btrfs: preparation to fixing mount/umount race
[linux-2.6-block.git] / fs / btrfs / super.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include "compat.h"
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "ioctl.h"
51 #include "print-tree.h"
52 #include "xattr.h"
53 #include "volumes.h"
54 #include "version.h"
55 #include "export.h"
56 #include "compression.h"
57
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/btrfs.h>
60
61 static const struct super_operations btrfs_super_ops;
62 static struct file_system_type btrfs_fs_type;
63
64 static const char *btrfs_decode_error(struct btrfs_fs_info *fs_info, int errno,
65                                       char nbuf[16])
66 {
67         char *errstr = NULL;
68
69         switch (errno) {
70         case -EIO:
71                 errstr = "IO failure";
72                 break;
73         case -ENOMEM:
74                 errstr = "Out of memory";
75                 break;
76         case -EROFS:
77                 errstr = "Readonly filesystem";
78                 break;
79         default:
80                 if (nbuf) {
81                         if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
82                                 errstr = nbuf;
83                 }
84                 break;
85         }
86
87         return errstr;
88 }
89
90 static void __save_error_info(struct btrfs_fs_info *fs_info)
91 {
92         /*
93          * today we only save the error info into ram.  Long term we'll
94          * also send it down to the disk
95          */
96         fs_info->fs_state = BTRFS_SUPER_FLAG_ERROR;
97 }
98
99 /* NOTE:
100  *      We move write_super stuff at umount in order to avoid deadlock
101  *      for umount hold all lock.
102  */
103 static void save_error_info(struct btrfs_fs_info *fs_info)
104 {
105         __save_error_info(fs_info);
106 }
107
108 /* btrfs handle error by forcing the filesystem readonly */
109 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
110 {
111         struct super_block *sb = fs_info->sb;
112
113         if (sb->s_flags & MS_RDONLY)
114                 return;
115
116         if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
117                 sb->s_flags |= MS_RDONLY;
118                 printk(KERN_INFO "btrfs is forced readonly\n");
119         }
120 }
121
122 /*
123  * __btrfs_std_error decodes expected errors from the caller and
124  * invokes the approciate error response.
125  */
126 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
127                      unsigned int line, int errno)
128 {
129         struct super_block *sb = fs_info->sb;
130         char nbuf[16];
131         const char *errstr;
132
133         /*
134          * Special case: if the error is EROFS, and we're already
135          * under MS_RDONLY, then it is safe here.
136          */
137         if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
138                 return;
139
140         errstr = btrfs_decode_error(fs_info, errno, nbuf);
141         printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: %s\n",
142                 sb->s_id, function, line, errstr);
143         save_error_info(fs_info);
144
145         btrfs_handle_error(fs_info);
146 }
147
148 static void btrfs_put_super(struct super_block *sb)
149 {
150         struct btrfs_root *root = btrfs_sb(sb);
151         int ret;
152
153         ret = close_ctree(root);
154         free_fs_info(root->fs_info);
155         sb->s_fs_info = NULL;
156
157         (void)ret; /* FIXME: need to fix VFS to return error? */
158 }
159
160 enum {
161         Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
162         Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
163         Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
164         Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
165         Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
166         Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
167         Opt_enospc_debug, Opt_subvolrootid, Opt_defrag,
168         Opt_inode_cache, Opt_no_space_cache, Opt_recovery, Opt_err,
169 };
170
171 static match_table_t tokens = {
172         {Opt_degraded, "degraded"},
173         {Opt_subvol, "subvol=%s"},
174         {Opt_subvolid, "subvolid=%d"},
175         {Opt_device, "device=%s"},
176         {Opt_nodatasum, "nodatasum"},
177         {Opt_nodatacow, "nodatacow"},
178         {Opt_nobarrier, "nobarrier"},
179         {Opt_max_inline, "max_inline=%s"},
180         {Opt_alloc_start, "alloc_start=%s"},
181         {Opt_thread_pool, "thread_pool=%d"},
182         {Opt_compress, "compress"},
183         {Opt_compress_type, "compress=%s"},
184         {Opt_compress_force, "compress-force"},
185         {Opt_compress_force_type, "compress-force=%s"},
186         {Opt_ssd, "ssd"},
187         {Opt_ssd_spread, "ssd_spread"},
188         {Opt_nossd, "nossd"},
189         {Opt_noacl, "noacl"},
190         {Opt_notreelog, "notreelog"},
191         {Opt_flushoncommit, "flushoncommit"},
192         {Opt_ratio, "metadata_ratio=%d"},
193         {Opt_discard, "discard"},
194         {Opt_space_cache, "space_cache"},
195         {Opt_clear_cache, "clear_cache"},
196         {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
197         {Opt_enospc_debug, "enospc_debug"},
198         {Opt_subvolrootid, "subvolrootid=%d"},
199         {Opt_defrag, "autodefrag"},
200         {Opt_inode_cache, "inode_cache"},
201         {Opt_no_space_cache, "nospace_cache"},
202         {Opt_recovery, "recovery"},
203         {Opt_err, NULL},
204 };
205
206 /*
207  * Regular mount options parser.  Everything that is needed only when
208  * reading in a new superblock is parsed here.
