Btrfs: cleanup for btrfs_btree_balance_dirty
[linux-2.6-block.git] / fs / btrfs / transaction.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33
34 #define BTRFS_ROOT_TRANS_TAG 0
35
36 void put_transaction(struct btrfs_transaction *transaction)
37 {
38         WARN_ON(atomic_read(&transaction->use_count) == 0);
39         if (atomic_dec_and_test(&transaction->use_count)) {
40                 BUG_ON(!list_empty(&transaction->list));
41                 WARN_ON(transaction->delayed_refs.root.rb_node);
42                 memset(transaction, 0, sizeof(*transaction));
43                 kmem_cache_free(btrfs_transaction_cachep, transaction);
44         }
45 }
46
47 static noinline void switch_commit_root(struct btrfs_root *root)
48 {
49         free_extent_buffer(root->commit_root);
50         root->commit_root = btrfs_root_node(root);
51 }
52
53 /*
54  * either allocate a new transaction or hop into the existing one
55  */
56 static noinline int join_transaction(struct btrfs_root *root, int type)
57 {
58         struct btrfs_transaction *cur_trans;
59         struct btrfs_fs_info *fs_info = root->fs_info;
60
61         spin_lock(&fs_info->trans_lock);
62 loop:
63         /* The file system has been taken offline. No new transactions. */
64         if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
65                 spin_unlock(&fs_info->trans_lock);
66                 return -EROFS;
67         }
68
69         if (fs_info->trans_no_join) {
70                 /* 
71                  * If we are JOIN_NOLOCK we're already committing a current
72                  * transaction, we just need a handle to deal with something
73                  * when committing the transaction, such as inode cache and
74                  * space cache. It is a special case.
75                  */
76                 if (type != TRANS_JOIN_NOLOCK) {
77                         spin_unlock(&fs_info->trans_lock);
78                         return -EBUSY;
79                 }
80         }
81
82         cur_trans = fs_info->running_transaction;
83         if (cur_trans) {
84                 if (cur_trans->aborted) {
85                         spin_unlock(&fs_info->trans_lock);
86                         return cur_trans->aborted;
87                 }
88                 atomic_inc(&cur_trans->use_count);
89                 atomic_inc(&cur_trans->num_writers);
90                 cur_trans->num_joined++;
91                 spin_unlock(&fs_info->trans_lock);
92                 return 0;
93         }
94         spin_unlock(&fs_info->trans_lock);
95
96         /*
97          * If we are ATTACH, we just want to catch the current transaction,
98          * and commit it. If there is no transaction, just return ENOENT.
99          */
100         if (type == TRANS_ATTACH)
101                 return -ENOENT;
102
103         cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
104         if (!cur_trans)
105                 return -ENOMEM;
106
107         spin_lock(&fs_info->trans_lock);
108         if (fs_info->running_transaction) {
109                 /*
110                  * someone started a transaction after we unlocked.  Make sure
111                  * to redo the trans_no_join checks above
112                  */
113                 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
114                 cur_trans = fs_info->running_transaction;
115                 goto loop;
116         } else if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
117                 spin_unlock(&fs_info->trans_lock);
118                 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
119                 return -EROFS;
120         }
121
122         atomic_set(&cur_trans->num_writers, 1);
123         cur_trans->num_joined = 0;
124         init_waitqueue_head(&cur_trans->writer_wait);
125         init_waitqueue_head(&cur_trans->commit_wait);
126         cur_trans->in_commit = 0;
127         cur_trans->blocked = 0;
128         /*
129          * One for this trans handle, one so it will live on until we
130          * commit the transaction.
131          */
132         atomic_set(&cur_trans->use_count, 2);
133         cur_trans->commit_done = 0;
134         cur_trans->start_time = get_seconds();
135
136         cur_trans->delayed_refs.root = RB_ROOT;
137         cur_trans->delayed_refs.num_entries = 0;
138         cur_trans->delayed_refs.num_heads_ready = 0;
139         cur_trans->delayed_refs.num_heads = 0;
140         cur_trans->delayed_refs.flushing = 0;
141         cur_trans->delayed_refs.run_delayed_start = 0;
142
143         /*
144          * although the tree mod log is per file system and not per transaction,
145          * the log must never go across transaction boundaries.
146          */
147         smp_mb();
148         if (!list_empty(&fs_info->tree_mod_seq_list))
149                 WARN(1, KERN_ERR "btrfs: tree_mod_seq_list not empty when "
150                         "creating a fresh transaction\n");
151         if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
152                 WARN(1, KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
153                         "creating a fresh transaction\n");
154         atomic_set(&fs_info->tree_mod_seq, 0);
155
156         spin_lock_init(&cur_trans->commit_lock);
157         spin_lock_init(&cur_trans->delayed_refs.lock);
158
159         INIT_LIST_HEAD(&cur_trans->pending_snapshots);
160         list_add_tail(&cur_trans->list, &fs_info->trans_list);
161         extent_io_tree_init(&cur_trans->dirty_pages,
162                              fs_info->btree_inode->i_mapping);
163         fs_info->generation++;
164         cur_trans->transid = fs_info->generation;
165         fs_info->running_transaction = cur_trans;
166         cur_trans->aborted = 0;
167         spin_unlock(&fs_info->trans_lock);
168
169         return 0;
170 }
171
172 /*
173  * this does all the record keeping required to make sure that a reference
174  * counted root is properly recorded in a given transaction.  This is required
175  * to make sure the old root from before we joined the transaction is deleted
176  * when the transaction commits
177  */
178 static int record_root_in_trans(struct btrfs_trans_handle *trans,
179                                struct btrfs_root *root)
180 {
181         if (root->ref_cows && root->last_trans < trans->transid) {
182                 WARN_ON(root == root->fs_info->extent_root);
183                 WARN_ON(root->commit_root != root->node);
184
185                 /*
186                  * see below for in_trans_setup usage rules
187                  * we have the reloc mutex held now, so there
188                  * is only one writer in this function
189                  */
190                 root->in_trans_setup = 1;
191
192                 /* make sure readers find in_trans_setup before
193                  * they find our root->last_trans update
194                  */
195                 smp_wmb();
196
197                 spin_lock(&root->fs_info->fs_roots_radix_lock);
198                 if (root->last_trans == trans->transid) {
199                         spin_unlock(&root->fs_info->fs_roots_radix_lock);
200                         return 0;
201                 }
202                 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
203                            (unsigned long)root->root_key.objectid,
204                            BTRFS_ROOT_TRANS_TAG);
205                 spin_unlock(&root->fs_info->fs_roots_radix_lock);
206                 root->last_trans = trans->transid;
207
208                 /* this is pretty tricky.  We don't want to
209                  * take the relocation lock in btrfs_record_root_in_trans
210                  * unless we're really doing the first setup for this root in
211                  * this transaction.
212                  *
213                  * Normally we'd use root->last_trans as a flag to decide
214                  * if we want to take the expensive mutex.
215                  *
216                  * But, we have to set root->last_trans before we
217                  * init the relocation root, otherwise, we trip over warnings
218                  * in ctree.c.  The solution used here is to flag ourselves
219                  * with root->in_trans_setup.  When this is 1, we're still
220                  * fixing up the reloc trees and everyone must wait.
