Merge tag 'devicetree-fixes-for-6.2-3' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-block.git] / fs / btrfs / relocation.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2009 Oracle.  All rights reserved.
4  */
5
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include <linux/error-injection.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "volumes.h"
17 #include "locking.h"
18 #include "btrfs_inode.h"
19 #include "async-thread.h"
20 #include "free-space-cache.h"
21 #include "qgroup.h"
22 #include "print-tree.h"
23 #include "delalloc-space.h"
24 #include "block-group.h"
25 #include "backref.h"
26 #include "misc.h"
27 #include "subpage.h"
28 #include "zoned.h"
29 #include "inode-item.h"
30 #include "space-info.h"
31 #include "fs.h"
32 #include "accessors.h"
33 #include "extent-tree.h"
34 #include "root-tree.h"
35 #include "file-item.h"
36 #include "relocation.h"
37 #include "super.h"
38 #include "tree-checker.h"
39
40 /*
41  * Relocation overview
42  *
43  * [What does relocation do]
44  *
45  * The objective of relocation is to relocate all extents of the target block
46  * group to other block groups.
47  * This is utilized by resize (shrink only), profile converting, compacting
48  * space, or balance routine to spread chunks over devices.
49  *
50  *              Before          |               After
51  * ------------------------------------------------------------------
52  *  BG A: 10 data extents       | BG A: deleted
53  *  BG B:  2 data extents       | BG B: 10 data extents (2 old + 8 relocated)
54  *  BG C:  1 extents            | BG C:  3 data extents (1 old + 2 relocated)
55  *
56  * [How does relocation work]
57  *
58  * 1.   Mark the target block group read-only
59  *      New extents won't be allocated from the target block group.
60  *
61  * 2.1  Record each extent in the target block group
62  *      To build a proper map of extents to be relocated.
63  *
64  * 2.2  Build data reloc tree and reloc trees
65  *      Data reloc tree will contain an inode, recording all newly relocated
66  *      data extents.
67  *      There will be only one data reloc tree for one data block group.
68  *
69  *      Reloc tree will be a special snapshot of its source tree, containing
70  *      relocated tree blocks.
71  *      Each tree referring to a tree block in target block group will get its
72  *      reloc tree built.
73  *
74  * 2.3  Swap source tree with its corresponding reloc tree
75  *      Each involved tree only refers to new extents after swap.
76  *
77  * 3.   Cleanup reloc trees and data reloc tree.
78  *      As old extents in the target block group are still referenced by reloc
79  *      trees, we need to clean them up before really freeing the target block
80  *      group.
81  *
82  * The main complexity is in steps 2.2 and 2.3.
83  *
84  * The entry point of relocation is relocate_block_group() function.
85  */
86
87 #define RELOCATION_RESERVED_NODES       256
88 /*
89  * map address of tree root to tree
90  */
91 struct mapping_node {
92         struct {
93                 struct rb_node rb_node;
94                 u64 bytenr;
95         }; /* Use rb_simle_node for search/insert */
96         void *data;
97 };
98
99 struct mapping_tree {
100         struct rb_root rb_root;
101         spinlock_t lock;
102 };
103
104 /*
105  * present a tree block to process
106  */
107 struct tree_block {
108         struct {
109                 struct rb_node rb_node;
110                 u64 bytenr;
111         }; /* Use rb_simple_node for search/insert */
112         u64 owner;
113         struct btrfs_key key;
114         unsigned int level:8;
115         unsigned int key_ready:1;
116 };
117
118 #define MAX_EXTENTS 128
119
120 struct file_extent_cluster {
121         u64 start;
122         u64 end;
123         u64 boundary[MAX_EXTENTS];
124         unsigned int nr;
125 };
126
127 struct reloc_control {
128         /* block group to relocate */
129         struct btrfs_block_group *block_group;
130         /* extent tree */
131         struct btrfs_root *extent_root;
132         /* inode for moving data */
133         struct inode *data_inode;
134
135         struct btrfs_block_rsv *block_rsv;
136
137         struct btrfs_backref_cache backref_cache;
138
139         struct file_extent_cluster cluster;
140         /* tree blocks have been processed */
141         struct extent_io_tree processed_blocks;
142         /* map start of tree root to corresponding reloc tree */
143         struct mapping_tree reloc_root_tree;
144         /* list of reloc trees */
145         struct list_head reloc_roots;
146         /* list of subvolume trees that get relocated */
147         struct list_head dirty_subvol_roots;
148         /* size of metadata reservation for merging reloc trees */
149         u64 merging_rsv_size;
150         /* size of relocated tree nodes */
151         u64 nodes_relocated;
152         /* reserved size for block group relocation*/
153         u64 reserved_bytes;
154
155         u64 search_start;
156         u64 extents_found;
157
158         unsigned int stage:8;
159         unsigned int create_reloc_tree:1;
160         unsigned int merge_reloc_tree:1;
161         unsigned int found_file_extent:1;
162 };
163
164 /* stages of data relocation */
165 #define MOVE_DATA_EXTENTS       0
166 #define UPDATE_DATA_PTRS        1
167
168 static void mark_block_processed(struct reloc_control *rc,
169                                  struct btrfs_backref_node *node)
170 {
171         u32 blocksize;
172
173         if (node->level == 0 ||
174             in_range(node->bytenr, rc->block_group->start,
175                      rc->block_group->length)) {
176                 blocksize = rc->extent_root->fs_info->nodesize;
177                 set_extent_bits(&rc->processed_blocks, node->bytenr,
178                                 node->bytenr + blocksize - 1, EXTENT_DIRTY);
179         }
180         node->processed = 1;
181 }
182
183
184 static void mapping_tree_init(struct mapping_tree *tree)
185 {
186         tree->rb_root = RB_ROOT;
187         spin_lock_init(&tree->lock);
188 }
189
190 /*
191  * walk up backref nodes until reach node presents tree root
192  */
193 static struct btrfs_backref_node *walk_up_backref(
194                 struct btrfs_backref_node *node,
195                 struct btrfs_backref_edge *edges[], int *index)
196 {
197         struct btrfs_backref_edge *edge;
198         int idx = *index;
199
200         while (!list_empty(&node->upper)) {
201                 edge = list_entry(node->upper.next,
202                                   struct btrfs_backref_edge, list[LOWER]);
203                 edges[idx++] = edge;
204                 node = edge->node[UPPER];
205         }
206         BUG_ON(node->detached);
207         *index = idx;
208         return node;
209 }
210
211 /*
212  * walk down backref nodes to find start of next reference path
213  */
214 static struct btrfs_backref_node *walk_down_backref(
215                 struct btrfs_backref_edge *edges[], int *index)
216 {
217         struct btrfs_backref_edge *edge;
218         struct btrfs_backref_node *lower;
219         int idx = *index;
220
221         while (idx > 0) {
222                 edge = edges[idx - 1];
223                 lower = edge->node[LOWER];
224                 if (list_is_last(&edge->list[LOWER], &lower->upper)) {
225                         idx--;
226                         continue;
227                 }
228                 edge = list_entry(edge->list[LOWER].next,
229                                   struct btrfs_backref_edge, list[LOWER]);
230                 edges[idx - 1] = edge;
231                 *index = idx;
232                 return edge->node[UPPER];
233         }
234         *index = 0;
235         return NULL;
236 }
237
238 static void update_backref_node(struct btrfs_backref_cache *cache,
239                                 struct btrfs_backref_node *node, u64 bytenr)
240 {
241         struct rb_node *rb_node;
242         rb_erase(&node->rb_node, &cache->rb_root);
243         node->bytenr = bytenr;
244         rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node);
245         if (rb_node)
246                 btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST);
247 }
248
249 /*
250  * update backref cache after a transaction commit
251  */
252 static int update_backref_cache(struct btrfs_trans_handle *trans,
253                                 struct btrfs_backref_cache *cache)
254 {
255         struct btrfs_backref_node *node;
256         int level = 0;
257
258         if (cache->last_trans == 0) {
259                 cache->last_trans = trans->transid;
260                 return 0;
261         }
262
263         if (cache->last_trans == trans->transid)
264                 return 0;
265
266         /*
267          * detached nodes are used to avoid unnecessary backref
268          * lookup. transaction commit changes the extent tree.
269          * so the detached nodes are no longer useful.
270          */
271         while (!list_empty(&cache->detached)) {
272                 node = list_entry(cache->detached.next,
273                                   struct btrfs_backref_node, list);
274                 btrfs_backref_cleanup_node(cache, node);
275         }
276
277         while (!list_empty(&cache->changed)) {
278                 node = list_entry(cache->changed.next,
279                                   struct btrfs_backref_node, list);
280                 list_del_init(&node->list);
281                 BUG_ON(node->pending);
282                 update_backref_node(cache, node, node->new_bytenr);
283         }
284
285         /*
286          * some nodes can be left in the pending list if there were
287          * errors during processing the pending nodes.
288          */
289         for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
290                 list_for_each_entry(node, &cache->pending[level], list) {
291                         BUG_ON(!node->pending);
292                         if (node->bytenr == node->new_bytenr)
293                                 continue;
294                         update_backref_node(cache, node, node->new_bytenr);
295                 }
296         }
297
298         cache->last_trans = 0;
299         return 1;
300 }
301
302 static bool reloc_root_is_dead(struct btrfs_root *root)
303 {
304         /*
305          * Pair with set_bit/clear_bit in clean_dirty_subvols and
306          * btrfs_update_reloc_root. We need to see the updated bit before
307          * trying to access reloc_root
308          */
309         smp_rmb();
310         if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
311                 return true;
312         return false;
313 }
314
315 /*
316  * Check if this subvolume tree has valid reloc tree.
317  *
318  * Reloc tree after swap is considered dead, thus not considered as valid.
319  * This is enough for most callers, as they don't distinguish dead reloc root
320  * from no reloc root.  But btrfs_should_ignore_reloc_root() below is a
321  * special case.
322  */
323 static bool have_reloc_root(struct btrfs_root *root)
324 {
325         if (reloc_root_is_dead(root))
326                 return false;
327         if (!root->reloc_root)
328                 return false;
329         return true;
330 }
331
332 int btrfs_should_ignore_reloc_root(struct btrfs_root *root)
333 {
334         struct btrfs_root *reloc_root;
335
336         if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
337                 return 0;
338
339         /* This root has been merged with its reloc tree, we can ignore it */
340         if (reloc_root_is_dead(root))
341                 return 1;
342
343         reloc_root = root->reloc_root;
344         if (!reloc_root)
345                 return 0;
346
347         if (btrfs_header_generation(reloc_root->commit_root) ==
348             root->fs_info->running_transaction->transid)
349                 return 0;
350         /*
351          * if there is reloc tree and it was created in previous
352          * transaction backref lookup can find the reloc tree,
353          * so backref node for the fs tree root is useless for
354          * relocation.
355          */
356         return 1;
357 }
358
359 /*
360  * find reloc tree by address of tree root
361  */
362 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
363 {
364         struct reloc_control *rc = fs_info->reloc_ctl;
365         struct rb_node *rb_node;
366         struct mapping_node *node;
367         struct btrfs_root *root = NULL;
368
369         ASSERT(rc);
370         spin_lock(&rc->reloc_root_tree.lock);
371         rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
372         if (rb_node) {
373                 node = rb_entry(rb_node, struct mapping_node, rb_node);
374                 root = node->data;
375         }
376         spin_unlock(&rc->reloc_root_tree.lock);
377         return btrfs_grab_root(root);
378 }
379
380 /*
381  * For useless nodes, do two major clean ups:
382  *
383  * - Cleanup the children edges and nodes
384  *   If child node is also orphan (no parent) during cleanup, then the child
385  *   node will also be cleaned up.
386  *
387  * - Freeing up leaves (level 0), keeps nodes detached
388  *   For nodes, the node is still cached as "detached"
389  *
390  * Return false if @node is not in the @useless_nodes list.
391  * Return true if @node is in the @useless_nodes list.
392  */
393 static bool handle_useless_nodes(struct reloc_control *rc,
394                                  struct btrfs_backref_node *node)
395 {
396         struct btrfs_backref_cache *cache = &rc->backref_cache;
397         struct list_head *useless_node = &cache->useless_node;
398         bool ret = false;
399
400         while (!list_empty(useless_node)) {
401                 struct btrfs_backref_node *cur;
402
403                 cur = list_first_entry(useless_node, struct btrfs_backref_node,
404                                  list);
405                 list_del_init(&cur->list);
406
407                 /* Only tree root nodes can be added to @useless_nodes */
408                 ASSERT(list_empty(&cur->upper));
409
410                 if (cur == node)
411                         ret = true;
412
413                 /* The node is the lowest node */
414                 if (cur->lowest) {
415                         list_del_init(&cur->lower);
416                         cur->lowest = 0;
417                 }
418
419                 /* Cleanup the lower edges */
420                 while (!list_empty(&cur->lower)) {
421                         struct btrfs_backref_edge *edge;
422                         struct btrfs_backref_node *lower;
423
424                         edge = list_entry(cur->lower.next,
425                                         struct btrfs_backref_edge, list[UPPER]);
426                         list_del(&edge->list[UPPER]);
427                         list_del(&edge->list[LOWER]);
428                         lower = edge->node[LOWER];
429                         btrfs_backref_free_edge(cache, edge);
430
431                         /* Child node is also orphan, queue for cleanup */
432                         if (list_empty(&lower->upper))
433                                 list_add(&lower->list, useless_node);
434                 }
435                 /* Mark this block processed for relocation */
436                 mark_block_processed(rc, cur);
437
438                 /*
439                  * Backref nodes for tree leaves are deleted from the cache.
440                  * Backref nodes for upper level tree blocks are left in the
441                  * cache to avoid unnecessary backref lookup.
442                  */
443                 if (cur->level > 0) {
444                         list_add(&cur->list, &cache->detached);
445                         cur->detached = 1;
446                 } else {
447                         rb_erase(&cur->rb_node, &cache->rb_root);
448                         btrfs_backref_free_node(cache, cur);
449                 }
450         }
451         return ret;
452 }
453
454 /*
455  * Build backref tree for a given tree block. Root of the backref tree
456  * corresponds the tree block, leaves of the backref tree correspond roots of
457  * b-trees that reference the tree block.
458  *
459  * The basic idea of this function is check backrefs of a given block to find
460  * upper level blocks that reference the block, and then check backrefs of
461  * these upper level blocks recursively. The recursion stops when tree root is
462  * reached or backrefs for the block is cached.
463  *
464  * NOTE: if we find that backrefs for a block are cached, we know backrefs for
465  * all upper level blocks that directly/indirectly reference the block are also
466  * cached.
467  */
468 static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
469                         struct reloc_control *rc, struct btrfs_key *node_key,
470                         int level, u64 bytenr)
471 {
472         struct btrfs_backref_iter *iter;
473         struct btrfs_backref_cache *cache = &rc->backref_cache;
474         /* For searching parent of TREE_BLOCK_REF */
475         struct btrfs_path *path;
476         struct btrfs_backref_node *cur;
477         struct btrfs_backref_node *node = NULL;
478         struct btrfs_backref_edge *edge;
479         int ret;
480         int err = 0;
481
482         iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info);
483         if (!iter)
484                 return ERR_PTR(-ENOMEM);
485         path = btrfs_alloc_path();
486         if (!path) {
487                 err = -ENOMEM;
488                 goto out;
489         }
490
491         node = btrfs_backref_alloc_node(cache, bytenr, level);
492         if (!node) {
493                 err = -ENOMEM;
494                 goto out;
495         }
496
497         node->lowest = 1;
498         cur = node;
499
500         /* Breadth-first search to build backref cache */
501         do {
502                 ret = btrfs_backref_add_tree_node(cache, path, iter, node_key,
503                                                   cur);
504                 if (ret < 0) {
505                         err = ret;
506                         goto out;
507                 }
508                 edge = list_first_entry_or_null(&cache->pending_edge,
509                                 struct btrfs_backref_edge, list[UPPER]);
510                 /*
511                  * The pending list isn't empty, take the first block to
512                  * process
513                  */
514                 if (edge) {
515                         list_del_init(&edge->list[UPPER]);
516                         cur = edge->node[UPPER];
517                 }
518         } while (edge);
519
520         /* Finish the upper linkage of newly added edges/nodes */
521         ret = btrfs_backref_finish_upper_links(cache, node);
522         if (ret < 0) {
523                 err = ret;
524                 goto out;
525         }
526
527         if (handle_useless_nodes(rc, node))
528                 node = NULL;
529 out:
530         btrfs_backref_iter_free(iter);
531         btrfs_free_path(path);
532         if (err) {
533                 btrfs_backref_error_cleanup(cache, node);
534                 return ERR_PTR(err);
535         }
536         ASSERT(!node || !node->detached);
537         ASSERT(list_empty(&cache->useless_node) &&
538                list_empty(&cache->pending_edge));
539         return node;
540 }
541
542 /*
543  * helper to add backref node for the newly created snapshot.
