btrfs: root->fs_info cleanup, add fs_info convenience variables
[linux-block.git] / fs / btrfs / reada.c
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/rbtree.h>
24 #include <linux/slab.h>
25 #include <linux/workqueue.h>
26 #include "ctree.h"
27 #include "volumes.h"
28 #include "disk-io.h"
29 #include "transaction.h"
30 #include "dev-replace.h"
31
32 #undef DEBUG
33
34 /*
35  * This is the implementation for the generic read ahead framework.
36  *
37  * To trigger a readahead, btrfs_reada_add must be called. It will start
38  * a read ahead for the given range [start, end) on tree root. The returned
39  * handle can either be used to wait on the readahead to finish
40  * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
41  *
42  * The read ahead works as follows:
43  * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
44  * reada_start_machine will then search for extents to prefetch and trigger
45  * some reads. When a read finishes for a node, all contained node/leaf
46  * pointers that lie in the given range will also be enqueued. The reads will
47  * be triggered in sequential order, thus giving a big win over a naive
48  * enumeration. It will also make use of multi-device layouts. Each disk
49  * will have its on read pointer and all disks will by utilized in parallel.
50  * Also will no two disks read both sides of a mirror simultaneously, as this
51  * would waste seeking capacity. Instead both disks will read different parts
52  * of the filesystem.
53  * Any number of readaheads can be started in parallel. The read order will be
54  * determined globally, i.e. 2 parallel readaheads will normally finish faster
55  * than the 2 started one after another.
56  */
57
58 #define MAX_IN_FLIGHT 6
59
60 struct reada_extctl {
61         struct list_head        list;
62         struct reada_control    *rc;
63         u64                     generation;
64 };
65
66 struct reada_extent {
67         u64                     logical;
68         struct btrfs_key        top;
69         int                     err;
70         struct list_head        extctl;
71         int                     refcnt;
72         spinlock_t              lock;
73         struct reada_zone       *zones[BTRFS_MAX_MIRRORS];
74         int                     nzones;
75         int                     scheduled;
76 };
77
78 struct reada_zone {
79         u64                     start;
80         u64                     end;
81         u64                     elems;
82         struct list_head        list;
83         spinlock_t              lock;
84         int                     locked;
85         struct btrfs_device     *device;
86         struct btrfs_device     *devs[BTRFS_MAX_MIRRORS]; /* full list, incl
87                                                            * self */
88         int                     ndevs;
89         struct kref             refcnt;
90 };
91
92 struct reada_machine_work {
93         struct btrfs_work       work;
94         struct btrfs_fs_info    *fs_info;
95 };
96
97 static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
98 static void reada_control_release(struct kref *kref);
99 static void reada_zone_release(struct kref *kref);
100 static void reada_start_machine(struct btrfs_fs_info *fs_info);
101 static void __reada_start_machine(struct btrfs_fs_info *fs_info);
102
103 static int reada_add_block(struct reada_control *rc, u64 logical,
104                            struct btrfs_key *top, u64 generation);
105
106 /* recurses */
107 /* in case of err, eb might be NULL */
108 static void __readahead_hook(struct btrfs_fs_info *fs_info,
109                              struct reada_extent *re, struct extent_buffer *eb,
110                              int err)
111 {
112         int nritems;
113         int i;
114         u64 bytenr;
115         u64 generation;
116         struct list_head list;
117
118         spin_lock(&re->lock);
119         /*
120          * just take the full list from the extent. afterwards we
121          * don't need the lock anymore
122          */
123         list_replace_init(&re->extctl, &list);
124         re->scheduled = 0;
125         spin_unlock(&re->lock);
126
127         /*
128          * this is the error case, the extent buffer has not been
129          * read correctly. We won't access anything from it and
130          * just cleanup our data structures. Effectively this will
131          * cut the branch below this node from read ahead.
132          */
133         if (err)
134                 goto cleanup;
135
136         /*
137          * FIXME: currently we just set nritems to 0 if this is a leaf,
138          * effectively ignoring the content. In a next step we could
139          * trigger more readahead depending from the content, e.g.
