Merge tag 'mm-hotfixes-stable-2023-11-17-14-04' of git://git.kernel.org/pub/scm/linux...
[linux-block.git] / fs / btrfs / ordered-data.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/sched/mm.h>
10 #include "messages.h"
11 #include "misc.h"
12 #include "ctree.h"
13 #include "transaction.h"
14 #include "btrfs_inode.h"
15 #include "extent_io.h"
16 #include "disk-io.h"
17 #include "compression.h"
18 #include "delalloc-space.h"
19 #include "qgroup.h"
20 #include "subpage.h"
21 #include "file.h"
22 #include "super.h"
23
24 static struct kmem_cache *btrfs_ordered_extent_cache;
25
26 static u64 entry_end(struct btrfs_ordered_extent *entry)
27 {
28         if (entry->file_offset + entry->num_bytes < entry->file_offset)
29                 return (u64)-1;
30         return entry->file_offset + entry->num_bytes;
31 }
32
33 /* returns NULL if the insertion worked, or it returns the node it did find
34  * in the tree
35  */
36 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
37                                    struct rb_node *node)
38 {
39         struct rb_node **p = &root->rb_node;
40         struct rb_node *parent = NULL;
41         struct btrfs_ordered_extent *entry;
42
43         while (*p) {
44                 parent = *p;
45                 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
46
47                 if (file_offset < entry->file_offset)
48                         p = &(*p)->rb_left;
49                 else if (file_offset >= entry_end(entry))
50                         p = &(*p)->rb_right;
51                 else
52                         return parent;
53         }
54
55         rb_link_node(node, parent, p);
56         rb_insert_color(node, root);
57         return NULL;
58 }
59
60 /*
61  * look for a given offset in the tree, and if it can't be found return the
62  * first lesser offset
63  */
64 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
65                                      struct rb_node **prev_ret)
66 {
67         struct rb_node *n = root->rb_node;
68         struct rb_node *prev = NULL;
69         struct rb_node *test;
70         struct btrfs_ordered_extent *entry;
71         struct btrfs_ordered_extent *prev_entry = NULL;
72
73         while (n) {
74                 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
75                 prev = n;
76                 prev_entry = entry;
77
78                 if (file_offset < entry->file_offset)
79                         n = n->rb_left;
80                 else if (file_offset >= entry_end(entry))
81                         n = n->rb_right;
82                 else
83                         return n;
84         }
85         if (!prev_ret)
86                 return NULL;
87
88         while (prev && file_offset >= entry_end(prev_entry)) {
89                 test = rb_next(prev);
90                 if (!test)
91                         break;
92                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
93                                       rb_node);
94                 if (file_offset < entry_end(prev_entry))
95                         break;
96
97                 prev = test;
98         }
99         if (prev)
100                 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
101                                       rb_node);
102         while (prev && file_offset < entry_end(prev_entry)) {
103                 test = rb_prev(prev);
104                 if (!test)
105                         break;
106                 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
107                                       rb_node);
108                 prev = test;
109         }
110         *prev_ret = prev;
111         return NULL;
112 }
113
114 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
115                           u64 len)
116 {
117         if (file_offset + len <= entry->file_offset ||
118             entry->file_offset + entry->num_bytes <= file_offset)
119                 return 0;
120         return 1;
121 }
122
123 /*
124  * look find the first ordered struct that has this offset, otherwise
125  * the first one less than this offset
126  */
127 static inline struct rb_node *ordered_tree_search(struct btrfs_inode *inode,
128                                                   u64 file_offset)
129 {
130         struct rb_node *prev = NULL;
131         struct rb_node *ret;
132         struct btrfs_ordered_extent *entry;
133
134         if (inode->ordered_tree_last) {
135                 entry = rb_entry(inode->ordered_tree_last, struct btrfs_ordered_extent,
136                                  rb_node);
137                 if (in_range(file_offset, entry->file_offset, entry->num_bytes))
138                         return inode->ordered_tree_last;
139         }
140         ret = __tree_search(&inode->ordered_tree, file_offset, &prev);
141         if (!ret)
142                 ret = prev;
143         if (ret)
144                 inode->ordered_tree_last = ret;
145         return ret;
146 }
147
148 static struct btrfs_ordered_extent *alloc_ordered_extent(
149                         struct btrfs_inode *inode, u64 file_offset, u64 num_bytes,
150                         u64 ram_bytes, u64 disk_bytenr, u64 disk_num_bytes,
151                         u64 offset, unsigned long flags, int compress_type)
152 {
153         struct btrfs_ordered_extent *entry;
154         int ret;
155
156         if (flags &
157             ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) {
158                 /* For nocow write, we can release the qgroup rsv right now */
159                 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes);
160                 if (ret < 0)
161                         return ERR_PTR(ret);
162         } else {
163                 /*
164                  * The ordered extent has reserved qgroup space, release now
165                  * and pass the reserved number for qgroup_record to free.
