Btrfs: Rev the disk format for compression and root pointer generation fields
[linux-2.6-block.git] / fs / btrfs / transaction.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/sched.h>
21 #include <linux/writeback.h>
22 #include <linux/pagemap.h>
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "transaction.h"
26 #include "locking.h"
27 #include "ref-cache.h"
28 #include "tree-log.h"
29
30 static int total_trans = 0;
31 extern struct kmem_cache *btrfs_trans_handle_cachep;
32 extern struct kmem_cache *btrfs_transaction_cachep;
33
34 #define BTRFS_ROOT_TRANS_TAG 0
35
36 static noinline void put_transaction(struct btrfs_transaction *transaction)
37 {
38         WARN_ON(transaction->use_count == 0);
39         transaction->use_count--;
40         if (transaction->use_count == 0) {
41                 WARN_ON(total_trans == 0);
42                 total_trans--;
43                 list_del_init(&transaction->list);
44                 memset(transaction, 0, sizeof(*transaction));
45                 kmem_cache_free(btrfs_transaction_cachep, transaction);
46         }
47 }
48
49 /*
50  * either allocate a new transaction or hop into the existing one
51  */
52 static noinline int join_transaction(struct btrfs_root *root)
53 {
54         struct btrfs_transaction *cur_trans;
55         cur_trans = root->fs_info->running_transaction;
56         if (!cur_trans) {
57                 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep,
58                                              GFP_NOFS);
59                 total_trans++;
60                 BUG_ON(!cur_trans);
61                 root->fs_info->generation++;
62                 root->fs_info->last_alloc = 0;
63                 root->fs_info->last_data_alloc = 0;
64                 cur_trans->num_writers = 1;
65                 cur_trans->num_joined = 0;
66                 cur_trans->transid = root->fs_info->generation;
67                 init_waitqueue_head(&cur_trans->writer_wait);
68                 init_waitqueue_head(&cur_trans->commit_wait);
69                 cur_trans->in_commit = 0;
70                 cur_trans->blocked = 0;
71                 cur_trans->use_count = 1;
72                 cur_trans->commit_done = 0;
73                 cur_trans->start_time = get_seconds();
74                 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
75                 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
76                 extent_io_tree_init(&cur_trans->dirty_pages,
77                                      root->fs_info->btree_inode->i_mapping,
78                                      GFP_NOFS);
79                 spin_lock(&root->fs_info->new_trans_lock);
80                 root->fs_info->running_transaction = cur_trans;
81                 spin_unlock(&root->fs_info->new_trans_lock);
82         } else {
83                 cur_trans->num_writers++;
84                 cur_trans->num_joined++;
85         }
86
87         return 0;
88 }
89
90 /*
91  * this does all the record keeping required to make sure that a
92  * reference counted root is properly recorded in a given transaction.
93  * This is required to make sure the old root from before we joined the transaction
94  * is deleted when the transaction commits
95  */
96 noinline int btrfs_record_root_in_trans(struct btrfs_root *root)
97 {
98         struct btrfs_dirty_root *dirty;
99         u64 running_trans_id = root->fs_info->running_transaction->transid;
100         if (root->ref_cows && root->last_trans < running_trans_id) {
101                 WARN_ON(root == root->fs_info->extent_root);
102                 if (root->root_item.refs != 0) {
103                         radix_tree_tag_set(&root->fs_info->fs_roots_radix,
104                                    (unsigned long)root->root_key.objectid,
105                                    BTRFS_ROOT_TRANS_TAG);
106
107                         dirty = kmalloc(sizeof(*dirty), GFP_NOFS);
108                         BUG_ON(!dirty);
109                         dirty->root = kmalloc(sizeof(*dirty->root), GFP_NOFS);
110                         BUG_ON(!dirty->root);
111                         dirty->latest_root = root;
112                         INIT_LIST_HEAD(&dirty->list);
113
114                         root->commit_root = btrfs_root_node(root);
115
116                         memcpy(dirty->root, root, sizeof(*root));
117                         spin_lock_init(&dirty->root->node_lock);
118                         spin_lock_init(&dirty->root->list_lock);
119                         mutex_init(&dirty->root->objectid_mutex);
120                         mutex_init(&dirty->root->log_mutex);
121                         INIT_LIST_HEAD(&dirty->root->dead_list);
122                         dirty->root->node = root->commit_root;
123                         dirty->root->commit_root = NULL;
124
125                         spin_lock(&root->list_lock);
126                         list_add(&dirty->root->dead_list, &root->dead_list);
127                         spin_unlock(&root->list_lock);
128
129                         root->dirty_root = dirty;
130                 } else {
131                         WARN_ON(1);
132                 }
133                 root->last_trans = running_trans_id;
134         }
135         return 0;
136 }
137
138 /* wait for commit against the current transaction to become unblocked
139  * when this is done, it is safe to start a new transaction, but the current
140  * transaction might not be fully on disk.