209  */
210 int btrfs_parse_options(struct btrfs_root *root, char *options)
211 {
212         struct btrfs_fs_info *info = root->fs_info;
213         substring_t args[MAX_OPT_ARGS];
214         char *p, *num, *orig = NULL;
215         u64 cache_gen;
216         int intarg;
217         int ret = 0;
218         char *compress_type;
219         bool compress_force = false;
220
221         cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
222         if (cache_gen)
223                 btrfs_set_opt(info->mount_opt, SPACE_CACHE);
224
225         if (!options)
226                 goto out;
227
228         /*
229          * strsep changes the string, duplicate it because parse_options
230          * gets called twice
231          */
232         options = kstrdup(options, GFP_NOFS);
233         if (!options)
234                 return -ENOMEM;
235
236         orig = options;
237
238         while ((p = strsep(&options, ",")) != NULL) {
239                 int token;
240                 if (!*p)
241                         continue;
242
243                 token = match_token(p, tokens, args);
244                 switch (token) {
245                 case Opt_degraded:
246                         printk(KERN_INFO "btrfs: allowing degraded mounts\n");
247                         btrfs_set_opt(info->mount_opt, DEGRADED);
248                         break;
249                 case Opt_subvol:
250                 case Opt_subvolid:
251                 case Opt_subvolrootid:
252                 case Opt_device:
253                         /*
254                          * These are parsed by btrfs_parse_early_options
255                          * and can be happily ignored here.
256                          */
257                         break;
258                 case Opt_nodatasum:
259                         printk(KERN_INFO "btrfs: setting nodatasum\n");
260                         btrfs_set_opt(info->mount_opt, NODATASUM);
261                         break;
262                 case Opt_nodatacow:
263                         printk(KERN_INFO "btrfs: setting nodatacow\n");
264                         btrfs_set_opt(info->mount_opt, NODATACOW);
265                         btrfs_set_opt(info->mount_opt, NODATASUM);
266                         break;
267                 case Opt_compress_force:
268                 case Opt_compress_force_type:
269                         compress_force = true;
270                 case Opt_compress:
271                 case Opt_compress_type:
272                         if (token == Opt_compress ||
273                             token == Opt_compress_force ||
274                             strcmp(args[0].from, "zlib") == 0) {
275                                 compress_type = "zlib";
276                                 info->compress_type = BTRFS_COMPRESS_ZLIB;
277                         } else if (strcmp(args[0].from, "lzo") == 0) {
278                                 compress_type = "lzo";
279                                 info->compress_type = BTRFS_COMPRESS_LZO;
280                         } else {
281                                 ret = -EINVAL;
282                                 goto out;
283                         }
284
285                         btrfs_set_opt(info->mount_opt, COMPRESS);
286                         if (compress_force) {
287                                 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
288                                 pr_info("btrfs: force %s compression\n",
289                                         compress_type);
290                         } else
291                                 pr_info("btrfs: use %s compression\n",
292                                         compress_type);
293                         break;
294                 case Opt_ssd:
295                         printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
296                         btrfs_set_opt(info->mount_opt, SSD);
297                         break;
298                 case Opt_ssd_spread:
299                         printk(KERN_INFO "btrfs: use spread ssd "
300                                "allocation scheme\n");
301                         btrfs_set_opt(info->mount_opt, SSD);
302                         btrfs_set_opt(info->mount_opt, SSD_SPREAD);
303                         break;
304                 case Opt_nossd:
305                         printk(KERN_INFO "btrfs: not using ssd allocation "
306                                "scheme\n");
307                         btrfs_set_opt(info->mount_opt, NOSSD);
308                         btrfs_clear_opt(info->mount_opt, SSD);
309                         btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
310                         break;
311                 case Opt_nobarrier:
312                         printk(KERN_INFO "btrfs: turning off barriers\n");
313                         btrfs_set_opt(info->mount_opt, NOBARRIER);
314                         break;
315                 case Opt_thread_pool:
316                         intarg = 0;
317                         match_int(&args[0], &intarg);
318                         if (intarg) {
319                                 info->thread_pool_size = intarg;
320                                 printk(KERN_INFO "btrfs: thread pool %d\n",
321                                        info->thread_pool_size);
322                         }
323                         break;
324                 case Opt_max_inline:
325                         num = match_strdup(&args[0]);
326                         if (num) {
327                                 info->max_inline = memparse(num, NULL);
328                                 kfree(num);
329
330                                 if (info->max_inline) {
331                                         info->max_inline = max_t(u64,
332                                                 info->max_inline,
333                                                 root->sectorsize);
334                                 }
335                                 printk(KERN_INFO "btrfs: max_inline at %llu\n",
336                                         (unsigned long long)info->max_inline);
337                         }
338                         break;
339                 case Opt_alloc_start:
340                         num = match_strdup(&args[0]);
341                         if (num) {
342                                 info->alloc_start = memparse(num, NULL);
343                                 kfree(num);
344                                 printk(KERN_INFO
345                                         "btrfs: allocations start at %llu\n",
346                                         (unsigned long long)info->alloc_start);
347                         }
348                         break;
349                 case Opt_noacl:
350                         root->fs_info->sb->s_flags &= ~MS_POSIXACL;
351                         break;
352                 case Opt_notreelog:
353                         printk(KERN_INFO "btrfs: disabling tree log\n");
354                         btrfs_set_opt(info->mount_opt, NOTREELOG);
355                         break;
356                 case Opt_flushoncommit:
357                         printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
358                         btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
359                         break;
360                 case Opt_ratio:
361                         intarg = 0;
362                         match_int(&args[0], &intarg);
363                         if (intarg) {
364                                 info->metadata_ratio = intarg;
365                                 printk(KERN_INFO "btrfs: metadata ratio %d\n",
366                                        info->metadata_ratio);
367                         }
368                         break;
369                 case Opt_discard:
370                         btrfs_set_opt(info->mount_opt, DISCARD);
371                         break;
372                 case Opt_space_cache:
373                         btrfs_set_opt(info->mount_opt, SPACE_CACHE);
374                         break;
375                 case Opt_no_space_cache:
376                         printk(KERN_INFO "btrfs: disabling disk space caching\n");
377                         btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
378                         break;
379                 case Opt_inode_cache:
380                         printk(KERN_INFO "btrfs: enabling inode map caching\n");
381                         btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
382                         break;
383                 case Opt_clear_cache:
384                         printk(KERN_INFO "btrfs: force clearing of disk cache\n");
385                         btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
386                         break;
387                 case Opt_user_subvol_rm_allowed:
388                         btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
389                         break;
390                 case Opt_enospc_debug:
391                         btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
392                         break;
393                 case Opt_defrag:
394                         printk(KERN_INFO "btrfs: enabling auto defrag");
395                         btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
396                         break;
397                 case Opt_recovery:
398                         printk(KERN_INFO "btrfs: enabling auto recovery");
399                         btrfs_set_opt(info->mount_opt, RECOVERY);
400                         break;
401                 case Opt_err:
402                         printk(KERN_INFO "btrfs: unrecognized mount option "
403                                "'%s'\n", p);
404                         ret = -EINVAL;
405                         goto out;
406                 default:
407                         break;
408                 }
409         }
410 out:
411         if (!ret && btrfs_test_opt(root, SPACE_CACHE))
412                 printk(KERN_INFO "btrfs: disk space caching is enabled\n");
413         kfree(orig);
414         return ret;
415 }
416
417 /*
418  * Parse mount options that are required early in the mount process.