140          * fetch the checksums for the extents in the leaf.
141          */
142         if (!btrfs_header_level(eb))
143                 goto cleanup;
144
145         nritems = btrfs_header_nritems(eb);
146         generation = btrfs_header_generation(eb);
147         for (i = 0; i < nritems; i++) {
148                 struct reada_extctl *rec;
149                 u64 n_gen;
150                 struct btrfs_key key;
151                 struct btrfs_key next_key;
152
153                 btrfs_node_key_to_cpu(eb, &key, i);
154                 if (i + 1 < nritems)
155                         btrfs_node_key_to_cpu(eb, &next_key, i + 1);
156                 else
157                         next_key = re->top;
158                 bytenr = btrfs_node_blockptr(eb, i);
159                 n_gen = btrfs_node_ptr_generation(eb, i);
160
161                 list_for_each_entry(rec, &list, list) {
162                         struct reada_control *rc = rec->rc;
163
164                         /*
165                          * if the generation doesn't match, just ignore this
166                          * extctl. This will probably cut off a branch from
167                          * prefetch. Alternatively one could start a new (sub-)
168                          * prefetch for this branch, starting again from root.
169                          * FIXME: move the generation check out of this loop
170                          */
171 #ifdef DEBUG
172                         if (rec->generation != generation) {
173                                 btrfs_debug(fs_info,
174                                             "generation mismatch for (%llu,%d,%llu) %llu != %llu",
175                                             key.objectid, key.type, key.offset,
176                                             rec->generation, generation);
177                         }
178 #endif
179                         if (rec->generation == generation &&
180                             btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
181                             btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
182                                 reada_add_block(rc, bytenr, &next_key, n_gen);
183                 }
184         }
185
186 cleanup:
187         /*
188          * free extctl records
189          */
190         while (!list_empty(&list)) {
191                 struct reada_control *rc;
192                 struct reada_extctl *rec;
193
194                 rec = list_first_entry(&list, struct reada_extctl, list);
195                 list_del(&rec->list);
196                 rc = rec->rc;
197                 kfree(rec);
198
199                 kref_get(&rc->refcnt);
200                 if (atomic_dec_and_test(&rc->elems)) {
201                         kref_put(&rc->refcnt, reada_control_release);
202                         wake_up(&rc->wait);
203                 }
204                 kref_put(&rc->refcnt, reada_control_release);
205
206                 reada_extent_put(fs_info, re);  /* one ref for each entry */
207         }
208
209         return;
210 }
211
212 int btree_readahead_hook(struct btrfs_fs_info *fs_info,
213                          struct extent_buffer *eb, int err)
214 {
215         int ret = 0;
216         struct reada_extent *re;
217
218         /* find extent */
219         spin_lock(&fs_info->reada_lock);
220         re = radix_tree_lookup(&fs_info->reada_tree,
221                                eb->start >> PAGE_SHIFT);
222         if (re)
223                 re->refcnt++;
224         spin_unlock(&fs_info->reada_lock);
225         if (!re) {
226                 ret = -1;
227                 goto start_machine;
228         }
229
230         __readahead_hook(fs_info, re, eb, err);
231         reada_extent_put(fs_info, re);  /* our ref */
232
233 start_machine:
234         reada_start_machine(fs_info);
235         return ret;
236 }
237
238 static struct reada_zone *reada_find_zone(struct btrfs_fs_info *fs_info,
239                                           struct btrfs_device *dev, u64 logical,
240                                           struct btrfs_bio *bbio)
241 {
242         int ret;
243         struct reada_zone *zone;
244         struct btrfs_block_group_cache *cache = NULL;
245         u64 start;
246         u64 end;
247         int i;
248
249         zone = NULL;
250         spin_lock(&fs_info->reada_lock);
251         ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
252                                      logical >> PAGE_SHIFT, 1);
253         if (ret == 1 && logical >= zone->start && logical <= zone->end) {
254                 kref_get(&zone->refcnt);
255                 spin_unlock(&fs_info->reada_lock);
256                 return zone;
257         }
258
259         spin_unlock(&fs_info->reada_lock);