544  * the backref node is created by cloning backref node that
545  * corresponds to root of source tree
546  */
547 static int clone_backref_node(struct btrfs_trans_handle *trans,
548                               struct reloc_control *rc,
549                               struct btrfs_root *src,
550                               struct btrfs_root *dest)
551 {
552         struct btrfs_root *reloc_root = src->reloc_root;
553         struct btrfs_backref_cache *cache = &rc->backref_cache;
554         struct btrfs_backref_node *node = NULL;
555         struct btrfs_backref_node *new_node;
556         struct btrfs_backref_edge *edge;
557         struct btrfs_backref_edge *new_edge;
558         struct rb_node *rb_node;
559
560         if (cache->last_trans > 0)
561                 update_backref_cache(trans, cache);
562
563         rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
564         if (rb_node) {
565                 node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
566                 if (node->detached)
567                         node = NULL;
568                 else
569                         BUG_ON(node->new_bytenr != reloc_root->node->start);
570         }
571
572         if (!node) {
573                 rb_node = rb_simple_search(&cache->rb_root,
574                                            reloc_root->commit_root->start);
575                 if (rb_node) {
576                         node = rb_entry(rb_node, struct btrfs_backref_node,
577                                         rb_node);
578                         BUG_ON(node->detached);
579                 }
580         }
581
582         if (!node)
583                 return 0;
584
585         new_node = btrfs_backref_alloc_node(cache, dest->node->start,
586                                             node->level);
587         if (!new_node)
588                 return -ENOMEM;
589
590         new_node->lowest = node->lowest;
591         new_node->checked = 1;
592         new_node->root = btrfs_grab_root(dest);
593         ASSERT(new_node->root);
594
595         if (!node->lowest) {
596                 list_for_each_entry(edge, &node->lower, list[UPPER]) {
597                         new_edge = btrfs_backref_alloc_edge(cache);
598                         if (!new_edge)
599                                 goto fail;
600
601                         btrfs_backref_link_edge(new_edge, edge->node[LOWER],
602                                                 new_node, LINK_UPPER);
603                 }
604         } else {
605                 list_add_tail(&new_node->lower, &cache->leaves);
606         }
607
608         rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
609                                    &new_node->rb_node);
610         if (rb_node)
611                 btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
612
613         if (!new_node->lowest) {
614                 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
615                         list_add_tail(&new_edge->list[LOWER],
616                                       &new_edge->node[LOWER]->upper);
617                 }
618         }
619         return 0;
620 fail:
621         while (!list_empty(&new_node->lower)) {
622                 new_edge = list_entry(new_node->lower.next,
623                                       struct btrfs_backref_edge, list[UPPER]);
624                 list_del(&new_edge->list[UPPER]);
625                 btrfs_backref_free_edge(cache, new_edge);
626         }
627         btrfs_backref_free_node(cache, new_node);
628         return -ENOMEM;
629 }
630
631 /*
632  * helper to add 'address of tree root -> reloc tree' mapping
633  */
634 static int __must_check __add_reloc_root(struct btrfs_root *root)
635 {
636         struct btrfs_fs_info *fs_info = root->fs_info;
637         struct rb_node *rb_node;
638         struct mapping_node *node;
639         struct reloc_control *rc = fs_info->reloc_ctl;
640
641         node = kmalloc(sizeof(*node), GFP_NOFS);
642         if (!node)
643                 return -ENOMEM;
644
645         node->bytenr = root->commit_root->start;
646         node->data = root;
647
648         spin_lock(&rc->reloc_root_tree.lock);
649         rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
650                                    node->bytenr, &node->rb_node);
651         spin_unlock(&rc->reloc_root_tree.lock);
652         if (rb_node) {
653                 btrfs_err(fs_info,
654                             "Duplicate root found for start=%llu while inserting into relocation tree",
655                             node->bytenr);
656                 return -EEXIST;
657         }
658
659         list_add_tail(&root->root_list, &rc->reloc_roots);
660         return 0;
661 }
662
663 /*
664  * helper to delete the 'address of tree root -> reloc tree'
665  * mapping
666  */
667 static void __del_reloc_root(struct btrfs_root *root)
668 {
669         struct btrfs_fs_info *fs_info = root->fs_info;
670         struct rb_node *rb_node;
671         struct mapping_node *node = NULL;
672         struct reloc_control *rc = fs_info->reloc_ctl;
673         bool put_ref = false;
674
675         if (rc && root->node) {
676                 spin_lock(&rc->reloc_root_tree.lock);
677                 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
678                                            root->commit_root->start);
679                 if (rb_node) {
680                         node = rb_entry(rb_node, struct mapping_node, rb_node);
681                         rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
682                         RB_CLEAR_NODE(&node->rb_node);
683                 }
684                 spin_unlock(&rc->reloc_root_tree.lock);
685                 ASSERT(!node || (struct btrfs_root *)node->data == root);
686         }
687
688         /*
689          * We only put the reloc root here if it's on the list.  There's a lot
690          * of places where the pattern is to splice the rc->reloc_roots, process
691          * the reloc roots, and then add the reloc root back onto
692          * rc->reloc_roots.  If we call __del_reloc_root while it's off of the
693          * list we don't want the reference being dropped, because the guy
694          * messing with the list is in charge of the reference.
695          */
696         spin_lock(&fs_info->trans_lock);
697         if (!list_empty(&root->root_list)) {
698                 put_ref = true;
699                 list_del_init(&root->root_list);
700         }
701         spin_unlock(&fs_info->trans_lock);
702         if (put_ref)
703                 btrfs_put_root(root);
704         kfree(node);
705 }
706
707 /*
708  * helper to update the 'address of tree root -> reloc tree'
709  * mapping
710  */
711 static int __update_reloc_root(struct btrfs_root *root)
712 {
713         struct btrfs_fs_info *fs_info = root->fs_info;
714         struct rb_node *rb_node;
715         struct mapping_node *node = NULL;
716         struct reloc_control *rc = fs_info->reloc_ctl;
717
718         spin_lock(&rc->reloc_root_tree.lock);
719         rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
720                                    root->commit_root->start);
721         if (rb_node) {
722                 node = rb_entry(rb_node, struct mapping_node, rb_node);
723                 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
724         }
725         spin_unlock(&rc->reloc_root_tree.lock);
726
727         if (!node)
728                 return 0;
729         BUG_ON((struct btrfs_root *)node->data != root);
730
731         spin_lock(&rc->reloc_root_tree.lock);
732         node->bytenr = root->node->start;
733         rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
734                                    node->bytenr, &node->rb_node);
735         spin_unlock(&rc->reloc_root_tree.lock);
736         if (rb_node)
737                 btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
738         return 0;
739 }
740
741 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
742                                         struct btrfs_root *root, u64 objectid)
743 {
744         struct btrfs_fs_info *fs_info = root->fs_info;
745         struct btrfs_root *reloc_root;
746         struct extent_buffer *eb;
747         struct btrfs_root_item *root_item;
748         struct btrfs_key root_key;
749         int ret = 0;
750         bool must_abort = false;
751
752         root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
753         if (!root_item)
754                 return ERR_PTR(-ENOMEM);
755
756         root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
757         root_key.type = BTRFS_ROOT_ITEM_KEY;
758         root_key.offset = objectid;
759
760         if (root->root_key.objectid == objectid) {
761                 u64 commit_root_gen;
762
763                 /* called by btrfs_init_reloc_root */
764                 ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
765                                       BTRFS_TREE_RELOC_OBJECTID);
766                 if (ret)
767                         goto fail;
768
769                 /*
770                  * Set the last_snapshot field to the generation of the commit
771                  * root - like this ctree.c:btrfs_block_can_be_shared() behaves
772                  * correctly (returns true) when the relocation root is created
773                  * either inside the critical section of a transaction commit
774                  * (through transaction.c:qgroup_account_snapshot()) and when
775                  * it's created before the transaction commit is started.
776                  */
777                 commit_root_gen = btrfs_header_generation(root->commit_root);
778                 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
779         } else {
780                 /*
781                  * called by btrfs_reloc_post_snapshot_hook.
782                  * the source tree is a reloc tree, all tree blocks
783                  * modified after it was created have RELOC flag
784                  * set in their headers. so it's OK to not update
785                  * the 'last_snapshot'.
786                  */
787                 ret = btrfs_copy_root(trans, root, root->node, &eb,
788                                       BTRFS_TREE_RELOC_OBJECTID);
789                 if (ret)
790                         goto fail;
791         }
792
793         /*
794          * We have changed references at this point, we must abort the
795          * transaction if anything fails.
796          */
797         must_abort = true;
798
799         memcpy(root_item, &root->root_item, sizeof(*root_item));
800         btrfs_set_root_bytenr(root_item, eb->start);
801         btrfs_set_root_level(root_item, btrfs_header_level(eb));
802         btrfs_set_root_generation(root_item, trans->transid);
803
804         if (root->root_key.objectid == objectid) {
805                 btrfs_set_root_refs(root_item, 0);
806                 memset(&root_item->drop_progress, 0,
807                        sizeof(struct btrfs_disk_key));
808                 btrfs_set_root_drop_level(root_item, 0);
809         }
810
811         btrfs_tree_unlock(eb);
812         free_extent_buffer(eb);
813
814         ret = btrfs_insert_root(trans, fs_info->tree_root,
815                                 &root_key, root_item);
816         if (ret)
817                 goto fail;
818
819         kfree(root_item);
820
821         reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
822         if (IS_ERR(reloc_root)) {
823                 ret = PTR_ERR(reloc_root);
824                 goto abort;
825         }
826         set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
827         reloc_root->last_trans = trans->transid;
828         return reloc_root;
829 fail:
830         kfree(root_item);
831 abort:
832         if (must_abort)
833                 btrfs_abort_transaction(trans, ret);
834         return ERR_PTR(ret);
835 }
836
837 /*
838  * create reloc tree for a given fs tree. reloc tree is just a
839  * snapshot of the fs tree with special root objectid.
840  *
841  * The reloc_root comes out of here with two references, one for
842  * root->reloc_root, and another for being on the rc->reloc_roots list.
843  */
844 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
845                           struct btrfs_root *root)
846 {
847         struct btrfs_fs_info *fs_info = root->fs_info;
848         struct btrfs_root *reloc_root;
849         struct reloc_control *rc = fs_info->reloc_ctl;
850         struct btrfs_block_rsv *rsv;
851         int clear_rsv = 0;
852         int ret;
853
854         if (!rc)
855                 return 0;
856
857         /*
858          * The subvolume has reloc tree but the swap is finished, no need to
859          * create/update the dead reloc tree
860          */
861         if (reloc_root_is_dead(root))
862                 return 0;
863
864         /*
865          * This is subtle but important.  We do not do
866          * record_root_in_transaction for reloc roots, instead we record their
867          * corresponding fs root, and then here we update the last trans for the
868          * reloc root.  This means that we have to do this for the entire life
869          * of the reloc root, regardless of which stage of the relocation we are
870          * in.
871          */
872         if (root->reloc_root) {
873                 reloc_root = root->reloc_root;
874                 reloc_root->last_trans = trans->transid;
875                 return 0;
876         }
877
878         /*
879          * We are merging reloc roots, we do not need new reloc trees.  Also
880          * reloc trees never need their own reloc tree.
881          */
882         if (!rc->create_reloc_tree ||
883             root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
884                 return 0;
885
886         if (!trans->reloc_reserved) {
887                 rsv = trans->block_rsv;
888                 trans->block_rsv = rc->block_rsv;
889                 clear_rsv = 1;
890         }
891         reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
892         if (clear_rsv)
893                 trans->block_rsv = rsv;
894         if (IS_ERR(reloc_root))
895                 return PTR_ERR(reloc_root);
896
897         ret = __add_reloc_root(reloc_root);
898         ASSERT(ret != -EEXIST);
899         if (ret) {
900                 /* Pairs with create_reloc_root */
901                 btrfs_put_root(reloc_root);
902                 return ret;
903         }
904         root->reloc_root = btrfs_grab_root(reloc_root);
905         return 0;
906 }
907
908 /*
909  * update root item of reloc tree
910  */
911 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
912                             struct btrfs_root *root)
913 {
914         struct btrfs_fs_info *fs_info = root->fs_info;
915         struct btrfs_root *reloc_root;
916         struct btrfs_root_item *root_item;
917         int ret;
918
919         if (!have_reloc_root(root))
920                 return 0;
921
922         reloc_root = root->reloc_root;
923         root_item = &reloc_root->root_item;
924
925         /*
926          * We are probably ok here, but __del_reloc_root() will drop its ref of
927          * the root.  We have the ref for root->reloc_root, but just in case
928          * hold it while we update the reloc root.
929          */
930         btrfs_grab_root(reloc_root);
931
932         /* root->reloc_root will stay until current relocation finished */
933         if (fs_info->reloc_ctl->merge_reloc_tree &&
934             btrfs_root_refs(root_item) == 0) {
935                 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
936                 /*
937                  * Mark the tree as dead before we change reloc_root so
938                  * have_reloc_root will not touch it from now on.
939                  */
940                 smp_wmb();
941                 __del_reloc_root(reloc_root);
942         }
943
944         if (reloc_root->commit_root != reloc_root->node) {
945                 __update_reloc_root(reloc_root);
946                 btrfs_set_root_node(root_item, reloc_root->node);
947                 free_extent_buffer(reloc_root->commit_root);
948                 reloc_root->commit_root = btrfs_root_node(reloc_root);
949         }
950
951         ret = btrfs_update_root(trans, fs_info->tree_root,
952                                 &reloc_root->root_key, root_item);
953         btrfs_put_root(reloc_root);
954         return ret;
955 }
956
957 /*
958  * helper to find first cached inode with inode number >= objectid
959  * in a subvolume
960  */
961 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
962 {
963         struct rb_node *node;
964         struct rb_node *prev;
965         struct btrfs_inode *entry;
966         struct inode *inode;
967
968         spin_lock(&root->inode_lock);
969 again:
970         node = root->inode_tree.rb_node;
971         prev = NULL;
972         while (node) {
973                 prev = node;
974                 entry = rb_entry(node, struct btrfs_inode, rb_node);
975
976                 if (objectid < btrfs_ino(entry))
977                         node = node->rb_left;
978                 else if (objectid > btrfs_ino(entry))
979                         node = node->rb_right;
980                 else
981                         break;
982         }
983         if (!node) {
984                 while (prev) {
985                         entry = rb_entry(prev, struct btrfs_inode, rb_node);
986                         if (objectid <= btrfs_ino(entry)) {
987                                 node = prev;
988                                 break;
989                         }
990                         prev = rb_next(prev);
991                 }
992         }
993         while (node) {
994                 entry = rb_entry(node, struct btrfs_inode, rb_node);
995                 inode = igrab(&entry->vfs_inode);
996                 if (inode) {
997                         spin_unlock(&root->inode_lock);
998                         return inode;
999                 }
1000
1001                 objectid = btrfs_ino(entry) + 1;
1002                 if (cond_resched_lock(&root->inode_lock))
1003                         goto again;
1004
1005                 node = rb_next(node);
1006         }
1007         spin_unlock(&root->inode_lock);
1008         return NULL;
1009 }
1010
1011 /*
1012  * get new location of data
1013  */
1014 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1015                             u64 bytenr, u64 num_bytes)
1016 {
1017         struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1018         struct btrfs_path *path;
1019         struct btrfs_file_extent_item *fi;
1020         struct extent_buffer *leaf;
1021         int ret;
1022
1023         path = btrfs_alloc_path();
1024         if (!path)
1025                 return -ENOMEM;
1026
1027         bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1028         ret = btrfs_lookup_file_extent(NULL, root, path,
1029                         btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1030         if (ret < 0)
1031                 goto out;
1032         if (ret > 0) {
1033                 ret = -ENOENT;
1034                 goto out;
1035         }
1036
1037         leaf = path->nodes[0];
1038         fi = btrfs_item_ptr(leaf, path->slots[0],
1039                             struct btrfs_file_extent_item);
1040
1041         BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1042                btrfs_file_extent_compression(leaf, fi) ||
1043                btrfs_file_extent_encryption(leaf, fi) ||
1044                btrfs_file_extent_other_encoding(leaf, fi));
1045
1046         if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1047                 ret = -EINVAL;
1048                 goto out;
1049         }
1050
1051         *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1052         ret = 0;
1053 out:
1054         btrfs_free_path(path);
1055         return ret;
1056 }
1057
1058 /*
1059  * update file extent items in the tree leaf to point to
1060  * the new locations.
1061  */
1062 static noinline_for_stack
1063 int replace_file_extents(struct btrfs_trans_handle *trans,
1064                          struct reloc_control *rc,
1065                          struct btrfs_root *root,
1066                          struct extent_buffer *leaf)
1067 {
1068         struct btrfs_fs_info *fs_info = root->fs_info;
1069         struct btrfs_key key;
1070         struct btrfs_file_extent_item *fi;
1071         struct inode *inode = NULL;
1072         u64 parent;
1073         u64 bytenr;
1074         u64 new_bytenr = 0;
1075         u64 num_bytes;
1076         u64 end;
1077         u32 nritems;
1078         u32 i;
1079         int ret = 0;
1080         int first = 1;
1081         int dirty = 0;
1082
1083         if (rc->stage != UPDATE_DATA_PTRS)
1084                 return 0;
1085
1086         /* reloc trees always use full backref */
1087         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1088                 parent = leaf->start;
1089         else
1090                 parent = 0;
1091
1092         nritems = btrfs_header_nritems(leaf);
1093         for (i = 0; i < nritems; i++) {
1094                 struct btrfs_ref ref = { 0 };
1095
1096                 cond_resched();
1097                 btrfs_item_key_to_cpu(leaf, &key, i);
1098                 if (key.type != BTRFS_EXTENT_DATA_KEY)
1099                         continue;
1100                 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1101                 if (btrfs_file_extent_type(leaf, fi) ==
1102                     BTRFS_FILE_EXTENT_INLINE)
1103                         continue;
1104                 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1105                 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1106                 if (bytenr == 0)
1107                         continue;
1108                 if (!in_range(bytenr, rc->block_group->start,
1109                               rc->block_group->length))
1110                         continue;
1111
1112                 /*
1113                  * if we are modifying block in fs tree, wait for read_folio
1114                  * to complete and drop the extent cache
1115                  */
1116                 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1117                         if (first) {
1118                                 inode = find_next_inode(root, key.objectid);
1119                                 first = 0;
1120                         } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1121                                 btrfs_add_delayed_iput(BTRFS_I(inode));
1122                                 inode = find_next_inode(root, key.objectid);
1123                         }
1124                         if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1125                                 struct extent_state *cached_state = NULL;
1126
1127                                 end = key.offset +
1128                                       btrfs_file_extent_num_bytes(leaf, fi);
1129                                 WARN_ON(!IS_ALIGNED(key.offset,
1130                                                     fs_info->sectorsize));
1131                                 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1132                                 end--;
1133                                 ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1134                                                       key.offset, end,
1135                                                       &cached_state);
1136                                 if (!ret)
1137                                         continue;
1138
1139                                 btrfs_drop_extent_map_range(BTRFS_I(inode),
1140                                                             key.offset, end, true);
1141                                 unlock_extent(&BTRFS_I(inode)->io_tree,
1142                                               key.offset, end, &cached_state);
1143                         }
1144                 }
1145
1146                 ret = get_new_location(rc->data_inode, &new_bytenr,
1147                                        bytenr, num_bytes);
1148                 if (ret) {
1149                         /*
1150                          * Don't have to abort since we've not changed anything
1151                          * in the file extent yet.
