btrfs: don't save block group root into super block
[linux-2.6-block.git] / fs / btrfs / transaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
13 #include <linux/timekeeping.h>
14 #include "misc.h"
15 #include "ctree.h"
16 #include "disk-io.h"
17 #include "transaction.h"
18 #include "locking.h"
19 #include "tree-log.h"
20 #include "volumes.h"
21 #include "dev-replace.h"
22 #include "qgroup.h"
23 #include "block-group.h"
24 #include "space-info.h"
25 #include "zoned.h"
26
27 #define BTRFS_ROOT_TRANS_TAG 0
28
29 /*
30  * Transaction states and transitions
31  *
32  * No running transaction (fs tree blocks are not modified)
33  * |
34  * | To next stage:
35  * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
36  * V
37  * Transaction N [[TRANS_STATE_RUNNING]]
38  * |
39  * | New trans handles can be attached to transaction N by calling all
40  * | start_transaction() variants.
41  * |
42  * | To next stage:
43  * |  Call btrfs_commit_transaction() on any trans handle attached to
44  * |  transaction N
45  * V
46  * Transaction N [[TRANS_STATE_COMMIT_START]]
47  * |
48  * | Will wait for previous running transaction to completely finish if there
49  * | is one
50  * |
51  * | Then one of the following happes:
52  * | - Wait for all other trans handle holders to release.
53  * |   The btrfs_commit_transaction() caller will do the commit work.
54  * | - Wait for current transaction to be committed by others.
55  * |   Other btrfs_commit_transaction() caller will do the commit work.
56  * |
57  * | At this stage, only btrfs_join_transaction*() variants can attach
58  * | to this running transaction.
59  * | All other variants will wait for current one to finish and attach to
60  * | transaction N+1.
61  * |
62  * | To next stage:
63  * |  Caller is chosen to commit transaction N, and all other trans handle
64  * |  haven been released.
65  * V
66  * Transaction N [[TRANS_STATE_COMMIT_DOING]]
67  * |
68  * | The heavy lifting transaction work is started.
69  * | From running delayed refs (modifying extent tree) to creating pending
70  * | snapshots, running qgroups.
71  * | In short, modify supporting trees to reflect modifications of subvolume
72  * | trees.
73  * |
74  * | At this stage, all start_transaction() calls will wait for this
75  * | transaction to finish and attach to transaction N+1.
76  * |
77  * | To next stage:
78  * |  Until all supporting trees are updated.
79  * V
80  * Transaction N [[TRANS_STATE_UNBLOCKED]]
81  * |                                                Transaction N+1
82  * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
83  * | need to write them back to disk and update     |
84  * | super blocks.                                  |
85  * |                                                |
86  * | At this stage, new transaction is allowed to   |
87  * | start.                                         |
88  * | All new start_transaction() calls will be      |
89  * | attached to transid N+1.                       |
90  * |                                                |
91  * | To next stage:                                 |
92  * |  Until all tree blocks are super blocks are    |
93  * |  written to block devices                      |
94  * V                                                |
95  * Transaction N [[TRANS_STATE_COMPLETED]]          V
96  *   All tree blocks and super blocks are written.  Transaction N+1
97  *   This transaction is finished and all its       [[TRANS_STATE_COMMIT_START]]
98  *   data structures will be cleaned up.            | Life goes on
99  */
100 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
101         [TRANS_STATE_RUNNING]           = 0U,
102         [TRANS_STATE_COMMIT_START]      = (__TRANS_START | __TRANS_ATTACH),
103         [TRANS_STATE_COMMIT_DOING]      = (__TRANS_START |
104                                            __TRANS_ATTACH |
105                                            __TRANS_JOIN |
106                                            __TRANS_JOIN_NOSTART),
107         [TRANS_STATE_UNBLOCKED]         = (__TRANS_START |
108                                            __TRANS_ATTACH |
109                                            __TRANS_JOIN |
110                                            __TRANS_JOIN_NOLOCK |
111                                            __TRANS_JOIN_NOSTART),
112         [TRANS_STATE_SUPER_COMMITTED]   = (__TRANS_START |
113                                            __TRANS_ATTACH |
114                                            __TRANS_JOIN |
115                                            __TRANS_JOIN_NOLOCK |
116                                            __TRANS_JOIN_NOSTART),
117         [TRANS_STATE_COMPLETED]         = (__TRANS_START |
118                                            __TRANS_ATTACH |
119                                            __TRANS_JOIN |
120                                            __TRANS_JOIN_NOLOCK |
121                                            __TRANS_JOIN_NOSTART),
122 };
123
124 void btrfs_put_transaction(struct btrfs_transaction *transaction)
125 {
126         WARN_ON(refcount_read(&transaction->use_count) == 0);
127         if (refcount_dec_and_test(&transaction->use_count)) {
128                 BUG_ON(!list_empty(&transaction->list));
129                 WARN_ON(!RB_EMPTY_ROOT(
130                                 &transaction->delayed_refs.href_root.rb_root));
131                 WARN_ON(!RB_EMPTY_ROOT(
132                                 &transaction->delayed_refs.dirty_extent_root));
133                 if (transaction->delayed_refs.pending_csums)
134                         btrfs_err(transaction->fs_info,
135                                   "pending csums is %llu",
136                                   transaction->delayed_refs.pending_csums);
137                 /*
138                  * If any block groups are found in ->deleted_bgs then it's
139                  * because the transaction was aborted and a commit did not
140                  * happen (things failed before writing the new superblock
141                  * and calling btrfs_finish_extent_commit()), so we can not
142                  * discard the physical locations of the block groups.
143                  */
144                 while (!list_empty(&transaction->deleted_bgs)) {
145                         struct btrfs_block_group *cache;
146
147                         cache = list_first_entry(&transaction->deleted_bgs,
148                                                  struct btrfs_block_group,
149                                                  bg_list);
150                         list_del_init(&cache->bg_list);
151                         btrfs_unfreeze_block_group(cache);
152                         btrfs_put_block_group(cache);
153                 }
154                 WARN_ON(!list_empty(&transaction->dev_update_list));
155                 kfree(transaction);
156         }
157 }
158
159 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
160 {
161         struct btrfs_transaction *cur_trans = trans->transaction;
162         struct btrfs_fs_info *fs_info = trans->fs_info;
163         struct btrfs_root *root, *tmp;
164
165         /*
166          * At this point no one can be using this transaction to modify any tree
167          * and no one can start another transaction to modify any tree either.
168          */
169         ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
170
171         down_write(&fs_info->commit_root_sem);
172
173         if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
174                 fs_info->last_reloc_trans = trans->transid;
175
176         list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
177                                  dirty_list) {
178                 list_del_init(&root->dirty_list);
179                 free_extent_buffer(root->commit_root);
180                 root->commit_root = btrfs_root_node(root);
181                 extent_io_tree_release(&root->dirty_log_pages);
182                 btrfs_qgroup_clean_swapped_blocks(root);
183         }
184
185         /* We can free old roots now. */
186         spin_lock(&cur_trans->dropped_roots_lock);
187         while (!list_empty(&cur_trans->dropped_roots)) {
188                 root = list_first_entry(&cur_trans->dropped_roots,
189                                         struct btrfs_root, root_list);
190                 list_del_init(&root->root_list);
191                 spin_unlock(&cur_trans->dropped_roots_lock);
192                 btrfs_free_log(trans, root);
193                 btrfs_drop_and_free_fs_root(fs_info, root);
194                 spin_lock(&cur_trans->dropped_roots_lock);
195         }
196         spin_unlock(&cur_trans->dropped_roots_lock);
197
198         up_write(&fs_info->commit_root_sem);
199 }
200
201 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
202                                          unsigned int type)
203 {
204         if (type & TRANS_EXTWRITERS)
205                 atomic_inc(&trans->num_extwriters);
206 }
207
208 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
209                                          unsigned int type)
210 {
211         if (type & TRANS_EXTWRITERS)
212                 atomic_dec(&trans->num_extwriters);
213 }
214
215 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
216                                           unsigned int type)
217 {
218         atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
219 }
220
221 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
222 {
223         return atomic_read(&trans->num_extwriters);
224 }
225
226 /*
227  * To be called after doing the chunk btree updates right after allocating a new
228  * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
229  * chunk after all chunk btree updates and after finishing the second phase of
230  * chunk allocation (btrfs_create_pending_block_groups()) in case some block
231  * group had its chunk item insertion delayed to the second phase.
232  */
233 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
234 {
235         struct btrfs_fs_info *fs_info = trans->fs_info;
236
237         if (!trans->chunk_bytes_reserved)
238                 return;
239
240         btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
241                                 trans->chunk_bytes_reserved, NULL);
242         trans->chunk_bytes_reserved = 0;
243 }
244
245 /*
246  * either allocate a new transaction or hop into the existing one
247  */
248 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
249                                      unsigned int type)
250 {
251         struct btrfs_transaction *cur_trans;
252
253         spin_lock(&fs_info->trans_lock);
254 loop:
255         /* The file system has been taken offline. No new transactions. */
256         if (BTRFS_FS_ERROR(fs_info)) {
257                 spin_unlock(&fs_info->trans_lock);
258                 return -EROFS;
259         }
260
261         cur_trans = fs_info->running_transaction;
262         if (cur_trans) {
263                 if (TRANS_ABORTED(cur_trans)) {
264                         spin_unlock(&fs_info->trans_lock);
265                         return cur_trans->aborted;
266                 }
267                 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
268                         spin_unlock(&fs_info->trans_lock);
269                         return -EBUSY;
270                 }
271                 refcount_inc(&cur_trans->use_count);
272                 atomic_inc(&cur_trans->num_writers);
273                 extwriter_counter_inc(cur_trans, type);
274                 spin_unlock(&fs_info->trans_lock);
275                 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
276                 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
277                 return 0;
278         }
279         spin_unlock(&fs_info->trans_lock);
280
281         /*
282          * If we are ATTACH, we just want to catch the current transaction,
283          * and commit it. If there is no transaction, just return ENOENT.
284          */
285         if (type == TRANS_ATTACH)
286                 return -ENOENT;
287
288         /*
289          * JOIN_NOLOCK only happens during the transaction commit, so
290          * it is impossible that ->running_transaction is NULL
291          */
292         BUG_ON(type == TRANS_JOIN_NOLOCK);
293
294         cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
295         if (!cur_trans)
296                 return -ENOMEM;
297
298         btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
299         btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
300
301         spin_lock(&fs_info->trans_lock);
302         if (fs_info->running_transaction) {
303                 /*
304                  * someone started a transaction after we unlocked.  Make sure
305                  * to redo the checks above
306                  */
307                 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
308                 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
309                 kfree(cur_trans);
310                 goto loop;
311         } else if (BTRFS_FS_ERROR(fs_info)) {
312                 spin_unlock(&fs_info->trans_lock);
313                 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
314                 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
315                 kfree(cur_trans);
316                 return -EROFS;
317         }
318
319         cur_trans->fs_info = fs_info;
320         atomic_set(&cur_trans->pending_ordered, 0);
321         init_waitqueue_head(&cur_trans->pending_wait);
322         atomic_set(&cur_trans->num_writers, 1);
323         extwriter_counter_init(cur_trans, type);
324         init_waitqueue_head(&cur_trans->writer_wait);
325         init_waitqueue_head(&cur_trans->commit_wait);
326         cur_trans->state = TRANS_STATE_RUNNING;
327         /*
328          * One for this trans handle, one so it will live on until we
329          * commit the transaction.
