Merge tag 'mmc-v6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/mmc
[linux-block.git] / fs / btrfs / scrub.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
4  */
5
6 #include <linux/blkdev.h>
7 #include <linux/ratelimit.h>
8 #include <linux/sched/mm.h>
9 #include <crypto/hash.h>
10 #include "ctree.h"
11 #include "discard.h"
12 #include "volumes.h"
13 #include "disk-io.h"
14 #include "ordered-data.h"
15 #include "transaction.h"
16 #include "backref.h"
17 #include "extent_io.h"
18 #include "dev-replace.h"
19 #include "raid56.h"
20 #include "block-group.h"
21 #include "zoned.h"
22 #include "fs.h"
23 #include "accessors.h"
24 #include "file-item.h"
25 #include "scrub.h"
26 #include "raid-stripe-tree.h"
27
28 /*
29  * This is only the first step towards a full-features scrub. It reads all
30  * extent and super block and verifies the checksums. In case a bad checksum
31  * is found or the extent cannot be read, good data will be written back if
32  * any can be found.
33  *
34  * Future enhancements:
35  *  - In case an unrepairable extent is encountered, track which files are
36  *    affected and report them
37  *  - track and record media errors, throw out bad devices
38  *  - add a mode to also read unallocated space
39  */
40
41 struct scrub_ctx;
42
43 /*
44  * The following value only influences the performance.
45  *
46  * This determines how many stripes would be submitted in one go,
47  * which is 512KiB (BTRFS_STRIPE_LEN * SCRUB_STRIPES_PER_GROUP).
48  */
49 #define SCRUB_STRIPES_PER_GROUP         8
50
51 /*
52  * How many groups we have for each sctx.
53  *
54  * This would be 8M per device, the same value as the old scrub in-flight bios
55  * size limit.
56  */
57 #define SCRUB_GROUPS_PER_SCTX           16
58
59 #define SCRUB_TOTAL_STRIPES             (SCRUB_GROUPS_PER_SCTX * SCRUB_STRIPES_PER_GROUP)
60
61 /*
62  * The following value times PAGE_SIZE needs to be large enough to match the
63  * largest node/leaf/sector size that shall be supported.
64  */
65 #define SCRUB_MAX_SECTORS_PER_BLOCK     (BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
66
67 /* Represent one sector and its needed info to verify the content. */
68 struct scrub_sector_verification {
69         bool is_metadata;
70
71         union {
72                 /*
73                  * Csum pointer for data csum verification.  Should point to a
74                  * sector csum inside scrub_stripe::csums.
75                  *
76                  * NULL if this data sector has no csum.
77                  */
78                 u8 *csum;
79
80                 /*
81                  * Extra info for metadata verification.  All sectors inside a
82                  * tree block share the same generation.
83                  */
84                 u64 generation;
85         };
86 };
87
88 enum scrub_stripe_flags {
89         /* Set when @mirror_num, @dev, @physical and @logical are set. */
90         SCRUB_STRIPE_FLAG_INITIALIZED,
91
92         /* Set when the read-repair is finished. */
93         SCRUB_STRIPE_FLAG_REPAIR_DONE,
94
95         /*
96          * Set for data stripes if it's triggered from P/Q stripe.
97          * During such scrub, we should not report errors in data stripes, nor
98          * update the accounting.
99          */
100         SCRUB_STRIPE_FLAG_NO_REPORT,
101 };
102
103 #define SCRUB_STRIPE_PAGES              (BTRFS_STRIPE_LEN / PAGE_SIZE)
104
105 /*
106  * Represent one contiguous range with a length of BTRFS_STRIPE_LEN.
107  */
108 struct scrub_stripe {
109         struct scrub_ctx *sctx;
110         struct btrfs_block_group *bg;
111
112         struct page *pages[SCRUB_STRIPE_PAGES];
113         struct scrub_sector_verification *sectors;
114
115         struct btrfs_device *dev;
116         u64 logical;
117         u64 physical;
118
119         u16 mirror_num;
120
121         /* Should be BTRFS_STRIPE_LEN / sectorsize. */
122         u16 nr_sectors;
123
124         /*
125          * How many data/meta extents are in this stripe.  Only for scrub status
126          * reporting purposes.
127          */
128         u16 nr_data_extents;
129         u16 nr_meta_extents;
130
131         atomic_t pending_io;
132         wait_queue_head_t io_wait;
133         wait_queue_head_t repair_wait;
134
135         /*
136          * Indicate the states of the stripe.  Bits are defined in
137          * scrub_stripe_flags enum.
138          */
139         unsigned long state;
140
141         /* Indicate which sectors are covered by extent items. */
142         unsigned long extent_sector_bitmap;
143
144         /*
145          * The errors hit during the initial read of the stripe.
146          *
147          * Would be utilized for error reporting and repair.
148          *
149          * The remaining init_nr_* records the number of errors hit, only used
150          * by error reporting.
151          */
152         unsigned long init_error_bitmap;
153         unsigned int init_nr_io_errors;
154         unsigned int init_nr_csum_errors;
155         unsigned int init_nr_meta_errors;
156
157         /*
158          * The following error bitmaps are all for the current status.
159          * Every time we submit a new read, these bitmaps may be updated.
160          *
161          * error_bitmap = io_error_bitmap | csum_error_bitmap | meta_error_bitmap;
162          *
163          * IO and csum errors can happen for both metadata and data.
164          */
165         unsigned long error_bitmap;
166         unsigned long io_error_bitmap;
167         unsigned long csum_error_bitmap;
168         unsigned long meta_error_bitmap;
169
170         /* For writeback (repair or replace) error reporting. */
171         unsigned long write_error_bitmap;
172
173         /* Writeback can be concurrent, thus we need to protect the bitmap. */
174         spinlock_t write_error_lock;
175
176         /*
177          * Checksum for the whole stripe if this stripe is inside a data block
178          * group.
179          */
180         u8 *csums;
181
182         struct work_struct work;
183 };
184
185 struct scrub_ctx {
186         struct scrub_stripe     stripes[SCRUB_TOTAL_STRIPES];
187         struct scrub_stripe     *raid56_data_stripes;
188         struct btrfs_fs_info    *fs_info;
189         struct btrfs_path       extent_path;
190         struct btrfs_path       csum_path;
191         int                     first_free;
192         int                     cur_stripe;
193         atomic_t                cancel_req;
194         int                     readonly;
195
196         /* State of IO submission throttling affecting the associated device */
197         ktime_t                 throttle_deadline;
198         u64                     throttle_sent;
199
200         int                     is_dev_replace;
201         u64                     write_pointer;
202
203         struct mutex            wr_lock;
204         struct btrfs_device     *wr_tgtdev;
205
206         /*
207          * statistics
208          */
209         struct btrfs_scrub_progress stat;
210         spinlock_t              stat_lock;
211
212         /*
213          * Use a ref counter to avoid use-after-free issues. Scrub workers
214          * decrement bios_in_flight and workers_pending and then do a wakeup
215          * on the list_wait wait queue. We must ensure the main scrub task
216          * doesn't free the scrub context before or while the workers are
217          * doing the wakeup() call.
218          */
219         refcount_t              refs;
220 };
221
222 struct scrub_warning {
223         struct btrfs_path       *path;
224         u64                     extent_item_size;
225         const char              *errstr;
226         u64                     physical;
227         u64                     logical;
228         struct btrfs_device     *dev;
229 };
230
231 static void release_scrub_stripe(struct scrub_stripe *stripe)
232 {
233         if (!stripe)
234                 return;
235
236         for (int i = 0; i < SCRUB_STRIPE_PAGES; i++) {
237                 if (stripe->pages[i])
238                         __free_page(stripe->pages[i]);
239                 stripe->pages[i] = NULL;
240         }
241         kfree(stripe->sectors);
242         kfree(stripe->csums);
243         stripe->sectors = NULL;
244         stripe->csums = NULL;
245         stripe->sctx = NULL;
246         stripe->state = 0;
247 }
248
249 static int init_scrub_stripe(struct btrfs_fs_info *fs_info,
250                              struct scrub_stripe *stripe)
251 {
252         int ret;
253
254         memset(stripe, 0, sizeof(*stripe));
255
256         stripe->nr_sectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
257         stripe->state = 0;
258
259         init_waitqueue_head(&stripe->io_wait);
260         init_waitqueue_head(&stripe->repair_wait);
261         atomic_set(&stripe->pending_io, 0);
262         spin_lock_init(&stripe->write_error_lock);
263
264         ret = btrfs_alloc_page_array(SCRUB_STRIPE_PAGES, stripe->pages, 0);
265         if (ret < 0)
266                 goto error;
267
268         stripe->sectors = kcalloc(stripe->nr_sectors,
269                                   sizeof(struct scrub_sector_verification),
270                                   GFP_KERNEL);
271         if (!stripe->sectors)
272                 goto error;
273
274         stripe->csums = kcalloc(BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits,
275                                 fs_info->csum_size, GFP_KERNEL);
276         if (!stripe->csums)
277                 goto error;
278         return 0;
279 error:
280         release_scrub_stripe(stripe);
281         return -ENOMEM;
282 }
283
284 static void wait_scrub_stripe_io(struct scrub_stripe *stripe)
285 {
286         wait_event(stripe->io_wait, atomic_read(&stripe->pending_io) == 0);
287 }
288
289 static void scrub_put_ctx(struct scrub_ctx *sctx);
290
291 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
292 {
293         while (atomic_read(&fs_info->scrub_pause_req)) {
294                 mutex_unlock(&fs_info->scrub_lock);
295                 wait_event(fs_info->scrub_pause_wait,
296                    atomic_read(&fs_info->scrub_pause_req) == 0);
297                 mutex_lock(&fs_info->scrub_lock);
298         }
299 }
300
301 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
302 {
303         atomic_inc(&fs_info->scrubs_paused);
304         wake_up(&fs_info->scrub_pause_wait);
305 }
306
307 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
308 {
309         mutex_lock(&fs_info->scrub_lock);
310         __scrub_blocked_if_needed(fs_info);
311         atomic_dec(&fs_info->scrubs_paused);
312         mutex_unlock(&fs_info->scrub_lock);
313
314         wake_up(&fs_info->scrub_pause_wait);
315 }
316
317 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
318 {
319         scrub_pause_on(fs_info);
320         scrub_pause_off(fs_info);
321 }
322
323 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
324 {
325         int i;
326
327         if (!sctx)
328                 return;
329
330         for (i = 0; i < SCRUB_TOTAL_STRIPES; i++)
331                 release_scrub_stripe(&sctx->stripes[i]);
332
333         kvfree(sctx);
334 }
335
336 static void scrub_put_ctx(struct scrub_ctx *sctx)
337 {
338         if (refcount_dec_and_test(&sctx->refs))
339                 scrub_free_ctx(sctx);
340 }
341
342 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
343                 struct btrfs_fs_info *fs_info, int is_dev_replace)
344 {
345         struct scrub_ctx *sctx;
346         int             i;
347
348         /* Since sctx has inline 128 stripes, it can go beyond 64K easily.  Use
349          * kvzalloc().
350          */
351         sctx = kvzalloc(sizeof(*sctx), GFP_KERNEL);
352         if (!sctx)
353                 goto nomem;
354         refcount_set(&sctx->refs, 1);
355         sctx->is_dev_replace = is_dev_replace;
356         sctx->fs_info = fs_info;
357         sctx->extent_path.search_commit_root = 1;
358         sctx->extent_path.skip_locking = 1;
359         sctx->csum_path.search_commit_root = 1;
360         sctx->csum_path.skip_locking = 1;
361         for (i = 0; i < SCRUB_TOTAL_STRIPES; i++) {
362                 int ret;
363
364                 ret = init_scrub_stripe(fs_info, &sctx->stripes[i]);
365                 if (ret < 0)
366                         goto nomem;
367                 sctx->stripes[i].sctx = sctx;
368         }
369         sctx->first_free = 0;
370         atomic_set(&sctx->cancel_req, 0);
371
372         spin_lock_init(&sctx->stat_lock);
373         sctx->throttle_deadline = 0;
374
375         mutex_init(&sctx->wr_lock);
376         if (is_dev_replace) {
377                 WARN_ON(!fs_info->dev_replace.tgtdev);
378                 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
379         }
380
381         return sctx;
382
383 nomem:
384         scrub_free_ctx(sctx);
385         return ERR_PTR(-ENOMEM);
386 }
387
388 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 num_bytes,
389                                      u64 root, void *warn_ctx)
390 {
391         u32 nlink;
392         int ret;
393         int i;
394         unsigned nofs_flag;
395         struct extent_buffer *eb;
396         struct btrfs_inode_item *inode_item;
397         struct scrub_warning *swarn = warn_ctx;
398         struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
399         struct inode_fs_paths *ipath = NULL;
400         struct btrfs_root *local_root;
401         struct btrfs_key key;
402
403         local_root = btrfs_get_fs_root(fs_info, root, true);
404         if (IS_ERR(local_root)) {
405                 ret = PTR_ERR(local_root);
406                 goto err;
407         }
408
409         /*
410          * this makes the path point to (inum INODE_ITEM ioff)
411          */
412         key.objectid = inum;
413         key.type = BTRFS_INODE_ITEM_KEY;
414         key.offset = 0;
415
416         ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
417         if (ret) {
418                 btrfs_put_root(local_root);
419                 btrfs_release_path(swarn->path);
420                 goto err;
421         }
422
423         eb = swarn->path->nodes[0];
424         inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
425                                         struct btrfs_inode_item);
426         nlink = btrfs_inode_nlink(eb, inode_item);
427         btrfs_release_path(swarn->path);
428
429         /*
430          * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
431          * uses GFP_NOFS in this context, so we keep it consistent but it does
432          * not seem to be strictly necessary.
