Btrfs: cleanup transaction on abort
[linux-2.6-block.git] / fs / btrfs / transaction.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34
35 #define BTRFS_ROOT_TRANS_TAG 0
36
37 static unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
38         [TRANS_STATE_RUNNING]           = 0U,
39         [TRANS_STATE_BLOCKED]           = (__TRANS_USERSPACE |
40                                            __TRANS_START),
41         [TRANS_STATE_COMMIT_START]      = (__TRANS_USERSPACE |
42                                            __TRANS_START |
43                                            __TRANS_ATTACH),
44         [TRANS_STATE_COMMIT_DOING]      = (__TRANS_USERSPACE |
45                                            __TRANS_START |
46                                            __TRANS_ATTACH |
47                                            __TRANS_JOIN),
48         [TRANS_STATE_UNBLOCKED]         = (__TRANS_USERSPACE |
49                                            __TRANS_START |
50                                            __TRANS_ATTACH |
51                                            __TRANS_JOIN |
52                                            __TRANS_JOIN_NOLOCK),
53         [TRANS_STATE_COMPLETED]         = (__TRANS_USERSPACE |
54                                            __TRANS_START |
55                                            __TRANS_ATTACH |
56                                            __TRANS_JOIN |
57                                            __TRANS_JOIN_NOLOCK),
58 };
59
60 static void put_transaction(struct btrfs_transaction *transaction)
61 {
62         WARN_ON(atomic_read(&transaction->use_count) == 0);
63         if (atomic_dec_and_test(&transaction->use_count)) {
64                 BUG_ON(!list_empty(&transaction->list));
65                 WARN_ON(transaction->delayed_refs.root.rb_node);
66                 while (!list_empty(&transaction->pending_chunks)) {
67                         struct extent_map *em;
68
69                         em = list_first_entry(&transaction->pending_chunks,
70                                               struct extent_map, list);
71                         list_del_init(&em->list);
72                         free_extent_map(em);
73                 }
74                 kmem_cache_free(btrfs_transaction_cachep, transaction);
75         }
76 }
77
78 static noinline void switch_commit_root(struct btrfs_root *root)
79 {
80         free_extent_buffer(root->commit_root);
81         root->commit_root = btrfs_root_node(root);
82 }
83
84 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
85                                          unsigned int type)
86 {
87         if (type & TRANS_EXTWRITERS)
88                 atomic_inc(&trans->num_extwriters);
89 }
90
91 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
92                                          unsigned int type)
93 {
94         if (type & TRANS_EXTWRITERS)
95                 atomic_dec(&trans->num_extwriters);
96 }
97
98 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
99                                           unsigned int type)
100 {
101         atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
102 }
103
104 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
105 {
106         return atomic_read(&trans->num_extwriters);
107 }
108
109 /*
110  * either allocate a new transaction or hop into the existing one
111  */
112 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
113 {
114         struct btrfs_transaction *cur_trans;
115         struct btrfs_fs_info *fs_info = root->fs_info;
116
117         spin_lock(&fs_info->trans_lock);
118 loop:
119         /* The file system has been taken offline. No new transactions. */
120         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
121                 spin_unlock(&fs_info->trans_lock);
122                 return -EROFS;
123         }
124
125         cur_trans = fs_info->running_transaction;
126         if (cur_trans) {
127                 if (cur_trans->aborted) {
128                         spin_unlock(&fs_info->trans_lock);
129                         return cur_trans->aborted;
130                 }
131                 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
132                         spin_unlock(&fs_info->trans_lock);
133                         return -EBUSY;
134                 }
135                 atomic_inc(&cur_trans->use_count);
136                 atomic_inc(&cur_trans->num_writers);
137                 extwriter_counter_inc(cur_trans, type);
138                 spin_unlock(&fs_info->trans_lock);
139                 return 0;
140         }
141         spin_unlock(&fs_info->trans_lock);
142
143         /*
144          * If we are ATTACH, we just want to catch the current transaction,
145          * and commit it. If there is no transaction, just return ENOENT.
146          */
147         if (type == TRANS_ATTACH)
148                 return -ENOENT;
149
150         /*
151          * JOIN_NOLOCK only happens during the transaction commit, so
152          * it is impossible that ->running_transaction is NULL
153          */
154         BUG_ON(type == TRANS_JOIN_NOLOCK);
155
156         cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
157         if (!cur_trans)
158                 return -ENOMEM;
159
160         spin_lock(&fs_info->trans_lock);
161         if (fs_info->running_transaction) {
162                 /*
163                  * someone started a transaction after we unlocked.  Make sure
164                  * to redo the checks above
165                  */
166                 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
167                 goto loop;
168         } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
169                 spin_unlock(&fs_info->trans_lock);
170                 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
171                 return -EROFS;
172         }
173
174         atomic_set(&cur_trans->num_writers, 1);
175         extwriter_counter_init(cur_trans, type);
176         init_waitqueue_head(&cur_trans->writer_wait);
177         init_waitqueue_head(&cur_trans->commit_wait);
178         cur_trans->state = TRANS_STATE_RUNNING;
179         /*
180          * One for this trans handle, one so it will live on until we
181          * commit the transaction.
182          */
183         atomic_set(&cur_trans->use_count, 2);
184         cur_trans->start_time = get_seconds();
185
186         cur_trans->delayed_refs.root = RB_ROOT;
187         cur_trans->delayed_refs.num_entries = 0;
188         cur_trans->delayed_refs.num_heads_ready = 0;
189         cur_trans->delayed_refs.num_heads = 0;
190         cur_trans->delayed_refs.flushing = 0;
191         cur_trans->delayed_refs.run_delayed_start = 0;
192
193         /*
194          * although the tree mod log is per file system and not per transaction,
195          * the log must never go across transaction boundaries.
196          */
197         smp_mb();
198         if (!list_empty(&fs_info->tree_mod_seq_list))
199                 WARN(1, KERN_ERR "btrfs: tree_mod_seq_list not empty when "
200                         "creating a fresh transaction\n");
201         if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
202                 WARN(1, KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
203                         "creating a fresh transaction\n");
204         atomic64_set(&fs_info->tree_mod_seq, 0);
205
206         spin_lock_init(&cur_trans->delayed_refs.lock);
207         atomic_set(&cur_trans->delayed_refs.procs_running_refs, 0);
208         atomic_set(&cur_trans->delayed_refs.ref_seq, 0);
209         init_waitqueue_head(&cur_trans->delayed_refs.wait);
210
211         INIT_LIST_HEAD(&cur_trans->pending_snapshots);
212         INIT_LIST_HEAD(&cur_trans->ordered_operations);
213         INIT_LIST_HEAD(&cur_trans->pending_chunks);
214         list_add_tail(&cur_trans->list, &fs_info->trans_list);
215         extent_io_tree_init(&cur_trans->dirty_pages,
216                              fs_info->btree_inode->i_mapping);
217         fs_info->generation++;
218         cur_trans->transid = fs_info->generation;
219         fs_info->running_transaction = cur_trans;
220         cur_trans->aborted = 0;
221         spin_unlock(&fs_info->trans_lock);
222
223         return 0;
224 }
225
226 /*
227  * this does all the record keeping required to make sure that a reference
228  * counted root is properly recorded in a given transaction.  This is required
229  * to make sure the old root from before we joined the transaction is deleted
230  * when the transaction commits
231  */
232 static int record_root_in_trans(struct btrfs_trans_handle *trans,
233                                struct btrfs_root *root)
234 {
235         if (root->ref_cows && root->last_trans < trans->transid) {
236                 WARN_ON(root == root->fs_info->extent_root);
237                 WARN_ON(root->commit_root != root->node);
238
239                 /*
240                  * see below for in_trans_setup usage rules
241                  * we have the reloc mutex held now, so there
242                  * is only one writer in this function
243                  */
244                 root->in_trans_setup = 1;
245
246                 /* make sure readers find in_trans_setup before
247                  * they find our root->last_trans update
248                  */
249                 smp_wmb();
250
251                 spin_lock(&root->fs_info->fs_roots_radix_lock);
252                 if (root->last_trans == trans->transid) {
253                         spin_unlock(&root->fs_info->fs_roots_radix_lock);
254                         return 0;
255                 }
256                 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
257                            (unsigned long)root->root_key.objectid,
258                            BTRFS_ROOT_TRANS_TAG);
259                 spin_unlock(&root->fs_info->fs_roots_radix_lock);
260                 root->last_trans = trans->transid;
261
262                 /* this is pretty tricky.  We don't want to
263                  * take the relocation lock in btrfs_record_root_in_trans
264                  * unless we're really doing the first setup for this root in
265                  * this transaction.