141  */
142 static void wait_current_trans(struct btrfs_root *root)
143 {
144         struct btrfs_transaction *cur_trans;
145
146         cur_trans = root->fs_info->running_transaction;
147         if (cur_trans && cur_trans->blocked) {
148                 DEFINE_WAIT(wait);
149                 cur_trans->use_count++;
150                 while(1) {
151                         prepare_to_wait(&root->fs_info->transaction_wait, &wait,
152                                         TASK_UNINTERRUPTIBLE);
153                         if (cur_trans->blocked) {
154                                 mutex_unlock(&root->fs_info->trans_mutex);
155                                 schedule();
156                                 mutex_lock(&root->fs_info->trans_mutex);
157                                 finish_wait(&root->fs_info->transaction_wait,
158                                             &wait);
159                         } else {
160                                 finish_wait(&root->fs_info->transaction_wait,
161                                             &wait);
162                                 break;
163                         }
164                 }
165                 put_transaction(cur_trans);
166         }
167 }
168
169 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
170                                              int num_blocks, int wait)
171 {
172         struct btrfs_trans_handle *h =
173                 kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
174         int ret;
175
176         mutex_lock(&root->fs_info->trans_mutex);
177         if (!root->fs_info->log_root_recovering &&
178             ((wait == 1 && !root->fs_info->open_ioctl_trans) || wait == 2))
179                 wait_current_trans(root);
180         ret = join_transaction(root);
181         BUG_ON(ret);
182
183         btrfs_record_root_in_trans(root);
184         h->transid = root->fs_info->running_transaction->transid;
185         h->transaction = root->fs_info->running_transaction;
186         h->blocks_reserved = num_blocks;
187         h->blocks_used = 0;
188         h->block_group = NULL;
189         h->alloc_exclude_nr = 0;
190         h->alloc_exclude_start = 0;
191         root->fs_info->running_transaction->use_count++;
192         mutex_unlock(&root->fs_info->trans_mutex);
193         return h;
194 }
195
196 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
197                                                    int num_blocks)
198 {
199         return start_transaction(root, num_blocks, 1);
200 }
201 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root,
202                                                    int num_blocks)
203 {
204         return start_transaction(root, num_blocks, 0);
205 }
206
207 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *r,
208                                                          int num_blocks)
209 {
210         return start_transaction(r, num_blocks, 2);
211 }
212
213 /* wait for a transaction commit to be fully complete */
214 static noinline int wait_for_commit(struct btrfs_root *root,
215                                     struct btrfs_transaction *commit)
216 {
217         DEFINE_WAIT(wait);
218         mutex_lock(&root->fs_info->trans_mutex);
219         while(!commit->commit_done) {
220                 prepare_to_wait(&commit->commit_wait, &wait,
221                                 TASK_UNINTERRUPTIBLE);
222                 if (commit->commit_done)
223                         break;
224                 mutex_unlock(&root->fs_info->trans_mutex);
225                 schedule();
226                 mutex_lock(&root->fs_info->trans_mutex);
227         }
228         mutex_unlock(&root->fs_info->trans_mutex);
229         finish_wait(&commit->commit_wait, &wait);
230         return 0;
231 }
232
233 /*
234  * rate limit against the drop_snapshot code.  This helps to slow down new operations
235  * if the drop_snapshot code isn't able to keep up.
