Merge tag 'sound-fix-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[linux-block.git] / fs / btrfs / ordered-data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/sched/mm.h>
10 #include "messages.h"
11 #include "misc.h"
12 #include "ctree.h"
13 #include "transaction.h"
14 #include "btrfs_inode.h"
15 #include "extent_io.h"
16 #include "disk-io.h"
17 #include "compression.h"
18 #include "delalloc-space.h"
19 #include "qgroup.h"
20 #include "subpage.h"
21 #include "file.h"
22 #include "super.h"
23
24 static struct kmem_cache *btrfs_ordered_extent_cache;
25
26 static u64 entry_end(struct btrfs_ordered_extent *entry)
27 {
28         if (entry->file_offset + entry->num_bytes < entry->file_offset)
29                 return (u64)-1;
30         return entry->file_offset + entry->num_bytes;
31 }
32
33 /* returns NULL if the insertion worked, or it returns the node it did find
34  * in the tree
35  */
36 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
37                                    struct rb_node *node)
38 {
39         struct rb_node **p = &root->rb_node;
40         struct rb_node *parent = NULL;
41         struct btrfs_ordered_extent *entry;
42
43         while (*p) {
44                 parent = *p;
45                 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
46
47                 if (file_offset < entry->file_offset)
48                         p = &(*p)->rb_left;
49                 else if (file_offset >= entry_end(entry))
50                         p = &(*p)->rb_right;
51                 else
52                         return parent;
53         }
54
55         rb_link_node(node, parent, p);
56         rb_insert_color(node, root);
57         return NULL;
58 }
59
60 /*
61  * look for a given offset in the tree, and if it can't be found return the
62  * first lesser offset
63  */
64 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
65                                      struct rb_node **prev_ret)
66 {
67         struct rb_node *n = root->rb_node;
68         struct rb_node *prev = NULL;
69         struct rb_node *test;
70         struct btrfs_ordered_extent *entry;
71         struct btrfs_ordered_extent *prev_entry = NULL;
72
73         while (n) {
74                 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
75                 prev = n;
76                 prev_entry = entry;
77
78                 if (file_offset < entry->file_offset)
79                         n = n->rb_left;
80                 else if (file_offset >= entry_end(entry))
81                         n = n->rb_right;
82                 else
83                         return n;
84         }
85         if (!prev_ret)
86                 return NULL;
87
88         while (prev && file_offset >= entry_end(prev_entry)) {
89                 test = rb_next(prev);
90                 if (!test)
91                         break;
92                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
93                                       rb_node);
94                 if (file_offset < entry_end(prev_entry))
95                         break;
96
97                 prev = test;
98         }
99         if (prev)
100                 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
101                                       rb_node);
102         while (prev && file_offset < entry_end(prev_entry)) {
103                 test = rb_prev(prev);
104                 if (!test)
105                         break;
106                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
107                                       rb_node);
108                 prev = test;
109         }
110         *prev_ret = prev;
111         return NULL;
112 }
113
114 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
115                           u64 len)
116 {
117         if (file_offset + len <= entry->file_offset ||
118             entry->file_offset + entry->num_bytes <= file_offset)
119                 return 0;
120         return 1;
121 }
122
123 /*
124  * look find the first ordered struct that has this offset, otherwise
125  * the first one less than this offset
126  */
127 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
128                                           u64 file_offset)
129 {
130         struct rb_root *root = &tree->tree;
131         struct rb_node *prev = NULL;
132         struct rb_node *ret;
133         struct btrfs_ordered_extent *entry;
134
135         if (tree->last) {
136                 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
137                                  rb_node);
138                 if (in_range(file_offset, entry->file_offset, entry->num_bytes))
139                         return tree->last;
140         }
141         ret = __tree_search(root, file_offset, &prev);
142         if (!ret)
143                 ret = prev;
144         if (ret)
145                 tree->last = ret;
146         return ret;
147 }
148
149 /*
150  * Add an ordered extent to the per-inode tree.
151  *
152  * @inode:           Inode that this extent is for.
153  * @file_offset:     Logical offset in file where the extent starts.
154  * @num_bytes:       Logical length of extent in file.
155  * @ram_bytes:       Full length of unencoded data.
156  * @disk_bytenr:     Offset of extent on disk.
157  * @disk_num_bytes:  Size of extent on disk.
158  * @offset:          Offset into unencoded data where file data starts.
159  * @flags:           Flags specifying type of extent (1 << BTRFS_ORDERED_*).
160  * @compress_type:   Compression algorithm used for data.
161  *
162  * Most of these parameters correspond to &struct btrfs_file_extent_item. The
163  * tree is given a single reference on the ordered extent that was inserted, and
164  * the returned pointer is given a second reference.
165  *
166  * Return: the new ordered extent or error pointer.
