Merge drm/drm-fixes into drm-misc-fixes
[linux-block.git] / fs / btrfs / space-info.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "misc.h"
4 #include "ctree.h"
5 #include "space-info.h"
6 #include "sysfs.h"
7 #include "volumes.h"
8 #include "free-space-cache.h"
9 #include "ordered-data.h"
10 #include "transaction.h"
11 #include "block-group.h"
12 #include "zoned.h"
13 #include "fs.h"
14 #include "accessors.h"
15 #include "extent-tree.h"
16
17 /*
18  * HOW DOES SPACE RESERVATION WORK
19  *
20  * If you want to know about delalloc specifically, there is a separate comment
21  * for that with the delalloc code.  This comment is about how the whole system
22  * works generally.
23  *
24  * BASIC CONCEPTS
25  *
26  *   1) space_info.  This is the ultimate arbiter of how much space we can use.
27  *   There's a description of the bytes_ fields with the struct declaration,
28  *   refer to that for specifics on each field.  Suffice it to say that for
29  *   reservations we care about total_bytes - SUM(space_info->bytes_) when
30  *   determining if there is space to make an allocation.  There is a space_info
31  *   for METADATA, SYSTEM, and DATA areas.
32  *
33  *   2) block_rsv's.  These are basically buckets for every different type of
34  *   metadata reservation we have.  You can see the comment in the block_rsv
35  *   code on the rules for each type, but generally block_rsv->reserved is how
36  *   much space is accounted for in space_info->bytes_may_use.
37  *
38  *   3) btrfs_calc*_size.  These are the worst case calculations we used based
39  *   on the number of items we will want to modify.  We have one for changing
40  *   items, and one for inserting new items.  Generally we use these helpers to
41  *   determine the size of the block reserves, and then use the actual bytes
42  *   values to adjust the space_info counters.
43  *
44  * MAKING RESERVATIONS, THE NORMAL CASE
45  *
46  *   We call into either btrfs_reserve_data_bytes() or
47  *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
48  *   num_bytes we want to reserve.
49  *
50  *   ->reserve
51  *     space_info->bytes_may_reserve += num_bytes
52  *
53  *   ->extent allocation
54  *     Call btrfs_add_reserved_bytes() which does
55  *     space_info->bytes_may_reserve -= num_bytes
56  *     space_info->bytes_reserved += extent_bytes
57  *
58  *   ->insert reference
59  *     Call btrfs_update_block_group() which does
60  *     space_info->bytes_reserved -= extent_bytes
61  *     space_info->bytes_used += extent_bytes
62  *
63  * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
64  *
65  *   Assume we are unable to simply make the reservation because we do not have
66  *   enough space
67  *
68  *   -> __reserve_bytes
69  *     create a reserve_ticket with ->bytes set to our reservation, add it to
70  *     the tail of space_info->tickets, kick async flush thread
71  *
72  *   ->handle_reserve_ticket
73  *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
74  *     on the ticket.
75  *
76  *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
77  *     Flushes various things attempting to free up space.
78  *
79  *   -> btrfs_try_granting_tickets()
80  *     This is called by anything that either subtracts space from
81  *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
82  *     space_info->total_bytes.  This loops through the ->priority_tickets and
83  *     then the ->tickets list checking to see if the reservation can be
84  *     completed.  If it can the space is added to space_info->bytes_may_use and
85  *     the ticket is woken up.
86  *
87  *   -> ticket wakeup
88  *     Check if ->bytes == 0, if it does we got our reservation and we can carry
89  *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
90  *     were interrupted.)
91  *
92  * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
93  *
94  *   Same as the above, except we add ourselves to the
95  *   space_info->priority_tickets, and we do not use ticket->wait, we simply
96  *   call flush_space() ourselves for the states that are safe for us to call
97  *   without deadlocking and hope for the best.
98  *
99  * THE FLUSHING STATES
100  *
101  *   Generally speaking we will have two cases for each state, a "nice" state
102  *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
103  *   reduce the locking over head on the various trees, and even to keep from
104  *   doing any work at all in the case of delayed refs.  Each of these delayed
105  *   things however hold reservations, and so letting them run allows us to
106  *   reclaim space so we can make new reservations.
107  *
108  *   FLUSH_DELAYED_ITEMS
109  *     Every inode has a delayed item to update the inode.  Take a simple write
110  *     for example, we would update the inode item at write time to update the
111  *     mtime, and then again at finish_ordered_io() time in order to update the
112  *     isize or bytes.  We keep these delayed items to coalesce these operations
113  *     into a single operation done on demand.  These are an easy way to reclaim
114  *     metadata space.
115  *
116  *   FLUSH_DELALLOC
117  *     Look at the delalloc comment to get an idea of how much space is reserved
118  *     for delayed allocation.  We can reclaim some of this space simply by
119  *     running delalloc, but usually we need to wait for ordered extents to
120  *     reclaim the bulk of this space.
121  *
122  *   FLUSH_DELAYED_REFS
123  *     We have a block reserve for the outstanding delayed refs space, and every
124  *     delayed ref operation holds a reservation.  Running these is a quick way
125  *     to reclaim space, but we want to hold this until the end because COW can
126  *     churn a lot and we can avoid making some extent tree modifications if we
127  *     are able to delay for as long as possible.
128  *
129  *   ALLOC_CHUNK
130  *     We will skip this the first time through space reservation, because of
131  *     overcommit and we don't want to have a lot of useless metadata space when
132  *     our worst case reservations will likely never come true.
133  *
134  *   RUN_DELAYED_IPUTS
135  *     If we're freeing inodes we're likely freeing checksums, file extent
136  *     items, and extent tree items.  Loads of space could be freed up by these
137  *     operations, however they won't be usable until the transaction commits.
138  *
139  *   COMMIT_TRANS
140  *     This will commit the transaction.  Historically we had a lot of logic
141  *     surrounding whether or not we'd commit the transaction, but this waits born
142  *     out of a pre-tickets era where we could end up committing the transaction
143  *     thousands of times in a row without making progress.  Now thanks to our
144  *     ticketing system we know if we're not making progress and can error
145  *     everybody out after a few commits rather than burning the disk hoping for
146  *     a different answer.
147  *
148  * OVERCOMMIT
149  *
150  *   Because we hold so many reservations for metadata we will allow you to
151  *   reserve more space than is currently free in the currently allocate
152  *   metadata space.  This only happens with metadata, data does not allow
153  *   overcommitting.
154  *
155  *   You can see the current logic for when we allow overcommit in
156  *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
157  *   is no unallocated space to be had, all reservations are kept within the
158  *   free space in the allocated metadata chunks.
159  *
160  *   Because of overcommitting, you generally want to use the
161  *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
162  *   thing with or without extra unallocated space.
163  */
164
165 u64 __pure btrfs_space_info_used(struct btrfs_space_info *s_info,
166                           bool may_use_included)
167 {
168         ASSERT(s_info);
169         return s_info->bytes_used + s_info->bytes_reserved +
170                 s_info->bytes_pinned + s_info->bytes_readonly +
171                 s_info->bytes_zone_unusable +
172                 (may_use_included ? s_info->bytes_may_use : 0);
173 }
174
175 /*
176  * after adding space to the filesystem, we need to clear the full flags
177  * on all the space infos.
178  */
179 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
180 {
181         struct list_head *head = &info->space_info;
182         struct btrfs_space_info *found;
183
184         list_for_each_entry(found, head, list)
185                 found->full = 0;
186 }
187
188 /*
189  * Block groups with more than this value (percents) of unusable space will be
190  * scheduled for background reclaim.
191  */
192 #define BTRFS_DEFAULT_ZONED_RECLAIM_THRESH                      (75)
193
194 /*
195  * Calculate chunk size depending on volume type (regular or zoned).
196  */
197 static u64 calc_chunk_size(const struct btrfs_fs_info *fs_info, u64 flags)
198 {
199         if (btrfs_is_zoned(fs_info))
200                 return fs_info->zone_size;
201
202         ASSERT(flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
203
204         if (flags & BTRFS_BLOCK_GROUP_DATA)
205                 return BTRFS_MAX_DATA_CHUNK_SIZE;
206         else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
207                 return SZ_32M;
208
209         /* Handle BTRFS_BLOCK_GROUP_METADATA */
210         if (fs_info->fs_devices->total_rw_bytes > 50ULL * SZ_1G)
211                 return SZ_1G;
212
213         return SZ_256M;
214 }
215
216 /*
217  * Update default chunk size.