266                  *
267                  * Normally we'd use root->last_trans as a flag to decide
268                  * if we want to take the expensive mutex.
269                  *
270                  * But, we have to set root->last_trans before we
271                  * init the relocation root, otherwise, we trip over warnings
272                  * in ctree.c.  The solution used here is to flag ourselves
273                  * with root->in_trans_setup.  When this is 1, we're still
274                  * fixing up the reloc trees and everyone must wait.
275                  *
276                  * When this is zero, they can trust root->last_trans and fly
277                  * through btrfs_record_root_in_trans without having to take the
278                  * lock.  smp_wmb() makes sure that all the writes above are
279                  * done before we pop in the zero below
280                  */
281                 btrfs_init_reloc_root(trans, root);
282                 smp_wmb();
283                 root->in_trans_setup = 0;
284         }
285         return 0;
286 }
287
288
289 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
290                                struct btrfs_root *root)
291 {
292         if (!root->ref_cows)
293                 return 0;
294
295         /*
296          * see record_root_in_trans for comments about in_trans_setup usage
297          * and barriers
298          */
299         smp_rmb();
300         if (root->last_trans == trans->transid &&
301             !root->in_trans_setup)
302                 return 0;
303
304         mutex_lock(&root->fs_info->reloc_mutex);
305         record_root_in_trans(trans, root);
306         mutex_unlock(&root->fs_info->reloc_mutex);
307
308         return 0;
309 }
310
311 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
312 {
313         return (trans->state >= TRANS_STATE_BLOCKED &&
314                 trans->state < TRANS_STATE_UNBLOCKED &&
315                 !trans->aborted);
316 }
317
318 /* wait for commit against the current transaction to become unblocked
319  * when this is done, it is safe to start a new transaction, but the current
320  * transaction might not be fully on disk.
321  */
322 static void wait_current_trans(struct btrfs_root *root)
323 {
324         struct btrfs_transaction *cur_trans;
325
326         spin_lock(&root->fs_info->trans_lock);
327         cur_trans = root->fs_info->running_transaction;
328         if (cur_trans && is_transaction_blocked(cur_trans)) {
329                 atomic_inc(&cur_trans->use_count);
330                 spin_unlock(&root->fs_info->trans_lock);
331
332                 wait_event(root->fs_info->transaction_wait,
333                            cur_trans->state >= TRANS_STATE_UNBLOCKED ||
334                            cur_trans->aborted);
335                 put_transaction(cur_trans);
336         } else {
337                 spin_unlock(&root->fs_info->trans_lock);
338         }
339 }
340
341 static int may_wait_transaction(struct btrfs_root *root, int type)
342 {
343         if (root->fs_info->log_root_recovering)
344                 return 0;
345
346         if (type == TRANS_USERSPACE)
347                 return 1;
348
349         if (type == TRANS_START &&
350             !atomic_read(&root->fs_info->open_ioctl_trans))
351                 return 1;
352
353         return 0;
354 }
355
356 static struct btrfs_trans_handle *
357 start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
358                   enum btrfs_reserve_flush_enum flush)
359 {
360         struct btrfs_trans_handle *h;
361         struct btrfs_transaction *cur_trans;
362         u64 num_bytes = 0;
363         int ret;
364         u64 qgroup_reserved = 0;
365
366         if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
367                 return ERR_PTR(-EROFS);
368
369         if (current->journal_info) {
370                 WARN_ON(type & TRANS_EXTWRITERS);
371                 h = current->journal_info;
372                 h->use_count++;
373                 WARN_ON(h->use_count > 2);
374                 h->orig_rsv = h->block_rsv;
375                 h->block_rsv = NULL;
376                 goto got_it;
377         }
378
379         /*
380          * Do the reservation before we join the transaction so we can do all
381          * the appropriate flushing if need be.
382          */
383         if (num_items > 0 && root != root->fs_info->chunk_root) {
384                 if (root->fs_info->quota_enabled &&
385                     is_fstree(root->root_key.objectid)) {
386                         qgroup_reserved = num_items * root->leafsize;
387                         ret = btrfs_qgroup_reserve(root, qgroup_reserved);
388                         if (ret)
389                                 return ERR_PTR(ret);
390                 }
391
392                 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
393                 ret = btrfs_block_rsv_add(root,
394                                           &root->fs_info->trans_block_rsv,
395                                           num_bytes, flush);
396                 if (ret)
397                         goto reserve_fail;
398         }
399 again:
400         h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
401         if (!h) {
402                 ret = -ENOMEM;
403                 goto alloc_fail;
404         }
405
406         /*
407          * If we are JOIN_NOLOCK we're already committing a transaction and
408          * waiting on this guy, so we don't need to do the sb_start_intwrite
409          * because we're already holding a ref.  We need this because we could
410          * have raced in and did an fsync() on a file which can kick a commit
411          * and then we deadlock with somebody doing a freeze.
412          *
413          * If we are ATTACH, it means we just want to catch the current
414          * transaction and commit it, so we needn't do sb_start_intwrite(). 
415          */
416         if (type & __TRANS_FREEZABLE)
417                 sb_start_intwrite(root->fs_info->sb);
418
419         if (may_wait_transaction(root, type))
420                 wait_current_trans(root);
421
422         do {
423                 ret = join_transaction(root, type);
424                 if (ret == -EBUSY) {
425                         wait_current_trans(root);
426                         if (unlikely(type == TRANS_ATTACH))
427                                 ret = -ENOENT;
428                 }
429         } while (ret == -EBUSY);
430
431         if (ret < 0) {
432                 /* We must get the transaction if we are JOIN_NOLOCK. */
433                 BUG_ON(type == TRANS_JOIN_NOLOCK);
434                 goto join_fail;
435         }
436
437         cur_trans = root->fs_info->running_transaction;
438
439         h->transid = cur_trans->transid;
440         h->transaction = cur_trans;
441         h->blocks_used = 0;
442         h->bytes_reserved = 0;
443         h->root = root;
444         h->delayed_ref_updates = 0;
445         h->use_count = 1;
446         h->adding_csums = 0;
447         h->block_rsv = NULL;
448         h->orig_rsv = NULL;
449         h->aborted = 0;
450         h->qgroup_reserved = 0;
451         h->delayed_ref_elem.seq = 0;
452         h->type = type;
453         h->allocating_chunk = false;
454         INIT_LIST_HEAD(&h->qgroup_ref_list);
455         INIT_LIST_HEAD(&h->new_bgs);
456
457         smp_mb();
458         if (cur_trans->state >= TRANS_STATE_BLOCKED &&
459             may_wait_transaction(root, type)) {
460                 btrfs_commit_transaction(h, root);
461                 goto again;
462         }
463
464         if (num_bytes) {
465                 trace_btrfs_space_reservation(root->fs_info, "transaction",
466                                               h->transid, num_bytes, 1);
467                 h->block_rsv = &root->fs_info->trans_block_rsv;
468                 h->bytes_reserved = num_bytes;
469         }
470         h->qgroup_reserved = qgroup_reserved;
471
472 got_it:
473         btrfs_record_root_in_trans(h, root);
474
475         if (!current->journal_info && type != TRANS_USERSPACE)
476                 current->journal_info = h;
477         return h;
478
479 join_fail:
480         if (type & __TRANS_FREEZABLE)
481                 sb_end_intwrite(root->fs_info->sb);
482         kmem_cache_free(btrfs_trans_handle_cachep, h);
483 alloc_fail:
484         if (num_bytes)
485                 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
486                                         num_bytes);
487 reserve_fail:
488         if (qgroup_reserved)
489                 btrfs_qgroup_free(root, qgroup_reserved);
490         return ERR_PTR(ret);
491 }
492
493 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
494                                                    int num_items)
495 {
496         return start_transaction(root, num_items, TRANS_START,
497                                  BTRFS_RESERVE_FLUSH_ALL);
498 }
499
500 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
501                                         struct btrfs_root *root, int num_items)
502 {
503         return start_transaction(root, num_items, TRANS_START,
504                                  BTRFS_RESERVE_FLUSH_LIMIT);
505 }
506
507 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
508 {
509         return start_transaction(root, 0, TRANS_JOIN, 0);
510 }
511
512 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
513 {
514         return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
515 }
516
517 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
518 {
519         return start_transaction(root, 0, TRANS_USERSPACE, 0);
520 }
521
522 /*
523  * btrfs_attach_transaction() - catch the running transaction
524  *
525  * It is used when we want to commit the current the transaction, but
526  * don't want to start a new one.
