Merge tag 'mips_6.0' of git://git.kernel.org/pub/scm/linux/kernel/git/mips/linux
[linux-block.git] / fs / btrfs / ordered-data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/sched/mm.h>
10 #include "misc.h"
11 #include "ctree.h"
12 #include "transaction.h"
13 #include "btrfs_inode.h"
14 #include "extent_io.h"
15 #include "disk-io.h"
16 #include "compression.h"
17 #include "delalloc-space.h"
18 #include "qgroup.h"
19 #include "subpage.h"
20
21 static struct kmem_cache *btrfs_ordered_extent_cache;
22
23 static u64 entry_end(struct btrfs_ordered_extent *entry)
24 {
25         if (entry->file_offset + entry->num_bytes < entry->file_offset)
26                 return (u64)-1;
27         return entry->file_offset + entry->num_bytes;
28 }
29
30 /* returns NULL if the insertion worked, or it returns the node it did find
31  * in the tree
32  */
33 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
34                                    struct rb_node *node)
35 {
36         struct rb_node **p = &root->rb_node;
37         struct rb_node *parent = NULL;
38         struct btrfs_ordered_extent *entry;
39
40         while (*p) {
41                 parent = *p;
42                 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
43
44                 if (file_offset < entry->file_offset)
45                         p = &(*p)->rb_left;
46                 else if (file_offset >= entry_end(entry))
47                         p = &(*p)->rb_right;
48                 else
49                         return parent;
50         }
51
52         rb_link_node(node, parent, p);
53         rb_insert_color(node, root);
54         return NULL;
55 }
56
57 /*
58  * look for a given offset in the tree, and if it can't be found return the
59  * first lesser offset
60  */
61 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
62                                      struct rb_node **prev_ret)
63 {
64         struct rb_node *n = root->rb_node;
65         struct rb_node *prev = NULL;
66         struct rb_node *test;
67         struct btrfs_ordered_extent *entry;
68         struct btrfs_ordered_extent *prev_entry = NULL;
69
70         while (n) {
71                 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
72                 prev = n;
73                 prev_entry = entry;
74
75                 if (file_offset < entry->file_offset)
76                         n = n->rb_left;
77                 else if (file_offset >= entry_end(entry))
78                         n = n->rb_right;
79                 else
80                         return n;
81         }
82         if (!prev_ret)
83                 return NULL;
84
85         while (prev && file_offset >= entry_end(prev_entry)) {
86                 test = rb_next(prev);
87                 if (!test)
88                         break;
89                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
90                                       rb_node);
91                 if (file_offset < entry_end(prev_entry))
92                         break;
93
94                 prev = test;
95         }
96         if (prev)
97                 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
98                                       rb_node);
99         while (prev && file_offset < entry_end(prev_entry)) {
100                 test = rb_prev(prev);
101                 if (!test)
102                         break;
103                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
104                                       rb_node);
105                 prev = test;
106         }
107         *prev_ret = prev;
108         return NULL;
109 }
110
111 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
112                           u64 len)
113 {
114         if (file_offset + len <= entry->file_offset ||
115             entry->file_offset + entry->num_bytes <= file_offset)
116                 return 0;
117         return 1;
118 }
119
120 /*
121  * look find the first ordered struct that has this offset, otherwise
122  * the first one less than this offset
123  */
124 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
125                                           u64 file_offset)
126 {
127         struct rb_root *root = &tree->tree;
128         struct rb_node *prev = NULL;
129         struct rb_node *ret;
130         struct btrfs_ordered_extent *entry;
131
132         if (tree->last) {
133                 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
134                                  rb_node);
135                 if (in_range(file_offset, entry->file_offset, entry->num_bytes))
136                         return tree->last;
137         }
138         ret = __tree_search(root, file_offset, &prev);
139         if (!ret)
140                 ret = prev;
141         if (ret)
142                 tree->last = ret;
143         return ret;
144 }
145
146 /**
147  * Add an ordered extent to the per-inode tree.
148  *
149  * @inode:           Inode that this extent is for.
150  * @file_offset:     Logical offset in file where the extent starts.
151  * @num_bytes:       Logical length of extent in file.
152  * @ram_bytes:       Full length of unencoded data.
153  * @disk_bytenr:     Offset of extent on disk.
154  * @disk_num_bytes:  Size of extent on disk.
155  * @offset:          Offset into unencoded data where file data starts.
156  * @flags:           Flags specifying type of extent (1 << BTRFS_ORDERED_*).
157  * @compress_type:   Compression algorithm used for data.