218  */
219 void btrfs_update_space_info_chunk_size(struct btrfs_space_info *space_info,
220                                         u64 chunk_size)
221 {
222         WRITE_ONCE(space_info->chunk_size, chunk_size);
223 }
224
225 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
226 {
227
228         struct btrfs_space_info *space_info;
229         int i;
230         int ret;
231
232         space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
233         if (!space_info)
234                 return -ENOMEM;
235
236         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
237                 INIT_LIST_HEAD(&space_info->block_groups[i]);
238         init_rwsem(&space_info->groups_sem);
239         spin_lock_init(&space_info->lock);
240         space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
241         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
242         INIT_LIST_HEAD(&space_info->ro_bgs);
243         INIT_LIST_HEAD(&space_info->tickets);
244         INIT_LIST_HEAD(&space_info->priority_tickets);
245         space_info->clamp = 1;
246         btrfs_update_space_info_chunk_size(space_info, calc_chunk_size(info, flags));
247
248         if (btrfs_is_zoned(info))
249                 space_info->bg_reclaim_threshold = BTRFS_DEFAULT_ZONED_RECLAIM_THRESH;
250
251         ret = btrfs_sysfs_add_space_info_type(info, space_info);
252         if (ret)
253                 return ret;
254
255         list_add(&space_info->list, &info->space_info);
256         if (flags & BTRFS_BLOCK_GROUP_DATA)
257                 info->data_sinfo = space_info;
258
259         return ret;
260 }
261
262 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
263 {
264         struct btrfs_super_block *disk_super;
265         u64 features;
266         u64 flags;
267         int mixed = 0;
268         int ret;
269
270         disk_super = fs_info->super_copy;
271         if (!btrfs_super_root(disk_super))
272                 return -EINVAL;
273
274         features = btrfs_super_incompat_flags(disk_super);
275         if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
276                 mixed = 1;
277
278         flags = BTRFS_BLOCK_GROUP_SYSTEM;
279         ret = create_space_info(fs_info, flags);
280         if (ret)
281                 goto out;
282
283         if (mixed) {
284                 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
285                 ret = create_space_info(fs_info, flags);
286         } else {
287                 flags = BTRFS_BLOCK_GROUP_METADATA;
288                 ret = create_space_info(fs_info, flags);
289                 if (ret)
290                         goto out;
291
292                 flags = BTRFS_BLOCK_GROUP_DATA;
293                 ret = create_space_info(fs_info, flags);
294         }
295 out:
296         return ret;
297 }
298
299 void btrfs_add_bg_to_space_info(struct btrfs_fs_info *info,
300                                 struct btrfs_block_group *block_group)
301 {
302         struct btrfs_space_info *found;
303         int factor, index;
304
305         factor = btrfs_bg_type_to_factor(block_group->flags);
306
307         found = btrfs_find_space_info(info, block_group->flags);
308         ASSERT(found);
309         spin_lock(&found->lock);
310         found->total_bytes += block_group->length;
311         if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags))
312                 found->active_total_bytes += block_group->length;
313         found->disk_total += block_group->length * factor;
314         found->bytes_used += block_group->used;
315         found->disk_used += block_group->used * factor;
316         found->bytes_readonly += block_group->bytes_super;
317         found->bytes_zone_unusable += block_group->zone_unusable;
318         if (block_group->length > 0)
319                 found->full = 0;
320         btrfs_try_granting_tickets(info, found);
321         spin_unlock(&found->lock);
322
323         block_group->space_info = found;
324
325         index = btrfs_bg_flags_to_raid_index(block_group->flags);
326         down_write(&found->groups_sem);
327         list_add_tail(&block_group->list, &found->block_groups[index]);
328         up_write(&found->groups_sem);
329 }
330
331 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
332                                                u64 flags)
333 {
334         struct list_head *head = &info->space_info;
335         struct btrfs_space_info *found;
336
337         flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
338
339         list_for_each_entry(found, head, list) {
340                 if (found->flags & flags)
341                         return found;
342         }
343         return NULL;
344 }
345
346 static u64 calc_available_free_space(struct btrfs_fs_info *fs_info,
347                           struct btrfs_space_info *space_info,
348                           enum btrfs_reserve_flush_enum flush)
349 {
350         u64 profile;
351         u64 avail;
352         int factor;
353
354         if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
355                 profile = btrfs_system_alloc_profile(fs_info);
356         else
357                 profile = btrfs_metadata_alloc_profile(fs_info);
358
359         avail = atomic64_read(&fs_info->free_chunk_space);
360
361         /*
362          * If we have dup, raid1 or raid10 then only half of the free
363          * space is actually usable.  For raid56, the space info used
364          * doesn't include the parity drive, so we don't have to
365          * change the math
366          */
367         factor = btrfs_bg_type_to_factor(profile);
368         avail = div_u64(avail, factor);
369
370         /*
371          * If we aren't flushing all things, let us overcommit up to
372          * 1/2th of the space. If we can flush, don't let us overcommit
373          * too much, let it overcommit up to 1/8 of the space.
374          */
375         if (flush == BTRFS_RESERVE_FLUSH_ALL)
376                 avail >>= 3;
377         else
378                 avail >>= 1;
379         return avail;
380 }
381
382 static inline u64 writable_total_bytes(struct btrfs_fs_info *fs_info,
383                                        struct btrfs_space_info *space_info)
384 {
385         /*
386          * On regular filesystem, all total_bytes are always writable. On zoned
387          * filesystem, there may be a limitation imposed by max_active_zones.
388          * For metadata allocation, we cannot finish an existing active block
389          * group to avoid a deadlock. Thus, we need to consider only the active
390          * groups to be writable for metadata space.
391          */
392         if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
393                 return space_info->total_bytes;
394
395         return space_info->active_total_bytes;
396 }
397
398 int btrfs_can_overcommit(struct btrfs_fs_info *fs_info,
399                          struct btrfs_space_info *space_info, u64 bytes,
400                          enum btrfs_reserve_flush_enum flush)
401 {
402         u64 avail;
403         u64 used;
404
405         /* Don't overcommit when in mixed mode */
406         if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
407                 return 0;
408
409         used = btrfs_space_info_used(space_info, true);
410         if (btrfs_is_zoned(fs_info) && (space_info->flags & BTRFS_BLOCK_GROUP_METADATA))
411                 avail = 0;
412         else
413                 avail = calc_available_free_space(fs_info, space_info, flush);
414
415         if (used + bytes < writable_total_bytes(fs_info, space_info) + avail)
416                 return 1;
417         return 0;
418 }
419
420 static void remove_ticket(struct btrfs_space_info *space_info,
421                           struct reserve_ticket *ticket)
422 {
423         if (!list_empty(&ticket->list)) {
424                 list_del_init(&ticket->list);
425                 ASSERT(space_info->reclaim_size >= ticket->bytes);
426                 space_info->reclaim_size -= ticket->bytes;
427         }
428 }
429
430 /*
431  * This is for space we already have accounted in space_info->bytes_may_use, so
432  * basically when we're returning space from block_rsv's.
