btrfs: make shrink_delalloc take space_info as an arg
[linux-2.6-block.git] / fs / btrfs / space-info.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
12
13 /*
14  * HOW DOES SPACE RESERVATION WORK
15  *
16  * If you want to know about delalloc specifically, there is a separate comment
17  * for that with the delalloc code.  This comment is about how the whole system
18  * works generally.
19  *
20  * BASIC CONCEPTS
21  *
22  *   1) space_info.  This is the ultimate arbiter of how much space we can use.
23  *   There's a description of the bytes_ fields with the struct declaration,
24  *   refer to that for specifics on each field.  Suffice it to say that for
25  *   reservations we care about total_bytes - SUM(space_info->bytes_) when
26  *   determining if there is space to make an allocation.  There is a space_info
27  *   for METADATA, SYSTEM, and DATA areas.
28  *
29  *   2) block_rsv's.  These are basically buckets for every different type of
30  *   metadata reservation we have.  You can see the comment in the block_rsv
31  *   code on the rules for each type, but generally block_rsv->reserved is how
32  *   much space is accounted for in space_info->bytes_may_use.
33  *
34  *   3) btrfs_calc*_size.  These are the worst case calculations we used based
35  *   on the number of items we will want to modify.  We have one for changing
36  *   items, and one for inserting new items.  Generally we use these helpers to
37  *   determine the size of the block reserves, and then use the actual bytes
38  *   values to adjust the space_info counters.
39  *
40  * MAKING RESERVATIONS, THE NORMAL CASE
41  *
42  *   We call into either btrfs_reserve_data_bytes() or
43  *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
44  *   num_bytes we want to reserve.
45  *
46  *   ->reserve
47  *     space_info->bytes_may_reserve += num_bytes
48  *
49  *   ->extent allocation
50  *     Call btrfs_add_reserved_bytes() which does
51  *     space_info->bytes_may_reserve -= num_bytes
52  *     space_info->bytes_reserved += extent_bytes
53  *
54  *   ->insert reference
55  *     Call btrfs_update_block_group() which does
56  *     space_info->bytes_reserved -= extent_bytes
57  *     space_info->bytes_used += extent_bytes
58  *
59  * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
60  *
61  *   Assume we are unable to simply make the reservation because we do not have
62  *   enough space
63  *
64  *   -> __reserve_bytes
65  *     create a reserve_ticket with ->bytes set to our reservation, add it to
66  *     the tail of space_info->tickets, kick async flush thread
67  *
68  *   ->handle_reserve_ticket
69  *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
70  *     on the ticket.
71  *
72  *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
73  *     Flushes various things attempting to free up space.
74  *
75  *   -> btrfs_try_granting_tickets()
76  *     This is called by anything that either subtracts space from
77  *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
78  *     space_info->total_bytes.  This loops through the ->priority_tickets and
79  *     then the ->tickets list checking to see if the reservation can be
80  *     completed.  If it can the space is added to space_info->bytes_may_use and
81  *     the ticket is woken up.
82  *
83  *   -> ticket wakeup
84  *     Check if ->bytes == 0, if it does we got our reservation and we can carry
85  *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
86  *     were interrupted.)
87  *
88  * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
89  *
90  *   Same as the above, except we add ourselves to the
91  *   space_info->priority_tickets, and we do not use ticket->wait, we simply
92  *   call flush_space() ourselves for the states that are safe for us to call
93  *   without deadlocking and hope for the best.
94  *
95  * THE FLUSHING STATES
96  *
97  *   Generally speaking we will have two cases for each state, a "nice" state
98  *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
99  *   reduce the locking over head on the various trees, and even to keep from
100  *   doing any work at all in the case of delayed refs.  Each of these delayed
101  *   things however hold reservations, and so letting them run allows us to
102  *   reclaim space so we can make new reservations.
103  *
104  *   FLUSH_DELAYED_ITEMS
105  *     Every inode has a delayed item to update the inode.  Take a simple write
106  *     for example, we would update the inode item at write time to update the
107  *     mtime, and then again at finish_ordered_io() time in order to update the
108  *     isize or bytes.  We keep these delayed items to coalesce these operations
109  *     into a single operation done on demand.  These are an easy way to reclaim
110  *     metadata space.
111  *
112  *   FLUSH_DELALLOC
113  *     Look at the delalloc comment to get an idea of how much space is reserved
114  *     for delayed allocation.  We can reclaim some of this space simply by
115  *     running delalloc, but usually we need to wait for ordered extents to
116  *     reclaim the bulk of this space.
117  *
118  *   FLUSH_DELAYED_REFS
119  *     We have a block reserve for the outstanding delayed refs space, and every
120  *     delayed ref operation holds a reservation.  Running these is a quick way
121  *     to reclaim space, but we want to hold this until the end because COW can
122  *     churn a lot and we can avoid making some extent tree modifications if we
123  *     are able to delay for as long as possible.
124  *
125  *   ALLOC_CHUNK
126  *     We will skip this the first time through space reservation, because of
127  *     overcommit and we don't want to have a lot of useless metadata space when
128  *     our worst case reservations will likely never come true.
129  *
130  *   RUN_DELAYED_IPUTS
131  *     If we're freeing inodes we're likely freeing checksums, file extent
132  *     items, and extent tree items.  Loads of space could be freed up by these
133  *     operations, however they won't be usable until the transaction commits.
134  *
135  *   COMMIT_TRANS
136  *     may_commit_transaction() is the ultimate arbiter on whether we commit the
137  *     transaction or not.  In order to avoid constantly churning we do all the
138  *     above flushing first and then commit the transaction as the last resort.
139  *     However we need to take into account things like pinned space that would
140  *     be freed, plus any delayed work we may not have gotten rid of in the case
141  *     of metadata.