330          */
331         refcount_set(&cur_trans->use_count, 2);
332         cur_trans->flags = 0;
333         cur_trans->start_time = ktime_get_seconds();
334
335         memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
336
337         cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
338         cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
339         atomic_set(&cur_trans->delayed_refs.num_entries, 0);
340
341         /*
342          * although the tree mod log is per file system and not per transaction,
343          * the log must never go across transaction boundaries.
344          */
345         smp_mb();
346         if (!list_empty(&fs_info->tree_mod_seq_list))
347                 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
348         if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
349                 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
350         atomic64_set(&fs_info->tree_mod_seq, 0);
351
352         spin_lock_init(&cur_trans->delayed_refs.lock);
353
354         INIT_LIST_HEAD(&cur_trans->pending_snapshots);
355         INIT_LIST_HEAD(&cur_trans->dev_update_list);
356         INIT_LIST_HEAD(&cur_trans->switch_commits);
357         INIT_LIST_HEAD(&cur_trans->dirty_bgs);
358         INIT_LIST_HEAD(&cur_trans->io_bgs);
359         INIT_LIST_HEAD(&cur_trans->dropped_roots);
360         mutex_init(&cur_trans->cache_write_mutex);
361         spin_lock_init(&cur_trans->dirty_bgs_lock);
362         INIT_LIST_HEAD(&cur_trans->deleted_bgs);
363         spin_lock_init(&cur_trans->dropped_roots_lock);
364         INIT_LIST_HEAD(&cur_trans->releasing_ebs);
365         spin_lock_init(&cur_trans->releasing_ebs_lock);
366         list_add_tail(&cur_trans->list, &fs_info->trans_list);
367         extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
368                         IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
369         extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
370                         IO_TREE_FS_PINNED_EXTENTS, NULL);
371         fs_info->generation++;
372         cur_trans->transid = fs_info->generation;
373         fs_info->running_transaction = cur_trans;
374         cur_trans->aborted = 0;
375         spin_unlock(&fs_info->trans_lock);
376
377         return 0;
378 }
379
380 /*
381  * This does all the record keeping required to make sure that a shareable root
382  * is properly recorded in a given transaction.  This is required to make sure
383  * the old root from before we joined the transaction is deleted when the
384  * transaction commits.
385  */
386 static int record_root_in_trans(struct btrfs_trans_handle *trans,
387                                struct btrfs_root *root,
388                                int force)
389 {
390         struct btrfs_fs_info *fs_info = root->fs_info;
391         int ret = 0;
392
393         if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
394             root->last_trans < trans->transid) || force) {
395                 WARN_ON(!force && root->commit_root != root->node);
396
397                 /*
398                  * see below for IN_TRANS_SETUP usage rules
399                  * we have the reloc mutex held now, so there
400                  * is only one writer in this function
401                  */
402                 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
403
404                 /* make sure readers find IN_TRANS_SETUP before
405                  * they find our root->last_trans update
406                  */
407                 smp_wmb();
408
409                 spin_lock(&fs_info->fs_roots_radix_lock);
410                 if (root->last_trans == trans->transid && !force) {
411                         spin_unlock(&fs_info->fs_roots_radix_lock);
412                         return 0;
413                 }
414                 radix_tree_tag_set(&fs_info->fs_roots_radix,
415                                    (unsigned long)root->root_key.objectid,
416                                    BTRFS_ROOT_TRANS_TAG);
417                 spin_unlock(&fs_info->fs_roots_radix_lock);
418                 root->last_trans = trans->transid;
419
420                 /* this is pretty tricky.  We don't want to
421                  * take the relocation lock in btrfs_record_root_in_trans
422                  * unless we're really doing the first setup for this root in
423                  * this transaction.
424                  *
425                  * Normally we'd use root->last_trans as a flag to decide
426                  * if we want to take the expensive mutex.
427                  *
428                  * But, we have to set root->last_trans before we
429                  * init the relocation root, otherwise, we trip over warnings
430                  * in ctree.c.  The solution used here is to flag ourselves
431                  * with root IN_TRANS_SETUP.  When this is 1, we're still
432                  * fixing up the reloc trees and everyone must wait.
433                  *
434                  * When this is zero, they can trust root->last_trans and fly
435                  * through btrfs_record_root_in_trans without having to take the
436                  * lock.  smp_wmb() makes sure that all the writes above are
437                  * done before we pop in the zero below
438                  */
439                 ret = btrfs_init_reloc_root(trans, root);
440                 smp_mb__before_atomic();
441                 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
442         }
443         return ret;
444 }
445
446
447 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
448                             struct btrfs_root *root)
449 {
450         struct btrfs_fs_info *fs_info = root->fs_info;
451         struct btrfs_transaction *cur_trans = trans->transaction;
452
453         /* Add ourselves to the transaction dropped list */
454         spin_lock(&cur_trans->dropped_roots_lock);
455         list_add_tail(&root->root_list, &cur_trans->dropped_roots);
456         spin_unlock(&cur_trans->dropped_roots_lock);
457
458         /* Make sure we don't try to update the root at commit time */
459         spin_lock(&fs_info->fs_roots_radix_lock);
460         radix_tree_tag_clear(&fs_info->fs_roots_radix,
461                              (unsigned long)root->root_key.objectid,
462                              BTRFS_ROOT_TRANS_TAG);
463         spin_unlock(&fs_info->fs_roots_radix_lock);
464 }
465
466 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
467                                struct btrfs_root *root)
468 {
469         struct btrfs_fs_info *fs_info = root->fs_info;
470         int ret;
471
472         if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
473                 return 0;
474
475         /*
476          * see record_root_in_trans for comments about IN_TRANS_SETUP usage
477          * and barriers
478          */
479         smp_rmb();
480         if (root->last_trans == trans->transid &&
481             !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
482                 return 0;
483
484         mutex_lock(&fs_info->reloc_mutex);
485         ret = record_root_in_trans(trans, root, 0);
486         mutex_unlock(&fs_info->reloc_mutex);
487
488         return ret;
489 }
490
491 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
492 {
493         return (trans->state >= TRANS_STATE_COMMIT_START &&
494                 trans->state < TRANS_STATE_UNBLOCKED &&
495                 !TRANS_ABORTED(trans));
496 }
497
498 /* wait for commit against the current transaction to become unblocked
499  * when this is done, it is safe to start a new transaction, but the current
500  * transaction might not be fully on disk.
501  */
502 static void wait_current_trans(struct btrfs_fs_info *fs_info)
503 {
504         struct btrfs_transaction *cur_trans;
505
506         spin_lock(&fs_info->trans_lock);
507         cur_trans = fs_info->running_transaction;
508         if (cur_trans && is_transaction_blocked(cur_trans)) {
509                 refcount_inc(&cur_trans->use_count);
510                 spin_unlock(&fs_info->trans_lock);
511
512                 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
513                 wait_event(fs_info->transaction_wait,
514                            cur_trans->state >= TRANS_STATE_UNBLOCKED ||
515                            TRANS_ABORTED(cur_trans));
516                 btrfs_put_transaction(cur_trans);
517         } else {
518                 spin_unlock(&fs_info->trans_lock);
519         }
520 }
521
522 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
523 {
524         if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
525                 return 0;
526
527         if (type == TRANS_START)
528                 return 1;
529
530         return 0;
531 }
532
533 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
534 {
535         struct btrfs_fs_info *fs_info = root->fs_info;
536
537         if (!fs_info->reloc_ctl ||
538             !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
539             root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
540             root->reloc_root)
541                 return false;
542
543         return true;
544 }
545
546 static struct btrfs_trans_handle *
547 start_transaction(struct btrfs_root *root, unsigned int num_items,
548                   unsigned int type, enum btrfs_reserve_flush_enum flush,
549                   bool enforce_qgroups)
550 {
551         struct btrfs_fs_info *fs_info = root->fs_info;
552         struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
553         struct btrfs_trans_handle *h;
554         struct btrfs_transaction *cur_trans;
555         u64 num_bytes = 0;
556         u64 qgroup_reserved = 0;
557         bool reloc_reserved = false;
558         bool do_chunk_alloc = false;
559         int ret;
560
561         if (BTRFS_FS_ERROR(fs_info))
562                 return ERR_PTR(-EROFS);
563
564         if (current->journal_info) {
565                 WARN_ON(type & TRANS_EXTWRITERS);
566                 h = current->journal_info;
567                 refcount_inc(&h->use_count);
568                 WARN_ON(refcount_read(&h->use_count) > 2);
569                 h->orig_rsv = h->block_rsv;
570                 h->block_rsv = NULL;
571                 goto got_it;
572         }
573
574         /*
575          * Do the reservation before we join the transaction so we can do all
576          * the appropriate flushing if need be.
577          */
578         if (num_items && root != fs_info->chunk_root) {
579                 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
580                 u64 delayed_refs_bytes = 0;
581
582                 qgroup_reserved = num_items * fs_info->nodesize;
583                 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
584                                 enforce_qgroups);
585                 if (ret)
586                         return ERR_PTR(ret);
587
588                 /*
589                  * We want to reserve all the bytes we may need all at once, so
590                  * we only do 1 enospc flushing cycle per transaction start.  We
591                  * accomplish this by simply assuming we'll do 2 x num_items
592                  * worth of delayed refs updates in this trans handle, and
593                  * refill that amount for whatever is missing in the reserve.
594                  */
595                 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
596                 if (flush == BTRFS_RESERVE_FLUSH_ALL &&
597                     delayed_refs_rsv->full == 0) {
598                         delayed_refs_bytes = num_bytes;
599                         num_bytes <<= 1;
600                 }
601
602                 /*
603                  * Do the reservation for the relocation root creation
604                  */
605                 if (need_reserve_reloc_root(root)) {
606                         num_bytes += fs_info->nodesize;
607                         reloc_reserved = true;
608                 }
609
610                 ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes, flush);
611                 if (ret)
612                         goto reserve_fail;
613                 if (delayed_refs_bytes) {
614                         btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
615                                                           delayed_refs_bytes);
616                         num_bytes -= delayed_refs_bytes;
617                 }
618
619                 if (rsv->space_info->force_alloc)
620                         do_chunk_alloc = true;
621         } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
622                    !delayed_refs_rsv->full) {
623                 /*
624                  * Some people call with btrfs_start_transaction(root, 0)
625                  * because they can be throttled, but have some other mechanism
626                  * for reserving space.  We still want these guys to refill the
627                  * delayed block_rsv so just add 1 items worth of reservation
628                  * here.