166                  */
167                 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes);
168                 if (ret < 0)
169                         return ERR_PTR(ret);
170         }
171         entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
172         if (!entry)
173                 return ERR_PTR(-ENOMEM);
174
175         entry->file_offset = file_offset;
176         entry->num_bytes = num_bytes;
177         entry->ram_bytes = ram_bytes;
178         entry->disk_bytenr = disk_bytenr;
179         entry->disk_num_bytes = disk_num_bytes;
180         entry->offset = offset;
181         entry->bytes_left = num_bytes;
182         entry->inode = igrab(&inode->vfs_inode);
183         entry->compress_type = compress_type;
184         entry->truncated_len = (u64)-1;
185         entry->qgroup_rsv = ret;
186         entry->flags = flags;
187         refcount_set(&entry->refs, 1);
188         init_waitqueue_head(&entry->wait);
189         INIT_LIST_HEAD(&entry->list);
190         INIT_LIST_HEAD(&entry->log_list);
191         INIT_LIST_HEAD(&entry->root_extent_list);
192         INIT_LIST_HEAD(&entry->work_list);
193         INIT_LIST_HEAD(&entry->bioc_list);
194         init_completion(&entry->completion);
195
196         /*
197          * We don't need the count_max_extents here, we can assume that all of
198          * that work has been done at higher layers, so this is truly the
199          * smallest the extent is going to get.
200          */
201         spin_lock(&inode->lock);
202         btrfs_mod_outstanding_extents(inode, 1);
203         spin_unlock(&inode->lock);
204
205         return entry;
206 }
207
208 static void insert_ordered_extent(struct btrfs_ordered_extent *entry)
209 {
210         struct btrfs_inode *inode = BTRFS_I(entry->inode);
211         struct btrfs_root *root = inode->root;
212         struct btrfs_fs_info *fs_info = root->fs_info;
213         struct rb_node *node;
214
215         trace_btrfs_ordered_extent_add(inode, entry);
216
217         percpu_counter_add_batch(&fs_info->ordered_bytes, entry->num_bytes,
218                                  fs_info->delalloc_batch);
219
220         /* One ref for the tree. */
221         refcount_inc(&entry->refs);
222
223         spin_lock_irq(&inode->ordered_tree_lock);
224         node = tree_insert(&inode->ordered_tree, entry->file_offset,
225                            &entry->rb_node);
226         if (node)
227                 btrfs_panic(fs_info, -EEXIST,
228                                 "inconsistency in ordered tree at offset %llu",
229                                 entry->file_offset);
230         spin_unlock_irq(&inode->ordered_tree_lock);
231
232         spin_lock(&root->ordered_extent_lock);
233         list_add_tail(&entry->root_extent_list,
234                       &root->ordered_extents);
235         root->nr_ordered_extents++;
236         if (root->nr_ordered_extents == 1) {
237                 spin_lock(&fs_info->ordered_root_lock);
238                 BUG_ON(!list_empty(&root->ordered_root));
239                 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
240                 spin_unlock(&fs_info->ordered_root_lock);
241         }
242         spin_unlock(&root->ordered_extent_lock);
243 }
244
245 /*
246  * Add an ordered extent to the per-inode tree.
247  *
248  * @inode:           Inode that this extent is for.
249  * @file_offset:     Logical offset in file where the extent starts.
250  * @num_bytes:       Logical length of extent in file.
251  * @ram_bytes:       Full length of unencoded data.
252  * @disk_bytenr:     Offset of extent on disk.
253  * @disk_num_bytes:  Size of extent on disk.
254  * @offset:          Offset into unencoded data where file data starts.
255  * @flags:           Flags specifying type of extent (1 << BTRFS_ORDERED_*).
256  * @compress_type:   Compression algorithm used for data.
257  *
258  * Most of these parameters correspond to &struct btrfs_file_extent_item. The
259  * tree is given a single reference on the ordered extent that was inserted, and
260  * the returned pointer is given a second reference.
261  *
262  * Return: the new ordered extent or error pointer.
