2216                  * only one process starts all the block group IO.  It wouldn't
2217                  * hurt to have more than one go through, but there's no
2218                  * real advantage to it either.
2219                  */
2220                 mutex_lock(&fs_info->ro_block_group_mutex);
2221                 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2222                                       &cur_trans->flags))
2223                         run_it = 1;
2224                 mutex_unlock(&fs_info->ro_block_group_mutex);
2225
2226                 if (run_it) {
2227                         ret = btrfs_start_dirty_block_groups(trans);
2228                         if (ret)
2229                                 goto lockdep_trans_commit_start_release;
2230                 }
2231         }
2232
2233         spin_lock(&fs_info->trans_lock);
2234         if (cur_trans->state >= TRANS_STATE_COMMIT_PREP) {
2235                 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2236
2237                 add_pending_snapshot(trans);
2238
2239                 spin_unlock(&fs_info->trans_lock);
2240                 refcount_inc(&cur_trans->use_count);
2241
2242                 if (trans->in_fsync)
2243                         want_state = TRANS_STATE_SUPER_COMMITTED;
2244
2245                 btrfs_trans_state_lockdep_release(fs_info,
2246                                                   BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2247                 ret = btrfs_end_transaction(trans);
2248                 wait_for_commit(cur_trans, want_state);
2249
2250                 if (TRANS_ABORTED(cur_trans))
2251                         ret = cur_trans->aborted;
2252
2253                 btrfs_put_transaction(cur_trans);
2254
2255                 return ret;
2256         }
2257
2258         cur_trans->state = TRANS_STATE_COMMIT_PREP;
2259         wake_up(&fs_info->transaction_blocked_wait);
2260         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2261
2262         if (cur_trans->list.prev != &fs_info->trans_list) {
2263                 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2264
2265                 if (trans->in_fsync)
2266                         want_state = TRANS_STATE_SUPER_COMMITTED;
2267
2268                 prev_trans = list_entry(cur_trans->list.prev,
2269                                         struct btrfs_transaction, list);
2270                 if (prev_trans->state < want_state) {
2271                         refcount_inc(&prev_trans->use_count);
2272                         spin_unlock(&fs_info->trans_lock);
2273
2274                         wait_for_commit(prev_trans, want_state);
2275
2276                         ret = READ_ONCE(prev_trans->aborted);
2277
2278                         btrfs_put_transaction(prev_trans);
2279                         if (ret)
2280                                 goto lockdep_release;
2281                         spin_lock(&fs_info->trans_lock);
2282                 }
2283         } else {
2284                 /*
2285                  * The previous transaction was aborted and was already removed
2286                  * from the list of transactions at fs_info->trans_list. So we
2287                  * abort to prevent writing a new superblock that reflects a
2288                  * corrupt state (pointing to trees with unwritten nodes/leafs).
2289                  */
2290                 if (BTRFS_FS_ERROR(fs_info)) {
2291                         spin_unlock(&fs_info->trans_lock);
2292                         ret = -EROFS;
2293                         goto lockdep_release;
2294                 }
2295         }
2296
2297         cur_trans->state = TRANS_STATE_COMMIT_START;
2298         wake_up(&fs_info->transaction_blocked_wait);
2299         spin_unlock(&fs_info->trans_lock);
2300
2301         /*
2302          * Get the time spent on the work done by the commit thread and not
2303          * the time spent waiting on a previous commit
2304          */
2305         start_time = ktime_get_ns();
2306
2307         extwriter_counter_dec(cur_trans, trans->type);
2308
2309         ret = btrfs_start_delalloc_flush(fs_info);
2310         if (ret)
2311                 goto lockdep_release;
2312
2313         ret = btrfs_run_delayed_items(trans);
2314         if (ret)
2315                 goto lockdep_release;
2316
2317         /*
2318          * The thread has started/joined the transaction thus it holds the
2319          * lockdep map as a reader. It has to release it before acquiring the
2320          * lockdep map as a writer.
2321          */
2322         btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2323         btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
2324         wait_event(cur_trans->writer_wait,
2325                    extwriter_counter_read(cur_trans) == 0);
2326
2327         /* some pending stuffs might be added after the previous flush. */
2328         ret = btrfs_run_delayed_items(trans);
2329         if (ret) {
2330                 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2331                 goto cleanup_transaction;
2332         }
2333
2334         btrfs_wait_delalloc_flush(fs_info);
2335
2336         /*
2337          * Wait for all ordered extents started by a fast fsync that joined this
2338          * transaction. Otherwise if this transaction commits before the ordered
2339          * extents complete we lose logged data after a power failure.