158  *
159  * Most of these parameters correspond to &struct btrfs_file_extent_item. The
160  * tree is given a single reference on the ordered extent that was inserted.
161  *
162  * Return: 0 or -ENOMEM.
163  */
164 int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
165                              u64 num_bytes, u64 ram_bytes, u64 disk_bytenr,
166                              u64 disk_num_bytes, u64 offset, unsigned flags,
167                              int compress_type)
168 {
169         struct btrfs_root *root = inode->root;
170         struct btrfs_fs_info *fs_info = root->fs_info;
171         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
172         struct rb_node *node;
173         struct btrfs_ordered_extent *entry;
174         int ret;
175
176         if (flags &
177             ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) {
178                 /* For nocow write, we can release the qgroup rsv right now */
179                 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes);
180                 if (ret < 0)
181                         return ret;
182                 ret = 0;
183         } else {
184                 /*
185                  * The ordered extent has reserved qgroup space, release now
186                  * and pass the reserved number for qgroup_record to free.
187                  */
188                 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes);
189                 if (ret < 0)
190                         return ret;
191         }
192         entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
193         if (!entry)
194                 return -ENOMEM;
195
196         entry->file_offset = file_offset;
197         entry->num_bytes = num_bytes;
198         entry->ram_bytes = ram_bytes;
199         entry->disk_bytenr = disk_bytenr;
200         entry->disk_num_bytes = disk_num_bytes;
201         entry->offset = offset;
202         entry->bytes_left = num_bytes;
203         entry->inode = igrab(&inode->vfs_inode);
204         entry->compress_type = compress_type;
205         entry->truncated_len = (u64)-1;
206         entry->qgroup_rsv = ret;
207         entry->physical = (u64)-1;
208
209         ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0);
210         entry->flags = flags;
211
212         percpu_counter_add_batch(&fs_info->ordered_bytes, num_bytes,
213                                  fs_info->delalloc_batch);
214
215         /* one ref for the tree */
216         refcount_set(&entry->refs, 1);
217         init_waitqueue_head(&entry->wait);
218         INIT_LIST_HEAD(&entry->list);
219         INIT_LIST_HEAD(&entry->log_list);
220         INIT_LIST_HEAD(&entry->root_extent_list);
221         INIT_LIST_HEAD(&entry->work_list);
222         init_completion(&entry->completion);
223
224         trace_btrfs_ordered_extent_add(inode, entry);
225
226         spin_lock_irq(&tree->lock);
227         node = tree_insert(&tree->tree, file_offset,
228                            &entry->rb_node);
229         if (node)
230                 btrfs_panic(fs_info, -EEXIST,
231                                 "inconsistency in ordered tree at offset %llu",
232                                 file_offset);
233         spin_unlock_irq(&tree->lock);
234
235         spin_lock(&root->ordered_extent_lock);
236         list_add_tail(&entry->root_extent_list,
237                       &root->ordered_extents);
238         root->nr_ordered_extents++;
239         if (root->nr_ordered_extents == 1) {
240                 spin_lock(&fs_info->ordered_root_lock);
241                 BUG_ON(!list_empty(&root->ordered_root));
242                 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
243                 spin_unlock(&fs_info->ordered_root_lock);
244         }
245         spin_unlock(&root->ordered_extent_lock);
246
247         /*
248          * We don't need the count_max_extents here, we can assume that all of
249          * that work has been done at higher layers, so this is truly the
250          * smallest the extent is going to get.
251          */
252         spin_lock(&inode->lock);
253         btrfs_mod_outstanding_extents(inode, 1);
254         spin_unlock(&inode->lock);
255
256         return 0;
257 }
258
259 /*
260  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
261  * when an ordered extent is finished.  If the list covers more than one
262  * ordered extent, it is split across multiples.
263  */
264 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
265                            struct btrfs_ordered_sum *sum)
266 {
267         struct btrfs_ordered_inode_tree *tree;
268
269         tree = &BTRFS_I(entry->inode)->ordered_tree;
270         spin_lock_irq(&tree->lock);
271         list_add_tail(&sum->list, &entry->list);
272         spin_unlock_irq(&tree->lock);
273 }
274
275 static void finish_ordered_fn(struct btrfs_work *work)
276 {
277         struct btrfs_ordered_extent *ordered_extent;
278
279         ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
280         btrfs_finish_ordered_io(ordered_extent);
281 }
282
283 /*
284  * Mark all ordered extents io inside the specified range finished.
285  *
286  * @page:        The involved page for the operation.
287  *               For uncompressed buffered IO, the page status also needs to be
288  *               updated to indicate whether the pending ordered io is finished.