142  *
143  * OVERCOMMIT
144  *
145  *   Because we hold so many reservations for metadata we will allow you to
146  *   reserve more space than is currently free in the currently allocate
147  *   metadata space.  This only happens with metadata, data does not allow
148  *   overcommitting.
149  *
150  *   You can see the current logic for when we allow overcommit in
151  *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
152  *   is no unallocated space to be had, all reservations are kept within the
153  *   free space in the allocated metadata chunks.
154  *
155  *   Because of overcommitting, you generally want to use the
156  *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
157  *   thing with or without extra unallocated space.
158  */
159
160 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
161                           bool may_use_included)
162 {
163         ASSERT(s_info);
164         return s_info->bytes_used + s_info->bytes_reserved +
165                 s_info->bytes_pinned + s_info->bytes_readonly +
166                 (may_use_included ? s_info->bytes_may_use : 0);
167 }
168
169 /*
170  * after adding space to the filesystem, we need to clear the full flags
171  * on all the space infos.
172  */
173 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
174 {
175         struct list_head *head = &info->space_info;
176         struct btrfs_space_info *found;
177
178         rcu_read_lock();
179         list_for_each_entry_rcu(found, head, list)
180                 found->full = 0;
181         rcu_read_unlock();
182 }
183
184 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
185 {
186
187         struct btrfs_space_info *space_info;
188         int i;
189         int ret;
190
191         space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
192         if (!space_info)
193                 return -ENOMEM;
194
195         ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
196                                  GFP_KERNEL);
197         if (ret) {
198                 kfree(space_info);
199                 return ret;
200         }
201
202         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
203                 INIT_LIST_HEAD(&space_info->block_groups[i]);
204         init_rwsem(&space_info->groups_sem);
205         spin_lock_init(&space_info->lock);
206         space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
207         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
208         INIT_LIST_HEAD(&space_info->ro_bgs);
209         INIT_LIST_HEAD(&space_info->tickets);
210         INIT_LIST_HEAD(&space_info->priority_tickets);
211
212         ret = btrfs_sysfs_add_space_info_type(info, space_info);
213         if (ret)
214                 return ret;
215
216         list_add_rcu(&space_info->list, &info->space_info);
217         if (flags & BTRFS_BLOCK_GROUP_DATA)
218                 info->data_sinfo = space_info;
219
220         return ret;
221 }
222
223 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
224 {
225         struct btrfs_super_block *disk_super;
226         u64 features;
227         u64 flags;
228         int mixed = 0;
229         int ret;
230
231         disk_super = fs_info->super_copy;
232         if (!btrfs_super_root(disk_super))
233                 return -EINVAL;
234
235         features = btrfs_super_incompat_flags(disk_super);
236         if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
237                 mixed = 1;
238
239         flags = BTRFS_BLOCK_GROUP_SYSTEM;
240         ret = create_space_info(fs_info, flags);
241         if (ret)
242                 goto out;
243
244         if (mixed) {
245                 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
246                 ret = create_space_info(fs_info, flags);
247         } else {
248                 flags = BTRFS_BLOCK_GROUP_METADATA;
249                 ret = create_space_info(fs_info, flags);
250                 if (ret)
251                         goto out;
252
253                 flags = BTRFS_BLOCK_GROUP_DATA;
254                 ret = create_space_info(fs_info, flags);
255         }
256 out:
257         return ret;
258 }
259
260 void btrfs_update_space_info(struct btrfs_fs_info *info, u64 flags,
261                              u64 total_bytes, u64 bytes_used,
262                              u64 bytes_readonly,
263                              struct btrfs_space_info **space_info)
264 {
265         struct btrfs_space_info *found;
266         int factor;
267
268         factor = btrfs_bg_type_to_factor(flags);
269
270         found = btrfs_find_space_info(info, flags);
271         ASSERT(found);
272         spin_lock(&found->lock);
273         found->total_bytes += total_bytes;
274         found->disk_total += total_bytes * factor;
275         found->bytes_used += bytes_used;
276         found->disk_used += bytes_used * factor;
277         found->bytes_readonly += bytes_readonly;
278         if (total_bytes > 0)
279                 found->full = 0;
280         btrfs_try_granting_tickets(info, found);
281         spin_unlock(&found->lock);
282         *space_info = found;
283 }
284
285 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
286                                                u64 flags)
287 {
288         struct list_head *head = &info->space_info;
289         struct btrfs_space_info *found;
290
291         flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
292
293         rcu_read_lock();
294         list_for_each_entry_rcu(found, head, list) {
295                 if (found->flags & flags) {
296                         rcu_read_unlock();
297                         return found;
298                 }
299         }
300         rcu_read_unlock();
301         return NULL;
302 }
303
304 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
305 {
306         return (global->size << 1);
307 }
308
309 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
310                           struct btrfs_space_info *space_info,
311                           enum btrfs_reserve_flush_enum flush)
312 {
313         u64 profile;
314         u64 avail;
315         int factor;
316
317         if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
318                 profile = btrfs_system_alloc_profile(fs_info);
319         else
320                 profile = btrfs_metadata_alloc_profile(fs_info);
321
322         avail = atomic64_read(&fs_info->free_chunk_space);
323
324         /*
325          * If we have dup, raid1 or raid10 then only half of the free
326          * space is actually usable.  For raid56, the space info used
327          * doesn't include the parity drive, so we don't have to
328          * change the math
329          */
330         factor = btrfs_bg_type_to_factor(profile);
331         avail = div_u64(avail, factor);
332
333         /*
334          * If we aren't flushing all things, let us overcommit up to
335          * 1/2th of the space. If we can flush, don't let us overcommit
336          * too much, let it overcommit up to 1/8 of the space.
