Btrfs: add code to scrub to copy read data to another disk
[linux-2.6-block.git] / fs / btrfs / super.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include "compat.h"
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "ioctl.h"
51 #include "print-tree.h"
52 #include "xattr.h"
53 #include "volumes.h"
54 #include "version.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/btrfs.h>
61
62 static const struct super_operations btrfs_super_ops;
63 static struct file_system_type btrfs_fs_type;
64
65 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
66                                       char nbuf[16])
67 {
68         char *errstr = NULL;
69
70         switch (errno) {
71         case -EIO:
72                 errstr = "IO failure";
73                 break;
74         case -ENOMEM:
75                 errstr = "Out of memory";
76                 break;
77         case -EROFS:
78                 errstr = "Readonly filesystem";
79                 break;
80         case -EEXIST:
81                 errstr = "Object already exists";
82                 break;
83         default:
84                 if (nbuf) {
85                         if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
86                                 errstr = nbuf;
87                 }
88                 break;
89         }
90
91         return errstr;
92 }
93
94 static void __save_error_info(struct btrfs_fs_info *fs_info)
95 {
96         /*
97          * today we only save the error info into ram.  Long term we'll
98          * also send it down to the disk
99          */
100         fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
101 }
102
103 static void save_error_info(struct btrfs_fs_info *fs_info)
104 {
105         __save_error_info(fs_info);
106 }
107
108 /* btrfs handle error by forcing the filesystem readonly */
109 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
110 {
111         struct super_block *sb = fs_info->sb;
112
113         if (sb->s_flags & MS_RDONLY)
114                 return;
115
116         if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
117                 sb->s_flags |= MS_RDONLY;
118                 printk(KERN_INFO "btrfs is forced readonly\n");
119                 /*
120                  * Note that a running device replace operation is not
121                  * canceled here although there is no way to update
122                  * the progress. It would add the risk of a deadlock,
123                  * therefore the canceling is ommited. The only penalty
124                  * is that some I/O remains active until the procedure
125                  * completes. The next time when the filesystem is
126                  * mounted writeable again, the device replace
127                  * operation continues.
128                  */
129 //              WARN_ON(1);
130         }
131 }
132
133 #ifdef CONFIG_PRINTK
134 /*
135  * __btrfs_std_error decodes expected errors from the caller and
136  * invokes the approciate error response.
137  */
138 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
139                        unsigned int line, int errno, const char *fmt, ...)
140 {
141         struct super_block *sb = fs_info->sb;
142         char nbuf[16];
143         const char *errstr;
144         va_list args;
145         va_start(args, fmt);
146
147         /*
148          * Special case: if the error is EROFS, and we're already
149          * under MS_RDONLY, then it is safe here.
150          */
151         if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
152                 return;
153
154         errstr = btrfs_decode_error(fs_info, errno, nbuf);
155         if (fmt) {
156                 struct va_format vaf = {
157                         .fmt = fmt,
158                         .va = &args,
159                 };
160
161                 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s (%pV)\n",
162                         sb->s_id, function, line, errstr, &vaf);
163         } else {
164                 printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
165                         sb->s_id, function, line, errstr);
166         }
167
168         /* Don't go through full error handling during mount */
169         if (sb->s_flags & MS_BORN) {
170                 save_error_info(fs_info);
171                 btrfs_handle_error(fs_info);
172         }
173         va_end(args);
174 }
175
176 static const char * const logtypes[] = {
177         "emergency",
178         "alert",
179         "critical",
180         "error",
181         "warning",
182         "notice",
183         "info",
184         "debug",
185 };
186
187 void btrfs_printk(struct btrfs_fs_info *fs_info, const char *fmt, ...)
188 {
189         struct super_block *sb = fs_info->sb;
190         char lvl[4];
191         struct va_format vaf;
192         va_list args;
193         const char *type = logtypes[4];
194         int kern_level;
195
196         va_start(args, fmt);
197
198         kern_level = printk_get_level(fmt);
199         if (kern_level) {
200                 size_t size = printk_skip_level(fmt) - fmt;
201                 memcpy(lvl, fmt,  size);
202                 lvl[size] = '\0';
203                 fmt += size;
204                 type = logtypes[kern_level - '0'];
205         } else
206                 *lvl = '\0';
207
208         vaf.fmt = fmt;
209         vaf.va = &args;
210
211         printk("%sBTRFS %s (device %s): %pV", lvl, type, sb->s_id, &vaf);
212
213         va_end(args);
214 }
215
216 #else
217
218 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
219                        unsigned int line, int errno, const char *fmt, ...)
220 {
221         struct super_block *sb = fs_info->sb;
222
223         /*
224          * Special case: if the error is EROFS, and we're already
225          * under MS_RDONLY, then it is safe here.
226          */
227         if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
228                 return;
229
230         /* Don't go through full error handling during mount */
231         if (sb->s_flags & MS_BORN) {
232                 save_error_info(fs_info);
233                 btrfs_handle_error(fs_info);
234         }
235 }
236 #endif
237
238 /*
239  * We only mark the transaction aborted and then set the file system read-only.
240  * This will prevent new transactions from starting or trying to join this
241  * one.
242  *
243  * This means that error recovery at the call site is limited to freeing
244  * any local memory allocations and passing the error code up without
245  * further cleanup. The transaction should complete as it normally would
246  * in the call path but will return -EIO.
247  *
248  * We'll complete the cleanup in btrfs_end_transaction and
249  * btrfs_commit_transaction.
250  */
251 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
252                                struct btrfs_root *root, const char *function,
253                                unsigned int line, int errno)
254 {
255         WARN_ONCE(1, KERN_DEBUG "btrfs: Transaction aborted\n");
256         trans->aborted = errno;
257         /* Nothing used. The other threads that have joined this
258          * transaction may be able to continue. */
259         if (!trans->blocks_used) {
260                 char nbuf[16];
261                 const char *errstr;
262
263                 errstr = btrfs_decode_error(root->fs_info, errno, nbuf);
264                 btrfs_printk(root->fs_info,
265                              "%s:%d: Aborting unused transaction(%s).\n",
266                              function, line, errstr);
267                 return;
268         }
269         trans->transaction->aborted = errno;
270         __btrfs_std_error(root->fs_info, function, line, errno, NULL);
271 }
272 /*
273  * __btrfs_panic decodes unexpected, fatal errors from the caller,
274  * issues an alert, and either panics or BUGs, depending on mount options.
275  */
276 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
277                    unsigned int line, int errno, const char *fmt, ...)
278 {
279         char nbuf[16];
280         char *s_id = "<unknown>";
281         const char *errstr;
282         struct va_format vaf = { .fmt = fmt };
283         va_list args;
284
285         if (fs_info)
286                 s_id = fs_info->sb->s_id;
287
288         va_start(args, fmt);
289         vaf.va = &args;
290
291         errstr = btrfs_decode_error(fs_info, errno, nbuf);
292         if (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR)
293                 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
294                         s_id, function, line, &vaf, errstr);
295
296         printk(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (%s)\n",
297                s_id, function, line, &vaf, errstr);
298         va_end(args);
299         /* Caller calls BUG() */
300 }
301
302 static void btrfs_put_super(struct super_block *sb)
303 {
304         (void)close_ctree(btrfs_sb(sb)->tree_root);
305         /* FIXME: need to fix VFS to return error? */
306         /* AV: return it _where_?  ->put_super() can be triggered by any number
307          * of async events, up to and including delivery of SIGKILL to the
308          * last process that kept it busy.  Or segfault in the aforementioned
309          * process...  Whom would you report that to?