260
261         cache = btrfs_lookup_block_group(fs_info, logical);
262         if (!cache)
263                 return NULL;
264
265         start = cache->key.objectid;
266         end = start + cache->key.offset - 1;
267         btrfs_put_block_group(cache);
268
269         zone = kzalloc(sizeof(*zone), GFP_KERNEL);
270         if (!zone)
271                 return NULL;
272
273         zone->start = start;
274         zone->end = end;
275         INIT_LIST_HEAD(&zone->list);
276         spin_lock_init(&zone->lock);
277         zone->locked = 0;
278         kref_init(&zone->refcnt);
279         zone->elems = 0;
280         zone->device = dev; /* our device always sits at index 0 */
281         for (i = 0; i < bbio->num_stripes; ++i) {
282                 /* bounds have already been checked */
283                 zone->devs[i] = bbio->stripes[i].dev;
284         }
285         zone->ndevs = bbio->num_stripes;
286
287         spin_lock(&fs_info->reada_lock);
288         ret = radix_tree_insert(&dev->reada_zones,
289                                 (unsigned long)(zone->end >> PAGE_SHIFT),
290                                 zone);
291
292         if (ret == -EEXIST) {
293                 kfree(zone);
294                 ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
295                                              logical >> PAGE_SHIFT, 1);
296                 if (ret == 1 && logical >= zone->start && logical <= zone->end)
297                         kref_get(&zone->refcnt);
298                 else
299                         zone = NULL;
300         }
301         spin_unlock(&fs_info->reada_lock);
302
303         return zone;
304 }
305
306 static struct reada_extent *reada_find_extent(struct btrfs_root *root,
307                                               u64 logical,
308                                               struct btrfs_key *top)
309 {
310         int ret;
311         struct reada_extent *re = NULL;
312         struct reada_extent *re_exist = NULL;
313         struct btrfs_fs_info *fs_info = root->fs_info;
314         struct btrfs_bio *bbio = NULL;
315         struct btrfs_device *dev;
316         struct btrfs_device *prev_dev;
317         u32 blocksize;
318         u64 length;
319         int real_stripes;
320         int nzones = 0;
321         unsigned long index = logical >> PAGE_SHIFT;
322         int dev_replace_is_ongoing;
323         int have_zone = 0;
324
325         spin_lock(&fs_info->reada_lock);
326         re = radix_tree_lookup(&fs_info->reada_tree, index);
327         if (re)
328                 re->refcnt++;
329         spin_unlock(&fs_info->reada_lock);
330
331         if (re)
332                 return re;
333
334         re = kzalloc(sizeof(*re), GFP_KERNEL);
335         if (!re)
336                 return NULL;
337
338         blocksize = fs_info->nodesize;
339         re->logical = logical;
340         re->top = *top;
341         INIT_LIST_HEAD(&re->extctl);
342         spin_lock_init(&re->lock);
343         re->refcnt = 1;
344
345         /*
346          * map block
347          */
348         length = blocksize;
349         ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
350                         &length, &bbio, 0);
351         if (ret || !bbio || length < blocksize)
352                 goto error;
353
354         if (bbio->num_stripes > BTRFS_MAX_MIRRORS) {
355                 btrfs_err(fs_info,
356                            "readahead: more than %d copies not supported",
357                            BTRFS_MAX_MIRRORS);
358                 goto error;
359         }
360
361         real_stripes = bbio->num_stripes - bbio->num_tgtdevs;
362         for (nzones = 0; nzones < real_stripes; ++nzones) {
363                 struct reada_zone *zone;
364
365                 dev = bbio->stripes[nzones].dev;
366
367                 /* cannot read ahead on missing device. */
368                  if (!dev->bdev)
369                         continue;
370
371                 zone = reada_find_zone(fs_info, dev, logical, bbio);
372                 if (!zone)
373                         continue;
374
375                 re->zones[re->nzones++] = zone;
376                 spin_lock(&zone->lock);
377                 if (!zone->elems)
378                         kref_get(&zone->refcnt);
379                 ++zone->elems;
380                 spin_unlock(&zone->lock);
381                 spin_lock(&fs_info->reada_lock);
382                 kref_put(&zone->refcnt, reada_zone_release);
383                 spin_unlock(&fs_info->reada_lock);
384         }
385         if (re->nzones == 0) {
386                 /* not a single zone found, error and out */
387                 goto error;
388         }
389
390         /* insert extent in reada_tree + all per-device trees, all or nothing */