221                  *
222                  * When this is zero, they can trust root->last_trans and fly
223                  * through btrfs_record_root_in_trans without having to take the
224                  * lock.  smp_wmb() makes sure that all the writes above are
225                  * done before we pop in the zero below
226                  */
227                 btrfs_init_reloc_root(trans, root);
228                 smp_wmb();
229                 root->in_trans_setup = 0;
230         }
231         return 0;
232 }
233
234
235 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
236                                struct btrfs_root *root)
237 {
238         if (!root->ref_cows)
239                 return 0;
240
241         /*
242          * see record_root_in_trans for comments about in_trans_setup usage
243          * and barriers
244          */
245         smp_rmb();
246         if (root->last_trans == trans->transid &&
247             !root->in_trans_setup)
248                 return 0;
249
250         mutex_lock(&root->fs_info->reloc_mutex);
251         record_root_in_trans(trans, root);
252         mutex_unlock(&root->fs_info->reloc_mutex);
253
254         return 0;
255 }
256
257 /* wait for commit against the current transaction to become unblocked
258  * when this is done, it is safe to start a new transaction, but the current
259  * transaction might not be fully on disk.
260  */
261 static void wait_current_trans(struct btrfs_root *root)
262 {
263         struct btrfs_transaction *cur_trans;
264
265         spin_lock(&root->fs_info->trans_lock);
266         cur_trans = root->fs_info->running_transaction;
267         if (cur_trans && cur_trans->blocked) {
268                 atomic_inc(&cur_trans->use_count);
269                 spin_unlock(&root->fs_info->trans_lock);
270
271                 wait_event(root->fs_info->transaction_wait,
272                            !cur_trans->blocked);
273                 put_transaction(cur_trans);
274         } else {
275                 spin_unlock(&root->fs_info->trans_lock);
276         }
277 }
278
279 static int may_wait_transaction(struct btrfs_root *root, int type)
280 {
281         if (root->fs_info->log_root_recovering)
282                 return 0;
283
284         if (type == TRANS_USERSPACE)
285                 return 1;
286
287         if (type == TRANS_START &&
288             !atomic_read(&root->fs_info->open_ioctl_trans))
289                 return 1;
290
291         return 0;
292 }
293
294 static struct btrfs_trans_handle *
295 start_transaction(struct btrfs_root *root, u64 num_items, int type,
296                   enum btrfs_reserve_flush_enum flush)
297 {
298         struct btrfs_trans_handle *h;
299         struct btrfs_transaction *cur_trans;
300         u64 num_bytes = 0;
301         int ret;
302         u64 qgroup_reserved = 0;
303
304         if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
305                 return ERR_PTR(-EROFS);
306
307         if (current->journal_info) {
308                 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
309                 h = current->journal_info;
310                 h->use_count++;
311                 WARN_ON(h->use_count > 2);
312                 h->orig_rsv = h->block_rsv;
313                 h->block_rsv = NULL;
314                 goto got_it;
315         }
316
317         /*
318          * Do the reservation before we join the transaction so we can do all
319          * the appropriate flushing if need be.
320          */
321         if (num_items > 0 && root != root->fs_info->chunk_root) {
322                 if (root->fs_info->quota_enabled &&
323                     is_fstree(root->root_key.objectid)) {
324                         qgroup_reserved = num_items * root->leafsize;
325                         ret = btrfs_qgroup_reserve(root, qgroup_reserved);
326                         if (ret)
327                                 return ERR_PTR(ret);
328                 }
329
330                 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
331                 ret = btrfs_block_rsv_add(root,
332                                           &root->fs_info->trans_block_rsv,
333                                           num_bytes, flush);
334                 if (ret)
335                         return ERR_PTR(ret);
336         }
337 again:
338         h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
339         if (!h)
340                 return ERR_PTR(-ENOMEM);
341
342         /*
343          * If we are JOIN_NOLOCK we're already committing a transaction and
344          * waiting on this guy, so we don't need to do the sb_start_intwrite
345          * because we're already holding a ref.  We need this because we could
346          * have raced in and did an fsync() on a file which can kick a commit
347          * and then we deadlock with somebody doing a freeze.
348          *
349          * If we are ATTACH, it means we just want to catch the current
350          * transaction and commit it, so we needn't do sb_start_intwrite(). 
351          */
352         if (type < TRANS_JOIN_NOLOCK)
353                 sb_start_intwrite(root->fs_info->sb);
354
355         if (may_wait_transaction(root, type))
356                 wait_current_trans(root);
357
358         do {
359                 ret = join_transaction(root, type);
360                 if (ret == -EBUSY)
361                         wait_current_trans(root);
362         } while (ret == -EBUSY);
363
364         if (ret < 0) {
365                 /* We must get the transaction if we are JOIN_NOLOCK. */
366                 BUG_ON(type == TRANS_JOIN_NOLOCK);
367
368                 if (type < TRANS_JOIN_NOLOCK)
369                         sb_end_intwrite(root->fs_info->sb);
370                 kmem_cache_free(btrfs_trans_handle_cachep, h);
371                 return ERR_PTR(ret);
372         }
373
374         cur_trans = root->fs_info->running_transaction;
375
376         h->transid = cur_trans->transid;
377         h->transaction = cur_trans;
378         h->blocks_used = 0;
379         h->bytes_reserved = 0;
380         h->root = root;
381         h->delayed_ref_updates = 0;
382         h->use_count = 1;
383         h->adding_csums = 0;
384         h->block_rsv = NULL;
385         h->orig_rsv = NULL;
386         h->aborted = 0;
387         h->qgroup_reserved = qgroup_reserved;
388         h->delayed_ref_elem.seq = 0;
389         h->type = type;
390         INIT_LIST_HEAD(&h->qgroup_ref_list);
391         INIT_LIST_HEAD(&h->new_bgs);
392
393         smp_mb();
394         if (cur_trans->blocked && may_wait_transaction(root, type)) {
395                 btrfs_commit_transaction(h, root);
396                 goto again;
397         }
398
399         if (num_bytes) {
400                 trace_btrfs_space_reservation(root->fs_info, "transaction",
401                                               h->transid, num_bytes, 1);
402                 h->block_rsv = &root->fs_info->trans_block_rsv;
403                 h->bytes_reserved = num_bytes;
404         }
405
406 got_it:
407         btrfs_record_root_in_trans(h, root);
408
409         if (!current->journal_info && type != TRANS_USERSPACE)
410                 current->journal_info = h;
411         return h;
412 }
413
414 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
415                                                    int num_items)
416 {
417         return start_transaction(root, num_items, TRANS_START,
418                                  BTRFS_RESERVE_FLUSH_ALL);
419 }
420
421 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
422                                         struct btrfs_root *root, int num_items)
423 {
424         return start_transaction(root, num_items, TRANS_START,
425                                  BTRFS_RESERVE_FLUSH_LIMIT);
426 }
427
428 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
429 {
430         return start_transaction(root, 0, TRANS_JOIN, 0);
431 }
432
433 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
434 {
435         return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
436 }
437
438 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
439 {
440         return start_transaction(root, 0, TRANS_USERSPACE, 0);
441 }
442
443 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
444 {
445         return start_transaction(root, 0, TRANS_ATTACH, 0);
446 }
447
448 /* wait for a transaction commit to be fully complete */
449 static noinline void wait_for_commit(struct btrfs_root *root,
450                                     struct btrfs_transaction *commit)
451 {
452         wait_event(commit->commit_wait, commit->commit_done);
453 }
454
455 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
456 {
457         struct btrfs_transaction *cur_trans = NULL, *t;
458         int ret;
459
460         ret = 0;
461         if (transid) {
462                 if (transid <= root->fs_info->last_trans_committed)
463                         goto out;
464
465                 /* find specified transaction */
466                 spin_lock(&root->fs_info->trans_lock);
467                 list_for_each_entry(t, &root->fs_info->trans_list, list) {