433          */
434         nofs_flag = memalloc_nofs_save();
435         ipath = init_ipath(4096, local_root, swarn->path);
436         memalloc_nofs_restore(nofs_flag);
437         if (IS_ERR(ipath)) {
438                 btrfs_put_root(local_root);
439                 ret = PTR_ERR(ipath);
440                 ipath = NULL;
441                 goto err;
442         }
443         ret = paths_from_inode(inum, ipath);
444
445         if (ret < 0)
446                 goto err;
447
448         /*
449          * we deliberately ignore the bit ipath might have been too small to
450          * hold all of the paths here
451          */
452         for (i = 0; i < ipath->fspath->elem_cnt; ++i)
453                 btrfs_warn_in_rcu(fs_info,
454 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
455                                   swarn->errstr, swarn->logical,
456                                   btrfs_dev_name(swarn->dev),
457                                   swarn->physical,
458                                   root, inum, offset,
459                                   fs_info->sectorsize, nlink,
460                                   (char *)(unsigned long)ipath->fspath->val[i]);
461
462         btrfs_put_root(local_root);
463         free_ipath(ipath);
464         return 0;
465
466 err:
467         btrfs_warn_in_rcu(fs_info,
468                           "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
469                           swarn->errstr, swarn->logical,
470                           btrfs_dev_name(swarn->dev),
471                           swarn->physical,
472                           root, inum, offset, ret);
473
474         free_ipath(ipath);
475         return 0;
476 }
477
478 static void scrub_print_common_warning(const char *errstr, struct btrfs_device *dev,
479                                        bool is_super, u64 logical, u64 physical)
480 {
481         struct btrfs_fs_info *fs_info = dev->fs_info;
482         struct btrfs_path *path;
483         struct btrfs_key found_key;
484         struct extent_buffer *eb;
485         struct btrfs_extent_item *ei;
486         struct scrub_warning swarn;
487         u64 flags = 0;
488         u32 item_size;
489         int ret;
490
491         /* Super block error, no need to search extent tree. */
492         if (is_super) {
493                 btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
494                                   errstr, btrfs_dev_name(dev), physical);
495                 return;
496         }
497         path = btrfs_alloc_path();
498         if (!path)
499                 return;
500
501         swarn.physical = physical;
502         swarn.logical = logical;
503         swarn.errstr = errstr;
504         swarn.dev = NULL;
505
506         ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
507                                   &flags);
508         if (ret < 0)
509                 goto out;
510
511         swarn.extent_item_size = found_key.offset;
512
513         eb = path->nodes[0];
514         ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
515         item_size = btrfs_item_size(eb, path->slots[0]);
516
517         if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
518                 unsigned long ptr = 0;
519                 u8 ref_level;
520                 u64 ref_root;
521
522                 while (true) {
523                         ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
524                                                       item_size, &ref_root,
525                                                       &ref_level);
526                         if (ret < 0) {
527                                 btrfs_warn(fs_info,
528                                 "failed to resolve tree backref for logical %llu: %d",
529                                                   swarn.logical, ret);
530                                 break;
531                         }
532                         if (ret > 0)
533                                 break;
534                         btrfs_warn_in_rcu(fs_info,
535 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
536                                 errstr, swarn.logical, btrfs_dev_name(dev),
537                                 swarn.physical, (ref_level ? "node" : "leaf"),
538                                 ref_level, ref_root);
539                 }
540                 btrfs_release_path(path);
541         } else {
542                 struct btrfs_backref_walk_ctx ctx = { 0 };
543
544                 btrfs_release_path(path);
545
546                 ctx.bytenr = found_key.objectid;
547                 ctx.extent_item_pos = swarn.logical - found_key.objectid;
548                 ctx.fs_info = fs_info;
549
550                 swarn.path = path;
551                 swarn.dev = dev;
552
553                 iterate_extent_inodes(&ctx, true, scrub_print_warning_inode, &swarn);
554         }
555
556 out:
557         btrfs_free_path(path);
558 }
559
560 static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
561 {
562         int ret = 0;
563         u64 length;
564
565         if (!btrfs_is_zoned(sctx->fs_info))
566                 return 0;
567
568         if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
569                 return 0;
570
571         if (sctx->write_pointer < physical) {
572                 length = physical - sctx->write_pointer;
573
574                 ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
575                                                 sctx->write_pointer, length);
576                 if (!ret)
577                         sctx->write_pointer = physical;
578         }
579         return ret;
580 }
581
582 static struct page *scrub_stripe_get_page(struct scrub_stripe *stripe, int sector_nr)
583 {
584         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
585         int page_index = (sector_nr << fs_info->sectorsize_bits) >> PAGE_SHIFT;
586
587         return stripe->pages[page_index];
588 }
589
590 static unsigned int scrub_stripe_get_page_offset(struct scrub_stripe *stripe,
591                                                  int sector_nr)
592 {
593         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
594
595         return offset_in_page(sector_nr << fs_info->sectorsize_bits);
596 }
597
598 static void scrub_verify_one_metadata(struct scrub_stripe *stripe, int sector_nr)
599 {
600         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
601         const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
602         const u64 logical = stripe->logical + (sector_nr << fs_info->sectorsize_bits);
603         const struct page *first_page = scrub_stripe_get_page(stripe, sector_nr);
604         const unsigned int first_off = scrub_stripe_get_page_offset(stripe, sector_nr);
605         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
606         u8 on_disk_csum[BTRFS_CSUM_SIZE];
607         u8 calculated_csum[BTRFS_CSUM_SIZE];
608         struct btrfs_header *header;
609
610         /*
611          * Here we don't have a good way to attach the pages (and subpages)
612          * to a dummy extent buffer, thus we have to directly grab the members
613          * from pages.
614          */
615         header = (struct btrfs_header *)(page_address(first_page) + first_off);
616         memcpy(on_disk_csum, header->csum, fs_info->csum_size);
617
618         if (logical != btrfs_stack_header_bytenr(header)) {
619                 bitmap_set(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
620                 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
621                 btrfs_warn_rl(fs_info,
622                 "tree block %llu mirror %u has bad bytenr, has %llu want %llu",
623                               logical, stripe->mirror_num,
624                               btrfs_stack_header_bytenr(header), logical);
625                 return;
626         }
627         if (memcmp(header->fsid, fs_info->fs_devices->metadata_uuid,
628                    BTRFS_FSID_SIZE) != 0) {
629                 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
630                 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
631                 btrfs_warn_rl(fs_info,
632                 "tree block %llu mirror %u has bad fsid, has %pU want %pU",
633                               logical, stripe->mirror_num,
634                               header->fsid, fs_info->fs_devices->fsid);
635                 return;
636         }
637         if (memcmp(header->chunk_tree_uuid, fs_info->chunk_tree_uuid,
638                    BTRFS_UUID_SIZE) != 0) {
639                 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
640                 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
641                 btrfs_warn_rl(fs_info,
642                 "tree block %llu mirror %u has bad chunk tree uuid, has %pU want %pU",
643                               logical, stripe->mirror_num,
644                               header->chunk_tree_uuid, fs_info->chunk_tree_uuid);
645                 return;
646         }
647
648         /* Now check tree block csum. */
649         shash->tfm = fs_info->csum_shash;
650         crypto_shash_init(shash);
651         crypto_shash_update(shash, page_address(first_page) + first_off +
652                             BTRFS_CSUM_SIZE, fs_info->sectorsize - BTRFS_CSUM_SIZE);
653
654         for (int i = sector_nr + 1; i < sector_nr + sectors_per_tree; i++) {
655                 struct page *page = scrub_stripe_get_page(stripe, i);
656                 unsigned int page_off = scrub_stripe_get_page_offset(stripe, i);
657
658                 crypto_shash_update(shash, page_address(page) + page_off,
659                                     fs_info->sectorsize);
660         }
661
662         crypto_shash_final(shash, calculated_csum);
663         if (memcmp(calculated_csum, on_disk_csum, fs_info->csum_size) != 0) {
664                 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
665                 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
666                 btrfs_warn_rl(fs_info,
667                 "tree block %llu mirror %u has bad csum, has " CSUM_FMT " want " CSUM_FMT,
668                               logical, stripe->mirror_num,
669                               CSUM_FMT_VALUE(fs_info->csum_size, on_disk_csum),
670                               CSUM_FMT_VALUE(fs_info->csum_size, calculated_csum));
671                 return;
672         }
673         if (stripe->sectors[sector_nr].generation !=
674             btrfs_stack_header_generation(header)) {
675                 bitmap_set(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
676                 bitmap_set(&stripe->error_bitmap, sector_nr, sectors_per_tree);
677                 btrfs_warn_rl(fs_info,
678                 "tree block %llu mirror %u has bad generation, has %llu want %llu",
679                               logical, stripe->mirror_num,
680                               btrfs_stack_header_generation(header),
681                               stripe->sectors[sector_nr].generation);
682                 return;
683         }
684         bitmap_clear(&stripe->error_bitmap, sector_nr, sectors_per_tree);
685         bitmap_clear(&stripe->csum_error_bitmap, sector_nr, sectors_per_tree);
686         bitmap_clear(&stripe->meta_error_bitmap, sector_nr, sectors_per_tree);
687 }
688
689 static void scrub_verify_one_sector(struct scrub_stripe *stripe, int sector_nr)
690 {
691         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
692         struct scrub_sector_verification *sector = &stripe->sectors[sector_nr];
693         const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
694         struct page *page = scrub_stripe_get_page(stripe, sector_nr);
695         unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
696         u8 csum_buf[BTRFS_CSUM_SIZE];
697         int ret;
698
699         ASSERT(sector_nr >= 0 && sector_nr < stripe->nr_sectors);
700
701         /* Sector not utilized, skip it. */
702         if (!test_bit(sector_nr, &stripe->extent_sector_bitmap))
703                 return;
704
705         /* IO error, no need to check. */
706         if (test_bit(sector_nr, &stripe->io_error_bitmap))
707                 return;
708
709         /* Metadata, verify the full tree block. */
710         if (sector->is_metadata) {
711                 /*
712                  * Check if the tree block crosses the stripe boundary.  If
713                  * crossed the boundary, we cannot verify it but only give a
714                  * warning.
715                  *
716                  * This can only happen on a very old filesystem where chunks
717                  * are not ensured to be stripe aligned.
718                  */
719                 if (unlikely(sector_nr + sectors_per_tree > stripe->nr_sectors)) {
720                         btrfs_warn_rl(fs_info,
721                         "tree block at %llu crosses stripe boundary %llu",
722                                       stripe->logical +
723                                       (sector_nr << fs_info->sectorsize_bits),
724                                       stripe->logical);
725                         return;
726                 }
727                 scrub_verify_one_metadata(stripe, sector_nr);
728                 return;
729         }
730
731         /*
732          * Data is easier, we just verify the data csum (if we have it).  For
733          * cases without csum, we have no other choice but to trust it.
734          */
735         if (!sector->csum) {
736                 clear_bit(sector_nr, &stripe->error_bitmap);
737                 return;
738         }
739
740         ret = btrfs_check_sector_csum(fs_info, page, pgoff, csum_buf, sector->csum);
741         if (ret < 0) {
742                 set_bit(sector_nr, &stripe->csum_error_bitmap);
743                 set_bit(sector_nr, &stripe->error_bitmap);
744         } else {
745                 clear_bit(sector_nr, &stripe->csum_error_bitmap);
746                 clear_bit(sector_nr, &stripe->error_bitmap);
747         }
748 }
749
750 /* Verify specified sectors of a stripe. */
751 static void scrub_verify_one_stripe(struct scrub_stripe *stripe, unsigned long bitmap)
752 {
753         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
754         const u32 sectors_per_tree = fs_info->nodesize >> fs_info->sectorsize_bits;
755         int sector_nr;
756
757         for_each_set_bit(sector_nr, &bitmap, stripe->nr_sectors) {
758                 scrub_verify_one_sector(stripe, sector_nr);
759                 if (stripe->sectors[sector_nr].is_metadata)
760                         sector_nr += sectors_per_tree - 1;
761         }
762 }
763
764 static int calc_sector_number(struct scrub_stripe *stripe, struct bio_vec *first_bvec)
765 {
766         int i;
767
768         for (i = 0; i < stripe->nr_sectors; i++) {
769                 if (scrub_stripe_get_page(stripe, i) == first_bvec->bv_page &&
770                     scrub_stripe_get_page_offset(stripe, i) == first_bvec->bv_offset)
771                         break;
772         }
773         ASSERT(i < stripe->nr_sectors);
774         return i;
775 }
776
777 /*
778  * Repair read is different to the regular read:
779  *
780  * - Only reads the failed sectors
781  * - May have extra blocksize limits
782  */
783 static void scrub_repair_read_endio(struct btrfs_bio *bbio)
784 {
785         struct scrub_stripe *stripe = bbio->private;
786         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
787         struct bio_vec *bvec;
788         int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
789         u32 bio_size = 0;
790         int i;
791
792         ASSERT(sector_nr < stripe->nr_sectors);
793
794         bio_for_each_bvec_all(bvec, &bbio->bio, i)
795                 bio_size += bvec->bv_len;
796
797         if (bbio->bio.bi_status) {
798                 bitmap_set(&stripe->io_error_bitmap, sector_nr,
799                            bio_size >> fs_info->sectorsize_bits);
800                 bitmap_set(&stripe->error_bitmap, sector_nr,
801                            bio_size >> fs_info->sectorsize_bits);
802         } else {
803                 bitmap_clear(&stripe->io_error_bitmap, sector_nr,
804                              bio_size >> fs_info->sectorsize_bits);
805         }
806         bio_put(&bbio->bio);
807         if (atomic_dec_and_test(&stripe->pending_io))
808                 wake_up(&stripe->io_wait);
809 }
810
811 static int calc_next_mirror(int mirror, int num_copies)
812 {
813         ASSERT(mirror <= num_copies);
814         return (mirror + 1 > num_copies) ? 1 : mirror + 1;
815 }
816
817 static void scrub_stripe_submit_repair_read(struct scrub_stripe *stripe,
818                                             int mirror, int blocksize, bool wait)
819 {
820         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
821         struct btrfs_bio *bbio = NULL;
822         const unsigned long old_error_bitmap = stripe->error_bitmap;
823         int i;
824
825         ASSERT(stripe->mirror_num >= 1);
826         ASSERT(atomic_read(&stripe->pending_io) == 0);
827
828         for_each_set_bit(i, &old_error_bitmap, stripe->nr_sectors) {
829                 struct page *page;
830                 int pgoff;
831                 int ret;
832
833                 page = scrub_stripe_get_page(stripe, i);
834                 pgoff = scrub_stripe_get_page_offset(stripe, i);
835
836                 /* The current sector cannot be merged, submit the bio. */
837                 if (bbio && ((i > 0 && !test_bit(i - 1, &stripe->error_bitmap)) ||
838                              bbio->bio.bi_iter.bi_size >= blocksize)) {
839                         ASSERT(bbio->bio.bi_iter.bi_size);
840                         atomic_inc(&stripe->pending_io);
841                         btrfs_submit_bio(bbio, mirror);
842                         if (wait)
843                                 wait_scrub_stripe_io(stripe);
844                         bbio = NULL;
845                 }
846
847                 if (!bbio) {
848                         bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
849                                 fs_info, scrub_repair_read_endio, stripe);
850                         bbio->bio.bi_iter.bi_sector = (stripe->logical +
851                                 (i << fs_info->sectorsize_bits)) >> SECTOR_SHIFT;
852                 }
853
854                 ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
855                 ASSERT(ret == fs_info->sectorsize);
856         }
857         if (bbio) {
858                 ASSERT(bbio->bio.bi_iter.bi_size);
859                 atomic_inc(&stripe->pending_io);
860                 btrfs_submit_bio(bbio, mirror);
861                 if (wait)
862                         wait_scrub_stripe_io(stripe);
863         }
864 }
865
866 static void scrub_stripe_report_errors(struct scrub_ctx *sctx,
867                                        struct scrub_stripe *stripe)
868 {
869         static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
870                                       DEFAULT_RATELIMIT_BURST);
871         struct btrfs_fs_info *fs_info = sctx->fs_info;
872         struct btrfs_device *dev = NULL;
873         u64 physical = 0;
874         int nr_data_sectors = 0;
875         int nr_meta_sectors = 0;
876         int nr_nodatacsum_sectors = 0;
877         int nr_repaired_sectors = 0;
878         int sector_nr;
879
880         if (test_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state))
881                 return;
882
883         /*
884          * Init needed infos for error reporting.