433  */
434 void btrfs_try_granting_tickets(struct btrfs_fs_info *fs_info,
435                                 struct btrfs_space_info *space_info)
436 {
437         struct list_head *head;
438         enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
439
440         lockdep_assert_held(&space_info->lock);
441
442         head = &space_info->priority_tickets;
443 again:
444         while (!list_empty(head)) {
445                 struct reserve_ticket *ticket;
446                 u64 used = btrfs_space_info_used(space_info, true);
447
448                 ticket = list_first_entry(head, struct reserve_ticket, list);
449
450                 /* Check and see if our ticket can be satisfied now. */
451                 if ((used + ticket->bytes <= writable_total_bytes(fs_info, space_info)) ||
452                     btrfs_can_overcommit(fs_info, space_info, ticket->bytes,
453                                          flush)) {
454                         btrfs_space_info_update_bytes_may_use(fs_info,
455                                                               space_info,
456                                                               ticket->bytes);
457                         remove_ticket(space_info, ticket);
458                         ticket->bytes = 0;
459                         space_info->tickets_id++;
460                         wake_up(&ticket->wait);
461                 } else {
462                         break;
463                 }
464         }
465
466         if (head == &space_info->priority_tickets) {
467                 head = &space_info->tickets;
468                 flush = BTRFS_RESERVE_FLUSH_ALL;
469                 goto again;
470         }
471 }
472
473 #define DUMP_BLOCK_RSV(fs_info, rsv_name)                               \
474 do {                                                                    \
475         struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;           \
476         spin_lock(&__rsv->lock);                                        \
477         btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",      \
478                    __rsv->size, __rsv->reserved);                       \
479         spin_unlock(&__rsv->lock);                                      \
480 } while (0)
481
482 static const char *space_info_flag_to_str(const struct btrfs_space_info *space_info)
483 {
484         switch (space_info->flags) {
485         case BTRFS_BLOCK_GROUP_SYSTEM:
486                 return "SYSTEM";
487         case BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA:
488                 return "DATA+METADATA";
489         case BTRFS_BLOCK_GROUP_DATA:
490                 return "DATA";
491         case BTRFS_BLOCK_GROUP_METADATA:
492                 return "METADATA";
493         default:
494                 return "UNKNOWN";
495         }
496 }
497
498 static void dump_global_block_rsv(struct btrfs_fs_info *fs_info)
499 {
500         DUMP_BLOCK_RSV(fs_info, global_block_rsv);
501         DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
502         DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
503         DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
504         DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
505 }
506
507 static void __btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
508                                     struct btrfs_space_info *info)
509 {
510         const char *flag_str = space_info_flag_to_str(info);
511         lockdep_assert_held(&info->lock);
512
513         /* The free space could be negative in case of overcommit */
514         btrfs_info(fs_info, "space_info %s has %lld free, is %sfull",
515                    flag_str,
516                    (s64)(info->total_bytes - btrfs_space_info_used(info, true)),
517                    info->full ? "" : "not ");
518         btrfs_info(fs_info,
519 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu",
520                 info->total_bytes, info->bytes_used, info->bytes_pinned,
521                 info->bytes_reserved, info->bytes_may_use,
522                 info->bytes_readonly, info->bytes_zone_unusable);
523 }
524
525 void btrfs_dump_space_info(struct btrfs_fs_info *fs_info,
526                            struct btrfs_space_info *info, u64 bytes,
527                            int dump_block_groups)
528 {
529         struct btrfs_block_group *cache;
530         int index = 0;
531
532         spin_lock(&info->lock);
533         __btrfs_dump_space_info(fs_info, info);
534         dump_global_block_rsv(fs_info);
535         spin_unlock(&info->lock);
536
537         if (!dump_block_groups)
538                 return;
539
540         down_read(&info->groups_sem);
541 again:
542         list_for_each_entry(cache, &info->block_groups[index], list) {
543                 spin_lock(&cache->lock);
544                 btrfs_info(fs_info,
545                         "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu zone_unusable %s",
546                         cache->start, cache->length, cache->used, cache->pinned,
547                         cache->reserved, cache->zone_unusable,
548                         cache->ro ? "[readonly]" : "");
549                 spin_unlock(&cache->lock);
550                 btrfs_dump_free_space(cache, bytes);
551         }
552         if (++index < BTRFS_NR_RAID_TYPES)
553                 goto again;
554         up_read(&info->groups_sem);
555 }
556
557 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
558                                         u64 to_reclaim)
559 {
560         u64 bytes;
561         u64 nr;
562
563         bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
564         nr = div64_u64(to_reclaim, bytes);
565         if (!nr)
566                 nr = 1;
567         return nr;
568 }
569
570 #define EXTENT_SIZE_PER_ITEM    SZ_256K
571
572 /*
573  * shrink metadata reservation for delalloc
574  */
575 static void shrink_delalloc(struct btrfs_fs_info *fs_info,
576                             struct btrfs_space_info *space_info,
577                             u64 to_reclaim, bool wait_ordered,
578                             bool for_preempt)
579 {
580         struct btrfs_trans_handle *trans;
581         u64 delalloc_bytes;
582         u64 ordered_bytes;
583         u64 items;
584         long time_left;
585         int loops;
586
587         delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
588         ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes);
589         if (delalloc_bytes == 0 && ordered_bytes == 0)
590                 return;
591
592         /* Calc the number of the pages we need flush for space reservation */
593         if (to_reclaim == U64_MAX) {
594                 items = U64_MAX;
595         } else {
596                 /*
597                  * to_reclaim is set to however much metadata we need to
598                  * reclaim, but reclaiming that much data doesn't really track
599                  * exactly.  What we really want to do is reclaim full inode's
600                  * worth of reservations, however that's not available to us
601                  * here.  We will take a fraction of the delalloc bytes for our
602                  * flushing loops and hope for the best.  Delalloc will expand
603                  * the amount we write to cover an entire dirty extent, which
604                  * will reclaim the metadata reservation for that range.  If
605                  * it's not enough subsequent flush stages will be more
606                  * aggressive.
607                  */
608                 to_reclaim = max(to_reclaim, delalloc_bytes >> 3);
609                 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
610         }
611
612         trans = current->journal_info;
613
614         /*
615          * If we are doing more ordered than delalloc we need to just wait on
616          * ordered extents, otherwise we'll waste time trying to flush delalloc
617          * that likely won't give us the space back we need.
618          */
619         if (ordered_bytes > delalloc_bytes && !for_preempt)
620                 wait_ordered = true;
621
622         loops = 0;
623         while ((delalloc_bytes || ordered_bytes) && loops < 3) {
624                 u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
625                 long nr_pages = min_t(u64, temp, LONG_MAX);
626                 int async_pages;
627
628                 btrfs_start_delalloc_roots(fs_info, nr_pages, true);
629
630                 /*
631                  * We need to make sure any outstanding async pages are now
632                  * processed before we continue.  This is because things like
633                  * sync_inode() try to be smart and skip writing if the inode is
634                  * marked clean.  We don't use filemap_fwrite for flushing
635                  * because we want to control how many pages we write out at a
636                  * time, thus this is the only safe way to make sure we've
637                  * waited for outstanding compressed workers to have started
638                  * their jobs and thus have ordered extents set up properly.
639                  *
640                  * This exists because we do not want to wait for each
641                  * individual inode to finish its async work, we simply want to
642                  * start the IO on everybody, and then come back here and wait
643                  * for all of the async work to catch up.  Once we're done with
644                  * that we know we'll have ordered extents for everything and we
645                  * can decide if we wait for that or not.
646                  *
647                  * If we choose to replace this in the future, make absolutely
648                  * sure that the proper waiting is being done in the async case,
649                  * as there have been bugs in that area before.
650                  */
651                 async_pages = atomic_read(&fs_info->async_delalloc_pages);
652                 if (!async_pages)
653                         goto skip_async;
654
655                 /*
656                  * We don't want to wait forever, if we wrote less pages in this
657                  * loop than we have outstanding, only wait for that number of
658                  * pages, otherwise we can wait for all async pages to finish
659                  * before continuing.
660                  */
661                 if (async_pages > nr_pages)
662                         async_pages -= nr_pages;
663                 else
664                         async_pages = 0;
665                 wait_event(fs_info->async_submit_wait,
666                            atomic_read(&fs_info->async_delalloc_pages) <=
667                            async_pages);
668 skip_async:
669                 loops++;
670                 if (wait_ordered && !trans) {
671                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
672                 } else {
673                         time_left = schedule_timeout_killable(1);
674                         if (time_left)
675                                 break;
676                 }
677
678                 /*
679                  * If we are for preemption we just want a one-shot of delalloc
680                  * flushing so we can stop flushing if we decide we don't need
681                  * to anymore.
682                  */
683                 if (for_preempt)
684                         break;
685
686                 spin_lock(&space_info->lock);
687                 if (list_empty(&space_info->tickets) &&
688                     list_empty(&space_info->priority_tickets)) {
689                         spin_unlock(&space_info->lock);
690                         break;
691                 }
692                 spin_unlock(&space_info->lock);
693
694                 delalloc_bytes = percpu_counter_sum_positive(
695                                                 &fs_info->delalloc_bytes);
696                 ordered_bytes = percpu_counter_sum_positive(
697                                                 &fs_info->ordered_bytes);
698         }
699 }
700
701 /*
702  * Try to flush some data based on policy set by @state. This is only advisory
703  * and may fail for various reasons. The caller is supposed to examine the
704  * state of @space_info to detect the outcome.