289  *               Can be NULL for direct IO and compressed write.
290  *               For these cases, callers are ensured they won't execute the
291  *               endio function twice.
292  *
293  * This function is called for endio, thus the range must have ordered
294  * extent(s) covering it.
295  */
296 void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
297                                     struct page *page, u64 file_offset,
298                                     u64 num_bytes, bool uptodate)
299 {
300         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
301         struct btrfs_fs_info *fs_info = inode->root->fs_info;
302         struct btrfs_workqueue *wq;
303         struct rb_node *node;
304         struct btrfs_ordered_extent *entry = NULL;
305         unsigned long flags;
306         u64 cur = file_offset;
307
308         if (btrfs_is_free_space_inode(inode))
309                 wq = fs_info->endio_freespace_worker;
310         else
311                 wq = fs_info->endio_write_workers;
312
313         if (page)
314                 ASSERT(page->mapping && page_offset(page) <= file_offset &&
315                        file_offset + num_bytes <= page_offset(page) + PAGE_SIZE);
316
317         spin_lock_irqsave(&tree->lock, flags);
318         while (cur < file_offset + num_bytes) {
319                 u64 entry_end;
320                 u64 end;
321                 u32 len;
322
323                 node = tree_search(tree, cur);
324                 /* No ordered extents at all */
325                 if (!node)
326                         break;
327
328                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
329                 entry_end = entry->file_offset + entry->num_bytes;
330                 /*
331                  * |<-- OE --->|  |
332                  *                cur
333                  * Go to next OE.
334                  */
335                 if (cur >= entry_end) {
336                         node = rb_next(node);
337                         /* No more ordered extents, exit */
338                         if (!node)
339                                 break;
340                         entry = rb_entry(node, struct btrfs_ordered_extent,
341                                          rb_node);
342
343                         /* Go to next ordered extent and continue */
344                         cur = entry->file_offset;
345                         continue;
346                 }
347                 /*
348                  * |    |<--- OE --->|
349                  * cur
350                  * Go to the start of OE.
351                  */
352                 if (cur < entry->file_offset) {
353                         cur = entry->file_offset;
354                         continue;
355                 }
356
357                 /*
358                  * Now we are definitely inside one ordered extent.
359                  *
360                  * |<--- OE --->|
361                  *      |
362                  *      cur
363                  */
364                 end = min(entry->file_offset + entry->num_bytes,
365                           file_offset + num_bytes) - 1;
366                 ASSERT(end + 1 - cur < U32_MAX);
367                 len = end + 1 - cur;
368
369                 if (page) {
370                         /*
371                          * Ordered (Private2) bit indicates whether we still
372                          * have pending io unfinished for the ordered extent.
373                          *
374                          * If there's no such bit, we need to skip to next range.
375                          */
376                         if (!btrfs_page_test_ordered(fs_info, page, cur, len)) {
377                                 cur += len;
378                                 continue;
379                         }
380                         btrfs_page_clear_ordered(fs_info, page, cur, len);
381                 }
382
383                 /* Now we're fine to update the accounting */
384                 if (unlikely(len > entry->bytes_left)) {
385                         WARN_ON(1);
386                         btrfs_crit(fs_info,
387 "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%u left=%llu",
388                                    inode->root->root_key.objectid,
389                                    btrfs_ino(inode),
390                                    entry->file_offset,
391                                    entry->num_bytes,
392                                    len, entry->bytes_left);
393                         entry->bytes_left = 0;
394                 } else {
395                         entry->bytes_left -= len;
396                 }
397
398                 if (!uptodate)
399                         set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
400
401                 /*
402                  * All the IO of the ordered extent is finished, we need to queue
403                  * the finish_func to be executed.
404                  */
405                 if (entry->bytes_left == 0) {
406                         set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
407                         cond_wake_up(&entry->wait);
408                         refcount_inc(&entry->refs);
409                         trace_btrfs_ordered_extent_mark_finished(inode, entry);
410                         spin_unlock_irqrestore(&tree->lock, flags);
411                         btrfs_init_work(&entry->work, finish_ordered_fn, NULL, NULL);
412                         btrfs_queue_work(wq, &entry->work);
413                         spin_lock_irqsave(&tree->lock, flags);
414                 }
415                 cur += len;
416         }
417         spin_unlock_irqrestore(&tree->lock, flags);
418 }
419
420 /*
421  * Finish IO for one ordered extent across a given range.  The range can only
422  * contain one ordered extent.
423  *
424  * @cached:      The cached ordered extent. If not NULL, we can skip the tree
425  *               search and use the ordered extent directly.