236  */
237 static void throttle_on_drops(struct btrfs_root *root)
238 {
239         struct btrfs_fs_info *info = root->fs_info;
240         int harder_count = 0;
241
242 harder:
243         if (atomic_read(&info->throttles)) {
244                 DEFINE_WAIT(wait);
245                 int thr;
246                 thr = atomic_read(&info->throttle_gen);
247
248                 do {
249                         prepare_to_wait(&info->transaction_throttle,
250                                         &wait, TASK_UNINTERRUPTIBLE);
251                         if (!atomic_read(&info->throttles)) {
252                                 finish_wait(&info->transaction_throttle, &wait);
253                                 break;
254                         }
255                         schedule();
256                         finish_wait(&info->transaction_throttle, &wait);
257                 } while (thr == atomic_read(&info->throttle_gen));
258                 harder_count++;
259
260                 if (root->fs_info->total_ref_cache_size > 1 * 1024 * 1024 &&
261                     harder_count < 2)
262                         goto harder;
263
264                 if (root->fs_info->total_ref_cache_size > 5 * 1024 * 1024 &&
265                     harder_count < 10)
266                         goto harder;
267
268                 if (root->fs_info->total_ref_cache_size > 10 * 1024 * 1024 &&
269                     harder_count < 20)
270                         goto harder;
271         }
272 }
273
274 void btrfs_throttle(struct btrfs_root *root)
275 {
276         mutex_lock(&root->fs_info->trans_mutex);
277         if (!root->fs_info->open_ioctl_trans)
278                 wait_current_trans(root);
279         mutex_unlock(&root->fs_info->trans_mutex);
280
281         throttle_on_drops(root);
282 }
283
284 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
285                           struct btrfs_root *root, int throttle)
286 {
287         struct btrfs_transaction *cur_trans;
288         struct btrfs_fs_info *info = root->fs_info;
289
290         mutex_lock(&info->trans_mutex);
291         cur_trans = info->running_transaction;
292         WARN_ON(cur_trans != trans->transaction);
293         WARN_ON(cur_trans->num_writers < 1);
294         cur_trans->num_writers--;
295
296         if (waitqueue_active(&cur_trans->writer_wait))
297                 wake_up(&cur_trans->writer_wait);
298         put_transaction(cur_trans);
299         mutex_unlock(&info->trans_mutex);
300         memset(trans, 0, sizeof(*trans));
301         kmem_cache_free(btrfs_trans_handle_cachep, trans);
302
303         if (throttle)
304                 throttle_on_drops(root);
305
306         return 0;
307 }
308
309 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
310                           struct btrfs_root *root)
311 {
312         return __btrfs_end_transaction(trans, root, 0);
313 }
314
315 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
316                                    struct btrfs_root *root)
317 {
318         return __btrfs_end_transaction(trans, root, 1);
319 }
320
321 /*
322  * when btree blocks are allocated, they have some corresponding bits set for
323  * them in one of two extent_io trees.  This is used to make sure all of
324  * those extents are on disk for transaction or log commit
325  */
326 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
327                                         struct extent_io_tree *dirty_pages)
328 {
329         int ret;
330         int err = 0;
331         int werr = 0;
332         struct page *page;
333         struct inode *btree_inode = root->fs_info->btree_inode;
334         u64 start = 0;
335         u64 end;
336         unsigned long index;
337
338         while(1) {
339                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
340                                             EXTENT_DIRTY);
341                 if (ret)
342                         break;
343                 while(start <= end) {
344                         cond_resched();
345
346                         index = start >> PAGE_CACHE_SHIFT;
347                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
348                         page = find_get_page(btree_inode->i_mapping, index);
349                         if (!page)
350                                 continue;
351
352                         btree_lock_page_hook(page);
353                         if (!page->mapping) {
354                                 unlock_page(page);
355                                 page_cache_release(page);
356                                 continue;
357                         }
358
359                         if (PageWriteback(page)) {
360                                 if (PageDirty(page))
361                                         wait_on_page_writeback(page);
362                                 else {
363                                         unlock_page(page);
364                                         page_cache_release(page);
365                                         continue;
366                                 }
367                         }
368                         err = write_one_page(page, 0);
369                         if (err)
370                                 werr = err;
371                         page_cache_release(page);
372                 }
373         }
374         while(1) {
375                 ret = find_first_extent_bit(dirty_pages, 0, &start, &end,
376                                             EXTENT_DIRTY);
377                 if (ret)
378                         break;
379
380                 clear_extent_dirty(dirty_pages, start, end, GFP_NOFS);
381                 while(start <= end) {
382                         index = start >> PAGE_CACHE_SHIFT;
383                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
384                         page = find_get_page(btree_inode->i_mapping, index);
385                         if (!page)
386                                 continue;
387                         if (PageDirty(page)) {
388                                 btree_lock_page_hook(page);
389                                 wait_on_page_writeback(page);
390                                 err = write_one_page(page, 0);
391                                 if (err)
392                                         werr = err;
393                         }
394                         wait_on_page_writeback(page);
395                         page_cache_release(page);
396                         cond_resched();
397                 }
398         }
399         if (err)
400                 werr = err;
401         return werr;
402 }
403
404 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
405                                      struct btrfs_root *root)
406 {
407         if (!trans || !trans->transaction) {
408                 struct inode *btree_inode;
409                 btree_inode = root->fs_info->btree_inode;
410                 return filemap_write_and_wait(btree_inode->i_mapping);
411         }
412         return btrfs_write_and_wait_marked_extents(root,
413                                            &trans->transaction->dirty_pages);
414 }
415
416 /*
417  * this is used to update the root pointer in the tree of tree roots.