527  *
528  * Note: If this function return -ENOENT, it just means there is no
529  * running transaction. But it is possible that the inactive transaction
530  * is still in the memory, not fully on disk. If you hope there is no
531  * inactive transaction in the fs when -ENOENT is returned, you should
532  * invoke
533  *     btrfs_attach_transaction_barrier()
534  */
535 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
536 {
537         return start_transaction(root, 0, TRANS_ATTACH, 0);
538 }
539
540 /*
541  * btrfs_attach_transaction_barrier() - catch the running transaction
542  *
543  * It is similar to the above function, the differentia is this one
544  * will wait for all the inactive transactions until they fully
545  * complete.
546  */
547 struct btrfs_trans_handle *
548 btrfs_attach_transaction_barrier(struct btrfs_root *root)
549 {
550         struct btrfs_trans_handle *trans;
551
552         trans = start_transaction(root, 0, TRANS_ATTACH, 0);
553         if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
554                 btrfs_wait_for_commit(root, 0);
555
556         return trans;
557 }
558
559 /* wait for a transaction commit to be fully complete */
560 static noinline void wait_for_commit(struct btrfs_root *root,
561                                     struct btrfs_transaction *commit)
562 {
563         wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
564 }
565
566 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
567 {
568         struct btrfs_transaction *cur_trans = NULL, *t;
569         int ret = 0;
570
571         if (transid) {
572                 if (transid <= root->fs_info->last_trans_committed)
573                         goto out;
574
575                 ret = -EINVAL;
576                 /* find specified transaction */
577                 spin_lock(&root->fs_info->trans_lock);
578                 list_for_each_entry(t, &root->fs_info->trans_list, list) {
579                         if (t->transid == transid) {
580                                 cur_trans = t;
581                                 atomic_inc(&cur_trans->use_count);
582                                 ret = 0;
583                                 break;
584                         }
585                         if (t->transid > transid) {
586                                 ret = 0;
587                                 break;
588                         }
589                 }
590                 spin_unlock(&root->fs_info->trans_lock);
591                 /* The specified transaction doesn't exist */
592                 if (!cur_trans)
593                         goto out;
594         } else {
595                 /* find newest transaction that is committing | committed */
596                 spin_lock(&root->fs_info->trans_lock);
597                 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
598                                             list) {
599                         if (t->state >= TRANS_STATE_COMMIT_START) {
600                                 if (t->state == TRANS_STATE_COMPLETED)
601                                         break;
602                                 cur_trans = t;
603                                 atomic_inc(&cur_trans->use_count);
604                                 break;
605                         }
606                 }
607                 spin_unlock(&root->fs_info->trans_lock);
608                 if (!cur_trans)
609                         goto out;  /* nothing committing|committed */
610         }
611
612         wait_for_commit(root, cur_trans);
613         put_transaction(cur_trans);
614 out:
615         return ret;
616 }
617
618 void btrfs_throttle(struct btrfs_root *root)
619 {
620         if (!atomic_read(&root->fs_info->open_ioctl_trans))
621                 wait_current_trans(root);
622 }
623
624 static int should_end_transaction(struct btrfs_trans_handle *trans,
625                                   struct btrfs_root *root)
626 {
627         if (root->fs_info->global_block_rsv.space_info->full &&
628             btrfs_should_throttle_delayed_refs(trans, root))
629                 return 1;
630
631         return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
632 }
633
634 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
635                                  struct btrfs_root *root)
636 {
637         struct btrfs_transaction *cur_trans = trans->transaction;
638         int updates;
639         int err;
640
641         smp_mb();
642         if (cur_trans->state >= TRANS_STATE_BLOCKED ||
643             cur_trans->delayed_refs.flushing)
644                 return 1;
645
646         updates = trans->delayed_ref_updates;
647         trans->delayed_ref_updates = 0;
648         if (updates) {
649                 err = btrfs_run_delayed_refs(trans, root, updates);
650                 if (err) /* Error code will also eval true */
651                         return err;
652         }
653
654         return should_end_transaction(trans, root);
655 }
656
657 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
658                           struct btrfs_root *root, int throttle)
659 {
660         struct btrfs_transaction *cur_trans = trans->transaction;
661         struct btrfs_fs_info *info = root->fs_info;
662         unsigned long cur = trans->delayed_ref_updates;
663         int lock = (trans->type != TRANS_JOIN_NOLOCK);
664         int err = 0;
665
666         if (--trans->use_count) {
667                 trans->block_rsv = trans->orig_rsv;
668                 return 0;
669         }
670
671         /*
672          * do the qgroup accounting as early as possible
673          */
674         err = btrfs_delayed_refs_qgroup_accounting(trans, info);
675
676         btrfs_trans_release_metadata(trans, root);
677         trans->block_rsv = NULL;
678
679         if (trans->qgroup_reserved) {
680                 /*
681                  * the same root has to be passed here between start_transaction
682                  * and end_transaction. Subvolume quota depends on this.
683                  */
684                 btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
685                 trans->qgroup_reserved = 0;
686         }
687
688         if (!list_empty(&trans->new_bgs))
689                 btrfs_create_pending_block_groups(trans, root);
690
691         trans->delayed_ref_updates = 0;
692         if (btrfs_should_throttle_delayed_refs(trans, root)) {
693                 cur = max_t(unsigned long, cur, 1);
694                 trans->delayed_ref_updates = 0;
695                 btrfs_run_delayed_refs(trans, root, cur);
696         }
697
698         btrfs_trans_release_metadata(trans, root);
699         trans->block_rsv = NULL;
700
701         if (!list_empty(&trans->new_bgs))
702                 btrfs_create_pending_block_groups(trans, root);
703
704         if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
705             should_end_transaction(trans, root) &&
706             ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
707                 spin_lock(&info->trans_lock);
708                 if (cur_trans->state == TRANS_STATE_RUNNING)
709                         cur_trans->state = TRANS_STATE_BLOCKED;
710                 spin_unlock(&info->trans_lock);
711         }
712
713         if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
714                 if (throttle) {
715                         /*
716                          * We may race with somebody else here so end up having
717                          * to call end_transaction on ourselves again, so inc
718                          * our use_count.