426  *               Will be also used to store the finished ordered extent.
427  * @file_offset: File offset for the finished IO
428  * @io_size:     Length of the finish IO range
429  *
430  * Return true if the ordered extent is finished in the range, and update
431  * @cached.
432  * Return false otherwise.
433  *
434  * NOTE: The range can NOT cross multiple ordered extents.
435  * Thus caller should ensure the range doesn't cross ordered extents.
436  */
437 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
438                                     struct btrfs_ordered_extent **cached,
439                                     u64 file_offset, u64 io_size)
440 {
441         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
442         struct rb_node *node;
443         struct btrfs_ordered_extent *entry = NULL;
444         unsigned long flags;
445         bool finished = false;
446
447         spin_lock_irqsave(&tree->lock, flags);
448         if (cached && *cached) {
449                 entry = *cached;
450                 goto have_entry;
451         }
452
453         node = tree_search(tree, file_offset);
454         if (!node)
455                 goto out;
456
457         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
458 have_entry:
459         if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
460                 goto out;
461
462         if (io_size > entry->bytes_left)
463                 btrfs_crit(inode->root->fs_info,
464                            "bad ordered accounting left %llu size %llu",
465                        entry->bytes_left, io_size);
466
467         entry->bytes_left -= io_size;
468
469         if (entry->bytes_left == 0) {
470                 /*
471                  * Ensure only one caller can set the flag and finished_ret
472                  * accordingly
473                  */
474                 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
475                 /* test_and_set_bit implies a barrier */
476                 cond_wake_up_nomb(&entry->wait);
477         }
478 out:
479         if (finished && cached && entry) {
480                 *cached = entry;
481                 refcount_inc(&entry->refs);
482                 trace_btrfs_ordered_extent_dec_test_pending(inode, entry);
483         }
484         spin_unlock_irqrestore(&tree->lock, flags);
485         return finished;
486 }
487
488 /*
489  * used to drop a reference on an ordered extent.  This will free
490  * the extent if the last reference is dropped
491  */
492 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
493 {
494         struct list_head *cur;
495         struct btrfs_ordered_sum *sum;
496
497         trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
498
499         if (refcount_dec_and_test(&entry->refs)) {
500                 ASSERT(list_empty(&entry->root_extent_list));
501                 ASSERT(list_empty(&entry->log_list));
502                 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
503                 if (entry->inode)
504                         btrfs_add_delayed_iput(entry->inode);
505                 while (!list_empty(&entry->list)) {
506                         cur = entry->list.next;
507                         sum = list_entry(cur, struct btrfs_ordered_sum, list);
508                         list_del(&sum->list);
509                         kvfree(sum);
510                 }
511                 kmem_cache_free(btrfs_ordered_extent_cache, entry);
512         }
513 }
514
515 /*
516  * remove an ordered extent from the tree.  No references are dropped
517  * and waiters are woken up.
518  */
519 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
520                                  struct btrfs_ordered_extent *entry)
521 {
522         struct btrfs_ordered_inode_tree *tree;
523         struct btrfs_root *root = btrfs_inode->root;
524         struct btrfs_fs_info *fs_info = root->fs_info;
525         struct rb_node *node;
526         bool pending;
527
528         /* This is paired with btrfs_add_ordered_extent. */
529         spin_lock(&btrfs_inode->lock);
530         btrfs_mod_outstanding_extents(btrfs_inode, -1);
531         spin_unlock(&btrfs_inode->lock);
532         if (root != fs_info->tree_root) {
533                 u64 release;
534
535                 if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags))
536                         release = entry->disk_num_bytes;
537                 else
538                         release = entry->num_bytes;
539                 btrfs_delalloc_release_metadata(btrfs_inode, release, false);
540         }
541
542         percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
543                                  fs_info->delalloc_batch);
544
545         tree = &btrfs_inode->ordered_tree;
546         spin_lock_irq(&tree->lock);
547         node = &entry->rb_node;
548         rb_erase(node, &tree->tree);
549         RB_CLEAR_NODE(node);
550         if (tree->last == node)
551                 tree->last = NULL;
552         set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
553         pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
554         spin_unlock_irq(&tree->lock);
555
556         /*
557          * The current running transaction is waiting on us, we need to let it
558          * know that we're complete and wake it up.
559          */
560         if (pending) {
561                 struct btrfs_transaction *trans;
562
563                 /*
564                  * The checks for trans are just a formality, it should be set,
565                  * but if it isn't we don't want to deref/assert under the spin
566                  * lock, so be nice and check if trans is set, but ASSERT() so
567                  * if it isn't set a developer will notice.