419  *
420  * All other options will be parsed on much later in the mount process and
421  * only when we need to allocate a new super block.
422  */
423 static int btrfs_parse_early_options(const char *options, fmode_t flags,
424                 void *holder, char **subvol_name, u64 *subvol_objectid,
425                 u64 *subvol_rootid, struct btrfs_fs_devices **fs_devices)
426 {
427         substring_t args[MAX_OPT_ARGS];
428         char *device_name, *opts, *orig, *p;
429         int error = 0;
430         int intarg;
431
432         if (!options)
433                 return 0;
434
435         /*
436          * strsep changes the string, duplicate it because parse_options
437          * gets called twice
438          */
439         opts = kstrdup(options, GFP_KERNEL);
440         if (!opts)
441                 return -ENOMEM;
442         orig = opts;
443
444         while ((p = strsep(&opts, ",")) != NULL) {
445                 int token;
446                 if (!*p)
447                         continue;
448
449                 token = match_token(p, tokens, args);
450                 switch (token) {
451                 case Opt_subvol:
452                         kfree(*subvol_name);
453                         *subvol_name = match_strdup(&args[0]);
454                         break;
455                 case Opt_subvolid:
456                         intarg = 0;
457                         error = match_int(&args[0], &intarg);
458                         if (!error) {
459                                 /* we want the original fs_tree */
460                                 if (!intarg)
461                                         *subvol_objectid =
462                                                 BTRFS_FS_TREE_OBJECTID;
463                                 else
464                                         *subvol_objectid = intarg;
465                         }
466                         break;
467                 case Opt_subvolrootid:
468                         intarg = 0;
469                         error = match_int(&args[0], &intarg);
470                         if (!error) {
471                                 /* we want the original fs_tree */
472                                 if (!intarg)
473                                         *subvol_rootid =
474                                                 BTRFS_FS_TREE_OBJECTID;
475                                 else
476                                         *subvol_rootid = intarg;
477                         }
478                         break;
479                 case Opt_device:
480                         device_name = match_strdup(&args[0]);
481                         if (!device_name) {
482                                 error = -ENOMEM;
483                                 goto out;
484                         }
485                         error = btrfs_scan_one_device(device_name,
486                                         flags, holder, fs_devices);
487                         kfree(device_name);
488                         if (error)
489                                 goto out;
490                         break;
491                 default:
492                         break;
493                 }
494         }
495
496 out:
497         kfree(orig);
498         return error;
499 }
500
501 static struct dentry *get_default_root(struct super_block *sb,
502                                        u64 subvol_objectid)
503 {
504         struct btrfs_root *root = sb->s_fs_info;
505         struct btrfs_root *new_root;
506         struct btrfs_dir_item *di;
507         struct btrfs_path *path;
508         struct btrfs_key location;
509         struct inode *inode;
510         u64 dir_id;
511         int new = 0;
512
513         /*
514          * We have a specific subvol we want to mount, just setup location and
515          * go look up the root.
516          */
517         if (subvol_objectid) {
518                 location.objectid = subvol_objectid;
519                 location.type = BTRFS_ROOT_ITEM_KEY;
520                 location.offset = (u64)-1;
521                 goto find_root;
522         }
523
524         path = btrfs_alloc_path();
525         if (!path)
526                 return ERR_PTR(-ENOMEM);
527         path->leave_spinning = 1;
528
529         /*
530          * Find the "default" dir item which points to the root item that we
531          * will mount by default if we haven't been given a specific subvolume
532          * to mount.
533          */
534         dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
535         di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
536         if (IS_ERR(di)) {
537                 btrfs_free_path(path);
538                 return ERR_CAST(di);
539         }
540         if (!di) {
541                 /*
542                  * Ok the default dir item isn't there.  This is weird since
543                  * it's always been there, but don't freak out, just try and
544                  * mount to root most subvolume.