1152                          */
1153                         break;
1154                 }
1155
1156                 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1157                 dirty = 1;
1158
1159                 key.offset -= btrfs_file_extent_offset(leaf, fi);
1160                 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1161                                        num_bytes, parent);
1162                 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1163                                     key.objectid, key.offset,
1164                                     root->root_key.objectid, false);
1165                 ret = btrfs_inc_extent_ref(trans, &ref);
1166                 if (ret) {
1167                         btrfs_abort_transaction(trans, ret);
1168                         break;
1169                 }
1170
1171                 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1172                                        num_bytes, parent);
1173                 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1174                                     key.objectid, key.offset,
1175                                     root->root_key.objectid, false);
1176                 ret = btrfs_free_extent(trans, &ref);
1177                 if (ret) {
1178                         btrfs_abort_transaction(trans, ret);
1179                         break;
1180                 }
1181         }
1182         if (dirty)
1183                 btrfs_mark_buffer_dirty(leaf);
1184         if (inode)
1185                 btrfs_add_delayed_iput(BTRFS_I(inode));
1186         return ret;
1187 }
1188
1189 static noinline_for_stack
1190 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1191                      struct btrfs_path *path, int level)
1192 {
1193         struct btrfs_disk_key key1;
1194         struct btrfs_disk_key key2;
1195         btrfs_node_key(eb, &key1, slot);
1196         btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1197         return memcmp(&key1, &key2, sizeof(key1));
1198 }
1199
1200 /*
1201  * try to replace tree blocks in fs tree with the new blocks
1202  * in reloc tree. tree blocks haven't been modified since the
1203  * reloc tree was create can be replaced.
1204  *
1205  * if a block was replaced, level of the block + 1 is returned.
1206  * if no block got replaced, 0 is returned. if there are other
1207  * errors, a negative error number is returned.
1208  */
1209 static noinline_for_stack
1210 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1211                  struct btrfs_root *dest, struct btrfs_root *src,
1212                  struct btrfs_path *path, struct btrfs_key *next_key,
1213                  int lowest_level, int max_level)
1214 {
1215         struct btrfs_fs_info *fs_info = dest->fs_info;
1216         struct extent_buffer *eb;
1217         struct extent_buffer *parent;
1218         struct btrfs_ref ref = { 0 };
1219         struct btrfs_key key;
1220         u64 old_bytenr;
1221         u64 new_bytenr;
1222         u64 old_ptr_gen;
1223         u64 new_ptr_gen;
1224         u64 last_snapshot;
1225         u32 blocksize;
1226         int cow = 0;
1227         int level;
1228         int ret;
1229         int slot;
1230
1231         ASSERT(src->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1232         ASSERT(dest->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1233
1234         last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1235 again:
1236         slot = path->slots[lowest_level];
1237         btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1238
1239         eb = btrfs_lock_root_node(dest);
1240         level = btrfs_header_level(eb);
1241
1242         if (level < lowest_level) {
1243                 btrfs_tree_unlock(eb);
1244                 free_extent_buffer(eb);
1245                 return 0;
1246         }
1247
1248         if (cow) {
1249                 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1250                                       BTRFS_NESTING_COW);
1251                 if (ret) {
1252                         btrfs_tree_unlock(eb);
1253                         free_extent_buffer(eb);
1254                         return ret;
1255                 }
1256         }
1257
1258         if (next_key) {
1259                 next_key->objectid = (u64)-1;
1260                 next_key->type = (u8)-1;
1261                 next_key->offset = (u64)-1;
1262         }
1263
1264         parent = eb;
1265         while (1) {
1266                 level = btrfs_header_level(parent);
1267                 ASSERT(level >= lowest_level);
1268
1269                 ret = btrfs_bin_search(parent, &key, &slot);
1270                 if (ret < 0)
1271                         break;
1272                 if (ret && slot > 0)
1273                         slot--;
1274
1275                 if (next_key && slot + 1 < btrfs_header_nritems(parent))
1276                         btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1277
1278                 old_bytenr = btrfs_node_blockptr(parent, slot);
1279                 blocksize = fs_info->nodesize;
1280                 old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1281
1282                 if (level <= max_level) {
1283                         eb = path->nodes[level];
1284                         new_bytenr = btrfs_node_blockptr(eb,
1285                                                         path->slots[level]);
1286                         new_ptr_gen = btrfs_node_ptr_generation(eb,
1287                                                         path->slots[level]);
1288                 } else {
1289                         new_bytenr = 0;
1290                         new_ptr_gen = 0;
1291                 }
1292
1293                 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1294                         ret = level;
1295                         break;
1296                 }
1297
1298                 if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1299                     memcmp_node_keys(parent, slot, path, level)) {
1300                         if (level <= lowest_level) {
1301                                 ret = 0;
1302                                 break;
1303                         }
1304
1305                         eb = btrfs_read_node_slot(parent, slot);
1306                         if (IS_ERR(eb)) {
1307                                 ret = PTR_ERR(eb);
1308                                 break;
1309                         }
1310                         btrfs_tree_lock(eb);
1311                         if (cow) {
1312                                 ret = btrfs_cow_block(trans, dest, eb, parent,
1313                                                       slot, &eb,
1314                                                       BTRFS_NESTING_COW);
1315                                 if (ret) {
1316                                         btrfs_tree_unlock(eb);
1317                                         free_extent_buffer(eb);
1318                                         break;
1319                                 }
1320                         }
1321
1322                         btrfs_tree_unlock(parent);
1323                         free_extent_buffer(parent);
1324
1325                         parent = eb;
1326                         continue;
1327                 }
1328
1329                 if (!cow) {
1330                         btrfs_tree_unlock(parent);
1331                         free_extent_buffer(parent);
1332                         cow = 1;
1333                         goto again;
1334                 }
1335
1336                 btrfs_node_key_to_cpu(path->nodes[level], &key,
1337                                       path->slots[level]);
1338                 btrfs_release_path(path);
1339
1340                 path->lowest_level = level;
1341                 set_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1342                 ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1343                 clear_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1344                 path->lowest_level = 0;
1345                 if (ret) {
1346                         if (ret > 0)
1347                                 ret = -ENOENT;
1348                         break;
1349                 }
1350
1351                 /*
1352                  * Info qgroup to trace both subtrees.
1353                  *
1354                  * We must trace both trees.
1355                  * 1) Tree reloc subtree
1356                  *    If not traced, we will leak data numbers
1357                  * 2) Fs subtree
1358                  *    If not traced, we will double count old data
1359                  *
1360                  * We don't scan the subtree right now, but only record
1361                  * the swapped tree blocks.
1362                  * The real subtree rescan is delayed until we have new
1363                  * CoW on the subtree root node before transaction commit.
1364                  */
1365                 ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1366                                 rc->block_group, parent, slot,
1367                                 path->nodes[level], path->slots[level],
1368                                 last_snapshot);
1369                 if (ret < 0)
1370                         break;
1371                 /*
1372                  * swap blocks in fs tree and reloc tree.
1373                  */
1374                 btrfs_set_node_blockptr(parent, slot, new_bytenr);
1375                 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1376                 btrfs_mark_buffer_dirty(parent);
1377
1378                 btrfs_set_node_blockptr(path->nodes[level],
1379                                         path->slots[level], old_bytenr);
1380                 btrfs_set_node_ptr_generation(path->nodes[level],
1381                                               path->slots[level], old_ptr_gen);
1382                 btrfs_mark_buffer_dirty(path->nodes[level]);
1383
1384                 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1385                                        blocksize, path->nodes[level]->start);
1386                 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid,
1387                                     0, true);
1388                 ret = btrfs_inc_extent_ref(trans, &ref);
1389                 if (ret) {
1390                         btrfs_abort_transaction(trans, ret);
1391                         break;
1392                 }
1393                 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1394                                        blocksize, 0);
1395                 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid, 0,
1396                                     true);
1397                 ret = btrfs_inc_extent_ref(trans, &ref);
1398                 if (ret) {
1399                         btrfs_abort_transaction(trans, ret);
1400                         break;
1401                 }
1402
1403                 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1404                                        blocksize, path->nodes[level]->start);
1405                 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid,
1406                                     0, true);
1407                 ret = btrfs_free_extent(trans, &ref);
1408                 if (ret) {
1409                         btrfs_abort_transaction(trans, ret);
1410                         break;
1411                 }
1412
1413                 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1414                                        blocksize, 0);
1415                 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid,
1416                                     0, true);
1417                 ret = btrfs_free_extent(trans, &ref);
1418                 if (ret) {
1419                         btrfs_abort_transaction(trans, ret);
1420                         break;
1421                 }
1422
1423                 btrfs_unlock_up_safe(path, 0);
1424
1425                 ret = level;
1426                 break;
1427         }
1428         btrfs_tree_unlock(parent);
1429         free_extent_buffer(parent);
1430         return ret;
1431 }
1432
1433 /*
1434  * helper to find next relocated block in reloc tree
1435  */
1436 static noinline_for_stack
1437 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1438                        int *level)
1439 {
1440         struct extent_buffer *eb;
1441         int i;
1442         u64 last_snapshot;
1443         u32 nritems;
1444
1445         last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1446
1447         for (i = 0; i < *level; i++) {
1448                 free_extent_buffer(path->nodes[i]);
1449                 path->nodes[i] = NULL;
1450         }
1451
1452         for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1453                 eb = path->nodes[i];
1454                 nritems = btrfs_header_nritems(eb);
1455                 while (path->slots[i] + 1 < nritems) {
1456                         path->slots[i]++;
1457                         if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1458                             last_snapshot)
1459                                 continue;
1460
1461                         *level = i;
1462                         return 0;
1463                 }
1464                 free_extent_buffer(path->nodes[i]);
1465                 path->nodes[i] = NULL;
1466         }
1467         return 1;
1468 }
1469
1470 /*
1471  * walk down reloc tree to find relocated block of lowest level
1472  */
1473 static noinline_for_stack
1474 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1475                          int *level)
1476 {
1477         struct extent_buffer *eb = NULL;
1478         int i;
1479         u64 ptr_gen = 0;
1480         u64 last_snapshot;
1481         u32 nritems;
1482
1483         last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1484
1485         for (i = *level; i > 0; i--) {
1486                 eb = path->nodes[i];
1487                 nritems = btrfs_header_nritems(eb);
1488                 while (path->slots[i] < nritems) {
1489                         ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1490                         if (ptr_gen > last_snapshot)
1491                                 break;
1492                         path->slots[i]++;
1493                 }
1494                 if (path->slots[i] >= nritems) {
1495                         if (i == *level)
1496                                 break;
1497                         *level = i + 1;
1498                         return 0;
1499                 }
1500                 if (i == 1) {
1501                         *level = i;
1502                         return 0;
1503                 }
1504
1505                 eb = btrfs_read_node_slot(eb, path->slots[i]);
1506                 if (IS_ERR(eb))
1507                         return PTR_ERR(eb);
1508                 BUG_ON(btrfs_header_level(eb) != i - 1);
1509                 path->nodes[i - 1] = eb;
1510                 path->slots[i - 1] = 0;
1511         }
1512         return 1;
1513 }
1514
1515 /*
1516  * invalidate extent cache for file extents whose key in range of
1517  * [min_key, max_key)
1518  */
1519 static int invalidate_extent_cache(struct btrfs_root *root,
1520                                    struct btrfs_key *min_key,
1521                                    struct btrfs_key *max_key)
1522 {
1523         struct btrfs_fs_info *fs_info = root->fs_info;
1524         struct inode *inode = NULL;
1525         u64 objectid;
1526         u64 start, end;
1527         u64 ino;
1528
1529         objectid = min_key->objectid;
1530         while (1) {
1531                 struct extent_state *cached_state = NULL;
1532
1533                 cond_resched();
1534                 iput(inode);
1535
1536                 if (objectid > max_key->objectid)
1537                         break;
1538
1539                 inode = find_next_inode(root, objectid);
1540                 if (!inode)
1541                         break;
1542                 ino = btrfs_ino(BTRFS_I(inode));
1543
1544                 if (ino > max_key->objectid) {
1545                         iput(inode);
1546                         break;
1547                 }
1548
1549                 objectid = ino + 1;
1550                 if (!S_ISREG(inode->i_mode))
1551                         continue;
1552
1553                 if (unlikely(min_key->objectid == ino)) {
1554                         if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1555                                 continue;
1556                         if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1557                                 start = 0;
1558                         else {
1559                                 start = min_key->offset;
1560                                 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1561                         }
1562                 } else {
1563                         start = 0;
1564                 }
1565
1566                 if (unlikely(max_key->objectid == ino)) {
1567                         if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1568                                 continue;
1569                         if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1570                                 end = (u64)-1;
1571                         } else {
1572                                 if (max_key->offset == 0)
1573                                         continue;
1574                                 end = max_key->offset;
1575                                 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1576                                 end--;
1577                         }
1578                 } else {
1579                         end = (u64)-1;
1580                 }
1581
1582                 /* the lock_extent waits for read_folio to complete */
1583                 lock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
1584                 btrfs_drop_extent_map_range(BTRFS_I(inode), start, end, true);
1585                 unlock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
1586         }
1587         return 0;
1588 }
1589
1590 static int find_next_key(struct btrfs_path *path, int level,
1591                          struct btrfs_key *key)
1592
1593 {
1594         while (level < BTRFS_MAX_LEVEL) {
1595                 if (!path->nodes[level])
1596                         break;
1597                 if (path->slots[level] + 1 <
1598                     btrfs_header_nritems(path->nodes[level])) {
1599                         btrfs_node_key_to_cpu(path->nodes[level], key,
1600                                               path->slots[level] + 1);
1601                         return 0;
1602                 }
1603                 level++;
1604         }
1605         return 1;
1606 }
1607
1608 /*
1609  * Insert current subvolume into reloc_control::dirty_subvol_roots
1610  */
1611 static int insert_dirty_subvol(struct btrfs_trans_handle *trans,
1612                                struct reloc_control *rc,
1613                                struct btrfs_root *root)
1614 {
1615         struct btrfs_root *reloc_root = root->reloc_root;
1616         struct btrfs_root_item *reloc_root_item;
1617         int ret;
1618
1619         /* @root must be a subvolume tree root with a valid reloc tree */
1620         ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1621         ASSERT(reloc_root);
1622
1623         reloc_root_item = &reloc_root->root_item;
1624         memset(&reloc_root_item->drop_progress, 0,
1625                 sizeof(reloc_root_item->drop_progress));
1626         btrfs_set_root_drop_level(reloc_root_item, 0);
1627         btrfs_set_root_refs(reloc_root_item, 0);
1628         ret = btrfs_update_reloc_root(trans, root);
1629         if (ret)
1630                 return ret;
1631
1632         if (list_empty(&root->reloc_dirty_list)) {
1633                 btrfs_grab_root(root);
1634                 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1635         }
1636
1637         return 0;
1638 }
1639
1640 static int clean_dirty_subvols(struct reloc_control *rc)
1641 {
1642         struct btrfs_root *root;
1643         struct btrfs_root *next;
1644         int ret = 0;
1645         int ret2;
1646
1647         list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1648                                  reloc_dirty_list) {
1649                 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1650                         /* Merged subvolume, cleanup its reloc root */
1651                         struct btrfs_root *reloc_root = root->reloc_root;
1652
1653                         list_del_init(&root->reloc_dirty_list);
1654                         root->reloc_root = NULL;
1655                         /*
1656                          * Need barrier to ensure clear_bit() only happens after
1657                          * root->reloc_root = NULL. Pairs with have_reloc_root.
1658                          */
1659                         smp_wmb();
1660                         clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1661                         if (reloc_root) {
1662                                 /*
1663                                  * btrfs_drop_snapshot drops our ref we hold for
1664                                  * ->reloc_root.  If it fails however we must
1665                                  * drop the ref ourselves.
1666                                  */
1667                                 ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1668                                 if (ret2 < 0) {
1669                                         btrfs_put_root(reloc_root);
1670                                         if (!ret)
1671                                                 ret = ret2;
1672                                 }
1673                         }
1674                         btrfs_put_root(root);
1675                 } else {
1676                         /* Orphan reloc tree, just clean it up */
1677                         ret2 = btrfs_drop_snapshot(root, 0, 1);
1678                         if (ret2 < 0) {
1679                                 btrfs_put_root(root);
1680                                 if (!ret)
1681                                         ret = ret2;
1682                         }
1683                 }
1684         }
1685         return ret;
1686 }
1687
1688 /*
1689  * merge the relocated tree blocks in reloc tree with corresponding
1690  * fs tree.
1691  */
1692 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1693                                                struct btrfs_root *root)
1694 {
1695         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1696         struct btrfs_key key;
1697         struct btrfs_key next_key;
1698         struct btrfs_trans_handle *trans = NULL;
1699         struct btrfs_root *reloc_root;
1700         struct btrfs_root_item *root_item;
1701         struct btrfs_path *path;
1702         struct extent_buffer *leaf;
1703         int reserve_level;
1704         int level;
1705         int max_level;
1706         int replaced = 0;
1707         int ret = 0;
1708         u32 min_reserved;
1709
1710         path = btrfs_alloc_path();
1711         if (!path)
1712                 return -ENOMEM;
1713         path->reada = READA_FORWARD;
1714
1715         reloc_root = root->reloc_root;
1716         root_item = &reloc_root->root_item;
1717
1718         if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1719                 level = btrfs_root_level(root_item);
1720                 atomic_inc(&reloc_root->node->refs);
1721                 path->nodes[level] = reloc_root->node;
1722                 path->slots[level] = 0;
1723         } else {
1724                 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1725
1726                 level = btrfs_root_drop_level(root_item);
1727                 BUG_ON(level == 0);
1728                 path->lowest_level = level;
1729                 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1730                 path->lowest_level = 0;
1731                 if (ret < 0) {
1732                         btrfs_free_path(path);
1733                         return ret;
1734                 }
1735
1736                 btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1737                                       path->slots[level]);
1738                 WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1739
1740                 btrfs_unlock_up_safe(path, 0);
1741         }
1742
1743         /*
1744          * In merge_reloc_root(), we modify the upper level pointer to swap the
1745          * tree blocks between reloc tree and subvolume tree.  Thus for tree
1746          * block COW, we COW at most from level 1 to root level for each tree.
1747          *
1748          * Thus the needed metadata size is at most root_level * nodesize,
1749          * and * 2 since we have two trees to COW.
1750          */
1751         reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1752         min_reserved = fs_info->nodesize * reserve_level * 2;
1753         memset(&next_key, 0, sizeof(next_key));
1754
1755         while (1) {
1756                 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
1757                                              min_reserved,
1758                                              BTRFS_RESERVE_FLUSH_LIMIT);
1759                 if (ret)
1760                         goto out;
1761                 trans = btrfs_start_transaction(root, 0);
1762                 if (IS_ERR(trans)) {
1763                         ret = PTR_ERR(trans);
1764                         trans = NULL;
1765                         goto out;
1766                 }
1767
1768                 /*
1769                  * At this point we no longer have a reloc_control, so we can't
1770                  * depend on btrfs_init_reloc_root to update our last_trans.