337          */
338         if (flush == BTRFS_RESERVE_FLUSH_ALL)
339                 avail >>= 3;
340         else
341                 avail >>= 1;
342         return avail;
343 }
344
345 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
346                          struct btrfs_space_info *space_info, u64 bytes,
347                          enum btrfs_reserve_flush_enum flush)
348 {
349         u64 avail;
350         u64 used;
351
352         /* Don't overcommit when in mixed mode */
353         if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
354                 return 0;
355
356         used = btrfs_space_info_used(space_info, true);
357         avail = calc_available_free_space(fs_info, space_info, flush);
358
359         if (used + bytes < space_info->total_bytes + avail)
360                 return 1;
361         return 0;
362 }
363
364 static void remove_ticket(struct btrfs_space_info *space_info,
365                           struct reserve_ticket *ticket)
366 {
367         if (!list_empty(&ticket->list)) {
368                 list_del_init(&ticket->list);
369                 ASSERT(space_info->reclaim_size >= ticket->bytes);
370                 space_info->reclaim_size -= ticket->bytes;
371         }
372 }
373
374 /*
375  * This is for space we already have accounted in space_info->bytes_may_use, so
376  * basically when we're returning space from block_rsv's.
377  */
378 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
379                                 struct btrfs_space_info *space_info)
380 {
381         struct list_head *head;
382         enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
383
384         lockdep_assert_held(&space_info->lock);
385
386         head = &space_info->priority_tickets;
387 again:
388         while (!list_empty(head)) {
389                 struct reserve_ticket *ticket;
390                 u64 used = btrfs_space_info_used(space_info, true);
391
392                 ticket = list_first_entry(head, struct reserve_ticket, list);
393
394                 /* Check and see if our ticket can be satisified now. */
395                 if ((used + ticket->bytes <= space_info->total_bytes) ||
396                     btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
397                                          flush)) {
398                         btrfs_space_info_update_bytes_may_use(fs_info,
399                                                               space_info,
400                                                               ticket->bytes);
401                         remove_ticket(space_info, ticket);
402                         ticket->bytes = 0;
403                         space_info->tickets_id++;
404                         wake_up(&ticket->wait);
405                 } else {
406                         break;
407                 }
408         }
409
410         if (head == &space_info->priority_tickets) {
411                 head = &space_info->tickets;
412                 flush = BTRFS_RESERVE_FLUSH_ALL;
413                 goto again;
414         }
415 }
416
417 #define DUMP_BLOCK_RSV(fs_info, rsv_name)                               \
418 do {                                                                    \
419         struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;           \
420         spin_lock(&__rsv->lock);                                        \
421         btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",      \
422                    __rsv->size, __rsv->reserved);                       \
423         spin_unlock(&__rsv->lock);                                      \
424 } while (0)
425
426 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
427                                     struct btrfs_space_info *info)
428 {
429         lockdep_assert_held(&info->lock);
430
431         btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
432                    info->flags,
433                    info->total_bytes - btrfs_space_info_used(info, true),
434                    info->full ? "" : "not ");
435         btrfs_info(fs_info,
436                 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
437                 info->total_bytes, info->bytes_used, info->bytes_pinned,
438                 info->bytes_reserved, info->bytes_may_use,
439                 info->bytes_readonly);
440
441         DUMP_BLOCK_RSV(fs_info, global_block_rsv);
442         DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
443         DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
444         DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
445         DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
446
447 }
448
449 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
450                            struct btrfs_space_info *info, u64 bytes,
451                            int dump_block_groups)
452 {
453         struct btrfs_block_group *cache;
454         int index = 0;
455
456         spin_lock(&info->lock);
457         __btrfs_dump_space_info(fs_info, info);
458         spin_unlock(&info->lock);
459
460         if (!dump_block_groups)
461                 return;
462
463         down_read(&info->groups_sem);
464 again:
465         list_for_each_entry(cache, &info->block_groups[index], list) {
466                 spin_lock(&cache->lock);
467                 btrfs_info(fs_info,
468                         "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
469                         cache->start, cache->length, cache->used, cache->pinned,
470                         cache->reserved, cache->ro ? "[readonly]" : "");
471                 spin_unlock(&cache->lock);
472                 btrfs_dump_free_space(cache, bytes);
473         }
474         if (++index < BTRFS_NR_RAID_TYPES)
475                 goto again;
476         up_read(&info->groups_sem);
477 }
478
479 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
480                                          unsigned long nr_pages, u64 nr_items)
481 {
482         struct super_block *sb = fs_info->sb;
483
484         if (down_read_trylock(&sb->s_umount)) {
485                 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
486                 up_read(&sb->s_umount);
487         } else {
488                 /*
489                  * We needn't worry the filesystem going from r/w to r/o though
490                  * we don't acquire ->s_umount mutex, because the filesystem
491                  * should guarantee the delalloc inodes list be empty after
492                  * the filesystem is readonly(all dirty pages are written to
493                  * the disk).
494                  */
495                 btrfs_start_delalloc_roots(fs_info, nr_items);
496                 if (!current->journal_info)
497                         btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
498         }
499 }
500
501 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
502                                         u64 to_reclaim)
503 {
504         u64 bytes;
505         u64 nr;
506
507         bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
508         nr = div64_u64(to_reclaim, bytes);
509         if (!nr)
510                 nr = 1;
511         return nr;
512 }
513
514 #define EXTENT_SIZE_PER_ITEM    SZ_256K
515
516 /*
517  * shrink metadata reservation for delalloc
518  */
519 static void shrink_delalloc(struct btrfs_fs_info *fs_info,
520                             struct btrfs_space_info *space_info,
521                             u64 to_reclaim, bool wait_ordered)
522 {
523         struct btrfs_trans_handle *trans;
524         u64 delalloc_bytes;
525         u64 dio_bytes;
526         u64 async_pages;
527         u64 items;
528         long time_left;
529         unsigned long nr_pages;
530         int loops;
531
532         /* Calc the number of the pages we need flush for space reservation */
533         if (to_reclaim == U64_MAX) {
534                 items = U64_MAX;
535         } else {
536                 /*
537                  * to_reclaim is set to however much metadata we need to
538                  * reclaim, but reclaiming that much data doesn't really track
539                  * exactly, so increase the amount to reclaim by 2x in order to
540                  * make sure we're flushing enough delalloc to hopefully reclaim
541                  * some metadata reservations.