545                  */
546                 btrfs_free_path(path);
547                 dir_id = BTRFS_FIRST_FREE_OBJECTID;
548                 new_root = root->fs_info->fs_root;
549                 goto setup_root;
550         }
551
552         btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
553         btrfs_free_path(path);
554
555 find_root:
556         new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
557         if (IS_ERR(new_root))
558                 return ERR_CAST(new_root);
559
560         if (btrfs_root_refs(&new_root->root_item) == 0)
561                 return ERR_PTR(-ENOENT);
562
563         dir_id = btrfs_root_dirid(&new_root->root_item);
564 setup_root:
565         location.objectid = dir_id;
566         location.type = BTRFS_INODE_ITEM_KEY;
567         location.offset = 0;
568
569         inode = btrfs_iget(sb, &location, new_root, &new);
570         if (IS_ERR(inode))
571                 return ERR_CAST(inode);
572
573         /*
574          * If we're just mounting the root most subvol put the inode and return
575          * a reference to the dentry.  We will have already gotten a reference
576          * to the inode in btrfs_fill_super so we're good to go.
577          */
578         if (!new && sb->s_root->d_inode == inode) {
579                 iput(inode);
580                 return dget(sb->s_root);
581         }
582
583         return d_obtain_alias(inode);
584 }
585
586 static int btrfs_fill_super(struct super_block *sb,
587                             struct btrfs_fs_devices *fs_devices,
588                             void *data, int silent)
589 {
590         struct inode *inode;
591         struct dentry *root_dentry;
592         struct btrfs_root *tree_root;
593         struct btrfs_fs_info *fs_info;
594         struct btrfs_key key;
595         int err;
596
597         sb->s_maxbytes = MAX_LFS_FILESIZE;
598         sb->s_magic = BTRFS_SUPER_MAGIC;
599         sb->s_op = &btrfs_super_ops;
600         sb->s_d_op = &btrfs_dentry_operations;
601         sb->s_export_op = &btrfs_export_ops;
602         sb->s_xattr = btrfs_xattr_handlers;
603         sb->s_time_gran = 1;
604 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
605         sb->s_flags |= MS_POSIXACL;
606 #endif
607
608         tree_root = open_ctree(sb, fs_devices, (char *)data);
609
610         if (IS_ERR(tree_root)) {
611                 printk("btrfs: open_ctree failed\n");
612                 return PTR_ERR(tree_root);
613         }
614         fs_info = tree_root->fs_info;
615         sb->s_fs_info = tree_root;
616
617         key.objectid = BTRFS_FIRST_FREE_OBJECTID;
618         key.type = BTRFS_INODE_ITEM_KEY;
619         key.offset = 0;
620         inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
621         if (IS_ERR(inode)) {
622                 err = PTR_ERR(inode);
623                 goto fail_close;
624         }
625
626         root_dentry = d_alloc_root(inode);
627         if (!root_dentry) {
628                 iput(inode);
629                 err = -ENOMEM;
630                 goto fail_close;
631         }
632
633         sb->s_root = root_dentry;
634
635         save_mount_options(sb, data);
636         cleancache_init_fs(sb);
637         return 0;
638
639 fail_close:
640         close_ctree(tree_root);
641         free_fs_info(fs_info);
642         return err;
643 }
644
645 int btrfs_sync_fs(struct super_block *sb, int wait)
646 {
647         struct btrfs_trans_handle *trans;
648         struct btrfs_root *root = btrfs_sb(sb);
649         int ret;
650
651         trace_btrfs_sync_fs(wait);
652
653         if (!wait) {
654                 filemap_flush(root->fs_info->btree_inode->i_mapping);
655                 return 0;
656         }
657
658         btrfs_start_delalloc_inodes(root, 0);
659         btrfs_wait_ordered_extents(root, 0, 0);
660
661         trans = btrfs_start_transaction(root, 0);
662         if (IS_ERR(trans))
663                 return PTR_ERR(trans);
664         ret = btrfs_commit_transaction(trans, root);
665         return ret;
666 }
667
668 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
669 {
670         struct btrfs_root *root = btrfs_sb(dentry->d_sb);
671         struct btrfs_fs_info *info = root->fs_info;
672         char *compress_type;
673
674         if (btrfs_test_opt(root, DEGRADED))
675                 seq_puts(seq, ",degraded");
676         if (btrfs_test_opt(root, NODATASUM))
677                 seq_puts(seq, ",nodatasum");
678         if (btrfs_test_opt(root, NODATACOW))
679                 seq_puts(seq, ",nodatacow");
680         if (btrfs_test_opt(root, NOBARRIER))
681                 seq_puts(seq, ",nobarrier");
682         if (info->max_inline != 8192 * 1024)
683                 seq_printf(seq, ",max_inline=%llu",
684                            (unsigned long long)info->max_inline);
685         if (info->alloc_start != 0)
686                 seq_printf(seq, ",alloc_start=%llu",
687                            (unsigned long long)info->alloc_start);
688         if (info->thread_pool_size !=  min_t(unsigned long,
689                                              num_online_cpus() + 2, 8))
690                 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
691         if (btrfs_test_opt(root, COMPRESS)) {
692                 if (info->compress_type == BTRFS_COMPRESS_ZLIB)
693                         compress_type = "zlib";
694                 else
695                         compress_type = "lzo";
696                 if (btrfs_test_opt(root, FORCE_COMPRESS))
697                         seq_printf(seq, ",compress-force=%s", compress_type);
698                 else
699                         seq_printf(seq, ",compress=%s", compress_type);
700         }
701         if (btrfs_test_opt(root, NOSSD))
702                 seq_puts(seq, ",nossd");
703         if (btrfs_test_opt(root, SSD_SPREAD))
704                 seq_puts(seq, ",ssd_spread");
705         else if (btrfs_test_opt(root, SSD))
706                 seq_puts(seq, ",ssd");
707         if (btrfs_test_opt(root, NOTREELOG))
708                 seq_puts(seq, ",notreelog");
709         if (btrfs_test_opt(root, FLUSHONCOMMIT))
710                 seq_puts(seq, ",flushoncommit");
711         if (btrfs_test_opt(root, DISCARD))
712                 seq_puts(seq, ",discard");
713         if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
714                 seq_puts(seq, ",noacl");
715         if (btrfs_test_opt(root, SPACE_CACHE))
716                 seq_puts(seq, ",space_cache");
717         else
718                 seq_puts(seq, ",nospace_cache");
719         if (btrfs_test_opt(root, CLEAR_CACHE))
720                 seq_puts(seq, ",clear_cache");
721         if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
722                 seq_puts(seq, ",user_subvol_rm_allowed");
723         if (btrfs_test_opt(root, ENOSPC_DEBUG))
724                 seq_puts(seq, ",enospc_debug");
725         if (btrfs_test_opt(root, AUTO_DEFRAG))
726                 seq_puts(seq, ",autodefrag");
727         if (btrfs_test_opt(root, INODE_MAP_CACHE))
728                 seq_puts(seq, ",inode_cache");
729         return 0;
730 }
731
732 static int btrfs_test_super(struct super_block *s, void *data)
733 {
734         struct btrfs_root *test_root = data;
735         struct btrfs_root *root = btrfs_sb(s);
736
737         /*
738          * If this super block is going away, return false as it
739          * can't match as an existing super block.