1771                  *
1772                  * But that's ok, we started the trans handle on our
1773                  * corresponding fs_root, which means it's been added to the
1774                  * dirty list.  At commit time we'll still call
1775                  * btrfs_update_reloc_root() and update our root item
1776                  * appropriately.
1777                  */
1778                 reloc_root->last_trans = trans->transid;
1779                 trans->block_rsv = rc->block_rsv;
1780
1781                 replaced = 0;
1782                 max_level = level;
1783
1784                 ret = walk_down_reloc_tree(reloc_root, path, &level);
1785                 if (ret < 0)
1786                         goto out;
1787                 if (ret > 0)
1788                         break;
1789
1790                 if (!find_next_key(path, level, &key) &&
1791                     btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1792                         ret = 0;
1793                 } else {
1794                         ret = replace_path(trans, rc, root, reloc_root, path,
1795                                            &next_key, level, max_level);
1796                 }
1797                 if (ret < 0)
1798                         goto out;
1799                 if (ret > 0) {
1800                         level = ret;
1801                         btrfs_node_key_to_cpu(path->nodes[level], &key,
1802                                               path->slots[level]);
1803                         replaced = 1;
1804                 }
1805
1806                 ret = walk_up_reloc_tree(reloc_root, path, &level);
1807                 if (ret > 0)
1808                         break;
1809
1810                 BUG_ON(level == 0);
1811                 /*
1812                  * save the merging progress in the drop_progress.
1813                  * this is OK since root refs == 1 in this case.
1814                  */
1815                 btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1816                                path->slots[level]);
1817                 btrfs_set_root_drop_level(root_item, level);
1818
1819                 btrfs_end_transaction_throttle(trans);
1820                 trans = NULL;
1821
1822                 btrfs_btree_balance_dirty(fs_info);
1823
1824                 if (replaced && rc->stage == UPDATE_DATA_PTRS)
1825                         invalidate_extent_cache(root, &key, &next_key);
1826         }
1827
1828         /*
1829          * handle the case only one block in the fs tree need to be
1830          * relocated and the block is tree root.
1831          */
1832         leaf = btrfs_lock_root_node(root);
1833         ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1834                               BTRFS_NESTING_COW);
1835         btrfs_tree_unlock(leaf);
1836         free_extent_buffer(leaf);
1837 out:
1838         btrfs_free_path(path);
1839
1840         if (ret == 0) {
1841                 ret = insert_dirty_subvol(trans, rc, root);
1842                 if (ret)
1843                         btrfs_abort_transaction(trans, ret);
1844         }
1845
1846         if (trans)
1847                 btrfs_end_transaction_throttle(trans);
1848
1849         btrfs_btree_balance_dirty(fs_info);
1850
1851         if (replaced && rc->stage == UPDATE_DATA_PTRS)
1852                 invalidate_extent_cache(root, &key, &next_key);
1853
1854         return ret;
1855 }
1856
1857 static noinline_for_stack
1858 int prepare_to_merge(struct reloc_control *rc, int err)
1859 {
1860         struct btrfs_root *root = rc->extent_root;
1861         struct btrfs_fs_info *fs_info = root->fs_info;
1862         struct btrfs_root *reloc_root;
1863         struct btrfs_trans_handle *trans;
1864         LIST_HEAD(reloc_roots);
1865         u64 num_bytes = 0;
1866         int ret;
1867
1868         mutex_lock(&fs_info->reloc_mutex);
1869         rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1870         rc->merging_rsv_size += rc->nodes_relocated * 2;
1871         mutex_unlock(&fs_info->reloc_mutex);
1872
1873 again:
1874         if (!err) {
1875                 num_bytes = rc->merging_rsv_size;
1876                 ret = btrfs_block_rsv_add(fs_info, rc->block_rsv, num_bytes,
1877                                           BTRFS_RESERVE_FLUSH_ALL);
1878                 if (ret)
1879                         err = ret;
1880         }
1881
1882         trans = btrfs_join_transaction(rc->extent_root);
1883         if (IS_ERR(trans)) {
1884                 if (!err)
1885                         btrfs_block_rsv_release(fs_info, rc->block_rsv,
1886                                                 num_bytes, NULL);
1887                 return PTR_ERR(trans);
1888         }
1889
1890         if (!err) {
1891                 if (num_bytes != rc->merging_rsv_size) {
1892                         btrfs_end_transaction(trans);
1893                         btrfs_block_rsv_release(fs_info, rc->block_rsv,
1894                                                 num_bytes, NULL);
1895                         goto again;
1896                 }
1897         }
1898
1899         rc->merge_reloc_tree = 1;
1900
1901         while (!list_empty(&rc->reloc_roots)) {
1902                 reloc_root = list_entry(rc->reloc_roots.next,
1903                                         struct btrfs_root, root_list);
1904                 list_del_init(&reloc_root->root_list);
1905
1906                 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1907                                 false);
1908                 if (IS_ERR(root)) {
1909                         /*
1910                          * Even if we have an error we need this reloc root
1911                          * back on our list so we can clean up properly.
1912                          */
1913                         list_add(&reloc_root->root_list, &reloc_roots);
1914                         btrfs_abort_transaction(trans, (int)PTR_ERR(root));
1915                         if (!err)
1916                                 err = PTR_ERR(root);
1917                         break;
1918                 }
1919                 ASSERT(root->reloc_root == reloc_root);
1920
1921                 /*
1922                  * set reference count to 1, so btrfs_recover_relocation
1923                  * knows it should resumes merging
1924                  */
1925                 if (!err)
1926                         btrfs_set_root_refs(&reloc_root->root_item, 1);
1927                 ret = btrfs_update_reloc_root(trans, root);
1928
1929                 /*
1930                  * Even if we have an error we need this reloc root back on our
1931                  * list so we can clean up properly.
1932                  */
1933                 list_add(&reloc_root->root_list, &reloc_roots);
1934                 btrfs_put_root(root);
1935
1936                 if (ret) {
1937                         btrfs_abort_transaction(trans, ret);
1938                         if (!err)
1939                                 err = ret;
1940                         break;
1941                 }
1942         }
1943
1944         list_splice(&reloc_roots, &rc->reloc_roots);
1945
1946         if (!err)
1947                 err = btrfs_commit_transaction(trans);
1948         else
1949                 btrfs_end_transaction(trans);
1950         return err;
1951 }
1952
1953 static noinline_for_stack
1954 void free_reloc_roots(struct list_head *list)
1955 {
1956         struct btrfs_root *reloc_root, *tmp;
1957
1958         list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1959                 __del_reloc_root(reloc_root);
1960 }
1961
1962 static noinline_for_stack
1963 void merge_reloc_roots(struct reloc_control *rc)
1964 {
1965         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1966         struct btrfs_root *root;
1967         struct btrfs_root *reloc_root;
1968         LIST_HEAD(reloc_roots);
1969         int found = 0;
1970         int ret = 0;
1971 again:
1972         root = rc->extent_root;
1973
1974         /*
1975          * this serializes us with btrfs_record_root_in_transaction,
1976          * we have to make sure nobody is in the middle of
1977          * adding their roots to the list while we are
1978          * doing this splice
1979          */
1980         mutex_lock(&fs_info->reloc_mutex);
1981         list_splice_init(&rc->reloc_roots, &reloc_roots);
1982         mutex_unlock(&fs_info->reloc_mutex);
1983
1984         while (!list_empty(&reloc_roots)) {
1985                 found = 1;
1986                 reloc_root = list_entry(reloc_roots.next,
1987                                         struct btrfs_root, root_list);
1988
1989                 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1990                                          false);
1991                 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
1992                         if (IS_ERR(root)) {
1993                                 /*
1994                                  * For recovery we read the fs roots on mount,
1995                                  * and if we didn't find the root then we marked
1996                                  * the reloc root as a garbage root.  For normal
1997                                  * relocation obviously the root should exist in
1998                                  * memory.  However there's no reason we can't
1999                                  * handle the error properly here just in case.
2000                                  */
2001                                 ASSERT(0);
2002                                 ret = PTR_ERR(root);
2003                                 goto out;
2004                         }
2005                         if (root->reloc_root != reloc_root) {
2006                                 /*
2007                                  * This is actually impossible without something
2008                                  * going really wrong (like weird race condition
2009                                  * or cosmic rays).
2010                                  */
2011                                 ASSERT(0);
2012                                 ret = -EINVAL;
2013                                 goto out;
2014                         }
2015                         ret = merge_reloc_root(rc, root);
2016                         btrfs_put_root(root);
2017                         if (ret) {
2018                                 if (list_empty(&reloc_root->root_list))
2019                                         list_add_tail(&reloc_root->root_list,
2020                                                       &reloc_roots);
2021                                 goto out;
2022                         }
2023                 } else {
2024                         if (!IS_ERR(root)) {
2025                                 if (root->reloc_root == reloc_root) {
2026                                         root->reloc_root = NULL;
2027                                         btrfs_put_root(reloc_root);
2028                                 }
2029                                 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
2030                                           &root->state);
2031                                 btrfs_put_root(root);
2032                         }
2033
2034                         list_del_init(&reloc_root->root_list);
2035                         /* Don't forget to queue this reloc root for cleanup */
2036                         list_add_tail(&reloc_root->reloc_dirty_list,
2037                                       &rc->dirty_subvol_roots);
2038                 }
2039         }
2040
2041         if (found) {
2042                 found = 0;
2043                 goto again;
2044         }
2045 out:
2046         if (ret) {
2047                 btrfs_handle_fs_error(fs_info, ret, NULL);
2048                 free_reloc_roots(&reloc_roots);
2049
2050                 /* new reloc root may be added */
2051                 mutex_lock(&fs_info->reloc_mutex);
2052                 list_splice_init(&rc->reloc_roots, &reloc_roots);
2053                 mutex_unlock(&fs_info->reloc_mutex);
2054                 free_reloc_roots(&reloc_roots);
2055         }
2056
2057         /*
2058          * We used to have
2059          *
2060          * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2061          *
2062          * here, but it's wrong.  If we fail to start the transaction in
2063          * prepare_to_merge() we will have only 0 ref reloc roots, none of which
2064          * have actually been removed from the reloc_root_tree rb tree.  This is
2065          * fine because we're bailing here, and we hold a reference on the root
2066          * for the list that holds it, so these roots will be cleaned up when we
2067          * do the reloc_dirty_list afterwards.  Meanwhile the root->reloc_root
2068          * will be cleaned up on unmount.
2069          *
2070          * The remaining nodes will be cleaned up by free_reloc_control.
2071          */
2072 }
2073
2074 static void free_block_list(struct rb_root *blocks)
2075 {
2076         struct tree_block *block;
2077         struct rb_node *rb_node;
2078         while ((rb_node = rb_first(blocks))) {
2079                 block = rb_entry(rb_node, struct tree_block, rb_node);
2080                 rb_erase(rb_node, blocks);
2081                 kfree(block);
2082         }
2083 }
2084
2085 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2086                                       struct btrfs_root *reloc_root)
2087 {
2088         struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2089         struct btrfs_root *root;
2090         int ret;
2091
2092         if (reloc_root->last_trans == trans->transid)
2093                 return 0;
2094
2095         root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
2096
2097         /*
2098          * This should succeed, since we can't have a reloc root without having
2099          * already looked up the actual root and created the reloc root for this
2100          * root.
2101          *
2102          * However if there's some sort of corruption where we have a ref to a
2103          * reloc root without a corresponding root this could return ENOENT.
2104          */
2105         if (IS_ERR(root)) {
2106                 ASSERT(0);
2107                 return PTR_ERR(root);
2108         }
2109         if (root->reloc_root != reloc_root) {
2110                 ASSERT(0);
2111                 btrfs_err(fs_info,
2112                           "root %llu has two reloc roots associated with it",
2113                           reloc_root->root_key.offset);
2114                 btrfs_put_root(root);
2115                 return -EUCLEAN;
2116         }
2117         ret = btrfs_record_root_in_trans(trans, root);
2118         btrfs_put_root(root);
2119
2120         return ret;
2121 }
2122
2123 static noinline_for_stack
2124 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2125                                      struct reloc_control *rc,
2126                                      struct btrfs_backref_node *node,
2127                                      struct btrfs_backref_edge *edges[])
2128 {
2129         struct btrfs_backref_node *next;
2130         struct btrfs_root *root;
2131         int index = 0;
2132         int ret;
2133
2134         next = node;
2135         while (1) {
2136                 cond_resched();
2137                 next = walk_up_backref(next, edges, &index);
2138                 root = next->root;
2139
2140                 /*
2141                  * If there is no root, then our references for this block are
2142                  * incomplete, as we should be able to walk all the way up to a
2143                  * block that is owned by a root.
2144                  *
2145                  * This path is only for SHAREABLE roots, so if we come upon a
2146                  * non-SHAREABLE root then we have backrefs that resolve
2147                  * improperly.
2148                  *
2149                  * Both of these cases indicate file system corruption, or a bug
2150                  * in the backref walking code.
2151                  */
2152                 if (!root) {
2153                         ASSERT(0);
2154                         btrfs_err(trans->fs_info,
2155                 "bytenr %llu doesn't have a backref path ending in a root",
2156                                   node->bytenr);
2157                         return ERR_PTR(-EUCLEAN);
2158                 }
2159                 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2160                         ASSERT(0);
2161                         btrfs_err(trans->fs_info,
2162         "bytenr %llu has multiple refs with one ending in a non-shareable root",
2163                                   node->bytenr);
2164                         return ERR_PTR(-EUCLEAN);
2165                 }
2166
2167                 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2168                         ret = record_reloc_root_in_trans(trans, root);
2169                         if (ret)
2170                                 return ERR_PTR(ret);
2171                         break;
2172                 }
2173
2174                 ret = btrfs_record_root_in_trans(trans, root);
2175                 if (ret)
2176                         return ERR_PTR(ret);
2177                 root = root->reloc_root;
2178
2179                 /*
2180                  * We could have raced with another thread which failed, so
2181                  * root->reloc_root may not be set, return ENOENT in this case.
2182                  */
2183                 if (!root)
2184                         return ERR_PTR(-ENOENT);
2185
2186                 if (next->new_bytenr != root->node->start) {
2187                         /*
2188                          * We just created the reloc root, so we shouldn't have
2189                          * ->new_bytenr set and this shouldn't be in the changed
2190                          *  list.  If it is then we have multiple roots pointing
2191                          *  at the same bytenr which indicates corruption, or
2192                          *  we've made a mistake in the backref walking code.
2193                          */
2194                         ASSERT(next->new_bytenr == 0);
2195                         ASSERT(list_empty(&next->list));
2196                         if (next->new_bytenr || !list_empty(&next->list)) {
2197                                 btrfs_err(trans->fs_info,
2198         "bytenr %llu possibly has multiple roots pointing at the same bytenr %llu",
2199                                           node->bytenr, next->bytenr);
2200                                 return ERR_PTR(-EUCLEAN);
2201                         }
2202
2203                         next->new_bytenr = root->node->start;
2204                         btrfs_put_root(next->root);
2205                         next->root = btrfs_grab_root(root);
2206                         ASSERT(next->root);
2207                         list_add_tail(&next->list,
2208                                       &rc->backref_cache.changed);
2209                         mark_block_processed(rc, next);
2210                         break;
2211                 }
2212
2213                 WARN_ON(1);
2214                 root = NULL;
2215                 next = walk_down_backref(edges, &index);
2216                 if (!next || next->level <= node->level)
2217                         break;
2218         }
2219         if (!root) {
2220                 /*
2221                  * This can happen if there's fs corruption or if there's a bug
2222                  * in the backref lookup code.
2223                  */
2224                 ASSERT(0);
2225                 return ERR_PTR(-ENOENT);
2226         }
2227
2228         next = node;
2229         /* setup backref node path for btrfs_reloc_cow_block */
2230         while (1) {
2231                 rc->backref_cache.path[next->level] = next;
2232                 if (--index < 0)
2233                         break;
2234                 next = edges[index]->node[UPPER];
2235         }
2236         return root;
2237 }
2238
2239 /*
2240  * Select a tree root for relocation.
2241  *
2242  * Return NULL if the block is not shareable. We should use do_relocation() in
2243  * this case.
2244  *
2245  * Return a tree root pointer if the block is shareable.
2246  * Return -ENOENT if the block is root of reloc tree.
2247  */
2248 static noinline_for_stack
2249 struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2250 {
2251         struct btrfs_backref_node *next;
2252         struct btrfs_root *root;
2253         struct btrfs_root *fs_root = NULL;
2254         struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2255         int index = 0;
2256
2257         next = node;
2258         while (1) {
2259                 cond_resched();
2260                 next = walk_up_backref(next, edges, &index);
2261                 root = next->root;
2262
2263                 /*
2264                  * This can occur if we have incomplete extent refs leading all
2265                  * the way up a particular path, in this case return -EUCLEAN.
2266                  */
2267                 if (!root)
2268                         return ERR_PTR(-EUCLEAN);
2269
2270                 /* No other choice for non-shareable tree */
2271                 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2272                         return root;
2273
2274                 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2275                         fs_root = root;
2276
2277                 if (next != node)
2278                         return NULL;
2279
2280                 next = walk_down_backref(edges, &index);
2281                 if (!next || next->level <= node->level)
2282                         break;
2283         }
2284
2285         if (!fs_root)
2286                 return ERR_PTR(-ENOENT);
2287         return fs_root;
2288 }
2289
2290 static noinline_for_stack
2291 u64 calcu_metadata_size(struct reloc_control *rc,
2292                         struct btrfs_backref_node *node, int reserve)
2293 {
2294         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2295         struct btrfs_backref_node *next = node;
2296         struct btrfs_backref_edge *edge;
2297         struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2298         u64 num_bytes = 0;
2299         int index = 0;
2300
2301         BUG_ON(reserve && node->processed);
2302
2303         while (next) {
2304                 cond_resched();
2305                 while (1) {
2306                         if (next->processed && (reserve || next != node))
2307                                 break;
2308
2309                         num_bytes += fs_info->nodesize;
2310
2311                         if (list_empty(&next->upper))
2312                                 break;
2313
2314                         edge = list_entry(next->upper.next,
2315                                         struct btrfs_backref_edge, list[LOWER]);
2316                         edges[index++] = edge;
2317                         next = edge->node[UPPER];
2318                 }
2319                 next = walk_down_backref(edges, &index);
2320         }
2321         return num_bytes;
2322 }
2323
2324 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2325                                   struct reloc_control *rc,
2326                                   struct btrfs_backref_node *node)
2327 {
2328         struct btrfs_root *root = rc->extent_root;
2329         struct btrfs_fs_info *fs_info = root->fs_info;
2330         u64 num_bytes;
2331         int ret;
2332         u64 tmp;
2333
2334         num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2335
2336         trans->block_rsv = rc->block_rsv;
2337         rc->reserved_bytes += num_bytes;
2338
2339         /*
2340          * We are under a transaction here so we can only do limited flushing.