705  */
706 static void flush_space(struct btrfs_fs_info *fs_info,
707                        struct btrfs_space_info *space_info, u64 num_bytes,
708                        enum btrfs_flush_state state, bool for_preempt)
709 {
710         struct btrfs_root *root = fs_info->tree_root;
711         struct btrfs_trans_handle *trans;
712         int nr;
713         int ret = 0;
714
715         switch (state) {
716         case FLUSH_DELAYED_ITEMS_NR:
717         case FLUSH_DELAYED_ITEMS:
718                 if (state == FLUSH_DELAYED_ITEMS_NR)
719                         nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
720                 else
721                         nr = -1;
722
723                 trans = btrfs_join_transaction(root);
724                 if (IS_ERR(trans)) {
725                         ret = PTR_ERR(trans);
726                         break;
727                 }
728                 ret = btrfs_run_delayed_items_nr(trans, nr);
729                 btrfs_end_transaction(trans);
730                 break;
731         case FLUSH_DELALLOC:
732         case FLUSH_DELALLOC_WAIT:
733         case FLUSH_DELALLOC_FULL:
734                 if (state == FLUSH_DELALLOC_FULL)
735                         num_bytes = U64_MAX;
736                 shrink_delalloc(fs_info, space_info, num_bytes,
737                                 state != FLUSH_DELALLOC, for_preempt);
738                 break;
739         case FLUSH_DELAYED_REFS_NR:
740         case FLUSH_DELAYED_REFS:
741                 trans = btrfs_join_transaction(root);
742                 if (IS_ERR(trans)) {
743                         ret = PTR_ERR(trans);
744                         break;
745                 }
746                 if (state == FLUSH_DELAYED_REFS_NR)
747                         nr = calc_reclaim_items_nr(fs_info, num_bytes);
748                 else
749                         nr = 0;
750                 btrfs_run_delayed_refs(trans, nr);
751                 btrfs_end_transaction(trans);
752                 break;
753         case ALLOC_CHUNK:
754         case ALLOC_CHUNK_FORCE:
755                 /*
756                  * For metadata space on zoned filesystem, reaching here means we
757                  * don't have enough space left in active_total_bytes. Try to
758                  * activate a block group first, because we may have inactive
759                  * block group already allocated.
760                  */
761                 ret = btrfs_zoned_activate_one_bg(fs_info, space_info, false);
762                 if (ret < 0)
763                         break;
764                 else if (ret == 1)
765                         break;
766
767                 trans = btrfs_join_transaction(root);
768                 if (IS_ERR(trans)) {
769                         ret = PTR_ERR(trans);
770                         break;
771                 }
772                 ret = btrfs_chunk_alloc(trans,
773                                 btrfs_get_alloc_profile(fs_info, space_info->flags),
774                                 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
775                                         CHUNK_ALLOC_FORCE);
776                 btrfs_end_transaction(trans);
777
778                 /*
779                  * For metadata space on zoned filesystem, allocating a new chunk
780                  * is not enough. We still need to activate the block * group.
781                  * Active the newly allocated block group by (maybe) finishing
782                  * a block group.
783                  */
784                 if (ret == 1) {
785                         ret = btrfs_zoned_activate_one_bg(fs_info, space_info, true);
786                         /*
787                          * Revert to the original ret regardless we could finish
788                          * one block group or not.
789                          */
790                         if (ret >= 0)
791                                 ret = 1;
792                 }
793
794                 if (ret > 0 || ret == -ENOSPC)
795                         ret = 0;
796                 break;
797         case RUN_DELAYED_IPUTS:
798                 /*
799                  * If we have pending delayed iputs then we could free up a
800                  * bunch of pinned space, so make sure we run the iputs before
801                  * we do our pinned bytes check below.
802                  */
803                 btrfs_run_delayed_iputs(fs_info);
804                 btrfs_wait_on_delayed_iputs(fs_info);
805                 break;
806         case COMMIT_TRANS:
807                 ASSERT(current->journal_info == NULL);
808                 trans = btrfs_join_transaction(root);
809                 if (IS_ERR(trans)) {
810                         ret = PTR_ERR(trans);
811                         break;
812                 }
813                 ret = btrfs_commit_transaction(trans);
814                 break;
815         default:
816                 ret = -ENOSPC;
817                 break;
818         }
819
820         trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
821                                 ret, for_preempt);
822         return;
823 }
824
825 static inline u64
826 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
827                                  struct btrfs_space_info *space_info)
828 {
829         u64 used;
830         u64 avail;
831         u64 total;
832         u64 to_reclaim = space_info->reclaim_size;
833
834         lockdep_assert_held(&space_info->lock);
835
836         avail = calc_available_free_space(fs_info, space_info,
837                                           BTRFS_RESERVE_FLUSH_ALL);
838         used = btrfs_space_info_used(space_info, true);
839
840         /*
841          * We may be flushing because suddenly we have less space than we had
842          * before, and now we're well over-committed based on our current free
843          * space.  If that's the case add in our overage so we make sure to put
844          * appropriate pressure on the flushing state machine.
845          */
846         total = writable_total_bytes(fs_info, space_info);
847         if (total + avail < used)
848                 to_reclaim += used - (total + avail);
849
850         return to_reclaim;
851 }
852
853 static bool need_preemptive_reclaim(struct btrfs_fs_info *fs_info,
854                                     struct btrfs_space_info *space_info)
855 {
856         u64 global_rsv_size = fs_info->global_block_rsv.reserved;
857         u64 ordered, delalloc;
858         u64 total = writable_total_bytes(fs_info, space_info);
859         u64 thresh;
860         u64 used;
861
862         thresh = mult_perc(total, 90);
863
864         lockdep_assert_held(&space_info->lock);
865
866         /* If we're just plain full then async reclaim just slows us down. */
867         if ((space_info->bytes_used + space_info->bytes_reserved +
868              global_rsv_size) >= thresh)
869                 return false;
870
871         used = space_info->bytes_may_use + space_info->bytes_pinned;
872
873         /* The total flushable belongs to the global rsv, don't flush. */
874         if (global_rsv_size >= used)
875                 return false;
876
877         /*
878          * 128MiB is 1/4 of the maximum global rsv size.  If we have less than
879          * that devoted to other reservations then there's no sense in flushing,
880          * we don't have a lot of things that need flushing.
881          */
882         if (used - global_rsv_size <= SZ_128M)
883                 return false;
884
885         /*
886          * We have tickets queued, bail so we don't compete with the async
887          * flushers.
888          */
889         if (space_info->reclaim_size)
890                 return false;
891
892         /*
893          * If we have over half of the free space occupied by reservations or
894          * pinned then we want to start flushing.
895          *
896          * We do not do the traditional thing here, which is to say
897          *
898          *   if (used >= ((total_bytes + avail) / 2))
899          *     return 1;
900          *
901          * because this doesn't quite work how we want.  If we had more than 50%
902          * of the space_info used by bytes_used and we had 0 available we'd just
903          * constantly run the background flusher.  Instead we want it to kick in
904          * if our reclaimable space exceeds our clamped free space.
905          *
906          * Our clamping range is 2^1 -> 2^8.  Practically speaking that means
907          * the following:
908          *
909          * Amount of RAM        Minimum threshold       Maximum threshold
910          *
911          *        256GiB                     1GiB                  128GiB
912          *        128GiB                   512MiB                   64GiB
913          *         64GiB                   256MiB                   32GiB
914          *         32GiB                   128MiB                   16GiB
915          *         16GiB                    64MiB                    8GiB
916          *
917          * These are the range our thresholds will fall in, corresponding to how
918          * much delalloc we need for the background flusher to kick in.
919          */
920
921         thresh = calc_available_free_space(fs_info, space_info,
922                                            BTRFS_RESERVE_FLUSH_ALL);
923         used = space_info->bytes_used + space_info->bytes_reserved +
924                space_info->bytes_readonly + global_rsv_size;
925         if (used < total)
926                 thresh += total - used;
927         thresh >>= space_info->clamp;
928
929         used = space_info->bytes_pinned;
930
931         /*
932          * If we have more ordered bytes than delalloc bytes then we're either
933          * doing a lot of DIO, or we simply don't have a lot of delalloc waiting
934          * around.  Preemptive flushing is only useful in that it can free up
935          * space before tickets need to wait for things to finish.  In the case
936          * of ordered extents, preemptively waiting on ordered extents gets us
937          * nothing, if our reservations are tied up in ordered extents we'll
938          * simply have to slow down writers by forcing them to wait on ordered
939          * extents.
940          *
941          * In the case that ordered is larger than delalloc, only include the
942          * block reserves that we would actually be able to directly reclaim
943          * from.  In this case if we're heavy on metadata operations this will
944          * clearly be heavy enough to warrant preemptive flushing.  In the case
945          * of heavy DIO or ordered reservations, preemptive flushing will just
946          * waste time and cause us to slow down.
947          *
948          * We want to make sure we truly are maxed out on ordered however, so
949          * cut ordered in half, and if it's still higher than delalloc then we
950          * can keep flushing.  This is to avoid the case where we start
951          * flushing, and now delalloc == ordered and we stop preemptively
952          * flushing when we could still have several gigs of delalloc to flush.