418  *
419  * But, in the case of the extent allocation tree, updating the root
420  * pointer may allocate blocks which may change the root of the extent
421  * allocation tree.
422  *
423  * So, this loops and repeats and makes sure the cowonly root didn't
424  * change while the root pointer was being updated in the metadata.
425  */
426 static int update_cowonly_root(struct btrfs_trans_handle *trans,
427                                struct btrfs_root *root)
428 {
429         int ret;
430         u64 old_root_bytenr;
431         struct btrfs_root *tree_root = root->fs_info->tree_root;
432
433         btrfs_write_dirty_block_groups(trans, root);
434         while(1) {
435                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
436                 if (old_root_bytenr == root->node->start)
437                         break;
438                 btrfs_set_root_bytenr(&root->root_item,
439                                        root->node->start);
440                 btrfs_set_root_level(&root->root_item,
441                                      btrfs_header_level(root->node));
442                 btrfs_set_root_generation(&root->root_item, trans->transid);
443                 ret = btrfs_update_root(trans, tree_root,
444                                         &root->root_key,
445                                         &root->root_item);
446                 BUG_ON(ret);
447                 btrfs_write_dirty_block_groups(trans, root);
448         }
449         return 0;
450 }
451
452 /*
453  * update all the cowonly tree roots on disk
454  */
455 int btrfs_commit_tree_roots(struct btrfs_trans_handle *trans,
456                             struct btrfs_root *root)
457 {
458         struct btrfs_fs_info *fs_info = root->fs_info;
459         struct list_head *next;
460         struct extent_buffer *eb;
461
462         eb = btrfs_lock_root_node(fs_info->tree_root);
463         btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb, 0);
464         btrfs_tree_unlock(eb);
465         free_extent_buffer(eb);
466
467         while(!list_empty(&fs_info->dirty_cowonly_roots)) {
468                 next = fs_info->dirty_cowonly_roots.next;
469                 list_del_init(next);
470                 root = list_entry(next, struct btrfs_root, dirty_list);
471                 update_cowonly_root(trans, root);
472         }
473         return 0;
474 }
475
476 /*
477  * dead roots are old snapshots that need to be deleted.  This allocates
478  * a dirty root struct and adds it into the list of dead roots that need to
479  * be deleted
480  */
481 int btrfs_add_dead_root(struct btrfs_root *root, struct btrfs_root *latest)
482 {
483         struct btrfs_dirty_root *dirty;
484
485         dirty = kmalloc(sizeof(*dirty), GFP_NOFS);
486         if (!dirty)
487                 return -ENOMEM;
488         dirty->root = root;
489         dirty->latest_root = latest;
490
491         mutex_lock(&root->fs_info->trans_mutex);
492         list_add(&dirty->list, &latest->fs_info->dead_roots);
493         mutex_unlock(&root->fs_info->trans_mutex);
494         return 0;
495 }
496
497 /*
498  * at transaction commit time we need to schedule the old roots for
499  * deletion via btrfs_drop_snapshot.  This runs through all the
500  * reference counted roots that were modified in the current
501  * transaction and puts them into the drop list
502  */
503 static noinline int add_dirty_roots(struct btrfs_trans_handle *trans,
504                                     struct radix_tree_root *radix,
505                                     struct list_head *list)
506 {
507         struct btrfs_dirty_root *dirty;
508         struct btrfs_root *gang[8];
509         struct btrfs_root *root;
510         int i;
511         int ret;
512         int err = 0;
513         u32 refs;
514
515         while(1) {
516                 ret = radix_tree_gang_lookup_tag(radix, (void **)gang, 0,
517                                                  ARRAY_SIZE(gang),
518                                                  BTRFS_ROOT_TRANS_TAG);
519                 if (ret == 0)
520                         break;
521                 for (i = 0; i < ret; i++) {
522                         root = gang[i];
523                         radix_tree_tag_clear(radix,
524                                      (unsigned long)root->root_key.objectid,
525                                      BTRFS_ROOT_TRANS_TAG);
526
527                         BUG_ON(!root->ref_tree);
528                         dirty = root->dirty_root;
529
530                         btrfs_free_log(trans, root);
531                         btrfs_free_reloc_root(trans, root);
532
533                         if (root->commit_root == root->node) {
534                                 WARN_ON(root->node->start !=
535                                         btrfs_root_bytenr(&root->root_item));
536
537                                 free_extent_buffer(root->commit_root);
538                                 root->commit_root = NULL;
539                                 root->dirty_root = NULL;
540
541                                 spin_lock(&root->list_lock);
542                                 list_del_init(&dirty->root->dead_list);