885          *
886          * Although our scrub_stripe infrastructure is mostly based on btrfs_submit_bio()
887          * thus no need for dev/physical, error reporting still needs dev and physical.
888          */
889         if (!bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors)) {
890                 u64 mapped_len = fs_info->sectorsize;
891                 struct btrfs_io_context *bioc = NULL;
892                 int stripe_index = stripe->mirror_num - 1;
893                 int ret;
894
895                 /* For scrub, our mirror_num should always start at 1. */
896                 ASSERT(stripe->mirror_num >= 1);
897                 ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
898                                       stripe->logical, &mapped_len, &bioc,
899                                       NULL, NULL);
900                 /*
901                  * If we failed, dev will be NULL, and later detailed reports
902                  * will just be skipped.
903                  */
904                 if (ret < 0)
905                         goto skip;
906                 physical = bioc->stripes[stripe_index].physical;
907                 dev = bioc->stripes[stripe_index].dev;
908                 btrfs_put_bioc(bioc);
909         }
910
911 skip:
912         for_each_set_bit(sector_nr, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
913                 bool repaired = false;
914
915                 if (stripe->sectors[sector_nr].is_metadata) {
916                         nr_meta_sectors++;
917                 } else {
918                         nr_data_sectors++;
919                         if (!stripe->sectors[sector_nr].csum)
920                                 nr_nodatacsum_sectors++;
921                 }
922
923                 if (test_bit(sector_nr, &stripe->init_error_bitmap) &&
924                     !test_bit(sector_nr, &stripe->error_bitmap)) {
925                         nr_repaired_sectors++;
926                         repaired = true;
927                 }
928
929                 /* Good sector from the beginning, nothing need to be done. */
930                 if (!test_bit(sector_nr, &stripe->init_error_bitmap))
931                         continue;
932
933                 /*
934                  * Report error for the corrupted sectors.  If repaired, just
935                  * output the message of repaired message.
936                  */
937                 if (repaired) {
938                         if (dev) {
939                                 btrfs_err_rl_in_rcu(fs_info,
940                         "fixed up error at logical %llu on dev %s physical %llu",
941                                             stripe->logical, btrfs_dev_name(dev),
942                                             physical);
943                         } else {
944                                 btrfs_err_rl_in_rcu(fs_info,
945                         "fixed up error at logical %llu on mirror %u",
946                                             stripe->logical, stripe->mirror_num);
947                         }
948                         continue;
949                 }
950
951                 /* The remaining are all for unrepaired. */
952                 if (dev) {
953                         btrfs_err_rl_in_rcu(fs_info,
954         "unable to fixup (regular) error at logical %llu on dev %s physical %llu",
955                                             stripe->logical, btrfs_dev_name(dev),
956                                             physical);
957                 } else {
958                         btrfs_err_rl_in_rcu(fs_info,
959         "unable to fixup (regular) error at logical %llu on mirror %u",
960                                             stripe->logical, stripe->mirror_num);
961                 }
962
963                 if (test_bit(sector_nr, &stripe->io_error_bitmap))
964                         if (__ratelimit(&rs) && dev)
965                                 scrub_print_common_warning("i/o error", dev, false,
966                                                      stripe->logical, physical);
967                 if (test_bit(sector_nr, &stripe->csum_error_bitmap))
968                         if (__ratelimit(&rs) && dev)
969                                 scrub_print_common_warning("checksum error", dev, false,
970                                                      stripe->logical, physical);
971                 if (test_bit(sector_nr, &stripe->meta_error_bitmap))
972                         if (__ratelimit(&rs) && dev)
973                                 scrub_print_common_warning("header error", dev, false,
974                                                      stripe->logical, physical);
975         }
976
977         spin_lock(&sctx->stat_lock);
978         sctx->stat.data_extents_scrubbed += stripe->nr_data_extents;
979         sctx->stat.tree_extents_scrubbed += stripe->nr_meta_extents;
980         sctx->stat.data_bytes_scrubbed += nr_data_sectors << fs_info->sectorsize_bits;
981         sctx->stat.tree_bytes_scrubbed += nr_meta_sectors << fs_info->sectorsize_bits;
982         sctx->stat.no_csum += nr_nodatacsum_sectors;
983         sctx->stat.read_errors += stripe->init_nr_io_errors;
984         sctx->stat.csum_errors += stripe->init_nr_csum_errors;
985         sctx->stat.verify_errors += stripe->init_nr_meta_errors;
986         sctx->stat.uncorrectable_errors +=
987                 bitmap_weight(&stripe->error_bitmap, stripe->nr_sectors);
988         sctx->stat.corrected_errors += nr_repaired_sectors;
989         spin_unlock(&sctx->stat_lock);
990 }
991
992 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
993                                 unsigned long write_bitmap, bool dev_replace);
994
995 /*
996  * The main entrance for all read related scrub work, including:
997  *
998  * - Wait for the initial read to finish
999  * - Verify and locate any bad sectors
1000  * - Go through the remaining mirrors and try to read as large blocksize as
1001  *   possible
1002  * - Go through all mirrors (including the failed mirror) sector-by-sector
1003  * - Submit writeback for repaired sectors
1004  *
1005  * Writeback for dev-replace does not happen here, it needs extra
1006  * synchronization for zoned devices.
1007  */
1008 static void scrub_stripe_read_repair_worker(struct work_struct *work)
1009 {
1010         struct scrub_stripe *stripe = container_of(work, struct scrub_stripe, work);
1011         struct scrub_ctx *sctx = stripe->sctx;
1012         struct btrfs_fs_info *fs_info = sctx->fs_info;
1013         int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1014                                           stripe->bg->length);
1015         int mirror;
1016         int i;
1017
1018         ASSERT(stripe->mirror_num > 0);
1019
1020         wait_scrub_stripe_io(stripe);
1021         scrub_verify_one_stripe(stripe, stripe->extent_sector_bitmap);
1022         /* Save the initial failed bitmap for later repair and report usage. */
1023         stripe->init_error_bitmap = stripe->error_bitmap;
1024         stripe->init_nr_io_errors = bitmap_weight(&stripe->io_error_bitmap,
1025                                                   stripe->nr_sectors);
1026         stripe->init_nr_csum_errors = bitmap_weight(&stripe->csum_error_bitmap,
1027                                                     stripe->nr_sectors);
1028         stripe->init_nr_meta_errors = bitmap_weight(&stripe->meta_error_bitmap,
1029                                                     stripe->nr_sectors);
1030
1031         if (bitmap_empty(&stripe->init_error_bitmap, stripe->nr_sectors))
1032                 goto out;
1033
1034         /*
1035          * Try all remaining mirrors.
1036          *
1037          * Here we still try to read as large block as possible, as this is
1038          * faster and we have extra safety nets to rely on.
1039          */
1040         for (mirror = calc_next_mirror(stripe->mirror_num, num_copies);
1041              mirror != stripe->mirror_num;
1042              mirror = calc_next_mirror(mirror, num_copies)) {
1043                 const unsigned long old_error_bitmap = stripe->error_bitmap;
1044
1045                 scrub_stripe_submit_repair_read(stripe, mirror,
1046                                                 BTRFS_STRIPE_LEN, false);
1047                 wait_scrub_stripe_io(stripe);
1048                 scrub_verify_one_stripe(stripe, old_error_bitmap);
1049                 if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1050                         goto out;
1051         }
1052
1053         /*
1054          * Last safety net, try re-checking all mirrors, including the failed
1055          * one, sector-by-sector.
1056          *
1057          * As if one sector failed the drive's internal csum, the whole read
1058          * containing the offending sector would be marked as error.
1059          * Thus here we do sector-by-sector read.
1060          *
1061          * This can be slow, thus we only try it as the last resort.
1062          */
1063
1064         for (i = 0, mirror = stripe->mirror_num;
1065              i < num_copies;
1066              i++, mirror = calc_next_mirror(mirror, num_copies)) {
1067                 const unsigned long old_error_bitmap = stripe->error_bitmap;
1068
1069                 scrub_stripe_submit_repair_read(stripe, mirror,
1070                                                 fs_info->sectorsize, true);
1071                 wait_scrub_stripe_io(stripe);
1072                 scrub_verify_one_stripe(stripe, old_error_bitmap);
1073                 if (bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1074                         goto out;
1075         }
1076 out:
1077         /*
1078          * Submit the repaired sectors.  For zoned case, we cannot do repair
1079          * in-place, but queue the bg to be relocated.
1080          */
1081         if (btrfs_is_zoned(fs_info)) {
1082                 if (!bitmap_empty(&stripe->error_bitmap, stripe->nr_sectors))
1083                         btrfs_repair_one_zone(fs_info, sctx->stripes[0].bg->start);
1084         } else if (!sctx->readonly) {
1085                 unsigned long repaired;
1086
1087                 bitmap_andnot(&repaired, &stripe->init_error_bitmap,
1088                               &stripe->error_bitmap, stripe->nr_sectors);
1089                 scrub_write_sectors(sctx, stripe, repaired, false);
1090                 wait_scrub_stripe_io(stripe);
1091         }
1092
1093         scrub_stripe_report_errors(sctx, stripe);
1094         set_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state);
1095         wake_up(&stripe->repair_wait);
1096 }
1097
1098 static void scrub_read_endio(struct btrfs_bio *bbio)
1099 {
1100         struct scrub_stripe *stripe = bbio->private;
1101
1102         if (bbio->bio.bi_status) {
1103                 bitmap_set(&stripe->io_error_bitmap, 0, stripe->nr_sectors);
1104                 bitmap_set(&stripe->error_bitmap, 0, stripe->nr_sectors);
1105         } else {
1106                 bitmap_clear(&stripe->io_error_bitmap, 0, stripe->nr_sectors);
1107         }
1108         bio_put(&bbio->bio);
1109         if (atomic_dec_and_test(&stripe->pending_io)) {
1110                 wake_up(&stripe->io_wait);
1111                 INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1112                 queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1113         }
1114 }
1115
1116 static void scrub_write_endio(struct btrfs_bio *bbio)
1117 {
1118         struct scrub_stripe *stripe = bbio->private;
1119         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1120         struct bio_vec *bvec;
1121         int sector_nr = calc_sector_number(stripe, bio_first_bvec_all(&bbio->bio));
1122         u32 bio_size = 0;
1123         int i;
1124
1125         bio_for_each_bvec_all(bvec, &bbio->bio, i)
1126                 bio_size += bvec->bv_len;
1127
1128         if (bbio->bio.bi_status) {
1129                 unsigned long flags;
1130
1131                 spin_lock_irqsave(&stripe->write_error_lock, flags);
1132                 bitmap_set(&stripe->write_error_bitmap, sector_nr,
1133                            bio_size >> fs_info->sectorsize_bits);
1134                 spin_unlock_irqrestore(&stripe->write_error_lock, flags);
1135         }
1136         bio_put(&bbio->bio);
1137
1138         if (atomic_dec_and_test(&stripe->pending_io))
1139                 wake_up(&stripe->io_wait);
1140 }
1141
1142 static void scrub_submit_write_bio(struct scrub_ctx *sctx,
1143                                    struct scrub_stripe *stripe,
1144                                    struct btrfs_bio *bbio, bool dev_replace)
1145 {
1146         struct btrfs_fs_info *fs_info = sctx->fs_info;
1147         u32 bio_len = bbio->bio.bi_iter.bi_size;
1148         u32 bio_off = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT) -
1149                       stripe->logical;
1150
1151         fill_writer_pointer_gap(sctx, stripe->physical + bio_off);
1152         atomic_inc(&stripe->pending_io);
1153         btrfs_submit_repair_write(bbio, stripe->mirror_num, dev_replace);
1154         if (!btrfs_is_zoned(fs_info))
1155                 return;
1156         /*
1157          * For zoned writeback, queue depth must be 1, thus we must wait for
1158          * the write to finish before the next write.
1159          */
1160         wait_scrub_stripe_io(stripe);
1161
1162         /*
1163          * And also need to update the write pointer if write finished
1164          * successfully.
1165          */
1166         if (!test_bit(bio_off >> fs_info->sectorsize_bits,
1167                       &stripe->write_error_bitmap))
1168                 sctx->write_pointer += bio_len;
1169 }
1170
1171 /*
1172  * Submit the write bio(s) for the sectors specified by @write_bitmap.