263  */
264 struct btrfs_ordered_extent *btrfs_alloc_ordered_extent(
265                         struct btrfs_inode *inode, u64 file_offset,
266                         u64 num_bytes, u64 ram_bytes, u64 disk_bytenr,
267                         u64 disk_num_bytes, u64 offset, unsigned long flags,
268                         int compress_type)
269 {
270         struct btrfs_ordered_extent *entry;
271
272         ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0);
273
274         entry = alloc_ordered_extent(inode, file_offset, num_bytes, ram_bytes,
275                                      disk_bytenr, disk_num_bytes, offset, flags,
276                                      compress_type);
277         if (!IS_ERR(entry))
278                 insert_ordered_extent(entry);
279         return entry;
280 }
281
282 /*
283  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
284  * when an ordered extent is finished.  If the list covers more than one
285  * ordered extent, it is split across multiples.
286  */
287 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
288                            struct btrfs_ordered_sum *sum)
289 {
290         struct btrfs_inode *inode = BTRFS_I(entry->inode);
291
292         spin_lock_irq(&inode->ordered_tree_lock);
293         list_add_tail(&sum->list, &entry->list);
294         spin_unlock_irq(&inode->ordered_tree_lock);
295 }
296
297 static void finish_ordered_fn(struct btrfs_work *work)
298 {
299         struct btrfs_ordered_extent *ordered_extent;
300
301         ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
302         btrfs_finish_ordered_io(ordered_extent);
303 }
304
305 static bool can_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
306                                       struct page *page, u64 file_offset,
307                                       u64 len, bool uptodate)
308 {
309         struct btrfs_inode *inode = BTRFS_I(ordered->inode);
310         struct btrfs_fs_info *fs_info = inode->root->fs_info;
311
312         lockdep_assert_held(&inode->ordered_tree_lock);
313
314         if (page) {
315                 ASSERT(page->mapping);
316                 ASSERT(page_offset(page) <= file_offset);
317                 ASSERT(file_offset + len <= page_offset(page) + PAGE_SIZE);
318
319                 /*
320                  * Ordered (Private2) bit indicates whether we still have
321                  * pending io unfinished for the ordered extent.
322                  *
323                  * If there's no such bit, we need to skip to next range.
324                  */
325                 if (!btrfs_page_test_ordered(fs_info, page, file_offset, len))
326                         return false;
327                 btrfs_page_clear_ordered(fs_info, page, file_offset, len);
328         }
329
330         /* Now we're fine to update the accounting. */
331         if (WARN_ON_ONCE(len > ordered->bytes_left)) {
332                 btrfs_crit(fs_info,
333 "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%llu left=%llu",
334                            inode->root->root_key.objectid, btrfs_ino(inode),
335                            ordered->file_offset, ordered->num_bytes,
336                            len, ordered->bytes_left);
337                 ordered->bytes_left = 0;
338         } else {
339                 ordered->bytes_left -= len;
340         }
341
342         if (!uptodate)
343                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
344
345         if (ordered->bytes_left)
346                 return false;
347
348         /*
349          * All the IO of the ordered extent is finished, we need to queue
350          * the finish_func to be executed.
351          */
352         set_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags);
353         cond_wake_up(&ordered->wait);
354         refcount_inc(&ordered->refs);
355         trace_btrfs_ordered_extent_mark_finished(inode, ordered);
356         return true;
357 }
358
359 static void btrfs_queue_ordered_fn(struct btrfs_ordered_extent *ordered)
360 {
361         struct btrfs_inode *inode = BTRFS_I(ordered->inode);
362         struct btrfs_fs_info *fs_info = inode->root->fs_info;
363         struct btrfs_workqueue *wq = btrfs_is_free_space_inode(inode) ?
364                 fs_info->endio_freespace_worker : fs_info->endio_write_workers;
365
366         btrfs_init_work(&ordered->work, finish_ordered_fn, NULL);
367         btrfs_queue_work(wq, &ordered->work);
368 }
369
370 bool btrfs_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
371                                  struct page *page, u64 file_offset, u64 len,
372                                  bool uptodate)
373 {
374         struct btrfs_inode *inode = BTRFS_I(ordered->inode);
375         unsigned long flags;
376         bool ret;
377
378         trace_btrfs_finish_ordered_extent(inode, file_offset, len, uptodate);
379
380         spin_lock_irqsave(&inode->ordered_tree_lock, flags);
381         ret = can_finish_ordered_extent(ordered, page, file_offset, len, uptodate);
382         spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
383
384         if (ret)
385                 btrfs_queue_ordered_fn(ordered);
386         return ret;
387 }
388
389 /*
390  * Mark all ordered extents io inside the specified range finished.
391  *
392  * @page:        The involved page for the operation.
393  *               For uncompressed buffered IO, the page status also needs to be
394  *               updated to indicate whether the pending ordered io is finished.
395  *               Can be NULL for direct IO and compressed write.
396  *               For these cases, callers are ensured they won't execute the
397  *               endio function twice.