629                  */
630                 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
631                 if (ret)
632                         goto reserve_fail;
633         }
634 again:
635         h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
636         if (!h) {
637                 ret = -ENOMEM;
638                 goto alloc_fail;
639         }
640
641         /*
642          * If we are JOIN_NOLOCK we're already committing a transaction and
643          * waiting on this guy, so we don't need to do the sb_start_intwrite
644          * because we're already holding a ref.  We need this because we could
645          * have raced in and did an fsync() on a file which can kick a commit
646          * and then we deadlock with somebody doing a freeze.
647          *
648          * If we are ATTACH, it means we just want to catch the current
649          * transaction and commit it, so we needn't do sb_start_intwrite(). 
650          */
651         if (type & __TRANS_FREEZABLE)
652                 sb_start_intwrite(fs_info->sb);
653
654         if (may_wait_transaction(fs_info, type))
655                 wait_current_trans(fs_info);
656
657         do {
658                 ret = join_transaction(fs_info, type);
659                 if (ret == -EBUSY) {
660                         wait_current_trans(fs_info);
661                         if (unlikely(type == TRANS_ATTACH ||
662                                      type == TRANS_JOIN_NOSTART))
663                                 ret = -ENOENT;
664                 }
665         } while (ret == -EBUSY);
666
667         if (ret < 0)
668                 goto join_fail;
669
670         cur_trans = fs_info->running_transaction;
671
672         h->transid = cur_trans->transid;
673         h->transaction = cur_trans;
674         refcount_set(&h->use_count, 1);
675         h->fs_info = root->fs_info;
676
677         h->type = type;
678         INIT_LIST_HEAD(&h->new_bgs);
679
680         smp_mb();
681         if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
682             may_wait_transaction(fs_info, type)) {
683                 current->journal_info = h;
684                 btrfs_commit_transaction(h);
685                 goto again;
686         }
687
688         if (num_bytes) {
689                 trace_btrfs_space_reservation(fs_info, "transaction",
690                                               h->transid, num_bytes, 1);
691                 h->block_rsv = &fs_info->trans_block_rsv;
692                 h->bytes_reserved = num_bytes;
693                 h->reloc_reserved = reloc_reserved;
694         }
695
696 got_it:
697         if (!current->journal_info)
698                 current->journal_info = h;
699
700         /*
701          * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
702          * ALLOC_FORCE the first run through, and then we won't allocate for
703          * anybody else who races in later.  We don't care about the return
704          * value here.
705          */
706         if (do_chunk_alloc && num_bytes) {
707                 u64 flags = h->block_rsv->space_info->flags;
708
709                 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
710                                   CHUNK_ALLOC_NO_FORCE);
711         }
712
713         /*
714          * btrfs_record_root_in_trans() needs to alloc new extents, and may
715          * call btrfs_join_transaction() while we're also starting a
716          * transaction.
717          *
718          * Thus it need to be called after current->journal_info initialized,
719          * or we can deadlock.
720          */
721         ret = btrfs_record_root_in_trans(h, root);
722         if (ret) {
723                 /*
724                  * The transaction handle is fully initialized and linked with
725                  * other structures so it needs to be ended in case of errors,
726                  * not just freed.
727                  */
728                 btrfs_end_transaction(h);
729                 return ERR_PTR(ret);
730         }
731
732         return h;
733
734 join_fail:
735         if (type & __TRANS_FREEZABLE)
736                 sb_end_intwrite(fs_info->sb);
737         kmem_cache_free(btrfs_trans_handle_cachep, h);
738 alloc_fail:
739         if (num_bytes)
740                 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
741                                         num_bytes, NULL);
742 reserve_fail:
743         btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
744         return ERR_PTR(ret);
745 }
746
747 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
748                                                    unsigned int num_items)
749 {
750         return start_transaction(root, num_items, TRANS_START,
751                                  BTRFS_RESERVE_FLUSH_ALL, true);
752 }
753
754 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
755                                         struct btrfs_root *root,
756                                         unsigned int num_items)
757 {
758         return start_transaction(root, num_items, TRANS_START,
759                                  BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
760 }
761
762 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
763 {
764         return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
765                                  true);
766 }
767
768 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
769 {
770         return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
771                                  BTRFS_RESERVE_NO_FLUSH, true);
772 }
773
774 /*
775  * Similar to regular join but it never starts a transaction when none is
776  * running or after waiting for the current one to finish.
777  */
778 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
779 {
780         return start_transaction(root, 0, TRANS_JOIN_NOSTART,
781                                  BTRFS_RESERVE_NO_FLUSH, true);
782 }
783
784 /*
785  * btrfs_attach_transaction() - catch the running transaction
786  *
787  * It is used when we want to commit the current the transaction, but
788  * don't want to start a new one.
789  *
790  * Note: If this function return -ENOENT, it just means there is no
791  * running transaction. But it is possible that the inactive transaction
792  * is still in the memory, not fully on disk. If you hope there is no
793  * inactive transaction in the fs when -ENOENT is returned, you should
794  * invoke
795  *     btrfs_attach_transaction_barrier()
796  */
797 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
798 {
799         return start_transaction(root, 0, TRANS_ATTACH,
800                                  BTRFS_RESERVE_NO_FLUSH, true);
801 }
802
803 /*
804  * btrfs_attach_transaction_barrier() - catch the running transaction
805  *
806  * It is similar to the above function, the difference is this one
807  * will wait for all the inactive transactions until they fully
808  * complete.
809  */
810 struct btrfs_trans_handle *
811 btrfs_attach_transaction_barrier(struct btrfs_root *root)
812 {
813         struct btrfs_trans_handle *trans;
814
815         trans = start_transaction(root, 0, TRANS_ATTACH,
816                                   BTRFS_RESERVE_NO_FLUSH, true);
817         if (trans == ERR_PTR(-ENOENT))
818                 btrfs_wait_for_commit(root->fs_info, 0);
819
820         return trans;
821 }
822
823 /* Wait for a transaction commit to reach at least the given state. */
824 static noinline void wait_for_commit(struct btrfs_transaction *commit,
825                                      const enum btrfs_trans_state min_state)
826 {
827         struct btrfs_fs_info *fs_info = commit->fs_info;
828         u64 transid = commit->transid;
829         bool put = false;
830
831         /*
832          * At the moment this function is called with min_state either being
833          * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
834          */
835         if (min_state == TRANS_STATE_COMPLETED)
836                 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
837         else
838                 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
839
840         while (1) {
841                 wait_event(commit->commit_wait, commit->state >= min_state);
842                 if (put)
843                         btrfs_put_transaction(commit);
844
845                 if (min_state < TRANS_STATE_COMPLETED)
846                         break;
847
848                 /*
849                  * A transaction isn't really completed until all of the
850                  * previous transactions are completed, but with fsync we can
851                  * end up with SUPER_COMMITTED transactions before a COMPLETED
852                  * transaction. Wait for those.
853                  */
854
855                 spin_lock(&fs_info->trans_lock);
856                 commit = list_first_entry_or_null(&fs_info->trans_list,
857                                                   struct btrfs_transaction,
858                                                   list);
859                 if (!commit || commit->transid > transid) {
860                         spin_unlock(&fs_info->trans_lock);
861                         break;
862                 }
863                 refcount_inc(&commit->use_count);
864                 put = true;
865                 spin_unlock(&fs_info->trans_lock);
866         }
867 }
868
869 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
870 {
871         struct btrfs_transaction *cur_trans = NULL, *t;
872         int ret = 0;
873
874         if (transid) {
875                 if (transid <= fs_info->last_trans_committed)
876                         goto out;
877
878                 /* find specified transaction */
879                 spin_lock(&fs_info->trans_lock);
880                 list_for_each_entry(t, &fs_info->trans_list, list) {
881                         if (t->transid == transid) {
882                                 cur_trans = t;
883                                 refcount_inc(&cur_trans->use_count);
884                                 ret = 0;
885                                 break;
886                         }
887                         if (t->transid > transid) {
888                                 ret = 0;
889                                 break;
890                         }
891                 }
892                 spin_unlock(&fs_info->trans_lock);
893
894                 /*
895                  * The specified transaction doesn't exist, or we
896                  * raced with btrfs_commit_transaction
897                  */
898                 if (!cur_trans) {
899                         if (transid > fs_info->last_trans_committed)
900                                 ret = -EINVAL;
901                         goto out;
902                 }
903         } else {
904                 /* find newest transaction that is committing | committed */
905                 spin_lock(&fs_info->trans_lock);
906                 list_for_each_entry_reverse(t, &fs_info->trans_list,
907                                             list) {
908                         if (t->state >= TRANS_STATE_COMMIT_START) {
909                                 if (t->state == TRANS_STATE_COMPLETED)
910                                         break;
911                                 cur_trans = t;
912                                 refcount_inc(&cur_trans->use_count);
913                                 break;
914                         }
915                 }
916                 spin_unlock(&fs_info->trans_lock);
917                 if (!cur_trans)
918                         goto out;  /* nothing committing|committed */
919         }
920
921         wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
922         btrfs_put_transaction(cur_trans);
923 out:
924         return ret;
925 }
926
927 void btrfs_throttle(struct btrfs_fs_info *fs_info)
928 {
929         wait_current_trans(fs_info);
930 }
931
932 static bool should_end_transaction(struct btrfs_trans_handle *trans)
933 {
934         struct btrfs_fs_info *fs_info = trans->fs_info;
935
936         if (btrfs_check_space_for_delayed_refs(fs_info))
937                 return true;
938
939         return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
940 }
941
942 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
943 {
944         struct btrfs_transaction *cur_trans = trans->transaction;
945
946         if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
947             test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
948                 return true;
949
950         return should_end_transaction(trans);
951 }
952
953 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
954
955 {
956         struct btrfs_fs_info *fs_info = trans->fs_info;
957
958         if (!trans->block_rsv) {
959                 ASSERT(!trans->bytes_reserved);
960                 return;
961         }
962
963         if (!trans->bytes_reserved)
964                 return;
965
966         ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
967         trace_btrfs_space_reservation(fs_info, "transaction",
968                                       trans->transid, trans->bytes_reserved, 0);
969         btrfs_block_rsv_release(fs_info, trans->block_rsv,
970                                 trans->bytes_reserved, NULL);
971         trans->bytes_reserved = 0;
972 }
973
974 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
975                                    int throttle)
976 {
977         struct btrfs_fs_info *info = trans->fs_info;
978         struct btrfs_transaction *cur_trans = trans->transaction;
979         int err = 0;
980
981         if (refcount_read(&trans->use_count) > 1) {
982                 refcount_dec(&trans->use_count);
983                 trans->block_rsv = trans->orig_rsv;
984                 return 0;
985         }
986
987         btrfs_trans_release_metadata(trans);
988         trans->block_rsv = NULL;
989
990         btrfs_create_pending_block_groups(trans);
991
992         btrfs_trans_release_chunk_metadata(trans);
993
994         if (trans->type & __TRANS_FREEZABLE)
995                 sb_end_intwrite(info->sb);
996
997         WARN_ON(cur_trans != info->running_transaction);
998         WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
999         atomic_dec(&cur_trans->num_writers);
1000         extwriter_counter_dec(cur_trans, trans->type);
1001
1002         cond_wake_up(&cur_trans->writer_wait);
1003
1004         btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
1005         btrfs_lockdep_release(info, btrfs_trans_num_writers);
1006
1007         btrfs_put_transaction(cur_trans);
1008
1009         if (current->journal_info == trans)
1010                 current->journal_info = NULL;
1011
1012         if (throttle)
1013                 btrfs_run_delayed_iputs(info);
1014
1015         if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1016                 wake_up_process(info->transaction_kthread);
1017                 if (TRANS_ABORTED(trans))
1018                         err = trans->aborted;
1019                 else
1020                         err = -EROFS;
1021         }
1022
1023         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1024         return err;
1025 }
1026
1027 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1028 {
1029         return __btrfs_end_transaction(trans, 0);
1030 }
1031
1032 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1033 {
1034         return __btrfs_end_transaction(trans, 1);
1035 }
1036
1037 /*
1038  * when btree blocks are allocated, they have some corresponding bits set for
1039  * them in one of two extent_io trees.  This is used to make sure all of
1040  * those extents are sent to disk but does not wait on them
1041  */
1042 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1043                                struct extent_io_tree *dirty_pages, int mark)
1044 {
1045         int err = 0;
1046         int werr = 0;
1047         struct address_space *mapping = fs_info->btree_inode->i_mapping;
1048         struct extent_state *cached_state = NULL;
1049         u64 start = 0;
1050         u64 end;
1051
1052         atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1053         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1054                                       mark, &cached_state)) {
1055                 bool wait_writeback = false;
1056
1057                 err = convert_extent_bit(dirty_pages, start, end,
1058                                          EXTENT_NEED_WAIT,
1059                                          mark, &cached_state);
1060                 /*
1061                  * convert_extent_bit can return -ENOMEM, which is most of the
1062                  * time a temporary error. So when it happens, ignore the error
1063                  * and wait for writeback of this range to finish - because we
1064                  * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1065                  * to __btrfs_wait_marked_extents() would not know that
1066                  * writeback for this range started and therefore wouldn't
1067                  * wait for it to finish - we don't want to commit a
1068                  * superblock that points to btree nodes/leafs for which
1069                  * writeback hasn't finished yet (and without errors).