719                          */
720                         trans->use_count++;
721                         return btrfs_commit_transaction(trans, root);
722                 } else {
723                         wake_up_process(info->transaction_kthread);
724                 }
725         }
726
727         if (trans->type & __TRANS_FREEZABLE)
728                 sb_end_intwrite(root->fs_info->sb);
729
730         WARN_ON(cur_trans != info->running_transaction);
731         WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
732         atomic_dec(&cur_trans->num_writers);
733         extwriter_counter_dec(cur_trans, trans->type);
734
735         smp_mb();
736         if (waitqueue_active(&cur_trans->writer_wait))
737                 wake_up(&cur_trans->writer_wait);
738         put_transaction(cur_trans);
739
740         if (current->journal_info == trans)
741                 current->journal_info = NULL;
742
743         if (throttle)
744                 btrfs_run_delayed_iputs(root);
745
746         if (trans->aborted ||
747             test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
748                 wake_up_process(info->transaction_kthread);
749                 err = -EIO;
750         }
751         assert_qgroups_uptodate(trans);
752
753         kmem_cache_free(btrfs_trans_handle_cachep, trans);
754         return err;
755 }
756
757 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
758                           struct btrfs_root *root)
759 {
760         return __btrfs_end_transaction(trans, root, 0);
761 }
762
763 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
764                                    struct btrfs_root *root)
765 {
766         return __btrfs_end_transaction(trans, root, 1);
767 }
768
769 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
770                                 struct btrfs_root *root)
771 {
772         return __btrfs_end_transaction(trans, root, 1);
773 }
774
775 /*
776  * when btree blocks are allocated, they have some corresponding bits set for
777  * them in one of two extent_io trees.  This is used to make sure all of
778  * those extents are sent to disk but does not wait on them
779  */
780 int btrfs_write_marked_extents(struct btrfs_root *root,
781                                struct extent_io_tree *dirty_pages, int mark)
782 {
783         int err = 0;
784         int werr = 0;
785         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
786         struct extent_state *cached_state = NULL;
787         u64 start = 0;
788         u64 end;
789
790         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
791                                       mark, &cached_state)) {
792                 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
793                                    mark, &cached_state, GFP_NOFS);
794                 cached_state = NULL;
795                 err = filemap_fdatawrite_range(mapping, start, end);
796                 if (err)
797                         werr = err;
798                 cond_resched();
799                 start = end + 1;
800         }
801         if (err)
802                 werr = err;
803         return werr;
804 }
805
806 /*
807  * when btree blocks are allocated, they have some corresponding bits set for
808  * them in one of two extent_io trees.  This is used to make sure all of
809  * those extents are on disk for transaction or log commit.  We wait
810  * on all the pages and clear them from the dirty pages state tree
811  */
812 int btrfs_wait_marked_extents(struct btrfs_root *root,
813                               struct extent_io_tree *dirty_pages, int mark)
814 {
815         int err = 0;
816         int werr = 0;
817         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
818         struct extent_state *cached_state = NULL;
819         u64 start = 0;
820         u64 end;
821
822         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
823                                       EXTENT_NEED_WAIT, &cached_state)) {
824                 clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
825                                  0, 0, &cached_state, GFP_NOFS);
826                 err = filemap_fdatawait_range(mapping, start, end);
827                 if (err)
828                         werr = err;
829                 cond_resched();
830                 start = end + 1;
831         }
832         if (err)
833                 werr = err;
834         return werr;
835 }
836
837 /*
838  * when btree blocks are allocated, they have some corresponding bits set for
839  * them in one of two extent_io trees.  This is used to make sure all of
840  * those extents are on disk for transaction or log commit
841  */
842 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
843                                 struct extent_io_tree *dirty_pages, int mark)
844 {
845         int ret;
846         int ret2;
847         struct blk_plug plug;
848
849         blk_start_plug(&plug);
850         ret = btrfs_write_marked_extents(root, dirty_pages, mark);
851         blk_finish_plug(&plug);
852         ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
853
854         if (ret)
855                 return ret;
856         if (ret2)
857                 return ret2;
858         return 0;
859 }
860
861 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
862                                      struct btrfs_root *root)
863 {
864         if (!trans || !trans->transaction) {
865                 struct inode *btree_inode;
866                 btree_inode = root->fs_info->btree_inode;
867                 return filemap_write_and_wait(btree_inode->i_mapping);
868         }
869         return btrfs_write_and_wait_marked_extents(root,
870                                            &trans->transaction->dirty_pages,
871                                            EXTENT_DIRTY);
872 }
873
874 /*
875  * this is used to update the root pointer in the tree of tree roots.
876  *
877  * But, in the case of the extent allocation tree, updating the root
878  * pointer may allocate blocks which may change the root of the extent
879  * allocation tree.
880  *
881  * So, this loops and repeats and makes sure the cowonly root didn't
882  * change while the root pointer was being updated in the metadata.
883  */
884 static int update_cowonly_root(struct btrfs_trans_handle *trans,
885                                struct btrfs_root *root)
886 {
887         int ret;
888         u64 old_root_bytenr;
889         u64 old_root_used;
890         struct btrfs_root *tree_root = root->fs_info->tree_root;
891
892         old_root_used = btrfs_root_used(&root->root_item);
893         btrfs_write_dirty_block_groups(trans, root);
894
895         while (1) {
896                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
897                 if (old_root_bytenr == root->node->start &&
898                     old_root_used == btrfs_root_used(&root->root_item))
899                         break;
900
901                 btrfs_set_root_node(&root->root_item, root->node);
902                 ret = btrfs_update_root(trans, tree_root,
903                                         &root->root_key,
904                                         &root->root_item);
905                 if (ret)
906                         return ret;
907
908                 old_root_used = btrfs_root_used(&root->root_item);
909                 ret = btrfs_write_dirty_block_groups(trans, root);
910                 if (ret)
911                         return ret;
912         }
913
914         if (root != root->fs_info->extent_root)
915                 switch_commit_root(root);
916
917         return 0;
918 }
919
920 /*
921  * update all the cowonly tree roots on disk
922  *
923  * The error handling in this function may not be obvious. Any of the
924  * failures will cause the file system to go offline. We still need
925  * to clean up the delayed refs.
926  */
927 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
928                                          struct btrfs_root *root)
929 {
930         struct btrfs_fs_info *fs_info = root->fs_info;
931         struct list_head *next;
932         struct extent_buffer *eb;
933         int ret;
934
935         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
936         if (ret)
937                 return ret;
938
939         eb = btrfs_lock_root_node(fs_info->tree_root);
940         ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
941                               0, &eb);
942         btrfs_tree_unlock(eb);
943         free_extent_buffer(eb);
944
945         if (ret)
946                 return ret;
947
948         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
949         if (ret)
950                 return ret;
951
952         ret = btrfs_run_dev_stats(trans, root->fs_info);
953         WARN_ON(ret);
954         ret = btrfs_run_dev_replace(trans, root->fs_info);
955         WARN_ON(ret);
956
957         ret = btrfs_run_qgroups(trans, root->fs_info);
958         BUG_ON(ret);
959
960         /* run_qgroups might have added some more refs */
961         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
962         BUG_ON(ret);
963
964         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
965                 next = fs_info->dirty_cowonly_roots.next;
966                 list_del_init(next);
967                 root = list_entry(next, struct btrfs_root, dirty_list);
968
969                 ret = update_cowonly_root(trans, root);
970                 if (ret)
971                         return ret;
972         }
973
974         down_write(&fs_info->extent_commit_sem);
975         switch_commit_root(fs_info->extent_root);
976         up_write(&fs_info->extent_commit_sem);
977
978         btrfs_after_dev_replace_commit(fs_info);
979
980         return 0;
981 }
982
983 /*
984  * dead roots are old snapshots that need to be deleted.  This allocates
985  * a dirty root struct and adds it into the list of dead roots that need to
986  * be deleted
987  */
988 void btrfs_add_dead_root(struct btrfs_root *root)
989 {
990         spin_lock(&root->fs_info->trans_lock);
991         if (list_empty(&root->root_list))
992                 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
993         spin_unlock(&root->fs_info->trans_lock);
994 }
995
996 /*
997  * update all the cowonly tree roots on disk
998  */
999 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1000                                     struct btrfs_root *root)
1001 {
1002         struct btrfs_root *gang[8];
1003         struct btrfs_fs_info *fs_info = root->fs_info;
1004         int i;
1005         int ret;
1006         int err = 0;
1007
1008         spin_lock(&fs_info->fs_roots_radix_lock);
1009         while (1) {
1010                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1011                                                  (void **)gang, 0,
1012                                                  ARRAY_SIZE(gang),
1013                                                  BTRFS_ROOT_TRANS_TAG);
1014                 if (ret == 0)
1015                         break;
1016                 for (i = 0; i < ret; i++) {
1017                         root = gang[i];
1018                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
1019                                         (unsigned long)root->root_key.objectid,
1020                                         BTRFS_ROOT_TRANS_TAG);
1021                         spin_unlock(&fs_info->fs_roots_radix_lock);
1022
1023                         btrfs_free_log(trans, root);
1024                         btrfs_update_reloc_root(trans, root);
1025                         btrfs_orphan_commit_root(trans, root);
1026
1027                         btrfs_save_ino_cache(root, trans);
1028
1029                         /* see comments in should_cow_block() */
1030                         root->force_cow = 0;
1031                         smp_wmb();
1032
1033                         if (root->commit_root != root->node) {
1034                                 mutex_lock(&root->fs_commit_mutex);
1035                                 switch_commit_root(root);
1036                                 btrfs_unpin_free_ino(root);
1037                                 mutex_unlock(&root->fs_commit_mutex);
1038
1039                                 btrfs_set_root_node(&root->root_item,
1040                                                     root->node);
1041                         }
1042
1043                         err = btrfs_update_root(trans, fs_info->tree_root,
1044                                                 &root->root_key,
1045                                                 &root->root_item);
1046                         spin_lock(&fs_info->fs_roots_radix_lock);
1047                         if (err)
1048                                 break;
1049                 }
1050         }
1051         spin_unlock(&fs_info->fs_roots_radix_lock);
1052         return err;
1053 }
1054
1055 /*
1056  * defrag a given btree.