542                  */
543                 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
544                 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
545         }
546
547         trans = (struct btrfs_trans_handle *)current->journal_info;
548
549         delalloc_bytes = percpu_counter_sum_positive(
550                                                 &fs_info->delalloc_bytes);
551         dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
552         if (delalloc_bytes == 0 && dio_bytes == 0) {
553                 if (trans)
554                         return;
555                 if (wait_ordered)
556                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
557                 return;
558         }
559
560         /*
561          * If we are doing more ordered than delalloc we need to just wait on
562          * ordered extents, otherwise we'll waste time trying to flush delalloc
563          * that likely won't give us the space back we need.
564          */
565         if (dio_bytes > delalloc_bytes)
566                 wait_ordered = true;
567
568         loops = 0;
569         while ((delalloc_bytes || dio_bytes) && loops < 3) {
570                 nr_pages = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
571
572                 /*
573                  * Triggers inode writeback for up to nr_pages. This will invoke
574                  * ->writepages callback and trigger delalloc filling
575                  *  (btrfs_run_delalloc_range()).
576                  */
577                 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
578
579                 /*
580                  * We need to wait for the compressed pages to start before
581                  * we continue.
582                  */
583                 async_pages = atomic_read(&fs_info->async_delalloc_pages);
584                 if (!async_pages)
585                         goto skip_async;
586
587                 /*
588                  * Calculate how many compressed pages we want to be written
589                  * before we continue. I.e if there are more async pages than we
590                  * require wait_event will wait until nr_pages are written.
591                  */
592                 if (async_pages <= nr_pages)
593                         async_pages = 0;
594                 else
595                         async_pages -= nr_pages;
596
597                 wait_event(fs_info->async_submit_wait,
598                            atomic_read(&fs_info->async_delalloc_pages) <=
599                            (int)async_pages);
600 skip_async:
601                 spin_lock(&space_info->lock);
602                 if (list_empty(&space_info->tickets) &&
603                     list_empty(&space_info->priority_tickets)) {
604                         spin_unlock(&space_info->lock);
605                         break;
606                 }
607                 spin_unlock(&space_info->lock);
608
609                 loops++;
610                 if (wait_ordered && !trans) {
611                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
612                 } else {
613                         time_left = schedule_timeout_killable(1);
614                         if (time_left)
615                                 break;
616                 }
617                 delalloc_bytes = percpu_counter_sum_positive(
618                                                 &fs_info->delalloc_bytes);
619                 dio_bytes = percpu_counter_sum_positive(&fs_info->dio_bytes);
620         }
621 }
622
623 /**
624  * maybe_commit_transaction - possibly commit the transaction if its ok to
625  * @root - the root we're allocating for
626  * @bytes - the number of bytes we want to reserve
627  * @force - force the commit
628  *
629  * This will check to make sure that committing the transaction will actually
630  * get us somewhere and then commit the transaction if it does.  Otherwise it
631  * will return -ENOSPC.
632  */
633 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
634                                   struct btrfs_space_info *space_info)
635 {
636         struct reserve_ticket *ticket = NULL;
637         struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
638         struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
639         struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
640         struct btrfs_trans_handle *trans;
641         u64 bytes_needed;
642         u64 reclaim_bytes = 0;
643         u64 cur_free_bytes = 0;
644
645         trans = (struct btrfs_trans_handle *)current->journal_info;
646         if (trans)
647                 return -EAGAIN;
648
649         spin_lock(&space_info->lock);
650         cur_free_bytes = btrfs_space_info_used(space_info, true);
651         if (cur_free_bytes < space_info->total_bytes)
652                 cur_free_bytes = space_info->total_bytes - cur_free_bytes;
653         else
654                 cur_free_bytes = 0;
655
656         if (!list_empty(&space_info->priority_tickets))
657                 ticket = list_first_entry(&space_info->priority_tickets,
658                                           struct reserve_ticket, list);
659         else if (!list_empty(&space_info->tickets))
660                 ticket = list_first_entry(&space_info->tickets,
661                                           struct reserve_ticket, list);
662         bytes_needed = (ticket) ? ticket->bytes : 0;
663
664         if (bytes_needed > cur_free_bytes)
665                 bytes_needed -= cur_free_bytes;
666         else
667                 bytes_needed = 0;
668         spin_unlock(&space_info->lock);
669
670         if (!bytes_needed)
671                 return 0;
672
673         trans = btrfs_join_transaction(fs_info->extent_root);
674         if (IS_ERR(trans))
675                 return PTR_ERR(trans);
676
677         /*
678          * See if there is enough pinned space to make this reservation, or if
679          * we have block groups that are going to be freed, allowing us to
680          * possibly do a chunk allocation the next loop through.
681          */
682         if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) ||
683             __percpu_counter_compare(&space_info->total_bytes_pinned,
684                                      bytes_needed,
685                                      BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
686                 goto commit;
687
688         /*
689          * See if there is some space in the delayed insertion reservation for
690          * this reservation.