167  */
168 struct btrfs_ordered_extent *btrfs_alloc_ordered_extent(
169                         struct btrfs_inode *inode, u64 file_offset,
170                         u64 num_bytes, u64 ram_bytes, u64 disk_bytenr,
171                         u64 disk_num_bytes, u64 offset, unsigned long flags,
172                         int compress_type)
173 {
174         struct btrfs_root *root = inode->root;
175         struct btrfs_fs_info *fs_info = root->fs_info;
176         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
177         struct rb_node *node;
178         struct btrfs_ordered_extent *entry;
179         int ret;
180
181         if (flags &
182             ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) {
183                 /* For nocow write, we can release the qgroup rsv right now */
184                 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes);
185                 if (ret < 0)
186                         return ERR_PTR(ret);
187                 ret = 0;
188         } else {
189                 /*
190                  * The ordered extent has reserved qgroup space, release now
191                  * and pass the reserved number for qgroup_record to free.
192                  */
193                 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes);
194                 if (ret < 0)
195                         return ERR_PTR(ret);
196         }
197         entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
198         if (!entry)
199                 return ERR_PTR(-ENOMEM);
200
201         entry->file_offset = file_offset;
202         entry->num_bytes = num_bytes;
203         entry->ram_bytes = ram_bytes;
204         entry->disk_bytenr = disk_bytenr;
205         entry->disk_num_bytes = disk_num_bytes;
206         entry->offset = offset;
207         entry->bytes_left = num_bytes;
208         entry->inode = igrab(&inode->vfs_inode);
209         entry->compress_type = compress_type;
210         entry->truncated_len = (u64)-1;
211         entry->qgroup_rsv = ret;
212         entry->physical = (u64)-1;
213
214         ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0);
215         entry->flags = flags;
216
217         percpu_counter_add_batch(&fs_info->ordered_bytes, num_bytes,
218                                  fs_info->delalloc_batch);
219
220         /* one ref for the tree */
221         refcount_set(&entry->refs, 1);
222         init_waitqueue_head(&entry->wait);
223         INIT_LIST_HEAD(&entry->list);
224         INIT_LIST_HEAD(&entry->log_list);
225         INIT_LIST_HEAD(&entry->root_extent_list);
226         INIT_LIST_HEAD(&entry->work_list);
227         init_completion(&entry->completion);
228
229         trace_btrfs_ordered_extent_add(inode, entry);
230
231         spin_lock_irq(&tree->lock);
232         node = tree_insert(&tree->tree, file_offset,
233                            &entry->rb_node);
234         if (node)
235                 btrfs_panic(fs_info, -EEXIST,
236                                 "inconsistency in ordered tree at offset %llu",
237                                 file_offset);
238         spin_unlock_irq(&tree->lock);
239
240         spin_lock(&root->ordered_extent_lock);
241         list_add_tail(&entry->root_extent_list,
242                       &root->ordered_extents);
243         root->nr_ordered_extents++;
244         if (root->nr_ordered_extents == 1) {
245                 spin_lock(&fs_info->ordered_root_lock);
246                 BUG_ON(!list_empty(&root->ordered_root));
247                 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
248                 spin_unlock(&fs_info->ordered_root_lock);
249         }
250         spin_unlock(&root->ordered_extent_lock);
251
252         /*
253          * We don't need the count_max_extents here, we can assume that all of
254          * that work has been done at higher layers, so this is truly the
255          * smallest the extent is going to get.
256          */
257         spin_lock(&inode->lock);
258         btrfs_mod_outstanding_extents(inode, 1);
259         spin_unlock(&inode->lock);
260
261         /* One ref for the returned entry to match semantics of lookup. */
262         refcount_inc(&entry->refs);
263
264         return entry;
265 }
266
267 /*
268  * Add a new btrfs_ordered_extent for the range, but drop the reference instead
269  * of returning it to the caller.
270  */
271 int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
272                              u64 num_bytes, u64 ram_bytes, u64 disk_bytenr,
273                              u64 disk_num_bytes, u64 offset, unsigned long flags,
274                              int compress_type)
275 {
276         struct btrfs_ordered_extent *ordered;
277
278         ordered = btrfs_alloc_ordered_extent(inode, file_offset, num_bytes,
279                                              ram_bytes, disk_bytenr,
280                                              disk_num_bytes, offset, flags,
281                                              compress_type);
282
283         if (IS_ERR(ordered))
284                 return PTR_ERR(ordered);
285         btrfs_put_ordered_extent(ordered);
286
287         return 0;
288 }
289
290 /*
291  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
292  * when an ordered extent is finished.  If the list covers more than one
293  * ordered extent, it is split across multiples.
294  */
295 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
296                            struct btrfs_ordered_sum *sum)
297 {
298         struct btrfs_ordered_inode_tree *tree;
299
300         tree = &BTRFS_I(entry->inode)->ordered_tree;
301         spin_lock_irq(&tree->lock);
302         list_add_tail(&sum->list, &entry->list);
303         spin_unlock_irq(&tree->lock);
304 }
305
306 static void finish_ordered_fn(struct btrfs_work *work)
307 {
308         struct btrfs_ordered_extent *ordered_extent;
309
310         ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
311         btrfs_finish_ordered_io(ordered_extent);
312 }
313
314 /*
315  * Mark all ordered extents io inside the specified range finished.