1057  * Every leaf in the btree is read and defragged.
1058  */
1059 int btrfs_defrag_root(struct btrfs_root *root)
1060 {
1061         struct btrfs_fs_info *info = root->fs_info;
1062         struct btrfs_trans_handle *trans;
1063         int ret;
1064
1065         if (xchg(&root->defrag_running, 1))
1066                 return 0;
1067
1068         while (1) {
1069                 trans = btrfs_start_transaction(root, 0);
1070                 if (IS_ERR(trans))
1071                         return PTR_ERR(trans);
1072
1073                 ret = btrfs_defrag_leaves(trans, root);
1074
1075                 btrfs_end_transaction(trans, root);
1076                 btrfs_btree_balance_dirty(info->tree_root);
1077                 cond_resched();
1078
1079                 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1080                         break;
1081
1082                 if (btrfs_defrag_cancelled(root->fs_info)) {
1083                         printk(KERN_DEBUG "btrfs: defrag_root cancelled\n");
1084                         ret = -EAGAIN;
1085                         break;
1086                 }
1087         }
1088         root->defrag_running = 0;
1089         return ret;
1090 }
1091
1092 /*
1093  * new snapshots need to be created at a very specific time in the
1094  * transaction commit.  This does the actual creation.
1095  *
1096  * Note:
1097  * If the error which may affect the commitment of the current transaction
1098  * happens, we should return the error number. If the error which just affect
1099  * the creation of the pending snapshots, just return 0.
1100  */
1101 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1102                                    struct btrfs_fs_info *fs_info,
1103                                    struct btrfs_pending_snapshot *pending)
1104 {
1105         struct btrfs_key key;
1106         struct btrfs_root_item *new_root_item;
1107         struct btrfs_root *tree_root = fs_info->tree_root;
1108         struct btrfs_root *root = pending->root;
1109         struct btrfs_root *parent_root;
1110         struct btrfs_block_rsv *rsv;
1111         struct inode *parent_inode;
1112         struct btrfs_path *path;
1113         struct btrfs_dir_item *dir_item;
1114         struct dentry *dentry;
1115         struct extent_buffer *tmp;
1116         struct extent_buffer *old;
1117         struct timespec cur_time = CURRENT_TIME;
1118         int ret = 0;
1119         u64 to_reserve = 0;
1120         u64 index = 0;
1121         u64 objectid;
1122         u64 root_flags;
1123         uuid_le new_uuid;
1124
1125         path = btrfs_alloc_path();
1126         if (!path) {
1127                 pending->error = -ENOMEM;
1128                 return 0;
1129         }
1130
1131         new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1132         if (!new_root_item) {
1133                 pending->error = -ENOMEM;
1134                 goto root_item_alloc_fail;
1135         }
1136
1137         pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1138         if (pending->error)
1139                 goto no_free_objectid;
1140
1141         btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1142
1143         if (to_reserve > 0) {
1144                 pending->error = btrfs_block_rsv_add(root,
1145                                                      &pending->block_rsv,
1146                                                      to_reserve,
1147                                                      BTRFS_RESERVE_NO_FLUSH);
1148                 if (pending->error)
1149                         goto no_free_objectid;
1150         }
1151
1152         pending->error = btrfs_qgroup_inherit(trans, fs_info,
1153                                               root->root_key.objectid,
1154                                               objectid, pending->inherit);
1155         if (pending->error)
1156                 goto no_free_objectid;
1157
1158         key.objectid = objectid;
1159         key.offset = (u64)-1;
1160         key.type = BTRFS_ROOT_ITEM_KEY;
1161
1162         rsv = trans->block_rsv;
1163         trans->block_rsv = &pending->block_rsv;
1164         trans->bytes_reserved = trans->block_rsv->reserved;
1165
1166         dentry = pending->dentry;
1167         parent_inode = pending->dir;
1168         parent_root = BTRFS_I(parent_inode)->root;
1169         record_root_in_trans(trans, parent_root);
1170
1171         /*
1172          * insert the directory item
1173          */
1174         ret = btrfs_set_inode_index(parent_inode, &index);
1175         BUG_ON(ret); /* -ENOMEM */
1176
1177         /* check if there is a file/dir which has the same name. */
1178         dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1179                                          btrfs_ino(parent_inode),
1180                                          dentry->d_name.name,
1181                                          dentry->d_name.len, 0);
1182         if (dir_item != NULL && !IS_ERR(dir_item)) {
1183                 pending->error = -EEXIST;
1184                 goto dir_item_existed;
1185         } else if (IS_ERR(dir_item)) {
1186                 ret = PTR_ERR(dir_item);
1187                 btrfs_abort_transaction(trans, root, ret);
1188                 goto fail;
1189         }
1190         btrfs_release_path(path);
1191
1192         /*
1193          * pull in the delayed directory update
1194          * and the delayed inode item
1195          * otherwise we corrupt the FS during
1196          * snapshot
1197          */
1198         ret = btrfs_run_delayed_items(trans, root);
1199         if (ret) {      /* Transaction aborted */
1200                 btrfs_abort_transaction(trans, root, ret);
1201                 goto fail;
1202         }
1203
1204         record_root_in_trans(trans, root);
1205         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1206         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1207         btrfs_check_and_init_root_item(new_root_item);
1208
1209         root_flags = btrfs_root_flags(new_root_item);
1210         if (pending->readonly)
1211                 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1212         else
1213                 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1214         btrfs_set_root_flags(new_root_item, root_flags);
1215
1216         btrfs_set_root_generation_v2(new_root_item,
1217                         trans->transid);
1218         uuid_le_gen(&new_uuid);
1219         memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1220         memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1221                         BTRFS_UUID_SIZE);
1222         if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1223                 memset(new_root_item->received_uuid, 0,
1224                        sizeof(new_root_item->received_uuid));
1225                 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1226                 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1227                 btrfs_set_root_stransid(new_root_item, 0);
1228                 btrfs_set_root_rtransid(new_root_item, 0);
1229         }
1230         btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1231         btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1232         btrfs_set_root_otransid(new_root_item, trans->transid);
1233
1234         old = btrfs_lock_root_node(root);
1235         ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1236         if (ret) {
1237                 btrfs_tree_unlock(old);
1238                 free_extent_buffer(old);
1239                 btrfs_abort_transaction(trans, root, ret);
1240                 goto fail;
1241         }
1242
1243         btrfs_set_lock_blocking(old);
1244
1245         ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1246         /* clean up in any case */
1247         btrfs_tree_unlock(old);
1248         free_extent_buffer(old);
1249         if (ret) {
1250                 btrfs_abort_transaction(trans, root, ret);
1251                 goto fail;
1252         }
1253
1254         /* see comments in should_cow_block() */
1255         root->force_cow = 1;
1256         smp_wmb();
1257
1258         btrfs_set_root_node(new_root_item, tmp);
1259         /* record when the snapshot was created in key.offset */
1260         key.offset = trans->transid;
1261         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1262         btrfs_tree_unlock(tmp);
1263         free_extent_buffer(tmp);
1264         if (ret) {
1265                 btrfs_abort_transaction(trans, root, ret);
1266                 goto fail;
1267         }
1268
1269         /*
1270          * insert root back/forward references
1271          */