691          */
692         if (space_info != delayed_rsv->space_info)
693                 goto enospc;
694
695         spin_lock(&delayed_rsv->lock);
696         reclaim_bytes += delayed_rsv->reserved;
697         spin_unlock(&delayed_rsv->lock);
698
699         spin_lock(&delayed_refs_rsv->lock);
700         reclaim_bytes += delayed_refs_rsv->reserved;
701         spin_unlock(&delayed_refs_rsv->lock);
702
703         spin_lock(&trans_rsv->lock);
704         reclaim_bytes += trans_rsv->reserved;
705         spin_unlock(&trans_rsv->lock);
706
707         if (reclaim_bytes >= bytes_needed)
708                 goto commit;
709         bytes_needed -= reclaim_bytes;
710
711         if (__percpu_counter_compare(&space_info->total_bytes_pinned,
712                                    bytes_needed,
713                                    BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0)
714                 goto enospc;
715
716 commit:
717         return btrfs_commit_transaction(trans);
718 enospc:
719         btrfs_end_transaction(trans);
720         return -ENOSPC;
721 }
722
723 /*
724  * Try to flush some data based on policy set by @state. This is only advisory
725  * and may fail for various reasons. The caller is supposed to examine the
726  * state of @space_info to detect the outcome.
727  */
728 static void flush_space(struct btrfs_fs_info *fs_info,
729                        struct btrfs_space_info *space_info, u64 num_bytes,
730                        int state)
731 {
732         struct btrfs_root *root = fs_info->extent_root;
733         struct btrfs_trans_handle *trans;
734         int nr;
735         int ret = 0;
736
737         switch (state) {
738         case FLUSH_DELAYED_ITEMS_NR:
739         case FLUSH_DELAYED_ITEMS:
740                 if (state == FLUSH_DELAYED_ITEMS_NR)
741                         nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
742                 else
743                         nr = -1;
744
745                 trans = btrfs_join_transaction(root);
746                 if (IS_ERR(trans)) {
747                         ret = PTR_ERR(trans);
748                         break;
749                 }
750                 ret = btrfs_run_delayed_items_nr(trans, nr);
751                 btrfs_end_transaction(trans);
752                 break;
753         case FLUSH_DELALLOC:
754         case FLUSH_DELALLOC_WAIT:
755                 shrink_delalloc(fs_info, space_info, num_bytes,
756                                 state == FLUSH_DELALLOC_WAIT);
757                 break;
758         case FLUSH_DELAYED_REFS_NR:
759         case FLUSH_DELAYED_REFS:
760                 trans = btrfs_join_transaction(root);
761                 if (IS_ERR(trans)) {
762                         ret = PTR_ERR(trans);
763                         break;
764                 }
765                 if (state == FLUSH_DELAYED_REFS_NR)
766                         nr = calc_reclaim_items_nr(fs_info, num_bytes);
767                 else
768                         nr = 0;
769                 btrfs_run_delayed_refs(trans, nr);
770                 btrfs_end_transaction(trans);
771                 break;
772         case ALLOC_CHUNK:
773         case ALLOC_CHUNK_FORCE:
774                 trans = btrfs_join_transaction(root);
775                 if (IS_ERR(trans)) {
776                         ret = PTR_ERR(trans);
777                         break;
778                 }
779                 ret = btrfs_chunk_alloc(trans,
780                                 btrfs_metadata_alloc_profile(fs_info),
781                                 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
782                                         CHUNK_ALLOC_FORCE);
783                 btrfs_end_transaction(trans);
784                 if (ret > 0 || ret == -ENOSPC)
785                         ret = 0;
786                 break;
787         case RUN_DELAYED_IPUTS:
788                 /*
789                  * If we have pending delayed iputs then we could free up a
790                  * bunch of pinned space, so make sure we run the iputs before
791                  * we do our pinned bytes check below.
792                  */
793                 btrfs_run_delayed_iputs(fs_info);
794                 btrfs_wait_on_delayed_iputs(fs_info);
795                 break;
796         case COMMIT_TRANS:
797                 ret = may_commit_transaction(fs_info, space_info);
798                 break;
799         default:
800                 ret = -ENOSPC;
801                 break;
802         }
803
804         trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
805                                 ret);
806         return;
807 }
808
809 static inline u64
810 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
811                                  struct btrfs_space_info *space_info)
812 {
813         u64 used;
814         u64 avail;
815         u64 expected;
816         u64 to_reclaim = space_info->reclaim_size;
817
818         lockdep_assert_held(&space_info->lock);
819
820         avail = calc_available_free_space(fs_info, space_info,
821                                           BTRFS_RESERVE_FLUSH_ALL);
822         used = btrfs_space_info_used(space_info, true);
823
824         /*
825          * We may be flushing because suddenly we have less space than we had
826          * before, and now we're well over-committed based on our current free
827          * space.  If that's the case add in our overage so we make sure to put
828          * appropriate pressure on the flushing state machine.
829          */
830         if (space_info->total_bytes + avail < used)
831                 to_reclaim += used - (space_info->total_bytes + avail);
832
833         if (to_reclaim)
834                 return to_reclaim;
835
836         to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
837         if (btrfs_can_overcommit(fs_info, space_info, to_reclaim,
838                                  BTRFS_RESERVE_FLUSH_ALL))
839                 return 0;
840
841         used = btrfs_space_info_used(space_info, true);
842
843         if (btrfs_can_overcommit(fs_info, space_info, SZ_1M,
844                                  BTRFS_RESERVE_FLUSH_ALL))
845                 expected = div_factor_fine(space_info->total_bytes, 95);
846         else
847                 expected = div_factor_fine(space_info->total_bytes, 90);
848
849         if (used > expected)
850                 to_reclaim = used - expected;
851         else
852                 to_reclaim = 0;
853         to_reclaim = min(to_reclaim, space_info->bytes_may_use +
854                                      space_info->bytes_reserved);
855         return to_reclaim;
856 }
857
858 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
859                                         struct btrfs_space_info *space_info,
860                                         u64 used)
861 {
862         u64 thresh = div_factor_fine(space_info->total_bytes, 98);
863
864         /* If we're just plain full then async reclaim just slows us down. */
865         if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
866                 return 0;
867
868         if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info))
869                 return 0;
870
871         return (used >= thresh && !btrfs_fs_closing(fs_info) &&
872                 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
873 }
874
875 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
876                                   struct btrfs_space_info *space_info,
877                                   struct reserve_ticket *ticket)
878 {
879         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
880         u64 min_bytes;
881
882         if (global_rsv->space_info != space_info)
883                 return false;
884
885         spin_lock(&global_rsv->lock);
886         min_bytes = div_factor(global_rsv->size, 1);
887         if (global_rsv->reserved < min_bytes + ticket->bytes) {
888                 spin_unlock(&global_rsv->lock);
889                 return false;
890         }
891         global_rsv->reserved -= ticket->bytes;
892         remove_ticket(space_info, ticket);
893         ticket->bytes = 0;
894         wake_up(&ticket->wait);
895         space_info->tickets_id++;
896         if (global_rsv->reserved < global_rsv->size)
897                 global_rsv->full = 0;
898         spin_unlock(&global_rsv->lock);
899
900         return true;
901 }
902
903 /*
904  * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
905  * @fs_info - fs_info for this fs
906  * @space_info - the space info we were flushing
907  *
908  * We call this when we've exhausted our flushing ability and haven't made
909  * progress in satisfying tickets.  The reservation code handles tickets in
910  * order, so if there is a large ticket first and then smaller ones we could
911  * very well satisfy the smaller tickets.  This will attempt to wake up any
912  * tickets in the list to catch this case.