740          */
741         if (!atomic_read(&s->s_active))
742                 return 0;
743         return root->fs_info->fs_devices == test_root->fs_info->fs_devices;
744 }
745
746 static int btrfs_set_super(struct super_block *s, void *data)
747 {
748         s->s_fs_info = data;
749
750         return set_anon_super(s, data);
751 }
752
753 /*
754  * subvolumes are identified by ino 256
755  */
756 static inline int is_subvolume_inode(struct inode *inode)
757 {
758         if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
759                 return 1;
760         return 0;
761 }
762
763 /*
764  * This will strip out the subvol=%s argument for an argument string and add
765  * subvolid=0 to make sure we get the actual tree root for path walking to the
766  * subvol we want.
767  */
768 static char *setup_root_args(char *args)
769 {
770         unsigned copied = 0;
771         unsigned len = strlen(args) + 2;
772         char *pos;
773         char *ret;
774
775         /*
776          * We need the same args as before, but minus
777          *
778          * subvol=a
779          *
780          * and add
781          *
782          * subvolid=0
783          *
784          * which is a difference of 2 characters, so we allocate strlen(args) +
785          * 2 characters.
786          */
787         ret = kzalloc(len * sizeof(char), GFP_NOFS);
788         if (!ret)
789                 return NULL;
790         pos = strstr(args, "subvol=");
791
792         /* This shouldn't happen, but just in case.. */
793         if (!pos) {
794                 kfree(ret);
795                 return NULL;
796         }
797
798         /*
799          * The subvol=<> arg is not at the front of the string, copy everybody
800          * up to that into ret.
801          */
802         if (pos != args) {
803                 *pos = '\0';
804                 strcpy(ret, args);
805                 copied += strlen(args);
806                 pos++;
807         }
808
809         strncpy(ret + copied, "subvolid=0", len - copied);
810
811         /* Length of subvolid=0 */
812         copied += 10;
813
814         /*
815          * If there is no , after the subvol= option then we know there's no
816          * other options and we can just return.
817          */
818         pos = strchr(pos, ',');
819         if (!pos)
820                 return ret;
821
822         /* Copy the rest of the arguments into our buffer */
823         strncpy(ret + copied, pos, len - copied);
824         copied += strlen(pos);
825
826         return ret;
827 }
828
829 static struct dentry *mount_subvol(const char *subvol_name, int flags,
830                                    const char *device_name, char *data)
831 {
832         struct dentry *root;
833         struct vfsmount *mnt;
834         char *newargs;
835
836         newargs = setup_root_args(data);
837         if (!newargs)
838                 return ERR_PTR(-ENOMEM);
839         mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
840                              newargs);
841         kfree(newargs);
842         if (IS_ERR(mnt))
843                 return ERR_CAST(mnt);
844
845         root = mount_subtree(mnt, subvol_name);
846
847         if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
848                 struct super_block *s = root->d_sb;
849                 dput(root);
850                 root = ERR_PTR(-EINVAL);
851                 deactivate_locked_super(s);
852                 printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
853                                 subvol_name);
854         }
855
856         return root;
857 }
858
859 /*
860  * Find a superblock for the given device / mount point.
861  *
862  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
863  *        for multiple device setup.  Make sure to keep it in sync.
864  */
865 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
866                 const char *device_name, void *data)
867 {
868         struct block_device *bdev = NULL;
869         struct super_block *s;
870         struct dentry *root;
871         struct btrfs_fs_devices *fs_devices = NULL;
872         struct btrfs_fs_info *fs_info = NULL;
873         fmode_t mode = FMODE_READ;
874         char *subvol_name = NULL;
875         u64 subvol_objectid = 0;
876         u64 subvol_rootid = 0;
877         int error = 0;
878
879         if (!(flags & MS_RDONLY))
880                 mode |= FMODE_WRITE;
881
882         error = btrfs_parse_early_options(data, mode, fs_type,
883                                           &subvol_name, &subvol_objectid,
884                                           &subvol_rootid, &fs_devices);
885         if (error) {
886                 kfree(subvol_name);
887                 return ERR_PTR(error);
888         }
889
890         if (subvol_name) {
891                 root = mount_subvol(subvol_name, flags, device_name, data);
892                 kfree(subvol_name);
893                 return root;
894         }
895
896         error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
897         if (error)
898                 return ERR_PTR(error);
899
900         /*
901          * Setup a dummy root and fs_info for test/set super.  This is because
902          * we don't actually fill this stuff out until open_ctree, but we need
903          * it for searching for existing supers, so this lets us do that and
904          * then open_ctree will properly initialize everything later.