568                  */
569                 spin_lock(&fs_info->trans_lock);
570                 trans = fs_info->running_transaction;
571                 if (trans)
572                         refcount_inc(&trans->use_count);
573                 spin_unlock(&fs_info->trans_lock);
574
575                 ASSERT(trans);
576                 if (trans) {
577                         if (atomic_dec_and_test(&trans->pending_ordered))
578                                 wake_up(&trans->pending_wait);
579                         btrfs_put_transaction(trans);
580                 }
581         }
582
583         spin_lock(&root->ordered_extent_lock);
584         list_del_init(&entry->root_extent_list);
585         root->nr_ordered_extents--;
586
587         trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
588
589         if (!root->nr_ordered_extents) {
590                 spin_lock(&fs_info->ordered_root_lock);
591                 BUG_ON(list_empty(&root->ordered_root));
592                 list_del_init(&root->ordered_root);
593                 spin_unlock(&fs_info->ordered_root_lock);
594         }
595         spin_unlock(&root->ordered_extent_lock);
596         wake_up(&entry->wait);
597 }
598
599 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
600 {
601         struct btrfs_ordered_extent *ordered;
602
603         ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
604         btrfs_start_ordered_extent(ordered, 1);
605         complete(&ordered->completion);
606 }
607
608 /*
609  * wait for all the ordered extents in a root.  This is done when balancing
610  * space between drives.
611  */
612 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
613                                const u64 range_start, const u64 range_len)
614 {
615         struct btrfs_fs_info *fs_info = root->fs_info;
616         LIST_HEAD(splice);
617         LIST_HEAD(skipped);
618         LIST_HEAD(works);
619         struct btrfs_ordered_extent *ordered, *next;
620         u64 count = 0;
621         const u64 range_end = range_start + range_len;
622
623         mutex_lock(&root->ordered_extent_mutex);
624         spin_lock(&root->ordered_extent_lock);
625         list_splice_init(&root->ordered_extents, &splice);
626         while (!list_empty(&splice) && nr) {
627                 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
628                                            root_extent_list);
629
630                 if (range_end <= ordered->disk_bytenr ||
631                     ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
632                         list_move_tail(&ordered->root_extent_list, &skipped);
633                         cond_resched_lock(&root->ordered_extent_lock);
634                         continue;
635                 }
636
637                 list_move_tail(&ordered->root_extent_list,
638                                &root->ordered_extents);
639                 refcount_inc(&ordered->refs);
640                 spin_unlock(&root->ordered_extent_lock);
641
642                 btrfs_init_work(&ordered->flush_work,
643                                 btrfs_run_ordered_extent_work, NULL, NULL);
644                 list_add_tail(&ordered->work_list, &works);
645                 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
646
647                 cond_resched();
648                 spin_lock(&root->ordered_extent_lock);
649                 if (nr != U64_MAX)
650                         nr--;
651                 count++;
652         }
653         list_splice_tail(&skipped, &root->ordered_extents);
654         list_splice_tail(&splice, &root->ordered_extents);
655         spin_unlock(&root->ordered_extent_lock);
656
657         list_for_each_entry_safe(ordered, next, &works, work_list) {
658                 list_del_init(&ordered->work_list);
659                 wait_for_completion(&ordered->completion);
660                 btrfs_put_ordered_extent(ordered);
661                 cond_resched();
662         }
663         mutex_unlock(&root->ordered_extent_mutex);
664
665         return count;
666 }
667
668 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
669                              const u64 range_start, const u64 range_len)
670 {
671         struct btrfs_root *root;
672         struct list_head splice;
673         u64 done;
674
675         INIT_LIST_HEAD(&splice);
676
677         mutex_lock(&fs_info->ordered_operations_mutex);
678         spin_lock(&fs_info->ordered_root_lock);
679         list_splice_init(&fs_info->ordered_roots, &splice);
680         while (!list_empty(&splice) && nr) {
681                 root = list_first_entry(&splice, struct btrfs_root,
682                                         ordered_root);
683                 root = btrfs_grab_root(root);
684                 BUG_ON(!root);
685                 list_move_tail(&root->ordered_root,
686                                &fs_info->ordered_roots);
687                 spin_unlock(&fs_info->ordered_root_lock);
688
689                 done = btrfs_wait_ordered_extents(root, nr,
690                                                   range_start, range_len);
691                 btrfs_put_root(root);
692
693                 spin_lock(&fs_info->ordered_root_lock);
694                 if (nr != U64_MAX) {
695                         nr -= done;
696                 }
697         }
698         list_splice_tail(&splice, &fs_info->ordered_roots);
699         spin_unlock(&fs_info->ordered_root_lock);
700         mutex_unlock(&fs_info->ordered_operations_mutex);
701 }
702
703 /*
704  * Used to start IO or wait for a given ordered extent to finish.