310          */
311 }
312
313 enum {
314         Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
315         Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
316         Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
317         Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
318         Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
319         Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
320         Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
321         Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
322         Opt_check_integrity, Opt_check_integrity_including_extent_data,
323         Opt_check_integrity_print_mask, Opt_fatal_errors,
324         Opt_err,
325 };
326
327 static match_table_t tokens = {
328         {Opt_degraded, "degraded"},
329         {Opt_subvol, "subvol=%s"},
330         {Opt_subvolid, "subvolid=%d"},
331         {Opt_device, "device=%s"},
332         {Opt_nodatasum, "nodatasum"},
333         {Opt_nodatacow, "nodatacow"},
334         {Opt_nobarrier, "nobarrier"},
335         {Opt_max_inline, "max_inline=%s"},
336         {Opt_alloc_start, "alloc_start=%s"},
337         {Opt_thread_pool, "thread_pool=%d"},
338         {Opt_compress, "compress"},
339         {Opt_compress_type, "compress=%s"},
340         {Opt_compress_force, "compress-force"},
341         {Opt_compress_force_type, "compress-force=%s"},
342         {Opt_ssd, "ssd"},
343         {Opt_ssd_spread, "ssd_spread"},
344         {Opt_nossd, "nossd"},
345         {Opt_noacl, "noacl"},
346         {Opt_notreelog, "notreelog"},
347         {Opt_flushoncommit, "flushoncommit"},
348         {Opt_ratio, "metadata_ratio=%d"},
349         {Opt_discard, "discard"},
350         {Opt_space_cache, "space_cache"},
351         {Opt_clear_cache, "clear_cache"},
352         {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
353         {Opt_enospc_debug, "enospc_debug"},
354         {Opt_subvolrootid, "subvolrootid=%d"},
355         {Opt_defrag, "autodefrag"},
356         {Opt_inode_cache, "inode_cache"},
357         {Opt_no_space_cache, "nospace_cache"},
358         {Opt_recovery, "recovery"},
359         {Opt_skip_balance, "skip_balance"},
360         {Opt_check_integrity, "check_int"},
361         {Opt_check_integrity_including_extent_data, "check_int_data"},
362         {Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
363         {Opt_fatal_errors, "fatal_errors=%s"},
364         {Opt_err, NULL},
365 };
366
367 /*
368  * Regular mount options parser.  Everything that is needed only when
369  * reading in a new superblock is parsed here.
370  * XXX JDM: This needs to be cleaned up for remount.
371  */
372 int btrfs_parse_options(struct btrfs_root *root, char *options)
373 {
374         struct btrfs_fs_info *info = root->fs_info;
375         substring_t args[MAX_OPT_ARGS];
376         char *p, *num, *orig = NULL;
377         u64 cache_gen;
378         int intarg;
379         int ret = 0;
380         char *compress_type;
381         bool compress_force = false;
382
383         cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
384         if (cache_gen)
385                 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
386
387         if (!options)
388                 goto out;
389
390         /*
391          * strsep changes the string, duplicate it because parse_options
392          * gets called twice
393          */
394         options = kstrdup(options, GFP_NOFS);
395         if (!options)
396                 return -ENOMEM;
397
398         orig = options;
399
400         while ((p = strsep(&options, ",")) != NULL) {
401                 int token;
402                 if (!*p)
403                         continue;
404
405                 token = match_token(p, tokens, args);
406                 switch (token) {
407                 case Opt_degraded:
408                         printk(KERN_INFO "btrfs: allowing degraded mounts\n");
409                         btrfs_set_opt(info->mount_opt, DEGRADED);
410                         break;
411                 case Opt_subvol:
412                 case Opt_subvolid:
413                 case Opt_subvolrootid:
414                 case Opt_device:
415                         /*
416                          * These are parsed by btrfs_parse_early_options
417                          * and can be happily ignored here.
418                          */
419                         break;
420                 case Opt_nodatasum:
421                         printk(KERN_INFO "btrfs: setting nodatasum\n");
422                         btrfs_set_opt(info->mount_opt, NODATASUM);
423                         break;
424                 case Opt_nodatacow:
425                         if (!btrfs_test_opt(root, COMPRESS) ||
426                                 !btrfs_test_opt(root, FORCE_COMPRESS)) {
427                                         printk(KERN_INFO "btrfs: setting nodatacow, compression disabled\n");
428                         } else {
429                                 printk(KERN_INFO "btrfs: setting nodatacow\n");
430                         }
431                         info->compress_type = BTRFS_COMPRESS_NONE;
432                         btrfs_clear_opt(info->mount_opt, COMPRESS);
433                         btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
434                         btrfs_set_opt(info->mount_opt, NODATACOW);
435                         btrfs_set_opt(info->mount_opt, NODATASUM);
436                         break;
437                 case Opt_compress_force:
438                 case Opt_compress_force_type:
439                         compress_force = true;
440                 case Opt_compress:
441                 case Opt_compress_type:
442                         if (token == Opt_compress ||
443                             token == Opt_compress_force ||
444                             strcmp(args[0].from, "zlib") == 0) {
445                                 compress_type = "zlib";
446                                 info->compress_type = BTRFS_COMPRESS_ZLIB;
447                                 btrfs_set_opt(info->mount_opt, COMPRESS);
448                                 btrfs_clear_opt(info->mount_opt, NODATACOW);
449                                 btrfs_clear_opt(info->mount_opt, NODATASUM);
450                         } else if (strcmp(args[0].from, "lzo") == 0) {
451                                 compress_type = "lzo";
452                                 info->compress_type = BTRFS_COMPRESS_LZO;
453                                 btrfs_set_opt(info->mount_opt, COMPRESS);
454                                 btrfs_clear_opt(info->mount_opt, NODATACOW);
455                                 btrfs_clear_opt(info->mount_opt, NODATASUM);
456                                 btrfs_set_fs_incompat(info, COMPRESS_LZO);
457                         } else if (strncmp(args[0].from, "no", 2) == 0) {
458                                 compress_type = "no";
459                                 info->compress_type = BTRFS_COMPRESS_NONE;
460                                 btrfs_clear_opt(info->mount_opt, COMPRESS);
461                                 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
462                                 compress_force = false;
463                         } else {
464                                 ret = -EINVAL;
465                                 goto out;
466                         }
467
468                         if (compress_force) {
469                                 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
470                                 pr_info("btrfs: force %s compression\n",
471                                         compress_type);
472                         } else
473                                 pr_info("btrfs: use %s compression\n",
474                                         compress_type);
475                         break;
476                 case Opt_ssd:
477                         printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
478                         btrfs_set_opt(info->mount_opt, SSD);
479                         break;
480                 case Opt_ssd_spread:
481                         printk(KERN_INFO "btrfs: use spread ssd "
482                                "allocation scheme\n");
483                         btrfs_set_opt(info->mount_opt, SSD);
484                         btrfs_set_opt(info->mount_opt, SSD_SPREAD);
485                         break;
486                 case Opt_nossd:
487                         printk(KERN_INFO "btrfs: not using ssd allocation "
488                                "scheme\n");
489                         btrfs_set_opt(info->mount_opt, NOSSD);
490                         btrfs_clear_opt(info->mount_opt, SSD);
491                         btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
492                         break;
493                 case Opt_nobarrier:
494                         printk(KERN_INFO "btrfs: turning off barriers\n");
495                         btrfs_set_opt(info->mount_opt, NOBARRIER);
496                         break;
497                 case Opt_thread_pool:
498                         intarg = 0;
499                         match_int(&args[0], &intarg);
500                         if (intarg)
501                                 info->thread_pool_size = intarg;
502                         break;
503                 case Opt_max_inline:
504                         num = match_strdup(&args[0]);
505                         if (num) {
506                                 info->max_inline = memparse(num, NULL);
507                                 kfree(num);
508
509                                 if (info->max_inline) {
510                                         info->max_inline = max_t(u64,
511                                                 info->max_inline,
512                                                 root->sectorsize);
513                                 }
514                                 printk(KERN_INFO "btrfs: max_inline at %llu\n",
515                                         (unsigned long long)info->max_inline);
516                         }
517                         break;
518                 case Opt_alloc_start:
519                         num = match_strdup(&args[0]);
520                         if (num) {
521                                 info->alloc_start = memparse(num, NULL);
522                                 kfree(num);
523                                 printk(KERN_INFO
524                                         "btrfs: allocations start at %llu\n",
525                                         (unsigned long long)info->alloc_start);
526                         }
527                         break;
528                 case Opt_noacl:
529                         root->fs_info->sb->s_flags &= ~MS_POSIXACL;
530                         break;
531                 case Opt_notreelog:
532                         printk(KERN_INFO "btrfs: disabling tree log\n");
533                         btrfs_set_opt(info->mount_opt, NOTREELOG);
534                         break;
535                 case Opt_flushoncommit:
536                         printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
537                         btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
538                         break;
539                 case Opt_ratio:
540                         intarg = 0;
541                         match_int(&args[0], &intarg);
542                         if (intarg) {
543                                 info->metadata_ratio = intarg;
544                                 printk(KERN_INFO "btrfs: metadata ratio %d\n",
545                                        info->metadata_ratio);
546                         }
547                         break;
548                 case Opt_discard:
549                         btrfs_set_opt(info->mount_opt, DISCARD);
550                         break;
551                 case Opt_space_cache:
552                         btrfs_set_opt(info->mount_opt, SPACE_CACHE);
553                         break;
554                 case Opt_no_space_cache:
555                         printk(KERN_INFO "btrfs: disabling disk space caching\n");
556                         btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
557                         break;
558                 case Opt_inode_cache:
559                         printk(KERN_INFO "btrfs: enabling inode map caching\n");
560                         btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
561                         break;
562                 case Opt_clear_cache:
563                         printk(KERN_INFO "btrfs: force clearing of disk cache\n");
564                         btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
565                         break;
566                 case Opt_user_subvol_rm_allowed:
567                         btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
568                         break;
569                 case Opt_enospc_debug:
570                         btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
571                         break;
572                 case Opt_defrag:
573                         printk(KERN_INFO "btrfs: enabling auto defrag\n");
574                         btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
575                         break;
576                 case Opt_recovery:
577                         printk(KERN_INFO "btrfs: enabling auto recovery\n");
578                         btrfs_set_opt(info->mount_opt, RECOVERY);
579                         break;
580                 case Opt_skip_balance:
581                         btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
582                         break;
583 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
584                 case Opt_check_integrity_including_extent_data:
585                         printk(KERN_INFO "btrfs: enabling check integrity"
586                                " including extent data\n");
587                         btrfs_set_opt(info->mount_opt,
588                                       CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
589                         btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
590                         break;
591                 case Opt_check_integrity:
592                         printk(KERN_INFO "btrfs: enabling check integrity\n");
593                         btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
594                         break;
595                 case Opt_check_integrity_print_mask:
596                         intarg = 0;
597                         match_int(&args[0], &intarg);
598                         if (intarg) {
599                                 info->check_integrity_print_mask = intarg;
600                                 printk(KERN_INFO "btrfs:"
601                                        " check_integrity_print_mask 0x%x\n",
602                                        info->check_integrity_print_mask);
603                         }
604                         break;
605 #else
606                 case Opt_check_integrity_including_extent_data:
607                 case Opt_check_integrity:
608                 case Opt_check_integrity_print_mask:
609                         printk(KERN_ERR "btrfs: support for check_integrity*"
610                                " not compiled in!\n");
611                         ret = -EINVAL;
612                         goto out;
613 #endif
614                 case Opt_fatal_errors:
615                         if (strcmp(args[0].from, "panic") == 0)
616                                 btrfs_set_opt(info->mount_opt,
617                                               PANIC_ON_FATAL_ERROR);
618                         else if (strcmp(args[0].from, "bug") == 0)
619                                 btrfs_clear_opt(info->mount_opt,
620                                               PANIC_ON_FATAL_ERROR);
621                         else {
622                                 ret = -EINVAL;
623                                 goto out;
624                         }
625                         break;
626                 case Opt_err:
627                         printk(KERN_INFO "btrfs: unrecognized mount option "
628                                "'%s'\n", p);
629                         ret = -EINVAL;
630                         goto out;
631                 default:
632                         break;
633                 }
634         }
635 out:
636         if (!ret && btrfs_test_opt(root, SPACE_CACHE))
637                 printk(KERN_INFO "btrfs: disk space caching is enabled\n");
638         kfree(orig);
639         return ret;
640 }
641
642 /*
643  * Parse mount options that are required early in the mount process.
644  *
645  * All other options will be parsed on much later in the mount process and
646  * only when we need to allocate a new super block.