316  *
317  * @page:        The involved page for the operation.
318  *               For uncompressed buffered IO, the page status also needs to be
319  *               updated to indicate whether the pending ordered io is finished.
320  *               Can be NULL for direct IO and compressed write.
321  *               For these cases, callers are ensured they won't execute the
322  *               endio function twice.
323  *
324  * This function is called for endio, thus the range must have ordered
325  * extent(s) covering it.
326  */
327 void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
328                                     struct page *page, u64 file_offset,
329                                     u64 num_bytes, bool uptodate)
330 {
331         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
332         struct btrfs_fs_info *fs_info = inode->root->fs_info;
333         struct btrfs_workqueue *wq;
334         struct rb_node *node;
335         struct btrfs_ordered_extent *entry = NULL;
336         unsigned long flags;
337         u64 cur = file_offset;
338
339         if (btrfs_is_free_space_inode(inode))
340                 wq = fs_info->endio_freespace_worker;
341         else
342                 wq = fs_info->endio_write_workers;
343
344         if (page)
345                 ASSERT(page->mapping && page_offset(page) <= file_offset &&
346                        file_offset + num_bytes <= page_offset(page) + PAGE_SIZE);
347
348         spin_lock_irqsave(&tree->lock, flags);
349         while (cur < file_offset + num_bytes) {
350                 u64 entry_end;
351                 u64 end;
352                 u32 len;
353
354                 node = tree_search(tree, cur);
355                 /* No ordered extents at all */
356                 if (!node)
357                         break;
358
359                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
360                 entry_end = entry->file_offset + entry->num_bytes;
361                 /*
362                  * |<-- OE --->|  |
363                  *                cur
364                  * Go to next OE.
365                  */
366                 if (cur >= entry_end) {
367                         node = rb_next(node);
368                         /* No more ordered extents, exit */
369                         if (!node)
370                                 break;
371                         entry = rb_entry(node, struct btrfs_ordered_extent,
372                                          rb_node);
373
374                         /* Go to next ordered extent and continue */
375                         cur = entry->file_offset;
376                         continue;
377                 }
378                 /*
379                  * |    |<--- OE --->|
380                  * cur
381                  * Go to the start of OE.
382                  */
383                 if (cur < entry->file_offset) {
384                         cur = entry->file_offset;
385                         continue;
386                 }
387
388                 /*
389                  * Now we are definitely inside one ordered extent.
390                  *
391                  * |<--- OE --->|
392                  *      |
393                  *      cur
394                  */
395                 end = min(entry->file_offset + entry->num_bytes,
396                           file_offset + num_bytes) - 1;
397                 ASSERT(end + 1 - cur < U32_MAX);
398                 len = end + 1 - cur;
399
400                 if (page) {
401                         /*
402                          * Ordered (Private2) bit indicates whether we still
403                          * have pending io unfinished for the ordered extent.
404                          *
405                          * If there's no such bit, we need to skip to next range.
406                          */
407                         if (!btrfs_page_test_ordered(fs_info, page, cur, len)) {
408                                 cur += len;
409                                 continue;
410                         }
411                         btrfs_page_clear_ordered(fs_info, page, cur, len);
412                 }
413
414                 /* Now we're fine to update the accounting */
415                 if (unlikely(len > entry->bytes_left)) {
416                         WARN_ON(1);
417                         btrfs_crit(fs_info,
418 "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%u left=%llu",
419                                    inode->root->root_key.objectid,
420                                    btrfs_ino(inode),
421                                    entry->file_offset,
422                                    entry->num_bytes,
423                                    len, entry->bytes_left);
424                         entry->bytes_left = 0;
425                 } else {
426                         entry->bytes_left -= len;
427                 }
428
429                 if (!uptodate)
430                         set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
431
432                 /*
433                  * All the IO of the ordered extent is finished, we need to queue
434                  * the finish_func to be executed.
435                  */
436                 if (entry->bytes_left == 0) {
437                         set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
438                         cond_wake_up(&entry->wait);
439                         refcount_inc(&entry->refs);
440                         trace_btrfs_ordered_extent_mark_finished(inode, entry);
441                         spin_unlock_irqrestore(&tree->lock, flags);
442                         btrfs_init_work(&entry->work, finish_ordered_fn, NULL, NULL);
443                         btrfs_queue_work(wq, &entry->work);
444                         spin_lock_irqsave(&tree->lock, flags);
445                 }
446                 cur += len;
447         }
448         spin_unlock_irqrestore(&tree->lock, flags);
449 }
450
451 /*
452  * Finish IO for one ordered extent across a given range.  The range can only
453  * contain one ordered extent.