705  *
706  * If wait is one, this effectively waits on page writeback for all the pages
707  * in the extent, and it waits on the io completion code to insert
708  * metadata into the btree corresponding to the extent
709  */
710 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry, int wait)
711 {
712         u64 start = entry->file_offset;
713         u64 end = start + entry->num_bytes - 1;
714         struct btrfs_inode *inode = BTRFS_I(entry->inode);
715
716         trace_btrfs_ordered_extent_start(inode, entry);
717
718         /*
719          * pages in the range can be dirty, clean or writeback.  We
720          * start IO on any dirty ones so the wait doesn't stall waiting
721          * for the flusher thread to find them
722          */
723         if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
724                 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
725         if (wait) {
726                 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
727                                                  &entry->flags));
728         }
729 }
730
731 /*
732  * Used to wait on ordered extents across a large range of bytes.
733  */
734 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
735 {
736         int ret = 0;
737         int ret_wb = 0;
738         u64 end;
739         u64 orig_end;
740         struct btrfs_ordered_extent *ordered;
741
742         if (start + len < start) {
743                 orig_end = INT_LIMIT(loff_t);
744         } else {
745                 orig_end = start + len - 1;
746                 if (orig_end > INT_LIMIT(loff_t))
747                         orig_end = INT_LIMIT(loff_t);
748         }
749
750         /* start IO across the range first to instantiate any delalloc
751          * extents
752          */
753         ret = btrfs_fdatawrite_range(inode, start, orig_end);
754         if (ret)
755                 return ret;
756
757         /*
758          * If we have a writeback error don't return immediately. Wait first
759          * for any ordered extents that haven't completed yet. This is to make
760          * sure no one can dirty the same page ranges and call writepages()
761          * before the ordered extents complete - to avoid failures (-EEXIST)
762          * when adding the new ordered extents to the ordered tree.
763          */
764         ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
765
766         end = orig_end;
767         while (1) {
768                 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
769                 if (!ordered)
770                         break;
771                 if (ordered->file_offset > orig_end) {
772                         btrfs_put_ordered_extent(ordered);
773                         break;
774                 }
775                 if (ordered->file_offset + ordered->num_bytes <= start) {
776                         btrfs_put_ordered_extent(ordered);
777                         break;
778                 }
779                 btrfs_start_ordered_extent(ordered, 1);
780                 end = ordered->file_offset;
781                 /*
782                  * If the ordered extent had an error save the error but don't
783                  * exit without waiting first for all other ordered extents in
784                  * the range to complete.
785                  */
786                 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
787                         ret = -EIO;
788                 btrfs_put_ordered_extent(ordered);
789                 if (end == 0 || end == start)
790                         break;
791                 end--;
792         }
793         return ret_wb ? ret_wb : ret;
794 }
795
796 /*
797  * find an ordered extent corresponding to file_offset.  return NULL if
798  * nothing is found, otherwise take a reference on the extent and return it
799  */
800 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
801                                                          u64 file_offset)
802 {
803         struct btrfs_ordered_inode_tree *tree;
804         struct rb_node *node;
805         struct btrfs_ordered_extent *entry = NULL;
806         unsigned long flags;
807
808         tree = &inode->ordered_tree;
809         spin_lock_irqsave(&tree->lock, flags);
810         node = tree_search(tree, file_offset);
811         if (!node)
812                 goto out;
813
814         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
815         if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
816                 entry = NULL;
817         if (entry) {
818                 refcount_inc(&entry->refs);
819                 trace_btrfs_ordered_extent_lookup(inode, entry);
820         }
821 out:
822         spin_unlock_irqrestore(&tree->lock, flags);
823         return entry;
824 }
825
826 /* Since the DIO code tries to lock a wide area we need to look for any ordered
827  * extents that exist in the range, rather than just the start of the range.