647  */
648 static int btrfs_parse_early_options(const char *options, fmode_t flags,
649                 void *holder, char **subvol_name, u64 *subvol_objectid,
650                 u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
651 {
652         substring_t args[MAX_OPT_ARGS];
653         char *device_name, *opts, *orig, *p;
654         int error = 0;
655         int intarg;
656
657         if (!options)
658                 return 0;
659
660         /*
661          * strsep changes the string, duplicate it because parse_options
662          * gets called twice
663          */
664         opts = kstrdup(options, GFP_KERNEL);
665         if (!opts)
666                 return -ENOMEM;
667         orig = opts;
668
669         while ((p = strsep(&opts, ",")) != NULL) {
670                 int token;
671                 if (!*p)
672                         continue;
673
674                 token = match_token(p, tokens, args);
675                 switch (token) {
676                 case Opt_subvol:
677                         kfree(*subvol_name);
678                         *subvol_name = match_strdup(&args[0]);
679                         break;
680                 case Opt_subvolid:
681                         intarg = 0;
682                         error = match_int(&args[0], &intarg);
683                         if (!error) {
684                                 /* we want the original fs_tree */
685                                 if (!intarg)
686                                         *subvol_objectid =
687                                                 BTRFS_FS_TREE_OBJECTID;
688                                 else
689                                         *subvol_objectid = intarg;
690                         }
691                         break;
692                 case Opt_subvolrootid:
693                         intarg = 0;
694                         error = match_int(&args[0], &intarg);
695                         if (!error) {
696                                 /* we want the original fs_tree */
697                                 if (!intarg)
698                                         *subvol_rootid =
699                                                 BTRFS_FS_TREE_OBJECTID;
700                                 else
701                                         *subvol_rootid = intarg;
702                         }
703                         break;
704                 case Opt_device:
705                         device_name = match_strdup(&args[0]);
706                         if (!device_name) {
707                                 error = -ENOMEM;
708                                 goto out;
709                         }
710                         error = btrfs_scan_one_device(device_name,
711                                         flags, holder, fs_devices);
712                         kfree(device_name);
713                         if (error)
714                                 goto out;
715                         break;
716                 default:
717                         break;
718                 }
719         }
720
721 out:
722         kfree(orig);
723         return error;
724 }
725
726 static struct dentry *get_default_root(struct super_block *sb,
727                                        u64 subvol_objectid)
728 {
729         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
730         struct btrfs_root *root = fs_info->tree_root;
731         struct btrfs_root *new_root;
732         struct btrfs_dir_item *di;
733         struct btrfs_path *path;
734         struct btrfs_key location;
735         struct inode *inode;
736         u64 dir_id;
737         int new = 0;
738
739         /*
740          * We have a specific subvol we want to mount, just setup location and
741          * go look up the root.
742          */
743         if (subvol_objectid) {
744                 location.objectid = subvol_objectid;
745                 location.type = BTRFS_ROOT_ITEM_KEY;
746                 location.offset = (u64)-1;
747                 goto find_root;
748         }
749
750         path = btrfs_alloc_path();
751         if (!path)
752                 return ERR_PTR(-ENOMEM);
753         path->leave_spinning = 1;
754
755         /*
756          * Find the "default" dir item which points to the root item that we
757          * will mount by default if we haven't been given a specific subvolume
758          * to mount.
759          */
760         dir_id = btrfs_super_root_dir(fs_info->super_copy);
761         di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
762         if (IS_ERR(di)) {
763                 btrfs_free_path(path);
764                 return ERR_CAST(di);
765         }
766         if (!di) {
767                 /*
768                  * Ok the default dir item isn't there.  This is weird since
769                  * it's always been there, but don't freak out, just try and
770                  * mount to root most subvolume.
771                  */
772                 btrfs_free_path(path);
773                 dir_id = BTRFS_FIRST_FREE_OBJECTID;
774                 new_root = fs_info->fs_root;
775                 goto setup_root;
776         }
777
778         btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
779         btrfs_free_path(path);
780
781 find_root:
782         new_root = btrfs_read_fs_root_no_name(fs_info, &location);
783         if (IS_ERR(new_root))
784                 return ERR_CAST(new_root);
785
786         if (btrfs_root_refs(&new_root->root_item) == 0)
787                 return ERR_PTR(-ENOENT);
788
789         dir_id = btrfs_root_dirid(&new_root->root_item);
790 setup_root:
791         location.objectid = dir_id;
792         location.type = BTRFS_INODE_ITEM_KEY;
793         location.offset = 0;
794
795         inode = btrfs_iget(sb, &location, new_root, &new);
796         if (IS_ERR(inode))
797                 return ERR_CAST(inode);
798
799         /*
800          * If we're just mounting the root most subvol put the inode and return
801          * a reference to the dentry.  We will have already gotten a reference
802          * to the inode in btrfs_fill_super so we're good to go.
803          */
804         if (!new && sb->s_root->d_inode == inode) {
805                 iput(inode);
806                 return dget(sb->s_root);
807         }
808
809         return d_obtain_alias(inode);
810 }
811
812 static int btrfs_fill_super(struct super_block *sb,
813                             struct btrfs_fs_devices *fs_devices,
814                             void *data, int silent)
815 {
816         struct inode *inode;
817         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
818         struct btrfs_key key;
819         int err;
820
821         sb->s_maxbytes = MAX_LFS_FILESIZE;
822         sb->s_magic = BTRFS_SUPER_MAGIC;
823         sb->s_op = &btrfs_super_ops;
824         sb->s_d_op = &btrfs_dentry_operations;
825         sb->s_export_op = &btrfs_export_ops;
826         sb->s_xattr = btrfs_xattr_handlers;
827         sb->s_time_gran = 1;
828 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
829         sb->s_flags |= MS_POSIXACL;
830 #endif
831         sb->s_flags |= MS_I_VERSION;
832         err = open_ctree(sb, fs_devices, (char *)data);
833         if (err) {
834                 printk("btrfs: open_ctree failed\n");
835                 return err;
836         }
837
838         key.objectid = BTRFS_FIRST_FREE_OBJECTID;
839         key.type = BTRFS_INODE_ITEM_KEY;
840         key.offset = 0;
841         inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
842         if (IS_ERR(inode)) {
843                 err = PTR_ERR(inode);
844                 goto fail_close;
845         }
846
847         sb->s_root = d_make_root(inode);
848         if (!sb->s_root) {
849                 err = -ENOMEM;
850                 goto fail_close;
851         }
852
853         save_mount_options(sb, data);
854         cleancache_init_fs(sb);
855         sb->s_flags |= MS_ACTIVE;
856         return 0;
857
858 fail_close:
859         close_ctree(fs_info->tree_root);
860         return err;
861 }
862
863 int btrfs_sync_fs(struct super_block *sb, int wait)
864 {
865         struct btrfs_trans_handle *trans;
866         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
867         struct btrfs_root *root = fs_info->tree_root;
868
869         trace_btrfs_sync_fs(wait);
870
871         if (!wait) {
872                 filemap_flush(fs_info->btree_inode->i_mapping);
873                 return 0;
874         }
875
876         btrfs_wait_ordered_extents(root, 0);
877
878         trans = btrfs_attach_transaction(root);
879         if (IS_ERR(trans)) {
880                 /* no transaction, don't bother */
881                 if (PTR_ERR(trans) == -ENOENT)
882                         return 0;