2340          */
2341         btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
2342         wait_event(cur_trans->pending_wait,
2343                    atomic_read(&cur_trans->pending_ordered) == 0);
2344
2345         btrfs_scrub_pause(fs_info);
2346         /*
2347          * Ok now we need to make sure to block out any other joins while we
2348          * commit the transaction.  We could have started a join before setting
2349          * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2350          */
2351         spin_lock(&fs_info->trans_lock);
2352         add_pending_snapshot(trans);
2353         cur_trans->state = TRANS_STATE_COMMIT_DOING;
2354         spin_unlock(&fs_info->trans_lock);
2355
2356         /*
2357          * The thread has started/joined the transaction thus it holds the
2358          * lockdep map as a reader. It has to release it before acquiring the
2359          * lockdep map as a writer.
2360          */
2361         btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2362         btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2363         wait_event(cur_trans->writer_wait,
2364                    atomic_read(&cur_trans->num_writers) == 1);
2365
2366         /*
2367          * Make lockdep happy by acquiring the state locks after
2368          * btrfs_trans_num_writers is released. If we acquired the state locks
2369          * before releasing the btrfs_trans_num_writers lock then lockdep would
2370          * complain because we did not follow the reverse order unlocking rule.
2371          */
2372         btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2373         btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2374         btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2375
2376         /*
2377          * We've started the commit, clear the flag in case we were triggered to
2378          * do an async commit but somebody else started before the transaction
2379          * kthread could do the work.
2380          */
2381         clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2382
2383         if (TRANS_ABORTED(cur_trans)) {
2384                 ret = cur_trans->aborted;
2385                 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2386                 goto scrub_continue;
2387         }
2388         /*
2389          * the reloc mutex makes sure that we stop
2390          * the balancing code from coming in and moving
2391          * extents around in the middle of the commit
2392          */
2393         mutex_lock(&fs_info->reloc_mutex);
2394
2395         /*
2396          * We needn't worry about the delayed items because we will
2397          * deal with them in create_pending_snapshot(), which is the
2398          * core function of the snapshot creation.
2399          */
2400         ret = create_pending_snapshots(trans);
2401         if (ret)
2402                 goto unlock_reloc;
2403
2404         /*
2405          * We insert the dir indexes of the snapshots and update the inode
2406          * of the snapshots' parents after the snapshot creation, so there
2407          * are some delayed items which are not dealt with. Now deal with
2408          * them.
2409          *
2410          * We needn't worry that this operation will corrupt the snapshots,
2411          * because all the tree which are snapshoted will be forced to COW
2412          * the nodes and leaves.
2413          */
2414         ret = btrfs_run_delayed_items(trans);
2415         if (ret)
2416                 goto unlock_reloc;
2417
2418         ret = btrfs_run_delayed_refs(trans, U64_MAX);
2419         if (ret)
2420                 goto unlock_reloc;
2421
2422         /*
2423          * make sure none of the code above managed to slip in a
2424          * delayed item
2425          */
2426         btrfs_assert_delayed_root_empty(fs_info);
2427
2428         WARN_ON(cur_trans != trans->transaction);
2429
2430         ret = commit_fs_roots(trans);
2431         if (ret)
2432                 goto unlock_reloc;
2433
2434         /* commit_fs_roots gets rid of all the tree log roots, it is now
2435          * safe to free the root of tree log roots
2436          */
2437         btrfs_free_log_root_tree(trans, fs_info);
2438
2439         /*
2440          * Since fs roots are all committed, we can get a quite accurate
2441          * new_roots. So let's do quota accounting.
2442          */
2443         ret = btrfs_qgroup_account_extents(trans);
2444         if (ret < 0)
2445                 goto unlock_reloc;
2446
2447         ret = commit_cowonly_roots(trans);
2448         if (ret)
2449                 goto unlock_reloc;
2450
2451         /*
2452          * The tasks which save the space cache and inode cache may also
2453          * update ->aborted, check it.