468                         if (t->transid == transid) {
469                                 cur_trans = t;
470                                 atomic_inc(&cur_trans->use_count);
471                                 break;
472                         }
473                         if (t->transid > transid)
474                                 break;
475                 }
476                 spin_unlock(&root->fs_info->trans_lock);
477                 ret = -EINVAL;
478                 if (!cur_trans)
479                         goto out;  /* bad transid */
480         } else {
481                 /* find newest transaction that is committing | committed */
482                 spin_lock(&root->fs_info->trans_lock);
483                 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
484                                             list) {
485                         if (t->in_commit) {
486                                 if (t->commit_done)
487                                         break;
488                                 cur_trans = t;
489                                 atomic_inc(&cur_trans->use_count);
490                                 break;
491                         }
492                 }
493                 spin_unlock(&root->fs_info->trans_lock);
494                 if (!cur_trans)
495                         goto out;  /* nothing committing|committed */
496         }
497
498         wait_for_commit(root, cur_trans);
499
500         put_transaction(cur_trans);
501         ret = 0;
502 out:
503         return ret;
504 }
505
506 void btrfs_throttle(struct btrfs_root *root)
507 {
508         if (!atomic_read(&root->fs_info->open_ioctl_trans))
509                 wait_current_trans(root);
510 }
511
512 static int should_end_transaction(struct btrfs_trans_handle *trans,
513                                   struct btrfs_root *root)
514 {
515         int ret;
516
517         ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
518         return ret ? 1 : 0;
519 }
520
521 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
522                                  struct btrfs_root *root)
523 {
524         struct btrfs_transaction *cur_trans = trans->transaction;
525         int updates;
526         int err;
527
528         smp_mb();
529         if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
530                 return 1;
531
532         updates = trans->delayed_ref_updates;
533         trans->delayed_ref_updates = 0;
534         if (updates) {
535                 err = btrfs_run_delayed_refs(trans, root, updates);
536                 if (err) /* Error code will also eval true */
537                         return err;
538         }
539
540         return should_end_transaction(trans, root);
541 }
542
543 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
544                           struct btrfs_root *root, int throttle)
545 {
546         struct btrfs_transaction *cur_trans = trans->transaction;
547         struct btrfs_fs_info *info = root->fs_info;
548         int count = 0;
549         int lock = (trans->type != TRANS_JOIN_NOLOCK);
550         int err = 0;
551
552         if (--trans->use_count) {
553                 trans->block_rsv = trans->orig_rsv;
554                 return 0;
555         }
556
557         /*
558          * do the qgroup accounting as early as possible
559          */
560         err = btrfs_delayed_refs_qgroup_accounting(trans, info);
561
562         btrfs_trans_release_metadata(trans, root);
563         trans->block_rsv = NULL;
564         /*
565          * the same root has to be passed to start_transaction and
566          * end_transaction. Subvolume quota depends on this.
567          */
568         WARN_ON(trans->root != root);
569
570         if (trans->qgroup_reserved) {
571                 btrfs_qgroup_free(root, trans->qgroup_reserved);
572                 trans->qgroup_reserved = 0;
573         }
574
575         if (!list_empty(&trans->new_bgs))
576                 btrfs_create_pending_block_groups(trans, root);
577
578         while (count < 2) {
579                 unsigned long cur = trans->delayed_ref_updates;
580                 trans->delayed_ref_updates = 0;
581                 if (cur &&
582                     trans->transaction->delayed_refs.num_heads_ready > 64) {
583                         trans->delayed_ref_updates = 0;
584                         btrfs_run_delayed_refs(trans, root, cur);
585                 } else {
586                         break;
587                 }
588                 count++;
589         }
590         btrfs_trans_release_metadata(trans, root);
591         trans->block_rsv = NULL;
592
593         if (!list_empty(&trans->new_bgs))
594                 btrfs_create_pending_block_groups(trans, root);
595
596         if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
597             should_end_transaction(trans, root)) {
598                 trans->transaction->blocked = 1;
599                 smp_wmb();
600         }
601
602         if (lock && cur_trans->blocked && !cur_trans->in_commit) {
603                 if (throttle) {
604                         /*
605                          * We may race with somebody else here so end up having
606                          * to call end_transaction on ourselves again, so inc
607                          * our use_count.
608                          */
609                         trans->use_count++;
610                         return btrfs_commit_transaction(trans, root);
611                 } else {
612                         wake_up_process(info->transaction_kthread);
613                 }
614         }
615
616         if (trans->type < TRANS_JOIN_NOLOCK)
617                 sb_end_intwrite(root->fs_info->sb);
618
619         WARN_ON(cur_trans != info->running_transaction);
620         WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
621         atomic_dec(&cur_trans->num_writers);
622
623         smp_mb();
624         if (waitqueue_active(&cur_trans->writer_wait))
625                 wake_up(&cur_trans->writer_wait);
626         put_transaction(cur_trans);
627
628         if (current->journal_info == trans)
629                 current->journal_info = NULL;
630
631         if (throttle)
632                 btrfs_run_delayed_iputs(root);
633
634         if (trans->aborted ||
635             root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
636                 err = -EIO;
637         }
638         assert_qgroups_uptodate(trans);
639
640         memset(trans, 0, sizeof(*trans));
641         kmem_cache_free(btrfs_trans_handle_cachep, trans);
642         return err;
643 }
644
645 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
646                           struct btrfs_root *root)
647 {
648         int ret;
649
650         ret = __btrfs_end_transaction(trans, root, 0);
651         if (ret)
652                 return ret;
653         return 0;
654 }
655
656 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
657                                    struct btrfs_root *root)
658 {
659         int ret;
660
661         ret = __btrfs_end_transaction(trans, root, 1);
662         if (ret)
663                 return ret;
664         return 0;
665 }
666
667 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
668                                 struct btrfs_root *root)
669 {
670         return __btrfs_end_transaction(trans, root, 1);
671 }
672
673 /*
674  * when btree blocks are allocated, they have some corresponding bits set for
675  * them in one of two extent_io trees.  This is used to make sure all of
676  * those extents are sent to disk but does not wait on them
677  */
678 int btrfs_write_marked_extents(struct btrfs_root *root,
679                                struct extent_io_tree *dirty_pages, int mark)
680 {
681         int err = 0;
682         int werr = 0;
683         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
684         struct extent_state *cached_state = NULL;
685         u64 start = 0;
686         u64 end;
687
688         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
689                                       mark, &cached_state)) {
690                 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
691                                    mark, &cached_state, GFP_NOFS);
692                 cached_state = NULL;
693                 err = filemap_fdatawrite_range(mapping, start, end);
694                 if (err)
695                         werr = err;
696                 cond_resched();
697                 start = end + 1;
698         }
699         if (err)
700                 werr = err;
701         return werr;
702 }
703
704 /*
705  * when btree blocks are allocated, they have some corresponding bits set for
706  * them in one of two extent_io trees.  This is used to make sure all of
707  * those extents are on disk for transaction or log commit.  We wait
708  * on all the pages and clear them from the dirty pages state tree
709  */
710 int btrfs_wait_marked_extents(struct btrfs_root *root,
711                               struct extent_io_tree *dirty_pages, int mark)
712 {