883                 return PTR_ERR(trans);
884         }
885         return btrfs_commit_transaction(trans, root);
886 }
887
888 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
889 {
890         struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
891         struct btrfs_root *root = info->tree_root;
892         char *compress_type;
893
894         if (btrfs_test_opt(root, DEGRADED))
895                 seq_puts(seq, ",degraded");
896         if (btrfs_test_opt(root, NODATASUM))
897                 seq_puts(seq, ",nodatasum");
898         if (btrfs_test_opt(root, NODATACOW))
899                 seq_puts(seq, ",nodatacow");
900         if (btrfs_test_opt(root, NOBARRIER))
901                 seq_puts(seq, ",nobarrier");
902         if (info->max_inline != 8192 * 1024)
903                 seq_printf(seq, ",max_inline=%llu",
904                            (unsigned long long)info->max_inline);
905         if (info->alloc_start != 0)
906                 seq_printf(seq, ",alloc_start=%llu",
907                            (unsigned long long)info->alloc_start);
908         if (info->thread_pool_size !=  min_t(unsigned long,
909                                              num_online_cpus() + 2, 8))
910                 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
911         if (btrfs_test_opt(root, COMPRESS)) {
912                 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
913                         compress_type = "zlib";
914                 else
915                         compress_type = "lzo";
916                 if (btrfs_test_opt(root, FORCE_COMPRESS))
917                         seq_printf(seq, ",compress-force=%s", compress_type);
918                 else
919                         seq_printf(seq, ",compress=%s", compress_type);
920         }
921         if (btrfs_test_opt(root, NOSSD))
922                 seq_puts(seq, ",nossd");
923         if (btrfs_test_opt(root, SSD_SPREAD))
924                 seq_puts(seq, ",ssd_spread");
925         else if (btrfs_test_opt(root, SSD))
926                 seq_puts(seq, ",ssd");
927         if (btrfs_test_opt(root, NOTREELOG))
928                 seq_puts(seq, ",notreelog");
929         if (btrfs_test_opt(root, FLUSHONCOMMIT))
930                 seq_puts(seq, ",flushoncommit");
931         if (btrfs_test_opt(root, DISCARD))
932                 seq_puts(seq, ",discard");
933         if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
934                 seq_puts(seq, ",noacl");
935         if (btrfs_test_opt(root, SPACE_CACHE))
936                 seq_puts(seq, ",space_cache");
937         else
938                 seq_puts(seq, ",nospace_cache");
939         if (btrfs_test_opt(root, CLEAR_CACHE))
940                 seq_puts(seq, ",clear_cache");
941         if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
942                 seq_puts(seq, ",user_subvol_rm_allowed");
943         if (btrfs_test_opt(root, ENOSPC_DEBUG))
944                 seq_puts(seq, ",enospc_debug");
945         if (btrfs_test_opt(root, AUTO_DEFRAG))
946                 seq_puts(seq, ",autodefrag");
947         if (btrfs_test_opt(root, INODE_MAP_CACHE))
948                 seq_puts(seq, ",inode_cache");
949         if (btrfs_test_opt(root, SKIP_BALANCE))
950                 seq_puts(seq, ",skip_balance");
951         if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
952                 seq_puts(seq, ",fatal_errors=panic");
953         return 0;
954 }
955
956 static int btrfs_test_super(struct super_block *s, void *data)
957 {
958         struct btrfs_fs_info *p = data;
959         struct btrfs_fs_info *fs_info = btrfs_sb(s);
960
961         return fs_info->fs_devices == p->fs_devices;
962 }
963
964 static int btrfs_set_super(struct super_block *s, void *data)
965 {
966         int err = set_anon_super(s, data);
967         if (!err)
968                 s->s_fs_info = data;
969         return err;
970 }
971
972 /*
973  * subvolumes are identified by ino 256
974  */
975 static inline int is_subvolume_inode(struct inode *inode)
976 {
977         if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
978                 return 1;
979         return 0;
980 }
981
982 /*
983  * This will strip out the subvol=%s argument for an argument string and add
984  * subvolid=0 to make sure we get the actual tree root for path walking to the
985  * subvol we want.
986  */
987 static char *setup_root_args(char *args)
988 {
989         unsigned len = strlen(args) + 2 + 1;
990         char *src, *dst, *buf;
991
992         /*
993          * We need the same args as before, but with this substitution:
994          * s!subvol=[^,]+!subvolid=0!
995          *
996          * Since the replacement string is up to 2 bytes longer than the
997          * original, allocate strlen(args) + 2 + 1 bytes.
998          */
999
1000         src = strstr(args, "subvol=");
1001         /* This shouldn't happen, but just in case.. */
1002         if (!src)
1003                 return NULL;
1004
1005         buf = dst = kmalloc(len, GFP_NOFS);
1006         if (!buf)
1007                 return NULL;
1008
1009         /*
1010          * If the subvol= arg is not at the start of the string,
1011          * copy whatever precedes it into buf.
1012          */
1013         if (src != args) {
1014                 *src++ = '\0';
1015                 strcpy(buf, args);
1016                 dst += strlen(args);
1017         }
1018
1019         strcpy(dst, "subvolid=0");
1020         dst += strlen("subvolid=0");
1021
1022         /*
1023          * If there is a "," after the original subvol=... string,
1024          * copy that suffix into our buffer.  Otherwise, we're done.
1025          */
1026         src = strchr(src, ',');
1027         if (src)
1028                 strcpy(dst, src);
1029
1030         return buf;
1031 }
1032
1033 static struct dentry *mount_subvol(const char *subvol_name, int flags,
1034                                    const char *device_name, char *data)
1035 {
1036         struct dentry *root;
1037         struct vfsmount *mnt;
1038         char *newargs;
1039
1040         newargs = setup_root_args(data);
1041         if (!newargs)
1042                 return ERR_PTR(-ENOMEM);
1043         mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
1044                              newargs);
1045         kfree(newargs);
1046         if (IS_ERR(mnt))
1047                 return ERR_CAST(mnt);
1048
1049         root = mount_subtree(mnt, subvol_name);
1050
1051         if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
1052                 struct super_block *s = root->d_sb;
1053                 dput(root);
1054                 root = ERR_PTR(-EINVAL);
1055                 deactivate_locked_super(s);
1056                 printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
1057                                 subvol_name);
1058         }
1059
1060         return root;
1061 }
1062
1063 /*
1064  * Find a superblock for the given device / mount point.
1065  *
1066  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1067  *        for multiple device setup.  Make sure to keep it in sync.
1068  */
1069 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1070                 const char *device_name, void *data)
1071 {
1072         struct block_device *bdev = NULL;
1073         struct super_block *s;
1074         struct dentry *root;
1075         struct btrfs_fs_devices *fs_devices = NULL;
1076         struct btrfs_fs_info *fs_info = NULL;
1077         fmode_t mode = FMODE_READ;
1078         char *subvol_name = NULL;
1079         u64 subvol_objectid = 0;
1080         u64 subvol_rootid = 0;
1081         int error = 0;
1082
1083         if (!(flags & MS_RDONLY))
1084                 mode |= FMODE_WRITE;
1085
1086         error = btrfs_parse_early_options(data, mode, fs_type,
1087                                           &subvol_name, &subvol_objectid,
1088                                           &subvol_rootid, &fs_devices);
1089         if (error) {
1090                 kfree(subvol_name);
1091                 return ERR_PTR(error);
1092         }
1093
1094         if (subvol_name) {
1095                 root = mount_subvol(subvol_name, flags, device_name, data);
1096                 kfree(subvol_name);
1097                 return root;
1098         }
1099
1100         error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1101         if (error)
1102                 return ERR_PTR(error);
1103
1104         /*
1105          * Setup a dummy root and fs_info for test/set super.  This is because
1106          * we don't actually fill this stuff out until open_ctree, but we need
1107          * it for searching for existing supers, so this lets us do that and
1108          * then open_ctree will properly initialize everything later.