953          */
954         ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1;
955         delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes);
956         if (ordered >= delalloc)
957                 used += fs_info->delayed_refs_rsv.reserved +
958                         fs_info->delayed_block_rsv.reserved;
959         else
960                 used += space_info->bytes_may_use - global_rsv_size;
961
962         return (used >= thresh && !btrfs_fs_closing(fs_info) &&
963                 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
964 }
965
966 static bool steal_from_global_rsv(struct btrfs_fs_info *fs_info,
967                                   struct btrfs_space_info *space_info,
968                                   struct reserve_ticket *ticket)
969 {
970         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
971         u64 min_bytes;
972
973         if (!ticket->steal)
974                 return false;
975
976         if (global_rsv->space_info != space_info)
977                 return false;
978
979         spin_lock(&global_rsv->lock);
980         min_bytes = mult_perc(global_rsv->size, 10);
981         if (global_rsv->reserved < min_bytes + ticket->bytes) {
982                 spin_unlock(&global_rsv->lock);
983                 return false;
984         }
985         global_rsv->reserved -= ticket->bytes;
986         remove_ticket(space_info, ticket);
987         ticket->bytes = 0;
988         wake_up(&ticket->wait);
989         space_info->tickets_id++;
990         if (global_rsv->reserved < global_rsv->size)
991                 global_rsv->full = 0;
992         spin_unlock(&global_rsv->lock);
993
994         return true;
995 }
996
997 /*
998  * maybe_fail_all_tickets - we've exhausted our flushing, start failing tickets
999  * @fs_info - fs_info for this fs
1000  * @space_info - the space info we were flushing
1001  *
1002  * We call this when we've exhausted our flushing ability and haven't made
1003  * progress in satisfying tickets.  The reservation code handles tickets in
1004  * order, so if there is a large ticket first and then smaller ones we could
1005  * very well satisfy the smaller tickets.  This will attempt to wake up any
1006  * tickets in the list to catch this case.
1007  *
1008  * This function returns true if it was able to make progress by clearing out
1009  * other tickets, or if it stumbles across a ticket that was smaller than the
1010  * first ticket.
1011  */
1012 static bool maybe_fail_all_tickets(struct btrfs_fs_info *fs_info,
1013                                    struct btrfs_space_info *space_info)
1014 {
1015         struct reserve_ticket *ticket;
1016         u64 tickets_id = space_info->tickets_id;
1017         const bool aborted = BTRFS_FS_ERROR(fs_info);
1018
1019         trace_btrfs_fail_all_tickets(fs_info, space_info);
1020
1021         if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1022                 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
1023                 __btrfs_dump_space_info(fs_info, space_info);
1024         }
1025
1026         while (!list_empty(&space_info->tickets) &&
1027                tickets_id == space_info->tickets_id) {
1028                 ticket = list_first_entry(&space_info->tickets,
1029                                           struct reserve_ticket, list);
1030
1031                 if (!aborted && steal_from_global_rsv(fs_info, space_info, ticket))
1032                         return true;
1033
1034                 if (!aborted && btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1035                         btrfs_info(fs_info, "failing ticket with %llu bytes",
1036                                    ticket->bytes);
1037
1038                 remove_ticket(space_info, ticket);
1039                 if (aborted)
1040                         ticket->error = -EIO;
1041                 else
1042                         ticket->error = -ENOSPC;
1043                 wake_up(&ticket->wait);
1044
1045                 /*
1046                  * We're just throwing tickets away, so more flushing may not
1047                  * trip over btrfs_try_granting_tickets, so we need to call it
1048                  * here to see if we can make progress with the next ticket in
1049                  * the list.
1050                  */
1051                 if (!aborted)
1052                         btrfs_try_granting_tickets(fs_info, space_info);
1053         }
1054         return (tickets_id != space_info->tickets_id);
1055 }
1056
1057 /*
1058  * This is for normal flushers, we can wait all goddamned day if we want to.  We
1059  * will loop and continuously try to flush as long as we are making progress.
1060  * We count progress as clearing off tickets each time we have to loop.
1061  */
1062 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
1063 {
1064         struct btrfs_fs_info *fs_info;
1065         struct btrfs_space_info *space_info;
1066         u64 to_reclaim;
1067         enum btrfs_flush_state flush_state;
1068         int commit_cycles = 0;
1069         u64 last_tickets_id;
1070
1071         fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
1072         space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1073
1074         spin_lock(&space_info->lock);
1075         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1076         if (!to_reclaim) {
1077                 space_info->flush = 0;
1078                 spin_unlock(&space_info->lock);
1079                 return;
1080         }
1081         last_tickets_id = space_info->tickets_id;
1082         spin_unlock(&space_info->lock);
1083
1084         flush_state = FLUSH_DELAYED_ITEMS_NR;
1085         do {
1086                 flush_space(fs_info, space_info, to_reclaim, flush_state, false);
1087                 spin_lock(&space_info->lock);
1088                 if (list_empty(&space_info->tickets)) {
1089                         space_info->flush = 0;
1090                         spin_unlock(&space_info->lock);
1091                         return;
1092                 }
1093                 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
1094                                                               space_info);
1095                 if (last_tickets_id == space_info->tickets_id) {
1096                         flush_state++;
1097                 } else {
1098                         last_tickets_id = space_info->tickets_id;
1099                         flush_state = FLUSH_DELAYED_ITEMS_NR;
1100                         if (commit_cycles)
1101                                 commit_cycles--;
1102                 }
1103
1104                 /*
1105                  * We do not want to empty the system of delalloc unless we're
1106                  * under heavy pressure, so allow one trip through the flushing
1107                  * logic before we start doing a FLUSH_DELALLOC_FULL.
1108                  */
1109                 if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles)
1110                         flush_state++;
1111
1112                 /*
1113                  * We don't want to force a chunk allocation until we've tried
1114                  * pretty hard to reclaim space.  Think of the case where we
1115                  * freed up a bunch of space and so have a lot of pinned space
1116                  * to reclaim.  We would rather use that than possibly create a
1117                  * underutilized metadata chunk.  So if this is our first run
1118                  * through the flushing state machine skip ALLOC_CHUNK_FORCE and
1119                  * commit the transaction.  If nothing has changed the next go
1120                  * around then we can force a chunk allocation.
1121                  */
1122                 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
1123                         flush_state++;
1124
1125                 if (flush_state > COMMIT_TRANS) {
1126                         commit_cycles++;
1127                         if (commit_cycles > 2) {
1128                                 if (maybe_fail_all_tickets(fs_info, space_info)) {
1129                                         flush_state = FLUSH_DELAYED_ITEMS_NR;
1130                                         commit_cycles--;
1131                                 } else {
1132                                         space_info->flush = 0;
1133                                 }
1134                         } else {
1135                                 flush_state = FLUSH_DELAYED_ITEMS_NR;
1136                         }
1137                 }
1138                 spin_unlock(&space_info->lock);
1139         } while (flush_state <= COMMIT_TRANS);
1140 }
1141
1142 /*
1143  * This handles pre-flushing of metadata space before we get to the point that
1144  * we need to start blocking threads on tickets.  The logic here is different
1145  * from the other flush paths because it doesn't rely on tickets to tell us how
1146  * much we need to flush, instead it attempts to keep us below the 80% full
1147  * watermark of space by flushing whichever reservation pool is currently the
1148  * largest.
1149  */
1150 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work)
1151 {
1152         struct btrfs_fs_info *fs_info;
1153         struct btrfs_space_info *space_info;
1154         struct btrfs_block_rsv *delayed_block_rsv;
1155         struct btrfs_block_rsv *delayed_refs_rsv;
1156         struct btrfs_block_rsv *global_rsv;
1157         struct btrfs_block_rsv *trans_rsv;
1158         int loops = 0;
1159
1160         fs_info = container_of(work, struct btrfs_fs_info,
1161                                preempt_reclaim_work);
1162         space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1163         delayed_block_rsv = &fs_info->delayed_block_rsv;
1164         delayed_refs_rsv = &fs_info->delayed_refs_rsv;
1165         global_rsv = &fs_info->global_block_rsv;
1166         trans_rsv = &fs_info->trans_block_rsv;
1167
1168         spin_lock(&space_info->lock);
1169         while (need_preemptive_reclaim(fs_info, space_info)) {
1170                 enum btrfs_flush_state flush;
1171                 u64 delalloc_size = 0;
1172                 u64 to_reclaim, block_rsv_size;
1173                 u64 global_rsv_size = global_rsv->reserved;
1174
1175                 loops++;
1176
1177                 /*
1178                  * We don't have a precise counter for the metadata being
1179                  * reserved for delalloc, so we'll approximate it by subtracting
1180                  * out the block rsv's space from the bytes_may_use.  If that
1181                  * amount is higher than the individual reserves, then we can
1182                  * assume it's tied up in delalloc reservations.