1173  *
1174  * Here we utilize btrfs_submit_repair_write(), which has some extra benefits:
1175  *
1176  * - Only needs logical bytenr and mirror_num
1177  *   Just like the scrub read path
1178  *
1179  * - Would only result in writes to the specified mirror
1180  *   Unlike the regular writeback path, which would write back to all stripes
1181  *
1182  * - Handle dev-replace and read-repair writeback differently
1183  */
1184 static void scrub_write_sectors(struct scrub_ctx *sctx, struct scrub_stripe *stripe,
1185                                 unsigned long write_bitmap, bool dev_replace)
1186 {
1187         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1188         struct btrfs_bio *bbio = NULL;
1189         int sector_nr;
1190
1191         for_each_set_bit(sector_nr, &write_bitmap, stripe->nr_sectors) {
1192                 struct page *page = scrub_stripe_get_page(stripe, sector_nr);
1193                 unsigned int pgoff = scrub_stripe_get_page_offset(stripe, sector_nr);
1194                 int ret;
1195
1196                 /* We should only writeback sectors covered by an extent. */
1197                 ASSERT(test_bit(sector_nr, &stripe->extent_sector_bitmap));
1198
1199                 /* Cannot merge with previous sector, submit the current one. */
1200                 if (bbio && sector_nr && !test_bit(sector_nr - 1, &write_bitmap)) {
1201                         scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1202                         bbio = NULL;
1203                 }
1204                 if (!bbio) {
1205                         bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_WRITE,
1206                                                fs_info, scrub_write_endio, stripe);
1207                         bbio->bio.bi_iter.bi_sector = (stripe->logical +
1208                                 (sector_nr << fs_info->sectorsize_bits)) >>
1209                                 SECTOR_SHIFT;
1210                 }
1211                 ret = bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1212                 ASSERT(ret == fs_info->sectorsize);
1213         }
1214         if (bbio)
1215                 scrub_submit_write_bio(sctx, stripe, bbio, dev_replace);
1216 }
1217
1218 /*
1219  * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
1220  * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
1221  */
1222 static void scrub_throttle_dev_io(struct scrub_ctx *sctx, struct btrfs_device *device,
1223                                   unsigned int bio_size)
1224 {
1225         const int time_slice = 1000;
1226         s64 delta;
1227         ktime_t now;
1228         u32 div;
1229         u64 bwlimit;
1230
1231         bwlimit = READ_ONCE(device->scrub_speed_max);
1232         if (bwlimit == 0)
1233                 return;
1234
1235         /*
1236          * Slice is divided into intervals when the IO is submitted, adjust by
1237          * bwlimit and maximum of 64 intervals.
1238          */
1239         div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
1240         div = min_t(u32, 64, div);
1241
1242         /* Start new epoch, set deadline */
1243         now = ktime_get();
1244         if (sctx->throttle_deadline == 0) {
1245                 sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
1246                 sctx->throttle_sent = 0;
1247         }
1248
1249         /* Still in the time to send? */
1250         if (ktime_before(now, sctx->throttle_deadline)) {
1251                 /* If current bio is within the limit, send it */
1252                 sctx->throttle_sent += bio_size;
1253                 if (sctx->throttle_sent <= div_u64(bwlimit, div))
1254                         return;
1255
1256                 /* We're over the limit, sleep until the rest of the slice */
1257                 delta = ktime_ms_delta(sctx->throttle_deadline, now);
1258         } else {
1259                 /* New request after deadline, start new epoch */
1260                 delta = 0;
1261         }
1262
1263         if (delta) {
1264                 long timeout;
1265
1266                 timeout = div_u64(delta * HZ, 1000);
1267                 schedule_timeout_interruptible(timeout);
1268         }
1269
1270         /* Next call will start the deadline period */
1271         sctx->throttle_deadline = 0;
1272 }
1273
1274 /*
1275  * Given a physical address, this will calculate it's
1276  * logical offset. if this is a parity stripe, it will return
1277  * the most left data stripe's logical offset.
1278  *
1279  * return 0 if it is a data stripe, 1 means parity stripe.
1280  */
1281 static int get_raid56_logic_offset(u64 physical, int num,
1282                                    struct btrfs_chunk_map *map, u64 *offset,
1283                                    u64 *stripe_start)
1284 {
1285         int i;
1286         int j = 0;
1287         u64 last_offset;
1288         const int data_stripes = nr_data_stripes(map);
1289
1290         last_offset = (physical - map->stripes[num].physical) * data_stripes;
1291         if (stripe_start)
1292                 *stripe_start = last_offset;
1293
1294         *offset = last_offset;
1295         for (i = 0; i < data_stripes; i++) {
1296                 u32 stripe_nr;
1297                 u32 stripe_index;
1298                 u32 rot;
1299
1300                 *offset = last_offset + btrfs_stripe_nr_to_offset(i);
1301
1302                 stripe_nr = (u32)(*offset >> BTRFS_STRIPE_LEN_SHIFT) / data_stripes;
1303
1304                 /* Work out the disk rotation on this stripe-set */
1305                 rot = stripe_nr % map->num_stripes;
1306                 /* calculate which stripe this data locates */
1307                 rot += i;
1308                 stripe_index = rot % map->num_stripes;
1309                 if (stripe_index == num)
1310                         return 0;
1311                 if (stripe_index < num)
1312                         j++;
1313         }
1314         *offset = last_offset + btrfs_stripe_nr_to_offset(j);
1315         return 1;
1316 }
1317
1318 /*
1319  * Return 0 if the extent item range covers any byte of the range.
1320  * Return <0 if the extent item is before @search_start.
1321  * Return >0 if the extent item is after @start_start + @search_len.
1322  */
1323 static int compare_extent_item_range(struct btrfs_path *path,
1324                                      u64 search_start, u64 search_len)
1325 {
1326         struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
1327         u64 len;
1328         struct btrfs_key key;
1329
1330         btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1331         ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
1332                key.type == BTRFS_METADATA_ITEM_KEY);
1333         if (key.type == BTRFS_METADATA_ITEM_KEY)
1334                 len = fs_info->nodesize;
1335         else
1336                 len = key.offset;
1337
1338         if (key.objectid + len <= search_start)
1339                 return -1;
1340         if (key.objectid >= search_start + search_len)
1341                 return 1;
1342         return 0;
1343 }
1344
1345 /*
1346  * Locate one extent item which covers any byte in range
1347  * [@search_start, @search_start + @search_length)
1348  *
1349  * If the path is not initialized, we will initialize the search by doing
1350  * a btrfs_search_slot().
1351  * If the path is already initialized, we will use the path as the initial
1352  * slot, to avoid duplicated btrfs_search_slot() calls.
1353  *
1354  * NOTE: If an extent item starts before @search_start, we will still
1355  * return the extent item. This is for data extent crossing stripe boundary.
1356  *
1357  * Return 0 if we found such extent item, and @path will point to the extent item.
1358  * Return >0 if no such extent item can be found, and @path will be released.
1359  * Return <0 if hit fatal error, and @path will be released.
1360  */
1361 static int find_first_extent_item(struct btrfs_root *extent_root,
1362                                   struct btrfs_path *path,
1363                                   u64 search_start, u64 search_len)
1364 {
1365         struct btrfs_fs_info *fs_info = extent_root->fs_info;
1366         struct btrfs_key key;
1367         int ret;
1368
1369         /* Continue using the existing path */
1370         if (path->nodes[0])
1371                 goto search_forward;
1372
1373         if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1374                 key.type = BTRFS_METADATA_ITEM_KEY;
1375         else
1376                 key.type = BTRFS_EXTENT_ITEM_KEY;
1377         key.objectid = search_start;
1378         key.offset = (u64)-1;
1379
1380         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
1381         if (ret < 0)
1382                 return ret;
1383
1384         ASSERT(ret > 0);
1385         /*
1386          * Here we intentionally pass 0 as @min_objectid, as there could be
1387          * an extent item starting before @search_start.
1388          */
1389         ret = btrfs_previous_extent_item(extent_root, path, 0);
1390         if (ret < 0)
1391                 return ret;
1392         /*
1393          * No matter whether we have found an extent item, the next loop will
1394          * properly do every check on the key.
1395          */
1396 search_forward:
1397         while (true) {
1398                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1399                 if (key.objectid >= search_start + search_len)
1400                         break;
1401                 if (key.type != BTRFS_METADATA_ITEM_KEY &&
1402                     key.type != BTRFS_EXTENT_ITEM_KEY)
1403                         goto next;
1404
1405                 ret = compare_extent_item_range(path, search_start, search_len);
1406                 if (ret == 0)
1407                         return ret;
1408                 if (ret > 0)
1409                         break;
1410 next:
1411                 ret = btrfs_next_item(extent_root, path);
1412                 if (ret) {
1413                         /* Either no more items or a fatal error. */
1414                         btrfs_release_path(path);
1415                         return ret;
1416                 }
1417         }
1418         btrfs_release_path(path);
1419         return 1;
1420 }
1421
1422 static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
1423                             u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
1424 {
1425         struct btrfs_key key;
1426         struct btrfs_extent_item *ei;
1427
1428         btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1429         ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
1430                key.type == BTRFS_EXTENT_ITEM_KEY);
1431         *extent_start_ret = key.objectid;
1432         if (key.type == BTRFS_METADATA_ITEM_KEY)
1433                 *size_ret = path->nodes[0]->fs_info->nodesize;
1434         else
1435                 *size_ret = key.offset;
1436         ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
1437         *flags_ret = btrfs_extent_flags(path->nodes[0], ei);
1438         *generation_ret = btrfs_extent_generation(path->nodes[0], ei);
1439 }
1440
1441 static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
1442                                         u64 physical, u64 physical_end)
1443 {
1444         struct btrfs_fs_info *fs_info = sctx->fs_info;
1445         int ret = 0;
1446
1447         if (!btrfs_is_zoned(fs_info))
1448                 return 0;
1449
1450         mutex_lock(&sctx->wr_lock);
1451         if (sctx->write_pointer < physical_end) {
1452                 ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
1453                                                     physical,
1454                                                     sctx->write_pointer);
1455                 if (ret)
1456                         btrfs_err(fs_info,
1457                                   "zoned: failed to recover write pointer");
1458         }
1459         mutex_unlock(&sctx->wr_lock);
1460         btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
1461
1462         return ret;
1463 }
1464
1465 static void fill_one_extent_info(struct btrfs_fs_info *fs_info,
1466                                  struct scrub_stripe *stripe,
1467                                  u64 extent_start, u64 extent_len,
1468                                  u64 extent_flags, u64 extent_gen)
1469 {
1470         for (u64 cur_logical = max(stripe->logical, extent_start);
1471              cur_logical < min(stripe->logical + BTRFS_STRIPE_LEN,
1472                                extent_start + extent_len);
1473              cur_logical += fs_info->sectorsize) {
1474                 const int nr_sector = (cur_logical - stripe->logical) >>
1475                                       fs_info->sectorsize_bits;
1476                 struct scrub_sector_verification *sector =
1477                                                 &stripe->sectors[nr_sector];
1478
1479                 set_bit(nr_sector, &stripe->extent_sector_bitmap);
1480                 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1481                         sector->is_metadata = true;
1482                         sector->generation = extent_gen;
1483                 }
1484         }
1485 }
1486
1487 static void scrub_stripe_reset_bitmaps(struct scrub_stripe *stripe)
1488 {
1489         stripe->extent_sector_bitmap = 0;
1490         stripe->init_error_bitmap = 0;
1491         stripe->init_nr_io_errors = 0;
1492         stripe->init_nr_csum_errors = 0;
1493         stripe->init_nr_meta_errors = 0;
1494         stripe->error_bitmap = 0;
1495         stripe->io_error_bitmap = 0;
1496         stripe->csum_error_bitmap = 0;
1497         stripe->meta_error_bitmap = 0;
1498 }
1499
1500 /*
1501  * Locate one stripe which has at least one extent in its range.
1502  *
1503  * Return 0 if found such stripe, and store its info into @stripe.
1504  * Return >0 if there is no such stripe in the specified range.
1505  * Return <0 for error.
1506  */
1507 static int scrub_find_fill_first_stripe(struct btrfs_block_group *bg,
1508                                         struct btrfs_path *extent_path,
1509                                         struct btrfs_path *csum_path,
1510                                         struct btrfs_device *dev, u64 physical,
1511                                         int mirror_num, u64 logical_start,
1512                                         u32 logical_len,
1513                                         struct scrub_stripe *stripe)
1514 {
1515         struct btrfs_fs_info *fs_info = bg->fs_info;
1516         struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bg->start);
1517         struct btrfs_root *csum_root = btrfs_csum_root(fs_info, bg->start);
1518         const u64 logical_end = logical_start + logical_len;
1519         u64 cur_logical = logical_start;
1520         u64 stripe_end;
1521         u64 extent_start;
1522         u64 extent_len;
1523         u64 extent_flags;
1524         u64 extent_gen;
1525         int ret;
1526
1527         memset(stripe->sectors, 0, sizeof(struct scrub_sector_verification) *
1528                                    stripe->nr_sectors);
1529         scrub_stripe_reset_bitmaps(stripe);
1530
1531         /* The range must be inside the bg. */
1532         ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
1533
1534         ret = find_first_extent_item(extent_root, extent_path, logical_start,
1535                                      logical_len);
1536         /* Either error or not found. */
1537         if (ret)
1538                 goto out;
1539         get_extent_info(extent_path, &extent_start, &extent_len, &extent_flags,
1540                         &extent_gen);
1541         if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1542                 stripe->nr_meta_extents++;
1543         if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1544                 stripe->nr_data_extents++;
1545         cur_logical = max(extent_start, cur_logical);
1546
1547         /*
1548          * Round down to stripe boundary.
1549          *
1550          * The extra calculation against bg->start is to handle block groups
1551          * whose logical bytenr is not BTRFS_STRIPE_LEN aligned.
1552          */
1553         stripe->logical = round_down(cur_logical - bg->start, BTRFS_STRIPE_LEN) +
1554                           bg->start;
1555         stripe->physical = physical + stripe->logical - logical_start;
1556         stripe->dev = dev;
1557         stripe->bg = bg;
1558         stripe->mirror_num = mirror_num;
1559         stripe_end = stripe->logical + BTRFS_STRIPE_LEN - 1;
1560
1561         /* Fill the first extent info into stripe->sectors[] array. */
1562         fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1563                              extent_flags, extent_gen);
1564         cur_logical = extent_start + extent_len;
1565
1566         /* Fill the extent info for the remaining sectors. */
1567         while (cur_logical <= stripe_end) {
1568                 ret = find_first_extent_item(extent_root, extent_path, cur_logical,
1569                                              stripe_end - cur_logical + 1);
1570                 if (ret < 0)
1571                         goto out;
1572                 if (ret > 0) {
1573                         ret = 0;
1574                         break;
1575                 }
1576                 get_extent_info(extent_path, &extent_start, &extent_len,
1577                                 &extent_flags, &extent_gen);
1578                 if (extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1579                         stripe->nr_meta_extents++;
1580                 if (extent_flags & BTRFS_EXTENT_FLAG_DATA)
1581                         stripe->nr_data_extents++;
1582                 fill_one_extent_info(fs_info, stripe, extent_start, extent_len,
1583                                      extent_flags, extent_gen);
1584                 cur_logical = extent_start + extent_len;
1585         }
1586
1587         /* Now fill the data csum. */
1588         if (bg->flags & BTRFS_BLOCK_GROUP_DATA) {
1589                 int sector_nr;
1590                 unsigned long csum_bitmap = 0;
1591
1592                 /* Csum space should have already been allocated. */
1593                 ASSERT(stripe->csums);
1594
1595                 /*
1596                  * Our csum bitmap should be large enough, as BTRFS_STRIPE_LEN
1597                  * should contain at most 16 sectors.