391         btrfs_dev_replace_lock(&fs_info->dev_replace, 0);
392         spin_lock(&fs_info->reada_lock);
393         ret = radix_tree_insert(&fs_info->reada_tree, index, re);
394         if (ret == -EEXIST) {
395                 re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
396                 re_exist->refcnt++;
397                 spin_unlock(&fs_info->reada_lock);
398                 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
399                 goto error;
400         }
401         if (ret) {
402                 spin_unlock(&fs_info->reada_lock);
403                 btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
404                 goto error;
405         }
406         prev_dev = NULL;
407         dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(
408                         &fs_info->dev_replace);
409         for (nzones = 0; nzones < re->nzones; ++nzones) {
410                 dev = re->zones[nzones]->device;
411
412                 if (dev == prev_dev) {
413                         /*
414                          * in case of DUP, just add the first zone. As both
415                          * are on the same device, there's nothing to gain
416                          * from adding both.
417                          * Also, it wouldn't work, as the tree is per device
418                          * and adding would fail with EEXIST
419                          */
420                         continue;
421                 }
422                 if (!dev->bdev)
423                         continue;
424
425                 if (dev_replace_is_ongoing &&
426                     dev == fs_info->dev_replace.tgtdev) {
427                         /*
428                          * as this device is selected for reading only as
429                          * a last resort, skip it for read ahead.
430                          */
431                         continue;
432                 }
433                 prev_dev = dev;
434                 ret = radix_tree_insert(&dev->reada_extents, index, re);
435                 if (ret) {
436                         while (--nzones >= 0) {
437                                 dev = re->zones[nzones]->device;
438                                 BUG_ON(dev == NULL);
439                                 /* ignore whether the entry was inserted */
440                                 radix_tree_delete(&dev->reada_extents, index);
441                         }
442                         radix_tree_delete(&fs_info->reada_tree, index);
443                         spin_unlock(&fs_info->reada_lock);
444                         btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
445                         goto error;
446                 }
447                 have_zone = 1;
448         }
449         spin_unlock(&fs_info->reada_lock);
450         btrfs_dev_replace_unlock(&fs_info->dev_replace, 0);
451
452         if (!have_zone)
453                 goto error;
454
455         btrfs_put_bbio(bbio);
456         return re;
457
458 error:
459         for (nzones = 0; nzones < re->nzones; ++nzones) {
460                 struct reada_zone *zone;
461
462                 zone = re->zones[nzones];
463                 kref_get(&zone->refcnt);
464                 spin_lock(&zone->lock);
465                 --zone->elems;
466                 if (zone->elems == 0) {
467                         /*
468                          * no fs_info->reada_lock needed, as this can't be
469                          * the last ref
470                          */
471                         kref_put(&zone->refcnt, reada_zone_release);
472                 }
473                 spin_unlock(&zone->lock);
474
475                 spin_lock(&fs_info->reada_lock);
476                 kref_put(&zone->refcnt, reada_zone_release);
477                 spin_unlock(&fs_info->reada_lock);
478         }
479         btrfs_put_bbio(bbio);
480         kfree(re);
481         return re_exist;
482 }
483
484 static void reada_extent_put(struct btrfs_fs_info *fs_info,
485                              struct reada_extent *re)
486 {
487         int i;
488         unsigned long index = re->logical >> PAGE_SHIFT;
489
490         spin_lock(&fs_info->reada_lock);
491         if (--re->refcnt) {
492                 spin_unlock(&fs_info->reada_lock);
493                 return;
494         }
495
496         radix_tree_delete(&fs_info->reada_tree, index);
497         for (i = 0; i < re->nzones; ++i) {
498                 struct reada_zone *zone = re->zones[i];
499
500                 radix_tree_delete(&zone->device->reada_extents, index);
501         }
502
503         spin_unlock(&fs_info->reada_lock);
504
505         for (i = 0; i < re->nzones; ++i) {
506                 struct reada_zone *zone = re->zones[i];