1183                  */
1184                 block_rsv_size = global_rsv_size +
1185                         delayed_block_rsv->reserved +
1186                         delayed_refs_rsv->reserved +
1187                         trans_rsv->reserved;
1188                 if (block_rsv_size < space_info->bytes_may_use)
1189                         delalloc_size = space_info->bytes_may_use - block_rsv_size;
1190
1191                 /*
1192                  * We don't want to include the global_rsv in our calculation,
1193                  * because that's space we can't touch.  Subtract it from the
1194                  * block_rsv_size for the next checks.
1195                  */
1196                 block_rsv_size -= global_rsv_size;
1197
1198                 /*
1199                  * We really want to avoid flushing delalloc too much, as it
1200                  * could result in poor allocation patterns, so only flush it if
1201                  * it's larger than the rest of the pools combined.
1202                  */
1203                 if (delalloc_size > block_rsv_size) {
1204                         to_reclaim = delalloc_size;
1205                         flush = FLUSH_DELALLOC;
1206                 } else if (space_info->bytes_pinned >
1207                            (delayed_block_rsv->reserved +
1208                             delayed_refs_rsv->reserved)) {
1209                         to_reclaim = space_info->bytes_pinned;
1210                         flush = COMMIT_TRANS;
1211                 } else if (delayed_block_rsv->reserved >
1212                            delayed_refs_rsv->reserved) {
1213                         to_reclaim = delayed_block_rsv->reserved;
1214                         flush = FLUSH_DELAYED_ITEMS_NR;
1215                 } else {
1216                         to_reclaim = delayed_refs_rsv->reserved;
1217                         flush = FLUSH_DELAYED_REFS_NR;
1218                 }
1219
1220                 spin_unlock(&space_info->lock);
1221
1222                 /*
1223                  * We don't want to reclaim everything, just a portion, so scale
1224                  * down the to_reclaim by 1/4.  If it takes us down to 0,
1225                  * reclaim 1 items worth.
1226                  */
1227                 to_reclaim >>= 2;
1228                 if (!to_reclaim)
1229                         to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1);
1230                 flush_space(fs_info, space_info, to_reclaim, flush, true);
1231                 cond_resched();
1232                 spin_lock(&space_info->lock);
1233         }
1234
1235         /* We only went through once, back off our clamping. */
1236         if (loops == 1 && !space_info->reclaim_size)
1237                 space_info->clamp = max(1, space_info->clamp - 1);
1238         trace_btrfs_done_preemptive_reclaim(fs_info, space_info);
1239         spin_unlock(&space_info->lock);
1240 }
1241
1242 /*
1243  * FLUSH_DELALLOC_WAIT:
1244  *   Space is freed from flushing delalloc in one of two ways.
1245  *
1246  *   1) compression is on and we allocate less space than we reserved
1247  *   2) we are overwriting existing space
1248  *
1249  *   For #1 that extra space is reclaimed as soon as the delalloc pages are
1250  *   COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1251  *   length to ->bytes_reserved, and subtracts the reserved space from
1252  *   ->bytes_may_use.
1253  *
1254  *   For #2 this is trickier.  Once the ordered extent runs we will drop the
1255  *   extent in the range we are overwriting, which creates a delayed ref for
1256  *   that freed extent.  This however is not reclaimed until the transaction
1257  *   commits, thus the next stages.
1258  *
1259  * RUN_DELAYED_IPUTS
1260  *   If we are freeing inodes, we want to make sure all delayed iputs have
1261  *   completed, because they could have been on an inode with i_nlink == 0, and
1262  *   thus have been truncated and freed up space.  But again this space is not
1263  *   immediately re-usable, it comes in the form of a delayed ref, which must be
1264  *   run and then the transaction must be committed.
1265  *
1266  * COMMIT_TRANS
1267  *   This is where we reclaim all of the pinned space generated by running the
1268  *   iputs
1269  *
1270  * ALLOC_CHUNK_FORCE
1271  *   For data we start with alloc chunk force, however we could have been full
1272  *   before, and then the transaction commit could have freed new block groups,
1273  *   so if we now have space to allocate do the force chunk allocation.
1274  */
1275 static const enum btrfs_flush_state data_flush_states[] = {
1276         FLUSH_DELALLOC_FULL,
1277         RUN_DELAYED_IPUTS,
1278         COMMIT_TRANS,
1279         ALLOC_CHUNK_FORCE,
1280 };
1281
1282 static void btrfs_async_reclaim_data_space(struct work_struct *work)
1283 {
1284         struct btrfs_fs_info *fs_info;
1285         struct btrfs_space_info *space_info;
1286         u64 last_tickets_id;
1287         enum btrfs_flush_state flush_state = 0;
1288
1289         fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1290         space_info = fs_info->data_sinfo;
1291
1292         spin_lock(&space_info->lock);
1293         if (list_empty(&space_info->tickets)) {
1294                 space_info->flush = 0;
1295                 spin_unlock(&space_info->lock);
1296                 return;
1297         }
1298         last_tickets_id = space_info->tickets_id;
1299         spin_unlock(&space_info->lock);
1300
1301         while (!space_info->full) {
1302                 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1303                 spin_lock(&space_info->lock);
1304                 if (list_empty(&space_info->tickets)) {
1305                         space_info->flush = 0;
1306                         spin_unlock(&space_info->lock);
1307                         return;
1308                 }
1309
1310                 /* Something happened, fail everything and bail. */
1311                 if (BTRFS_FS_ERROR(fs_info))
1312                         goto aborted_fs;
1313                 last_tickets_id = space_info->tickets_id;
1314                 spin_unlock(&space_info->lock);
1315         }
1316
1317         while (flush_state < ARRAY_SIZE(data_flush_states)) {
1318                 flush_space(fs_info, space_info, U64_MAX,
1319                             data_flush_states[flush_state], false);
1320                 spin_lock(&space_info->lock);
1321                 if (list_empty(&space_info->tickets)) {
1322                         space_info->flush = 0;
1323                         spin_unlock(&space_info->lock);
1324                         return;
1325                 }
1326
1327                 if (last_tickets_id == space_info->tickets_id) {
1328                         flush_state++;
1329                 } else {
1330                         last_tickets_id = space_info->tickets_id;
1331                         flush_state = 0;
1332                 }
1333
1334                 if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1335                         if (space_info->full) {
1336                                 if (maybe_fail_all_tickets(fs_info, space_info))
1337                                         flush_state = 0;
1338                                 else
1339                                         space_info->flush = 0;
1340                         } else {
1341                                 flush_state = 0;
1342                         }
1343
1344                         /* Something happened, fail everything and bail. */
1345                         if (BTRFS_FS_ERROR(fs_info))
1346                                 goto aborted_fs;
1347
1348                 }
1349                 spin_unlock(&space_info->lock);
1350         }
1351         return;
1352
1353 aborted_fs:
1354         maybe_fail_all_tickets(fs_info, space_info);
1355         space_info->flush = 0;
1356         spin_unlock(&space_info->lock);
1357 }
1358
1359 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1360 {
1361         INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1362         INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1363         INIT_WORK(&fs_info->preempt_reclaim_work,
1364                   btrfs_preempt_reclaim_metadata_space);
1365 }
1366
1367 static const enum btrfs_flush_state priority_flush_states[] = {
1368         FLUSH_DELAYED_ITEMS_NR,
1369         FLUSH_DELAYED_ITEMS,
1370         ALLOC_CHUNK,
1371 };
1372
1373 static const enum btrfs_flush_state evict_flush_states[] = {
1374         FLUSH_DELAYED_ITEMS_NR,
1375         FLUSH_DELAYED_ITEMS,
1376         FLUSH_DELAYED_REFS_NR,
1377         FLUSH_DELAYED_REFS,
1378         FLUSH_DELALLOC,
1379         FLUSH_DELALLOC_WAIT,
1380         FLUSH_DELALLOC_FULL,
1381         ALLOC_CHUNK,
1382         COMMIT_TRANS,
1383 };
1384
1385 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
1386                                 struct btrfs_space_info *space_info,
1387                                 struct reserve_ticket *ticket,
1388                                 const enum btrfs_flush_state *states,
1389                                 int states_nr)
1390 {
1391         u64 to_reclaim;
1392         int flush_state = 0;
1393
1394         spin_lock(&space_info->lock);
1395         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info);
1396         /*
1397          * This is the priority reclaim path, so to_reclaim could be >0 still
1398          * because we may have only satisfied the priority tickets and still
1399          * left non priority tickets on the list.  We would then have
1400          * to_reclaim but ->bytes == 0.