1598                  */
1599                 ASSERT(BITS_PER_LONG >= BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
1600
1601                 ret = btrfs_lookup_csums_bitmap(csum_root, csum_path,
1602                                                 stripe->logical, stripe_end,
1603                                                 stripe->csums, &csum_bitmap);
1604                 if (ret < 0)
1605                         goto out;
1606                 if (ret > 0)
1607                         ret = 0;
1608
1609                 for_each_set_bit(sector_nr, &csum_bitmap, stripe->nr_sectors) {
1610                         stripe->sectors[sector_nr].csum = stripe->csums +
1611                                 sector_nr * fs_info->csum_size;
1612                 }
1613         }
1614         set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1615 out:
1616         return ret;
1617 }
1618
1619 static void scrub_reset_stripe(struct scrub_stripe *stripe)
1620 {
1621         scrub_stripe_reset_bitmaps(stripe);
1622
1623         stripe->nr_meta_extents = 0;
1624         stripe->nr_data_extents = 0;
1625         stripe->state = 0;
1626
1627         for (int i = 0; i < stripe->nr_sectors; i++) {
1628                 stripe->sectors[i].is_metadata = false;
1629                 stripe->sectors[i].csum = NULL;
1630                 stripe->sectors[i].generation = 0;
1631         }
1632 }
1633
1634 static void scrub_submit_extent_sector_read(struct scrub_ctx *sctx,
1635                                             struct scrub_stripe *stripe)
1636 {
1637         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1638         struct btrfs_bio *bbio = NULL;
1639         u64 stripe_len = BTRFS_STRIPE_LEN;
1640         int mirror = stripe->mirror_num;
1641         int i;
1642
1643         atomic_inc(&stripe->pending_io);
1644
1645         for_each_set_bit(i, &stripe->extent_sector_bitmap, stripe->nr_sectors) {
1646                 struct page *page = scrub_stripe_get_page(stripe, i);
1647                 unsigned int pgoff = scrub_stripe_get_page_offset(stripe, i);
1648
1649                 /* The current sector cannot be merged, submit the bio. */
1650                 if (bbio &&
1651                     ((i > 0 &&
1652                       !test_bit(i - 1, &stripe->extent_sector_bitmap)) ||
1653                      bbio->bio.bi_iter.bi_size >= stripe_len)) {
1654                         ASSERT(bbio->bio.bi_iter.bi_size);
1655                         atomic_inc(&stripe->pending_io);
1656                         btrfs_submit_bio(bbio, mirror);
1657                         bbio = NULL;
1658                 }
1659
1660                 if (!bbio) {
1661                         struct btrfs_io_stripe io_stripe = {};
1662                         struct btrfs_io_context *bioc = NULL;
1663                         const u64 logical = stripe->logical +
1664                                             (i << fs_info->sectorsize_bits);
1665                         int err;
1666
1667                         bbio = btrfs_bio_alloc(stripe->nr_sectors, REQ_OP_READ,
1668                                                fs_info, scrub_read_endio, stripe);
1669                         bbio->bio.bi_iter.bi_sector = logical >> SECTOR_SHIFT;
1670
1671                         io_stripe.is_scrub = true;
1672                         err = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
1673                                               &stripe_len, &bioc, &io_stripe,
1674                                               &mirror);
1675                         btrfs_put_bioc(bioc);
1676                         if (err) {
1677                                 btrfs_bio_end_io(bbio,
1678                                                  errno_to_blk_status(err));
1679                                 return;
1680                         }
1681                 }
1682
1683                 __bio_add_page(&bbio->bio, page, fs_info->sectorsize, pgoff);
1684         }
1685
1686         if (bbio) {
1687                 ASSERT(bbio->bio.bi_iter.bi_size);
1688                 atomic_inc(&stripe->pending_io);
1689                 btrfs_submit_bio(bbio, mirror);
1690         }
1691
1692         if (atomic_dec_and_test(&stripe->pending_io)) {
1693                 wake_up(&stripe->io_wait);
1694                 INIT_WORK(&stripe->work, scrub_stripe_read_repair_worker);
1695                 queue_work(stripe->bg->fs_info->scrub_workers, &stripe->work);
1696         }
1697 }
1698
1699 static void scrub_submit_initial_read(struct scrub_ctx *sctx,
1700                                       struct scrub_stripe *stripe)
1701 {
1702         struct btrfs_fs_info *fs_info = sctx->fs_info;
1703         struct btrfs_bio *bbio;
1704         int mirror = stripe->mirror_num;
1705
1706         ASSERT(stripe->bg);
1707         ASSERT(stripe->mirror_num > 0);
1708         ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1709
1710         if (btrfs_need_stripe_tree_update(fs_info, stripe->bg->flags)) {
1711                 scrub_submit_extent_sector_read(sctx, stripe);
1712                 return;
1713         }
1714
1715         bbio = btrfs_bio_alloc(SCRUB_STRIPE_PAGES, REQ_OP_READ, fs_info,
1716                                scrub_read_endio, stripe);
1717
1718         /* Read the whole stripe. */
1719         bbio->bio.bi_iter.bi_sector = stripe->logical >> SECTOR_SHIFT;
1720         for (int i = 0; i < BTRFS_STRIPE_LEN >> PAGE_SHIFT; i++) {
1721                 int ret;
1722
1723                 ret = bio_add_page(&bbio->bio, stripe->pages[i], PAGE_SIZE, 0);
1724                 /* We should have allocated enough bio vectors. */
1725                 ASSERT(ret == PAGE_SIZE);
1726         }
1727         atomic_inc(&stripe->pending_io);
1728
1729         /*
1730          * For dev-replace, either user asks to avoid the source dev, or
1731          * the device is missing, we try the next mirror instead.
1732          */
1733         if (sctx->is_dev_replace &&
1734             (fs_info->dev_replace.cont_reading_from_srcdev_mode ==
1735              BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID ||
1736              !stripe->dev->bdev)) {
1737                 int num_copies = btrfs_num_copies(fs_info, stripe->bg->start,
1738                                                   stripe->bg->length);
1739
1740                 mirror = calc_next_mirror(mirror, num_copies);
1741         }
1742         btrfs_submit_bio(bbio, mirror);
1743 }
1744
1745 static bool stripe_has_metadata_error(struct scrub_stripe *stripe)
1746 {
1747         int i;
1748
1749         for_each_set_bit(i, &stripe->error_bitmap, stripe->nr_sectors) {
1750                 if (stripe->sectors[i].is_metadata) {
1751                         struct btrfs_fs_info *fs_info = stripe->bg->fs_info;
1752
1753                         btrfs_err(fs_info,
1754                         "stripe %llu has unrepaired metadata sector at %llu",
1755                                   stripe->logical,
1756                                   stripe->logical + (i << fs_info->sectorsize_bits));
1757                         return true;
1758                 }
1759         }
1760         return false;
1761 }
1762
1763 static void submit_initial_group_read(struct scrub_ctx *sctx,
1764                                       unsigned int first_slot,
1765                                       unsigned int nr_stripes)
1766 {
1767         struct blk_plug plug;
1768
1769         ASSERT(first_slot < SCRUB_TOTAL_STRIPES);
1770         ASSERT(first_slot + nr_stripes <= SCRUB_TOTAL_STRIPES);
1771
1772         scrub_throttle_dev_io(sctx, sctx->stripes[0].dev,
1773                               btrfs_stripe_nr_to_offset(nr_stripes));
1774         blk_start_plug(&plug);
1775         for (int i = 0; i < nr_stripes; i++) {
1776                 struct scrub_stripe *stripe = &sctx->stripes[first_slot + i];
1777
1778                 /* Those stripes should be initialized. */
1779                 ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state));
1780                 scrub_submit_initial_read(sctx, stripe);
1781         }
1782         blk_finish_plug(&plug);
1783 }
1784
1785 static int flush_scrub_stripes(struct scrub_ctx *sctx)
1786 {
1787         struct btrfs_fs_info *fs_info = sctx->fs_info;
1788         struct scrub_stripe *stripe;
1789         const int nr_stripes = sctx->cur_stripe;
1790         int ret = 0;
1791
1792         if (!nr_stripes)
1793                 return 0;
1794
1795         ASSERT(test_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &sctx->stripes[0].state));
1796
1797         /* Submit the stripes which are populated but not submitted. */
1798         if (nr_stripes % SCRUB_STRIPES_PER_GROUP) {
1799                 const int first_slot = round_down(nr_stripes, SCRUB_STRIPES_PER_GROUP);
1800
1801                 submit_initial_group_read(sctx, first_slot, nr_stripes - first_slot);
1802         }
1803
1804         for (int i = 0; i < nr_stripes; i++) {
1805                 stripe = &sctx->stripes[i];
1806
1807                 wait_event(stripe->repair_wait,
1808                            test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
1809         }
1810
1811         /* Submit for dev-replace. */
1812         if (sctx->is_dev_replace) {
1813                 /*
1814                  * For dev-replace, if we know there is something wrong with
1815                  * metadata, we should immediately abort.
1816                  */
1817                 for (int i = 0; i < nr_stripes; i++) {
1818                         if (stripe_has_metadata_error(&sctx->stripes[i])) {
1819                                 ret = -EIO;
1820                                 goto out;
1821                         }
1822                 }
1823                 for (int i = 0; i < nr_stripes; i++) {
1824                         unsigned long good;
1825
1826                         stripe = &sctx->stripes[i];
1827
1828                         ASSERT(stripe->dev == fs_info->dev_replace.srcdev);
1829
1830                         bitmap_andnot(&good, &stripe->extent_sector_bitmap,
1831                                       &stripe->error_bitmap, stripe->nr_sectors);
1832                         scrub_write_sectors(sctx, stripe, good, true);
1833                 }
1834         }
1835
1836         /* Wait for the above writebacks to finish. */
1837         for (int i = 0; i < nr_stripes; i++) {
1838                 stripe = &sctx->stripes[i];
1839
1840                 wait_scrub_stripe_io(stripe);
1841                 scrub_reset_stripe(stripe);
1842         }
1843 out:
1844         sctx->cur_stripe = 0;
1845         return ret;
1846 }
1847
1848 static void raid56_scrub_wait_endio(struct bio *bio)
1849 {
1850         complete(bio->bi_private);
1851 }
1852
1853 static int queue_scrub_stripe(struct scrub_ctx *sctx, struct btrfs_block_group *bg,
1854                               struct btrfs_device *dev, int mirror_num,
1855                               u64 logical, u32 length, u64 physical,
1856                               u64 *found_logical_ret)
1857 {
1858         struct scrub_stripe *stripe;
1859         int ret;
1860
1861         /*
1862          * There should always be one slot left, as caller filling the last
1863          * slot should flush them all.
1864          */
1865         ASSERT(sctx->cur_stripe < SCRUB_TOTAL_STRIPES);
1866
1867         /* @found_logical_ret must be specified. */
1868         ASSERT(found_logical_ret);
1869
1870         stripe = &sctx->stripes[sctx->cur_stripe];
1871         scrub_reset_stripe(stripe);
1872         ret = scrub_find_fill_first_stripe(bg, &sctx->extent_path,
1873                                            &sctx->csum_path, dev, physical,
1874                                            mirror_num, logical, length, stripe);
1875         /* Either >0 as no more extents or <0 for error. */
1876         if (ret)
1877                 return ret;
1878         *found_logical_ret = stripe->logical;
1879         sctx->cur_stripe++;
1880
1881         /* We filled one group, submit it. */
1882         if (sctx->cur_stripe % SCRUB_STRIPES_PER_GROUP == 0) {
1883                 const int first_slot = sctx->cur_stripe - SCRUB_STRIPES_PER_GROUP;
1884
1885                 submit_initial_group_read(sctx, first_slot, SCRUB_STRIPES_PER_GROUP);
1886         }
1887
1888         /* Last slot used, flush them all. */
1889         if (sctx->cur_stripe == SCRUB_TOTAL_STRIPES)
1890                 return flush_scrub_stripes(sctx);
1891         return 0;
1892 }
1893
1894 static int scrub_raid56_parity_stripe(struct scrub_ctx *sctx,
1895                                       struct btrfs_device *scrub_dev,
1896                                       struct btrfs_block_group *bg,
1897                                       struct btrfs_chunk_map *map,
1898                                       u64 full_stripe_start)
1899 {
1900         DECLARE_COMPLETION_ONSTACK(io_done);
1901         struct btrfs_fs_info *fs_info = sctx->fs_info;
1902         struct btrfs_raid_bio *rbio;
1903         struct btrfs_io_context *bioc = NULL;
1904         struct btrfs_path extent_path = { 0 };
1905         struct btrfs_path csum_path = { 0 };
1906         struct bio *bio;
1907         struct scrub_stripe *stripe;
1908         bool all_empty = true;
1909         const int data_stripes = nr_data_stripes(map);
1910         unsigned long extent_bitmap = 0;
1911         u64 length = btrfs_stripe_nr_to_offset(data_stripes);
1912         int ret;
1913
1914         ASSERT(sctx->raid56_data_stripes);
1915
1916         /*
1917          * For data stripe search, we cannot re-use the same extent/csum paths,
1918          * as the data stripe bytenr may be smaller than previous extent.  Thus
1919          * we have to use our own extent/csum paths.
1920          */
1921         extent_path.search_commit_root = 1;
1922         extent_path.skip_locking = 1;
1923         csum_path.search_commit_root = 1;
1924         csum_path.skip_locking = 1;
1925
1926         for (int i = 0; i < data_stripes; i++) {
1927                 int stripe_index;
1928                 int rot;
1929                 u64 physical;
1930
1931                 stripe = &sctx->raid56_data_stripes[i];
1932                 rot = div_u64(full_stripe_start - bg->start,
1933                               data_stripes) >> BTRFS_STRIPE_LEN_SHIFT;
1934                 stripe_index = (i + rot) % map->num_stripes;
1935                 physical = map->stripes[stripe_index].physical +
1936                            btrfs_stripe_nr_to_offset(rot);
1937
1938                 scrub_reset_stripe(stripe);
1939                 set_bit(SCRUB_STRIPE_FLAG_NO_REPORT, &stripe->state);
1940                 ret = scrub_find_fill_first_stripe(bg, &extent_path, &csum_path,
1941                                 map->stripes[stripe_index].dev, physical, 1,
1942                                 full_stripe_start + btrfs_stripe_nr_to_offset(i),
1943                                 BTRFS_STRIPE_LEN, stripe);
1944                 if (ret < 0)
1945                         goto out;
1946                 /*
1947                  * No extent in this data stripe, need to manually mark them
1948                  * initialized to make later read submission happy.