398  *
399  * This function is called for endio, thus the range must have ordered
400  * extent(s) covering it.
401  */
402 void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
403                                     struct page *page, u64 file_offset,
404                                     u64 num_bytes, bool uptodate)
405 {
406         struct rb_node *node;
407         struct btrfs_ordered_extent *entry = NULL;
408         unsigned long flags;
409         u64 cur = file_offset;
410
411         trace_btrfs_writepage_end_io_hook(inode, file_offset,
412                                           file_offset + num_bytes - 1,
413                                           uptodate);
414
415         spin_lock_irqsave(&inode->ordered_tree_lock, flags);
416         while (cur < file_offset + num_bytes) {
417                 u64 entry_end;
418                 u64 end;
419                 u32 len;
420
421                 node = ordered_tree_search(inode, cur);
422                 /* No ordered extents at all */
423                 if (!node)
424                         break;
425
426                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
427                 entry_end = entry->file_offset + entry->num_bytes;
428                 /*
429                  * |<-- OE --->|  |
430                  *                cur
431                  * Go to next OE.
432                  */
433                 if (cur >= entry_end) {
434                         node = rb_next(node);
435                         /* No more ordered extents, exit */
436                         if (!node)
437                                 break;
438                         entry = rb_entry(node, struct btrfs_ordered_extent,
439                                          rb_node);
440
441                         /* Go to next ordered extent and continue */
442                         cur = entry->file_offset;
443                         continue;
444                 }
445                 /*
446                  * |    |<--- OE --->|
447                  * cur
448                  * Go to the start of OE.
449                  */
450                 if (cur < entry->file_offset) {
451                         cur = entry->file_offset;
452                         continue;
453                 }
454
455                 /*
456                  * Now we are definitely inside one ordered extent.
457                  *
458                  * |<--- OE --->|
459                  *      |
460                  *      cur
461                  */
462                 end = min(entry->file_offset + entry->num_bytes,
463                           file_offset + num_bytes) - 1;
464                 ASSERT(end + 1 - cur < U32_MAX);
465                 len = end + 1 - cur;
466
467                 if (can_finish_ordered_extent(entry, page, cur, len, uptodate)) {
468                         spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
469                         btrfs_queue_ordered_fn(entry);
470                         spin_lock_irqsave(&inode->ordered_tree_lock, flags);
471                 }
472                 cur += len;
473         }
474         spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
475 }
476
477 /*
478  * Finish IO for one ordered extent across a given range.  The range can only
479  * contain one ordered extent.
480  *
481  * @cached:      The cached ordered extent. If not NULL, we can skip the tree
482  *               search and use the ordered extent directly.
483  *               Will be also used to store the finished ordered extent.
484  * @file_offset: File offset for the finished IO
485  * @io_size:     Length of the finish IO range
486  *
487  * Return true if the ordered extent is finished in the range, and update
488  * @cached.
489  * Return false otherwise.
490  *
491  * NOTE: The range can NOT cross multiple ordered extents.
492  * Thus caller should ensure the range doesn't cross ordered extents.
493  */
494 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
495                                     struct btrfs_ordered_extent **cached,
496                                     u64 file_offset, u64 io_size)
497 {
498         struct rb_node *node;
499         struct btrfs_ordered_extent *entry = NULL;
500         unsigned long flags;
501         bool finished = false;
502
503         spin_lock_irqsave(&inode->ordered_tree_lock, flags);
504         if (cached && *cached) {
505                 entry = *cached;
506                 goto have_entry;
507         }
508
509         node = ordered_tree_search(inode, file_offset);
510         if (!node)
511                 goto out;
512
513         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
514 have_entry:
515         if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
516                 goto out;
517
518         if (io_size > entry->bytes_left)
519                 btrfs_crit(inode->root->fs_info,
520                            "bad ordered accounting left %llu size %llu",
521                        entry->bytes_left, io_size);
522
523         entry->bytes_left -= io_size;
524
525         if (entry->bytes_left == 0) {
526                 /*
527                  * Ensure only one caller can set the flag and finished_ret
528                  * accordingly
529                  */
530                 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
531                 /* test_and_set_bit implies a barrier */
532                 cond_wake_up_nomb(&entry->wait);
533         }
534 out:
535         if (finished && cached && entry) {
536                 *cached = entry;
537                 refcount_inc(&entry->refs);
538                 trace_btrfs_ordered_extent_dec_test_pending(inode, entry);
539         }
540         spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
541         return finished;
542 }
543
544 /*
545  * used to drop a reference on an ordered extent.  This will free
546  * the extent if the last reference is dropped
547  */
548 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
549 {
550         struct list_head *cur;
551         struct btrfs_ordered_sum *sum;
552
553         trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
554
555         if (refcount_dec_and_test(&entry->refs)) {
556                 ASSERT(list_empty(&entry->root_extent_list));
557                 ASSERT(list_empty(&entry->log_list));
558                 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
559                 if (entry->inode)
560                         btrfs_add_delayed_iput(BTRFS_I(entry->inode));
561                 while (!list_empty(&entry->list)) {
562                         cur = entry->list.next;
563                         sum = list_entry(cur, struct btrfs_ordered_sum, list);
564                         list_del(&sum->list);
565                         kvfree(sum);
566                 }
567                 kmem_cache_free(btrfs_ordered_extent_cache, entry);
568         }
569 }
570
571 /*
572  * remove an ordered extent from the tree.  No references are dropped
573  * and waiters are woken up.