905          */
906         fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
907         if (!fs_info)
908                 return ERR_PTR(-ENOMEM);
909
910         fs_info->tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
911         if (!fs_info->tree_root) {
912                 error = -ENOMEM;
913                 goto error_fs_info;
914         }
915         fs_info->tree_root->fs_info = fs_info;
916         fs_info->fs_devices = fs_devices;
917
918         fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
919         fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
920         if (!fs_info->super_copy || !fs_info->super_for_commit) {
921                 error = -ENOMEM;
922                 goto error_fs_info;
923         }
924
925         error = btrfs_open_devices(fs_devices, mode, fs_type);
926         if (error)
927                 goto error_fs_info;
928
929         if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
930                 error = -EACCES;
931                 goto error_close_devices;
932         }
933
934         bdev = fs_devices->latest_bdev;
935         s = sget(fs_type, btrfs_test_super, btrfs_set_super,
936                  fs_info->tree_root);
937         if (IS_ERR(s)) {
938                 error = PTR_ERR(s);
939                 goto error_close_devices;
940         }
941
942         if (s->s_root) {
943                 if ((flags ^ s->s_flags) & MS_RDONLY) {
944                         deactivate_locked_super(s);
945                         error = -EBUSY;
946                         goto error_close_devices;
947                 }
948
949                 btrfs_close_devices(fs_devices);
950                 free_fs_info(fs_info);
951         } else {
952                 char b[BDEVNAME_SIZE];
953
954                 s->s_flags = flags | MS_NOSEC;
955                 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
956                 btrfs_sb(s)->fs_info->bdev_holder = fs_type;
957                 error = btrfs_fill_super(s, fs_devices, data,
958                                          flags & MS_SILENT ? 1 : 0);
959                 if (error) {
960                         deactivate_locked_super(s);
961                         return ERR_PTR(error);
962                 }
963
964                 s->s_flags |= MS_ACTIVE;
965         }
966
967         root = get_default_root(s, subvol_objectid);
968         if (IS_ERR(root)) {
969                 deactivate_locked_super(s);
970                 return root;
971         }
972
973         return root;
974
975 error_close_devices:
976         btrfs_close_devices(fs_devices);
977 error_fs_info:
978         free_fs_info(fs_info);
979         return ERR_PTR(error);
980 }
981
982 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
983 {
984         struct btrfs_root *root = btrfs_sb(sb);
985         int ret;
986
987         ret = btrfs_parse_options(root, data);
988         if (ret)
989                 return -EINVAL;
990
991         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
992                 return 0;
993
994         if (*flags & MS_RDONLY) {
995                 sb->s_flags |= MS_RDONLY;
996
997                 ret =  btrfs_commit_super(root);
998                 WARN_ON(ret);
999         } else {
1000                 if (root->fs_info->fs_devices->rw_devices == 0)
1001                         return -EACCES;
1002
1003                 if (btrfs_super_log_root(root->fs_info->super_copy) != 0)
1004                         return -EINVAL;
1005
1006                 ret = btrfs_cleanup_fs_roots(root->fs_info);
1007                 WARN_ON(ret);
1008
1009                 /* recover relocation */
1010                 ret = btrfs_recover_relocation(root);
1011                 WARN_ON(ret);
1012
1013                 sb->s_flags &= ~MS_RDONLY;
1014         }
1015
1016         return 0;
1017 }
1018
1019 /* Used to sort the devices by max_avail(descending sort) */
1020 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1021                                        const void *dev_info2)
1022 {
1023         if (((struct btrfs_device_info *)dev_info1)->max_avail >
1024             ((struct btrfs_device_info *)dev_info2)->max_avail)
1025                 return -1;
1026         else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1027                  ((struct btrfs_device_info *)dev_info2)->max_avail)
1028                 return 1;
1029         else
1030         return 0;
1031 }
1032
1033 /*
1034  * sort the devices by max_avail, in which max free extent size of each device
1035  * is stored.(Descending Sort)
1036  */
1037 static inline void btrfs_descending_sort_devices(
1038                                         struct btrfs_device_info *devices,
1039                                         size_t nr_devices)
1040 {
1041         sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1042              btrfs_cmp_device_free_bytes, NULL);
1043 }
1044
1045 /*
1046  * The helper to calc the free space on the devices that can be used to store
1047  * file data.
1048  */
1049 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1050 {
1051         struct btrfs_fs_info *fs_info = root->fs_info;
1052         struct btrfs_device_info *devices_info;
1053         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1054         struct btrfs_device *device;
1055         u64 skip_space;
1056         u64 type;
1057         u64 avail_space;
1058         u64 used_space;
1059         u64 min_stripe_size;
1060         int min_stripes = 1, num_stripes = 1;
1061         int i = 0, nr_devices;
1062         int ret;
1063
1064         nr_devices = fs_info->fs_devices->open_devices;
1065         BUG_ON(!nr_devices);
1066
1067         devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
1068                                GFP_NOFS);
1069         if (!devices_info)
1070                 return -ENOMEM;
1071
1072         /* calc min stripe number for data space alloction */
1073         type = btrfs_get_alloc_profile(root, 1);
1074         if (type & BTRFS_BLOCK_GROUP_RAID0) {
1075                 min_stripes = 2;
1076                 num_stripes = nr_devices;
1077         } else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1078                 min_stripes = 2;
1079                 num_stripes = 2;
1080         } else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1081                 min_stripes = 4;
1082                 num_stripes = 4;
1083         }
1084
1085         if (type & BTRFS_BLOCK_GROUP_DUP)
1086                 min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1087         else
1088                 min_stripe_size = BTRFS_STRIPE_LEN;
1089
1090         list_for_each_entry(device, &fs_devices->devices, dev_list) {
1091                 if (!device->in_fs_metadata || !device->bdev)
1092                         continue;
1093
1094                 avail_space = device->total_bytes - device->bytes_used;
1095
1096                 /* align with stripe_len */
1097                 do_div(avail_space, BTRFS_STRIPE_LEN);
1098                 avail_space *= BTRFS_STRIPE_LEN;
1099
1100                 /*
1101                  * In order to avoid overwritting the superblock on the drive,
1102                  * btrfs starts at an offset of at least 1MB when doing chunk
1103                  * allocation.