1949                  */
1950                 if (ret > 0) {
1951                         stripe->logical = full_stripe_start +
1952                                           btrfs_stripe_nr_to_offset(i);
1953                         stripe->dev = map->stripes[stripe_index].dev;
1954                         stripe->mirror_num = 1;
1955                         set_bit(SCRUB_STRIPE_FLAG_INITIALIZED, &stripe->state);
1956                 }
1957         }
1958
1959         /* Check if all data stripes are empty. */
1960         for (int i = 0; i < data_stripes; i++) {
1961                 stripe = &sctx->raid56_data_stripes[i];
1962                 if (!bitmap_empty(&stripe->extent_sector_bitmap, stripe->nr_sectors)) {
1963                         all_empty = false;
1964                         break;
1965                 }
1966         }
1967         if (all_empty) {
1968                 ret = 0;
1969                 goto out;
1970         }
1971
1972         for (int i = 0; i < data_stripes; i++) {
1973                 stripe = &sctx->raid56_data_stripes[i];
1974                 scrub_submit_initial_read(sctx, stripe);
1975         }
1976         for (int i = 0; i < data_stripes; i++) {
1977                 stripe = &sctx->raid56_data_stripes[i];
1978
1979                 wait_event(stripe->repair_wait,
1980                            test_bit(SCRUB_STRIPE_FLAG_REPAIR_DONE, &stripe->state));
1981         }
1982         /* For now, no zoned support for RAID56. */
1983         ASSERT(!btrfs_is_zoned(sctx->fs_info));
1984
1985         /*
1986          * Now all data stripes are properly verified. Check if we have any
1987          * unrepaired, if so abort immediately or we could further corrupt the
1988          * P/Q stripes.
1989          *
1990          * During the loop, also populate extent_bitmap.
1991          */
1992         for (int i = 0; i < data_stripes; i++) {
1993                 unsigned long error;
1994
1995                 stripe = &sctx->raid56_data_stripes[i];
1996
1997                 /*
1998                  * We should only check the errors where there is an extent.
1999                  * As we may hit an empty data stripe while it's missing.
2000                  */
2001                 bitmap_and(&error, &stripe->error_bitmap,
2002                            &stripe->extent_sector_bitmap, stripe->nr_sectors);
2003                 if (!bitmap_empty(&error, stripe->nr_sectors)) {
2004                         btrfs_err(fs_info,
2005 "unrepaired sectors detected, full stripe %llu data stripe %u errors %*pbl",
2006                                   full_stripe_start, i, stripe->nr_sectors,
2007                                   &error);
2008                         ret = -EIO;
2009                         goto out;
2010                 }
2011                 bitmap_or(&extent_bitmap, &extent_bitmap,
2012                           &stripe->extent_sector_bitmap, stripe->nr_sectors);
2013         }
2014
2015         /* Now we can check and regenerate the P/Q stripe. */
2016         bio = bio_alloc(NULL, 1, REQ_OP_READ, GFP_NOFS);
2017         bio->bi_iter.bi_sector = full_stripe_start >> SECTOR_SHIFT;
2018         bio->bi_private = &io_done;
2019         bio->bi_end_io = raid56_scrub_wait_endio;
2020
2021         btrfs_bio_counter_inc_blocked(fs_info);
2022         ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, full_stripe_start,
2023                               &length, &bioc, NULL, NULL);
2024         if (ret < 0) {
2025                 btrfs_put_bioc(bioc);
2026                 btrfs_bio_counter_dec(fs_info);
2027                 goto out;
2028         }
2029         rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, scrub_dev, &extent_bitmap,
2030                                 BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits);
2031         btrfs_put_bioc(bioc);
2032         if (!rbio) {
2033                 ret = -ENOMEM;
2034                 btrfs_bio_counter_dec(fs_info);
2035                 goto out;
2036         }
2037         /* Use the recovered stripes as cache to avoid read them from disk again. */
2038         for (int i = 0; i < data_stripes; i++) {
2039                 stripe = &sctx->raid56_data_stripes[i];
2040
2041                 raid56_parity_cache_data_pages(rbio, stripe->pages,
2042                                 full_stripe_start + (i << BTRFS_STRIPE_LEN_SHIFT));
2043         }
2044         raid56_parity_submit_scrub_rbio(rbio);
2045         wait_for_completion_io(&io_done);
2046         ret = blk_status_to_errno(bio->bi_status);
2047         bio_put(bio);
2048         btrfs_bio_counter_dec(fs_info);
2049
2050         btrfs_release_path(&extent_path);
2051         btrfs_release_path(&csum_path);
2052 out:
2053         return ret;
2054 }
2055
2056 /*
2057  * Scrub one range which can only has simple mirror based profile.
2058  * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
2059  *  RAID0/RAID10).
2060  *
2061  * Since we may need to handle a subset of block group, we need @logical_start
2062  * and @logical_length parameter.
2063  */
2064 static int scrub_simple_mirror(struct scrub_ctx *sctx,
2065                                struct btrfs_block_group *bg,
2066                                struct btrfs_chunk_map *map,
2067                                u64 logical_start, u64 logical_length,
2068                                struct btrfs_device *device,
2069                                u64 physical, int mirror_num)
2070 {
2071         struct btrfs_fs_info *fs_info = sctx->fs_info;
2072         const u64 logical_end = logical_start + logical_length;
2073         u64 cur_logical = logical_start;
2074         int ret;
2075
2076         /* The range must be inside the bg */
2077         ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
2078
2079         /* Go through each extent items inside the logical range */
2080         while (cur_logical < logical_end) {
2081                 u64 found_logical = U64_MAX;
2082                 u64 cur_physical = physical + cur_logical - logical_start;
2083
2084                 /* Canceled? */
2085                 if (atomic_read(&fs_info->scrub_cancel_req) ||
2086                     atomic_read(&sctx->cancel_req)) {
2087                         ret = -ECANCELED;
2088                         break;
2089                 }
2090                 /* Paused? */
2091                 if (atomic_read(&fs_info->scrub_pause_req)) {
2092                         /* Push queued extents */
2093                         scrub_blocked_if_needed(fs_info);
2094                 }
2095                 /* Block group removed? */
2096                 spin_lock(&bg->lock);
2097                 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
2098                         spin_unlock(&bg->lock);
2099                         ret = 0;
2100                         break;
2101                 }
2102                 spin_unlock(&bg->lock);
2103
2104                 ret = queue_scrub_stripe(sctx, bg, device, mirror_num,
2105                                          cur_logical, logical_end - cur_logical,
2106                                          cur_physical, &found_logical);
2107                 if (ret > 0) {
2108                         /* No more extent, just update the accounting */
2109                         sctx->stat.last_physical = physical + logical_length;
2110                         ret = 0;
2111                         break;
2112                 }
2113                 if (ret < 0)
2114                         break;
2115
2116                 /* queue_scrub_stripe() returned 0, @found_logical must be updated. */
2117                 ASSERT(found_logical != U64_MAX);
2118                 cur_logical = found_logical + BTRFS_STRIPE_LEN;
2119
2120                 /* Don't hold CPU for too long time */
2121                 cond_resched();
2122         }
2123         return ret;
2124 }
2125
2126 /* Calculate the full stripe length for simple stripe based profiles */
2127 static u64 simple_stripe_full_stripe_len(const struct btrfs_chunk_map *map)
2128 {
2129         ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2130                             BTRFS_BLOCK_GROUP_RAID10));
2131
2132         return btrfs_stripe_nr_to_offset(map->num_stripes / map->sub_stripes);
2133 }
2134
2135 /* Get the logical bytenr for the stripe */
2136 static u64 simple_stripe_get_logical(struct btrfs_chunk_map *map,
2137                                      struct btrfs_block_group *bg,
2138                                      int stripe_index)
2139 {
2140         ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2141                             BTRFS_BLOCK_GROUP_RAID10));
2142         ASSERT(stripe_index < map->num_stripes);
2143
2144         /*
2145          * (stripe_index / sub_stripes) gives how many data stripes we need to
2146          * skip.
2147          */
2148         return btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes) +
2149                bg->start;
2150 }
2151
2152 /* Get the mirror number for the stripe */
2153 static int simple_stripe_mirror_num(struct btrfs_chunk_map *map, int stripe_index)
2154 {
2155         ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
2156                             BTRFS_BLOCK_GROUP_RAID10));
2157         ASSERT(stripe_index < map->num_stripes);
2158
2159         /* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
2160         return stripe_index % map->sub_stripes + 1;
2161 }
2162
2163 static int scrub_simple_stripe(struct scrub_ctx *sctx,
2164                                struct btrfs_block_group *bg,
2165                                struct btrfs_chunk_map *map,
2166                                struct btrfs_device *device,
2167                                int stripe_index)
2168 {
2169         const u64 logical_increment = simple_stripe_full_stripe_len(map);
2170         const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
2171         const u64 orig_physical = map->stripes[stripe_index].physical;
2172         const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
2173         u64 cur_logical = orig_logical;
2174         u64 cur_physical = orig_physical;
2175         int ret = 0;
2176
2177         while (cur_logical < bg->start + bg->length) {
2178                 /*
2179                  * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
2180                  * just RAID1, so we can reuse scrub_simple_mirror() to scrub
2181                  * this stripe.
2182                  */
2183                 ret = scrub_simple_mirror(sctx, bg, map, cur_logical,
2184                                           BTRFS_STRIPE_LEN, device, cur_physical,
2185                                           mirror_num);
2186                 if (ret)
2187                         return ret;
2188                 /* Skip to next stripe which belongs to the target device */
2189                 cur_logical += logical_increment;
2190                 /* For physical offset, we just go to next stripe */
2191                 cur_physical += BTRFS_STRIPE_LEN;
2192         }
2193         return ret;
2194 }
2195
2196 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2197                                            struct btrfs_block_group *bg,
2198                                            struct btrfs_chunk_map *map,
2199                                            struct btrfs_device *scrub_dev,
2200                                            int stripe_index)
2201 {
2202         struct btrfs_fs_info *fs_info = sctx->fs_info;
2203         const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
2204         const u64 chunk_logical = bg->start;
2205         int ret;
2206         int ret2;
2207         u64 physical = map->stripes[stripe_index].physical;
2208         const u64 dev_stripe_len = btrfs_calc_stripe_length(map);
2209         const u64 physical_end = physical + dev_stripe_len;
2210         u64 logical;
2211         u64 logic_end;
2212         /* The logical increment after finishing one stripe */
2213         u64 increment;
2214         /* Offset inside the chunk */
2215         u64 offset;
2216         u64 stripe_logical;
2217         int stop_loop = 0;
2218
2219         /* Extent_path should be released by now. */
2220         ASSERT(sctx->extent_path.nodes[0] == NULL);
2221
2222         scrub_blocked_if_needed(fs_info);
2223
2224         if (sctx->is_dev_replace &&
2225             btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
2226                 mutex_lock(&sctx->wr_lock);
2227                 sctx->write_pointer = physical;
2228                 mutex_unlock(&sctx->wr_lock);
2229         }
2230
2231         /* Prepare the extra data stripes used by RAID56. */
2232         if (profile & BTRFS_BLOCK_GROUP_RAID56_MASK) {
2233                 ASSERT(sctx->raid56_data_stripes == NULL);
2234
2235                 sctx->raid56_data_stripes = kcalloc(nr_data_stripes(map),
2236                                                     sizeof(struct scrub_stripe),
2237                                                     GFP_KERNEL);
2238                 if (!sctx->raid56_data_stripes) {
2239                         ret = -ENOMEM;
2240                         goto out;
2241                 }
2242                 for (int i = 0; i < nr_data_stripes(map); i++) {
2243                         ret = init_scrub_stripe(fs_info,
2244                                                 &sctx->raid56_data_stripes[i]);
2245                         if (ret < 0)
2246                                 goto out;
2247                         sctx->raid56_data_stripes[i].bg = bg;
2248                         sctx->raid56_data_stripes[i].sctx = sctx;
2249                 }
2250         }
2251         /*
2252          * There used to be a big double loop to handle all profiles using the
2253          * same routine, which grows larger and more gross over time.
2254          *
2255          * So here we handle each profile differently, so simpler profiles
2256          * have simpler scrubbing function.
2257          */
2258         if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
2259                          BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2260                 /*
2261                  * Above check rules out all complex profile, the remaining
2262                  * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
2263                  * mirrored duplication without stripe.
2264                  *
2265                  * Only @physical and @mirror_num needs to calculated using
2266                  * @stripe_index.
2267                  */
2268                 ret = scrub_simple_mirror(sctx, bg, map, bg->start, bg->length,
2269                                 scrub_dev, map->stripes[stripe_index].physical,
2270                                 stripe_index + 1);
2271                 offset = 0;
2272                 goto out;
2273         }
2274         if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
2275                 ret = scrub_simple_stripe(sctx, bg, map, scrub_dev, stripe_index);
2276                 offset = btrfs_stripe_nr_to_offset(stripe_index / map->sub_stripes);
2277                 goto out;
2278         }
2279
2280         /* Only RAID56 goes through the old code */
2281         ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
2282         ret = 0;
2283
2284         /* Calculate the logical end of the stripe */
2285         get_raid56_logic_offset(physical_end, stripe_index,
2286                                 map, &logic_end, NULL);
2287         logic_end += chunk_logical;
2288
2289         /* Initialize @offset in case we need to go to out: label */
2290         get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
2291         increment = btrfs_stripe_nr_to_offset(nr_data_stripes(map));
2292
2293         /*
2294          * Due to the rotation, for RAID56 it's better to iterate each stripe
2295          * using their physical offset.