913  *
914  * This function returns true if it was able to make progress by clearing out
915  * other tickets, or if it stumbles across a ticket that was smaller than the
916  * first ticket.
917  */
918 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
919                                    struct btrfs_space_info *space_info)
920 {
921         struct reserve_ticket *ticket;
922         u64 tickets_id = space_info->tickets_id;
923         u64 first_ticket_bytes = 0;
924
925         if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
926                 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
927                 __btrfs_dump_space_info(fs_info, space_info);
928         }
929
930         while (!list_empty(&space_info->tickets) &&
931                tickets_id == space_info->tickets_id) {
932                 ticket = list_first_entry(&space_info->tickets,
933                                           struct reserve_ticket, list);
934
935                 if (ticket->steal &&
936                     steal_from_global_rsv(fs_info, space_info, ticket))
937                         return true;
938
939                 /*
940                  * may_commit_transaction will avoid committing the transaction
941                  * if it doesn't feel like the space reclaimed by the commit
942                  * would result in the ticket succeeding.  However if we have a
943                  * smaller ticket in the queue it may be small enough to be
944                  * satisified by committing the transaction, so if any
945                  * subsequent ticket is smaller than the first ticket go ahead
946                  * and send us back for another loop through the enospc flushing
947                  * code.
948                  */
949                 if (first_ticket_bytes == 0)
950                         first_ticket_bytes = ticket->bytes;
951                 else if (first_ticket_bytes > ticket->bytes)
952                         return true;
953
954                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
955                         btrfs_info(fs_info, "failing ticket with %llu bytes",
956                                    ticket->bytes);
957
958                 remove_ticket(space_info, ticket);
959                 ticket->error = -ENOSPC;
960                 wake_up(&ticket->wait);
961
962                 /*
963                  * We're just throwing tickets away, so more flushing may not
964                  * trip over btrfs_try_granting_tickets, so we need to call it
965                  * here to see if we can make progress with the next ticket in
966                  * the list.
967                  */
968                 btrfs_try_granting_tickets(fs_info, space_info);
969         }
970         return (tickets_id != space_info->tickets_id);
971 }
972
973 /*
974  * This is for normal flushers, we can wait all goddamned day if we want to.  We
975  * will loop and continuously try to flush as long as we are making progress.
976  * We count progress as clearing off tickets each time we have to loop.
977  */
978 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
979 {
980         struct btrfs_fs_info *fs_info;
981         struct btrfs_space_info *space_info;
982         u64 to_reclaim;
983         int flush_state;
984         int commit_cycles = 0;
985         u64 last_tickets_id;
986
987         fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
988         space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
989
990         spin_lock(&space_info->lock);
991         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
992         if (!to_reclaim) {
993                 space_info->flush = 0;
994                 spin_unlock(&space_info->lock);
995                 return;
996         }
997         last_tickets_id = space_info->tickets_id;
998         spin_unlock(&space_info->lock);
999
1000         flush_state = FLUSH_DELAYED_ITEMS_NR;
1001         do {
1002                 flush_space(fs_info, space_info, to_reclaim, flush_state);
1003                 spin_lock(&space_info->lock);
1004                 if (list_empty(&space_info->tickets)) {
1005                         space_info->flush = 0;
1006                         spin_unlock(&space_info->lock);
1007                         return;
1008                 }
1009                 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
1010                                                               space_info);
1011                 if (last_tickets_id == space_info->tickets_id) {
1012                         flush_state++;
1013                 } else {
1014                         last_tickets_id = space_info->tickets_id;
1015                         flush_state = FLUSH_DELAYED_ITEMS_NR;
1016                         if (commit_cycles)
1017                                 commit_cycles--;
1018                 }
1019
1020                 /*
1021                  * We don't want to force a chunk allocation until we've tried
1022                  * pretty hard to reclaim space.  Think of the case where we
1023                  * freed up a bunch of space and so have a lot of pinned space
1024                  * to reclaim.  We would rather use that than possibly create a
1025                  * underutilized metadata chunk.  So if this is our first run
1026                  * through the flushing state machine skip ALLOC_CHUNK_FORCE and
1027                  * commit the transaction.  If nothing has changed the next go
1028                  * around then we can force a chunk allocation.