507
508                 kref_get(&zone->refcnt);
509                 spin_lock(&zone->lock);
510                 --zone->elems;
511                 if (zone->elems == 0) {
512                         /* no fs_info->reada_lock needed, as this can't be
513                          * the last ref */
514                         kref_put(&zone->refcnt, reada_zone_release);
515                 }
516                 spin_unlock(&zone->lock);
517
518                 spin_lock(&fs_info->reada_lock);
519                 kref_put(&zone->refcnt, reada_zone_release);
520                 spin_unlock(&fs_info->reada_lock);
521         }
522
523         kfree(re);
524 }
525
526 static void reada_zone_release(struct kref *kref)
527 {
528         struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
529
530         radix_tree_delete(&zone->device->reada_zones,
531                           zone->end >> PAGE_SHIFT);
532
533         kfree(zone);
534 }
535
536 static void reada_control_release(struct kref *kref)
537 {
538         struct reada_control *rc = container_of(kref, struct reada_control,
539                                                 refcnt);
540
541         kfree(rc);
542 }
543
544 static int reada_add_block(struct reada_control *rc, u64 logical,
545                            struct btrfs_key *top, u64 generation)
546 {
547         struct btrfs_fs_info *fs_info = rc->fs_info;
548         struct reada_extent *re;
549         struct reada_extctl *rec;
550
551         /* takes one ref */
552         re = reada_find_extent(fs_info->tree_root, logical, top);
553         if (!re)
554                 return -1;
555
556         rec = kzalloc(sizeof(*rec), GFP_KERNEL);
557         if (!rec) {
558                 reada_extent_put(fs_info, re);
559                 return -ENOMEM;
560         }
561
562         rec->rc = rc;
563         rec->generation = generation;
564         atomic_inc(&rc->elems);
565
566         spin_lock(&re->lock);
567         list_add_tail(&rec->list, &re->extctl);
568         spin_unlock(&re->lock);
569
570         /* leave the ref on the extent */
571
572         return 0;
573 }
574
575 /*
576  * called with fs_info->reada_lock held
577  */
578 static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
579 {
580         int i;
581         unsigned long index = zone->end >> PAGE_SHIFT;
582
583         for (i = 0; i < zone->ndevs; ++i) {
584                 struct reada_zone *peer;
585                 peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
586                 if (peer && peer->device != zone->device)
587                         peer->locked = lock;
588         }
589 }
590
591 /*
592  * called with fs_info->reada_lock held
593  */
594 static int reada_pick_zone(struct btrfs_device *dev)
595 {
596         struct reada_zone *top_zone = NULL;
597         struct reada_zone *top_locked_zone = NULL;
598         u64 top_elems = 0;
599         u64 top_locked_elems = 0;
600         unsigned long index = 0;
601         int ret;
602
603         if (dev->reada_curr_zone) {
604                 reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
605                 kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
606                 dev->reada_curr_zone = NULL;
607         }
608         /* pick the zone with the most elements */
609         while (1) {
610                 struct reada_zone *zone;
611
612                 ret = radix_tree_gang_lookup(&dev->reada_zones,
613                                              (void **)&zone, index, 1);
614                 if (ret == 0)
615                         break;
616                 index = (zone->end >> PAGE_SHIFT) + 1;
617                 if (zone->locked) {
618                         if (zone->elems > top_locked_elems) {
619                                 top_locked_elems = zone->elems;
620                                 top_locked_zone = zone;
621                         }
622                 } else {
623                         if (zone->elems > top_elems) {
624                                 top_elems = zone->elems;
625                                 top_zone = zone;
626                         }
627                 }
628         }
629         if (top_zone)
630                 dev->reada_curr_zone = top_zone;
631         else if (top_locked_zone)
632                 dev->reada_curr_zone = top_locked_zone;
633         else
634                 return 0;
635
636         dev->reada_next = dev->reada_curr_zone->start;
637         kref_get(&dev->reada_curr_zone->refcnt);
638         reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
639
640         return 1;
641 }
642
643 static int reada_start_machine_dev(struct btrfs_fs_info *fs_info,
644                                    struct btrfs_device *dev)
645 {