1272         ret = btrfs_add_root_ref(trans, tree_root, objectid,
1273                                  parent_root->root_key.objectid,
1274                                  btrfs_ino(parent_inode), index,
1275                                  dentry->d_name.name, dentry->d_name.len);
1276         if (ret) {
1277                 btrfs_abort_transaction(trans, root, ret);
1278                 goto fail;
1279         }
1280
1281         key.offset = (u64)-1;
1282         pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1283         if (IS_ERR(pending->snap)) {
1284                 ret = PTR_ERR(pending->snap);
1285                 btrfs_abort_transaction(trans, root, ret);
1286                 goto fail;
1287         }
1288
1289         ret = btrfs_reloc_post_snapshot(trans, pending);
1290         if (ret) {
1291                 btrfs_abort_transaction(trans, root, ret);
1292                 goto fail;
1293         }
1294
1295         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1296         if (ret) {
1297                 btrfs_abort_transaction(trans, root, ret);
1298                 goto fail;
1299         }
1300
1301         ret = btrfs_insert_dir_item(trans, parent_root,
1302                                     dentry->d_name.name, dentry->d_name.len,
1303                                     parent_inode, &key,
1304                                     BTRFS_FT_DIR, index);
1305         /* We have check then name at the beginning, so it is impossible. */
1306         BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1307         if (ret) {
1308                 btrfs_abort_transaction(trans, root, ret);
1309                 goto fail;
1310         }
1311
1312         btrfs_i_size_write(parent_inode, parent_inode->i_size +
1313                                          dentry->d_name.len * 2);
1314         parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1315         ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1316         if (ret) {
1317                 btrfs_abort_transaction(trans, root, ret);
1318                 goto fail;
1319         }
1320         ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1321                                   BTRFS_UUID_KEY_SUBVOL, objectid);
1322         if (ret) {
1323                 btrfs_abort_transaction(trans, root, ret);
1324                 goto fail;
1325         }
1326         if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1327                 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1328                                           new_root_item->received_uuid,
1329                                           BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1330                                           objectid);
1331                 if (ret && ret != -EEXIST) {
1332                         btrfs_abort_transaction(trans, root, ret);
1333                         goto fail;
1334                 }
1335         }
1336 fail:
1337         pending->error = ret;
1338 dir_item_existed:
1339         trans->block_rsv = rsv;
1340         trans->bytes_reserved = 0;
1341 no_free_objectid:
1342         kfree(new_root_item);
1343 root_item_alloc_fail:
1344         btrfs_free_path(path);
1345         return ret;
1346 }
1347
1348 /*
1349  * create all the snapshots we've scheduled for creation
1350  */
1351 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1352                                              struct btrfs_fs_info *fs_info)
1353 {
1354         struct btrfs_pending_snapshot *pending, *next;
1355         struct list_head *head = &trans->transaction->pending_snapshots;
1356         int ret = 0;
1357
1358         list_for_each_entry_safe(pending, next, head, list) {
1359                 list_del(&pending->list);
1360                 ret = create_pending_snapshot(trans, fs_info, pending);
1361                 if (ret)
1362                         break;
1363         }
1364         return ret;
1365 }
1366
1367 static void update_super_roots(struct btrfs_root *root)
1368 {
1369         struct btrfs_root_item *root_item;
1370         struct btrfs_super_block *super;
1371
1372         super = root->fs_info->super_copy;
1373
1374         root_item = &root->fs_info->chunk_root->root_item;
1375         super->chunk_root = root_item->bytenr;
1376         super->chunk_root_generation = root_item->generation;
1377         super->chunk_root_level = root_item->level;
1378
1379         root_item = &root->fs_info->tree_root->root_item;
1380         super->root = root_item->bytenr;
1381         super->generation = root_item->generation;
1382         super->root_level = root_item->level;
1383         if (btrfs_test_opt(root, SPACE_CACHE))
1384                 super->cache_generation = root_item->generation;
1385         if (root->fs_info->update_uuid_tree_gen)
1386                 super->uuid_tree_generation = root_item->generation;
1387 }
1388
1389 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1390 {
1391         struct btrfs_transaction *trans;
1392         int ret = 0;
1393
1394         spin_lock(&info->trans_lock);
1395         trans = info->running_transaction;
1396         if (trans)
1397                 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1398         spin_unlock(&info->trans_lock);
1399         return ret;
1400 }
1401
1402 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1403 {
1404         struct btrfs_transaction *trans;
1405         int ret = 0;
1406
1407         spin_lock(&info->trans_lock);
1408         trans = info->running_transaction;
1409         if (trans)
1410                 ret = is_transaction_blocked(trans);
1411         spin_unlock(&info->trans_lock);
1412         return ret;
1413 }
1414
1415 /*
1416  * wait for the current transaction commit to start and block subsequent
1417  * transaction joins
1418  */
1419 static void wait_current_trans_commit_start(struct btrfs_root *root,
1420                                             struct btrfs_transaction *trans)
1421 {
1422         wait_event(root->fs_info->transaction_blocked_wait,
1423                    trans->state >= TRANS_STATE_COMMIT_START ||
1424                    trans->aborted);
1425 }
1426
1427 /*
1428  * wait for the current transaction to start and then become unblocked.
1429  * caller holds ref.
1430  */
1431 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1432                                          struct btrfs_transaction *trans)
1433 {
1434         wait_event(root->fs_info->transaction_wait,
1435                    trans->state >= TRANS_STATE_UNBLOCKED ||
1436                    trans->aborted);
1437 }
1438
1439 /*
1440  * commit transactions asynchronously. once btrfs_commit_transaction_async
1441  * returns, any subsequent transaction will not be allowed to join.
1442  */
1443 struct btrfs_async_commit {
1444         struct btrfs_trans_handle *newtrans;
1445         struct btrfs_root *root;
1446         struct work_struct work;
1447 };
1448
1449 static void do_async_commit(struct work_struct *work)
1450 {
1451         struct btrfs_async_commit *ac =
1452                 container_of(work, struct btrfs_async_commit, work);
1453
1454         /*
1455          * We've got freeze protection passed with the transaction.
1456          * Tell lockdep about it.
1457          */
1458         if (ac->newtrans->type < TRANS_JOIN_NOLOCK)
1459                 rwsem_acquire_read(
1460                      &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1461                      0, 1, _THIS_IP_);
1462
1463         current->journal_info = ac->newtrans;
1464
1465         btrfs_commit_transaction(ac->newtrans, ac->root);
1466         kfree(ac);
1467 }
1468
1469 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1470                                    struct btrfs_root *root,
1471                                    int wait_for_unblock)
1472 {
1473         struct btrfs_async_commit *ac;
1474         struct btrfs_transaction *cur_trans;
1475
1476         ac = kmalloc(sizeof(*ac), GFP_NOFS);
1477         if (!ac)
1478                 return -ENOMEM;
1479
1480         INIT_WORK(&ac->work, do_async_commit);
1481         ac->root = root;
1482         ac->newtrans = btrfs_join_transaction(root);
1483         if (IS_ERR(ac->newtrans)) {
1484                 int err = PTR_ERR(ac->newtrans);
1485                 kfree(ac);
1486                 return err;
1487         }
1488
1489         /* take transaction reference */
1490         cur_trans = trans->transaction;
1491         atomic_inc(&cur_trans->use_count);
1492
1493         btrfs_end_transaction(trans, root);
1494
1495         /*
1496          * Tell lockdep we've released the freeze rwsem, since the
1497          * async commit thread will be the one to unlock it.