1401          */
1402         if (ticket->bytes == 0) {
1403                 spin_unlock(&space_info->lock);
1404                 return;
1405         }
1406
1407         while (flush_state < states_nr) {
1408                 spin_unlock(&space_info->lock);
1409                 flush_space(fs_info, space_info, to_reclaim, states[flush_state],
1410                             false);
1411                 flush_state++;
1412                 spin_lock(&space_info->lock);
1413                 if (ticket->bytes == 0) {
1414                         spin_unlock(&space_info->lock);
1415                         return;
1416                 }
1417         }
1418
1419         /* Attempt to steal from the global rsv if we can. */
1420         if (!steal_from_global_rsv(fs_info, space_info, ticket)) {
1421                 ticket->error = -ENOSPC;
1422                 remove_ticket(space_info, ticket);
1423         }
1424
1425         /*
1426          * We must run try_granting_tickets here because we could be a large
1427          * ticket in front of a smaller ticket that can now be satisfied with
1428          * the available space.
1429          */
1430         btrfs_try_granting_tickets(fs_info, space_info);
1431         spin_unlock(&space_info->lock);
1432 }
1433
1434 static void priority_reclaim_data_space(struct btrfs_fs_info *fs_info,
1435                                         struct btrfs_space_info *space_info,
1436                                         struct reserve_ticket *ticket)
1437 {
1438         spin_lock(&space_info->lock);
1439
1440         /* We could have been granted before we got here. */
1441         if (ticket->bytes == 0) {
1442                 spin_unlock(&space_info->lock);
1443                 return;
1444         }
1445
1446         while (!space_info->full) {
1447                 spin_unlock(&space_info->lock);
1448                 flush_space(fs_info, space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1449                 spin_lock(&space_info->lock);
1450                 if (ticket->bytes == 0) {
1451                         spin_unlock(&space_info->lock);
1452                         return;
1453                 }
1454         }
1455
1456         ticket->error = -ENOSPC;
1457         remove_ticket(space_info, ticket);
1458         btrfs_try_granting_tickets(fs_info, space_info);
1459         spin_unlock(&space_info->lock);
1460 }
1461
1462 static void wait_reserve_ticket(struct btrfs_fs_info *fs_info,
1463                                 struct btrfs_space_info *space_info,
1464                                 struct reserve_ticket *ticket)
1465
1466 {
1467         DEFINE_WAIT(wait);
1468         int ret = 0;
1469
1470         spin_lock(&space_info->lock);
1471         while (ticket->bytes > 0 && ticket->error == 0) {
1472                 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1473                 if (ret) {
1474                         /*
1475                          * Delete us from the list. After we unlock the space
1476                          * info, we don't want the async reclaim job to reserve
1477                          * space for this ticket. If that would happen, then the
1478                          * ticket's task would not known that space was reserved
1479                          * despite getting an error, resulting in a space leak
1480                          * (bytes_may_use counter of our space_info).
1481                          */
1482                         remove_ticket(space_info, ticket);
1483                         ticket->error = -EINTR;
1484                         break;
1485                 }
1486                 spin_unlock(&space_info->lock);
1487
1488                 schedule();
1489
1490                 finish_wait(&ticket->wait, &wait);
1491                 spin_lock(&space_info->lock);
1492         }
1493         spin_unlock(&space_info->lock);
1494 }
1495
1496 /*
1497  * Do the appropriate flushing and waiting for a ticket.
1498  *
1499  * @fs_info:    the filesystem
1500  * @space_info: space info for the reservation
1501  * @ticket:     ticket for the reservation
1502  * @start_ns:   timestamp when the reservation started
1503  * @orig_bytes: amount of bytes originally reserved
1504  * @flush:      how much we can flush
1505  *
1506  * This does the work of figuring out how to flush for the ticket, waiting for
1507  * the reservation, and returning the appropriate error if there is one.
1508  */
1509 static int handle_reserve_ticket(struct btrfs_fs_info *fs_info,
1510                                  struct btrfs_space_info *space_info,
1511                                  struct reserve_ticket *ticket,
1512                                  u64 start_ns, u64 orig_bytes,
1513                                  enum btrfs_reserve_flush_enum flush)
1514 {
1515         int ret;
1516
1517         switch (flush) {
1518         case BTRFS_RESERVE_FLUSH_DATA:
1519         case BTRFS_RESERVE_FLUSH_ALL:
1520         case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1521                 wait_reserve_ticket(fs_info, space_info, ticket);
1522                 break;
1523         case BTRFS_RESERVE_FLUSH_LIMIT:
1524                 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1525                                                 priority_flush_states,
1526                                                 ARRAY_SIZE(priority_flush_states));
1527                 break;
1528         case BTRFS_RESERVE_FLUSH_EVICT:
1529                 priority_reclaim_metadata_space(fs_info, space_info, ticket,
1530                                                 evict_flush_states,
1531                                                 ARRAY_SIZE(evict_flush_states));
1532                 break;
1533         case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1534                 priority_reclaim_data_space(fs_info, space_info, ticket);
1535                 break;
1536         default:
1537                 ASSERT(0);
1538                 break;
1539         }
1540
1541         ret = ticket->error;
1542         ASSERT(list_empty(&ticket->list));
1543         /*
1544          * Check that we can't have an error set if the reservation succeeded,
1545          * as that would confuse tasks and lead them to error out without
1546          * releasing reserved space (if an error happens the expectation is that
1547          * space wasn't reserved at all).
1548          */
1549         ASSERT(!(ticket->bytes == 0 && ticket->error));
1550         trace_btrfs_reserve_ticket(fs_info, space_info->flags, orig_bytes,
1551                                    start_ns, flush, ticket->error);
1552         return ret;
1553 }
1554
1555 /*
1556  * This returns true if this flush state will go through the ordinary flushing
1557  * code.
1558  */
1559 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1560 {
1561         return  (flush == BTRFS_RESERVE_FLUSH_ALL) ||
1562                 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1563 }
1564
1565 static inline void maybe_clamp_preempt(struct btrfs_fs_info *fs_info,
1566                                        struct btrfs_space_info *space_info)
1567 {
1568         u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes);
1569         u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
1570
1571         /*
1572          * If we're heavy on ordered operations then clamping won't help us.  We
1573          * need to clamp specifically to keep up with dirty'ing buffered
1574          * writers, because there's not a 1:1 correlation of writing delalloc
1575          * and freeing space, like there is with flushing delayed refs or
1576          * delayed nodes.  If we're already more ordered than delalloc then
1577          * we're keeping up, otherwise we aren't and should probably clamp.
1578          */
1579         if (ordered < delalloc)
1580                 space_info->clamp = min(space_info->clamp + 1, 8);
1581 }
1582
1583 static inline bool can_steal(enum btrfs_reserve_flush_enum flush)
1584 {
1585         return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1586                 flush == BTRFS_RESERVE_FLUSH_EVICT);
1587 }
1588
1589 /*
1590  * NO_FLUSH and FLUSH_EMERGENCY don't want to create a ticket, they just want to
1591  * fail as quickly as possible.
1592  */
1593 static inline bool can_ticket(enum btrfs_reserve_flush_enum flush)
1594 {
1595         return (flush != BTRFS_RESERVE_NO_FLUSH &&
1596                 flush != BTRFS_RESERVE_FLUSH_EMERGENCY);
1597 }
1598
1599 /*
1600  * Try to reserve bytes from the block_rsv's space.
1601  *
1602  * @fs_info:    the filesystem
1603  * @space_info: space info we want to allocate from
1604  * @orig_bytes: number of bytes we want
1605  * @flush:      whether or not we can flush to make our reservation
1606  *
1607  * This will reserve orig_bytes number of bytes from the space info associated
1608  * with the block_rsv.  If there is not enough space it will make an attempt to
1609  * flush out space to make room.  It will do this by flushing delalloc if
1610  * possible or committing the transaction.  If flush is 0 then no attempts to
1611  * regain reservations will be made and this will fail if there is not enough
1612  * space already.