2341          * If we get an enospc just kick back -EAGAIN so we know to drop the
2342          * transaction and try to refill when we can flush all the things.
2343          */
2344         ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, num_bytes,
2345                                      BTRFS_RESERVE_FLUSH_LIMIT);
2346         if (ret) {
2347                 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2348                 while (tmp <= rc->reserved_bytes)
2349                         tmp <<= 1;
2350                 /*
2351                  * only one thread can access block_rsv at this point,
2352                  * so we don't need hold lock to protect block_rsv.
2353                  * we expand more reservation size here to allow enough
2354                  * space for relocation and we will return earlier in
2355                  * enospc case.
2356                  */
2357                 rc->block_rsv->size = tmp + fs_info->nodesize *
2358                                       RELOCATION_RESERVED_NODES;
2359                 return -EAGAIN;
2360         }
2361
2362         return 0;
2363 }
2364
2365 /*
2366  * relocate a block tree, and then update pointers in upper level
2367  * blocks that reference the block to point to the new location.
2368  *
2369  * if called by link_to_upper, the block has already been relocated.
2370  * in that case this function just updates pointers.
2371  */
2372 static int do_relocation(struct btrfs_trans_handle *trans,
2373                          struct reloc_control *rc,
2374                          struct btrfs_backref_node *node,
2375                          struct btrfs_key *key,
2376                          struct btrfs_path *path, int lowest)
2377 {
2378         struct btrfs_backref_node *upper;
2379         struct btrfs_backref_edge *edge;
2380         struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2381         struct btrfs_root *root;
2382         struct extent_buffer *eb;
2383         u32 blocksize;
2384         u64 bytenr;
2385         int slot;
2386         int ret = 0;
2387
2388         /*
2389          * If we are lowest then this is the first time we're processing this
2390          * block, and thus shouldn't have an eb associated with it yet.
2391          */
2392         ASSERT(!lowest || !node->eb);
2393
2394         path->lowest_level = node->level + 1;
2395         rc->backref_cache.path[node->level] = node;
2396         list_for_each_entry(edge, &node->upper, list[LOWER]) {
2397                 struct btrfs_ref ref = { 0 };
2398
2399                 cond_resched();
2400
2401                 upper = edge->node[UPPER];
2402                 root = select_reloc_root(trans, rc, upper, edges);
2403                 if (IS_ERR(root)) {
2404                         ret = PTR_ERR(root);
2405                         goto next;
2406                 }
2407
2408                 if (upper->eb && !upper->locked) {
2409                         if (!lowest) {
2410                                 ret = btrfs_bin_search(upper->eb, key, &slot);
2411                                 if (ret < 0)
2412                                         goto next;
2413                                 BUG_ON(ret);
2414                                 bytenr = btrfs_node_blockptr(upper->eb, slot);
2415                                 if (node->eb->start == bytenr)
2416                                         goto next;
2417                         }
2418                         btrfs_backref_drop_node_buffer(upper);
2419                 }
2420
2421                 if (!upper->eb) {
2422                         ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2423                         if (ret) {
2424                                 if (ret > 0)
2425                                         ret = -ENOENT;
2426
2427                                 btrfs_release_path(path);
2428                                 break;
2429                         }
2430
2431                         if (!upper->eb) {
2432                                 upper->eb = path->nodes[upper->level];
2433                                 path->nodes[upper->level] = NULL;
2434                         } else {
2435                                 BUG_ON(upper->eb != path->nodes[upper->level]);
2436                         }
2437
2438                         upper->locked = 1;
2439                         path->locks[upper->level] = 0;
2440
2441                         slot = path->slots[upper->level];
2442                         btrfs_release_path(path);
2443                 } else {
2444                         ret = btrfs_bin_search(upper->eb, key, &slot);
2445                         if (ret < 0)
2446                                 goto next;
2447                         BUG_ON(ret);
2448                 }
2449
2450                 bytenr = btrfs_node_blockptr(upper->eb, slot);
2451                 if (lowest) {
2452                         if (bytenr != node->bytenr) {
2453                                 btrfs_err(root->fs_info,
2454                 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2455                                           bytenr, node->bytenr, slot,
2456                                           upper->eb->start);
2457                                 ret = -EIO;
2458                                 goto next;
2459                         }
2460                 } else {
2461                         if (node->eb->start == bytenr)
2462                                 goto next;
2463                 }
2464
2465                 blocksize = root->fs_info->nodesize;
2466                 eb = btrfs_read_node_slot(upper->eb, slot);
2467                 if (IS_ERR(eb)) {
2468                         ret = PTR_ERR(eb);
2469                         goto next;
2470                 }
2471                 btrfs_tree_lock(eb);
2472
2473                 if (!node->eb) {
2474                         ret = btrfs_cow_block(trans, root, eb, upper->eb,
2475                                               slot, &eb, BTRFS_NESTING_COW);
2476                         btrfs_tree_unlock(eb);
2477                         free_extent_buffer(eb);
2478                         if (ret < 0)
2479                                 goto next;
2480                         /*
2481                          * We've just COWed this block, it should have updated
2482                          * the correct backref node entry.
2483                          */
2484                         ASSERT(node->eb == eb);
2485                 } else {
2486                         btrfs_set_node_blockptr(upper->eb, slot,
2487                                                 node->eb->start);
2488                         btrfs_set_node_ptr_generation(upper->eb, slot,
2489                                                       trans->transid);
2490                         btrfs_mark_buffer_dirty(upper->eb);
2491
2492                         btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2493                                                node->eb->start, blocksize,
2494                                                upper->eb->start);
2495                         btrfs_init_tree_ref(&ref, node->level,
2496                                             btrfs_header_owner(upper->eb),
2497                                             root->root_key.objectid, false);
2498                         ret = btrfs_inc_extent_ref(trans, &ref);
2499                         if (!ret)
2500                                 ret = btrfs_drop_subtree(trans, root, eb,
2501                                                          upper->eb);
2502                         if (ret)
2503                                 btrfs_abort_transaction(trans, ret);
2504                 }
2505 next:
2506                 if (!upper->pending)
2507                         btrfs_backref_drop_node_buffer(upper);
2508                 else
2509                         btrfs_backref_unlock_node_buffer(upper);
2510                 if (ret)
2511                         break;
2512         }
2513
2514         if (!ret && node->pending) {
2515                 btrfs_backref_drop_node_buffer(node);
2516                 list_move_tail(&node->list, &rc->backref_cache.changed);
2517                 node->pending = 0;
2518         }
2519
2520         path->lowest_level = 0;
2521
2522         /*
2523          * We should have allocated all of our space in the block rsv and thus
2524          * shouldn't ENOSPC.
2525          */
2526         ASSERT(ret != -ENOSPC);
2527         return ret;
2528 }
2529
2530 static int link_to_upper(struct btrfs_trans_handle *trans,
2531                          struct reloc_control *rc,
2532                          struct btrfs_backref_node *node,
2533                          struct btrfs_path *path)
2534 {
2535         struct btrfs_key key;
2536
2537         btrfs_node_key_to_cpu(node->eb, &key, 0);
2538         return do_relocation(trans, rc, node, &key, path, 0);
2539 }
2540
2541 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2542                                 struct reloc_control *rc,
2543                                 struct btrfs_path *path, int err)
2544 {
2545         LIST_HEAD(list);
2546         struct btrfs_backref_cache *cache = &rc->backref_cache;
2547         struct btrfs_backref_node *node;
2548         int level;
2549         int ret;
2550
2551         for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2552                 while (!list_empty(&cache->pending[level])) {
2553                         node = list_entry(cache->pending[level].next,
2554                                           struct btrfs_backref_node, list);
2555                         list_move_tail(&node->list, &list);
2556                         BUG_ON(!node->pending);
2557
2558                         if (!err) {
2559                                 ret = link_to_upper(trans, rc, node, path);
2560                                 if (ret < 0)
2561                                         err = ret;
2562                         }
2563                 }
2564                 list_splice_init(&list, &cache->pending[level]);
2565         }
2566         return err;
2567 }
2568
2569 /*
2570  * mark a block and all blocks directly/indirectly reference the block
2571  * as processed.
2572  */
2573 static void update_processed_blocks(struct reloc_control *rc,
2574                                     struct btrfs_backref_node *node)
2575 {
2576         struct btrfs_backref_node *next = node;
2577         struct btrfs_backref_edge *edge;
2578         struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2579         int index = 0;
2580
2581         while (next) {
2582                 cond_resched();
2583                 while (1) {
2584                         if (next->processed)
2585                                 break;
2586
2587                         mark_block_processed(rc, next);
2588
2589                         if (list_empty(&next->upper))
2590                                 break;
2591
2592                         edge = list_entry(next->upper.next,
2593                                         struct btrfs_backref_edge, list[LOWER]);
2594                         edges[index++] = edge;
2595                         next = edge->node[UPPER];
2596                 }
2597                 next = walk_down_backref(edges, &index);
2598         }
2599 }
2600
2601 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2602 {
2603         u32 blocksize = rc->extent_root->fs_info->nodesize;
2604
2605         if (test_range_bit(&rc->processed_blocks, bytenr,
2606                            bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2607                 return 1;
2608         return 0;
2609 }
2610
2611 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2612                               struct tree_block *block)
2613 {
2614         struct btrfs_tree_parent_check check = {
2615                 .level = block->level,
2616                 .owner_root = block->owner,
2617                 .transid = block->key.offset
2618         };
2619         struct extent_buffer *eb;
2620
2621         eb = read_tree_block(fs_info, block->bytenr, &check);
2622         if (IS_ERR(eb))
2623                 return PTR_ERR(eb);
2624         if (!extent_buffer_uptodate(eb)) {
2625                 free_extent_buffer(eb);
2626                 return -EIO;
2627         }
2628         if (block->level == 0)
2629                 btrfs_item_key_to_cpu(eb, &block->key, 0);
2630         else
2631                 btrfs_node_key_to_cpu(eb, &block->key, 0);
2632         free_extent_buffer(eb);
2633         block->key_ready = 1;
2634         return 0;
2635 }
2636
2637 /*
2638  * helper function to relocate a tree block
2639  */
2640 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2641                                 struct reloc_control *rc,
2642                                 struct btrfs_backref_node *node,
2643                                 struct btrfs_key *key,
2644                                 struct btrfs_path *path)
2645 {
2646         struct btrfs_root *root;
2647         int ret = 0;
2648
2649         if (!node)
2650                 return 0;
2651
2652         /*
2653          * If we fail here we want to drop our backref_node because we are going
2654          * to start over and regenerate the tree for it.
2655          */
2656         ret = reserve_metadata_space(trans, rc, node);
2657         if (ret)
2658                 goto out;
2659
2660         BUG_ON(node->processed);
2661         root = select_one_root(node);
2662         if (IS_ERR(root)) {
2663                 ret = PTR_ERR(root);
2664
2665                 /* See explanation in select_one_root for the -EUCLEAN case. */
2666                 ASSERT(ret == -ENOENT);
2667                 if (ret == -ENOENT) {
2668                         ret = 0;
2669                         update_processed_blocks(rc, node);
2670                 }
2671                 goto out;
2672         }
2673
2674         if (root) {
2675                 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2676                         /*
2677                          * This block was the root block of a root, and this is
2678                          * the first time we're processing the block and thus it
2679                          * should not have had the ->new_bytenr modified and
2680                          * should have not been included on the changed list.
2681                          *
2682                          * However in the case of corruption we could have
2683                          * multiple refs pointing to the same block improperly,
2684                          * and thus we would trip over these checks.  ASSERT()
2685                          * for the developer case, because it could indicate a
2686                          * bug in the backref code, however error out for a
2687                          * normal user in the case of corruption.
2688                          */
2689                         ASSERT(node->new_bytenr == 0);
2690                         ASSERT(list_empty(&node->list));
2691                         if (node->new_bytenr || !list_empty(&node->list)) {
2692                                 btrfs_err(root->fs_info,
2693                                   "bytenr %llu has improper references to it",
2694                                           node->bytenr);
2695                                 ret = -EUCLEAN;
2696                                 goto out;
2697                         }
2698                         ret = btrfs_record_root_in_trans(trans, root);
2699                         if (ret)
2700                                 goto out;
2701                         /*
2702                          * Another thread could have failed, need to check if we
2703                          * have reloc_root actually set.
2704                          */
2705                         if (!root->reloc_root) {
2706                                 ret = -ENOENT;
2707                                 goto out;
2708                         }
2709                         root = root->reloc_root;
2710                         node->new_bytenr = root->node->start;
2711                         btrfs_put_root(node->root);
2712                         node->root = btrfs_grab_root(root);
2713                         ASSERT(node->root);
2714                         list_add_tail(&node->list, &rc->backref_cache.changed);
2715                 } else {
2716                         path->lowest_level = node->level;
2717                         if (root == root->fs_info->chunk_root)
2718                                 btrfs_reserve_chunk_metadata(trans, false);
2719                         ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2720                         btrfs_release_path(path);
2721                         if (root == root->fs_info->chunk_root)
2722                                 btrfs_trans_release_chunk_metadata(trans);
2723                         if (ret > 0)
2724                                 ret = 0;
2725                 }
2726                 if (!ret)
2727                         update_processed_blocks(rc, node);
2728         } else {
2729                 ret = do_relocation(trans, rc, node, key, path, 1);
2730         }
2731 out:
2732         if (ret || node->level == 0 || node->cowonly)
2733                 btrfs_backref_cleanup_node(&rc->backref_cache, node);
2734         return ret;
2735 }
2736
2737 /*
2738  * relocate a list of blocks
2739  */
2740 static noinline_for_stack
2741 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2742                          struct reloc_control *rc, struct rb_root *blocks)
2743 {
2744         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2745         struct btrfs_backref_node *node;
2746         struct btrfs_path *path;
2747         struct tree_block *block;
2748         struct tree_block *next;
2749         int ret;
2750         int err = 0;
2751
2752         path = btrfs_alloc_path();
2753         if (!path) {
2754                 err = -ENOMEM;
2755                 goto out_free_blocks;
2756         }
2757
2758         /* Kick in readahead for tree blocks with missing keys */
2759         rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2760                 if (!block->key_ready)
2761                         btrfs_readahead_tree_block(fs_info, block->bytenr,
2762                                                    block->owner, 0,
2763                                                    block->level);
2764         }
2765
2766         /* Get first keys */
2767         rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2768                 if (!block->key_ready) {
2769                         err = get_tree_block_key(fs_info, block);
2770                         if (err)
2771                                 goto out_free_path;
2772                 }
2773         }
2774
2775         /* Do tree relocation */
2776         rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2777                 node = build_backref_tree(rc, &block->key,
2778                                           block->level, block->bytenr);
2779                 if (IS_ERR(node)) {
2780                         err = PTR_ERR(node);
2781                         goto out;
2782                 }
2783
2784                 ret = relocate_tree_block(trans, rc, node, &block->key,
2785                                           path);
2786                 if (ret < 0) {
2787                         err = ret;
2788                         break;
2789                 }
2790         }
2791 out:
2792         err = finish_pending_nodes(trans, rc, path, err);
2793
2794 out_free_path:
2795         btrfs_free_path(path);
2796 out_free_blocks:
2797         free_block_list(blocks);
2798         return err;
2799 }
2800
2801 static noinline_for_stack int prealloc_file_extent_cluster(
2802                                 struct btrfs_inode *inode,
2803                                 struct file_extent_cluster *cluster)
2804 {
2805         u64 alloc_hint = 0;
2806         u64 start;
2807         u64 end;
2808         u64 offset = inode->index_cnt;
2809         u64 num_bytes;
2810         int nr;
2811         int ret = 0;
2812         u64 i_size = i_size_read(&inode->vfs_inode);
2813         u64 prealloc_start = cluster->start - offset;
2814         u64 prealloc_end = cluster->end - offset;
2815         u64 cur_offset = prealloc_start;
2816
2817         /*
2818          * For subpage case, previous i_size may not be aligned to PAGE_SIZE.
2819          * This means the range [i_size, PAGE_END + 1) is filled with zeros by
2820          * btrfs_do_readpage() call of previously relocated file cluster.
2821          *
2822          * If the current cluster starts in the above range, btrfs_do_readpage()
2823          * will skip the read, and relocate_one_page() will later writeback
2824          * the padding zeros as new data, causing data corruption.
2825          *
2826          * Here we have to manually invalidate the range (i_size, PAGE_END + 1).
2827          */
2828         if (!PAGE_ALIGNED(i_size)) {
2829                 struct address_space *mapping = inode->vfs_inode.i_mapping;
2830                 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2831                 const u32 sectorsize = fs_info->sectorsize;
2832                 struct page *page;
2833
2834                 ASSERT(sectorsize < PAGE_SIZE);
2835                 ASSERT(IS_ALIGNED(i_size, sectorsize));
2836
2837                 /*
2838                  * Subpage can't handle page with DIRTY but without UPTODATE
2839                  * bit as it can lead to the following deadlock:
2840                  *
2841                  * btrfs_read_folio()
2842                  * | Page already *locked*
2843                  * |- btrfs_lock_and_flush_ordered_range()
2844                  *    |- btrfs_start_ordered_extent()
2845                  *       |- extent_write_cache_pages()
2846                  *          |- lock_page()
2847                  *             We try to lock the page we already hold.
2848                  *
2849                  * Here we just writeback the whole data reloc inode, so that
2850                  * we will be ensured to have no dirty range in the page, and
2851                  * are safe to clear the uptodate bits.
2852                  *
2853                  * This shouldn't cause too much overhead, as we need to write
2854                  * the data back anyway.