543                                 spin_unlock(&root->list_lock);
544
545                                 kfree(dirty->root);
546                                 kfree(dirty);
547
548                                 /* make sure to update the root on disk
549                                  * so we get any updates to the block used
550                                  * counts
551                                  */
552                                 err = btrfs_update_root(trans,
553                                                 root->fs_info->tree_root,
554                                                 &root->root_key,
555                                                 &root->root_item);
556                                 continue;
557                         }
558
559                         memset(&root->root_item.drop_progress, 0,
560                                sizeof(struct btrfs_disk_key));
561                         root->root_item.drop_level = 0;
562                         root->commit_root = NULL;
563                         root->dirty_root = NULL;
564                         root->root_key.offset = root->fs_info->generation;
565                         btrfs_set_root_bytenr(&root->root_item,
566                                               root->node->start);
567                         btrfs_set_root_level(&root->root_item,
568                                              btrfs_header_level(root->node));
569                         btrfs_set_root_generation(&root->root_item,
570                                                   root->root_key.offset);
571
572                         err = btrfs_insert_root(trans, root->fs_info->tree_root,
573                                                 &root->root_key,
574                                                 &root->root_item);
575                         if (err)
576                                 break;
577
578                         refs = btrfs_root_refs(&dirty->root->root_item);
579                         btrfs_set_root_refs(&dirty->root->root_item, refs - 1);
580                         err = btrfs_update_root(trans, root->fs_info->tree_root,
581                                                 &dirty->root->root_key,
582                                                 &dirty->root->root_item);
583
584                         BUG_ON(err);
585                         if (refs == 1) {
586                                 list_add(&dirty->list, list);
587                         } else {
588                                 WARN_ON(1);
589                                 free_extent_buffer(dirty->root->node);
590                                 kfree(dirty->root);
591                                 kfree(dirty);
592                         }
593                 }
594         }
595         return err;
596 }
597
598 /*
599  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
600  * otherwise every leaf in the btree is read and defragged.
601  */
602 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
603 {
604         struct btrfs_fs_info *info = root->fs_info;
605         int ret;
606         struct btrfs_trans_handle *trans;
607         unsigned long nr;
608
609         smp_mb();
610         if (root->defrag_running)
611                 return 0;
612         trans = btrfs_start_transaction(root, 1);
613         while (1) {
614                 root->defrag_running = 1;
615                 ret = btrfs_defrag_leaves(trans, root, cacheonly);
616                 nr = trans->blocks_used;
617                 btrfs_end_transaction(trans, root);
618                 btrfs_btree_balance_dirty(info->tree_root, nr);
619                 cond_resched();
620
621                 trans = btrfs_start_transaction(root, 1);
622                 if (root->fs_info->closing || ret != -EAGAIN)
623                         break;
624         }
625         root->defrag_running = 0;
626         smp_mb();
627         btrfs_end_transaction(trans, root);
628         return 0;
629 }
630
631 /*
632  * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
633  * all of them
634  */
635 static noinline int drop_dirty_roots(struct btrfs_root *tree_root,
636                                      struct list_head *list)
637 {
638         struct btrfs_dirty_root *dirty;
639         struct btrfs_trans_handle *trans;
640         unsigned long nr;
641         u64 num_bytes;
642         u64 bytes_used;
643         u64 max_useless;
644         int ret = 0;
645         int err;
646
647         while(!list_empty(list)) {
648                 struct btrfs_root *root;
649
650                 dirty = list_entry(list->prev, struct btrfs_dirty_root, list);
651                 list_del_init(&dirty->list);
652
653                 num_bytes = btrfs_root_used(&dirty->root->root_item);
654                 root = dirty->latest_root;
655                 atomic_inc(&root->fs_info->throttles);
656
657                 while(1) {
658                         trans = btrfs_start_transaction(tree_root, 1);
659                         mutex_lock(&root->fs_info->drop_mutex);
660                         ret = btrfs_drop_snapshot(trans, dirty->root);
661                         if (ret != -EAGAIN) {