2296          */
2297         while (physical < physical_end) {
2298                 ret = get_raid56_logic_offset(physical, stripe_index, map,
2299                                               &logical, &stripe_logical);
2300                 logical += chunk_logical;
2301                 if (ret) {
2302                         /* it is parity strip */
2303                         stripe_logical += chunk_logical;
2304                         ret = scrub_raid56_parity_stripe(sctx, scrub_dev, bg,
2305                                                          map, stripe_logical);
2306                         if (ret)
2307                                 goto out;
2308                         goto next;
2309                 }
2310
2311                 /*
2312                  * Now we're at a data stripe, scrub each extents in the range.
2313                  *
2314                  * At this stage, if we ignore the repair part, inside each data
2315                  * stripe it is no different than SINGLE profile.
2316                  * We can reuse scrub_simple_mirror() here, as the repair part
2317                  * is still based on @mirror_num.
2318                  */
2319                 ret = scrub_simple_mirror(sctx, bg, map, logical, BTRFS_STRIPE_LEN,
2320                                           scrub_dev, physical, 1);
2321                 if (ret < 0)
2322                         goto out;
2323 next:
2324                 logical += increment;
2325                 physical += BTRFS_STRIPE_LEN;
2326                 spin_lock(&sctx->stat_lock);
2327                 if (stop_loop)
2328                         sctx->stat.last_physical =
2329                                 map->stripes[stripe_index].physical + dev_stripe_len;
2330                 else
2331                         sctx->stat.last_physical = physical;
2332                 spin_unlock(&sctx->stat_lock);
2333                 if (stop_loop)
2334                         break;
2335         }
2336 out:
2337         ret2 = flush_scrub_stripes(sctx);
2338         if (!ret)
2339                 ret = ret2;
2340         btrfs_release_path(&sctx->extent_path);
2341         btrfs_release_path(&sctx->csum_path);
2342
2343         if (sctx->raid56_data_stripes) {
2344                 for (int i = 0; i < nr_data_stripes(map); i++)
2345                         release_scrub_stripe(&sctx->raid56_data_stripes[i]);
2346                 kfree(sctx->raid56_data_stripes);
2347                 sctx->raid56_data_stripes = NULL;
2348         }
2349
2350         if (sctx->is_dev_replace && ret >= 0) {
2351                 int ret2;
2352
2353                 ret2 = sync_write_pointer_for_zoned(sctx,
2354                                 chunk_logical + offset,
2355                                 map->stripes[stripe_index].physical,
2356                                 physical_end);
2357                 if (ret2)
2358                         ret = ret2;
2359         }
2360
2361         return ret < 0 ? ret : 0;
2362 }
2363
2364 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2365                                           struct btrfs_block_group *bg,
2366                                           struct btrfs_device *scrub_dev,
2367                                           u64 dev_offset,
2368                                           u64 dev_extent_len)
2369 {
2370         struct btrfs_fs_info *fs_info = sctx->fs_info;
2371         struct btrfs_chunk_map *map;
2372         int i;
2373         int ret = 0;
2374
2375         map = btrfs_find_chunk_map(fs_info, bg->start, bg->length);
2376         if (!map) {
2377                 /*
2378                  * Might have been an unused block group deleted by the cleaner
2379                  * kthread or relocation.
2380                  */
2381                 spin_lock(&bg->lock);
2382                 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
2383                         ret = -EINVAL;
2384                 spin_unlock(&bg->lock);
2385
2386                 return ret;
2387         }
2388         if (map->start != bg->start)
2389                 goto out;
2390         if (map->chunk_len < dev_extent_len)
2391                 goto out;
2392
2393         for (i = 0; i < map->num_stripes; ++i) {
2394                 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2395                     map->stripes[i].physical == dev_offset) {
2396                         ret = scrub_stripe(sctx, bg, map, scrub_dev, i);
2397                         if (ret)
2398                                 goto out;
2399                 }
2400         }
2401 out:
2402         btrfs_free_chunk_map(map);
2403
2404         return ret;
2405 }
2406
2407 static int finish_extent_writes_for_zoned(struct btrfs_root *root,
2408                                           struct btrfs_block_group *cache)
2409 {
2410         struct btrfs_fs_info *fs_info = cache->fs_info;
2411         struct btrfs_trans_handle *trans;
2412
2413         if (!btrfs_is_zoned(fs_info))
2414                 return 0;
2415
2416         btrfs_wait_block_group_reservations(cache);
2417         btrfs_wait_nocow_writers(cache);
2418         btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);
2419
2420         trans = btrfs_join_transaction(root);
2421         if (IS_ERR(trans))
2422                 return PTR_ERR(trans);
2423         return btrfs_commit_transaction(trans);
2424 }
2425
2426 static noinline_for_stack
2427 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2428                            struct btrfs_device *scrub_dev, u64 start, u64 end)
2429 {
2430         struct btrfs_dev_extent *dev_extent = NULL;
2431         struct btrfs_path *path;
2432         struct btrfs_fs_info *fs_info = sctx->fs_info;
2433         struct btrfs_root *root = fs_info->dev_root;
2434         u64 chunk_offset;
2435         int ret = 0;
2436         int ro_set;
2437         int slot;
2438         struct extent_buffer *l;
2439         struct btrfs_key key;
2440         struct btrfs_key found_key;
2441         struct btrfs_block_group *cache;
2442         struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2443
2444         path = btrfs_alloc_path();
2445         if (!path)
2446                 return -ENOMEM;
2447
2448         path->reada = READA_FORWARD;
2449         path->search_commit_root = 1;
2450         path->skip_locking = 1;
2451
2452         key.objectid = scrub_dev->devid;
2453         key.offset = 0ull;
2454         key.type = BTRFS_DEV_EXTENT_KEY;
2455
2456         while (1) {
2457                 u64 dev_extent_len;
2458
2459                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2460                 if (ret < 0)
2461                         break;
2462                 if (ret > 0) {
2463                         if (path->slots[0] >=
2464                             btrfs_header_nritems(path->nodes[0])) {
2465                                 ret = btrfs_next_leaf(root, path);
2466                                 if (ret < 0)
2467                                         break;
2468                                 if (ret > 0) {
2469                                         ret = 0;
2470                                         break;
2471                                 }
2472                         } else {
2473                                 ret = 0;
2474                         }
2475                 }
2476
2477                 l = path->nodes[0];
2478                 slot = path->slots[0];
2479
2480                 btrfs_item_key_to_cpu(l, &found_key, slot);
2481
2482                 if (found_key.objectid != scrub_dev->devid)
2483                         break;
2484
2485                 if (found_key.type != BTRFS_DEV_EXTENT_KEY)
2486                         break;
2487
2488                 if (found_key.offset >= end)
2489                         break;
2490
2491                 if (found_key.offset < key.offset)
2492                         break;
2493
2494                 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2495                 dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
2496
2497                 if (found_key.offset + dev_extent_len <= start)
2498                         goto skip;
2499
2500                 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2501
2502                 /*
2503                  * get a reference on the corresponding block group to prevent
2504                  * the chunk from going away while we scrub it
2505                  */
2506                 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2507
2508                 /* some chunks are removed but not committed to disk yet,
2509                  * continue scrubbing */
2510                 if (!cache)
2511                         goto skip;
2512
2513                 ASSERT(cache->start <= chunk_offset);
2514                 /*
2515                  * We are using the commit root to search for device extents, so
2516                  * that means we could have found a device extent item from a
2517                  * block group that was deleted in the current transaction. The
2518                  * logical start offset of the deleted block group, stored at
2519                  * @chunk_offset, might be part of the logical address range of
2520                  * a new block group (which uses different physical extents).
2521                  * In this case btrfs_lookup_block_group() has returned the new
2522                  * block group, and its start address is less than @chunk_offset.
2523                  *
2524                  * We skip such new block groups, because it's pointless to
2525                  * process them, as we won't find their extents because we search
2526                  * for them using the commit root of the extent tree. For a device
2527                  * replace it's also fine to skip it, we won't miss copying them
2528                  * to the target device because we have the write duplication
2529                  * setup through the regular write path (by btrfs_map_block()),
2530                  * and we have committed a transaction when we started the device
2531                  * replace, right after setting up the device replace state.
2532                  */
2533                 if (cache->start < chunk_offset) {
2534                         btrfs_put_block_group(cache);
2535                         goto skip;
2536                 }
2537
2538                 if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
2539                         if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
2540                                 btrfs_put_block_group(cache);
2541                                 goto skip;
2542                         }
2543                 }
2544
2545                 /*
2546                  * Make sure that while we are scrubbing the corresponding block
2547                  * group doesn't get its logical address and its device extents
2548                  * reused for another block group, which can possibly be of a
2549                  * different type and different profile. We do this to prevent
2550                  * false error detections and crashes due to bogus attempts to
2551                  * repair extents.
2552                  */
2553                 spin_lock(&cache->lock);
2554                 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
2555                         spin_unlock(&cache->lock);
2556                         btrfs_put_block_group(cache);
2557                         goto skip;
2558                 }
2559                 btrfs_freeze_block_group(cache);
2560                 spin_unlock(&cache->lock);
2561
2562                 /*
2563                  * we need call btrfs_inc_block_group_ro() with scrubs_paused,
2564                  * to avoid deadlock caused by:
2565                  * btrfs_inc_block_group_ro()
2566                  * -> btrfs_wait_for_commit()
2567                  * -> btrfs_commit_transaction()
2568                  * -> btrfs_scrub_pause()
2569                  */
2570                 scrub_pause_on(fs_info);
2571
2572                 /*
2573                  * Don't do chunk preallocation for scrub.
2574                  *
2575                  * This is especially important for SYSTEM bgs, or we can hit
2576                  * -EFBIG from btrfs_finish_chunk_alloc() like:
2577                  * 1. The only SYSTEM bg is marked RO.
2578                  *    Since SYSTEM bg is small, that's pretty common.
2579                  * 2. New SYSTEM bg will be allocated
2580                  *    Due to regular version will allocate new chunk.
2581                  * 3. New SYSTEM bg is empty and will get cleaned up
2582                  *    Before cleanup really happens, it's marked RO again.
2583                  * 4. Empty SYSTEM bg get scrubbed
2584                  *    We go back to 2.
2585                  *
2586                  * This can easily boost the amount of SYSTEM chunks if cleaner
2587                  * thread can't be triggered fast enough, and use up all space
2588                  * of btrfs_super_block::sys_chunk_array
2589                  *
2590                  * While for dev replace, we need to try our best to mark block
2591                  * group RO, to prevent race between:
2592                  * - Write duplication
2593                  *   Contains latest data
2594                  * - Scrub copy
2595                  *   Contains data from commit tree
2596                  *
2597                  * If target block group is not marked RO, nocow writes can
2598                  * be overwritten by scrub copy, causing data corruption.
2599                  * So for dev-replace, it's not allowed to continue if a block
2600                  * group is not RO.
2601                  */
2602                 ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
2603                 if (!ret && sctx->is_dev_replace) {
2604                         ret = finish_extent_writes_for_zoned(root, cache);
2605                         if (ret) {
2606                                 btrfs_dec_block_group_ro(cache);
2607                                 scrub_pause_off(fs_info);
2608                                 btrfs_put_block_group(cache);
2609                                 break;
2610                         }
2611                 }
2612
2613                 if (ret == 0) {
2614                         ro_set = 1;
2615                 } else if (ret == -ENOSPC && !sctx->is_dev_replace &&
2616                            !(cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) {
2617                         /*
2618                          * btrfs_inc_block_group_ro return -ENOSPC when it
2619                          * failed in creating new chunk for metadata.
2620                          * It is not a problem for scrub, because
2621                          * metadata are always cowed, and our scrub paused
2622                          * commit_transactions.
2623                          *
2624                          * For RAID56 chunks, we have to mark them read-only
2625                          * for scrub, as later we would use our own cache
2626                          * out of RAID56 realm.
2627                          * Thus we want the RAID56 bg to be marked RO to
2628                          * prevent RMW from screwing up out cache.
2629                          */
2630                         ro_set = 0;
2631                 } else if (ret == -ETXTBSY) {
2632                         btrfs_warn(fs_info,
2633                    "skipping scrub of block group %llu due to active swapfile",
2634                                    cache->start);
2635                         scrub_pause_off(fs_info);
2636                         ret = 0;
2637                         goto skip_unfreeze;
2638                 } else {
2639                         btrfs_warn(fs_info,
2640                                    "failed setting block group ro: %d", ret);
2641                         btrfs_unfreeze_block_group(cache);
2642                         btrfs_put_block_group(cache);
2643                         scrub_pause_off(fs_info);
2644                         break;
2645                 }
2646
2647                 /*
2648                  * Now the target block is marked RO, wait for nocow writes to
2649                  * finish before dev-replace.
2650                  * COW is fine, as COW never overwrites extents in commit tree.
2651                  */
2652                 if (sctx->is_dev_replace) {
2653                         btrfs_wait_nocow_writers(cache);
2654                         btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
2655                                         cache->length);
2656                 }
2657
2658                 scrub_pause_off(fs_info);
2659                 down_write(&dev_replace->rwsem);
2660                 dev_replace->cursor_right = found_key.offset + dev_extent_len;
2661                 dev_replace->cursor_left = found_key.offset;
2662                 dev_replace->item_needs_writeback = 1;
2663                 up_write(&dev_replace->rwsem);
2664
2665                 ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
2666                                   dev_extent_len);
2667                 if (sctx->is_dev_replace &&
2668                     !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
2669                                                       cache, found_key.offset))
2670                         ro_set = 0;
2671
2672                 down_write(&dev_replace->rwsem);
2673                 dev_replace->cursor_left = dev_replace->cursor_right;
2674                 dev_replace->item_needs_writeback = 1;
2675                 up_write(&dev_replace->rwsem);
2676
2677                 if (ro_set)
2678                         btrfs_dec_block_group_ro(cache);
2679
2680                 /*
2681                  * We might have prevented the cleaner kthread from deleting
2682                  * this block group if it was already unused because we raced
2683                  * and set it to RO mode first. So add it back to the unused
2684                  * list, otherwise it might not ever be deleted unless a manual
2685                  * balance is triggered or it becomes used and unused again.