2855                  */
2856                 ret = filemap_write_and_wait(mapping);
2857                 if (ret < 0)
2858                         return ret;
2859
2860                 clear_extent_bits(&inode->io_tree, i_size,
2861                                   round_up(i_size, PAGE_SIZE) - 1,
2862                                   EXTENT_UPTODATE);
2863                 page = find_lock_page(mapping, i_size >> PAGE_SHIFT);
2864                 /*
2865                  * If page is freed we don't need to do anything then, as we
2866                  * will re-read the whole page anyway.
2867                  */
2868                 if (page) {
2869                         btrfs_subpage_clear_uptodate(fs_info, page, i_size,
2870                                         round_up(i_size, PAGE_SIZE) - i_size);
2871                         unlock_page(page);
2872                         put_page(page);
2873                 }
2874         }
2875
2876         BUG_ON(cluster->start != cluster->boundary[0]);
2877         ret = btrfs_alloc_data_chunk_ondemand(inode,
2878                                               prealloc_end + 1 - prealloc_start);
2879         if (ret)
2880                 return ret;
2881
2882         btrfs_inode_lock(inode, 0);
2883         for (nr = 0; nr < cluster->nr; nr++) {
2884                 struct extent_state *cached_state = NULL;
2885
2886                 start = cluster->boundary[nr] - offset;
2887                 if (nr + 1 < cluster->nr)
2888                         end = cluster->boundary[nr + 1] - 1 - offset;
2889                 else
2890                         end = cluster->end - offset;
2891
2892                 lock_extent(&inode->io_tree, start, end, &cached_state);
2893                 num_bytes = end + 1 - start;
2894                 ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2895                                                 num_bytes, num_bytes,
2896                                                 end + 1, &alloc_hint);
2897                 cur_offset = end + 1;
2898                 unlock_extent(&inode->io_tree, start, end, &cached_state);
2899                 if (ret)
2900                         break;
2901         }
2902         btrfs_inode_unlock(inode, 0);
2903
2904         if (cur_offset < prealloc_end)
2905                 btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2906                                                prealloc_end + 1 - cur_offset);
2907         return ret;
2908 }
2909
2910 static noinline_for_stack int setup_relocation_extent_mapping(struct inode *inode,
2911                                 u64 start, u64 end, u64 block_start)
2912 {
2913         struct extent_map *em;
2914         struct extent_state *cached_state = NULL;
2915         int ret = 0;
2916
2917         em = alloc_extent_map();
2918         if (!em)
2919                 return -ENOMEM;
2920
2921         em->start = start;
2922         em->len = end + 1 - start;
2923         em->block_len = em->len;
2924         em->block_start = block_start;
2925         set_bit(EXTENT_FLAG_PINNED, &em->flags);
2926
2927         lock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
2928         ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, false);
2929         unlock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
2930         free_extent_map(em);
2931
2932         return ret;
2933 }
2934
2935 /*
2936  * Allow error injection to test balance/relocation cancellation
2937  */
2938 noinline int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info)
2939 {
2940         return atomic_read(&fs_info->balance_cancel_req) ||
2941                 atomic_read(&fs_info->reloc_cancel_req) ||
2942                 fatal_signal_pending(current);
2943 }
2944 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2945
2946 static u64 get_cluster_boundary_end(struct file_extent_cluster *cluster,
2947                                     int cluster_nr)
2948 {
2949         /* Last extent, use cluster end directly */
2950         if (cluster_nr >= cluster->nr - 1)
2951                 return cluster->end;
2952
2953         /* Use next boundary start*/
2954         return cluster->boundary[cluster_nr + 1] - 1;
2955 }
2956
2957 static int relocate_one_page(struct inode *inode, struct file_ra_state *ra,
2958                              struct file_extent_cluster *cluster,
2959                              int *cluster_nr, unsigned long page_index)
2960 {
2961         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2962         u64 offset = BTRFS_I(inode)->index_cnt;
2963         const unsigned long last_index = (cluster->end - offset) >> PAGE_SHIFT;
2964         gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2965         struct page *page;
2966         u64 page_start;
2967         u64 page_end;
2968         u64 cur;
2969         int ret;
2970
2971         ASSERT(page_index <= last_index);
2972         page = find_lock_page(inode->i_mapping, page_index);
2973         if (!page) {
2974                 page_cache_sync_readahead(inode->i_mapping, ra, NULL,
2975                                 page_index, last_index + 1 - page_index);
2976                 page = find_or_create_page(inode->i_mapping, page_index, mask);
2977                 if (!page)
2978                         return -ENOMEM;
2979         }
2980         ret = set_page_extent_mapped(page);
2981         if (ret < 0)
2982                 goto release_page;
2983
2984         if (PageReadahead(page))
2985                 page_cache_async_readahead(inode->i_mapping, ra, NULL,
2986                                 page_folio(page), page_index,
2987                                 last_index + 1 - page_index);
2988
2989         if (!PageUptodate(page)) {
2990                 btrfs_read_folio(NULL, page_folio(page));
2991                 lock_page(page);
2992                 if (!PageUptodate(page)) {
2993                         ret = -EIO;
2994                         goto release_page;
2995                 }
2996         }
2997
2998         page_start = page_offset(page);
2999         page_end = page_start + PAGE_SIZE - 1;
3000
3001         /*
3002          * Start from the cluster, as for subpage case, the cluster can start
3003          * inside the page.
3004          */
3005         cur = max(page_start, cluster->boundary[*cluster_nr] - offset);
3006         while (cur <= page_end) {
3007                 struct extent_state *cached_state = NULL;
3008                 u64 extent_start = cluster->boundary[*cluster_nr] - offset;
3009                 u64 extent_end = get_cluster_boundary_end(cluster,
3010                                                 *cluster_nr) - offset;
3011                 u64 clamped_start = max(page_start, extent_start);
3012                 u64 clamped_end = min(page_end, extent_end);
3013                 u32 clamped_len = clamped_end + 1 - clamped_start;
3014
3015                 /* Reserve metadata for this range */
3016                 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
3017                                                       clamped_len, clamped_len,
3018                                                       false);
3019                 if (ret)
3020                         goto release_page;
3021
3022                 /* Mark the range delalloc and dirty for later writeback */
3023                 lock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
3024                             &cached_state);
3025                 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start,
3026                                                 clamped_end, 0, &cached_state);
3027                 if (ret) {
3028                         clear_extent_bit(&BTRFS_I(inode)->io_tree,
3029                                          clamped_start, clamped_end,
3030                                          EXTENT_LOCKED | EXTENT_BOUNDARY,
3031                                          &cached_state);
3032                         btrfs_delalloc_release_metadata(BTRFS_I(inode),
3033                                                         clamped_len, true);
3034                         btrfs_delalloc_release_extents(BTRFS_I(inode),
3035                                                        clamped_len);
3036                         goto release_page;
3037                 }
3038                 btrfs_page_set_dirty(fs_info, page, clamped_start, clamped_len);
3039
3040                 /*
3041                  * Set the boundary if it's inside the page.
3042                  * Data relocation requires the destination extents to have the
3043                  * same size as the source.
3044                  * EXTENT_BOUNDARY bit prevents current extent from being merged
3045                  * with previous extent.
3046                  */
3047                 if (in_range(cluster->boundary[*cluster_nr] - offset,
3048                              page_start, PAGE_SIZE)) {
3049                         u64 boundary_start = cluster->boundary[*cluster_nr] -
3050                                                 offset;
3051                         u64 boundary_end = boundary_start +
3052                                            fs_info->sectorsize - 1;
3053
3054                         set_extent_bits(&BTRFS_I(inode)->io_tree,
3055                                         boundary_start, boundary_end,
3056                                         EXTENT_BOUNDARY);
3057                 }
3058                 unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
3059                               &cached_state);
3060                 btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len);
3061                 cur += clamped_len;
3062
3063                 /* Crossed extent end, go to next extent */
3064                 if (cur >= extent_end) {
3065                         (*cluster_nr)++;
3066                         /* Just finished the last extent of the cluster, exit. */
3067                         if (*cluster_nr >= cluster->nr)
3068                                 break;
3069                 }
3070         }
3071         unlock_page(page);
3072         put_page(page);
3073
3074         balance_dirty_pages_ratelimited(inode->i_mapping);
3075         btrfs_throttle(fs_info);
3076         if (btrfs_should_cancel_balance(fs_info))
3077                 ret = -ECANCELED;
3078         return ret;
3079
3080 release_page:
3081         unlock_page(page);
3082         put_page(page);
3083         return ret;
3084 }
3085
3086 static int relocate_file_extent_cluster(struct inode *inode,
3087                                         struct file_extent_cluster *cluster)
3088 {
3089         u64 offset = BTRFS_I(inode)->index_cnt;
3090         unsigned long index;
3091         unsigned long last_index;
3092         struct file_ra_state *ra;
3093         int cluster_nr = 0;
3094         int ret = 0;
3095
3096         if (!cluster->nr)
3097                 return 0;
3098
3099         ra = kzalloc(sizeof(*ra), GFP_NOFS);
3100         if (!ra)
3101                 return -ENOMEM;
3102
3103         ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster);
3104         if (ret)
3105                 goto out;
3106
3107         file_ra_state_init(ra, inode->i_mapping);
3108
3109         ret = setup_relocation_extent_mapping(inode, cluster->start - offset,
3110                                    cluster->end - offset, cluster->start);
3111         if (ret)
3112                 goto out;
3113
3114         last_index = (cluster->end - offset) >> PAGE_SHIFT;
3115         for (index = (cluster->start - offset) >> PAGE_SHIFT;
3116              index <= last_index && !ret; index++)
3117                 ret = relocate_one_page(inode, ra, cluster, &cluster_nr, index);
3118         if (ret == 0)
3119                 WARN_ON(cluster_nr != cluster->nr);
3120 out:
3121         kfree(ra);
3122         return ret;
3123 }
3124
3125 static noinline_for_stack
3126 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3127                          struct file_extent_cluster *cluster)
3128 {
3129         int ret;
3130
3131         if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3132                 ret = relocate_file_extent_cluster(inode, cluster);
3133                 if (ret)
3134                         return ret;
3135                 cluster->nr = 0;
3136         }
3137
3138         if (!cluster->nr)
3139                 cluster->start = extent_key->objectid;
3140         else
3141                 BUG_ON(cluster->nr >= MAX_EXTENTS);
3142         cluster->end = extent_key->objectid + extent_key->offset - 1;
3143         cluster->boundary[cluster->nr] = extent_key->objectid;
3144         cluster->nr++;
3145
3146         if (cluster->nr >= MAX_EXTENTS) {
3147                 ret = relocate_file_extent_cluster(inode, cluster);
3148                 if (ret)
3149                         return ret;
3150                 cluster->nr = 0;
3151         }
3152         return 0;
3153 }
3154
3155 /*
3156  * helper to add a tree block to the list.
3157  * the major work is getting the generation and level of the block
3158  */
3159 static int add_tree_block(struct reloc_control *rc,
3160                           struct btrfs_key *extent_key,
3161                           struct btrfs_path *path,
3162                           struct rb_root *blocks)
3163 {
3164         struct extent_buffer *eb;
3165         struct btrfs_extent_item *ei;
3166         struct btrfs_tree_block_info *bi;
3167         struct tree_block *block;
3168         struct rb_node *rb_node;
3169         u32 item_size;
3170         int level = -1;
3171         u64 generation;
3172         u64 owner = 0;
3173
3174         eb =  path->nodes[0];
3175         item_size = btrfs_item_size(eb, path->slots[0]);
3176
3177         if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3178             item_size >= sizeof(*ei) + sizeof(*bi)) {
3179                 unsigned long ptr = 0, end;
3180
3181                 ei = btrfs_item_ptr(eb, path->slots[0],
3182                                 struct btrfs_extent_item);
3183                 end = (unsigned long)ei + item_size;
3184                 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3185                         bi = (struct btrfs_tree_block_info *)(ei + 1);
3186                         level = btrfs_tree_block_level(eb, bi);
3187                         ptr = (unsigned long)(bi + 1);
3188                 } else {
3189                         level = (int)extent_key->offset;
3190                         ptr = (unsigned long)(ei + 1);
3191                 }
3192                 generation = btrfs_extent_generation(eb, ei);
3193
3194                 /*
3195                  * We're reading random blocks without knowing their owner ahead
3196                  * of time.  This is ok most of the time, as all reloc roots and
3197                  * fs roots have the same lock type.  However normal trees do
3198                  * not, and the only way to know ahead of time is to read the
3199                  * inline ref offset.  We know it's an fs root if
3200                  *
3201                  * 1. There's more than one ref.
3202                  * 2. There's a SHARED_DATA_REF_KEY set.
3203                  * 3. FULL_BACKREF is set on the flags.
3204                  *
3205                  * Otherwise it's safe to assume that the ref offset == the
3206                  * owner of this block, so we can use that when calling
3207                  * read_tree_block.
3208                  */
3209                 if (btrfs_extent_refs(eb, ei) == 1 &&
3210                     !(btrfs_extent_flags(eb, ei) &
3211                       BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
3212                     ptr < end) {
3213                         struct btrfs_extent_inline_ref *iref;
3214                         int type;
3215
3216                         iref = (struct btrfs_extent_inline_ref *)ptr;
3217                         type = btrfs_get_extent_inline_ref_type(eb, iref,
3218                                                         BTRFS_REF_TYPE_BLOCK);
3219                         if (type == BTRFS_REF_TYPE_INVALID)
3220                                 return -EINVAL;
3221                         if (type == BTRFS_TREE_BLOCK_REF_KEY)
3222                                 owner = btrfs_extent_inline_ref_offset(eb, iref);
3223                 }
3224         } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3225                 btrfs_print_v0_err(eb->fs_info);
3226                 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3227                 return -EINVAL;
3228         } else {
3229                 BUG();
3230         }
3231
3232         btrfs_release_path(path);
3233
3234         BUG_ON(level == -1);
3235
3236         block = kmalloc(sizeof(*block), GFP_NOFS);
3237         if (!block)
3238                 return -ENOMEM;
3239
3240         block->bytenr = extent_key->objectid;
3241         block->key.objectid = rc->extent_root->fs_info->nodesize;
3242         block->key.offset = generation;
3243         block->level = level;
3244         block->key_ready = 0;
3245         block->owner = owner;
3246
3247         rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
3248         if (rb_node)
3249                 btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
3250                                     -EEXIST);
3251
3252         return 0;
3253 }
3254
3255 /*
3256  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3257  */
3258 static int __add_tree_block(struct reloc_control *rc,
3259                             u64 bytenr, u32 blocksize,
3260                             struct rb_root *blocks)
3261 {
3262         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3263         struct btrfs_path *path;
3264         struct btrfs_key key;
3265         int ret;
3266         bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3267
3268         if (tree_block_processed(bytenr, rc))
3269                 return 0;
3270
3271         if (rb_simple_search(blocks, bytenr))
3272                 return 0;
3273
3274         path = btrfs_alloc_path();
3275         if (!path)
3276                 return -ENOMEM;
3277 again:
3278         key.objectid = bytenr;
3279         if (skinny) {
3280                 key.type = BTRFS_METADATA_ITEM_KEY;
3281                 key.offset = (u64)-1;
3282         } else {
3283                 key.type = BTRFS_EXTENT_ITEM_KEY;
3284                 key.offset = blocksize;
3285         }
3286
3287         path->search_commit_root = 1;
3288         path->skip_locking = 1;
3289         ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3290         if (ret < 0)
3291                 goto out;
3292
3293         if (ret > 0 && skinny) {
3294                 if (path->slots[0]) {
3295                         path->slots[0]--;
3296                         btrfs_item_key_to_cpu(path->nodes[0], &key,
3297                                               path->slots[0]);
3298                         if (key.objectid == bytenr &&
3299                             (key.type == BTRFS_METADATA_ITEM_KEY ||
3300                              (key.type == BTRFS_EXTENT_ITEM_KEY &&
3301                               key.offset == blocksize)))
3302                                 ret = 0;
3303                 }
3304
3305                 if (ret) {
3306                         skinny = false;
3307                         btrfs_release_path(path);
3308                         goto again;
3309                 }
3310         }
3311         if (ret) {
3312                 ASSERT(ret == 1);
3313                 btrfs_print_leaf(path->nodes[0]);
3314                 btrfs_err(fs_info,
3315              "tree block extent item (%llu) is not found in extent tree",
3316                      bytenr);
3317                 WARN_ON(1);
3318                 ret = -EINVAL;
3319                 goto out;
3320         }
3321
3322         ret = add_tree_block(rc, &key, path, blocks);
3323 out:
3324         btrfs_free_path(path);
3325         return ret;
3326 }
3327
3328 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3329                                     struct btrfs_block_group *block_group,
3330                                     struct inode *inode,
3331                                     u64 ino)
3332 {
3333         struct btrfs_root *root = fs_info->tree_root;
3334         struct btrfs_trans_handle *trans;
3335         int ret = 0;
3336
3337         if (inode)
3338                 goto truncate;
3339
3340         inode = btrfs_iget(fs_info->sb, ino, root);
3341         if (IS_ERR(inode))
3342                 return -ENOENT;
3343
3344 truncate:
3345         ret = btrfs_check_trunc_cache_free_space(fs_info,
3346                                                  &fs_info->global_block_rsv);
3347         if (ret)
3348                 goto out;
3349
3350         trans = btrfs_join_transaction(root);
3351         if (IS_ERR(trans)) {
3352                 ret = PTR_ERR(trans);
3353                 goto out;
3354         }
3355
3356         ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3357
3358         btrfs_end_transaction(trans);
3359         btrfs_btree_balance_dirty(fs_info);
3360 out:
3361         iput(inode);
3362         return ret;
3363 }
3364
3365 /*
3366  * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3367  * cache inode, to avoid free space cache data extent blocking data relocation.