662                                 break;
663                         }
664                         mutex_unlock(&root->fs_info->drop_mutex);
665
666                         err = btrfs_update_root(trans,
667                                         tree_root,
668                                         &dirty->root->root_key,
669                                         &dirty->root->root_item);
670                         if (err)
671                                 ret = err;
672                         nr = trans->blocks_used;
673                         ret = btrfs_end_transaction(trans, tree_root);
674                         BUG_ON(ret);
675
676                         btrfs_btree_balance_dirty(tree_root, nr);
677                         cond_resched();
678                 }
679                 BUG_ON(ret);
680                 atomic_dec(&root->fs_info->throttles);
681                 wake_up(&root->fs_info->transaction_throttle);
682
683                 num_bytes -= btrfs_root_used(&dirty->root->root_item);
684                 bytes_used = btrfs_root_used(&root->root_item);
685                 if (num_bytes) {
686                         btrfs_record_root_in_trans(root);
687                         btrfs_set_root_used(&root->root_item,
688                                             bytes_used - num_bytes);
689                 }
690
691                 ret = btrfs_del_root(trans, tree_root, &dirty->root->root_key);
692                 if (ret) {
693                         BUG();
694                         break;
695                 }
696                 mutex_unlock(&root->fs_info->drop_mutex);
697
698                 spin_lock(&root->list_lock);
699                 list_del_init(&dirty->root->dead_list);
700                 if (!list_empty(&root->dead_list)) {
701                         struct btrfs_root *oldest;
702                         oldest = list_entry(root->dead_list.prev,
703                                             struct btrfs_root, dead_list);
704                         max_useless = oldest->root_key.offset - 1;
705                 } else {
706                         max_useless = root->root_key.offset - 1;
707                 }
708                 spin_unlock(&root->list_lock);
709
710                 nr = trans->blocks_used;
711                 ret = btrfs_end_transaction(trans, tree_root);
712                 BUG_ON(ret);
713
714                 ret = btrfs_remove_leaf_refs(root, max_useless, 0);
715                 BUG_ON(ret);
716
717                 free_extent_buffer(dirty->root->node);
718                 kfree(dirty->root);
719                 kfree(dirty);
720
721                 btrfs_btree_balance_dirty(tree_root, nr);
722                 cond_resched();
723         }
724         return ret;
725 }
726
727 /*
728  * new snapshots need to be created at a very specific time in the
729  * transaction commit.  This does the actual creation
730  */
731 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
732                                    struct btrfs_fs_info *fs_info,
733                                    struct btrfs_pending_snapshot *pending)
734 {
735         struct btrfs_key key;
736         struct btrfs_root_item *new_root_item;
737         struct btrfs_root *tree_root = fs_info->tree_root;
738         struct btrfs_root *root = pending->root;
739         struct extent_buffer *tmp;
740         struct extent_buffer *old;
741         int ret;
742         int namelen;
743         u64 objectid;
744
745         new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
746         if (!new_root_item) {
747                 ret = -ENOMEM;
748                 goto fail;
749         }
750         ret = btrfs_find_free_objectid(trans, tree_root, 0, &objectid);
751         if (ret)
752                 goto fail;
753
754         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
755
756         key.objectid = objectid;
757         key.offset = trans->transid;
758         btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
759
760         old = btrfs_lock_root_node(root);
761         btrfs_cow_block(trans, root, old, NULL, 0, &old, 0);
762
763         btrfs_copy_root(trans, root, old, &tmp, objectid);
764         btrfs_tree_unlock(old);
765         free_extent_buffer(old);
766
767         btrfs_set_root_bytenr(new_root_item, tmp->start);
768         btrfs_set_root_level(new_root_item, btrfs_header_level(tmp));
769         btrfs_set_root_generation(new_root_item, trans->transid);
770         ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
771                                 new_root_item);
772         btrfs_tree_unlock(tmp);
773         free_extent_buffer(tmp);
774         if (ret)
775                 goto fail;
776
777         /*
778          * insert the directory item
779          */
780         key.offset = (u64)-1;
781         namelen = strlen(pending->name);
782         ret = btrfs_insert_dir_item(trans, root->fs_info->tree_root,
783                                     pending->name, namelen,
784                                     root->fs_info->sb->s_root->d_inode->i_ino,
785                                     &key, BTRFS_FT_DIR, 0);
786
787         if (ret)
788                 goto fail;
789