1109          */
1110         fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1111         if (!fs_info)
1112                 return ERR_PTR(-ENOMEM);
1113
1114         fs_info->fs_devices = fs_devices;
1115
1116         fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1117         fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1118         if (!fs_info->super_copy || !fs_info->super_for_commit) {
1119                 error = -ENOMEM;
1120                 goto error_fs_info;
1121         }
1122
1123         error = btrfs_open_devices(fs_devices, mode, fs_type);
1124         if (error)
1125                 goto error_fs_info;
1126
1127         if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1128                 error = -EACCES;
1129                 goto error_close_devices;
1130         }
1131
1132         bdev = fs_devices->latest_bdev;
1133         s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1134                  fs_info);
1135         if (IS_ERR(s)) {
1136                 error = PTR_ERR(s);
1137                 goto error_close_devices;
1138         }
1139
1140         if (s->s_root) {
1141                 btrfs_close_devices(fs_devices);
1142                 free_fs_info(fs_info);
1143                 if ((flags ^ s->s_flags) & MS_RDONLY)
1144                         error = -EBUSY;
1145         } else {
1146                 char b[BDEVNAME_SIZE];
1147
1148                 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1149                 btrfs_sb(s)->bdev_holder = fs_type;
1150                 error = btrfs_fill_super(s, fs_devices, data,
1151                                          flags & MS_SILENT ? 1 : 0);
1152         }
1153
1154         root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1155         if (IS_ERR(root))
1156                 deactivate_locked_super(s);
1157
1158         return root;
1159
1160 error_close_devices:
1161         btrfs_close_devices(fs_devices);
1162 error_fs_info:
1163         free_fs_info(fs_info);
1164         return ERR_PTR(error);
1165 }
1166
1167 static void btrfs_set_max_workers(struct btrfs_workers *workers, int new_limit)
1168 {
1169         spin_lock_irq(&workers->lock);
1170         workers->max_workers = new_limit;
1171         spin_unlock_irq(&workers->lock);
1172 }
1173
1174 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1175                                      int new_pool_size, int old_pool_size)
1176 {
1177         if (new_pool_size == old_pool_size)
1178                 return;
1179
1180         fs_info->thread_pool_size = new_pool_size;
1181
1182         printk(KERN_INFO "btrfs: resize thread pool %d -> %d\n",
1183                old_pool_size, new_pool_size);
1184
1185         btrfs_set_max_workers(&fs_info->generic_worker, new_pool_size);
1186         btrfs_set_max_workers(&fs_info->workers, new_pool_size);
1187         btrfs_set_max_workers(&fs_info->delalloc_workers, new_pool_size);
1188         btrfs_set_max_workers(&fs_info->submit_workers, new_pool_size);
1189         btrfs_set_max_workers(&fs_info->caching_workers, new_pool_size);
1190         btrfs_set_max_workers(&fs_info->fixup_workers, new_pool_size);
1191         btrfs_set_max_workers(&fs_info->endio_workers, new_pool_size);
1192         btrfs_set_max_workers(&fs_info->endio_meta_workers, new_pool_size);
1193         btrfs_set_max_workers(&fs_info->endio_meta_write_workers, new_pool_size);
1194         btrfs_set_max_workers(&fs_info->endio_write_workers, new_pool_size);
1195         btrfs_set_max_workers(&fs_info->endio_freespace_worker, new_pool_size);
1196         btrfs_set_max_workers(&fs_info->delayed_workers, new_pool_size);
1197         btrfs_set_max_workers(&fs_info->readahead_workers, new_pool_size);
1198         btrfs_set_max_workers(&fs_info->scrub_wr_completion_workers,
1199                               new_pool_size);
1200 }
1201
1202 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1203 {
1204         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1205         struct btrfs_root *root = fs_info->tree_root;
1206         unsigned old_flags = sb->s_flags;
1207         unsigned long old_opts = fs_info->mount_opt;
1208         unsigned long old_compress_type = fs_info->compress_type;
1209         u64 old_max_inline = fs_info->max_inline;
1210         u64 old_alloc_start = fs_info->alloc_start;
1211         int old_thread_pool_size = fs_info->thread_pool_size;
1212         unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1213         int ret;
1214
1215         ret = btrfs_parse_options(root, data);
1216         if (ret) {
1217                 ret = -EINVAL;
1218                 goto restore;
1219         }
1220
1221         btrfs_resize_thread_pool(fs_info,
1222                 fs_info->thread_pool_size, old_thread_pool_size);
1223
1224         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1225                 return 0;
1226
1227         if (*flags & MS_RDONLY) {
1228                 sb->s_flags |= MS_RDONLY;
1229
1230                 ret = btrfs_commit_super(root);
1231                 if (ret)
1232                         goto restore;
1233         } else {
1234                 if (fs_info->fs_devices->rw_devices == 0) {
1235                         ret = -EACCES;
1236                         goto restore;
1237                 }
1238
1239                 if (fs_info->fs_devices->missing_devices >
1240                      fs_info->num_tolerated_disk_barrier_failures &&
1241                     !(*flags & MS_RDONLY)) {
1242                         printk(KERN_WARNING
1243                                "Btrfs: too many missing devices, writeable remount is not allowed\n");
1244                         ret = -EACCES;
1245                         goto restore;
1246                 }
1247
1248                 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1249                         ret = -EINVAL;
1250                         goto restore;
1251                 }
1252
1253                 ret = btrfs_cleanup_fs_roots(fs_info);
1254                 if (ret)
1255                         goto restore;
1256
1257                 /* recover relocation */
1258                 ret = btrfs_recover_relocation(root);
1259                 if (ret)
1260                         goto restore;
1261
1262                 ret = btrfs_resume_balance_async(fs_info);
1263                 if (ret)
1264                         goto restore;
1265
1266                 sb->s_flags &= ~MS_RDONLY;
1267         }
1268
1269         return 0;
1270
1271 restore:
1272         /* We've hit an error - don't reset MS_RDONLY */
1273         if (sb->s_flags & MS_RDONLY)
1274                 old_flags |= MS_RDONLY;
1275         sb->s_flags = old_flags;
1276         fs_info->mount_opt = old_opts;
1277         fs_info->compress_type = old_compress_type;
1278         fs_info->max_inline = old_max_inline;
1279         fs_info->alloc_start = old_alloc_start;
1280         btrfs_resize_thread_pool(fs_info,
1281                 old_thread_pool_size, fs_info->thread_pool_size);
1282         fs_info->metadata_ratio = old_metadata_ratio;
1283         return ret;
1284 }
1285
1286 /* Used to sort the devices by max_avail(descending sort) */
1287 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1288                                        const void *dev_info2)
1289 {
1290         if (((struct btrfs_device_info *)dev_info1)->max_avail >
1291             ((struct btrfs_device_info *)dev_info2)->max_avail)
1292                 return -1;
1293         else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1294                  ((struct btrfs_device_info *)dev_info2)->max_avail)
1295                 return 1;
1296         else
1297         return 0;
1298 }
1299
1300 /*
1301  * sort the devices by max_avail, in which max free extent size of each device
1302  * is stored.(Descending Sort)
1303  */
1304 static inline void btrfs_descending_sort_devices(
1305                                         struct btrfs_device_info *devices,
1306                                         size_t nr_devices)
1307 {
1308         sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1309              btrfs_cmp_device_free_bytes, NULL);
1310 }
1311
1312 /*
1313  * The helper to calc the free space on the devices that can be used to store
1314  * file data.