2454          */
2455         if (TRANS_ABORTED(cur_trans)) {
2456                 ret = cur_trans->aborted;
2457                 goto unlock_reloc;
2458         }
2459
2460         cur_trans = fs_info->running_transaction;
2461
2462         btrfs_set_root_node(&fs_info->tree_root->root_item,
2463                             fs_info->tree_root->node);
2464         list_add_tail(&fs_info->tree_root->dirty_list,
2465                       &cur_trans->switch_commits);
2466
2467         btrfs_set_root_node(&fs_info->chunk_root->root_item,
2468                             fs_info->chunk_root->node);
2469         list_add_tail(&fs_info->chunk_root->dirty_list,
2470                       &cur_trans->switch_commits);
2471
2472         if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2473                 btrfs_set_root_node(&fs_info->block_group_root->root_item,
2474                                     fs_info->block_group_root->node);
2475                 list_add_tail(&fs_info->block_group_root->dirty_list,
2476                               &cur_trans->switch_commits);
2477         }
2478
2479         switch_commit_roots(trans);
2480
2481         ASSERT(list_empty(&cur_trans->dirty_bgs));
2482         ASSERT(list_empty(&cur_trans->io_bgs));
2483         update_super_roots(fs_info);
2484
2485         btrfs_set_super_log_root(fs_info->super_copy, 0);
2486         btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2487         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2488                sizeof(*fs_info->super_copy));
2489
2490         btrfs_commit_device_sizes(cur_trans);
2491
2492         clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2493         clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2494
2495         btrfs_trans_release_chunk_metadata(trans);
2496
2497         /*
2498          * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2499          * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2500          * make sure that before we commit our superblock, no other task can
2501          * start a new transaction and commit a log tree before we commit our
2502          * superblock. Anyone trying to commit a log tree locks this mutex before
2503          * writing its superblock.
2504          */
2505         mutex_lock(&fs_info->tree_log_mutex);
2506
2507         spin_lock(&fs_info->trans_lock);
2508         cur_trans->state = TRANS_STATE_UNBLOCKED;
2509         fs_info->running_transaction = NULL;
2510         spin_unlock(&fs_info->trans_lock);
2511         mutex_unlock(&fs_info->reloc_mutex);
2512
2513         wake_up(&fs_info->transaction_wait);
2514         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2515
2516         /* If we have features changed, wake up the cleaner to update sysfs. */
2517         if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) &&
2518             fs_info->cleaner_kthread)
2519                 wake_up_process(fs_info->cleaner_kthread);
2520
2521         ret = btrfs_write_and_wait_transaction(trans);
2522         if (ret) {
2523                 btrfs_handle_fs_error(fs_info, ret,
2524                                       "Error while writing out transaction");
2525                 mutex_unlock(&fs_info->tree_log_mutex);
2526                 goto scrub_continue;
2527         }
2528
2529         ret = write_all_supers(fs_info, 0);
2530         /*
2531          * the super is written, we can safely allow the tree-loggers
2532          * to go about their business
2533          */
2534         mutex_unlock(&fs_info->tree_log_mutex);
2535         if (ret)
2536                 goto scrub_continue;
2537
2538         /*
2539          * We needn't acquire the lock here because there is no other task
2540          * which can change it.
2541          */
2542         cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2543         wake_up(&cur_trans->commit_wait);
2544         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2545
2546         btrfs_finish_extent_commit(trans);
2547
2548         if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2549                 btrfs_clear_space_info_full(fs_info);
2550
2551         btrfs_set_last_trans_committed(fs_info, cur_trans->transid);
2552         /*
2553          * We needn't acquire the lock here because there is no other task
2554          * which can change it.