828  */
829 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
830                 struct btrfs_inode *inode, u64 file_offset, u64 len)
831 {
832         struct btrfs_ordered_inode_tree *tree;
833         struct rb_node *node;
834         struct btrfs_ordered_extent *entry = NULL;
835
836         tree = &inode->ordered_tree;
837         spin_lock_irq(&tree->lock);
838         node = tree_search(tree, file_offset);
839         if (!node) {
840                 node = tree_search(tree, file_offset + len);
841                 if (!node)
842                         goto out;
843         }
844
845         while (1) {
846                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
847                 if (range_overlaps(entry, file_offset, len))
848                         break;
849
850                 if (entry->file_offset >= file_offset + len) {
851                         entry = NULL;
852                         break;
853                 }
854                 entry = NULL;
855                 node = rb_next(node);
856                 if (!node)
857                         break;
858         }
859 out:
860         if (entry) {
861                 refcount_inc(&entry->refs);
862                 trace_btrfs_ordered_extent_lookup_range(inode, entry);
863         }
864         spin_unlock_irq(&tree->lock);
865         return entry;
866 }
867
868 /*
869  * Adds all ordered extents to the given list. The list ends up sorted by the
870  * file_offset of the ordered extents.
871  */
872 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
873                                            struct list_head *list)
874 {
875         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
876         struct rb_node *n;
877
878         ASSERT(inode_is_locked(&inode->vfs_inode));
879
880         spin_lock_irq(&tree->lock);
881         for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
882                 struct btrfs_ordered_extent *ordered;
883
884                 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
885
886                 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
887                         continue;
888
889                 ASSERT(list_empty(&ordered->log_list));
890                 list_add_tail(&ordered->log_list, list);
891                 refcount_inc(&ordered->refs);
892                 trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered);
893         }
894         spin_unlock_irq(&tree->lock);
895 }
896
897 /*
898  * lookup and return any extent before 'file_offset'.  NULL is returned
899  * if none is found
900  */
901 struct btrfs_ordered_extent *
902 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
903 {
904         struct btrfs_ordered_inode_tree *tree;
905         struct rb_node *node;
906         struct btrfs_ordered_extent *entry = NULL;
907
908         tree = &inode->ordered_tree;
909         spin_lock_irq(&tree->lock);
910         node = tree_search(tree, file_offset);
911         if (!node)
912                 goto out;
913
914         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
915         refcount_inc(&entry->refs);
916         trace_btrfs_ordered_extent_lookup_first(inode, entry);
917 out:
918         spin_unlock_irq(&tree->lock);
919         return entry;
920 }
921
922 /*
923  * Lookup the first ordered extent that overlaps the range
924  * [@file_offset, @file_offset + @len).
925  *
926  * The difference between this and btrfs_lookup_first_ordered_extent() is
927  * that this one won't return any ordered extent that does not overlap the range.
928  * And the difference against btrfs_lookup_ordered_extent() is, this function
929  * ensures the first ordered extent gets returned.
930  */
931 struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
932                         struct btrfs_inode *inode, u64 file_offset, u64 len)
933 {
934         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
935         struct rb_node *node;
936         struct rb_node *cur;
937         struct rb_node *prev;
938         struct rb_node *next;
939         struct btrfs_ordered_extent *entry = NULL;
940
941         spin_lock_irq(&tree->lock);
942         node = tree->tree.rb_node;
943         /*
944          * Here we don't want to use tree_search() which will use tree->last
945          * and screw up the search order.
946          * And __tree_search() can't return the adjacent ordered extents
947          * either, thus here we do our own search.
948          */
949         while (node) {
950                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
951
952                 if (file_offset < entry->file_offset) {
953                         node = node->rb_left;
954                 } else if (file_offset >= entry_end(entry)) {
955                         node = node->rb_right;
956                 } else {
957                         /*
958                          * Direct hit, got an ordered extent that starts at
959                          * @file_offset
960                          */
961                         goto out;
962                 }
963         }
964         if (!entry) {
965                 /* Empty tree */
966                 goto out;
967         }
968
969         cur = &entry->rb_node;
970         /* We got an entry around @file_offset, check adjacent entries */
971         if (entry->file_offset < file_offset) {
972                 prev = cur;
973                 next = rb_next(cur);
974         } else {
975                 prev = rb_prev(cur);
976                 next = cur;
977         }
978         if (prev) {
979                 entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
980                 if (range_overlaps(entry, file_offset, len))
981                         goto out;
982         }
983         if (next) {
984                 entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
985                 if (range_overlaps(entry, file_offset, len))
986                         goto out;
987         }
988         /* No ordered extent in the range */
989         entry = NULL;
990 out:
991         if (entry) {
992                 refcount_inc(&entry->refs);
993                 trace_btrfs_ordered_extent_lookup_first_range(inode, entry);
994         }
995
996         spin_unlock_irq(&tree->lock);
997         return entry;
998 }
999
1000 /*
1001  * btrfs_flush_ordered_range - Lock the passed range and ensures all pending
1002  * ordered extents in it are run to completion.