646         struct reada_extent *re = NULL;
647         int mirror_num = 0;
648         struct extent_buffer *eb = NULL;
649         u64 logical;
650         int ret;
651         int i;
652
653         spin_lock(&fs_info->reada_lock);
654         if (dev->reada_curr_zone == NULL) {
655                 ret = reada_pick_zone(dev);
656                 if (!ret) {
657                         spin_unlock(&fs_info->reada_lock);
658                         return 0;
659                 }
660         }
661         /*
662          * FIXME currently we issue the reads one extent at a time. If we have
663          * a contiguous block of extents, we could also coagulate them or use
664          * plugging to speed things up
665          */
666         ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
667                                      dev->reada_next >> PAGE_SHIFT, 1);
668         if (ret == 0 || re->logical > dev->reada_curr_zone->end) {
669                 ret = reada_pick_zone(dev);
670                 if (!ret) {
671                         spin_unlock(&fs_info->reada_lock);
672                         return 0;
673                 }
674                 re = NULL;
675                 ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
676                                         dev->reada_next >> PAGE_SHIFT, 1);
677         }
678         if (ret == 0) {
679                 spin_unlock(&fs_info->reada_lock);
680                 return 0;
681         }
682         dev->reada_next = re->logical + fs_info->nodesize;
683         re->refcnt++;
684
685         spin_unlock(&fs_info->reada_lock);
686
687         spin_lock(&re->lock);
688         if (re->scheduled || list_empty(&re->extctl)) {
689                 spin_unlock(&re->lock);
690                 reada_extent_put(fs_info, re);
691                 return 0;
692         }
693         re->scheduled = 1;
694         spin_unlock(&re->lock);
695
696         /*
697          * find mirror num
698          */
699         for (i = 0; i < re->nzones; ++i) {
700                 if (re->zones[i]->device == dev) {
701                         mirror_num = i + 1;
702                         break;
703                 }
704         }
705         logical = re->logical;
706
707         atomic_inc(&dev->reada_in_flight);
708         ret = reada_tree_block_flagged(fs_info->extent_root, logical,
709                         mirror_num, &eb);
710         if (ret)
711                 __readahead_hook(fs_info, re, NULL, ret);
712         else if (eb)
713                 __readahead_hook(fs_info, re, eb, ret);
714
715         if (eb)
716                 free_extent_buffer(eb);
717
718         atomic_dec(&dev->reada_in_flight);
719         reada_extent_put(fs_info, re);
720
721         return 1;
722
723 }
724
725 static void reada_start_machine_worker(struct btrfs_work *work)
726 {
727         struct reada_machine_work *rmw;
728         struct btrfs_fs_info *fs_info;
729         int old_ioprio;
730
731         rmw = container_of(work, struct reada_machine_work, work);
732         fs_info = rmw->fs_info;
733
734         kfree(rmw);
735
736         old_ioprio = IOPRIO_PRIO_VALUE(task_nice_ioclass(current),
737                                        task_nice_ioprio(current));
738         set_task_ioprio(current, BTRFS_IOPRIO_READA);
739         __reada_start_machine(fs_info);
740         set_task_ioprio(current, old_ioprio);
741
742         atomic_dec(&fs_info->reada_works_cnt);
743 }
744
745 static void __reada_start_machine(struct btrfs_fs_info *fs_info)
746 {
747         struct btrfs_device *device;
748         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
749         u64 enqueued;
750         u64 total = 0;
751         int i;
752
753         do {
754                 enqueued = 0;
755                 mutex_lock(&fs_devices->device_list_mutex);
756                 list_for_each_entry(device, &fs_devices->devices, dev_list) {
757                         if (atomic_read(&device->reada_in_flight) <
758                             MAX_IN_FLIGHT)
759                                 enqueued += reada_start_machine_dev(fs_info,
760                                                                     device);
761                 }
762                 mutex_unlock(&fs_devices->device_list_mutex);
763                 total += enqueued;
764         } while (enqueued && total < 10000);
765
766         if (enqueued == 0)
767                 return;
768
769         /*
770          * If everything is already in the cache, this is effectively single
771          * threaded. To a) not hold the caller for too long and b) to utilize
772          * more cores, we broke the loop above after 10000 iterations and now
773          * enqueue to workers to finish it. This will distribute the load to
774          * the cores.