1070                  * We cleanup any entries left in the io tree when committing
1071                  * the transaction (through extent_io_tree_release()).
1072                  */
1073                 if (err == -ENOMEM) {
1074                         err = 0;
1075                         wait_writeback = true;
1076                 }
1077                 if (!err)
1078                         err = filemap_fdatawrite_range(mapping, start, end);
1079                 if (err)
1080                         werr = err;
1081                 else if (wait_writeback)
1082                         werr = filemap_fdatawait_range(mapping, start, end);
1083                 free_extent_state(cached_state);
1084                 cached_state = NULL;
1085                 cond_resched();
1086                 start = end + 1;
1087         }
1088         atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1089         return werr;
1090 }
1091
1092 /*
1093  * when btree blocks are allocated, they have some corresponding bits set for
1094  * them in one of two extent_io trees.  This is used to make sure all of
1095  * those extents are on disk for transaction or log commit.  We wait
1096  * on all the pages and clear them from the dirty pages state tree
1097  */
1098 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1099                                        struct extent_io_tree *dirty_pages)
1100 {
1101         int err = 0;
1102         int werr = 0;
1103         struct address_space *mapping = fs_info->btree_inode->i_mapping;
1104         struct extent_state *cached_state = NULL;
1105         u64 start = 0;
1106         u64 end;
1107
1108         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1109                                       EXTENT_NEED_WAIT, &cached_state)) {
1110                 /*
1111                  * Ignore -ENOMEM errors returned by clear_extent_bit().
1112                  * When committing the transaction, we'll remove any entries
1113                  * left in the io tree. For a log commit, we don't remove them
1114                  * after committing the log because the tree can be accessed
1115                  * concurrently - we do it only at transaction commit time when
1116                  * it's safe to do it (through extent_io_tree_release()).
1117                  */
1118                 err = clear_extent_bit(dirty_pages, start, end,
1119                                        EXTENT_NEED_WAIT, 0, 0, &cached_state);
1120                 if (err == -ENOMEM)
1121                         err = 0;
1122                 if (!err)
1123                         err = filemap_fdatawait_range(mapping, start, end);
1124                 if (err)
1125                         werr = err;
1126                 free_extent_state(cached_state);
1127                 cached_state = NULL;
1128                 cond_resched();
1129                 start = end + 1;
1130         }
1131         if (err)
1132                 werr = err;
1133         return werr;
1134 }
1135
1136 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1137                        struct extent_io_tree *dirty_pages)
1138 {
1139         bool errors = false;
1140         int err;
1141
1142         err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1143         if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1144                 errors = true;
1145
1146         if (errors && !err)
1147                 err = -EIO;
1148         return err;
1149 }
1150
1151 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1152 {
1153         struct btrfs_fs_info *fs_info = log_root->fs_info;
1154         struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1155         bool errors = false;
1156         int err;
1157
1158         ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1159
1160         err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1161         if ((mark & EXTENT_DIRTY) &&
1162             test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1163                 errors = true;
1164
1165         if ((mark & EXTENT_NEW) &&
1166             test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1167                 errors = true;
1168
1169         if (errors && !err)
1170                 err = -EIO;
1171         return err;
1172 }
1173
1174 /*
1175  * When btree blocks are allocated the corresponding extents are marked dirty.
1176  * This function ensures such extents are persisted on disk for transaction or
1177  * log commit.
1178  *
1179  * @trans: transaction whose dirty pages we'd like to write
1180  */
1181 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1182 {
1183         int ret;
1184         int ret2;
1185         struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1186         struct btrfs_fs_info *fs_info = trans->fs_info;
1187         struct blk_plug plug;
1188
1189         blk_start_plug(&plug);
1190         ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1191         blk_finish_plug(&plug);
1192         ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1193
1194         extent_io_tree_release(&trans->transaction->dirty_pages);
1195
1196         if (ret)
1197                 return ret;
1198         else if (ret2)
1199                 return ret2;
1200         else
1201                 return 0;
1202 }
1203
1204 /*
1205  * this is used to update the root pointer in the tree of tree roots.
1206  *
1207  * But, in the case of the extent allocation tree, updating the root
1208  * pointer may allocate blocks which may change the root of the extent
1209  * allocation tree.
1210  *
1211  * So, this loops and repeats and makes sure the cowonly root didn't
1212  * change while the root pointer was being updated in the metadata.
1213  */
1214 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1215                                struct btrfs_root *root)
1216 {
1217         int ret;
1218         u64 old_root_bytenr;
1219         u64 old_root_used;
1220         struct btrfs_fs_info *fs_info = root->fs_info;
1221         struct btrfs_root *tree_root = fs_info->tree_root;
1222
1223         old_root_used = btrfs_root_used(&root->root_item);
1224
1225         while (1) {
1226                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1227                 if (old_root_bytenr == root->node->start &&
1228                     old_root_used == btrfs_root_used(&root->root_item))
1229                         break;
1230
1231                 btrfs_set_root_node(&root->root_item, root->node);
1232                 ret = btrfs_update_root(trans, tree_root,
1233                                         &root->root_key,
1234                                         &root->root_item);
1235                 if (ret)
1236                         return ret;
1237
1238                 old_root_used = btrfs_root_used(&root->root_item);
1239         }
1240
1241         return 0;
1242 }
1243
1244 /*
1245  * update all the cowonly tree roots on disk
1246  *
1247  * The error handling in this function may not be obvious. Any of the
1248  * failures will cause the file system to go offline. We still need
1249  * to clean up the delayed refs.
1250  */
1251 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1252 {
1253         struct btrfs_fs_info *fs_info = trans->fs_info;
1254         struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1255         struct list_head *io_bgs = &trans->transaction->io_bgs;
1256         struct list_head *next;
1257         struct extent_buffer *eb;
1258         int ret;
1259
1260         /*
1261          * At this point no one can be using this transaction to modify any tree
1262          * and no one can start another transaction to modify any tree either.
1263          */
1264         ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1265
1266         eb = btrfs_lock_root_node(fs_info->tree_root);
1267         ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1268                               0, &eb, BTRFS_NESTING_COW);
1269         btrfs_tree_unlock(eb);
1270         free_extent_buffer(eb);
1271
1272         if (ret)
1273                 return ret;
1274
1275         ret = btrfs_run_dev_stats(trans);
1276         if (ret)
1277                 return ret;
1278         ret = btrfs_run_dev_replace(trans);
1279         if (ret)
1280                 return ret;
1281         ret = btrfs_run_qgroups(trans);
1282         if (ret)
1283                 return ret;
1284
1285         ret = btrfs_setup_space_cache(trans);
1286         if (ret)
1287                 return ret;
1288
1289 again:
1290         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1291                 struct btrfs_root *root;
1292                 next = fs_info->dirty_cowonly_roots.next;
1293                 list_del_init(next);
1294                 root = list_entry(next, struct btrfs_root, dirty_list);
1295                 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1296
1297                 list_add_tail(&root->dirty_list,
1298                               &trans->transaction->switch_commits);
1299                 ret = update_cowonly_root(trans, root);
1300                 if (ret)
1301                         return ret;
1302         }
1303
1304         /* Now flush any delayed refs generated by updating all of the roots */
1305         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1306         if (ret)
1307                 return ret;
1308
1309         while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1310                 ret = btrfs_write_dirty_block_groups(trans);
1311                 if (ret)
1312                         return ret;
1313
1314                 /*
1315                  * We're writing the dirty block groups, which could generate
1316                  * delayed refs, which could generate more dirty block groups,
1317                  * so we want to keep this flushing in this loop to make sure
1318                  * everything gets run.