454  *
455  * @cached:      The cached ordered extent. If not NULL, we can skip the tree
456  *               search and use the ordered extent directly.
457  *               Will be also used to store the finished ordered extent.
458  * @file_offset: File offset for the finished IO
459  * @io_size:     Length of the finish IO range
460  *
461  * Return true if the ordered extent is finished in the range, and update
462  * @cached.
463  * Return false otherwise.
464  *
465  * NOTE: The range can NOT cross multiple ordered extents.
466  * Thus caller should ensure the range doesn't cross ordered extents.
467  */
468 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
469                                     struct btrfs_ordered_extent **cached,
470                                     u64 file_offset, u64 io_size)
471 {
472         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
473         struct rb_node *node;
474         struct btrfs_ordered_extent *entry = NULL;
475         unsigned long flags;
476         bool finished = false;
477
478         spin_lock_irqsave(&tree->lock, flags);
479         if (cached && *cached) {
480                 entry = *cached;
481                 goto have_entry;
482         }
483
484         node = tree_search(tree, file_offset);
485         if (!node)
486                 goto out;
487
488         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
489 have_entry:
490         if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
491                 goto out;
492
493         if (io_size > entry->bytes_left)
494                 btrfs_crit(inode->root->fs_info,
495                            "bad ordered accounting left %llu size %llu",
496                        entry->bytes_left, io_size);
497
498         entry->bytes_left -= io_size;
499
500         if (entry->bytes_left == 0) {
501                 /*
502                  * Ensure only one caller can set the flag and finished_ret
503                  * accordingly
504                  */
505                 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
506                 /* test_and_set_bit implies a barrier */
507                 cond_wake_up_nomb(&entry->wait);
508         }
509 out:
510         if (finished && cached && entry) {
511                 *cached = entry;
512                 refcount_inc(&entry->refs);
513                 trace_btrfs_ordered_extent_dec_test_pending(inode, entry);
514         }
515         spin_unlock_irqrestore(&tree->lock, flags);
516         return finished;
517 }
518
519 /*
520  * used to drop a reference on an ordered extent.  This will free
521  * the extent if the last reference is dropped
522  */
523 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
524 {
525         struct list_head *cur;
526         struct btrfs_ordered_sum *sum;
527
528         trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
529
530         if (refcount_dec_and_test(&entry->refs)) {
531                 ASSERT(list_empty(&entry->root_extent_list));
532                 ASSERT(list_empty(&entry->log_list));
533                 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
534                 if (entry->inode)
535                         btrfs_add_delayed_iput(BTRFS_I(entry->inode));
536                 while (!list_empty(&entry->list)) {
537                         cur = entry->list.next;
538                         sum = list_entry(cur, struct btrfs_ordered_sum, list);
539                         list_del(&sum->list);
540                         kvfree(sum);
541                 }
542                 kmem_cache_free(btrfs_ordered_extent_cache, entry);
543         }
544 }
545
546 /*
547  * remove an ordered extent from the tree.  No references are dropped
548  * and waiters are woken up.
549  */
550 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
551                                  struct btrfs_ordered_extent *entry)
552 {
553         struct btrfs_ordered_inode_tree *tree;
554         struct btrfs_root *root = btrfs_inode->root;
555         struct btrfs_fs_info *fs_info = root->fs_info;
556         struct rb_node *node;
557         bool pending;
558         bool freespace_inode;
559
560         /*
561          * If this is a free space inode the thread has not acquired the ordered
562          * extents lockdep map.
563          */
564         freespace_inode = btrfs_is_free_space_inode(btrfs_inode);
565
566         btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered);
567         /* This is paired with btrfs_add_ordered_extent. */
568         spin_lock(&btrfs_inode->lock);
569         btrfs_mod_outstanding_extents(btrfs_inode, -1);
570         spin_unlock(&btrfs_inode->lock);
571         if (root != fs_info->tree_root) {
572                 u64 release;
573
574                 if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags))
575                         release = entry->disk_num_bytes;
576                 else
577                         release = entry->num_bytes;
578                 btrfs_delalloc_release_metadata(btrfs_inode, release, false);
579         }
580
581         percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
582                                  fs_info->delalloc_batch);
583
584         tree = &btrfs_inode->ordered_tree;
585         spin_lock_irq(&tree->lock);
586         node = &entry->rb_node;
587         rb_erase(node, &tree->tree);
588         RB_CLEAR_NODE(node);
589         if (tree->last == node)
590                 tree->last = NULL;
591         set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
592         pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
593         spin_unlock_irq(&tree->lock);
594
595         /*
596          * The current running transaction is waiting on us, we need to let it
597          * know that we're complete and wake it up.
598          */
599         if (pending) {
600                 struct btrfs_transaction *trans;
601
602                 /*
603                  * The checks for trans are just a formality, it should be set,
604                  * but if it isn't we don't want to deref/assert under the spin
605                  * lock, so be nice and check if trans is set, but ASSERT() so
606                  * if it isn't set a developer will notice.