713         int err = 0;
714         int werr = 0;
715         struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
716         struct extent_state *cached_state = NULL;
717         u64 start = 0;
718         u64 end;
719
720         while (!find_first_extent_bit(dirty_pages, start, &start, &end,
721                                       EXTENT_NEED_WAIT, &cached_state)) {
722                 clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
723                                  0, 0, &cached_state, GFP_NOFS);
724                 err = filemap_fdatawait_range(mapping, start, end);
725                 if (err)
726                         werr = err;
727                 cond_resched();
728                 start = end + 1;
729         }
730         if (err)
731                 werr = err;
732         return werr;
733 }
734
735 /*
736  * when btree blocks are allocated, they have some corresponding bits set for
737  * them in one of two extent_io trees.  This is used to make sure all of
738  * those extents are on disk for transaction or log commit
739  */
740 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
741                                 struct extent_io_tree *dirty_pages, int mark)
742 {
743         int ret;
744         int ret2;
745
746         ret = btrfs_write_marked_extents(root, dirty_pages, mark);
747         ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
748
749         if (ret)
750                 return ret;
751         if (ret2)
752                 return ret2;
753         return 0;
754 }
755
756 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
757                                      struct btrfs_root *root)
758 {
759         if (!trans || !trans->transaction) {
760                 struct inode *btree_inode;
761                 btree_inode = root->fs_info->btree_inode;
762                 return filemap_write_and_wait(btree_inode->i_mapping);
763         }
764         return btrfs_write_and_wait_marked_extents(root,
765                                            &trans->transaction->dirty_pages,
766                                            EXTENT_DIRTY);
767 }
768
769 /*
770  * this is used to update the root pointer in the tree of tree roots.
771  *
772  * But, in the case of the extent allocation tree, updating the root
773  * pointer may allocate blocks which may change the root of the extent
774  * allocation tree.
775  *
776  * So, this loops and repeats and makes sure the cowonly root didn't
777  * change while the root pointer was being updated in the metadata.
778  */
779 static int update_cowonly_root(struct btrfs_trans_handle *trans,
780                                struct btrfs_root *root)
781 {
782         int ret;
783         u64 old_root_bytenr;
784         u64 old_root_used;
785         struct btrfs_root *tree_root = root->fs_info->tree_root;
786
787         old_root_used = btrfs_root_used(&root->root_item);
788         btrfs_write_dirty_block_groups(trans, root);
789
790         while (1) {
791                 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
792                 if (old_root_bytenr == root->node->start &&
793                     old_root_used == btrfs_root_used(&root->root_item))
794                         break;
795
796                 btrfs_set_root_node(&root->root_item, root->node);
797                 ret = btrfs_update_root(trans, tree_root,
798                                         &root->root_key,
799                                         &root->root_item);
800                 if (ret)
801                         return ret;
802
803                 old_root_used = btrfs_root_used(&root->root_item);
804                 ret = btrfs_write_dirty_block_groups(trans, root);
805                 if (ret)
806                         return ret;
807         }
808
809         if (root != root->fs_info->extent_root)
810                 switch_commit_root(root);
811
812         return 0;
813 }
814
815 /*
816  * update all the cowonly tree roots on disk
817  *
818  * The error handling in this function may not be obvious. Any of the
819  * failures will cause the file system to go offline. We still need
820  * to clean up the delayed refs.
821  */
822 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
823                                          struct btrfs_root *root)
824 {
825         struct btrfs_fs_info *fs_info = root->fs_info;
826         struct list_head *next;
827         struct extent_buffer *eb;
828         int ret;
829
830         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
831         if (ret)
832                 return ret;
833
834         eb = btrfs_lock_root_node(fs_info->tree_root);
835         ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
836                               0, &eb);
837         btrfs_tree_unlock(eb);
838         free_extent_buffer(eb);
839
840         if (ret)
841                 return ret;
842
843         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
844         if (ret)
845                 return ret;
846
847         ret = btrfs_run_dev_stats(trans, root->fs_info);
848         BUG_ON(ret);
849
850         ret = btrfs_run_qgroups(trans, root->fs_info);
851         BUG_ON(ret);
852
853         /* run_qgroups might have added some more refs */
854         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
855         BUG_ON(ret);
856
857         while (!list_empty(&fs_info->dirty_cowonly_roots)) {
858                 next = fs_info->dirty_cowonly_roots.next;
859                 list_del_init(next);
860                 root = list_entry(next, struct btrfs_root, dirty_list);
861
862                 ret = update_cowonly_root(trans, root);
863                 if (ret)
864                         return ret;
865         }
866
867         down_write(&fs_info->extent_commit_sem);
868         switch_commit_root(fs_info->extent_root);
869         up_write(&fs_info->extent_commit_sem);
870
871         return 0;
872 }
873
874 /*
875  * dead roots are old snapshots that need to be deleted.  This allocates
876  * a dirty root struct and adds it into the list of dead roots that need to
877  * be deleted
878  */
879 int btrfs_add_dead_root(struct btrfs_root *root)
880 {
881         spin_lock(&root->fs_info->trans_lock);
882         list_add(&root->root_list, &root->fs_info->dead_roots);
883         spin_unlock(&root->fs_info->trans_lock);
884         return 0;
885 }
886
887 /*
888  * update all the cowonly tree roots on disk
889  */
890 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
891                                     struct btrfs_root *root)
892 {
893         struct btrfs_root *gang[8];
894         struct btrfs_fs_info *fs_info = root->fs_info;
895         int i;
896         int ret;
897         int err = 0;
898
899         spin_lock(&fs_info->fs_roots_radix_lock);
900         while (1) {
901                 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
902                                                  (void **)gang, 0,
903                                                  ARRAY_SIZE(gang),
904                                                  BTRFS_ROOT_TRANS_TAG);
905                 if (ret == 0)
906                         break;
907                 for (i = 0; i < ret; i++) {
908                         root = gang[i];
909                         radix_tree_tag_clear(&fs_info->fs_roots_radix,
910                                         (unsigned long)root->root_key.objectid,
911                                         BTRFS_ROOT_TRANS_TAG);
912                         spin_unlock(&fs_info->fs_roots_radix_lock);
913
914                         btrfs_free_log(trans, root);
915                         btrfs_update_reloc_root(trans, root);
916                         btrfs_orphan_commit_root(trans, root);
917
918                         btrfs_save_ino_cache(root, trans);
919
920                         /* see comments in should_cow_block() */
921                         root->force_cow = 0;
922                         smp_wmb();
923
924                         if (root->commit_root != root->node) {
925                                 mutex_lock(&root->fs_commit_mutex);
926                                 switch_commit_root(root);
927                                 btrfs_unpin_free_ino(root);
928                                 mutex_unlock(&root->fs_commit_mutex);
929
930                                 btrfs_set_root_node(&root->root_item,
931                                                     root->node);
932                         }
933
934                         err = btrfs_update_root(trans, fs_info->tree_root,
935                                                 &root->root_key,
936                                                 &root->root_item);
937                         spin_lock(&fs_info->fs_roots_radix_lock);
938                         if (err)
939                                 break;
940                 }
941         }
942         spin_unlock(&fs_info->fs_roots_radix_lock);
943         return err;
944 }
945
946 /*
947  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
948  * otherwise every leaf in the btree is read and defragged.