790         ret = btrfs_insert_inode_ref(trans, root->fs_info->tree_root,
791                              pending->name, strlen(pending->name), objectid,
792                              root->fs_info->sb->s_root->d_inode->i_ino, 0);
793
794         /* Invalidate existing dcache entry for new snapshot. */
795         btrfs_invalidate_dcache_root(root, pending->name, namelen);
796
797 fail:
798         kfree(new_root_item);
799         return ret;
800 }
801
802 /*
803  * create all the snapshots we've scheduled for creation
804  */
805 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
806                                              struct btrfs_fs_info *fs_info)
807 {
808         struct btrfs_pending_snapshot *pending;
809         struct list_head *head = &trans->transaction->pending_snapshots;
810         int ret;
811
812         while(!list_empty(head)) {
813                 pending = list_entry(head->next,
814                                      struct btrfs_pending_snapshot, list);
815                 ret = create_pending_snapshot(trans, fs_info, pending);
816                 BUG_ON(ret);
817                 list_del(&pending->list);
818                 kfree(pending->name);
819                 kfree(pending);
820         }
821         return 0;
822 }
823
824 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
825                              struct btrfs_root *root)
826 {
827         unsigned long joined = 0;
828         unsigned long timeout = 1;
829         struct btrfs_transaction *cur_trans;
830         struct btrfs_transaction *prev_trans = NULL;
831         struct btrfs_root *chunk_root = root->fs_info->chunk_root;
832         struct list_head dirty_fs_roots;
833         struct extent_io_tree *pinned_copy;
834         DEFINE_WAIT(wait);
835         int ret;
836
837         INIT_LIST_HEAD(&dirty_fs_roots);
838         mutex_lock(&root->fs_info->trans_mutex);
839         if (trans->transaction->in_commit) {
840                 cur_trans = trans->transaction;
841                 trans->transaction->use_count++;
842                 mutex_unlock(&root->fs_info->trans_mutex);
843                 btrfs_end_transaction(trans, root);
844
845                 ret = wait_for_commit(root, cur_trans);
846                 BUG_ON(ret);
847
848                 mutex_lock(&root->fs_info->trans_mutex);
849                 put_transaction(cur_trans);
850                 mutex_unlock(&root->fs_info->trans_mutex);
851
852                 return 0;
853         }
854
855         pinned_copy = kmalloc(sizeof(*pinned_copy), GFP_NOFS);
856         if (!pinned_copy)
857                 return -ENOMEM;
858
859         extent_io_tree_init(pinned_copy,
860                              root->fs_info->btree_inode->i_mapping, GFP_NOFS);
861
862         trans->transaction->in_commit = 1;
863         trans->transaction->blocked = 1;
864         cur_trans = trans->transaction;
865         if (cur_trans->list.prev != &root->fs_info->trans_list) {
866                 prev_trans = list_entry(cur_trans->list.prev,
867                                         struct btrfs_transaction, list);
868                 if (!prev_trans->commit_done) {
869                         prev_trans->use_count++;
870                         mutex_unlock(&root->fs_info->trans_mutex);
871
872                         wait_for_commit(root, prev_trans);
873
874                         mutex_lock(&root->fs_info->trans_mutex);
875                         put_transaction(prev_trans);
876                 }
877         }
878
879         do {
880                 int snap_pending = 0;
881                 joined = cur_trans->num_joined;
882                 if (!list_empty(&trans->transaction->pending_snapshots))
883                         snap_pending = 1;
884
885                 WARN_ON(cur_trans != trans->transaction);
886                 prepare_to_wait(&cur_trans->writer_wait, &wait,
887                                 TASK_UNINTERRUPTIBLE);
888
889                 if (cur_trans->num_writers > 1)
890                         timeout = MAX_SCHEDULE_TIMEOUT;
891                 else
892                         timeout = 1;
893
894                 mutex_unlock(&root->fs_info->trans_mutex);
895
896                 if (snap_pending) {
897                         ret = btrfs_wait_ordered_extents(root, 1);
898                         BUG_ON(ret);
899                 }
900
901                 schedule_timeout(timeout);
902
903                 mutex_lock(&root->fs_info->trans_mutex);
904                 finish_wait(&cur_trans->writer_wait, &wait);
905         } while (cur_trans->num_writers > 1 ||
906                  (cur_trans->num_joined != joined));
907
908         ret = create_pending_snapshots(trans, root->fs_info);
909         BUG_ON(ret);
910
911         WARN_ON(cur_trans != trans->transaction);
912
913         /* btrfs_commit_tree_roots is responsible for getting the
914          * various roots consistent with each other.  Every pointer
915          * in the tree of tree roots has to point to the most up to date
916          * root for every subvolume and other tree.  So, we have to keep
917          * the tree logging code from jumping in and changing any
918          * of the trees.