1104                  */
1105                 skip_space = 1024 * 1024;
1106
1107                 /* user can set the offset in fs_info->alloc_start. */
1108                 if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1109                     device->total_bytes)
1110                         skip_space = max(fs_info->alloc_start, skip_space);
1111
1112                 /*
1113                  * btrfs can not use the free space in [0, skip_space - 1],
1114                  * we must subtract it from the total. In order to implement
1115                  * it, we account the used space in this range first.
1116                  */
1117                 ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1118                                                      &used_space);
1119                 if (ret) {
1120                         kfree(devices_info);
1121                         return ret;
1122                 }
1123
1124                 /* calc the free space in [0, skip_space - 1] */
1125                 skip_space -= used_space;
1126
1127                 /*
1128                  * we can use the free space in [0, skip_space - 1], subtract
1129                  * it from the total.
1130                  */
1131                 if (avail_space && avail_space >= skip_space)
1132                         avail_space -= skip_space;
1133                 else
1134                         avail_space = 0;
1135
1136                 if (avail_space < min_stripe_size)
1137                         continue;
1138
1139                 devices_info[i].dev = device;
1140                 devices_info[i].max_avail = avail_space;
1141
1142                 i++;
1143         }
1144
1145         nr_devices = i;
1146
1147         btrfs_descending_sort_devices(devices_info, nr_devices);
1148
1149         i = nr_devices - 1;
1150         avail_space = 0;
1151         while (nr_devices >= min_stripes) {
1152                 if (num_stripes > nr_devices)
1153                         num_stripes = nr_devices;
1154
1155                 if (devices_info[i].max_avail >= min_stripe_size) {
1156                         int j;
1157                         u64 alloc_size;
1158
1159                         avail_space += devices_info[i].max_avail * num_stripes;
1160                         alloc_size = devices_info[i].max_avail;
1161                         for (j = i + 1 - num_stripes; j <= i; j++)
1162                                 devices_info[j].max_avail -= alloc_size;
1163                 }
1164                 i--;
1165                 nr_devices--;
1166         }
1167
1168         kfree(devices_info);
1169         *free_bytes = avail_space;
1170         return 0;
1171 }
1172
1173 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1174 {
1175         struct btrfs_root *root = btrfs_sb(dentry->d_sb);
1176         struct btrfs_super_block *disk_super = root->fs_info->super_copy;
1177         struct list_head *head = &root->fs_info->space_info;
1178         struct btrfs_space_info *found;
1179         u64 total_used = 0;
1180         u64 total_free_data = 0;
1181         int bits = dentry->d_sb->s_blocksize_bits;
1182         __be32 *fsid = (__be32 *)root->fs_info->fsid;
1183         int ret;
1184
1185         /* holding chunk_muext to avoid allocating new chunks */
1186         mutex_lock(&root->fs_info->chunk_mutex);
1187         rcu_read_lock();
1188         list_for_each_entry_rcu(found, head, list) {
1189                 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1190                         total_free_data += found->disk_total - found->disk_used;
1191                         total_free_data -=
1192                                 btrfs_account_ro_block_groups_free_space(found);
1193                 }
1194
1195                 total_used += found->disk_used;
1196         }
1197         rcu_read_unlock();
1198
1199         buf->f_namelen = BTRFS_NAME_LEN;
1200         buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1201         buf->f_bfree = buf->f_blocks - (total_used >> bits);
1202         buf->f_bsize = dentry->d_sb->s_blocksize;
1203         buf->f_type = BTRFS_SUPER_MAGIC;
1204         buf->f_bavail = total_free_data;
1205         ret = btrfs_calc_avail_data_space(root, &total_free_data);
1206         if (ret) {
1207                 mutex_unlock(&root->fs_info->chunk_mutex);
1208                 return ret;
1209         }
1210         buf->f_bavail += total_free_data;
1211         buf->f_bavail = buf->f_bavail >> bits;
1212         mutex_unlock(&root->fs_info->chunk_mutex);
1213
1214         /* We treat it as constant endianness (it doesn't matter _which_)
1215            because we want the fsid to come out the same whether mounted
1216            on a big-endian or little-endian host */
1217         buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1218         buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1219         /* Mask in the root object ID too, to disambiguate subvols */
1220         buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1221         buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1222
1223         return 0;
1224 }
1225
1226 static struct file_system_type btrfs_fs_type = {
1227         .owner          = THIS_MODULE,
1228         .name           = "btrfs",
1229         .mount          = btrfs_mount,
1230         .kill_sb        = kill_anon_super,