1319                  */
1320                 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1321                 if (ret)
1322                         return ret;
1323         }
1324
1325         if (!list_empty(&fs_info->dirty_cowonly_roots))
1326                 goto again;
1327
1328         /* Update dev-replace pointer once everything is committed */
1329         fs_info->dev_replace.committed_cursor_left =
1330                 fs_info->dev_replace.cursor_left_last_write_of_item;
1331
1332         return 0;
1333 }
1334
1335 /*
1336  * If we had a pending drop we need to see if there are any others left in our
1337  * dead roots list, and if not clear our bit and wake any waiters.
1338  */
1339 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1340 {
1341         /*
1342          * We put the drop in progress roots at the front of the list, so if the
1343          * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1344          * up.
1345          */
1346         spin_lock(&fs_info->trans_lock);
1347         if (!list_empty(&fs_info->dead_roots)) {
1348                 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1349                                                            struct btrfs_root,
1350                                                            root_list);
1351                 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1352                         spin_unlock(&fs_info->trans_lock);
1353                         return;
1354                 }
1355         }
1356         spin_unlock(&fs_info->trans_lock);
1357
1358         btrfs_wake_unfinished_drop(fs_info);
1359 }
1360
1361 /*
1362  * dead roots are old snapshots that need to be deleted.  This allocates
1363  * a dirty root struct and adds it into the list of dead roots that need to
1364  * be deleted
1365  */
1366 void btrfs_add_dead_root(struct btrfs_root *root)
1367 {
1368         struct btrfs_fs_info *fs_info = root->fs_info;
1369
1370         spin_lock(&fs_info->trans_lock);
1371         if (list_empty(&root->root_list)) {
1372                 btrfs_grab_root(root);
1373
1374                 /* We want to process the partially complete drops first. */
1375                 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1376                         list_add(&root->root_list, &fs_info->dead_roots);
1377                 else
1378                         list_add_tail(&root->root_list, &fs_info->dead_roots);
1379         }
1380         spin_unlock(&fs_info->trans_lock);
1381 }
1382
1383 /*
1384  * Update each subvolume root and its relocation root, if it exists, in the tree
1385  * of tree roots. Also free log roots if they exist.
1386  */
1387 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1388 {
1389         struct btrfs_fs_info *fs_info = trans->fs_info;
1390         struct btrfs_root *gang[8];
1391         int i;
1392         int ret;
1393
1394         /*
1395          * At this point no one can be using this transaction to modify any tree
1396          * and no one can start another transaction to modify any tree either.
1397          */
1398         ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1399
1400         spin_lock(&fs_info->fs_roots_radix_lock);
1401         while (1) {
1402                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1403                                                  (void **)gang, 0,
1404                                                  ARRAY_SIZE(gang),
1405                                                  BTRFS_ROOT_TRANS_TAG);
1406                 if (ret == 0)
1407                         break;
1408                 for (i = 0; i < ret; i++) {
1409                         struct btrfs_root *root = gang[i];
1410                         int ret2;
1411
1412                         /*
1413                          * At this point we can neither have tasks logging inodes
1414                          * from a root nor trying to commit a log tree.
1415                          */
1416                         ASSERT(atomic_read(&root->log_writers) == 0);
1417                         ASSERT(atomic_read(&root->log_commit[0]) == 0);
1418                         ASSERT(atomic_read(&root->log_commit[1]) == 0);
1419
1420                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
1421                                         (unsigned long)root->root_key.objectid,
1422                                         BTRFS_ROOT_TRANS_TAG);
1423                         spin_unlock(&fs_info->fs_roots_radix_lock);
1424
1425                         btrfs_free_log(trans, root);
1426                         ret2 = btrfs_update_reloc_root(trans, root);
1427                         if (ret2)
1428                                 return ret2;
1429
1430                         /* see comments in should_cow_block() */
1431                         clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1432                         smp_mb__after_atomic();
1433
1434                         if (root->commit_root != root->node) {
1435                                 list_add_tail(&root->dirty_list,
1436                                         &trans->transaction->switch_commits);
1437                                 btrfs_set_root_node(&root->root_item,
1438                                                     root->node);
1439                         }
1440
1441                         ret2 = btrfs_update_root(trans, fs_info->tree_root,
1442                                                 &root->root_key,
1443                                                 &root->root_item);
1444                         if (ret2)
1445                                 return ret2;
1446                         spin_lock(&fs_info->fs_roots_radix_lock);
1447                         btrfs_qgroup_free_meta_all_pertrans(root);
1448                 }
1449         }
1450         spin_unlock(&fs_info->fs_roots_radix_lock);
1451         return 0;
1452 }
1453
1454 /*
1455  * defrag a given btree.
1456  * Every leaf in the btree is read and defragged.
1457  */
1458 int btrfs_defrag_root(struct btrfs_root *root)
1459 {
1460         struct btrfs_fs_info *info = root->fs_info;
1461         struct btrfs_trans_handle *trans;
1462         int ret;
1463
1464         if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1465                 return 0;
1466
1467         while (1) {
1468                 trans = btrfs_start_transaction(root, 0);
1469                 if (IS_ERR(trans)) {
1470                         ret = PTR_ERR(trans);
1471                         break;
1472                 }
1473
1474                 ret = btrfs_defrag_leaves(trans, root);
1475
1476                 btrfs_end_transaction(trans);
1477                 btrfs_btree_balance_dirty(info);
1478                 cond_resched();
1479
1480                 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1481                         break;
1482
1483                 if (btrfs_defrag_cancelled(info)) {
1484                         btrfs_debug(info, "defrag_root cancelled");
1485                         ret = -EAGAIN;
1486                         break;
1487                 }
1488         }
1489         clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1490         return ret;
1491 }
1492
1493 /*
1494  * Do all special snapshot related qgroup dirty hack.
1495  *
1496  * Will do all needed qgroup inherit and dirty hack like switch commit
1497  * roots inside one transaction and write all btree into disk, to make
1498  * qgroup works.
1499  */
1500 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1501                                    struct btrfs_root *src,
1502                                    struct btrfs_root *parent,
1503                                    struct btrfs_qgroup_inherit *inherit,
1504                                    u64 dst_objectid)
1505 {
1506         struct btrfs_fs_info *fs_info = src->fs_info;
1507         int ret;
1508
1509         /*
1510          * Save some performance in the case that qgroups are not
1511          * enabled. If this check races with the ioctl, rescan will
1512          * kick in anyway.
1513          */
1514         if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1515                 return 0;
1516
1517         /*
1518          * Ensure dirty @src will be committed.  Or, after coming
1519          * commit_fs_roots() and switch_commit_roots(), any dirty but not
1520          * recorded root will never be updated again, causing an outdated root
1521          * item.
1522          */
1523         ret = record_root_in_trans(trans, src, 1);
1524         if (ret)
1525                 return ret;
1526
1527         /*
1528          * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1529          * src root, so we must run the delayed refs here.
1530          *
1531          * However this isn't particularly fool proof, because there's no
1532          * synchronization keeping us from changing the tree after this point
1533          * before we do the qgroup_inherit, or even from making changes while
1534          * we're doing the qgroup_inherit.  But that's a problem for the future,
1535          * for now flush the delayed refs to narrow the race window where the
1536          * qgroup counters could end up wrong.
1537          */
1538         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1539         if (ret) {
1540                 btrfs_abort_transaction(trans, ret);
1541                 return ret;
1542         }
1543
1544         ret = commit_fs_roots(trans);
1545         if (ret)
1546                 goto out;
1547         ret = btrfs_qgroup_account_extents(trans);
1548         if (ret < 0)
1549                 goto out;
1550
1551         /* Now qgroup are all updated, we can inherit it to new qgroups */
1552         ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1553                                    inherit);
1554         if (ret < 0)
1555                 goto out;
1556
1557         /*
1558          * Now we do a simplified commit transaction, which will:
1559          * 1) commit all subvolume and extent tree
1560          *    To ensure all subvolume and extent tree have a valid
1561          *    commit_root to accounting later insert_dir_item()
1562          * 2) write all btree blocks onto disk
1563          *    This is to make sure later btree modification will be cowed
1564          *    Or commit_root can be populated and cause wrong qgroup numbers
1565          * In this simplified commit, we don't really care about other trees
1566          * like chunk and root tree, as they won't affect qgroup.
1567          * And we don't write super to avoid half committed status.
1568          */
1569         ret = commit_cowonly_roots(trans);
1570         if (ret)
1571                 goto out;
1572         switch_commit_roots(trans);
1573         ret = btrfs_write_and_wait_transaction(trans);
1574         if (ret)
1575                 btrfs_handle_fs_error(fs_info, ret,
1576                         "Error while writing out transaction for qgroup");
1577
1578 out:
1579         /*
1580          * Force parent root to be updated, as we recorded it before so its
1581          * last_trans == cur_transid.
1582          * Or it won't be committed again onto disk after later
1583          * insert_dir_item()
1584          */
1585         if (!ret)
1586                 ret = record_root_in_trans(trans, parent, 1);
1587         return ret;
1588 }
1589
1590 /*
1591  * new snapshots need to be created at a very specific time in the
1592  * transaction commit.  This does the actual creation.
1593  *
1594  * Note:
1595  * If the error which may affect the commitment of the current transaction
1596  * happens, we should return the error number. If the error which just affect
1597  * the creation of the pending snapshots, just return 0.
1598  */
1599 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1600                                    struct btrfs_pending_snapshot *pending)
1601 {
1602
1603         struct btrfs_fs_info *fs_info = trans->fs_info;
1604         struct btrfs_key key;
1605         struct btrfs_root_item *new_root_item;
1606         struct btrfs_root *tree_root = fs_info->tree_root;
1607         struct btrfs_root *root = pending->root;
1608         struct btrfs_root *parent_root;
1609         struct btrfs_block_rsv *rsv;
1610         struct inode *parent_inode;
1611         struct btrfs_path *path;
1612         struct btrfs_dir_item *dir_item;
1613         struct dentry *dentry;
1614         struct extent_buffer *tmp;
1615         struct extent_buffer *old;
1616         struct timespec64 cur_time;
1617         int ret = 0;
1618         u64 to_reserve = 0;
1619         u64 index = 0;
1620         u64 objectid;
1621         u64 root_flags;
1622
1623         ASSERT(pending->path);
1624         path = pending->path;
1625
1626         ASSERT(pending->root_item);
1627         new_root_item = pending->root_item;
1628
1629         pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1630         if (pending->error)
1631                 goto no_free_objectid;
1632
1633         /*
1634          * Make qgroup to skip current new snapshot's qgroupid, as it is
1635          * accounted by later btrfs_qgroup_inherit().