574  */
575 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
576                                  struct btrfs_ordered_extent *entry)
577 {
578         struct btrfs_root *root = btrfs_inode->root;
579         struct btrfs_fs_info *fs_info = root->fs_info;
580         struct rb_node *node;
581         bool pending;
582         bool freespace_inode;
583
584         /*
585          * If this is a free space inode the thread has not acquired the ordered
586          * extents lockdep map.
587          */
588         freespace_inode = btrfs_is_free_space_inode(btrfs_inode);
589
590         btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered);
591         /* This is paired with btrfs_alloc_ordered_extent. */
592         spin_lock(&btrfs_inode->lock);
593         btrfs_mod_outstanding_extents(btrfs_inode, -1);
594         spin_unlock(&btrfs_inode->lock);
595         if (root != fs_info->tree_root) {
596                 u64 release;
597
598                 if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags))
599                         release = entry->disk_num_bytes;
600                 else
601                         release = entry->num_bytes;
602                 btrfs_delalloc_release_metadata(btrfs_inode, release, false);
603         }
604
605         percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
606                                  fs_info->delalloc_batch);
607
608         spin_lock_irq(&btrfs_inode->ordered_tree_lock);
609         node = &entry->rb_node;
610         rb_erase(node, &btrfs_inode->ordered_tree);
611         RB_CLEAR_NODE(node);
612         if (btrfs_inode->ordered_tree_last == node)
613                 btrfs_inode->ordered_tree_last = NULL;
614         set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
615         pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
616         spin_unlock_irq(&btrfs_inode->ordered_tree_lock);
617
618         /*
619          * The current running transaction is waiting on us, we need to let it
620          * know that we're complete and wake it up.
621          */
622         if (pending) {
623                 struct btrfs_transaction *trans;
624
625                 /*
626                  * The checks for trans are just a formality, it should be set,
627                  * but if it isn't we don't want to deref/assert under the spin
628                  * lock, so be nice and check if trans is set, but ASSERT() so
629                  * if it isn't set a developer will notice.
630                  */
631                 spin_lock(&fs_info->trans_lock);
632                 trans = fs_info->running_transaction;
633                 if (trans)
634                         refcount_inc(&trans->use_count);
635                 spin_unlock(&fs_info->trans_lock);
636
637                 ASSERT(trans || BTRFS_FS_ERROR(fs_info));
638                 if (trans) {
639                         if (atomic_dec_and_test(&trans->pending_ordered))
640                                 wake_up(&trans->pending_wait);
641                         btrfs_put_transaction(trans);
642                 }
643         }
644
645         btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered);
646
647         spin_lock(&root->ordered_extent_lock);
648         list_del_init(&entry->root_extent_list);
649         root->nr_ordered_extents--;
650
651         trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
652
653         if (!root->nr_ordered_extents) {
654                 spin_lock(&fs_info->ordered_root_lock);
655                 BUG_ON(list_empty(&root->ordered_root));
656                 list_del_init(&root->ordered_root);
657                 spin_unlock(&fs_info->ordered_root_lock);
658         }
659         spin_unlock(&root->ordered_extent_lock);
660         wake_up(&entry->wait);
661         if (!freespace_inode)
662                 btrfs_lockdep_release(fs_info, btrfs_ordered_extent);
663 }
664
665 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
666 {
667         struct btrfs_ordered_extent *ordered;
668
669         ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
670         btrfs_start_ordered_extent(ordered);
671         complete(&ordered->completion);
672 }
673
674 /*
675  * wait for all the ordered extents in a root.  This is done when balancing
676  * space between drives.