1231         .fs_flags       = FS_REQUIRES_DEV,
1232 };
1233
1234 /*
1235  * used by btrfsctl to scan devices when no FS is mounted
1236  */
1237 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1238                                 unsigned long arg)
1239 {
1240         struct btrfs_ioctl_vol_args *vol;
1241         struct btrfs_fs_devices *fs_devices;
1242         int ret = -ENOTTY;
1243
1244         if (!capable(CAP_SYS_ADMIN))
1245                 return -EPERM;
1246
1247         vol = memdup_user((void __user *)arg, sizeof(*vol));
1248         if (IS_ERR(vol))
1249                 return PTR_ERR(vol);
1250
1251         switch (cmd) {
1252         case BTRFS_IOC_SCAN_DEV:
1253                 ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1254                                             &btrfs_fs_type, &fs_devices);
1255                 break;
1256         }
1257
1258         kfree(vol);
1259         return ret;
1260 }
1261
1262 static int btrfs_freeze(struct super_block *sb)
1263 {
1264         struct btrfs_root *root = btrfs_sb(sb);
1265         mutex_lock(&root->fs_info->transaction_kthread_mutex);
1266         mutex_lock(&root->fs_info->cleaner_mutex);
1267         return 0;
1268 }
1269
1270 static int btrfs_unfreeze(struct super_block *sb)
1271 {
1272         struct btrfs_root *root = btrfs_sb(sb);
1273         mutex_unlock(&root->fs_info->cleaner_mutex);
1274         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1275         return 0;
1276 }
1277
1278 static void btrfs_fs_dirty_inode(struct inode *inode, int flags)
1279 {
1280         int ret;
1281
1282         ret = btrfs_dirty_inode(inode);
1283         if (ret)
1284                 printk_ratelimited(KERN_ERR "btrfs: fail to dirty inode %Lu "
1285                                    "error %d\n", btrfs_ino(inode), ret);
1286 }
1287
1288 static const struct super_operations btrfs_super_ops = {
1289         .drop_inode     = btrfs_drop_inode,
1290         .evict_inode    = btrfs_evict_inode,
1291         .put_super      = btrfs_put_super,
1292         .sync_fs        = btrfs_sync_fs,
1293         .show_options   = btrfs_show_options,
1294         .write_inode    = btrfs_write_inode,
1295         .dirty_inode    = btrfs_fs_dirty_inode,
1296         .alloc_inode    = btrfs_alloc_inode,
1297         .destroy_inode  = btrfs_destroy_inode,
1298         .statfs         = btrfs_statfs,
1299         .remount_fs     = btrfs_remount,
1300         .freeze_fs      = btrfs_freeze,
1301         .unfreeze_fs    = btrfs_unfreeze,
1302 };
1303
1304 static const struct file_operations btrfs_ctl_fops = {
1305         .unlocked_ioctl  = btrfs_control_ioctl,
1306         .compat_ioctl = btrfs_control_ioctl,
1307         .owner   = THIS_MODULE,
1308         .llseek = noop_llseek,
1309 };
1310
1311 static struct miscdevice btrfs_misc = {
1312         .minor          = BTRFS_MINOR,
1313         .name           = "btrfs-control",
1314         .fops           = &btrfs_ctl_fops
1315 };
1316
1317 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1318 MODULE_ALIAS("devname:btrfs-control");
1319
1320 static int btrfs_interface_init(void)
1321 {
1322         return misc_register(&btrfs_misc);
1323 }
1324
1325 static void btrfs_interface_exit(void)
1326 {
1327         if (misc_deregister(&btrfs_misc) < 0)
1328                 printk(KERN_INFO "misc_deregister failed for control device");
1329 }
1330
1331 static int __init init_btrfs_fs(void)
1332 {
1333         int err;
1334
1335         err = btrfs_init_sysfs();
1336         if (err)
1337                 return err;
1338
1339         err = btrfs_init_compress();
1340         if (err)
1341                 goto free_sysfs;
1342
1343         err = btrfs_init_cachep();
1344         if (err)
1345                 goto free_compress;
1346
1347         err = extent_io_init();
1348         if (err)
1349                 goto free_cachep;
1350
1351         err = extent_map_init();
1352         if (err)
1353                 goto free_extent_io;
1354
1355         err = btrfs_delayed_inode_init();
1356         if (err)
1357                 goto free_extent_map;
1358
1359         err = btrfs_interface_init();
1360         if (err)
1361                 goto free_delayed_inode;
1362
1363         err = register_filesystem(&btrfs_fs_type);
1364         if (err)
1365                 goto unregister_ioctl;
1366
1367         printk(KERN_INFO "%s loaded\n", BTRFS_BUILD_VERSION);
1368         return 0;
1369
1370 unregister_ioctl:
1371         btrfs_interface_exit();
1372 free_delayed_inode:
1373         btrfs_delayed_inode_exit();
1374 free_extent_map:
1375         extent_map_exit();
1376 free_extent_io:
1377         extent_io_exit();
1378 free_cachep:
1379         btrfs_destroy_cachep();
1380 free_compress:
1381         btrfs_exit_compress();
1382 free_sysfs:
1383         btrfs_exit_sysfs();
1384         return err;
1385 }
1386
1387 static void __exit exit_btrfs_fs(void)
1388 {
1389         btrfs_destroy_cachep();
1390         btrfs_delayed_inode_exit();
1391         extent_map_exit();
1392         extent_io_exit();
1393         btrfs_interface_exit();
1394         unregister_filesystem(&btrfs_fs_type);
1395         btrfs_exit_sysfs();
1396         btrfs_cleanup_fs_uuids();
1397         btrfs_exit_compress();
1398 }
1399
1400 module_init(init_btrfs_fs)
1401 module_exit(exit_btrfs_fs)
1402
1403 MODULE_LICENSE("GPL");