1498          */
1499         if (trans->type < TRANS_JOIN_NOLOCK)
1500                 rwsem_release(
1501                         &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1502                         1, _THIS_IP_);
1503
1504         schedule_work(&ac->work);
1505
1506         /* wait for transaction to start and unblock */
1507         if (wait_for_unblock)
1508                 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1509         else
1510                 wait_current_trans_commit_start(root, cur_trans);
1511
1512         if (current->journal_info == trans)
1513                 current->journal_info = NULL;
1514
1515         put_transaction(cur_trans);
1516         return 0;
1517 }
1518
1519
1520 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1521                                 struct btrfs_root *root, int err)
1522 {
1523         struct btrfs_transaction *cur_trans = trans->transaction;
1524         DEFINE_WAIT(wait);
1525
1526         WARN_ON(trans->use_count > 1);
1527
1528         btrfs_abort_transaction(trans, root, err);
1529
1530         spin_lock(&root->fs_info->trans_lock);
1531
1532         /*
1533          * If the transaction is removed from the list, it means this
1534          * transaction has been committed successfully, so it is impossible
1535          * to call the cleanup function.
1536          */
1537         BUG_ON(list_empty(&cur_trans->list));
1538
1539         list_del_init(&cur_trans->list);
1540         if (cur_trans == root->fs_info->running_transaction) {
1541                 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1542                 spin_unlock(&root->fs_info->trans_lock);
1543                 wait_event(cur_trans->writer_wait,
1544                            atomic_read(&cur_trans->num_writers) == 1);
1545
1546                 spin_lock(&root->fs_info->trans_lock);
1547         }
1548         spin_unlock(&root->fs_info->trans_lock);
1549
1550         btrfs_cleanup_one_transaction(trans->transaction, root);
1551
1552         spin_lock(&root->fs_info->trans_lock);
1553         if (cur_trans == root->fs_info->running_transaction)
1554                 root->fs_info->running_transaction = NULL;
1555         spin_unlock(&root->fs_info->trans_lock);
1556
1557         if (trans->type & __TRANS_FREEZABLE)
1558                 sb_end_intwrite(root->fs_info->sb);
1559         put_transaction(cur_trans);
1560         put_transaction(cur_trans);
1561
1562         trace_btrfs_transaction_commit(root);
1563
1564         btrfs_scrub_continue(root);
1565
1566         if (current->journal_info == trans)
1567                 current->journal_info = NULL;
1568
1569         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1570 }
1571
1572 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
1573                                           struct btrfs_root *root)
1574 {
1575         int ret;
1576
1577         ret = btrfs_run_delayed_items(trans, root);
1578         if (ret)
1579                 return ret;
1580
1581         /*
1582          * running the delayed items may have added new refs. account
1583          * them now so that they hinder processing of more delayed refs
1584          * as little as possible.
1585          */
1586         btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1587
1588         /*
1589          * rename don't use btrfs_join_transaction, so, once we
1590          * set the transaction to blocked above, we aren't going
1591          * to get any new ordered operations.  We can safely run
1592          * it here and no for sure that nothing new will be added
1593          * to the list
1594          */
1595         ret = btrfs_run_ordered_operations(trans, root, 1);
1596
1597         return ret;
1598 }
1599
1600 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1601 {
1602         if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1603                 return btrfs_start_all_delalloc_inodes(fs_info, 1);
1604         return 0;
1605 }
1606
1607 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1608 {
1609         if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1610                 btrfs_wait_all_ordered_extents(fs_info);
1611 }
1612
1613 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1614                              struct btrfs_root *root)
1615 {
1616         struct btrfs_transaction *cur_trans = trans->transaction;
1617         struct btrfs_transaction *prev_trans = NULL;
1618         int ret;
1619
1620         ret = btrfs_run_ordered_operations(trans, root, 0);
1621         if (ret) {
1622                 btrfs_abort_transaction(trans, root, ret);
1623                 btrfs_end_transaction(trans, root);
1624                 return ret;
1625         }
1626
1627         /* Stop the commit early if ->aborted is set */
1628         if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1629                 ret = cur_trans->aborted;
1630                 btrfs_end_transaction(trans, root);
1631                 return ret;
1632         }
1633
1634         /* make a pass through all the delayed refs we have so far
1635          * any runnings procs may add more while we are here
1636          */
1637         ret = btrfs_run_delayed_refs(trans, root, 0);
1638         if (ret) {
1639                 btrfs_end_transaction(trans, root);
1640                 return ret;
1641         }
1642
1643         btrfs_trans_release_metadata(trans, root);
1644         trans->block_rsv = NULL;
1645         if (trans->qgroup_reserved) {
1646                 btrfs_qgroup_free(root, trans->qgroup_reserved);
1647                 trans->qgroup_reserved = 0;
1648         }
1649
1650         cur_trans = trans->transaction;
1651
1652         /*
1653          * set the flushing flag so procs in this transaction have to
1654          * start sending their work down.
1655          */
1656         cur_trans->delayed_refs.flushing = 1;
1657         smp_wmb();
1658
1659         if (!list_empty(&trans->new_bgs))
1660                 btrfs_create_pending_block_groups(trans, root);
1661
1662         ret = btrfs_run_delayed_refs(trans, root, 0);
1663         if (ret) {
1664                 btrfs_end_transaction(trans, root);
1665                 return ret;
1666         }
1667
1668         spin_lock(&root->fs_info->trans_lock);
1669         if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1670                 spin_unlock(&root->fs_info->trans_lock);
1671                 atomic_inc(&cur_trans->use_count);
1672                 ret = btrfs_end_transaction(trans, root);
1673
1674                 wait_for_commit(root, cur_trans);
1675
1676                 put_transaction(cur_trans);
1677
1678                 return ret;
1679         }
1680
1681         cur_trans->state = TRANS_STATE_COMMIT_START;
1682         wake_up(&root->fs_info->transaction_blocked_wait);
1683
1684         if (cur_trans->list.prev != &root->fs_info->trans_list) {
1685                 prev_trans = list_entry(cur_trans->list.prev,
1686                                         struct btrfs_transaction, list);
1687                 if (prev_trans->state != TRANS_STATE_COMPLETED) {
1688                         atomic_inc(&prev_trans->use_count);
1689                         spin_unlock(&root->fs_info->trans_lock);
1690
1691                         wait_for_commit(root, prev_trans);
1692
1693                         put_transaction(prev_trans);
1694                 } else {
1695                         spin_unlock(&root->fs_info->trans_lock);
1696                 }
1697         } else {
1698                 spin_unlock(&root->fs_info->trans_lock);
1699         }
1700
1701         extwriter_counter_dec(cur_trans, trans->type);
1702
1703         ret = btrfs_start_delalloc_flush(root->fs_info);
1704         if (ret)
1705                 goto cleanup_transaction;
1706
1707         ret = btrfs_flush_all_pending_stuffs(trans, root);
1708         if (ret)
1709                 goto cleanup_transaction;
1710
1711         wait_event(cur_trans->writer_wait,
1712                    extwriter_counter_read(cur_trans) == 0);
1713
1714         /* some pending stuffs might be added after the previous flush. */
1715         ret = btrfs_flush_all_pending_stuffs(trans, root);
1716         if (ret)
1717                 goto cleanup_transaction;
1718
1719         btrfs_wait_delalloc_flush(root->fs_info);
1720         /*
1721          * Ok now we need to make sure to block out any other joins while we
1722          * commit the transaction.  We could have started a join before setting
1723          * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1724          */
1725         spin_lock(&root->fs_info->trans_lock);
1726         cur_trans->state = TRANS_STATE_COMMIT_DOING;
1727         spin_unlock(&root->fs_info->trans_lock);
1728         wait_event(cur_trans->writer_wait,
1729                    atomic_read(&cur_trans->num_writers) == 1);
1730
1731         /* ->aborted might be set after the previous check, so check it */
1732         if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1733                 ret = cur_trans->aborted;
1734                 goto cleanup_transaction;
1735         }
1736         /*
1737          * the reloc mutex makes sure that we stop
1738          * the balancing code from coming in and moving
1739          * extents around in the middle of the commit
1740          */
1741         mutex_lock(&root->fs_info->reloc_mutex);
1742
1743         /*
1744          * We needn't worry about the delayed items because we will
1745          * deal with them in create_pending_snapshot(), which is the
1746          * core function of the snapshot creation.