677  */
678 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
679                                const u64 range_start, const u64 range_len)
680 {
681         struct btrfs_fs_info *fs_info = root->fs_info;
682         LIST_HEAD(splice);
683         LIST_HEAD(skipped);
684         LIST_HEAD(works);
685         struct btrfs_ordered_extent *ordered, *next;
686         u64 count = 0;
687         const u64 range_end = range_start + range_len;
688
689         mutex_lock(&root->ordered_extent_mutex);
690         spin_lock(&root->ordered_extent_lock);
691         list_splice_init(&root->ordered_extents, &splice);
692         while (!list_empty(&splice) && nr) {
693                 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
694                                            root_extent_list);
695
696                 if (range_end <= ordered->disk_bytenr ||
697                     ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
698                         list_move_tail(&ordered->root_extent_list, &skipped);
699                         cond_resched_lock(&root->ordered_extent_lock);
700                         continue;
701                 }
702
703                 list_move_tail(&ordered->root_extent_list,
704                                &root->ordered_extents);
705                 refcount_inc(&ordered->refs);
706                 spin_unlock(&root->ordered_extent_lock);
707
708                 btrfs_init_work(&ordered->flush_work,
709                                 btrfs_run_ordered_extent_work, NULL);
710                 list_add_tail(&ordered->work_list, &works);
711                 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
712
713                 cond_resched();
714                 spin_lock(&root->ordered_extent_lock);
715                 if (nr != U64_MAX)
716                         nr--;
717                 count++;
718         }
719         list_splice_tail(&skipped, &root->ordered_extents);
720         list_splice_tail(&splice, &root->ordered_extents);
721         spin_unlock(&root->ordered_extent_lock);
722
723         list_for_each_entry_safe(ordered, next, &works, work_list) {
724                 list_del_init(&ordered->work_list);
725                 wait_for_completion(&ordered->completion);
726                 btrfs_put_ordered_extent(ordered);
727                 cond_resched();
728         }
729         mutex_unlock(&root->ordered_extent_mutex);
730
731         return count;
732 }
733
734 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
735                              const u64 range_start, const u64 range_len)
736 {
737         struct btrfs_root *root;
738         LIST_HEAD(splice);
739         u64 done;
740
741         mutex_lock(&fs_info->ordered_operations_mutex);
742         spin_lock(&fs_info->ordered_root_lock);
743         list_splice_init(&fs_info->ordered_roots, &splice);
744         while (!list_empty(&splice) && nr) {
745                 root = list_first_entry(&splice, struct btrfs_root,
746                                         ordered_root);
747                 root = btrfs_grab_root(root);
748                 BUG_ON(!root);
749                 list_move_tail(&root->ordered_root,
750                                &fs_info->ordered_roots);
751                 spin_unlock(&fs_info->ordered_root_lock);
752
753                 done = btrfs_wait_ordered_extents(root, nr,
754                                                   range_start, range_len);
755                 btrfs_put_root(root);
756
757                 spin_lock(&fs_info->ordered_root_lock);
758                 if (nr != U64_MAX) {
759                         nr -= done;
760                 }
761         }
762         list_splice_tail(&splice, &fs_info->ordered_roots);
763         spin_unlock(&fs_info->ordered_root_lock);
764         mutex_unlock(&fs_info->ordered_operations_mutex);
765 }
766
767 /*
768  * Start IO and wait for a given ordered extent to finish.
769  *
770  * Wait on page writeback for all the pages in the extent and the IO completion
771  * code to insert metadata into the btree corresponding to the extent.
772  */
773 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry)
774 {
775         u64 start = entry->file_offset;
776         u64 end = start + entry->num_bytes - 1;
777         struct btrfs_inode *inode = BTRFS_I(entry->inode);
778         bool freespace_inode;
779
780         trace_btrfs_ordered_extent_start(inode, entry);
781
782         /*
783          * If this is a free space inode do not take the ordered extents lockdep
784          * map.
785          */
786         freespace_inode = btrfs_is_free_space_inode(inode);
787
788         /*
789          * pages in the range can be dirty, clean or writeback.  We
790          * start IO on any dirty ones so the wait doesn't stall waiting
791          * for the flusher thread to find them
792          */
793         if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
794                 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
795
796         if (!freespace_inode)
797                 btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent);
798         wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags));
799 }
800
801 /*
802  * Used to wait on ordered extents across a large range of bytes.