1636          */
1637         btrfs_set_skip_qgroup(trans, objectid);
1638
1639         btrfs_reloc_pre_snapshot(pending, &to_reserve);
1640
1641         if (to_reserve > 0) {
1642                 pending->error = btrfs_block_rsv_add(fs_info,
1643                                                      &pending->block_rsv,
1644                                                      to_reserve,
1645                                                      BTRFS_RESERVE_NO_FLUSH);
1646                 if (pending->error)
1647                         goto clear_skip_qgroup;
1648         }
1649
1650         key.objectid = objectid;
1651         key.offset = (u64)-1;
1652         key.type = BTRFS_ROOT_ITEM_KEY;
1653
1654         rsv = trans->block_rsv;
1655         trans->block_rsv = &pending->block_rsv;
1656         trans->bytes_reserved = trans->block_rsv->reserved;
1657         trace_btrfs_space_reservation(fs_info, "transaction",
1658                                       trans->transid,
1659                                       trans->bytes_reserved, 1);
1660         dentry = pending->dentry;
1661         parent_inode = pending->dir;
1662         parent_root = BTRFS_I(parent_inode)->root;
1663         ret = record_root_in_trans(trans, parent_root, 0);
1664         if (ret)
1665                 goto fail;
1666         cur_time = current_time(parent_inode);
1667
1668         /*
1669          * insert the directory item
1670          */
1671         ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1672         BUG_ON(ret); /* -ENOMEM */
1673
1674         /* check if there is a file/dir which has the same name. */
1675         dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1676                                          btrfs_ino(BTRFS_I(parent_inode)),
1677                                          dentry->d_name.name,
1678                                          dentry->d_name.len, 0);
1679         if (dir_item != NULL && !IS_ERR(dir_item)) {
1680                 pending->error = -EEXIST;
1681                 goto dir_item_existed;
1682         } else if (IS_ERR(dir_item)) {
1683                 ret = PTR_ERR(dir_item);
1684                 btrfs_abort_transaction(trans, ret);
1685                 goto fail;
1686         }
1687         btrfs_release_path(path);
1688
1689         /*
1690          * pull in the delayed directory update
1691          * and the delayed inode item
1692          * otherwise we corrupt the FS during
1693          * snapshot
1694          */
1695         ret = btrfs_run_delayed_items(trans);
1696         if (ret) {      /* Transaction aborted */
1697                 btrfs_abort_transaction(trans, ret);
1698                 goto fail;
1699         }
1700
1701         ret = record_root_in_trans(trans, root, 0);
1702         if (ret) {
1703                 btrfs_abort_transaction(trans, ret);
1704                 goto fail;
1705         }
1706         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1707         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1708         btrfs_check_and_init_root_item(new_root_item);
1709
1710         root_flags = btrfs_root_flags(new_root_item);
1711         if (pending->readonly)
1712                 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1713         else
1714                 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1715         btrfs_set_root_flags(new_root_item, root_flags);
1716
1717         btrfs_set_root_generation_v2(new_root_item,
1718                         trans->transid);
1719         generate_random_guid(new_root_item->uuid);
1720         memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1721                         BTRFS_UUID_SIZE);
1722         if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1723                 memset(new_root_item->received_uuid, 0,
1724                        sizeof(new_root_item->received_uuid));
1725                 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1726                 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1727                 btrfs_set_root_stransid(new_root_item, 0);
1728                 btrfs_set_root_rtransid(new_root_item, 0);
1729         }
1730         btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1731         btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1732         btrfs_set_root_otransid(new_root_item, trans->transid);
1733
1734         old = btrfs_lock_root_node(root);
1735         ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1736                               BTRFS_NESTING_COW);
1737         if (ret) {
1738                 btrfs_tree_unlock(old);
1739                 free_extent_buffer(old);
1740                 btrfs_abort_transaction(trans, ret);
1741                 goto fail;
1742         }
1743
1744         ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1745         /* clean up in any case */
1746         btrfs_tree_unlock(old);
1747         free_extent_buffer(old);
1748         if (ret) {
1749                 btrfs_abort_transaction(trans, ret);
1750                 goto fail;
1751         }
1752         /* see comments in should_cow_block() */
1753         set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1754         smp_wmb();
1755
1756         btrfs_set_root_node(new_root_item, tmp);
1757         /* record when the snapshot was created in key.offset */
1758         key.offset = trans->transid;
1759         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1760         btrfs_tree_unlock(tmp);
1761         free_extent_buffer(tmp);
1762         if (ret) {
1763                 btrfs_abort_transaction(trans, ret);
1764                 goto fail;
1765         }
1766
1767         /*
1768          * insert root back/forward references
1769          */
1770         ret = btrfs_add_root_ref(trans, objectid,
1771                                  parent_root->root_key.objectid,
1772                                  btrfs_ino(BTRFS_I(parent_inode)), index,
1773                                  dentry->d_name.name, dentry->d_name.len);
1774         if (ret) {
1775                 btrfs_abort_transaction(trans, ret);
1776                 goto fail;
1777         }
1778
1779         key.offset = (u64)-1;
1780         pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1781         if (IS_ERR(pending->snap)) {
1782                 ret = PTR_ERR(pending->snap);
1783                 pending->snap = NULL;
1784                 btrfs_abort_transaction(trans, ret);
1785                 goto fail;
1786         }
1787
1788         ret = btrfs_reloc_post_snapshot(trans, pending);
1789         if (ret) {
1790                 btrfs_abort_transaction(trans, ret);
1791                 goto fail;
1792         }
1793
1794         /*
1795          * Do special qgroup accounting for snapshot, as we do some qgroup
1796          * snapshot hack to do fast snapshot.
1797          * To co-operate with that hack, we do hack again.
1798          * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1799          */
1800         ret = qgroup_account_snapshot(trans, root, parent_root,
1801                                       pending->inherit, objectid);
1802         if (ret < 0)
1803                 goto fail;
1804
1805         ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1806                                     dentry->d_name.len, BTRFS_I(parent_inode),
1807                                     &key, BTRFS_FT_DIR, index);
1808         /* We have check then name at the beginning, so it is impossible. */
1809         BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1810         if (ret) {
1811                 btrfs_abort_transaction(trans, ret);
1812                 goto fail;
1813         }
1814
1815         btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1816                                          dentry->d_name.len * 2);
1817         parent_inode->i_mtime = current_time(parent_inode);
1818         parent_inode->i_ctime = parent_inode->i_mtime;
1819         ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
1820         if (ret) {
1821                 btrfs_abort_transaction(trans, ret);
1822                 goto fail;
1823         }
1824         ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1825                                   BTRFS_UUID_KEY_SUBVOL,
1826                                   objectid);
1827         if (ret) {
1828                 btrfs_abort_transaction(trans, ret);
1829                 goto fail;
1830         }
1831         if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1832                 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1833                                           BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1834                                           objectid);
1835                 if (ret && ret != -EEXIST) {
1836                         btrfs_abort_transaction(trans, ret);
1837                         goto fail;
1838                 }
1839         }
1840
1841 fail:
1842         pending->error = ret;
1843 dir_item_existed:
1844         trans->block_rsv = rsv;
1845         trans->bytes_reserved = 0;
1846 clear_skip_qgroup:
1847         btrfs_clear_skip_qgroup(trans);
1848 no_free_objectid:
1849         kfree(new_root_item);
1850         pending->root_item = NULL;
1851         btrfs_free_path(path);
1852         pending->path = NULL;
1853
1854         return ret;
1855 }
1856
1857 /*
1858  * create all the snapshots we've scheduled for creation
1859  */
1860 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1861 {
1862         struct btrfs_pending_snapshot *pending, *next;
1863         struct list_head *head = &trans->transaction->pending_snapshots;
1864         int ret = 0;
1865
1866         list_for_each_entry_safe(pending, next, head, list) {
1867                 list_del(&pending->list);
1868                 ret = create_pending_snapshot(trans, pending);
1869                 if (ret)
1870                         break;
1871         }
1872         return ret;
1873 }
1874
1875 static void update_super_roots(struct btrfs_fs_info *fs_info)
1876 {
1877         struct btrfs_root_item *root_item;
1878         struct btrfs_super_block *super;
1879
1880         super = fs_info->super_copy;
1881
1882         root_item = &fs_info->chunk_root->root_item;
1883         super->chunk_root = root_item->bytenr;
1884         super->chunk_root_generation = root_item->generation;
1885         super->chunk_root_level = root_item->level;
1886
1887         root_item = &fs_info->tree_root->root_item;
1888         super->root = root_item->bytenr;
1889         super->generation = root_item->generation;
1890         super->root_level = root_item->level;
1891         if (btrfs_test_opt(fs_info, SPACE_CACHE))
1892                 super->cache_generation = root_item->generation;
1893         else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1894                 super->cache_generation = 0;
1895         if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1896                 super->uuid_tree_generation = root_item->generation;
1897 }
1898
1899 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1900 {
1901         struct btrfs_transaction *trans;
1902         int ret = 0;
1903
1904         spin_lock(&info->trans_lock);
1905         trans = info->running_transaction;
1906         if (trans)
1907                 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1908         spin_unlock(&info->trans_lock);
1909         return ret;
1910 }
1911
1912 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1913 {
1914         struct btrfs_transaction *trans;
1915         int ret = 0;
1916
1917         spin_lock(&info->trans_lock);
1918         trans = info->running_transaction;
1919         if (trans)
1920                 ret = is_transaction_blocked(trans);
1921         spin_unlock(&info->trans_lock);
1922         return ret;
1923 }
1924
1925 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1926 {
1927         struct btrfs_fs_info *fs_info = trans->fs_info;
1928         struct btrfs_transaction *cur_trans;
1929
1930         /* Kick the transaction kthread. */
1931         set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1932         wake_up_process(fs_info->transaction_kthread);
1933
1934         /* take transaction reference */
1935         cur_trans = trans->transaction;
1936         refcount_inc(&cur_trans->use_count);
1937
1938         btrfs_end_transaction(trans);
1939
1940         /*
1941          * Wait for the current transaction commit to start and block
1942          * subsequent transaction joins
1943          */
1944         btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
1945         wait_event(fs_info->transaction_blocked_wait,
1946                    cur_trans->state >= TRANS_STATE_COMMIT_START ||
1947                    TRANS_ABORTED(cur_trans));
1948         btrfs_put_transaction(cur_trans);
1949 }
1950
1951 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1952 {
1953         struct btrfs_fs_info *fs_info = trans->fs_info;
1954         struct btrfs_transaction *cur_trans = trans->transaction;
1955
1956         WARN_ON(refcount_read(&trans->use_count) > 1);
1957
1958         btrfs_abort_transaction(trans, err);
1959
1960         spin_lock(&fs_info->trans_lock);
1961
1962         /*
1963          * If the transaction is removed from the list, it means this
1964          * transaction has been committed successfully, so it is impossible
1965          * to call the cleanup function.