3368  */
3369 static int delete_v1_space_cache(struct extent_buffer *leaf,
3370                                  struct btrfs_block_group *block_group,
3371                                  u64 data_bytenr)
3372 {
3373         u64 space_cache_ino;
3374         struct btrfs_file_extent_item *ei;
3375         struct btrfs_key key;
3376         bool found = false;
3377         int i;
3378         int ret;
3379
3380         if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3381                 return 0;
3382
3383         for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3384                 u8 type;
3385
3386                 btrfs_item_key_to_cpu(leaf, &key, i);
3387                 if (key.type != BTRFS_EXTENT_DATA_KEY)
3388                         continue;
3389                 ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3390                 type = btrfs_file_extent_type(leaf, ei);
3391
3392                 if ((type == BTRFS_FILE_EXTENT_REG ||
3393                      type == BTRFS_FILE_EXTENT_PREALLOC) &&
3394                     btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3395                         found = true;
3396                         space_cache_ino = key.objectid;
3397                         break;
3398                 }
3399         }
3400         if (!found)
3401                 return -ENOENT;
3402         ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
3403                                         space_cache_ino);
3404         return ret;
3405 }
3406
3407 /*
3408  * helper to find all tree blocks that reference a given data extent
3409  */
3410 static noinline_for_stack
3411 int add_data_references(struct reloc_control *rc,
3412                         struct btrfs_key *extent_key,
3413                         struct btrfs_path *path,
3414                         struct rb_root *blocks)
3415 {
3416         struct btrfs_backref_walk_ctx ctx = { 0 };
3417         struct ulist_iterator leaf_uiter;
3418         struct ulist_node *ref_node = NULL;
3419         const u32 blocksize = rc->extent_root->fs_info->nodesize;
3420         int ret = 0;
3421
3422         btrfs_release_path(path);
3423
3424         ctx.bytenr = extent_key->objectid;
3425         ctx.ignore_extent_item_pos = true;
3426         ctx.fs_info = rc->extent_root->fs_info;
3427
3428         ret = btrfs_find_all_leafs(&ctx);
3429         if (ret < 0)
3430                 return ret;
3431
3432         ULIST_ITER_INIT(&leaf_uiter);
3433         while ((ref_node = ulist_next(ctx.refs, &leaf_uiter))) {
3434                 struct btrfs_tree_parent_check check = { 0 };
3435                 struct extent_buffer *eb;
3436
3437                 eb = read_tree_block(ctx.fs_info, ref_node->val, &check);
3438                 if (IS_ERR(eb)) {
3439                         ret = PTR_ERR(eb);
3440                         break;
3441                 }
3442                 ret = delete_v1_space_cache(eb, rc->block_group,
3443                                             extent_key->objectid);
3444                 free_extent_buffer(eb);
3445                 if (ret < 0)
3446                         break;
3447                 ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3448                 if (ret < 0)
3449                         break;
3450         }
3451         if (ret < 0)
3452                 free_block_list(blocks);
3453         ulist_free(ctx.refs);
3454         return ret;
3455 }
3456
3457 /*
3458  * helper to find next unprocessed extent
3459  */
3460 static noinline_for_stack
3461 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3462                      struct btrfs_key *extent_key)
3463 {
3464         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3465         struct btrfs_key key;
3466         struct extent_buffer *leaf;
3467         u64 start, end, last;
3468         int ret;
3469
3470         last = rc->block_group->start + rc->block_group->length;
3471         while (1) {
3472                 cond_resched();
3473                 if (rc->search_start >= last) {
3474                         ret = 1;
3475                         break;
3476                 }
3477
3478                 key.objectid = rc->search_start;
3479                 key.type = BTRFS_EXTENT_ITEM_KEY;
3480                 key.offset = 0;
3481
3482                 path->search_commit_root = 1;
3483                 path->skip_locking = 1;
3484                 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3485                                         0, 0);
3486                 if (ret < 0)
3487                         break;
3488 next:
3489                 leaf = path->nodes[0];
3490                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3491                         ret = btrfs_next_leaf(rc->extent_root, path);
3492                         if (ret != 0)
3493                                 break;
3494                         leaf = path->nodes[0];
3495                 }
3496
3497                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3498                 if (key.objectid >= last) {
3499                         ret = 1;
3500                         break;
3501                 }
3502
3503                 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3504                     key.type != BTRFS_METADATA_ITEM_KEY) {
3505                         path->slots[0]++;
3506                         goto next;
3507                 }
3508
3509                 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3510                     key.objectid + key.offset <= rc->search_start) {
3511                         path->slots[0]++;
3512                         goto next;
3513                 }
3514
3515                 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3516                     key.objectid + fs_info->nodesize <=
3517                     rc->search_start) {
3518                         path->slots[0]++;
3519                         goto next;
3520                 }
3521
3522                 ret = find_first_extent_bit(&rc->processed_blocks,
3523                                             key.objectid, &start, &end,
3524                                             EXTENT_DIRTY, NULL);
3525
3526                 if (ret == 0 && start <= key.objectid) {
3527                         btrfs_release_path(path);
3528                         rc->search_start = end + 1;
3529                 } else {
3530                         if (key.type == BTRFS_EXTENT_ITEM_KEY)
3531                                 rc->search_start = key.objectid + key.offset;
3532                         else
3533                                 rc->search_start = key.objectid +
3534                                         fs_info->nodesize;
3535                         memcpy(extent_key, &key, sizeof(key));
3536                         return 0;
3537                 }
3538         }
3539         btrfs_release_path(path);
3540         return ret;
3541 }
3542
3543 static void set_reloc_control(struct reloc_control *rc)
3544 {
3545         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3546
3547         mutex_lock(&fs_info->reloc_mutex);
3548         fs_info->reloc_ctl = rc;
3549         mutex_unlock(&fs_info->reloc_mutex);
3550 }
3551
3552 static void unset_reloc_control(struct reloc_control *rc)
3553 {
3554         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3555
3556         mutex_lock(&fs_info->reloc_mutex);
3557         fs_info->reloc_ctl = NULL;
3558         mutex_unlock(&fs_info->reloc_mutex);
3559 }
3560
3561 static noinline_for_stack
3562 int prepare_to_relocate(struct reloc_control *rc)
3563 {
3564         struct btrfs_trans_handle *trans;
3565         int ret;
3566
3567         rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3568                                               BTRFS_BLOCK_RSV_TEMP);
3569         if (!rc->block_rsv)
3570                 return -ENOMEM;
3571
3572         memset(&rc->cluster, 0, sizeof(rc->cluster));
3573         rc->search_start = rc->block_group->start;
3574         rc->extents_found = 0;
3575         rc->nodes_relocated = 0;
3576         rc->merging_rsv_size = 0;
3577         rc->reserved_bytes = 0;
3578         rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3579                               RELOCATION_RESERVED_NODES;
3580         ret = btrfs_block_rsv_refill(rc->extent_root->fs_info,
3581                                      rc->block_rsv, rc->block_rsv->size,
3582                                      BTRFS_RESERVE_FLUSH_ALL);
3583         if (ret)
3584                 return ret;
3585
3586         rc->create_reloc_tree = 1;
3587         set_reloc_control(rc);
3588
3589         trans = btrfs_join_transaction(rc->extent_root);
3590         if (IS_ERR(trans)) {
3591                 unset_reloc_control(rc);
3592                 /*
3593                  * extent tree is not a ref_cow tree and has no reloc_root to
3594                  * cleanup.  And callers are responsible to free the above
3595                  * block rsv.
3596                  */
3597                 return PTR_ERR(trans);
3598         }
3599
3600         ret = btrfs_commit_transaction(trans);
3601         if (ret)
3602                 unset_reloc_control(rc);
3603
3604         return ret;
3605 }
3606
3607 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3608 {
3609         struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3610         struct rb_root blocks = RB_ROOT;
3611         struct btrfs_key key;
3612         struct btrfs_trans_handle *trans = NULL;
3613         struct btrfs_path *path;
3614         struct btrfs_extent_item *ei;
3615         u64 flags;
3616         int ret;
3617         int err = 0;
3618         int progress = 0;
3619
3620         path = btrfs_alloc_path();
3621         if (!path)
3622                 return -ENOMEM;
3623         path->reada = READA_FORWARD;
3624
3625         ret = prepare_to_relocate(rc);
3626         if (ret) {
3627                 err = ret;
3628                 goto out_free;
3629         }
3630
3631         while (1) {
3632                 rc->reserved_bytes = 0;
3633                 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
3634                                              rc->block_rsv->size,
3635                                              BTRFS_RESERVE_FLUSH_ALL);
3636                 if (ret) {
3637                         err = ret;
3638                         break;
3639                 }
3640                 progress++;
3641                 trans = btrfs_start_transaction(rc->extent_root, 0);
3642                 if (IS_ERR(trans)) {
3643                         err = PTR_ERR(trans);
3644                         trans = NULL;
3645                         break;
3646                 }
3647 restart:
3648                 if (update_backref_cache(trans, &rc->backref_cache)) {
3649                         btrfs_end_transaction(trans);
3650                         trans = NULL;
3651                         continue;
3652                 }
3653
3654                 ret = find_next_extent(rc, path, &key);
3655                 if (ret < 0)
3656                         err = ret;
3657                 if (ret != 0)
3658                         break;
3659
3660                 rc->extents_found++;
3661
3662                 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3663                                     struct btrfs_extent_item);
3664                 flags = btrfs_extent_flags(path->nodes[0], ei);
3665
3666                 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3667                         ret = add_tree_block(rc, &key, path, &blocks);
3668                 } else if (rc->stage == UPDATE_DATA_PTRS &&
3669                            (flags & BTRFS_EXTENT_FLAG_DATA)) {
3670                         ret = add_data_references(rc, &key, path, &blocks);
3671                 } else {
3672                         btrfs_release_path(path);
3673                         ret = 0;
3674                 }
3675                 if (ret < 0) {
3676                         err = ret;
3677                         break;
3678                 }
3679
3680                 if (!RB_EMPTY_ROOT(&blocks)) {
3681                         ret = relocate_tree_blocks(trans, rc, &blocks);
3682                         if (ret < 0) {
3683                                 if (ret != -EAGAIN) {
3684                                         err = ret;
3685                                         break;
3686                                 }
3687                                 rc->extents_found--;
3688                                 rc->search_start = key.objectid;
3689                         }
3690                 }
3691
3692                 btrfs_end_transaction_throttle(trans);
3693                 btrfs_btree_balance_dirty(fs_info);
3694                 trans = NULL;
3695
3696                 if (rc->stage == MOVE_DATA_EXTENTS &&
3697                     (flags & BTRFS_EXTENT_FLAG_DATA)) {
3698                         rc->found_file_extent = 1;
3699                         ret = relocate_data_extent(rc->data_inode,
3700                                                    &key, &rc->cluster);
3701                         if (ret < 0) {
3702                                 err = ret;
3703                                 break;
3704                         }
3705                 }
3706                 if (btrfs_should_cancel_balance(fs_info)) {
3707                         err = -ECANCELED;
3708                         break;
3709                 }
3710         }
3711         if (trans && progress && err == -ENOSPC) {
3712                 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3713                 if (ret == 1) {
3714                         err = 0;
3715                         progress = 0;
3716                         goto restart;
3717                 }
3718         }
3719
3720         btrfs_release_path(path);
3721         clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
3722
3723         if (trans) {
3724                 btrfs_end_transaction_throttle(trans);
3725                 btrfs_btree_balance_dirty(fs_info);
3726         }
3727
3728         if (!err) {
3729                 ret = relocate_file_extent_cluster(rc->data_inode,
3730                                                    &rc->cluster);
3731                 if (ret < 0)
3732                         err = ret;
3733         }
3734
3735         rc->create_reloc_tree = 0;
3736         set_reloc_control(rc);
3737
3738         btrfs_backref_release_cache(&rc->backref_cache);
3739         btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3740
3741         /*
3742          * Even in the case when the relocation is cancelled, we should all go
3743          * through prepare_to_merge() and merge_reloc_roots().
3744          *
3745          * For error (including cancelled balance), prepare_to_merge() will
3746          * mark all reloc trees orphan, then queue them for cleanup in
3747          * merge_reloc_roots()
3748          */
3749         err = prepare_to_merge(rc, err);
3750
3751         merge_reloc_roots(rc);
3752
3753         rc->merge_reloc_tree = 0;
3754         unset_reloc_control(rc);
3755         btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3756
3757         /* get rid of pinned extents */
3758         trans = btrfs_join_transaction(rc->extent_root);
3759         if (IS_ERR(trans)) {
3760                 err = PTR_ERR(trans);
3761                 goto out_free;
3762         }
3763         ret = btrfs_commit_transaction(trans);
3764         if (ret && !err)
3765                 err = ret;
3766 out_free:
3767         ret = clean_dirty_subvols(rc);
3768         if (ret < 0 && !err)
3769                 err = ret;
3770         btrfs_free_block_rsv(fs_info, rc->block_rsv);
3771         btrfs_free_path(path);
3772         return err;
3773 }
3774
3775 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3776                                  struct btrfs_root *root, u64 objectid)
3777 {
3778         struct btrfs_path *path;
3779         struct btrfs_inode_item *item;
3780         struct extent_buffer *leaf;
3781         int ret;
3782
3783         path = btrfs_alloc_path();
3784         if (!path)
3785                 return -ENOMEM;
3786
3787         ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3788         if (ret)
3789                 goto out;
3790
3791         leaf = path->nodes[0];
3792         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3793         memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3794         btrfs_set_inode_generation(leaf, item, 1);
3795         btrfs_set_inode_size(leaf, item, 0);
3796         btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3797         btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3798                                           BTRFS_INODE_PREALLOC);
3799         btrfs_mark_buffer_dirty(leaf);
3800 out:
3801         btrfs_free_path(path);
3802         return ret;
3803 }
3804
3805 static void delete_orphan_inode(struct btrfs_trans_handle *trans,
3806                                 struct btrfs_root *root, u64 objectid)
3807 {
3808         struct btrfs_path *path;
3809         struct btrfs_key key;
3810         int ret = 0;
3811
3812         path = btrfs_alloc_path();
3813         if (!path) {
3814                 ret = -ENOMEM;
3815                 goto out;
3816         }
3817
3818         key.objectid = objectid;
3819         key.type = BTRFS_INODE_ITEM_KEY;
3820         key.offset = 0;
3821         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3822         if (ret) {
3823                 if (ret > 0)
3824                         ret = -ENOENT;
3825                 goto out;
3826         }
3827         ret = btrfs_del_item(trans, root, path);
3828 out:
3829         if (ret)
3830                 btrfs_abort_transaction(trans, ret);
3831         btrfs_free_path(path);
3832 }
3833
3834 /*
3835  * helper to create inode for data relocation.
3836  * the inode is in data relocation tree and its link count is 0
3837  */
3838 static noinline_for_stack
3839 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3840                                  struct btrfs_block_group *group)
3841 {
3842         struct inode *inode = NULL;
3843         struct btrfs_trans_handle *trans;
3844         struct btrfs_root *root;
3845         u64 objectid;
3846         int err = 0;
3847
3848         root = btrfs_grab_root(fs_info->data_reloc_root);
3849         trans = btrfs_start_transaction(root, 6);
3850         if (IS_ERR(trans)) {
3851                 btrfs_put_root(root);
3852                 return ERR_CAST(trans);
3853         }
3854
3855         err = btrfs_get_free_objectid(root, &objectid);
3856         if (err)
3857                 goto out;
3858
3859         err = __insert_orphan_inode(trans, root, objectid);
3860         if (err)
3861                 goto out;
3862
3863         inode = btrfs_iget(fs_info->sb, objectid, root);
3864         if (IS_ERR(inode)) {
3865                 delete_orphan_inode(trans, root, objectid);
3866                 err = PTR_ERR(inode);
3867                 inode = NULL;
3868                 goto out;
3869         }
3870         BTRFS_I(inode)->index_cnt = group->start;
3871
3872         err = btrfs_orphan_add(trans, BTRFS_I(inode));
3873 out:
3874         btrfs_put_root(root);
3875         btrfs_end_transaction(trans);
3876         btrfs_btree_balance_dirty(fs_info);
3877         if (err) {
3878                 iput(inode);
3879                 inode = ERR_PTR(err);
3880         }
3881         return inode;
3882 }
3883
3884 /*
3885  * Mark start of chunk relocation that is cancellable. Check if the cancellation
3886  * has been requested meanwhile and don't start in that case.
3887  *
3888  * Return:
3889  *   0             success
3890  *   -EINPROGRESS  operation is already in progress, that's probably a bug
3891  *   -ECANCELED    cancellation request was set before the operation started
3892  */
3893 static int reloc_chunk_start(struct btrfs_fs_info *fs_info)
3894 {
3895         if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) {
3896                 /* This should not happen */
3897                 btrfs_err(fs_info, "reloc already running, cannot start");
3898                 return -EINPROGRESS;
3899         }
3900
3901         if (atomic_read(&fs_info->reloc_cancel_req) > 0) {
3902                 btrfs_info(fs_info, "chunk relocation canceled on start");
3903                 /*
3904                  * On cancel, clear all requests but let the caller mark
3905                  * the end after cleanup operations.
3906                  */
3907                 atomic_set(&fs_info->reloc_cancel_req, 0);
3908                 return -ECANCELED;
3909         }
3910         return 0;
3911 }
3912
3913 /*
3914  * Mark end of chunk relocation that is cancellable and wake any waiters.
3915  */
3916 static void reloc_chunk_end(struct btrfs_fs_info *fs_info)
3917 {
3918         /* Requested after start, clear bit first so any waiters can continue */
3919         if (atomic_read(&fs_info->reloc_cancel_req) > 0)
3920                 btrfs_info(fs_info, "chunk relocation canceled during operation");
3921         clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags);
3922         atomic_set(&fs_info->reloc_cancel_req, 0);
3923 }
3924
3925 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3926 {
3927         struct reloc_control *rc;
3928
3929         rc = kzalloc(sizeof(*rc), GFP_NOFS);
3930         if (!rc)
3931                 return NULL;
3932
3933         INIT_LIST_HEAD(&rc->reloc_roots);
3934         INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3935         btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1);
3936         mapping_tree_init(&rc->reloc_root_tree);
3937         extent_io_tree_init(fs_info, &rc->processed_blocks, IO_TREE_RELOC_BLOCKS);
3938         return rc;
3939 }
3940
3941 static void free_reloc_control(struct reloc_control *rc)
3942 {
3943         struct mapping_node *node, *tmp;
3944
3945         free_reloc_roots(&rc->reloc_roots);
3946         rbtree_postorder_for_each_entry_safe(node, tmp,
3947                         &rc->reloc_root_tree.rb_root, rb_node)
3948                 kfree(node);
3949
3950         kfree(rc);
3951 }
3952
3953 /*
3954  * Print the block group being relocated
3955  */
3956 static void describe_relocation(struct btrfs_fs_info *fs_info,
3957                                 struct btrfs_block_group *block_group)
3958 {
3959         char buf[128] = {'\0'};
3960
3961         btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
3962
3963         btrfs_info(fs_info,
3964                    "relocating block group %llu flags %s",
3965                    block_group->start, buf);
3966 }
3967
3968 static const char *stage_to_string(int stage)
3969 {
3970         if (stage == MOVE_DATA_EXTENTS)
3971                 return "move data extents";
3972         if (stage == UPDATE_DATA_PTRS)
3973                 return "update data pointers";
3974         return "unknown";
3975 }
3976
3977 /*
3978  * function to relocate all extents in a block group.