949  */
950 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
951 {
952         struct btrfs_fs_info *info = root->fs_info;
953         struct btrfs_trans_handle *trans;
954         int ret;
955
956         if (xchg(&root->defrag_running, 1))
957                 return 0;
958
959         while (1) {
960                 trans = btrfs_start_transaction(root, 0);
961                 if (IS_ERR(trans))
962                         return PTR_ERR(trans);
963
964                 ret = btrfs_defrag_leaves(trans, root, cacheonly);
965
966                 btrfs_end_transaction(trans, root);
967                 btrfs_btree_balance_dirty(info->tree_root);
968                 cond_resched();
969
970                 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
971                         break;
972         }
973         root->defrag_running = 0;
974         return ret;
975 }
976
977 /*
978  * new snapshots need to be created at a very specific time in the
979  * transaction commit.  This does the actual creation
980  */
981 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
982                                    struct btrfs_fs_info *fs_info,
983                                    struct btrfs_pending_snapshot *pending)
984 {
985         struct btrfs_key key;
986         struct btrfs_root_item *new_root_item;
987         struct btrfs_root *tree_root = fs_info->tree_root;
988         struct btrfs_root *root = pending->root;
989         struct btrfs_root *parent_root;
990         struct btrfs_block_rsv *rsv;
991         struct inode *parent_inode;
992         struct btrfs_path *path;
993         struct btrfs_dir_item *dir_item;
994         struct dentry *parent;
995         struct dentry *dentry;
996         struct extent_buffer *tmp;
997         struct extent_buffer *old;
998         struct timespec cur_time = CURRENT_TIME;
999         int ret;
1000         u64 to_reserve = 0;
1001         u64 index = 0;
1002         u64 objectid;
1003         u64 root_flags;
1004         uuid_le new_uuid;
1005
1006         path = btrfs_alloc_path();
1007         if (!path) {
1008                 ret = pending->error = -ENOMEM;
1009                 goto path_alloc_fail;
1010         }
1011
1012         new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1013         if (!new_root_item) {
1014                 ret = pending->error = -ENOMEM;
1015                 goto root_item_alloc_fail;
1016         }
1017
1018         ret = btrfs_find_free_objectid(tree_root, &objectid);
1019         if (ret) {
1020                 pending->error = ret;
1021                 goto no_free_objectid;
1022         }
1023
1024         btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1025
1026         if (to_reserve > 0) {
1027                 ret = btrfs_block_rsv_add(root, &pending->block_rsv,
1028                                           to_reserve,
1029                                           BTRFS_RESERVE_NO_FLUSH);
1030                 if (ret) {
1031                         pending->error = ret;
1032                         goto no_free_objectid;
1033                 }
1034         }
1035
1036         ret = btrfs_qgroup_inherit(trans, fs_info, root->root_key.objectid,
1037                                    objectid, pending->inherit);
1038         if (ret) {
1039                 pending->error = ret;
1040                 goto no_free_objectid;
1041         }
1042
1043         key.objectid = objectid;
1044         key.offset = (u64)-1;
1045         key.type = BTRFS_ROOT_ITEM_KEY;
1046
1047         rsv = trans->block_rsv;
1048         trans->block_rsv = &pending->block_rsv;
1049
1050         dentry = pending->dentry;
1051         parent = dget_parent(dentry);
1052         parent_inode = parent->d_inode;
1053         parent_root = BTRFS_I(parent_inode)->root;
1054         record_root_in_trans(trans, parent_root);
1055
1056         /*
1057          * insert the directory item
1058          */
1059         ret = btrfs_set_inode_index(parent_inode, &index);
1060         BUG_ON(ret); /* -ENOMEM */
1061
1062         /* check if there is a file/dir which has the same name. */
1063         dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1064                                          btrfs_ino(parent_inode),
1065                                          dentry->d_name.name,
1066                                          dentry->d_name.len, 0);
1067         if (dir_item != NULL && !IS_ERR(dir_item)) {
1068                 pending->error = -EEXIST;
1069                 goto fail;
1070         } else if (IS_ERR(dir_item)) {
1071                 ret = PTR_ERR(dir_item);
1072                 btrfs_abort_transaction(trans, root, ret);
1073                 goto fail;
1074         }
1075         btrfs_release_path(path);
1076
1077         /*
1078          * pull in the delayed directory update
1079          * and the delayed inode item
1080          * otherwise we corrupt the FS during
1081          * snapshot
1082          */
1083         ret = btrfs_run_delayed_items(trans, root);
1084         if (ret) {      /* Transaction aborted */
1085                 btrfs_abort_transaction(trans, root, ret);
1086                 goto fail;
1087         }
1088
1089         record_root_in_trans(trans, root);
1090         btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1091         memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1092         btrfs_check_and_init_root_item(new_root_item);
1093
1094         root_flags = btrfs_root_flags(new_root_item);
1095         if (pending->readonly)
1096                 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1097         else
1098                 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1099         btrfs_set_root_flags(new_root_item, root_flags);
1100
1101         btrfs_set_root_generation_v2(new_root_item,
1102                         trans->transid);
1103         uuid_le_gen(&new_uuid);
1104         memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1105         memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1106                         BTRFS_UUID_SIZE);
1107         new_root_item->otime.sec = cpu_to_le64(cur_time.tv_sec);
1108         new_root_item->otime.nsec = cpu_to_le32(cur_time.tv_nsec);
1109         btrfs_set_root_otransid(new_root_item, trans->transid);
1110         memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1111         memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1112         btrfs_set_root_stransid(new_root_item, 0);
1113         btrfs_set_root_rtransid(new_root_item, 0);
1114
1115         old = btrfs_lock_root_node(root);
1116         ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1117         if (ret) {
1118                 btrfs_tree_unlock(old);
1119                 free_extent_buffer(old);
1120                 btrfs_abort_transaction(trans, root, ret);
1121                 goto fail;
1122         }
1123
1124         btrfs_set_lock_blocking(old);
1125
1126         ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1127         /* clean up in any case */
1128         btrfs_tree_unlock(old);
1129         free_extent_buffer(old);
1130         if (ret) {
1131                 btrfs_abort_transaction(trans, root, ret);
1132                 goto fail;
1133         }
1134
1135         /* see comments in should_cow_block() */
1136         root->force_cow = 1;
1137         smp_wmb();
1138
1139         btrfs_set_root_node(new_root_item, tmp);
1140         /* record when the snapshot was created in key.offset */
1141         key.offset = trans->transid;