775          */
776         for (i = 0; i < 2; ++i) {
777                 reada_start_machine(fs_info);
778                 if (atomic_read(&fs_info->reada_works_cnt) >
779                     BTRFS_MAX_MIRRORS * 2)
780                         break;
781         }
782 }
783
784 static void reada_start_machine(struct btrfs_fs_info *fs_info)
785 {
786         struct reada_machine_work *rmw;
787
788         rmw = kzalloc(sizeof(*rmw), GFP_KERNEL);
789         if (!rmw) {
790                 /* FIXME we cannot handle this properly right now */
791                 BUG();
792         }
793         btrfs_init_work(&rmw->work, btrfs_readahead_helper,
794                         reada_start_machine_worker, NULL, NULL);
795         rmw->fs_info = fs_info;
796
797         btrfs_queue_work(fs_info->readahead_workers, &rmw->work);
798         atomic_inc(&fs_info->reada_works_cnt);
799 }
800
801 #ifdef DEBUG
802 static void dump_devs(struct btrfs_fs_info *fs_info, int all)
803 {
804         struct btrfs_device *device;
805         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
806         unsigned long index;
807         int ret;
808         int i;
809         int j;
810         int cnt;
811
812         spin_lock(&fs_info->reada_lock);
813         list_for_each_entry(device, &fs_devices->devices, dev_list) {
814                 btrfs_debug(fs_info, "dev %lld has %d in flight", device->devid,
815                         atomic_read(&device->reada_in_flight));
816                 index = 0;
817                 while (1) {
818                         struct reada_zone *zone;
819                         ret = radix_tree_gang_lookup(&device->reada_zones,
820                                                      (void **)&zone, index, 1);
821                         if (ret == 0)
822                                 break;
823                         pr_debug("  zone %llu-%llu elems %llu locked %d devs",
824                                     zone->start, zone->end, zone->elems,
825                                     zone->locked);
826                         for (j = 0; j < zone->ndevs; ++j) {
827                                 pr_cont(" %lld",
828                                         zone->devs[j]->devid);
829                         }
830                         if (device->reada_curr_zone == zone)
831                                 pr_cont(" curr off %llu",
832                                         device->reada_next - zone->start);
833                         pr_cont("\n");
834                         index = (zone->end >> PAGE_SHIFT) + 1;
835                 }
836                 cnt = 0;
837                 index = 0;
838                 while (all) {
839                         struct reada_extent *re = NULL;
840
841                         ret = radix_tree_gang_lookup(&device->reada_extents,
842                                                      (void **)&re, index, 1);
843                         if (ret == 0)
844                                 break;
845                         pr_debug("  re: logical %llu size %u empty %d scheduled %d",
846                                 re->logical, fs_info->nodesize,
847                                 list_empty(&re->extctl), re->scheduled);
848
849                         for (i = 0; i < re->nzones; ++i) {
850                                 pr_cont(" zone %llu-%llu devs",
851                                         re->zones[i]->start,
852                                         re->zones[i]->end);
853                                 for (j = 0; j < re->zones[i]->ndevs; ++j) {
854                                         pr_cont(" %lld",
855                                                 re->zones[i]->devs[j]->devid);
856                                 }
857                         }
858                         pr_cont("\n");
859                         index = (re->logical >> PAGE_SHIFT) + 1;
860                         if (++cnt > 15)
861                                 break;
862                 }
863         }
864
865         index = 0;
866         cnt = 0;
867         while (all) {
868                 struct reada_extent *re = NULL;