607                  */
608                 spin_lock(&fs_info->trans_lock);
609                 trans = fs_info->running_transaction;
610                 if (trans)
611                         refcount_inc(&trans->use_count);
612                 spin_unlock(&fs_info->trans_lock);
613
614                 ASSERT(trans);
615                 if (trans) {
616                         if (atomic_dec_and_test(&trans->pending_ordered))
617                                 wake_up(&trans->pending_wait);
618                         btrfs_put_transaction(trans);
619                 }
620         }
621
622         btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered);
623
624         spin_lock(&root->ordered_extent_lock);
625         list_del_init(&entry->root_extent_list);
626         root->nr_ordered_extents--;
627
628         trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
629
630         if (!root->nr_ordered_extents) {
631                 spin_lock(&fs_info->ordered_root_lock);
632                 BUG_ON(list_empty(&root->ordered_root));
633                 list_del_init(&root->ordered_root);
634                 spin_unlock(&fs_info->ordered_root_lock);
635         }
636         spin_unlock(&root->ordered_extent_lock);
637         wake_up(&entry->wait);
638         if (!freespace_inode)
639                 btrfs_lockdep_release(fs_info, btrfs_ordered_extent);
640 }
641
642 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
643 {
644         struct btrfs_ordered_extent *ordered;
645
646         ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
647         btrfs_start_ordered_extent(ordered);
648         complete(&ordered->completion);
649 }
650
651 /*
652  * wait for all the ordered extents in a root.  This is done when balancing
653  * space between drives.
654  */
655 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
656                                const u64 range_start, const u64 range_len)
657 {
658         struct btrfs_fs_info *fs_info = root->fs_info;
659         LIST_HEAD(splice);
660         LIST_HEAD(skipped);
661         LIST_HEAD(works);
662         struct btrfs_ordered_extent *ordered, *next;
663         u64 count = 0;
664         const u64 range_end = range_start + range_len;
665
666         mutex_lock(&root->ordered_extent_mutex);
667         spin_lock(&root->ordered_extent_lock);
668         list_splice_init(&root->ordered_extents, &splice);
669         while (!list_empty(&splice) && nr) {
670                 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
671                                            root_extent_list);
672
673                 if (range_end <= ordered->disk_bytenr ||
674                     ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
675                         list_move_tail(&ordered->root_extent_list, &skipped);
676                         cond_resched_lock(&root->ordered_extent_lock);
677                         continue;
678                 }
679
680                 list_move_tail(&ordered->root_extent_list,
681                                &root->ordered_extents);
682                 refcount_inc(&ordered->refs);
683                 spin_unlock(&root->ordered_extent_lock);
684
685                 btrfs_init_work(&ordered->flush_work,
686                                 btrfs_run_ordered_extent_work, NULL, NULL);
687                 list_add_tail(&ordered->work_list, &works);
688                 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
689
690                 cond_resched();
691                 spin_lock(&root->ordered_extent_lock);
692                 if (nr != U64_MAX)
693                         nr--;
694                 count++;
695         }
696         list_splice_tail(&skipped, &root->ordered_extents);
697         list_splice_tail(&splice, &root->ordered_extents);
698         spin_unlock(&root->ordered_extent_lock);
699
700         list_for_each_entry_safe(ordered, next, &works, work_list) {
701                 list_del_init(&ordered->work_list);
702                 wait_for_completion(&ordered->completion);
703                 btrfs_put_ordered_extent(ordered);
704                 cond_resched();
705         }
706         mutex_unlock(&root->ordered_extent_mutex);
707
708         return count;
709 }
710
711 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
712                              const u64 range_start, const u64 range_len)
713 {
714         struct btrfs_root *root;
715         struct list_head splice;
716         u64 done;
717
718         INIT_LIST_HEAD(&splice);
719
720         mutex_lock(&fs_info->ordered_operations_mutex);
721         spin_lock(&fs_info->ordered_root_lock);
722         list_splice_init(&fs_info->ordered_roots, &splice);
723         while (!list_empty(&splice) && nr) {
724                 root = list_first_entry(&splice, struct btrfs_root,
725                                         ordered_root);
726                 root = btrfs_grab_root(root);
727                 BUG_ON(!root);
728                 list_move_tail(&root->ordered_root,
729                                &fs_info->ordered_roots);
730                 spin_unlock(&fs_info->ordered_root_lock);
731
732                 done = btrfs_wait_ordered_extents(root, nr,
733                                                   range_start, range_len);
734                 btrfs_put_root(root);
735
736                 spin_lock(&fs_info->ordered_root_lock);
737                 if (nr != U64_MAX) {
738                         nr -= done;
739                 }
740         }
741         list_splice_tail(&splice, &fs_info->ordered_roots);
742         spin_unlock(&fs_info->ordered_root_lock);
743         mutex_unlock(&fs_info->ordered_operations_mutex);
744 }
745
746 /*
747  * Start IO and wait for a given ordered extent to finish.