1142         ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1143         btrfs_tree_unlock(tmp);
1144         free_extent_buffer(tmp);
1145         if (ret) {
1146                 btrfs_abort_transaction(trans, root, ret);
1147                 goto fail;
1148         }
1149
1150         /*
1151          * insert root back/forward references
1152          */
1153         ret = btrfs_add_root_ref(trans, tree_root, objectid,
1154                                  parent_root->root_key.objectid,
1155                                  btrfs_ino(parent_inode), index,
1156                                  dentry->d_name.name, dentry->d_name.len);
1157         if (ret) {
1158                 btrfs_abort_transaction(trans, root, ret);
1159                 goto fail;
1160         }
1161
1162         key.offset = (u64)-1;
1163         pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1164         if (IS_ERR(pending->snap)) {
1165                 ret = PTR_ERR(pending->snap);
1166                 btrfs_abort_transaction(trans, root, ret);
1167                 goto fail;
1168         }
1169
1170         ret = btrfs_reloc_post_snapshot(trans, pending);
1171         if (ret) {
1172                 btrfs_abort_transaction(trans, root, ret);
1173                 goto fail;
1174         }
1175
1176         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1177         if (ret) {
1178                 btrfs_abort_transaction(trans, root, ret);
1179                 goto fail;
1180         }
1181
1182         ret = btrfs_insert_dir_item(trans, parent_root,
1183                                     dentry->d_name.name, dentry->d_name.len,
1184                                     parent_inode, &key,
1185                                     BTRFS_FT_DIR, index);
1186         /* We have check then name at the beginning, so it is impossible. */
1187         BUG_ON(ret == -EEXIST);
1188         if (ret) {
1189                 btrfs_abort_transaction(trans, root, ret);
1190                 goto fail;
1191         }
1192
1193         btrfs_i_size_write(parent_inode, parent_inode->i_size +
1194                                          dentry->d_name.len * 2);
1195         parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1196         ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1197         if (ret)
1198                 btrfs_abort_transaction(trans, root, ret);
1199 fail:
1200         dput(parent);
1201         trans->block_rsv = rsv;
1202 no_free_objectid:
1203         kfree(new_root_item);
1204 root_item_alloc_fail:
1205         btrfs_free_path(path);
1206 path_alloc_fail:
1207         btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1208         return ret;
1209 }
1210
1211 /*
1212  * create all the snapshots we've scheduled for creation
1213  */
1214 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1215                                              struct btrfs_fs_info *fs_info)
1216 {
1217         struct btrfs_pending_snapshot *pending;
1218         struct list_head *head = &trans->transaction->pending_snapshots;
1219
1220         list_for_each_entry(pending, head, list)
1221                 create_pending_snapshot(trans, fs_info, pending);
1222         return 0;
1223 }
1224
1225 static void update_super_roots(struct btrfs_root *root)
1226 {
1227         struct btrfs_root_item *root_item;
1228         struct btrfs_super_block *super;
1229
1230         super = root->fs_info->super_copy;
1231
1232         root_item = &root->fs_info->chunk_root->root_item;
1233         super->chunk_root = root_item->bytenr;
1234         super->chunk_root_generation = root_item->generation;
1235         super->chunk_root_level = root_item->level;
1236
1237         root_item = &root->fs_info->tree_root->root_item;
1238         super->root = root_item->bytenr;
1239         super->generation = root_item->generation;
1240         super->root_level = root_item->level;
1241         if (btrfs_test_opt(root, SPACE_CACHE))
1242                 super->cache_generation = root_item->generation;
1243 }
1244
1245 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1246 {
1247         int ret = 0;
1248         spin_lock(&info->trans_lock);
1249         if (info->running_transaction)
1250                 ret = info->running_transaction->in_commit;
1251         spin_unlock(&info->trans_lock);
1252         return ret;
1253 }
1254
1255 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1256 {
1257         int ret = 0;
1258         spin_lock(&info->trans_lock);
1259         if (info->running_transaction)
1260                 ret = info->running_transaction->blocked;
1261         spin_unlock(&info->trans_lock);
1262         return ret;
1263 }
1264
1265 /*
1266  * wait for the current transaction commit to start and block subsequent
1267  * transaction joins
1268  */
1269 static void wait_current_trans_commit_start(struct btrfs_root *root,
1270                                             struct btrfs_transaction *trans)
1271 {
1272         wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1273 }
1274
1275 /*
1276  * wait for the current transaction to start and then become unblocked.
1277  * caller holds ref.
1278  */
1279 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1280                                          struct btrfs_transaction *trans)
1281 {
1282         wait_event(root->fs_info->transaction_wait,
1283                    trans->commit_done || (trans->in_commit && !trans->blocked));
1284 }
1285
1286 /*
1287  * commit transactions asynchronously. once btrfs_commit_transaction_async
1288  * returns, any subsequent transaction will not be allowed to join.
1289  */
1290 struct btrfs_async_commit {
1291         struct btrfs_trans_handle *newtrans;
1292         struct btrfs_root *root;
1293         struct delayed_work work;
1294 };
1295
1296 static void do_async_commit(struct work_struct *work)
1297 {
1298         struct btrfs_async_commit *ac =
1299                 container_of(work, struct btrfs_async_commit, work.work);
1300
1301         /*
1302          * We've got freeze protection passed with the transaction.
1303          * Tell lockdep about it.
1304          */
1305         rwsem_acquire_read(
1306                 &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1307                 0, 1, _THIS_IP_);
1308
1309         current->journal_info = ac->newtrans;
1310
1311         btrfs_commit_transaction(ac->newtrans, ac->root);
1312         kfree(ac);
1313 }
1314
1315 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1316                                    struct btrfs_root *root,
1317                                    int wait_for_unblock)
1318 {
1319         struct btrfs_async_commit *ac;
1320         struct btrfs_transaction *cur_trans;
1321
1322         ac = kmalloc(sizeof(*ac), GFP_NOFS);
1323         if (!ac)
1324                 return -ENOMEM;
1325
1326         INIT_DELAYED_WORK(&ac->work, do_async_commit);
1327         ac->root = root;
1328         ac->newtrans = btrfs_join_transaction(root);
1329         if (IS_ERR(ac->newtrans)) {
1330                 int err = PTR_ERR(ac->newtrans);
1331                 kfree(ac);
1332                 return err;
1333         }
1334
1335         /* take transaction reference */
1336         cur_trans = trans->transaction;
1337         atomic_inc(&cur_trans->use_count);
1338
1339         btrfs_end_transaction(trans, root);
1340
1341         /*
1342          * Tell lockdep we've released the freeze rwsem, since the
1343          * async commit thread will be the one to unlock it.