2555          */
2556         cur_trans->state = TRANS_STATE_COMPLETED;
2557         wake_up(&cur_trans->commit_wait);
2558         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2559
2560         spin_lock(&fs_info->trans_lock);
2561         list_del_init(&cur_trans->list);
2562         spin_unlock(&fs_info->trans_lock);
2563
2564         btrfs_put_transaction(cur_trans);
2565         btrfs_put_transaction(cur_trans);
2566
2567         if (trans->type & __TRANS_FREEZABLE)
2568                 sb_end_intwrite(fs_info->sb);
2569
2570         trace_btrfs_transaction_commit(fs_info);
2571
2572         interval = ktime_get_ns() - start_time;
2573
2574         btrfs_scrub_continue(fs_info);
2575
2576         if (current->journal_info == trans)
2577                 current->journal_info = NULL;
2578
2579         kmem_cache_free(btrfs_trans_handle_cachep, trans);
2580
2581         update_commit_stats(fs_info, interval);
2582
2583         return ret;
2584
2585 unlock_reloc:
2586         mutex_unlock(&fs_info->reloc_mutex);
2587         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2588 scrub_continue:
2589         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2590         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2591         btrfs_scrub_continue(fs_info);
2592 cleanup_transaction:
2593         btrfs_trans_release_metadata(trans);
2594         btrfs_cleanup_pending_block_groups(trans);
2595         btrfs_trans_release_chunk_metadata(trans);
2596         trans->block_rsv = NULL;
2597         btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2598         if (current->journal_info == trans)
2599                 current->journal_info = NULL;
2600         cleanup_transaction(trans, ret);
2601
2602         return ret;
2603
2604 lockdep_release:
2605         btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2606         btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2607         goto cleanup_transaction;
2608
2609 lockdep_trans_commit_start_release:
2610         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2611         btrfs_end_transaction(trans);
2612         return ret;
2613 }
2614
2615 /*
2616  * return < 0 if error
2617  * 0 if there are no more dead_roots at the time of call
2618  * 1 there are more to be processed, call me again
2619  *
2620  * The return value indicates there are certainly more snapshots to delete, but
2621  * if there comes a new one during processing, it may return 0. We don't mind,
2622  * because btrfs_commit_super will poke cleaner thread and it will process it a
2623  * few seconds later.
2624  */
2625 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2626 {
2627         struct btrfs_root *root;
2628         int ret;
2629
2630         spin_lock(&fs_info->trans_lock);
2631         if (list_empty(&fs_info->dead_roots)) {
2632                 spin_unlock(&fs_info->trans_lock);
2633                 return 0;
2634         }
2635         root = list_first_entry(&fs_info->dead_roots,
2636                         struct btrfs_root, root_list);
2637         list_del_init(&root->root_list);
2638         spin_unlock(&fs_info->trans_lock);
2639
2640         btrfs_debug(fs_info, "cleaner removing %llu", btrfs_root_id(root));
2641
2642         btrfs_kill_all_delayed_nodes(root);
2643
2644         if (btrfs_header_backref_rev(root->node) <
2645                         BTRFS_MIXED_BACKREF_REV)
2646                 ret = btrfs_drop_snapshot(root, 0, 0);
2647         else
2648                 ret = btrfs_drop_snapshot(root, 1, 0);
2649
2650         btrfs_put_root(root);
2651         return (ret < 0) ? 0 : 1;
2652 }
2653
2654 /*
2655  * We only mark the transaction aborted and then set the file system read-only.
2656  * This will prevent new transactions from starting or trying to join this
2657  * one.
2658  *
2659  * This means that error recovery at the call site is limited to freeing
2660  * any local memory allocations and passing the error code up without
2661  * further cleanup. The transaction should complete as it normally would
2662  * in the call path but will return -EIO.
2663  *
2664  * We'll complete the cleanup in btrfs_end_transaction and
2665  * btrfs_commit_transaction.
2666  */
2667 void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
2668                                       const char *function,
2669                                       unsigned int line, int error, bool first_hit)
2670 {
2671         struct btrfs_fs_info *fs_info = trans->fs_info;
2672
2673         WRITE_ONCE(trans->aborted, error);
2674         WRITE_ONCE(trans->transaction->aborted, error);
2675         if (first_hit && error == -ENOSPC)
2676                 btrfs_dump_space_info_for_trans_abort(fs_info);
2677         /* Wake up anybody who may be waiting on this transaction */
2678         wake_up(&fs_info->transaction_wait);
2679         wake_up(&fs_info->transaction_blocked_wait);
2680         __btrfs_handle_fs_error(fs_info, function, line, error, NULL);
2681 }
2682
2683 int __init btrfs_transaction_init(void)
2684 {
2685         btrfs_trans_handle_cachep = KMEM_CACHE(btrfs_trans_handle, SLAB_TEMPORARY);
2686         if (!btrfs_trans_handle_cachep)
2687                 return -ENOMEM;
2688         return 0;
2689 }
2690
2691 void __cold btrfs_transaction_exit(void)
2692 {
2693         kmem_cache_destroy(btrfs_trans_handle_cachep);
2694 }