1966          */
1967         BUG_ON(list_empty(&cur_trans->list));
1968
1969         if (cur_trans == fs_info->running_transaction) {
1970                 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1971                 spin_unlock(&fs_info->trans_lock);
1972
1973                 /*
1974                  * The thread has already released the lockdep map as reader
1975                  * already in btrfs_commit_transaction().
1976                  */
1977                 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
1978                 wait_event(cur_trans->writer_wait,
1979                            atomic_read(&cur_trans->num_writers) == 1);
1980
1981                 spin_lock(&fs_info->trans_lock);
1982         }
1983
1984         /*
1985          * Now that we know no one else is still using the transaction we can
1986          * remove the transaction from the list of transactions. This avoids
1987          * the transaction kthread from cleaning up the transaction while some
1988          * other task is still using it, which could result in a use-after-free
1989          * on things like log trees, as it forces the transaction kthread to
1990          * wait for this transaction to be cleaned up by us.
1991          */
1992         list_del_init(&cur_trans->list);
1993
1994         spin_unlock(&fs_info->trans_lock);
1995
1996         btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1997
1998         spin_lock(&fs_info->trans_lock);
1999         if (cur_trans == fs_info->running_transaction)
2000                 fs_info->running_transaction = NULL;
2001         spin_unlock(&fs_info->trans_lock);
2002
2003         if (trans->type & __TRANS_FREEZABLE)
2004                 sb_end_intwrite(fs_info->sb);
2005         btrfs_put_transaction(cur_trans);
2006         btrfs_put_transaction(cur_trans);
2007
2008         trace_btrfs_transaction_commit(fs_info);
2009
2010         if (current->journal_info == trans)
2011                 current->journal_info = NULL;
2012         btrfs_scrub_cancel(fs_info);
2013
2014         kmem_cache_free(btrfs_trans_handle_cachep, trans);
2015 }
2016
2017 /*
2018  * Release reserved delayed ref space of all pending block groups of the
2019  * transaction and remove them from the list
2020  */
2021 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2022 {
2023        struct btrfs_fs_info *fs_info = trans->fs_info;
2024        struct btrfs_block_group *block_group, *tmp;
2025
2026        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2027                btrfs_delayed_refs_rsv_release(fs_info, 1);
2028                list_del_init(&block_group->bg_list);
2029        }
2030 }
2031
2032 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2033 {
2034         /*
2035          * We use try_to_writeback_inodes_sb() here because if we used
2036          * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2037          * Currently are holding the fs freeze lock, if we do an async flush
2038          * we'll do btrfs_join_transaction() and deadlock because we need to
2039          * wait for the fs freeze lock.  Using the direct flushing we benefit
2040          * from already being in a transaction and our join_transaction doesn't
2041          * have to re-take the fs freeze lock.
2042          *
2043          * Note that try_to_writeback_inodes_sb() will only trigger writeback
2044          * if it can read lock sb->s_umount. It will always be able to lock it,
2045          * except when the filesystem is being unmounted or being frozen, but in
2046          * those cases sync_filesystem() is called, which results in calling
2047          * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2048          * Note that we don't call writeback_inodes_sb() directly, because it
2049          * will emit a warning if sb->s_umount is not locked.
2050          */
2051         if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2052                 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2053         return 0;
2054 }
2055
2056 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2057 {
2058         if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2059                 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2060 }
2061
2062 /*
2063  * Add a pending snapshot associated with the given transaction handle to the
2064  * respective handle. This must be called after the transaction commit started
2065  * and while holding fs_info->trans_lock.
2066  * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2067  * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2068  * returns an error.
2069  */
2070 static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2071 {
2072         struct btrfs_transaction *cur_trans = trans->transaction;
2073
2074         if (!trans->pending_snapshot)
2075                 return;
2076
2077         lockdep_assert_held(&trans->fs_info->trans_lock);
2078         ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_START);
2079
2080         list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2081 }
2082
2083 static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2084 {
2085         fs_info->commit_stats.commit_count++;
2086         fs_info->commit_stats.last_commit_dur = interval;
2087         fs_info->commit_stats.max_commit_dur =
2088                         max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2089         fs_info->commit_stats.total_commit_dur += interval;
2090 }
2091
2092 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2093 {
2094         struct btrfs_fs_info *fs_info = trans->fs_info;
2095         struct btrfs_transaction *cur_trans = trans->transaction;
2096         struct btrfs_transaction *prev_trans = NULL;
2097         int ret;
2098         ktime_t start_time;
2099         ktime_t interval;
2100
2101         ASSERT(refcount_read(&trans->use_count) == 1);
2102         btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2103
2104         /* Stop the commit early if ->aborted is set */
2105         if (TRANS_ABORTED(cur_trans)) {
2106                 ret = cur_trans->aborted;
2107                 goto lockdep_trans_commit_start_release;
2108         }
2109
2110         btrfs_trans_release_metadata(trans);
2111         trans->block_rsv = NULL;
2112
2113         /*
2114          * We only want one transaction commit doing the flushing so we do not
2115          * waste a bunch of time on lock contention on the extent root node.
2116          */
2117         if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2118                               &cur_trans->delayed_refs.flags)) {
2119                 /*
2120                  * Make a pass through all the delayed refs we have so far.
2121                  * Any running threads may add more while we are here.
2122                  */
2123                 ret = btrfs_run_delayed_refs(trans, 0);
2124                 if (ret)
2125                         goto lockdep_trans_commit_start_release;
2126         }
2127
2128         btrfs_create_pending_block_groups(trans);
2129
2130         if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2131                 int run_it = 0;
2132
2133                 /* this mutex is also taken before trying to set
2134                  * block groups readonly.  We need to make sure
2135                  * that nobody has set a block group readonly
2136                  * after a extents from that block group have been
2137                  * allocated for cache files.  btrfs_set_block_group_ro
2138                  * will wait for the transaction to commit if it
2139                  * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2140                  *
2141                  * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2142                  * only one process starts all the block group IO.  It wouldn't
2143                  * hurt to have more than one go through, but there's no
2144                  * real advantage to it either.
2145                  */
2146                 mutex_lock(&fs_info->ro_block_group_mutex);
2147                 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2148                                       &cur_trans->flags))
2149                         run_it = 1;
2150                 mutex_unlock(&fs_info->ro_block_group_mutex);
2151
2152                 if (run_it) {
2153                         ret = btrfs_start_dirty_block_groups(trans);
2154                         if (ret)
2155                                 goto lockdep_trans_commit_start_release;
2156                 }
2157         }
2158
2159         spin_lock(&fs_info->trans_lock);
2160         if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2161                 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2162
2163                 add_pending_snapshot(trans);
2164
2165                 spin_unlock(&fs_info->trans_lock);
2166                 refcount_inc(&cur_trans->use_count);
2167
2168                 if (trans->in_fsync)
2169                         want_state = TRANS_STATE_SUPER_COMMITTED;
2170
2171                 btrfs_trans_state_lockdep_release(fs_info,
2172                                                   BTRFS_LOCKDEP_TRANS_COMMIT_START);
2173                 ret = btrfs_end_transaction(trans);
2174                 wait_for_commit(cur_trans, want_state);
2175
2176                 if (TRANS_ABORTED(cur_trans))
2177                         ret = cur_trans->aborted;
2178
2179                 btrfs_put_transaction(cur_trans);
2180
2181                 return ret;
2182         }
2183
2184         cur_trans->state = TRANS_STATE_COMMIT_START;
2185         wake_up(&fs_info->transaction_blocked_wait);
2186         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2187
2188         if (cur_trans->list.prev != &fs_info->trans_list) {
2189                 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2190
2191                 if (trans->in_fsync)
2192                         want_state = TRANS_STATE_SUPER_COMMITTED;
2193
2194                 prev_trans = list_entry(cur_trans->list.prev,
2195                                         struct btrfs_transaction, list);
2196                 if (prev_trans->state < want_state) {
2197                         refcount_inc(&prev_trans->use_count);
2198                         spin_unlock(&fs_info->trans_lock);
2199
2200                         wait_for_commit(prev_trans, want_state);
2201
2202                         ret = READ_ONCE(prev_trans->aborted);
2203
2204                         btrfs_put_transaction(prev_trans);
2205                         if (ret)
2206                                 goto lockdep_release;
2207                 } else {
2208                         spin_unlock(&fs_info->trans_lock);
2209                 }
2210         } else {
2211                 spin_unlock(&fs_info->trans_lock);
2212                 /*
2213                  * The previous transaction was aborted and was already removed
2214                  * from the list of transactions at fs_info->trans_list. So we
2215                  * abort to prevent writing a new superblock that reflects a
2216                  * corrupt state (pointing to trees with unwritten nodes/leafs).
2217                  */
2218                 if (BTRFS_FS_ERROR(fs_info)) {
2219                         ret = -EROFS;
2220                         goto lockdep_release;
2221                 }
2222         }
2223
2224         /*
2225          * Get the time spent on the work done by the commit thread and not
2226          * the time spent waiting on a previous commit
2227          */
2228         start_time = ktime_get_ns();
2229
2230         extwriter_counter_dec(cur_trans, trans->type);
2231
2232         ret = btrfs_start_delalloc_flush(fs_info);
2233         if (ret)
2234                 goto lockdep_release;
2235
2236         ret = btrfs_run_delayed_items(trans);
2237         if (ret)
2238                 goto lockdep_release;
2239
2240         /*
2241          * The thread has started/joined the transaction thus it holds the
2242          * lockdep map as a reader. It has to release it before acquiring the
2243          * lockdep map as a writer.
2244          */
2245         btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2246         btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
2247         wait_event(cur_trans->writer_wait,
2248                    extwriter_counter_read(cur_trans) == 0);
2249
2250         /* some pending stuffs might be added after the previous flush. */
2251         ret = btrfs_run_delayed_items(trans);
2252         if (ret) {
2253                 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2254                 goto cleanup_transaction;
2255         }
2256
2257         btrfs_wait_delalloc_flush(fs_info);
2258
2259         /*
2260          * Wait for all ordered extents started by a fast fsync that joined this
2261          * transaction. Otherwise if this transaction commits before the ordered
2262          * extents complete we lose logged data after a power failure.
2263          */
2264         btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
2265         wait_event(cur_trans->pending_wait,
2266                    atomic_read(&cur_trans->pending_ordered) == 0);
2267
2268         btrfs_scrub_pause(fs_info);
2269         /*
2270          * Ok now we need to make sure to block out any other joins while we
2271          * commit the transaction.  We could have started a join before setting
2272          * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2273          */
2274         spin_lock(&fs_info->trans_lock);
2275         add_pending_snapshot(trans);
2276         cur_trans->state = TRANS_STATE_COMMIT_DOING;
2277         spin_unlock(&fs_info->trans_lock);
2278
2279         /*
2280          * The thread has started/joined the transaction thus it holds the
2281          * lockdep map as a reader. It has to release it before acquiring the
2282          * lockdep map as a writer.