748  *
749  * Wait on page writeback for all the pages in the extent and the IO completion
750  * code to insert metadata into the btree corresponding to the extent.
751  */
752 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry)
753 {
754         u64 start = entry->file_offset;
755         u64 end = start + entry->num_bytes - 1;
756         struct btrfs_inode *inode = BTRFS_I(entry->inode);
757         bool freespace_inode;
758
759         trace_btrfs_ordered_extent_start(inode, entry);
760
761         /*
762          * If this is a free space inode do not take the ordered extents lockdep
763          * map.
764          */
765         freespace_inode = btrfs_is_free_space_inode(inode);
766
767         /*
768          * pages in the range can be dirty, clean or writeback.  We
769          * start IO on any dirty ones so the wait doesn't stall waiting
770          * for the flusher thread to find them
771          */
772         if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
773                 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
774
775         if (!freespace_inode)
776                 btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent);
777         wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags));
778 }
779
780 /*
781  * Used to wait on ordered extents across a large range of bytes.
782  */
783 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
784 {
785         int ret = 0;
786         int ret_wb = 0;
787         u64 end;
788         u64 orig_end;
789         struct btrfs_ordered_extent *ordered;
790
791         if (start + len < start) {
792                 orig_end = OFFSET_MAX;
793         } else {
794                 orig_end = start + len - 1;
795                 if (orig_end > OFFSET_MAX)
796                         orig_end = OFFSET_MAX;
797         }
798
799         /* start IO across the range first to instantiate any delalloc
800          * extents
801          */
802         ret = btrfs_fdatawrite_range(inode, start, orig_end);
803         if (ret)
804                 return ret;
805
806         /*
807          * If we have a writeback error don't return immediately. Wait first
808          * for any ordered extents that haven't completed yet. This is to make
809          * sure no one can dirty the same page ranges and call writepages()
810          * before the ordered extents complete - to avoid failures (-EEXIST)
811          * when adding the new ordered extents to the ordered tree.
812          */
813         ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
814
815         end = orig_end;
816         while (1) {
817                 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
818                 if (!ordered)
819                         break;
820                 if (ordered->file_offset > orig_end) {
821                         btrfs_put_ordered_extent(ordered);
822                         break;
823                 }
824                 if (ordered->file_offset + ordered->num_bytes <= start) {
825                         btrfs_put_ordered_extent(ordered);
826                         break;
827                 }
828                 btrfs_start_ordered_extent(ordered);
829                 end = ordered->file_offset;
830                 /*
831                  * If the ordered extent had an error save the error but don't
832                  * exit without waiting first for all other ordered extents in
833                  * the range to complete.
834                  */
835                 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
836                         ret = -EIO;
837                 btrfs_put_ordered_extent(ordered);
838                 if (end == 0 || end == start)
839                         break;
840                 end--;
841         }
842         return ret_wb ? ret_wb : ret;
843 }
844
845 /*
846  * find an ordered extent corresponding to file_offset.  return NULL if
847  * nothing is found, otherwise take a reference on the extent and return it
848  */
849 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
850                                                          u64 file_offset)
851 {
852         struct btrfs_ordered_inode_tree *tree;
853         struct rb_node *node;
854         struct btrfs_ordered_extent *entry = NULL;
855         unsigned long flags;
856
857         tree = &inode->ordered_tree;
858         spin_lock_irqsave(&tree->lock, flags);
859         node = tree_search(tree, file_offset);
860         if (!node)
861                 goto out;
862
863         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
864         if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
865                 entry = NULL;
866         if (entry) {
867                 refcount_inc(&entry->refs);
868                 trace_btrfs_ordered_extent_lookup(inode, entry);
869         }
870 out:
871         spin_unlock_irqrestore(&tree->lock, flags);
872         return entry;
873 }
874
875 /* Since the DIO code tries to lock a wide area we need to look for any ordered
876  * extents that exist in the range, rather than just the start of the range.
877  */
878 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
879                 struct btrfs_inode *inode, u64 file_offset, u64 len)
880 {
881         struct btrfs_ordered_inode_tree *tree;
882         struct rb_node *node;
883         struct btrfs_ordered_extent *entry = NULL;
884
885         tree = &inode->ordered_tree;
886         spin_lock_irq(&tree->lock);
887         node = tree_search(tree, file_offset);
888         if (!node) {
889                 node = tree_search(tree, file_offset + len);
890                 if (!node)
891                         goto out;
892         }
893
894         while (1) {
895                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
896                 if (range_overlaps(entry, file_offset, len))
897                         break;
898
899                 if (entry->file_offset >= file_offset + len) {
900                         entry = NULL;
901                         break;
902                 }
903                 entry = NULL;
904                 node = rb_next(node);
905                 if (!node)
906                         break;
907         }
908 out:
909         if (entry) {
910                 refcount_inc(&entry->refs);
911                 trace_btrfs_ordered_extent_lookup_range(inode, entry);
912         }
913         spin_unlock_irq(&tree->lock);
914         return entry;
915 }
916
917 /*
918  * Adds all ordered extents to the given list. The list ends up sorted by the
919  * file_offset of the ordered extents.