1315  */
1316 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1317 {
1318         struct btrfs_fs_info *fs_info = root->fs_info;
1319         struct btrfs_device_info *devices_info;
1320         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1321         struct btrfs_device *device;
1322         u64 skip_space;
1323         u64 type;
1324         u64 avail_space;
1325         u64 used_space;
1326         u64 min_stripe_size;
1327         int min_stripes = 1, num_stripes = 1;
1328         int i = 0, nr_devices;
1329         int ret;
1330
1331         nr_devices = fs_info->fs_devices->open_devices;
1332         BUG_ON(!nr_devices);
1333
1334         devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
1335                                GFP_NOFS);
1336         if (!devices_info)
1337                 return -ENOMEM;
1338
1339         /* calc min stripe number for data space alloction */
1340         type = btrfs_get_alloc_profile(root, 1);
1341         if (type & BTRFS_BLOCK_GROUP_RAID0) {
1342                 min_stripes = 2;
1343                 num_stripes = nr_devices;
1344         } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1345                 min_stripes = 2;
1346                 num_stripes = 2;
1347         } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1348                 min_stripes = 4;
1349                 num_stripes = 4;
1350         }
1351
1352         if (type & BTRFS_BLOCK_GROUP_DUP)
1353                 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1354         else
1355                 min_stripe_size = BTRFS_STRIPE_LEN;
1356
1357         list_for_each_entry(device, &fs_devices->devices, dev_list) {
1358                 if (!device->in_fs_metadata || !device->bdev ||
1359                     device->is_tgtdev_for_dev_replace)
1360                         continue;
1361
1362                 avail_space = device->total_bytes - device->bytes_used;
1363
1364                 /* align with stripe_len */
1365                 do_div(avail_space, BTRFS_STRIPE_LEN);
1366                 avail_space *= BTRFS_STRIPE_LEN;
1367
1368                 /*
1369                  * In order to avoid overwritting the superblock on the drive,
1370                  * btrfs starts at an offset of at least 1MB when doing chunk
1371                  * allocation.
1372                  */
1373                 skip_space = 1024 * 1024;
1374
1375                 /* user can set the offset in fs_info->alloc_start. */
1376                 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1377                     device->total_bytes)
1378                         skip_space = max(fs_info->alloc_start, skip_space);
1379
1380                 /*
1381                  * btrfs can not use the free space in [0, skip_space - 1],
1382                  * we must subtract it from the total. In order to implement
1383                  * it, we account the used space in this range first.
1384                  */
1385                 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1386                                                      &used_space);
1387                 if (ret) {
1388                         kfree(devices_info);
1389                         return ret;
1390                 }
1391
1392                 /* calc the free space in [0, skip_space - 1] */
1393                 skip_space -= used_space;
1394
1395                 /*
1396                  * we can use the free space in [0, skip_space - 1], subtract
1397                  * it from the total.
1398                  */
1399                 if (avail_space && avail_space >= skip_space)
1400                         avail_space -= skip_space;
1401                 else
1402                         avail_space = 0;
1403
1404                 if (avail_space < min_stripe_size)
1405                         continue;
1406
1407                 devices_info[i].dev = device;
1408                 devices_info[i].max_avail = avail_space;
1409
1410                 i++;
1411         }
1412
1413         nr_devices = i;
1414
1415         btrfs_descending_sort_devices(devices_info, nr_devices);
1416
1417         i = nr_devices - 1;
1418         avail_space = 0;
1419         while (nr_devices >= min_stripes) {
1420                 if (num_stripes > nr_devices)
1421                         num_stripes = nr_devices;
1422
1423                 if (devices_info[i].max_avail >= min_stripe_size) {
1424                         int j;
1425                         u64 alloc_size;
1426
1427                         avail_space += devices_info[i].max_avail * num_stripes;
1428                         alloc_size = devices_info[i].max_avail;
1429                         for (j = i + 1 - num_stripes; j <= i; j++)
1430                                 devices_info[j].max_avail -= alloc_size;
1431                 }
1432                 i--;
1433                 nr_devices--;
1434         }
1435
1436         kfree(devices_info);
1437         *free_bytes = avail_space;
1438         return 0;
1439 }
1440
1441 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1442 {
1443         struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1444         struct btrfs_super_block *disk_super = fs_info->super_copy;
1445         struct list_head *head = &fs_info->space_info;
1446         struct btrfs_space_info *found;
1447         u64 total_used = 0;
1448         u64 total_free_data = 0;
1449         int bits = dentry->d_sb->s_blocksize_bits;
1450         __be32 *fsid = (__be32 *)fs_info->fsid;
1451         int ret;
1452
1453         /* holding chunk_muext to avoid allocating new chunks */
1454         mutex_lock(&fs_info->chunk_mutex);
1455         rcu_read_lock();
1456         list_for_each_entry_rcu(found, head, list) {
1457                 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1458                         total_free_data += found->disk_total - found->disk_used;
1459                         total_free_data -=
1460                                 btrfs_account_ro_block_groups_free_space(found);
1461                 }
1462
1463                 total_used += found->disk_used;
1464         }
1465         rcu_read_unlock();
1466
1467         buf->f_namelen = BTRFS_NAME_LEN;
1468         buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1469         buf->f_bfree = buf->f_blocks - (total_used >> bits);
1470         buf->f_bsize = dentry->d_sb->s_blocksize;
1471         buf->f_type = BTRFS_SUPER_MAGIC;
1472         buf->f_bavail = total_free_data;
1473         ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1474         if (ret) {
1475                 mutex_unlock(&fs_info->chunk_mutex);
1476                 return ret;
1477         }
1478         buf->f_bavail += total_free_data;
1479         buf->f_bavail = buf->f_bavail >> bits;
1480         mutex_unlock(&fs_info->chunk_mutex);
1481
1482         /* We treat it as constant endianness (it doesn't matter _which_)
1483            because we want the fsid to come out the same whether mounted
1484            on a big-endian or little-endian host */
1485         buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1486         buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1487         /* Mask in the root object ID too, to disambiguate subvols */
1488         buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1489         buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1490
1491         return 0;