2283          */
2284         btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2285         btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2286         wait_event(cur_trans->writer_wait,
2287                    atomic_read(&cur_trans->num_writers) == 1);
2288
2289         /*
2290          * Make lockdep happy by acquiring the state locks after
2291          * btrfs_trans_num_writers is released. If we acquired the state locks
2292          * before releasing the btrfs_trans_num_writers lock then lockdep would
2293          * complain because we did not follow the reverse order unlocking rule.
2294          */
2295         btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2296         btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2297         btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2298
2299         /*
2300          * We've started the commit, clear the flag in case we were triggered to
2301          * do an async commit but somebody else started before the transaction
2302          * kthread could do the work.
2303          */
2304         clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2305
2306         if (TRANS_ABORTED(cur_trans)) {
2307                 ret = cur_trans->aborted;
2308                 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2309                 goto scrub_continue;
2310         }
2311         /*
2312          * the reloc mutex makes sure that we stop
2313          * the balancing code from coming in and moving
2314          * extents around in the middle of the commit
2315          */
2316         mutex_lock(&fs_info->reloc_mutex);
2317
2318         /*
2319          * We needn't worry about the delayed items because we will
2320          * deal with them in create_pending_snapshot(), which is the
2321          * core function of the snapshot creation.
2322          */
2323         ret = create_pending_snapshots(trans);
2324         if (ret)
2325                 goto unlock_reloc;
2326
2327         /*
2328          * We insert the dir indexes of the snapshots and update the inode
2329          * of the snapshots' parents after the snapshot creation, so there
2330          * are some delayed items which are not dealt with. Now deal with
2331          * them.
2332          *
2333          * We needn't worry that this operation will corrupt the snapshots,
2334          * because all the tree which are snapshoted will be forced to COW
2335          * the nodes and leaves.
2336          */
2337         ret = btrfs_run_delayed_items(trans);
2338         if (ret)
2339                 goto unlock_reloc;
2340
2341         ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2342         if (ret)
2343                 goto unlock_reloc;
2344
2345         /*
2346          * make sure none of the code above managed to slip in a
2347          * delayed item
2348          */
2349         btrfs_assert_delayed_root_empty(fs_info);
2350
2351         WARN_ON(cur_trans != trans->transaction);
2352
2353         ret = commit_fs_roots(trans);
2354         if (ret)
2355                 goto unlock_reloc;
2356
2357         /*
2358          * Since the transaction is done, we can apply the pending changes
2359          * before the next transaction.
2360          */
2361         btrfs_apply_pending_changes(fs_info);
2362
2363         /* commit_fs_roots gets rid of all the tree log roots, it is now
2364          * safe to free the root of tree log roots
2365          */
2366         btrfs_free_log_root_tree(trans, fs_info);
2367
2368         /*
2369          * Since fs roots are all committed, we can get a quite accurate
2370          * new_roots. So let's do quota accounting.
2371          */
2372         ret = btrfs_qgroup_account_extents(trans);
2373         if (ret < 0)
2374                 goto unlock_reloc;
2375
2376         ret = commit_cowonly_roots(trans);
2377         if (ret)
2378                 goto unlock_reloc;
2379
2380         /*
2381          * The tasks which save the space cache and inode cache may also
2382          * update ->aborted, check it.
2383          */
2384         if (TRANS_ABORTED(cur_trans)) {
2385                 ret = cur_trans->aborted;
2386                 goto unlock_reloc;
2387         }
2388
2389         cur_trans = fs_info->running_transaction;
2390
2391         btrfs_set_root_node(&fs_info->tree_root->root_item,
2392                             fs_info->tree_root->node);
2393         list_add_tail(&fs_info->tree_root->dirty_list,
2394                       &cur_trans->switch_commits);
2395
2396         btrfs_set_root_node(&fs_info->chunk_root->root_item,
2397                             fs_info->chunk_root->node);
2398         list_add_tail(&fs_info->chunk_root->dirty_list,
2399                       &cur_trans->switch_commits);
2400
2401         if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2402                 btrfs_set_root_node(&fs_info->block_group_root->root_item,
2403                                     fs_info->block_group_root->node);
2404                 list_add_tail(&fs_info->block_group_root->dirty_list,
2405                               &cur_trans->switch_commits);
2406         }
2407
2408         switch_commit_roots(trans);
2409
2410         ASSERT(list_empty(&cur_trans->dirty_bgs));
2411         ASSERT(list_empty(&cur_trans->io_bgs));
2412         update_super_roots(fs_info);
2413
2414         btrfs_set_super_log_root(fs_info->super_copy, 0);
2415         btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2416         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2417                sizeof(*fs_info->super_copy));
2418
2419         btrfs_commit_device_sizes(cur_trans);
2420
2421         clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2422         clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2423
2424         btrfs_trans_release_chunk_metadata(trans);
2425
2426         /*
2427          * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2428          * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2429          * make sure that before we commit our superblock, no other task can
2430          * start a new transaction and commit a log tree before we commit our
2431          * superblock. Anyone trying to commit a log tree locks this mutex before
2432          * writing its superblock.
2433          */
2434         mutex_lock(&fs_info->tree_log_mutex);
2435
2436         spin_lock(&fs_info->trans_lock);
2437         cur_trans->state = TRANS_STATE_UNBLOCKED;
2438         fs_info->running_transaction = NULL;
2439         spin_unlock(&fs_info->trans_lock);
2440         mutex_unlock(&fs_info->reloc_mutex);
2441
2442         wake_up(&fs_info->transaction_wait);
2443         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2444
2445         ret = btrfs_write_and_wait_transaction(trans);
2446         if (ret) {
2447                 btrfs_handle_fs_error(fs_info, ret,
2448                                       "Error while writing out transaction");
2449                 mutex_unlock(&fs_info->tree_log_mutex);
2450                 goto scrub_continue;
2451         }
2452
2453         /*
2454          * At this point, we should have written all the tree blocks allocated
2455          * in this transaction. So it's now safe to free the redirtyied extent
2456          * buffers.
2457          */
2458         btrfs_free_redirty_list(cur_trans);
2459
2460         ret = write_all_supers(fs_info, 0);
2461         /*
2462          * the super is written, we can safely allow the tree-loggers
2463          * to go about their business
2464          */
2465         mutex_unlock(&fs_info->tree_log_mutex);
2466         if (ret)
2467                 goto scrub_continue;
2468
2469         /*
2470          * We needn't acquire the lock here because there is no other task
2471          * which can change it.
2472          */
2473         cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2474         wake_up(&cur_trans->commit_wait);
2475         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2476
2477         btrfs_finish_extent_commit(trans);
2478
2479         if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2480                 btrfs_clear_space_info_full(fs_info);
2481
2482         fs_info->last_trans_committed = cur_trans->transid;
2483         /*
2484          * We needn't acquire the lock here because there is no other task
2485          * which can change it.
2486          */
2487         cur_trans->state = TRANS_STATE_COMPLETED;
2488         wake_up(&cur_trans->commit_wait);
2489         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2490
2491         spin_lock(&fs_info->trans_lock);
2492         list_del_init(&cur_trans->list);
2493         spin_unlock(&fs_info->trans_lock);
2494
2495         btrfs_put_transaction(cur_trans);
2496         btrfs_put_transaction(cur_trans);
2497
2498         if (trans->type & __TRANS_FREEZABLE)
2499                 sb_end_intwrite(fs_info->sb);
2500
2501         trace_btrfs_transaction_commit(fs_info);
2502
2503         interval = ktime_get_ns() - start_time;
2504
2505         btrfs_scrub_continue(fs_info);
2506
2507         if (current->journal_info == trans)
2508                 current->journal_info = NULL;
2509
2510         kmem_cache_free(btrfs_trans_handle_cachep, trans);
2511
2512         update_commit_stats(fs_info, interval);
2513
2514         return ret;
2515
2516 unlock_reloc:
2517         mutex_unlock(&fs_info->reloc_mutex);
2518         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2519 scrub_continue:
2520         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2521         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2522         btrfs_scrub_continue(fs_info);
2523 cleanup_transaction:
2524         btrfs_trans_release_metadata(trans);
2525         btrfs_cleanup_pending_block_groups(trans);
2526         btrfs_trans_release_chunk_metadata(trans);
2527         trans->block_rsv = NULL;
2528         btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2529         if (current->journal_info == trans)
2530                 current->journal_info = NULL;
2531         cleanup_transaction(trans, ret);
2532
2533         return ret;
2534
2535 lockdep_release:
2536         btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2537         btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2538         goto cleanup_transaction;
2539
2540 lockdep_trans_commit_start_release:
2541         btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2542         btrfs_end_transaction(trans);
2543         return ret;
2544 }
2545
2546 /*
2547  * return < 0 if error
2548  * 0 if there are no more dead_roots at the time of call
2549  * 1 there are more to be processed, call me again
2550  *
2551  * The return value indicates there are certainly more snapshots to delete, but
2552  * if there comes a new one during processing, it may return 0. We don't mind,
2553  * because btrfs_commit_super will poke cleaner thread and it will process it a
2554  * few seconds later.
2555  */
2556 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2557 {
2558         struct btrfs_root *root;
2559         int ret;
2560
2561         spin_lock(&fs_info->trans_lock);
2562         if (list_empty(&fs_info->dead_roots)) {
2563                 spin_unlock(&fs_info->trans_lock);
2564                 return 0;
2565         }
2566         root = list_first_entry(&fs_info->dead_roots,
2567                         struct btrfs_root, root_list);
2568         list_del_init(&root->root_list);
2569         spin_unlock(&fs_info->trans_lock);
2570
2571         btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2572
2573         btrfs_kill_all_delayed_nodes(root);
2574
2575         if (btrfs_header_backref_rev(root->node) <
2576                         BTRFS_MIXED_BACKREF_REV)
2577                 ret = btrfs_drop_snapshot(root, 0, 0);
2578         else
2579                 ret = btrfs_drop_snapshot(root, 1, 0);
2580
2581         btrfs_put_root(root);
2582         return (ret < 0) ? 0 : 1;
2583 }
2584
2585 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2586 {
2587         unsigned long prev;
2588         unsigned long bit;
2589
2590         prev = xchg(&fs_info->pending_changes, 0);
2591         if (!prev)
2592                 return;
2593
2594         bit = 1 << BTRFS_PENDING_COMMIT;
2595         if (prev & bit)
2596                 btrfs_debug(fs_info, "pending commit done");
2597         prev &= ~bit;
2598
2599         if (prev)
2600                 btrfs_warn(fs_info,
2601                         "unknown pending changes left 0x%lx, ignoring", prev);
2602 }