1747          */
1748         ret = create_pending_snapshots(trans, root->fs_info);
1749         if (ret) {
1750                 mutex_unlock(&root->fs_info->reloc_mutex);
1751                 goto cleanup_transaction;
1752         }
1753
1754         /*
1755          * We insert the dir indexes of the snapshots and update the inode
1756          * of the snapshots' parents after the snapshot creation, so there
1757          * are some delayed items which are not dealt with. Now deal with
1758          * them.
1759          *
1760          * We needn't worry that this operation will corrupt the snapshots,
1761          * because all the tree which are snapshoted will be forced to COW
1762          * the nodes and leaves.
1763          */
1764         ret = btrfs_run_delayed_items(trans, root);
1765         if (ret) {
1766                 mutex_unlock(&root->fs_info->reloc_mutex);
1767                 goto cleanup_transaction;
1768         }
1769
1770         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1771         if (ret) {
1772                 mutex_unlock(&root->fs_info->reloc_mutex);
1773                 goto cleanup_transaction;
1774         }
1775
1776         /*
1777          * make sure none of the code above managed to slip in a
1778          * delayed item
1779          */
1780         btrfs_assert_delayed_root_empty(root);
1781
1782         WARN_ON(cur_trans != trans->transaction);
1783
1784         btrfs_scrub_pause(root);
1785         /* btrfs_commit_tree_roots is responsible for getting the
1786          * various roots consistent with each other.  Every pointer
1787          * in the tree of tree roots has to point to the most up to date
1788          * root for every subvolume and other tree.  So, we have to keep
1789          * the tree logging code from jumping in and changing any
1790          * of the trees.
1791          *
1792          * At this point in the commit, there can't be any tree-log
1793          * writers, but a little lower down we drop the trans mutex
1794          * and let new people in.  By holding the tree_log_mutex
1795          * from now until after the super is written, we avoid races
1796          * with the tree-log code.
1797          */
1798         mutex_lock(&root->fs_info->tree_log_mutex);
1799
1800         ret = commit_fs_roots(trans, root);
1801         if (ret) {
1802                 mutex_unlock(&root->fs_info->tree_log_mutex);
1803                 mutex_unlock(&root->fs_info->reloc_mutex);
1804                 goto cleanup_transaction;
1805         }
1806
1807         /* commit_fs_roots gets rid of all the tree log roots, it is now
1808          * safe to free the root of tree log roots
1809          */
1810         btrfs_free_log_root_tree(trans, root->fs_info);
1811
1812         ret = commit_cowonly_roots(trans, root);
1813         if (ret) {
1814                 mutex_unlock(&root->fs_info->tree_log_mutex);
1815                 mutex_unlock(&root->fs_info->reloc_mutex);
1816                 goto cleanup_transaction;
1817         }
1818
1819         /*
1820          * The tasks which save the space cache and inode cache may also
1821          * update ->aborted, check it.
1822          */
1823         if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1824                 ret = cur_trans->aborted;
1825                 mutex_unlock(&root->fs_info->tree_log_mutex);
1826                 mutex_unlock(&root->fs_info->reloc_mutex);
1827                 goto cleanup_transaction;
1828         }
1829
1830         btrfs_prepare_extent_commit(trans, root);
1831
1832         cur_trans = root->fs_info->running_transaction;
1833
1834         btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1835                             root->fs_info->tree_root->node);
1836         switch_commit_root(root->fs_info->tree_root);
1837
1838         btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1839                             root->fs_info->chunk_root->node);
1840         switch_commit_root(root->fs_info->chunk_root);
1841
1842         assert_qgroups_uptodate(trans);
1843         update_super_roots(root);
1844
1845         btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1846         btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1847         memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1848                sizeof(*root->fs_info->super_copy));
1849
1850         spin_lock(&root->fs_info->trans_lock);
1851         cur_trans->state = TRANS_STATE_UNBLOCKED;
1852         root->fs_info->running_transaction = NULL;
1853         spin_unlock(&root->fs_info->trans_lock);
1854         mutex_unlock(&root->fs_info->reloc_mutex);
1855
1856         wake_up(&root->fs_info->transaction_wait);
1857
1858         ret = btrfs_write_and_wait_transaction(trans, root);
1859         if (ret) {
1860                 btrfs_error(root->fs_info, ret,
1861                             "Error while writing out transaction");
1862                 mutex_unlock(&root->fs_info->tree_log_mutex);
1863                 goto cleanup_transaction;
1864         }
1865
1866         ret = write_ctree_super(trans, root, 0);
1867         if (ret) {
1868                 mutex_unlock(&root->fs_info->tree_log_mutex);
1869                 goto cleanup_transaction;
1870         }
1871
1872         /*
1873          * the super is written, we can safely allow the tree-loggers
1874          * to go about their business
1875          */
1876         mutex_unlock(&root->fs_info->tree_log_mutex);
1877
1878         btrfs_finish_extent_commit(trans, root);
1879
1880         root->fs_info->last_trans_committed = cur_trans->transid;
1881         /*
1882          * We needn't acquire the lock here because there is no other task
1883          * which can change it.
1884          */
1885         cur_trans->state = TRANS_STATE_COMPLETED;
1886         wake_up(&cur_trans->commit_wait);
1887
1888         spin_lock(&root->fs_info->trans_lock);
1889         list_del_init(&cur_trans->list);
1890         spin_unlock(&root->fs_info->trans_lock);
1891
1892         put_transaction(cur_trans);
1893         put_transaction(cur_trans);
1894
1895         if (trans->type & __TRANS_FREEZABLE)
1896                 sb_end_intwrite(root->fs_info->sb);
1897
1898         trace_btrfs_transaction_commit(root);
1899
1900         btrfs_scrub_continue(root);
1901
1902         if (current->journal_info == trans)
1903                 current->journal_info = NULL;
1904
1905         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1906
1907         if (current != root->fs_info->transaction_kthread)
1908                 btrfs_run_delayed_iputs(root);
1909
1910         return ret;
1911
1912 cleanup_transaction:
1913         btrfs_trans_release_metadata(trans, root);
1914         trans->block_rsv = NULL;
1915         if (trans->qgroup_reserved) {
1916                 btrfs_qgroup_free(root, trans->qgroup_reserved);
1917                 trans->qgroup_reserved = 0;
1918         }
1919         btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
1920         if (current->journal_info == trans)
1921                 current->journal_info = NULL;
1922         cleanup_transaction(trans, root, ret);
1923
1924         return ret;
1925 }
1926
1927 /*
1928  * return < 0 if error
1929  * 0 if there are no more dead_roots at the time of call
1930  * 1 there are more to be processed, call me again
1931  *
1932  * The return value indicates there are certainly more snapshots to delete, but
1933  * if there comes a new one during processing, it may return 0. We don't mind,
1934  * because btrfs_commit_super will poke cleaner thread and it will process it a
1935  * few seconds later.
1936  */
1937 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
1938 {
1939         int ret;
1940         struct btrfs_fs_info *fs_info = root->fs_info;
1941
1942         spin_lock(&fs_info->trans_lock);
1943         if (list_empty(&fs_info->dead_roots)) {
1944                 spin_unlock(&fs_info->trans_lock);
1945                 return 0;
1946         }
1947         root = list_first_entry(&fs_info->dead_roots,
1948                         struct btrfs_root, root_list);
1949         list_del_init(&root->root_list);
1950         spin_unlock(&fs_info->trans_lock);
1951
1952         pr_debug("btrfs: cleaner removing %llu\n", root->objectid);
1953
1954         btrfs_kill_all_delayed_nodes(root);
1955
1956         if (btrfs_header_backref_rev(root->node) <
1957                         BTRFS_MIXED_BACKREF_REV)
1958                 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1959         else
1960                 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
1961         /*
1962          * If we encounter a transaction abort during snapshot cleaning, we
1963          * don't want to crash here
1964          */
1965         return (ret < 0) ? 0 : 1;
1966 }