1344          */
1345         rwsem_release(&root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1346                       1, _THIS_IP_);
1347
1348         schedule_delayed_work(&ac->work, 0);
1349
1350         /* wait for transaction to start and unblock */
1351         if (wait_for_unblock)
1352                 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1353         else
1354                 wait_current_trans_commit_start(root, cur_trans);
1355
1356         if (current->journal_info == trans)
1357                 current->journal_info = NULL;
1358
1359         put_transaction(cur_trans);
1360         return 0;
1361 }
1362
1363
1364 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1365                                 struct btrfs_root *root, int err)
1366 {
1367         struct btrfs_transaction *cur_trans = trans->transaction;
1368
1369         WARN_ON(trans->use_count > 1);
1370
1371         btrfs_abort_transaction(trans, root, err);
1372
1373         spin_lock(&root->fs_info->trans_lock);
1374         list_del_init(&cur_trans->list);
1375         if (cur_trans == root->fs_info->running_transaction) {
1376                 root->fs_info->running_transaction = NULL;
1377                 root->fs_info->trans_no_join = 0;
1378         }
1379         spin_unlock(&root->fs_info->trans_lock);
1380
1381         btrfs_cleanup_one_transaction(trans->transaction, root);
1382
1383         put_transaction(cur_trans);
1384         put_transaction(cur_trans);
1385
1386         trace_btrfs_transaction_commit(root);
1387
1388         btrfs_scrub_continue(root);
1389
1390         if (current->journal_info == trans)
1391                 current->journal_info = NULL;
1392
1393         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1394 }
1395
1396 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
1397                                           struct btrfs_root *root)
1398 {
1399         int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1400         int snap_pending = 0;
1401         int ret;
1402
1403         if (!flush_on_commit) {
1404                 spin_lock(&root->fs_info->trans_lock);
1405                 if (!list_empty(&trans->transaction->pending_snapshots))
1406                         snap_pending = 1;
1407                 spin_unlock(&root->fs_info->trans_lock);
1408         }
1409
1410         if (flush_on_commit || snap_pending) {
1411                 btrfs_start_delalloc_inodes(root, 1);
1412                 btrfs_wait_ordered_extents(root, 1);
1413         }
1414
1415         ret = btrfs_run_delayed_items(trans, root);
1416         if (ret)
1417                 return ret;
1418
1419         /*
1420          * running the delayed items may have added new refs. account
1421          * them now so that they hinder processing of more delayed refs
1422          * as little as possible.
1423          */
1424         btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1425
1426         /*
1427          * rename don't use btrfs_join_transaction, so, once we
1428          * set the transaction to blocked above, we aren't going
1429          * to get any new ordered operations.  We can safely run
1430          * it here and no for sure that nothing new will be added
1431          * to the list
1432          */
1433         btrfs_run_ordered_operations(root, 1);
1434
1435         return 0;
1436 }
1437
1438 /*
1439  * btrfs_transaction state sequence:
1440  *    in_commit = 0, blocked = 0  (initial)
1441  *    in_commit = 1, blocked = 1
1442  *    blocked = 0
1443  *    commit_done = 1
1444  */
1445 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1446                              struct btrfs_root *root)
1447 {
1448         unsigned long joined = 0;
1449         struct btrfs_transaction *cur_trans = trans->transaction;
1450         struct btrfs_transaction *prev_trans = NULL;
1451         DEFINE_WAIT(wait);
1452         int ret;
1453         int should_grow = 0;
1454         unsigned long now = get_seconds();
1455
1456         ret = btrfs_run_ordered_operations(root, 0);
1457         if (ret) {
1458                 btrfs_abort_transaction(trans, root, ret);
1459                 goto cleanup_transaction;
1460         }
1461
1462         if (cur_trans->aborted) {
1463                 ret = cur_trans->aborted;
1464                 goto cleanup_transaction;
1465         }
1466
1467         /* make a pass through all the delayed refs we have so far
1468          * any runnings procs may add more while we are here
1469          */
1470         ret = btrfs_run_delayed_refs(trans, root, 0);
1471         if (ret)
1472                 goto cleanup_transaction;
1473
1474         btrfs_trans_release_metadata(trans, root);
1475         trans->block_rsv = NULL;
1476
1477         cur_trans = trans->transaction;
1478
1479         /*
1480          * set the flushing flag so procs in this transaction have to
1481          * start sending their work down.
1482          */
1483         cur_trans->delayed_refs.flushing = 1;
1484
1485         if (!list_empty(&trans->new_bgs))
1486                 btrfs_create_pending_block_groups(trans, root);
1487
1488         ret = btrfs_run_delayed_refs(trans, root, 0);
1489         if (ret)
1490                 goto cleanup_transaction;
1491
1492         spin_lock(&cur_trans->commit_lock);
1493         if (cur_trans->in_commit) {
1494                 spin_unlock(&cur_trans->commit_lock);
1495                 atomic_inc(&cur_trans->use_count);
1496                 ret = btrfs_end_transaction(trans, root);
1497
1498                 wait_for_commit(root, cur_trans);
1499
1500                 put_transaction(cur_trans);
1501
1502                 return ret;
1503         }
1504
1505         trans->transaction->in_commit = 1;
1506         trans->transaction->blocked = 1;
1507         spin_unlock(&cur_trans->commit_lock);
1508         wake_up(&root->fs_info->transaction_blocked_wait);
1509
1510         spin_lock(&root->fs_info->trans_lock);
1511         if (cur_trans->list.prev != &root->fs_info->trans_list) {
1512                 prev_trans = list_entry(cur_trans->list.prev,
1513                                         struct btrfs_transaction, list);
1514                 if (!prev_trans->commit_done) {
1515                         atomic_inc(&prev_trans->use_count);
1516                         spin_unlock(&root->fs_info->trans_lock);
1517
1518                         wait_for_commit(root, prev_trans);
1519
1520                         put_transaction(prev_trans);
1521                 } else {
1522                         spin_unlock(&root->fs_info->trans_lock);
1523                 }
1524         } else {
1525                 spin_unlock(&root->fs_info->trans_lock);
1526         }
1527
1528         if (!btrfs_test_opt(root, SSD) &&
1529             (now < cur_trans->start_time || now - cur_trans->start_time < 1))
1530                 should_grow = 1;
1531
1532         do {
1533                 joined = cur_trans->num_joined;
1534
1535                 WARN_ON(cur_trans != trans->transaction);
1536
1537                 ret = btrfs_flush_all_pending_stuffs(trans, root);
1538                 if (ret)
1539                         goto cleanup_transaction;
1540
1541                 prepare_to_wait(&cur_trans->writer_wait, &wait,
1542                                 TASK_UNINTERRUPTIBLE);
1543
1544                 if (atomic_read(&cur_trans->num_writers) > 1)
1545                         schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1546                 else if (should_grow)
1547                         schedule_timeout(1);
1548
1549                 finish_wait(&cur_trans->writer_wait, &wait);
1550         } while (atomic_read(&cur_trans->num_writers) > 1 ||
1551                  (should_grow && cur_trans->num_joined != joined));
1552
1553         ret = btrfs_flush_all_pending_stuffs(trans, root);
1554         if (ret)
1555                 goto cleanup_transaction;
1556
1557         /*
1558          * Ok now we need to make sure to block out any other joins while we
1559          * commit the transaction.  We could have started a join before setting
1560          * no_join so make sure to wait for num_writers to == 1 again.
1561          */
1562         spin_lock(&root->fs_info->trans_lock);
1563         root->fs_info->trans_no_join = 1;
1564         spin_unlock(&root->fs_info->trans_lock);
1565         wait_event(cur_trans->writer_wait,
1566                    atomic_read(&cur_trans->num_writers) == 1);
1567
1568         /*
1569          * the reloc mutex makes sure that we stop
1570          * the balancing code from coming in and moving
1571          * extents around in the middle of the commit
1572          */
1573         mutex_lock(&root->fs_info->reloc_mutex);
1574
1575         /*
1576          * We needn't worry about the delayed items because we will
1577          * deal with them in create_pending_snapshot(), which is the
1578          * core function of the snapshot creation.