1003  *
1004  * @inode:        Inode whose ordered tree is to be searched
1005  * @start:        Beginning of range to flush
1006  * @end:          Last byte of range to lock
1007  * @cached_state: If passed, will return the extent state responsible for the
1008  * locked range. It's the caller's responsibility to free the cached state.
1009  *
1010  * This function always returns with the given range locked, ensuring after it's
1011  * called no order extent can be pending.
1012  */
1013 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1014                                         u64 end,
1015                                         struct extent_state **cached_state)
1016 {
1017         struct btrfs_ordered_extent *ordered;
1018         struct extent_state *cache = NULL;
1019         struct extent_state **cachedp = &cache;
1020
1021         if (cached_state)
1022                 cachedp = cached_state;
1023
1024         while (1) {
1025                 lock_extent_bits(&inode->io_tree, start, end, cachedp);
1026                 ordered = btrfs_lookup_ordered_range(inode, start,
1027                                                      end - start + 1);
1028                 if (!ordered) {
1029                         /*
1030                          * If no external cached_state has been passed then
1031                          * decrement the extra ref taken for cachedp since we
1032                          * aren't exposing it outside of this function
1033                          */
1034                         if (!cached_state)
1035                                 refcount_dec(&cache->refs);
1036                         break;
1037                 }
1038                 unlock_extent_cached(&inode->io_tree, start, end, cachedp);
1039                 btrfs_start_ordered_extent(ordered, 1);
1040                 btrfs_put_ordered_extent(ordered);
1041         }
1042 }
1043
1044 static int clone_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pos,
1045                                 u64 len)
1046 {
1047         struct inode *inode = ordered->inode;
1048         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1049         u64 file_offset = ordered->file_offset + pos;
1050         u64 disk_bytenr = ordered->disk_bytenr + pos;
1051         unsigned long flags = ordered->flags & BTRFS_ORDERED_TYPE_FLAGS;
1052
1053         /*
1054          * The splitting extent is already counted and will be added again in
1055          * btrfs_add_ordered_extent_*(). Subtract len to avoid double counting.
1056          */
1057         percpu_counter_add_batch(&fs_info->ordered_bytes, -len,
1058                                  fs_info->delalloc_batch);
1059         WARN_ON_ONCE(flags & (1 << BTRFS_ORDERED_COMPRESSED));
1060         return btrfs_add_ordered_extent(BTRFS_I(inode), file_offset, len, len,
1061                                         disk_bytenr, len, 0, flags,
1062                                         ordered->compress_type);
1063 }
1064
1065 int btrfs_split_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pre,
1066                                 u64 post)
1067 {
1068         struct inode *inode = ordered->inode;
1069         struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1070         struct rb_node *node;
1071         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1072         int ret = 0;
1073
1074         trace_btrfs_ordered_extent_split(BTRFS_I(inode), ordered);
1075
1076         spin_lock_irq(&tree->lock);
1077         /* Remove from tree once */
1078         node = &ordered->rb_node;
1079         rb_erase(node, &tree->tree);
1080         RB_CLEAR_NODE(node);
1081         if (tree->last == node)
1082                 tree->last = NULL;
1083
1084         ordered->file_offset += pre;
1085         ordered->disk_bytenr += pre;
1086         ordered->num_bytes -= (pre + post);
1087         ordered->disk_num_bytes -= (pre + post);
1088         ordered->bytes_left -= (pre + post);
1089
1090         /* Re-insert the node */
1091         node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node);
1092         if (node)
1093                 btrfs_panic(fs_info, -EEXIST,
1094                         "zoned: inconsistency in ordered tree at offset %llu",
1095                             ordered->file_offset);
1096
1097         spin_unlock_irq(&tree->lock);
1098
1099         if (pre)
1100                 ret = clone_ordered_extent(ordered, 0, pre);
1101         if (ret == 0 && post)
1102                 ret = clone_ordered_extent(ordered, pre + ordered->disk_num_bytes,
1103                                            post);
1104
1105         return ret;
1106 }
1107
1108 int __init ordered_data_init(void)
1109 {
1110         btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1111                                      sizeof(struct btrfs_ordered_extent), 0,
1112                                      SLAB_MEM_SPREAD,
1113                                      NULL);
1114         if (!btrfs_ordered_extent_cache)
1115                 return -ENOMEM;
1116
1117         return 0;
1118 }
1119
1120 void __cold ordered_data_exit(void)
1121 {
1122         kmem_cache_destroy(btrfs_ordered_extent_cache);
1123 }