1029                  */
1030                 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
1031                         flush_state++;
1032
1033                 if (flush_state > COMMIT_TRANS) {
1034                         commit_cycles++;
1035                         if (commit_cycles > 2) {
1036                                 if (maybe_fail_all_tickets(fs_info, space_info)) {
1037                                         flush_state = FLUSH_DELAYED_ITEMS_NR;
1038                                         commit_cycles--;
1039                                 } else {
1040                                         space_info->flush = 0;
1041                                 }
1042                         } else {
1043                                 flush_state = FLUSH_DELAYED_ITEMS_NR;
1044                         }
1045                 }
1046                 spin_unlock(&space_info->lock);
1047         } while (flush_state <= COMMIT_TRANS);
1048 }
1049
1050 void btrfs_init_async_reclaim_work(struct work_struct *work)
1051 {
1052         INIT_WORK(work, btrfs_async_reclaim_metadata_space);
1053 }
1054
1055 static const enum btrfs_flush_state priority_flush_states[] = {
1056         FLUSH_DELAYED_ITEMS_NR,
1057         FLUSH_DELAYED_ITEMS,
1058         ALLOC_CHUNK,
1059 };
1060
1061 static const enum btrfs_flush_state evict_flush_states[] = {
1062         FLUSH_DELAYED_ITEMS_NR,
1063         FLUSH_DELAYED_ITEMS,
1064         FLUSH_DELAYED_REFS_NR,
1065         FLUSH_DELAYED_REFS,
1066         FLUSH_DELALLOC,
1067         FLUSH_DELALLOC_WAIT,
1068         ALLOC_CHUNK,
1069         COMMIT_TRANS,
1070 };
1071
1072 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1073                                 struct btrfs_space_info *space_info,
1074                                 struct reserve_ticket *ticket,
1075                                 const enum btrfs_flush_state *states,
1076                                 int states_nr)
1077 {
1078         u64 to_reclaim;
1079         int flush_state;
1080
1081         spin_lock(&space_info->lock);
1082         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1083         if (!to_reclaim) {
1084                 spin_unlock(&space_info->lock);
1085                 return;
1086         }
1087         spin_unlock(&space_info->lock);
1088
1089         flush_state = 0;
1090         do {
1091                 flush_space(fs_info, space_info, to_reclaim, states[flush_state]);
1092                 flush_state++;
1093                 spin_lock(&space_info->lock);
1094                 if (ticket->bytes == 0) {
1095                         spin_unlock(&space_info->lock);
1096                         return;
1097                 }
1098                 spin_unlock(&space_info->lock);
1099         } while (flush_state < states_nr);
1100 }
1101
1102 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1103                                 struct btrfs_space_info *space_info,
1104                                 struct reserve_ticket *ticket)
1105
1106 {
1107         DEFINE_WAIT(wait);
1108         int ret = 0;
1109
1110         spin_lock(&space_info->lock);
1111         while (ticket->bytes > 0 && ticket->error == 0) {
1112                 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1113                 if (ret) {
1114                         /*
1115                          * Delete us from the list. After we unlock the space
1116                          * info, we don't want the async reclaim job to reserve
1117                          * space for this ticket. If that would happen, then the
1118                          * ticket's task would not known that space was reserved
1119                          * despite getting an error, resulting in a space leak
1120                          * (bytes_may_use counter of our space_info).
1121                          */
1122                         remove_ticket(space_info, ticket);
1123                         ticket->error = -EINTR;
1124                         break;
1125                 }
1126                 spin_unlock(&space_info->lock);
1127
1128                 schedule();
1129
1130                 finish_wait(&ticket->wait, &wait);
1131                 spin_lock(&space_info->lock);
1132         }
1133         spin_unlock(&space_info->lock);
1134 }
1135
1136 /**
1137  * handle_reserve_ticket - do the appropriate flushing and waiting for a ticket
1138  * @fs_info - the fs
1139  * @space_info - the space_info for the reservation
1140  * @ticket - the ticket for the reservation
1141  * @flush - how much we can flush
1142  *
1143  * This does the work of figuring out how to flush for the ticket, waiting for
1144  * the reservation, and returning the appropriate error if there is one.
1145  */
1146 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1147                                  struct btrfs_space_info *space_info,
1148                                  struct reserve_ticket *ticket,
1149                                  enum btrfs_reserve_flush_enum flush)
1150 {
1151         int ret;
1152
1153         switch (flush) {
1154         case BTRFS_RESERVE_FLUSH_ALL:
1155         case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1156                 wait_reserve_ticket(fs_info, space_info, ticket);
1157                 break;
1158         case BTRFS_RESERVE_FLUSH_LIMIT:
1159                 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1160                                                 priority_flush_states,
1161                                                 ARRAY_SIZE(priority_flush_states));
1162                 break;
1163         case BTRFS_RESERVE_FLUSH_EVICT:
1164                 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1165                                                 evict_flush_states,
1166                                                 ARRAY_SIZE(evict_flush_states));
1167                 break;
1168         default:
1169                 ASSERT(0);
1170                 break;
1171         }
1172
1173         spin_lock(&space_info->lock);
1174         ret = ticket->error;
1175         if (ticket->bytes || ticket->error) {
1176                 /*
1177                  * We were a priority ticket, so we need to delete ourselves
1178                  * from the list.  Because we could have other priority tickets
1179                  * behind us that require less space, run
1180                  * btrfs_try_granting_tickets() to see if their reservations can
1181                  * now be made.
1182                  */
1183                 if (!list_empty(&ticket->list)) {
1184                         remove_ticket(space_info, ticket);
1185                         btrfs_try_granting_tickets(fs_info, space_info);
1186                 }
1187
1188                 if (!ret)
1189                         ret = -ENOSPC;
1190         }
1191         spin_unlock(&space_info->lock);
1192         ASSERT(list_empty(&ticket->list));
1193         /*
1194          * Check that we can't have an error set if the reservation succeeded,
1195          * as that would confuse tasks and lead them to error out without
1196          * releasing reserved space (if an error happens the expectation is that
1197          * space wasn't reserved at all).
1198          */
1199         ASSERT(!(ticket->bytes == 0 && ticket->error));
1200         return ret;
1201 }
1202
1203 /*
1204  * This returns true if this flush state will go through the ordinary flushing
1205  * code.