1579          */
1580         ret = create_pending_snapshots(trans, root->fs_info);
1581         if (ret) {
1582                 mutex_unlock(&root->fs_info->reloc_mutex);
1583                 goto cleanup_transaction;
1584         }
1585
1586         /*
1587          * We insert the dir indexes of the snapshots and update the inode
1588          * of the snapshots' parents after the snapshot creation, so there
1589          * are some delayed items which are not dealt with. Now deal with
1590          * them.
1591          *
1592          * We needn't worry that this operation will corrupt the snapshots,
1593          * because all the tree which are snapshoted will be forced to COW
1594          * the nodes and leaves.
1595          */
1596         ret = btrfs_run_delayed_items(trans, root);
1597         if (ret) {
1598                 mutex_unlock(&root->fs_info->reloc_mutex);
1599                 goto cleanup_transaction;
1600         }
1601
1602         ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1603         if (ret) {
1604                 mutex_unlock(&root->fs_info->reloc_mutex);
1605                 goto cleanup_transaction;
1606         }
1607
1608         /*
1609          * make sure none of the code above managed to slip in a
1610          * delayed item
1611          */
1612         btrfs_assert_delayed_root_empty(root);
1613
1614         WARN_ON(cur_trans != trans->transaction);
1615
1616         btrfs_scrub_pause(root);
1617         /* btrfs_commit_tree_roots is responsible for getting the
1618          * various roots consistent with each other.  Every pointer
1619          * in the tree of tree roots has to point to the most up to date
1620          * root for every subvolume and other tree.  So, we have to keep
1621          * the tree logging code from jumping in and changing any
1622          * of the trees.
1623          *
1624          * At this point in the commit, there can't be any tree-log
1625          * writers, but a little lower down we drop the trans mutex
1626          * and let new people in.  By holding the tree_log_mutex
1627          * from now until after the super is written, we avoid races
1628          * with the tree-log code.
1629          */
1630         mutex_lock(&root->fs_info->tree_log_mutex);
1631
1632         ret = commit_fs_roots(trans, root);
1633         if (ret) {
1634                 mutex_unlock(&root->fs_info->tree_log_mutex);
1635                 mutex_unlock(&root->fs_info->reloc_mutex);
1636                 goto cleanup_transaction;
1637         }
1638
1639         /* commit_fs_roots gets rid of all the tree log roots, it is now
1640          * safe to free the root of tree log roots
1641          */
1642         btrfs_free_log_root_tree(trans, root->fs_info);
1643
1644         ret = commit_cowonly_roots(trans, root);
1645         if (ret) {
1646                 mutex_unlock(&root->fs_info->tree_log_mutex);
1647                 mutex_unlock(&root->fs_info->reloc_mutex);
1648                 goto cleanup_transaction;
1649         }
1650
1651         btrfs_prepare_extent_commit(trans, root);
1652
1653         cur_trans = root->fs_info->running_transaction;
1654
1655         btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1656                             root->fs_info->tree_root->node);
1657         switch_commit_root(root->fs_info->tree_root);
1658
1659         btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1660                             root->fs_info->chunk_root->node);
1661         switch_commit_root(root->fs_info->chunk_root);
1662
1663         assert_qgroups_uptodate(trans);
1664         update_super_roots(root);
1665
1666         if (!root->fs_info->log_root_recovering) {
1667                 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1668                 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1669         }
1670
1671         memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1672                sizeof(*root->fs_info->super_copy));
1673
1674         trans->transaction->blocked = 0;
1675         spin_lock(&root->fs_info->trans_lock);
1676         root->fs_info->running_transaction = NULL;
1677         root->fs_info->trans_no_join = 0;
1678         spin_unlock(&root->fs_info->trans_lock);
1679         mutex_unlock(&root->fs_info->reloc_mutex);
1680
1681         wake_up(&root->fs_info->transaction_wait);
1682
1683         ret = btrfs_write_and_wait_transaction(trans, root);
1684         if (ret) {
1685                 btrfs_error(root->fs_info, ret,
1686                             "Error while writing out transaction.");
1687                 mutex_unlock(&root->fs_info->tree_log_mutex);
1688                 goto cleanup_transaction;
1689         }
1690
1691         ret = write_ctree_super(trans, root, 0);
1692         if (ret) {
1693                 mutex_unlock(&root->fs_info->tree_log_mutex);
1694                 goto cleanup_transaction;
1695         }
1696
1697         /*
1698          * the super is written, we can safely allow the tree-loggers
1699          * to go about their business
1700          */
1701         mutex_unlock(&root->fs_info->tree_log_mutex);
1702
1703         btrfs_finish_extent_commit(trans, root);
1704
1705         cur_trans->commit_done = 1;
1706
1707         root->fs_info->last_trans_committed = cur_trans->transid;
1708
1709         wake_up(&cur_trans->commit_wait);
1710
1711         spin_lock(&root->fs_info->trans_lock);
1712         list_del_init(&cur_trans->list);
1713         spin_unlock(&root->fs_info->trans_lock);
1714
1715         put_transaction(cur_trans);
1716         put_transaction(cur_trans);
1717
1718         if (trans->type < TRANS_JOIN_NOLOCK)
1719                 sb_end_intwrite(root->fs_info->sb);
1720
1721         trace_btrfs_transaction_commit(root);
1722
1723         btrfs_scrub_continue(root);
1724
1725         if (current->journal_info == trans)
1726                 current->journal_info = NULL;
1727
1728         kmem_cache_free(btrfs_trans_handle_cachep, trans);
1729
1730         if (current != root->fs_info->transaction_kthread)
1731                 btrfs_run_delayed_iputs(root);
1732
1733         return ret;
1734
1735 cleanup_transaction:
1736         btrfs_trans_release_metadata(trans, root);
1737         trans->block_rsv = NULL;
1738         btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n");
1739 //      WARN_ON(1);
1740         if (current->journal_info == trans)
1741                 current->journal_info = NULL;
1742         cleanup_transaction(trans, root, ret);
1743
1744         return ret;
1745 }
1746
1747 /*
1748  * interface function to delete all the snapshots we have scheduled for deletion
1749  */
1750 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1751 {
1752         LIST_HEAD(list);
1753         struct btrfs_fs_info *fs_info = root->fs_info;
1754
1755         spin_lock(&fs_info->trans_lock);
1756         list_splice_init(&fs_info->dead_roots, &list);
1757         spin_unlock(&fs_info->trans_lock);
1758
1759         while (!list_empty(&list)) {
1760                 int ret;
1761
1762                 root = list_entry(list.next, struct btrfs_root, root_list);
1763                 list_del(&root->root_list);
1764
1765                 btrfs_kill_all_delayed_nodes(root);
1766
1767                 if (btrfs_header_backref_rev(root->node) <
1768                     BTRFS_MIXED_BACKREF_REV)
1769                         ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1770                 else
1771                         ret =btrfs_drop_snapshot(root, NULL, 1, 0);
1772                 BUG_ON(ret < 0);
1773         }
1774         return 0;
1775 }