3979  */
3980 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
3981 {
3982         struct btrfs_block_group *bg;
3983         struct btrfs_root *extent_root = btrfs_extent_root(fs_info, group_start);
3984         struct reloc_control *rc;
3985         struct inode *inode;
3986         struct btrfs_path *path;
3987         int ret;
3988         int rw = 0;
3989         int err = 0;
3990
3991         /*
3992          * This only gets set if we had a half-deleted snapshot on mount.  We
3993          * cannot allow relocation to start while we're still trying to clean up
3994          * these pending deletions.
3995          */
3996         ret = wait_on_bit(&fs_info->flags, BTRFS_FS_UNFINISHED_DROPS, TASK_INTERRUPTIBLE);
3997         if (ret)
3998                 return ret;
3999
4000         /* We may have been woken up by close_ctree, so bail if we're closing. */
4001         if (btrfs_fs_closing(fs_info))
4002                 return -EINTR;
4003
4004         bg = btrfs_lookup_block_group(fs_info, group_start);
4005         if (!bg)
4006                 return -ENOENT;
4007
4008         /*
4009          * Relocation of a data block group creates ordered extents.  Without
4010          * sb_start_write(), we can freeze the filesystem while unfinished
4011          * ordered extents are left. Such ordered extents can cause a deadlock
4012          * e.g. when syncfs() is waiting for their completion but they can't
4013          * finish because they block when joining a transaction, due to the
4014          * fact that the freeze locks are being held in write mode.
4015          */
4016         if (bg->flags & BTRFS_BLOCK_GROUP_DATA)
4017                 ASSERT(sb_write_started(fs_info->sb));
4018
4019         if (btrfs_pinned_by_swapfile(fs_info, bg)) {
4020                 btrfs_put_block_group(bg);
4021                 return -ETXTBSY;
4022         }
4023
4024         rc = alloc_reloc_control(fs_info);
4025         if (!rc) {
4026                 btrfs_put_block_group(bg);
4027                 return -ENOMEM;
4028         }
4029
4030         ret = reloc_chunk_start(fs_info);
4031         if (ret < 0) {
4032                 err = ret;
4033                 goto out_put_bg;
4034         }
4035
4036         rc->extent_root = extent_root;
4037         rc->block_group = bg;
4038
4039         ret = btrfs_inc_block_group_ro(rc->block_group, true);
4040         if (ret) {
4041                 err = ret;
4042                 goto out;
4043         }
4044         rw = 1;
4045
4046         path = btrfs_alloc_path();
4047         if (!path) {
4048                 err = -ENOMEM;
4049                 goto out;
4050         }
4051
4052         inode = lookup_free_space_inode(rc->block_group, path);
4053         btrfs_free_path(path);
4054
4055         if (!IS_ERR(inode))
4056                 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4057         else
4058                 ret = PTR_ERR(inode);
4059
4060         if (ret && ret != -ENOENT) {
4061                 err = ret;
4062                 goto out;
4063         }
4064
4065         rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4066         if (IS_ERR(rc->data_inode)) {
4067                 err = PTR_ERR(rc->data_inode);
4068                 rc->data_inode = NULL;
4069                 goto out;
4070         }
4071
4072         describe_relocation(fs_info, rc->block_group);
4073
4074         btrfs_wait_block_group_reservations(rc->block_group);
4075         btrfs_wait_nocow_writers(rc->block_group);
4076         btrfs_wait_ordered_roots(fs_info, U64_MAX,
4077                                  rc->block_group->start,
4078                                  rc->block_group->length);
4079
4080         ret = btrfs_zone_finish(rc->block_group);
4081         WARN_ON(ret && ret != -EAGAIN);
4082
4083         while (1) {
4084                 int finishes_stage;
4085
4086                 mutex_lock(&fs_info->cleaner_mutex);
4087                 ret = relocate_block_group(rc);
4088                 mutex_unlock(&fs_info->cleaner_mutex);
4089                 if (ret < 0)
4090                         err = ret;
4091
4092                 finishes_stage = rc->stage;
4093                 /*
4094                  * We may have gotten ENOSPC after we already dirtied some
4095                  * extents.  If writeout happens while we're relocating a
4096                  * different block group we could end up hitting the
4097                  * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4098                  * btrfs_reloc_cow_block.  Make sure we write everything out
4099                  * properly so we don't trip over this problem, and then break
4100                  * out of the loop if we hit an error.
4101                  */
4102                 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4103                         ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4104                                                        (u64)-1);
4105                         if (ret)
4106                                 err = ret;
4107                         invalidate_mapping_pages(rc->data_inode->i_mapping,
4108                                                  0, -1);
4109                         rc->stage = UPDATE_DATA_PTRS;
4110                 }
4111
4112                 if (err < 0)
4113                         goto out;
4114
4115                 if (rc->extents_found == 0)
4116                         break;
4117
4118                 btrfs_info(fs_info, "found %llu extents, stage: %s",
4119                            rc->extents_found, stage_to_string(finishes_stage));
4120         }
4121
4122         WARN_ON(rc->block_group->pinned > 0);
4123         WARN_ON(rc->block_group->reserved > 0);
4124         WARN_ON(rc->block_group->used > 0);
4125 out:
4126         if (err && rw)
4127                 btrfs_dec_block_group_ro(rc->block_group);
4128         iput(rc->data_inode);
4129 out_put_bg:
4130         btrfs_put_block_group(bg);
4131         reloc_chunk_end(fs_info);
4132         free_reloc_control(rc);
4133         return err;
4134 }
4135
4136 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4137 {
4138         struct btrfs_fs_info *fs_info = root->fs_info;
4139         struct btrfs_trans_handle *trans;
4140         int ret, err;
4141
4142         trans = btrfs_start_transaction(fs_info->tree_root, 0);
4143         if (IS_ERR(trans))
4144                 return PTR_ERR(trans);
4145
4146         memset(&root->root_item.drop_progress, 0,
4147                 sizeof(root->root_item.drop_progress));
4148         btrfs_set_root_drop_level(&root->root_item, 0);
4149         btrfs_set_root_refs(&root->root_item, 0);
4150         ret = btrfs_update_root(trans, fs_info->tree_root,
4151                                 &root->root_key, &root->root_item);
4152
4153         err = btrfs_end_transaction(trans);
4154         if (err)
4155                 return err;
4156         return ret;
4157 }
4158
4159 /*
4160  * recover relocation interrupted by system crash.
4161  *
4162  * this function resumes merging reloc trees with corresponding fs trees.
4163  * this is important for keeping the sharing of tree blocks
4164  */
4165 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info)
4166 {
4167         LIST_HEAD(reloc_roots);
4168         struct btrfs_key key;
4169         struct btrfs_root *fs_root;
4170         struct btrfs_root *reloc_root;
4171         struct btrfs_path *path;
4172         struct extent_buffer *leaf;
4173         struct reloc_control *rc = NULL;
4174         struct btrfs_trans_handle *trans;
4175         int ret;
4176         int err = 0;
4177
4178         path = btrfs_alloc_path();
4179         if (!path)
4180                 return -ENOMEM;
4181         path->reada = READA_BACK;
4182
4183         key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4184         key.type = BTRFS_ROOT_ITEM_KEY;
4185         key.offset = (u64)-1;
4186
4187         while (1) {
4188                 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4189                                         path, 0, 0);
4190                 if (ret < 0) {
4191                         err = ret;
4192                         goto out;
4193                 }
4194                 if (ret > 0) {
4195                         if (path->slots[0] == 0)
4196                                 break;
4197                         path->slots[0]--;
4198                 }
4199                 leaf = path->nodes[0];
4200                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4201                 btrfs_release_path(path);
4202
4203                 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4204                     key.type != BTRFS_ROOT_ITEM_KEY)
4205                         break;
4206
4207                 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &key);
4208                 if (IS_ERR(reloc_root)) {
4209                         err = PTR_ERR(reloc_root);
4210                         goto out;
4211                 }
4212
4213                 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
4214                 list_add(&reloc_root->root_list, &reloc_roots);
4215
4216                 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4217                         fs_root = btrfs_get_fs_root(fs_info,
4218                                         reloc_root->root_key.offset, false);
4219                         if (IS_ERR(fs_root)) {
4220                                 ret = PTR_ERR(fs_root);
4221                                 if (ret != -ENOENT) {
4222                                         err = ret;
4223                                         goto out;
4224                                 }
4225                                 ret = mark_garbage_root(reloc_root);
4226                                 if (ret < 0) {
4227                                         err = ret;
4228                                         goto out;
4229                                 }
4230                         } else {
4231                                 btrfs_put_root(fs_root);
4232                         }
4233                 }
4234
4235                 if (key.offset == 0)
4236                         break;
4237
4238                 key.offset--;
4239         }
4240         btrfs_release_path(path);
4241
4242         if (list_empty(&reloc_roots))
4243                 goto out;
4244
4245         rc = alloc_reloc_control(fs_info);
4246         if (!rc) {
4247                 err = -ENOMEM;
4248                 goto out;
4249         }
4250
4251         ret = reloc_chunk_start(fs_info);
4252         if (ret < 0) {
4253                 err = ret;
4254                 goto out_end;
4255         }
4256
4257         rc->extent_root = btrfs_extent_root(fs_info, 0);
4258
4259         set_reloc_control(rc);
4260
4261         trans = btrfs_join_transaction(rc->extent_root);
4262         if (IS_ERR(trans)) {
4263                 err = PTR_ERR(trans);
4264                 goto out_unset;
4265         }
4266
4267         rc->merge_reloc_tree = 1;
4268
4269         while (!list_empty(&reloc_roots)) {
4270                 reloc_root = list_entry(reloc_roots.next,
4271                                         struct btrfs_root, root_list);
4272                 list_del(&reloc_root->root_list);
4273
4274                 if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4275                         list_add_tail(&reloc_root->root_list,
4276                                       &rc->reloc_roots);
4277                         continue;
4278                 }
4279
4280                 fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
4281                                             false);
4282                 if (IS_ERR(fs_root)) {
4283                         err = PTR_ERR(fs_root);
4284                         list_add_tail(&reloc_root->root_list, &reloc_roots);
4285                         btrfs_end_transaction(trans);
4286                         goto out_unset;
4287                 }
4288
4289                 err = __add_reloc_root(reloc_root);
4290                 ASSERT(err != -EEXIST);
4291                 if (err) {
4292                         list_add_tail(&reloc_root->root_list, &reloc_roots);
4293                         btrfs_put_root(fs_root);
4294                         btrfs_end_transaction(trans);
4295                         goto out_unset;
4296                 }
4297                 fs_root->reloc_root = btrfs_grab_root(reloc_root);
4298                 btrfs_put_root(fs_root);
4299         }
4300
4301         err = btrfs_commit_transaction(trans);
4302         if (err)
4303                 goto out_unset;
4304
4305         merge_reloc_roots(rc);
4306
4307         unset_reloc_control(rc);
4308
4309         trans = btrfs_join_transaction(rc->extent_root);
4310         if (IS_ERR(trans)) {
4311                 err = PTR_ERR(trans);
4312                 goto out_clean;
4313         }
4314         err = btrfs_commit_transaction(trans);
4315 out_clean:
4316         ret = clean_dirty_subvols(rc);
4317         if (ret < 0 && !err)
4318                 err = ret;
4319 out_unset:
4320         unset_reloc_control(rc);
4321 out_end:
4322         reloc_chunk_end(fs_info);
4323         free_reloc_control(rc);
4324 out:
4325         free_reloc_roots(&reloc_roots);
4326
4327         btrfs_free_path(path);
4328
4329         if (err == 0) {
4330                 /* cleanup orphan inode in data relocation tree */
4331                 fs_root = btrfs_grab_root(fs_info->data_reloc_root);
4332                 ASSERT(fs_root);
4333                 err = btrfs_orphan_cleanup(fs_root);
4334                 btrfs_put_root(fs_root);
4335         }
4336         return err;
4337 }
4338
4339 /*
4340  * helper to add ordered checksum for data relocation.
4341  *
4342  * cloning checksum properly handles the nodatasum extents.
4343  * it also saves CPU time to re-calculate the checksum.
4344  */
4345 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len)
4346 {
4347         struct btrfs_fs_info *fs_info = inode->root->fs_info;
4348         struct btrfs_root *csum_root;
4349         struct btrfs_ordered_sum *sums;
4350         struct btrfs_ordered_extent *ordered;
4351         int ret;
4352         u64 disk_bytenr;
4353         u64 new_bytenr;
4354         LIST_HEAD(list);
4355
4356         ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4357         BUG_ON(ordered->file_offset != file_pos || ordered->num_bytes != len);
4358
4359         disk_bytenr = file_pos + inode->index_cnt;
4360         csum_root = btrfs_csum_root(fs_info, disk_bytenr);
4361         ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4362                                       disk_bytenr + len - 1, &list, 0, false);
4363         if (ret)
4364                 goto out;
4365
4366         while (!list_empty(&list)) {
4367                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4368                 list_del_init(&sums->list);
4369
4370                 /*
4371                  * We need to offset the new_bytenr based on where the csum is.
4372                  * We need to do this because we will read in entire prealloc
4373                  * extents but we may have written to say the middle of the
4374                  * prealloc extent, so we need to make sure the csum goes with
4375                  * the right disk offset.
4376                  *
4377                  * We can do this because the data reloc inode refers strictly
4378                  * to the on disk bytes, so we don't have to worry about
4379                  * disk_len vs real len like with real inodes since it's all
4380                  * disk length.
4381                  */
4382                 new_bytenr = ordered->disk_bytenr + sums->bytenr - disk_bytenr;
4383                 sums->bytenr = new_bytenr;
4384
4385                 btrfs_add_ordered_sum(ordered, sums);
4386         }
4387 out:
4388         btrfs_put_ordered_extent(ordered);
4389         return ret;
4390 }
4391
4392 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4393                           struct btrfs_root *root, struct extent_buffer *buf,
4394                           struct extent_buffer *cow)
4395 {
4396         struct btrfs_fs_info *fs_info = root->fs_info;
4397         struct reloc_control *rc;
4398         struct btrfs_backref_node *node;
4399         int first_cow = 0;
4400         int level;
4401         int ret = 0;
4402
4403         rc = fs_info->reloc_ctl;
4404         if (!rc)
4405                 return 0;
4406
4407         BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root));
4408
4409         level = btrfs_header_level(buf);
4410         if (btrfs_header_generation(buf) <=
4411             btrfs_root_last_snapshot(&root->root_item))
4412                 first_cow = 1;
4413
4414         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4415             rc->create_reloc_tree) {
4416                 WARN_ON(!first_cow && level == 0);
4417
4418                 node = rc->backref_cache.path[level];
4419                 BUG_ON(node->bytenr != buf->start &&
4420                        node->new_bytenr != buf->start);
4421
4422                 btrfs_backref_drop_node_buffer(node);
4423                 atomic_inc(&cow->refs);
4424                 node->eb = cow;
4425                 node->new_bytenr = cow->start;
4426
4427                 if (!node->pending) {
4428                         list_move_tail(&node->list,
4429                                        &rc->backref_cache.pending[level]);
4430                         node->pending = 1;
4431                 }
4432
4433                 if (first_cow)
4434                         mark_block_processed(rc, node);
4435
4436                 if (first_cow && level > 0)
4437                         rc->nodes_relocated += buf->len;
4438         }
4439
4440         if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4441                 ret = replace_file_extents(trans, rc, root, cow);
4442         return ret;
4443 }
4444
4445 /*
4446  * called before creating snapshot. it calculates metadata reservation
4447  * required for relocating tree blocks in the snapshot
4448  */
4449 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4450                               u64 *bytes_to_reserve)
4451 {
4452         struct btrfs_root *root = pending->root;
4453         struct reloc_control *rc = root->fs_info->reloc_ctl;
4454
4455         if (!rc || !have_reloc_root(root))
4456                 return;
4457
4458         if (!rc->merge_reloc_tree)
4459                 return;
4460
4461         root = root->reloc_root;
4462         BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4463         /*
4464          * relocation is in the stage of merging trees. the space
4465          * used by merging a reloc tree is twice the size of
4466          * relocated tree nodes in the worst case. half for cowing
4467          * the reloc tree, half for cowing the fs tree. the space
4468          * used by cowing the reloc tree will be freed after the
4469          * tree is dropped. if we create snapshot, cowing the fs
4470          * tree may use more space than it frees. so we need
4471          * reserve extra space.
4472          */
4473         *bytes_to_reserve += rc->nodes_relocated;
4474 }
4475
4476 /*
4477  * called after snapshot is created. migrate block reservation
4478  * and create reloc root for the newly created snapshot
4479  *
4480  * This is similar to btrfs_init_reloc_root(), we come out of here with two
4481  * references held on the reloc_root, one for root->reloc_root and one for
4482  * rc->reloc_roots.
4483  */
4484 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4485                                struct btrfs_pending_snapshot *pending)
4486 {
4487         struct btrfs_root *root = pending->root;
4488         struct btrfs_root *reloc_root;
4489         struct btrfs_root *new_root;
4490         struct reloc_control *rc = root->fs_info->reloc_ctl;
4491         int ret;
4492
4493         if (!rc || !have_reloc_root(root))
4494                 return 0;
4495
4496         rc = root->fs_info->reloc_ctl;
4497         rc->merging_rsv_size += rc->nodes_relocated;
4498
4499         if (rc->merge_reloc_tree) {
4500                 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4501                                               rc->block_rsv,
4502                                               rc->nodes_relocated, true);
4503                 if (ret)
4504                         return ret;
4505         }
4506
4507         new_root = pending->snap;
4508         reloc_root = create_reloc_root(trans, root->reloc_root,
4509                                        new_root->root_key.objectid);
4510         if (IS_ERR(reloc_root))
4511                 return PTR_ERR(reloc_root);
4512
4513         ret = __add_reloc_root(reloc_root);
4514         ASSERT(ret != -EEXIST);
4515         if (ret) {
4516                 /* Pairs with create_reloc_root */
4517                 btrfs_put_root(reloc_root);
4518                 return ret;
4519         }
4520         new_root->reloc_root = btrfs_grab_root(reloc_root);
4521
4522         if (rc->create_reloc_tree)
4523                 ret = clone_backref_node(trans, rc, root, reloc_root);
4524         return ret;
4525 }