803  */
804 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
805 {
806         int ret = 0;
807         int ret_wb = 0;
808         u64 end;
809         u64 orig_end;
810         struct btrfs_ordered_extent *ordered;
811
812         if (start + len < start) {
813                 orig_end = OFFSET_MAX;
814         } else {
815                 orig_end = start + len - 1;
816                 if (orig_end > OFFSET_MAX)
817                         orig_end = OFFSET_MAX;
818         }
819
820         /* start IO across the range first to instantiate any delalloc
821          * extents
822          */
823         ret = btrfs_fdatawrite_range(inode, start, orig_end);
824         if (ret)
825                 return ret;
826
827         /*
828          * If we have a writeback error don't return immediately. Wait first
829          * for any ordered extents that haven't completed yet. This is to make
830          * sure no one can dirty the same page ranges and call writepages()
831          * before the ordered extents complete - to avoid failures (-EEXIST)
832          * when adding the new ordered extents to the ordered tree.
833          */
834         ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
835
836         end = orig_end;
837         while (1) {
838                 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
839                 if (!ordered)
840                         break;
841                 if (ordered->file_offset > orig_end) {
842                         btrfs_put_ordered_extent(ordered);
843                         break;
844                 }
845                 if (ordered->file_offset + ordered->num_bytes <= start) {
846                         btrfs_put_ordered_extent(ordered);
847                         break;
848                 }
849                 btrfs_start_ordered_extent(ordered);
850                 end = ordered->file_offset;
851                 /*
852                  * If the ordered extent had an error save the error but don't
853                  * exit without waiting first for all other ordered extents in
854                  * the range to complete.
855                  */
856                 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
857                         ret = -EIO;
858                 btrfs_put_ordered_extent(ordered);
859                 if (end == 0 || end == start)
860                         break;
861                 end--;
862         }
863         return ret_wb ? ret_wb : ret;
864 }
865
866 /*
867  * find an ordered extent corresponding to file_offset.  return NULL if
868  * nothing is found, otherwise take a reference on the extent and return it
869  */
870 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
871                                                          u64 file_offset)
872 {
873         struct rb_node *node;
874         struct btrfs_ordered_extent *entry = NULL;
875         unsigned long flags;
876
877         spin_lock_irqsave(&inode->ordered_tree_lock, flags);
878         node = ordered_tree_search(inode, file_offset);
879         if (!node)
880                 goto out;
881
882         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
883         if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
884                 entry = NULL;
885         if (entry) {
886                 refcount_inc(&entry->refs);
887                 trace_btrfs_ordered_extent_lookup(inode, entry);
888         }
889 out:
890         spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
891         return entry;
892 }
893
894 /* Since the DIO code tries to lock a wide area we need to look for any ordered
895  * extents that exist in the range, rather than just the start of the range.
896  */
897 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
898                 struct btrfs_inode *inode, u64 file_offset, u64 len)
899 {
900         struct rb_node *node;
901         struct btrfs_ordered_extent *entry = NULL;
902
903         spin_lock_irq(&inode->ordered_tree_lock);
904         node = ordered_tree_search(inode, file_offset);
905         if (!node) {
906                 node = ordered_tree_search(inode, file_offset + len);
907                 if (!node)
908                         goto out;
909         }
910
911         while (1) {
912                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
913                 if (range_overlaps(entry, file_offset, len))
914                         break;
915
916                 if (entry->file_offset >= file_offset + len) {
917                         entry = NULL;
918                         break;
919                 }
920                 entry = NULL;
921                 node = rb_next(node);
922                 if (!node)
923                         break;
924         }
925 out:
926         if (entry) {
927                 refcount_inc(&entry->refs);
928                 trace_btrfs_ordered_extent_lookup_range(inode, entry);
929         }
930         spin_unlock_irq(&inode->ordered_tree_lock);
931         return entry;
932 }
933
934 /*
935  * Adds all ordered extents to the given list. The list ends up sorted by the
936  * file_offset of the ordered extents.
937  */
938 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
939                                            struct list_head *list)
940 {
941         struct rb_node *n;
942
943         ASSERT(inode_is_locked(&inode->vfs_inode));
944
945         spin_lock_irq(&inode->ordered_tree_lock);
946         for (n = rb_first(&inode->ordered_tree); n; n = rb_next(n)) {
947                 struct btrfs_ordered_extent *ordered;
948
949                 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
950
951                 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
952                         continue;
953
954                 ASSERT(list_empty(&ordered->log_list));
955                 list_add_tail(&ordered->log_list, list);
956                 refcount_inc(&ordered->refs);
957                 trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered);
958         }
959         spin_unlock_irq(&inode->ordered_tree_lock);
960 }
961
962 /*
963  * lookup and return any extent before 'file_offset'.  NULL is returned
964  * if none is found
965  */
966 struct btrfs_ordered_extent *
967 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
968 {
969         struct rb_node *node;
970         struct btrfs_ordered_extent *entry = NULL;
971
972         spin_lock_irq(&inode->ordered_tree_lock);
973         node = ordered_tree_search(inode, file_offset);
974         if (!node)
975                 goto out;
976
977         entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
978         refcount_inc(&entry->refs);
979         trace_btrfs_ordered_extent_lookup_first(inode, entry);
980 out:
981         spin_unlock_irq(&inode->ordered_tree_lock);
982         return entry;
983 }
984
985 /*
986  * Lookup the first ordered extent that overlaps the range
987  * [@file_offset, @file_offset + @len).