1613  */
1614 static int __reserve_bytes(struct btrfs_fs_info *fs_info,
1615                            struct btrfs_space_info *space_info, u64 orig_bytes,
1616                            enum btrfs_reserve_flush_enum flush)
1617 {
1618         struct work_struct *async_work;
1619         struct reserve_ticket ticket;
1620         u64 start_ns = 0;
1621         u64 used;
1622         int ret = 0;
1623         bool pending_tickets;
1624
1625         ASSERT(orig_bytes);
1626         ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
1627
1628         if (flush == BTRFS_RESERVE_FLUSH_DATA)
1629                 async_work = &fs_info->async_data_reclaim_work;
1630         else
1631                 async_work = &fs_info->async_reclaim_work;
1632
1633         spin_lock(&space_info->lock);
1634         ret = -ENOSPC;
1635         used = btrfs_space_info_used(space_info, true);
1636
1637         /*
1638          * We don't want NO_FLUSH allocations to jump everybody, they can
1639          * generally handle ENOSPC in a different way, so treat them the same as
1640          * normal flushers when it comes to skipping pending tickets.
1641          */
1642         if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1643                 pending_tickets = !list_empty(&space_info->tickets) ||
1644                         !list_empty(&space_info->priority_tickets);
1645         else
1646                 pending_tickets = !list_empty(&space_info->priority_tickets);
1647
1648         /*
1649          * Carry on if we have enough space (short-circuit) OR call
1650          * can_overcommit() to ensure we can overcommit to continue.
1651          */
1652         if (!pending_tickets &&
1653             ((used + orig_bytes <= writable_total_bytes(fs_info, space_info)) ||
1654              btrfs_can_overcommit(fs_info, space_info, orig_bytes, flush))) {
1655                 btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1656                                                       orig_bytes);
1657                 ret = 0;
1658         }
1659
1660         /*
1661          * Things are dire, we need to make a reservation so we don't abort.  We
1662          * will let this reservation go through as long as we have actual space
1663          * left to allocate for the block.
1664          */
1665         if (ret && unlikely(flush == BTRFS_RESERVE_FLUSH_EMERGENCY)) {
1666                 used = btrfs_space_info_used(space_info, false);
1667                 if (used + orig_bytes <=
1668                     writable_total_bytes(fs_info, space_info)) {
1669                         btrfs_space_info_update_bytes_may_use(fs_info, space_info,
1670                                                               orig_bytes);
1671                         ret = 0;
1672                 }
1673         }
1674
1675         /*
1676          * If we couldn't make a reservation then setup our reservation ticket
1677          * and kick the async worker if it's not already running.
1678          *
1679          * If we are a priority flusher then we just need to add our ticket to
1680          * the list and we will do our own flushing further down.
1681          */
1682         if (ret && can_ticket(flush)) {
1683                 ticket.bytes = orig_bytes;
1684                 ticket.error = 0;
1685                 space_info->reclaim_size += ticket.bytes;
1686                 init_waitqueue_head(&ticket.wait);
1687                 ticket.steal = can_steal(flush);
1688                 if (trace_btrfs_reserve_ticket_enabled())
1689                         start_ns = ktime_get_ns();
1690
1691                 if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1692                     flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1693                     flush == BTRFS_RESERVE_FLUSH_DATA) {
1694                         list_add_tail(&ticket.list, &space_info->tickets);
1695                         if (!space_info->flush) {
1696                                 /*
1697                                  * We were forced to add a reserve ticket, so
1698                                  * our preemptive flushing is unable to keep
1699                                  * up.  Clamp down on the threshold for the
1700                                  * preemptive flushing in order to keep up with
1701                                  * the workload.
1702                                  */
1703                                 maybe_clamp_preempt(fs_info, space_info);
1704
1705                                 space_info->flush = 1;
1706                                 trace_btrfs_trigger_flush(fs_info,
1707                                                           space_info->flags,
1708                                                           orig_bytes, flush,
1709                                                           "enospc");
1710                                 queue_work(system_unbound_wq, async_work);
1711                         }
1712                 } else {
1713                         list_add_tail(&ticket.list,
1714                                       &space_info->priority_tickets);
1715                 }
1716         } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1717                 /*
1718                  * We will do the space reservation dance during log replay,
1719                  * which means we won't have fs_info->fs_root set, so don't do
1720                  * the async reclaim as we will panic.
1721                  */
1722                 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1723                     !work_busy(&fs_info->preempt_reclaim_work) &&
1724                     need_preemptive_reclaim(fs_info, space_info)) {
1725                         trace_btrfs_trigger_flush(fs_info, space_info->flags,
1726                                                   orig_bytes, flush, "preempt");
1727                         queue_work(system_unbound_wq,
1728                                    &fs_info->preempt_reclaim_work);
1729                 }
1730         }
1731         spin_unlock(&space_info->lock);
1732         if (!ret || !can_ticket(flush))
1733                 return ret;
1734
1735         return handle_reserve_ticket(fs_info, space_info, &ticket, start_ns,
1736                                      orig_bytes, flush);
1737 }
1738
1739 /*
1740  * Try to reserve metadata bytes from the block_rsv's space.
1741  *
1742  * @fs_info:    the filesystem
1743  * @block_rsv:  block_rsv we're allocating for
1744  * @orig_bytes: number of bytes we want
1745  * @flush:      whether or not we can flush to make our reservation
1746  *
1747  * This will reserve orig_bytes number of bytes from the space info associated
1748  * with the block_rsv.  If there is not enough space it will make an attempt to
1749  * flush out space to make room.  It will do this by flushing delalloc if
1750  * possible or committing the transaction.  If flush is 0 then no attempts to
1751  * regain reservations will be made and this will fail if there is not enough
1752  * space already.
1753  */
1754 int btrfs_reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
1755                                  struct btrfs_block_rsv *block_rsv,
1756                                  u64 orig_bytes,
1757                                  enum btrfs_reserve_flush_enum flush)
1758 {
1759         int ret;
1760
1761         ret = __reserve_bytes(fs_info, block_rsv->space_info, orig_bytes, flush);
1762         if (ret == -ENOSPC) {
1763                 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1764                                               block_rsv->space_info->flags,
1765                                               orig_bytes, 1);
1766
1767                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1768                         btrfs_dump_space_info(fs_info, block_rsv->space_info,
1769                                               orig_bytes, 0);
1770         }
1771         return ret;
1772 }
1773
1774 /*
1775  * Try to reserve data bytes for an allocation.
1776  *
1777  * @fs_info: the filesystem
1778  * @bytes:   number of bytes we need
1779  * @flush:   how we are allowed to flush
1780  *
1781  * This will reserve bytes from the data space info.  If there is not enough
1782  * space then we will attempt to flush space as specified by flush.
1783  */
1784 int btrfs_reserve_data_bytes(struct btrfs_fs_info *fs_info, u64 bytes,
1785                              enum btrfs_reserve_flush_enum flush)
1786 {
1787         struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
1788         int ret;
1789
1790         ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1791                flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE ||
1792                flush == BTRFS_RESERVE_NO_FLUSH);
1793         ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA);
1794
1795         ret = __reserve_bytes(fs_info, data_sinfo, bytes, flush);
1796         if (ret == -ENOSPC) {
1797                 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1798                                               data_sinfo->flags, bytes, 1);
1799                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1800                         btrfs_dump_space_info(fs_info, data_sinfo, bytes, 0);
1801         }
1802         return ret;
1803 }
1804
1805 /* Dump all the space infos when we abort a transaction due to ENOSPC. */
1806 __cold void btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info *fs_info)
1807 {
1808         struct btrfs_space_info *space_info;
1809
1810         btrfs_info(fs_info, "dumping space info:");
1811         list_for_each_entry(space_info, &fs_info->space_info, list) {
1812                 spin_lock(&space_info->lock);
1813                 __btrfs_dump_space_info(fs_info, space_info);
1814                 spin_unlock(&space_info->lock);
1815         }
1816         dump_global_block_rsv(fs_info);
1817 }
1818
1819 /*
1820  * Account the unused space of all the readonly block group in the space_info.
1821  * takes mirrors into account.
1822  */
1823 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
1824 {
1825         struct btrfs_block_group *block_group;
1826         u64 free_bytes = 0;
1827         int factor;
1828
1829         /* It's df, we don't care if it's racy */
1830         if (list_empty(&sinfo->ro_bgs))
1831                 return 0;
1832
1833         spin_lock(&sinfo->lock);
1834         list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
1835                 spin_lock(&block_group->lock);
1836
1837                 if (!block_group->ro) {
1838                         spin_unlock(&block_group->lock);
1839                         continue;
1840                 }
1841
1842                 factor = btrfs_bg_type_to_factor(block_group->flags);
1843                 free_bytes += (block_group->length -
1844                                block_group->used) * factor;
1845
1846                 spin_unlock(&block_group->lock);
1847         }
1848         spin_unlock(&sinfo->lock);
1849
1850         return free_bytes;
1851 }