2686                  */
2687                 spin_lock(&cache->lock);
2688                 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
2689                     !cache->ro && cache->reserved == 0 && cache->used == 0) {
2690                         spin_unlock(&cache->lock);
2691                         if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
2692                                 btrfs_discard_queue_work(&fs_info->discard_ctl,
2693                                                          cache);
2694                         else
2695                                 btrfs_mark_bg_unused(cache);
2696                 } else {
2697                         spin_unlock(&cache->lock);
2698                 }
2699 skip_unfreeze:
2700                 btrfs_unfreeze_block_group(cache);
2701                 btrfs_put_block_group(cache);
2702                 if (ret)
2703                         break;
2704                 if (sctx->is_dev_replace &&
2705                     atomic64_read(&dev_replace->num_write_errors) > 0) {
2706                         ret = -EIO;
2707                         break;
2708                 }
2709                 if (sctx->stat.malloc_errors > 0) {
2710                         ret = -ENOMEM;
2711                         break;
2712                 }
2713 skip:
2714                 key.offset = found_key.offset + dev_extent_len;
2715                 btrfs_release_path(path);
2716         }
2717
2718         btrfs_free_path(path);
2719
2720         return ret;
2721 }
2722
2723 static int scrub_one_super(struct scrub_ctx *sctx, struct btrfs_device *dev,
2724                            struct page *page, u64 physical, u64 generation)
2725 {
2726         struct btrfs_fs_info *fs_info = sctx->fs_info;
2727         struct bio_vec bvec;
2728         struct bio bio;
2729         struct btrfs_super_block *sb = page_address(page);
2730         int ret;
2731
2732         bio_init(&bio, dev->bdev, &bvec, 1, REQ_OP_READ);
2733         bio.bi_iter.bi_sector = physical >> SECTOR_SHIFT;
2734         __bio_add_page(&bio, page, BTRFS_SUPER_INFO_SIZE, 0);
2735         ret = submit_bio_wait(&bio);
2736         bio_uninit(&bio);
2737
2738         if (ret < 0)
2739                 return ret;
2740         ret = btrfs_check_super_csum(fs_info, sb);
2741         if (ret != 0) {
2742                 btrfs_err_rl(fs_info,
2743                         "super block at physical %llu devid %llu has bad csum",
2744                         physical, dev->devid);
2745                 return -EIO;
2746         }
2747         if (btrfs_super_generation(sb) != generation) {
2748                 btrfs_err_rl(fs_info,
2749 "super block at physical %llu devid %llu has bad generation %llu expect %llu",
2750                              physical, dev->devid,
2751                              btrfs_super_generation(sb), generation);
2752                 return -EUCLEAN;
2753         }
2754
2755         return btrfs_validate_super(fs_info, sb, -1);
2756 }
2757
2758 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2759                                            struct btrfs_device *scrub_dev)
2760 {
2761         int     i;
2762         u64     bytenr;
2763         u64     gen;
2764         int ret = 0;
2765         struct page *page;
2766         struct btrfs_fs_info *fs_info = sctx->fs_info;
2767
2768         if (BTRFS_FS_ERROR(fs_info))
2769                 return -EROFS;
2770
2771         page = alloc_page(GFP_KERNEL);
2772         if (!page) {
2773                 spin_lock(&sctx->stat_lock);
2774                 sctx->stat.malloc_errors++;
2775                 spin_unlock(&sctx->stat_lock);
2776                 return -ENOMEM;
2777         }
2778
2779         /* Seed devices of a new filesystem has their own generation. */
2780         if (scrub_dev->fs_devices != fs_info->fs_devices)
2781                 gen = scrub_dev->generation;
2782         else
2783                 gen = btrfs_get_last_trans_committed(fs_info);
2784
2785         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2786                 bytenr = btrfs_sb_offset(i);
2787                 if (bytenr + BTRFS_SUPER_INFO_SIZE >
2788                     scrub_dev->commit_total_bytes)
2789                         break;
2790                 if (!btrfs_check_super_location(scrub_dev, bytenr))
2791                         continue;
2792
2793                 ret = scrub_one_super(sctx, scrub_dev, page, bytenr, gen);
2794                 if (ret) {
2795                         spin_lock(&sctx->stat_lock);
2796                         sctx->stat.super_errors++;
2797                         spin_unlock(&sctx->stat_lock);
2798                 }
2799         }
2800         __free_page(page);
2801         return 0;
2802 }
2803
2804 static void scrub_workers_put(struct btrfs_fs_info *fs_info)
2805 {
2806         if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
2807                                         &fs_info->scrub_lock)) {
2808                 struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
2809
2810                 fs_info->scrub_workers = NULL;
2811                 mutex_unlock(&fs_info->scrub_lock);
2812
2813                 if (scrub_workers)
2814                         destroy_workqueue(scrub_workers);
2815         }
2816 }
2817
2818 /*
2819  * get a reference count on fs_info->scrub_workers. start worker if necessary
2820  */
2821 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info)
2822 {
2823         struct workqueue_struct *scrub_workers = NULL;
2824         unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
2825         int max_active = fs_info->thread_pool_size;
2826         int ret = -ENOMEM;
2827
2828         if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
2829                 return 0;
2830
2831         scrub_workers = alloc_workqueue("btrfs-scrub", flags, max_active);
2832         if (!scrub_workers)
2833                 return -ENOMEM;
2834
2835         mutex_lock(&fs_info->scrub_lock);
2836         if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
2837                 ASSERT(fs_info->scrub_workers == NULL);
2838                 fs_info->scrub_workers = scrub_workers;
2839                 refcount_set(&fs_info->scrub_workers_refcnt, 1);
2840                 mutex_unlock(&fs_info->scrub_lock);
2841                 return 0;
2842         }
2843         /* Other thread raced in and created the workers for us */
2844         refcount_inc(&fs_info->scrub_workers_refcnt);
2845         mutex_unlock(&fs_info->scrub_lock);
2846
2847         ret = 0;
2848
2849         destroy_workqueue(scrub_workers);
2850         return ret;
2851 }
2852
2853 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2854                     u64 end, struct btrfs_scrub_progress *progress,
2855                     int readonly, int is_dev_replace)
2856 {
2857         struct btrfs_dev_lookup_args args = { .devid = devid };
2858         struct scrub_ctx *sctx;
2859         int ret;
2860         struct btrfs_device *dev;
2861         unsigned int nofs_flag;
2862         bool need_commit = false;
2863
2864         if (btrfs_fs_closing(fs_info))
2865                 return -EAGAIN;
2866
2867         /* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
2868         ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
2869
2870         /*
2871          * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
2872          * value (max nodesize / min sectorsize), thus nodesize should always
2873          * be fine.
2874          */
2875         ASSERT(fs_info->nodesize <=
2876                SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
2877
2878         /* Allocate outside of device_list_mutex */
2879         sctx = scrub_setup_ctx(fs_info, is_dev_replace);
2880         if (IS_ERR(sctx))
2881                 return PTR_ERR(sctx);
2882
2883         ret = scrub_workers_get(fs_info);
2884         if (ret)
2885                 goto out_free_ctx;
2886
2887         mutex_lock(&fs_info->fs_devices->device_list_mutex);
2888         dev = btrfs_find_device(fs_info->fs_devices, &args);
2889         if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
2890                      !is_dev_replace)) {
2891                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2892                 ret = -ENODEV;
2893                 goto out;
2894         }
2895
2896         if (!is_dev_replace && !readonly &&
2897             !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2898                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2899                 btrfs_err_in_rcu(fs_info,
2900                         "scrub on devid %llu: filesystem on %s is not writable",
2901                                  devid, btrfs_dev_name(dev));
2902                 ret = -EROFS;
2903                 goto out;
2904         }
2905
2906         mutex_lock(&fs_info->scrub_lock);
2907         if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
2908             test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
2909                 mutex_unlock(&fs_info->scrub_lock);
2910                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2911                 ret = -EIO;
2912                 goto out;
2913         }
2914
2915         down_read(&fs_info->dev_replace.rwsem);
2916         if (dev->scrub_ctx ||
2917             (!is_dev_replace &&
2918              btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2919                 up_read(&fs_info->dev_replace.rwsem);
2920                 mutex_unlock(&fs_info->scrub_lock);
2921                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2922                 ret = -EINPROGRESS;
2923                 goto out;
2924         }
2925         up_read(&fs_info->dev_replace.rwsem);
2926
2927         sctx->readonly = readonly;
2928         dev->scrub_ctx = sctx;
2929         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2930
2931         /*
2932          * checking @scrub_pause_req here, we can avoid
2933          * race between committing transaction and scrubbing.
2934          */
2935         __scrub_blocked_if_needed(fs_info);
2936         atomic_inc(&fs_info->scrubs_running);
2937         mutex_unlock(&fs_info->scrub_lock);
2938
2939         /*
2940          * In order to avoid deadlock with reclaim when there is a transaction
2941          * trying to pause scrub, make sure we use GFP_NOFS for all the
2942          * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
2943          * invoked by our callees. The pausing request is done when the
2944          * transaction commit starts, and it blocks the transaction until scrub
2945          * is paused (done at specific points at scrub_stripe() or right above
2946          * before incrementing fs_info->scrubs_running).
2947          */
2948         nofs_flag = memalloc_nofs_save();
2949         if (!is_dev_replace) {
2950                 u64 old_super_errors;
2951
2952                 spin_lock(&sctx->stat_lock);
2953                 old_super_errors = sctx->stat.super_errors;
2954                 spin_unlock(&sctx->stat_lock);
2955
2956                 btrfs_info(fs_info, "scrub: started on devid %llu", devid);
2957                 /*
2958                  * by holding device list mutex, we can
2959                  * kick off writing super in log tree sync.
2960                  */
2961                 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2962                 ret = scrub_supers(sctx, dev);
2963                 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2964
2965                 spin_lock(&sctx->stat_lock);
2966                 /*
2967                  * Super block errors found, but we can not commit transaction
2968                  * at current context, since btrfs_commit_transaction() needs
2969                  * to pause the current running scrub (hold by ourselves).
2970                  */
2971                 if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
2972                         need_commit = true;
2973                 spin_unlock(&sctx->stat_lock);
2974         }
2975
2976         if (!ret)
2977                 ret = scrub_enumerate_chunks(sctx, dev, start, end);
2978         memalloc_nofs_restore(nofs_flag);
2979
2980         atomic_dec(&fs_info->scrubs_running);
2981         wake_up(&fs_info->scrub_pause_wait);
2982
2983         if (progress)
2984                 memcpy(progress, &sctx->stat, sizeof(*progress));
2985
2986         if (!is_dev_replace)
2987                 btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
2988                         ret ? "not finished" : "finished", devid, ret);
2989
2990         mutex_lock(&fs_info->scrub_lock);
2991         dev->scrub_ctx = NULL;
2992         mutex_unlock(&fs_info->scrub_lock);
2993
2994         scrub_workers_put(fs_info);
2995         scrub_put_ctx(sctx);
2996
2997         /*
2998          * We found some super block errors before, now try to force a
2999          * transaction commit, as scrub has finished.
3000          */
3001         if (need_commit) {
3002                 struct btrfs_trans_handle *trans;
3003
3004                 trans = btrfs_start_transaction(fs_info->tree_root, 0);
3005                 if (IS_ERR(trans)) {
3006                         ret = PTR_ERR(trans);
3007                         btrfs_err(fs_info,
3008         "scrub: failed to start transaction to fix super block errors: %d", ret);
3009                         return ret;
3010                 }
3011                 ret = btrfs_commit_transaction(trans);
3012                 if (ret < 0)
3013                         btrfs_err(fs_info,
3014         "scrub: failed to commit transaction to fix super block errors: %d", ret);
3015         }
3016         return ret;
3017 out:
3018         scrub_workers_put(fs_info);
3019 out_free_ctx:
3020         scrub_free_ctx(sctx);
3021
3022         return ret;
3023 }
3024
3025 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
3026 {
3027         mutex_lock(&fs_info->scrub_lock);
3028         atomic_inc(&fs_info->scrub_pause_req);
3029         while (atomic_read(&fs_info->scrubs_paused) !=
3030                atomic_read(&fs_info->scrubs_running)) {
3031                 mutex_unlock(&fs_info->scrub_lock);
3032                 wait_event(fs_info->scrub_pause_wait,
3033                            atomic_read(&fs_info->scrubs_paused) ==
3034                            atomic_read(&fs_info->scrubs_running));
3035                 mutex_lock(&fs_info->scrub_lock);
3036         }
3037         mutex_unlock(&fs_info->scrub_lock);
3038 }
3039
3040 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
3041 {
3042         atomic_dec(&fs_info->scrub_pause_req);
3043         wake_up(&fs_info->scrub_pause_wait);
3044 }
3045
3046 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3047 {
3048         mutex_lock(&fs_info->scrub_lock);
3049         if (!atomic_read(&fs_info->scrubs_running)) {
3050                 mutex_unlock(&fs_info->scrub_lock);
3051                 return -ENOTCONN;
3052         }
3053
3054         atomic_inc(&fs_info->scrub_cancel_req);
3055         while (atomic_read(&fs_info->scrubs_running)) {
3056                 mutex_unlock(&fs_info->scrub_lock);
3057                 wait_event(fs_info->scrub_pause_wait,
3058                            atomic_read(&fs_info->scrubs_running) == 0);
3059                 mutex_lock(&fs_info->scrub_lock);
3060         }
3061         atomic_dec(&fs_info->scrub_cancel_req);
3062         mutex_unlock(&fs_info->scrub_lock);
3063
3064         return 0;
3065 }
3066
3067 int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
3068 {
3069         struct btrfs_fs_info *fs_info = dev->fs_info;
3070         struct scrub_ctx *sctx;
3071
3072         mutex_lock(&fs_info->scrub_lock);
3073         sctx = dev->scrub_ctx;
3074         if (!sctx) {
3075                 mutex_unlock(&fs_info->scrub_lock);
3076                 return -ENOTCONN;
3077         }
3078         atomic_inc(&sctx->cancel_req);
3079         while (dev->scrub_ctx) {
3080                 mutex_unlock(&fs_info->scrub_lock);
3081                 wait_event(fs_info->scrub_pause_wait,
3082                            dev->scrub_ctx == NULL);
3083                 mutex_lock(&fs_info->scrub_lock);
3084         }
3085         mutex_unlock(&fs_info->scrub_lock);
3086
3087         return 0;
3088 }
3089
3090 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3091                          struct btrfs_scrub_progress *progress)
3092 {
3093         struct btrfs_dev_lookup_args args = { .devid = devid };
3094         struct btrfs_device *dev;
3095         struct scrub_ctx *sctx = NULL;
3096
3097         mutex_lock(&fs_info->fs_devices->device_list_mutex);
3098         dev = btrfs_find_device(fs_info->fs_devices, &args);
3099         if (dev)
3100                 sctx = dev->scrub_ctx;
3101         if (sctx)
3102                 memcpy(progress, &sctx->stat, sizeof(*progress));
3103         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3104
3105         return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3106 }