869
870                 ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
871                                              index, 1);
872                 if (ret == 0)
873                         break;
874                 if (!re->scheduled) {
875                         index = (re->logical >> PAGE_SHIFT) + 1;
876                         continue;
877                 }
878                 pr_debug("re: logical %llu size %u list empty %d scheduled %d",
879                         re->logical, fs_info->nodesize,
880                         list_empty(&re->extctl), re->scheduled);
881                 for (i = 0; i < re->nzones; ++i) {
882                         pr_cont(" zone %llu-%llu devs",
883                                 re->zones[i]->start,
884                                 re->zones[i]->end);
885                         for (j = 0; j < re->zones[i]->ndevs; ++j) {
886                                 pr_cont(" %lld",
887                                        re->zones[i]->devs[j]->devid);
888                         }
889                 }
890                 pr_cont("\n");
891                 index = (re->logical >> PAGE_SHIFT) + 1;
892         }
893         spin_unlock(&fs_info->reada_lock);
894 }
895 #endif
896
897 /*
898  * interface
899  */
900 struct reada_control *btrfs_reada_add(struct btrfs_root *root,
901                         struct btrfs_key *key_start, struct btrfs_key *key_end)
902 {
903         struct reada_control *rc;
904         u64 start;
905         u64 generation;
906         int ret;
907         struct extent_buffer *node;
908         static struct btrfs_key max_key = {
909                 .objectid = (u64)-1,
910                 .type = (u8)-1,
911                 .offset = (u64)-1
912         };
913
914         rc = kzalloc(sizeof(*rc), GFP_KERNEL);
915         if (!rc)
916                 return ERR_PTR(-ENOMEM);
917
918         rc->fs_info = root->fs_info;
919         rc->key_start = *key_start;
920         rc->key_end = *key_end;
921         atomic_set(&rc->elems, 0);
922         init_waitqueue_head(&rc->wait);
923         kref_init(&rc->refcnt);
924         kref_get(&rc->refcnt); /* one ref for having elements */
925
926         node = btrfs_root_node(root);
927         start = node->start;
928         generation = btrfs_header_generation(node);
929         free_extent_buffer(node);
930
931         ret = reada_add_block(rc, start, &max_key, generation);
932         if (ret) {
933                 kfree(rc);
934                 return ERR_PTR(ret);
935         }
936
937         reada_start_machine(root->fs_info);
938
939         return rc;
940 }
941
942 #ifdef DEBUG
943 int btrfs_reada_wait(void *handle)
944 {
945         struct reada_control *rc = handle;
946         struct btrfs_fs_info *fs_info = rc->fs_info;
947
948         while (atomic_read(&rc->elems)) {
949                 if (!atomic_read(&fs_info->reada_works_cnt))
950                         reada_start_machine(fs_info);
951                 wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
952                                    5 * HZ);
953                 dump_devs(fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
954         }
955
956         dump_devs(fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
957
958         kref_put(&rc->refcnt, reada_control_release);
959
960         return 0;
961 }
962 #else
963 int btrfs_reada_wait(void *handle)
964 {
965         struct reada_control *rc = handle;
966         struct btrfs_fs_info *fs_info = rc->fs_info;
967
968         while (atomic_read(&rc->elems)) {
969                 if (!atomic_read(&fs_info->reada_works_cnt))
970                         reada_start_machine(fs_info);
971                 wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
972                                    (HZ + 9) / 10);
973         }
974
975         kref_put(&rc->refcnt, reada_control_release);
976
977         return 0;
978 }
979 #endif
980
981 void btrfs_reada_detach(void *handle)
982 {
983         struct reada_control *rc = handle;
984
985         kref_put(&rc->refcnt, reada_control_release);
986 }