1206  */
1207 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1208 {
1209         return  (flush == BTRFS_RESERVE_FLUSH_ALL) ||
1210                 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1211 }
1212
1213 /**
1214  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
1215  * @root - the root we're allocating for
1216  * @space_info - the space info we want to allocate from
1217  * @orig_bytes - the number of bytes we want
1218  * @flush - whether or not we can flush to make our reservation
1219  *
1220  * This will reserve orig_bytes number of bytes from the space info associated
1221  * with the block_rsv.  If there is not enough space it will make an attempt to
1222  * flush out space to make room.  It will do this by flushing delalloc if
1223  * possible or committing the transaction.  If flush is 0 then no attempts to
1224  * regain reservations will be made and this will fail if there is not enough
1225  * space already.
1226  */
1227 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
1228                                     struct btrfs_space_info *space_info,
1229                                     u64 orig_bytes,
1230                                     enum btrfs_reserve_flush_enum flush)
1231 {
1232         struct reserve_ticket ticket;
1233         u64 used;
1234         int ret = 0;
1235         bool pending_tickets;
1236
1237         ASSERT(orig_bytes);
1238         ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1239
1240         spin_lock(&space_info->lock);
1241         ret = -ENOSPC;
1242         used = btrfs_space_info_used(space_info, true);
1243
1244         /*
1245          * We don't want NO_FLUSH allocations to jump everybody, they can
1246          * generally handle ENOSPC in a different way, so treat them the same as
1247          * normal flushers when it comes to skipping pending tickets.
1248          */
1249         if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1250                 pending_tickets = !list_empty(&space_info->tickets) ||
1251                         !list_empty(&space_info->priority_tickets);
1252         else
1253                 pending_tickets = !list_empty(&space_info->priority_tickets);
1254
1255         /*
1256          * Carry on if we have enough space (short-circuit) OR call
1257          * can_overcommit() to ensure we can overcommit to continue.
1258          */
1259         if (!pending_tickets &&
1260             ((used + orig_bytes <= space_info->total_bytes) ||
1261              btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1262                 btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1263                                                       orig_bytes);
1264                 ret = 0;
1265         }
1266
1267         /*
1268          * If we couldn't make a reservation then setup our reservation ticket
1269          * and kick the async worker if it's not already running.
1270          *
1271          * If we are a priority flusher then we just need to add our ticket to
1272          * the list and we will do our own flushing further down.
1273          */
1274         if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
1275                 ticket.bytes = orig_bytes;
1276                 ticket.error = 0;
1277                 space_info->reclaim_size += ticket.bytes;
1278                 init_waitqueue_head(&ticket.wait);
1279                 ticket.steal = (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1280                 if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1281                     flush == BTRFS_RESERVE_FLUSH_ALL_STEAL) {
1282                         list_add_tail(&ticket.list, &space_info->tickets);
1283                         if (!space_info->flush) {
1284                                 space_info->flush = 1;
1285                                 trace_btrfs_trigger_flush(fs_info,
1286                                                           space_info->flags,
1287                                                           orig_bytes, flush,
1288                                                           "enospc");
1289                                 queue_work(system_unbound_wq,
1290                                            &fs_info->async_reclaim_work);
1291                         }
1292                 } else {
1293                         list_add_tail(&ticket.list,
1294                                       &space_info->priority_tickets);
1295                 }
1296         } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1297                 used += orig_bytes;
1298                 /*
1299                  * We will do the space reservation dance during log replay,
1300                  * which means we won't have fs_info->fs_root set, so don't do
1301                  * the async reclaim as we will panic.
1302                  */
1303                 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1304                     need_do_async_reclaim(fs_info, space_info, used) &&
1305                     !work_busy(&fs_info->async_reclaim_work)) {
1306                         trace_btrfs_trigger_flush(fs_info, space_info->flags,
1307                                                   orig_bytes, flush, "preempt");
1308                         queue_work(system_unbound_wq,
1309                                    &fs_info->async_reclaim_work);
1310                 }
1311         }
1312         spin_unlock(&space_info->lock);
1313         if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
1314                 return ret;
1315
1316         return handle_reserve_ticket(fs_info, space_info, &ticket, flush);
1317 }
1318
1319 /**
1320  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
1321  * @root - the root we're allocating for
1322  * @block_rsv - the block_rsv we're allocating for
1323  * @orig_bytes - the number of bytes we want
1324  * @flush - whether or not we can flush to make our reservation
1325  *
1326  * This will reserve orig_bytes number of bytes from the space info associated
1327  * with the block_rsv.  If there is not enough space it will make an attempt to
1328  * flush out space to make room.  It will do this by flushing delalloc if
1329  * possible or committing the transaction.  If flush is 0 then no attempts to
1330  * regain reservations will be made and this will fail if there is not enough
1331  * space already.
1332  */
1333 int btrfs_reserve_metadata_bytes(struct btrfs_root *root,
1334                                  struct btrfs_block_rsv *block_rsv,
1335                                  u64 orig_bytes,
1336                                  enum btrfs_reserve_flush_enum flush)
1337 {
1338         struct btrfs_fs_info *fs_info = root->fs_info;
1339         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
1340         int ret;
1341
1342         ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
1343                                        orig_bytes, flush);
1344         if (ret == -ENOSPC &&
1345             unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
1346                 if (block_rsv != global_rsv &&
1347                     !btrfs_block_rsv_use_bytes(global_rsv, orig_bytes))
1348                         ret = 0;
1349         }
1350         if (ret == -ENOSPC) {
1351                 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1352                                               block_rsv->space_info->flags,
1353                                               orig_bytes, 1);
1354
1355                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1356                         btrfs_dump_space_info(fs_info, block_rsv->space_info,
1357                                               orig_bytes, 0);
1358         }
1359         return ret;
1360 }