920  */
921 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
922                                            struct list_head *list)
923 {
924         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
925         struct rb_node *n;
926
927         ASSERT(inode_is_locked(&inode->vfs_inode));
928
929         spin_lock_irq(&tree->lock);
930         for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
931                 struct btrfs_ordered_extent *ordered;
932
933                 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
934
935                 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
936                         continue;
937
938                 ASSERT(list_empty(&ordered->log_list));
939                 list_add_tail(&ordered->log_list, list);
940                 refcount_inc(&ordered->refs);
941                 trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered);
942         }
943         spin_unlock_irq(&tree->lock);
944 }
945
946 /*
947  * lookup and return any extent before 'file_offset'.  NULL is returned
948  * if none is found
949  */
950 struct btrfs_ordered_extent *
951 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
952 {
953         struct btrfs_ordered_inode_tree *tree;
954         struct rb_node *node;
955         struct btrfs_ordered_extent *entry = NULL;
956
957         tree = &inode->ordered_tree;
958         spin_lock_irq(&tree->lock);
959         node = tree_search(tree, file_offset);
960         if (!node)
961                 goto out;
962
963         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
964         refcount_inc(&entry->refs);
965         trace_btrfs_ordered_extent_lookup_first(inode, entry);
966 out:
967         spin_unlock_irq(&tree->lock);
968         return entry;
969 }
970
971 /*
972  * Lookup the first ordered extent that overlaps the range
973  * [@file_offset, @file_offset + @len).
974  *
975  * The difference between this and btrfs_lookup_first_ordered_extent() is
976  * that this one won't return any ordered extent that does not overlap the range.
977  * And the difference against btrfs_lookup_ordered_extent() is, this function
978  * ensures the first ordered extent gets returned.
979  */
980 struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
981                         struct btrfs_inode *inode, u64 file_offset, u64 len)
982 {
983         struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
984         struct rb_node *node;
985         struct rb_node *cur;
986         struct rb_node *prev;
987         struct rb_node *next;
988         struct btrfs_ordered_extent *entry = NULL;
989
990         spin_lock_irq(&tree->lock);
991         node = tree->tree.rb_node;
992         /*
993          * Here we don't want to use tree_search() which will use tree->last
994          * and screw up the search order.
995          * And __tree_search() can't return the adjacent ordered extents
996          * either, thus here we do our own search.
997          */
998         while (node) {
999                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1000
1001                 if (file_offset < entry->file_offset) {
1002                         node = node->rb_left;
1003                 } else if (file_offset >= entry_end(entry)) {
1004                         node = node->rb_right;
1005                 } else {
1006                         /*
1007                          * Direct hit, got an ordered extent that starts at
1008                          * @file_offset
1009                          */
1010                         goto out;
1011                 }
1012         }
1013         if (!entry) {
1014                 /* Empty tree */
1015                 goto out;
1016         }
1017
1018         cur = &entry->rb_node;
1019         /* We got an entry around @file_offset, check adjacent entries */
1020         if (entry->file_offset < file_offset) {
1021                 prev = cur;
1022                 next = rb_next(cur);
1023         } else {
1024                 prev = rb_prev(cur);
1025                 next = cur;
1026         }
1027         if (prev) {
1028                 entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
1029                 if (range_overlaps(entry, file_offset, len))
1030                         goto out;
1031         }
1032         if (next) {
1033                 entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
1034                 if (range_overlaps(entry, file_offset, len))
1035                         goto out;
1036         }
1037         /* No ordered extent in the range */
1038         entry = NULL;
1039 out:
1040         if (entry) {
1041                 refcount_inc(&entry->refs);
1042                 trace_btrfs_ordered_extent_lookup_first_range(inode, entry);
1043         }
1044
1045         spin_unlock_irq(&tree->lock);
1046         return entry;
1047 }
1048
1049 /*
1050  * Lock the passed range and ensures all pending ordered extents in it are run
1051  * to completion.
1052  *
1053  * @inode:        Inode whose ordered tree is to be searched
1054  * @start:        Beginning of range to flush
1055  * @end:          Last byte of range to lock
1056  * @cached_state: If passed, will return the extent state responsible for the
1057  *                locked range. It's the caller's responsibility to free the
1058  *                cached state.
1059  *
1060  * Always return with the given range locked, ensuring after it's called no
1061  * order extent can be pending.