1492 }
1493
1494 static void btrfs_kill_super(struct super_block *sb)
1495 {
1496         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1497         kill_anon_super(sb);
1498         free_fs_info(fs_info);
1499 }
1500
1501 static struct file_system_type btrfs_fs_type = {
1502         .owner          = THIS_MODULE,
1503         .name           = "btrfs",
1504         .mount          = btrfs_mount,
1505         .kill_sb        = btrfs_kill_super,
1506         .fs_flags       = FS_REQUIRES_DEV,
1507 };
1508
1509 /*
1510  * used by btrfsctl to scan devices when no FS is mounted
1511  */
1512 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1513                                 unsigned long arg)
1514 {
1515         struct btrfs_ioctl_vol_args *vol;
1516         struct btrfs_fs_devices *fs_devices;
1517         int ret = -ENOTTY;
1518
1519         if (!capable(CAP_SYS_ADMIN))
1520                 return -EPERM;
1521
1522         vol = memdup_user((void __user *)arg, sizeof(*vol));
1523         if (IS_ERR(vol))
1524                 return PTR_ERR(vol);
1525
1526         switch (cmd) {
1527         case BTRFS_IOC_SCAN_DEV:
1528                 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1529                                             &btrfs_fs_type, &fs_devices);
1530                 break;
1531         case BTRFS_IOC_DEVICES_READY:
1532                 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1533                                             &btrfs_fs_type, &fs_devices);
1534                 if (ret)
1535                         break;
1536                 ret = !(fs_devices->num_devices == fs_devices->total_devices);
1537                 break;
1538         }
1539
1540         kfree(vol);
1541         return ret;
1542 }
1543
1544 static int btrfs_freeze(struct super_block *sb)
1545 {
1546         struct btrfs_trans_handle *trans;
1547         struct btrfs_root *root = btrfs_sb(sb)->tree_root;
1548
1549         trans = btrfs_attach_transaction(root);
1550         if (IS_ERR(trans)) {
1551                 /* no transaction, don't bother */
1552                 if (PTR_ERR(trans) == -ENOENT)
1553                         return 0;
1554                 return PTR_ERR(trans);
1555         }
1556         return btrfs_commit_transaction(trans, root);
1557 }
1558
1559 static int btrfs_unfreeze(struct super_block *sb)
1560 {
1561         return 0;
1562 }
1563
1564 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1565 {
1566         struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1567         struct btrfs_fs_devices *cur_devices;
1568         struct btrfs_device *dev, *first_dev = NULL;
1569         struct list_head *head;
1570         struct rcu_string *name;
1571
1572         mutex_lock(&fs_info->fs_devices->device_list_mutex);
1573         cur_devices = fs_info->fs_devices;
1574         while (cur_devices) {
1575                 head = &cur_devices->devices;
1576                 list_for_each_entry(dev, head, dev_list) {
1577                         if (dev->missing)
1578                                 continue;
1579                         if (!first_dev || dev->devid < first_dev->devid)
1580                                 first_dev = dev;
1581                 }
1582                 cur_devices = cur_devices->seed;
1583         }
1584
1585         if (first_dev) {
1586                 rcu_read_lock();
1587                 name = rcu_dereference(first_dev->name);
1588                 seq_escape(m, name->str, " \t\n\\");
1589                 rcu_read_unlock();
1590         } else {
1591                 WARN_ON(1);
1592         }
1593         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1594         return 0;
1595 }
1596
1597 static const struct super_operations btrfs_super_ops = {
1598         .drop_inode     = btrfs_drop_inode,
1599         .evict_inode    = btrfs_evict_inode,
1600         .put_super      = btrfs_put_super,
1601         .sync_fs        = btrfs_sync_fs,
1602         .show_options   = btrfs_show_options,
1603         .show_devname   = btrfs_show_devname,
1604         .write_inode    = btrfs_write_inode,
1605         .alloc_inode    = btrfs_alloc_inode,
1606         .destroy_inode  = btrfs_destroy_inode,
1607         .statfs         = btrfs_statfs,
1608         .remount_fs     = btrfs_remount,
1609         .freeze_fs      = btrfs_freeze,
1610         .unfreeze_fs    = btrfs_unfreeze,
1611 };
1612
1613 static const struct file_operations btrfs_ctl_fops = {
1614         .unlocked_ioctl  = btrfs_control_ioctl,
1615         .compat_ioctl = btrfs_control_ioctl,
1616         .owner   = THIS_MODULE,
1617         .llseek = noop_llseek,
1618 };
1619
1620 static struct miscdevice btrfs_misc = {
1621         .minor          = BTRFS_MINOR,
1622         .name           = "btrfs-control",
1623         .fops           = &btrfs_ctl_fops
1624 };
1625
1626 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1627 MODULE_ALIAS("devname:btrfs-control");
1628
1629 static int btrfs_interface_init(void)
1630 {
1631         return misc_register(&btrfs_misc);
1632 }
1633
1634 static void btrfs_interface_exit(void)
1635 {
1636         if (misc_deregister(&btrfs_misc) < 0)
1637                 printk(KERN_INFO "btrfs: misc_deregister failed for control device\n");
1638 }
1639
1640 static int __init init_btrfs_fs(void)
1641 {
1642         int err;
1643
1644         err = btrfs_init_sysfs();
1645         if (err)
1646                 return err;
1647
1648         btrfs_init_compress();
1649
1650         err = btrfs_init_cachep();
1651         if (err)
1652                 goto free_compress;
1653
1654         err = extent_io_init();
1655         if (err)
1656                 goto free_cachep;
1657
1658         err = extent_map_init();
1659         if (err)
1660                 goto free_extent_io;
1661
1662         err = ordered_data_init();
1663         if (err)
1664                 goto free_extent_map;
1665
1666         err = btrfs_delayed_inode_init();
1667         if (err)
1668                 goto free_ordered_data;
1669
1670         err = btrfs_interface_init();
1671         if (err)
1672                 goto free_delayed_inode;
1673
1674         err = register_filesystem(&btrfs_fs_type);
1675         if (err)
1676                 goto unregister_ioctl;
1677
1678         btrfs_init_lockdep();
1679
1680         printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1681         return 0;
1682
1683 unregister_ioctl:
1684         btrfs_interface_exit();
1685 free_delayed_inode:
1686         btrfs_delayed_inode_exit();
1687 free_ordered_data:
1688         ordered_data_exit();
1689 free_extent_map:
1690         extent_map_exit();
1691 free_extent_io:
1692         extent_io_exit();
1693 free_cachep:
1694         btrfs_destroy_cachep();
1695 free_compress:
1696         btrfs_exit_compress();
1697         btrfs_exit_sysfs();
1698         return err;
1699 }
1700
1701 static void __exit exit_btrfs_fs(void)
1702 {
1703         btrfs_destroy_cachep();
1704         btrfs_delayed_inode_exit();
1705         ordered_data_exit();
1706         extent_map_exit();
1707         extent_io_exit();
1708         btrfs_interface_exit();
1709         unregister_filesystem(&btrfs_fs_type);
1710         btrfs_exit_sysfs();
1711         btrfs_cleanup_fs_uuids();
1712         btrfs_exit_compress();
1713 }
1714
1715 module_init(init_btrfs_fs)
1716 module_exit(exit_btrfs_fs)
1717
1718 MODULE_LICENSE("GPL");