919          *
920          * At this point in the commit, there can't be any tree-log
921          * writers, but a little lower down we drop the trans mutex
922          * and let new people in.  By holding the tree_log_mutex
923          * from now until after the super is written, we avoid races
924          * with the tree-log code.
925          */
926         mutex_lock(&root->fs_info->tree_log_mutex);
927         /*
928          * keep tree reloc code from adding new reloc trees
929          */
930         mutex_lock(&root->fs_info->tree_reloc_mutex);
931
932
933         ret = add_dirty_roots(trans, &root->fs_info->fs_roots_radix,
934                               &dirty_fs_roots);
935         BUG_ON(ret);
936
937         /* add_dirty_roots gets rid of all the tree log roots, it is now
938          * safe to free the root of tree log roots
939          */
940         btrfs_free_log_root_tree(trans, root->fs_info);
941
942         ret = btrfs_commit_tree_roots(trans, root);
943         BUG_ON(ret);
944
945         cur_trans = root->fs_info->running_transaction;
946         spin_lock(&root->fs_info->new_trans_lock);
947         root->fs_info->running_transaction = NULL;
948         spin_unlock(&root->fs_info->new_trans_lock);
949         btrfs_set_super_generation(&root->fs_info->super_copy,
950                                    cur_trans->transid);
951         btrfs_set_super_root(&root->fs_info->super_copy,
952                              root->fs_info->tree_root->node->start);
953         btrfs_set_super_root_level(&root->fs_info->super_copy,
954                            btrfs_header_level(root->fs_info->tree_root->node));
955
956         btrfs_set_super_chunk_root(&root->fs_info->super_copy,
957                                    chunk_root->node->start);
958         btrfs_set_super_chunk_root_level(&root->fs_info->super_copy,
959                                          btrfs_header_level(chunk_root->node));
960         btrfs_set_super_chunk_root_generation(&root->fs_info->super_copy,
961                                 btrfs_header_generation(chunk_root->node));
962
963         if (!root->fs_info->log_root_recovering) {
964                 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
965                 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
966         }
967
968         memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
969                sizeof(root->fs_info->super_copy));
970
971         btrfs_copy_pinned(root, pinned_copy);
972
973         trans->transaction->blocked = 0;
974         wake_up(&root->fs_info->transaction_throttle);
975         wake_up(&root->fs_info->transaction_wait);
976
977         mutex_unlock(&root->fs_info->trans_mutex);
978         ret = btrfs_write_and_wait_transaction(trans, root);
979         BUG_ON(ret);
980         write_ctree_super(trans, root);
981
982         /*
983          * the super is written, we can safely allow the tree-loggers
984          * to go about their business
985          */
986         mutex_unlock(&root->fs_info->tree_log_mutex);
987
988         btrfs_finish_extent_commit(trans, root, pinned_copy);
989         kfree(pinned_copy);
990
991         btrfs_drop_dead_reloc_roots(root);
992         mutex_unlock(&root->fs_info->tree_reloc_mutex);
993
994         mutex_lock(&root->fs_info->trans_mutex);
995
996         cur_trans->commit_done = 1;
997         root->fs_info->last_trans_committed = cur_trans->transid;
998         wake_up(&cur_trans->commit_wait);
999         put_transaction(cur_trans);
1000         put_transaction(cur_trans);
1001
1002         list_splice_init(&dirty_fs_roots, &root->fs_info->dead_roots);
1003         if (root->fs_info->closing)
1004                 list_splice_init(&root->fs_info->dead_roots, &dirty_fs_roots);
1005
1006         mutex_unlock(&root->fs_info->trans_mutex);
1007         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1008
1009         if (root->fs_info->closing) {
1010                 drop_dirty_roots(root->fs_info->tree_root, &dirty_fs_roots);
1011         }
1012         return ret;
1013 }
1014
1015 /*
1016  * interface function to delete all the snapshots we have scheduled for deletion
1017  */
1018 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1019 {
1020         struct list_head dirty_roots;
1021         INIT_LIST_HEAD(&dirty_roots);
1022 again:
1023         mutex_lock(&root->fs_info->trans_mutex);
1024         list_splice_init(&root->fs_info->dead_roots, &dirty_roots);
1025         mutex_unlock(&root->fs_info->trans_mutex);
1026
1027         if (!list_empty(&dirty_roots)) {
1028                 drop_dirty_roots(root, &dirty_roots);
1029                 goto again;
1030         }
1031         return 0;
1032 }