1062  */
1063 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1064                                         u64 end,
1065                                         struct extent_state **cached_state)
1066 {
1067         struct btrfs_ordered_extent *ordered;
1068         struct extent_state *cache = NULL;
1069         struct extent_state **cachedp = &cache;
1070
1071         if (cached_state)
1072                 cachedp = cached_state;
1073
1074         while (1) {
1075                 lock_extent(&inode->io_tree, start, end, cachedp);
1076                 ordered = btrfs_lookup_ordered_range(inode, start,
1077                                                      end - start + 1);
1078                 if (!ordered) {
1079                         /*
1080                          * If no external cached_state has been passed then
1081                          * decrement the extra ref taken for cachedp since we
1082                          * aren't exposing it outside of this function
1083                          */
1084                         if (!cached_state)
1085                                 refcount_dec(&cache->refs);
1086                         break;
1087                 }
1088                 unlock_extent(&inode->io_tree, start, end, cachedp);
1089                 btrfs_start_ordered_extent(ordered);
1090                 btrfs_put_ordered_extent(ordered);
1091         }
1092 }
1093
1094 /*
1095  * Lock the passed range and ensure all pending ordered extents in it are run
1096  * to completion in nowait mode.
1097  *
1098  * Return true if btrfs_lock_ordered_range does not return any extents,
1099  * otherwise false.
1100  */
1101 bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end,
1102                                   struct extent_state **cached_state)
1103 {
1104         struct btrfs_ordered_extent *ordered;
1105
1106         if (!try_lock_extent(&inode->io_tree, start, end, cached_state))
1107                 return false;
1108
1109         ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1);
1110         if (!ordered)
1111                 return true;
1112
1113         btrfs_put_ordered_extent(ordered);
1114         unlock_extent(&inode->io_tree, start, end, cached_state);
1115
1116         return false;
1117 }
1118
1119 /* Split out a new ordered extent for this first @len bytes of @ordered. */
1120 int btrfs_split_ordered_extent(struct btrfs_ordered_extent *ordered, u64 len)
1121 {
1122         struct inode *inode = ordered->inode;
1123         struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1124         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1125         u64 file_offset = ordered->file_offset;
1126         u64 disk_bytenr = ordered->disk_bytenr;
1127         unsigned long flags = ordered->flags & BTRFS_ORDERED_TYPE_FLAGS;
1128         struct rb_node *node;
1129
1130         trace_btrfs_ordered_extent_split(BTRFS_I(inode), ordered);
1131
1132         ASSERT(!(flags & (1U << BTRFS_ORDERED_COMPRESSED)));
1133
1134         /*
1135          * The entire bio must be covered by the ordered extent, but we can't
1136          * reduce the original extent to a zero length either.
1137          */
1138         if (WARN_ON_ONCE(len >= ordered->num_bytes))
1139                 return -EINVAL;
1140         /* We cannot split once ordered extent is past end_bio. */
1141         if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes))
1142                 return -EINVAL;
1143         /* We cannot split a compressed ordered extent. */
1144         if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes))
1145                 return -EINVAL;
1146         /* Checksum list should be empty. */
1147         if (WARN_ON_ONCE(!list_empty(&ordered->list)))
1148                 return -EINVAL;
1149
1150         spin_lock_irq(&tree->lock);
1151         /* Remove from tree once */
1152         node = &ordered->rb_node;
1153         rb_erase(node, &tree->tree);
1154         RB_CLEAR_NODE(node);
1155         if (tree->last == node)
1156                 tree->last = NULL;
1157
1158         ordered->file_offset += len;
1159         ordered->disk_bytenr += len;
1160         ordered->num_bytes -= len;
1161         ordered->disk_num_bytes -= len;
1162         ordered->bytes_left -= len;
1163
1164         /* Re-insert the node */
1165         node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node);
1166         if (node)
1167                 btrfs_panic(fs_info, -EEXIST,
1168                         "zoned: inconsistency in ordered tree at offset %llu",
1169                             ordered->file_offset);
1170
1171         spin_unlock_irq(&tree->lock);
1172
1173         /*
1174          * The splitting extent is already counted and will be added again in
1175          * btrfs_add_ordered_extent(). Subtract len to avoid double counting.
1176          */
1177         percpu_counter_add_batch(&fs_info->ordered_bytes, -len, fs_info->delalloc_batch);
1178
1179         return btrfs_add_ordered_extent(BTRFS_I(inode), file_offset, len, len,
1180                                         disk_bytenr, len, 0, flags,
1181                                         ordered->compress_type);
1182 }
1183
1184 int __init ordered_data_init(void)
1185 {
1186         btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1187                                      sizeof(struct btrfs_ordered_extent), 0,
1188                                      SLAB_MEM_SPREAD,
1189                                      NULL);
1190         if (!btrfs_ordered_extent_cache)
1191                 return -ENOMEM;
1192
1193         return 0;
1194 }
1195
1196 void __cold ordered_data_exit(void)
1197 {
1198         kmem_cache_destroy(btrfs_ordered_extent_cache);
1199 }