988  *
989  * The difference between this and btrfs_lookup_first_ordered_extent() is
990  * that this one won't return any ordered extent that does not overlap the range.
991  * And the difference against btrfs_lookup_ordered_extent() is, this function
992  * ensures the first ordered extent gets returned.
993  */
994 struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
995                         struct btrfs_inode *inode, u64 file_offset, u64 len)
996 {
997         struct rb_node *node;
998         struct rb_node *cur;
999         struct rb_node *prev;
1000         struct rb_node *next;
1001         struct btrfs_ordered_extent *entry = NULL;
1002
1003         spin_lock_irq(&inode->ordered_tree_lock);
1004         node = inode->ordered_tree.rb_node;
1005         /*
1006          * Here we don't want to use tree_search() which will use tree->last
1007          * and screw up the search order.
1008          * And __tree_search() can't return the adjacent ordered extents
1009          * either, thus here we do our own search.
1010          */
1011         while (node) {
1012                 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1013
1014                 if (file_offset < entry->file_offset) {
1015                         node = node->rb_left;
1016                 } else if (file_offset >= entry_end(entry)) {
1017                         node = node->rb_right;
1018                 } else {
1019                         /*
1020                          * Direct hit, got an ordered extent that starts at
1021                          * @file_offset
1022                          */
1023                         goto out;
1024                 }
1025         }
1026         if (!entry) {
1027                 /* Empty tree */
1028                 goto out;
1029         }
1030
1031         cur = &entry->rb_node;
1032         /* We got an entry around @file_offset, check adjacent entries */
1033         if (entry->file_offset < file_offset) {
1034                 prev = cur;
1035                 next = rb_next(cur);
1036         } else {
1037                 prev = rb_prev(cur);
1038                 next = cur;
1039         }
1040         if (prev) {
1041                 entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
1042                 if (range_overlaps(entry, file_offset, len))
1043                         goto out;
1044         }
1045         if (next) {
1046                 entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
1047                 if (range_overlaps(entry, file_offset, len))
1048                         goto out;
1049         }
1050         /* No ordered extent in the range */
1051         entry = NULL;
1052 out:
1053         if (entry) {
1054                 refcount_inc(&entry->refs);
1055                 trace_btrfs_ordered_extent_lookup_first_range(inode, entry);
1056         }
1057
1058         spin_unlock_irq(&inode->ordered_tree_lock);
1059         return entry;
1060 }
1061
1062 /*
1063  * Lock the passed range and ensures all pending ordered extents in it are run
1064  * to completion.
1065  *
1066  * @inode:        Inode whose ordered tree is to be searched
1067  * @start:        Beginning of range to flush
1068  * @end:          Last byte of range to lock
1069  * @cached_state: If passed, will return the extent state responsible for the
1070  *                locked range. It's the caller's responsibility to free the
1071  *                cached state.
1072  *
1073  * Always return with the given range locked, ensuring after it's called no
1074  * order extent can be pending.
1075  */
1076 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1077                                         u64 end,
1078                                         struct extent_state **cached_state)
1079 {
1080         struct btrfs_ordered_extent *ordered;
1081         struct extent_state *cache = NULL;
1082         struct extent_state **cachedp = &cache;
1083
1084         if (cached_state)
1085                 cachedp = cached_state;
1086
1087         while (1) {
1088                 lock_extent(&inode->io_tree, start, end, cachedp);
1089                 ordered = btrfs_lookup_ordered_range(inode, start,
1090                                                      end - start + 1);
1091                 if (!ordered) {
1092                         /*
1093                          * If no external cached_state has been passed then
1094                          * decrement the extra ref taken for cachedp since we
1095                          * aren't exposing it outside of this function
1096                          */
1097                         if (!cached_state)
1098                                 refcount_dec(&cache->refs);
1099                         break;
1100                 }
1101                 unlock_extent(&inode->io_tree, start, end, cachedp);
1102                 btrfs_start_ordered_extent(ordered);
1103                 btrfs_put_ordered_extent(ordered);
1104         }
1105 }
1106
1107 /*
1108  * Lock the passed range and ensure all pending ordered extents in it are run
1109  * to completion in nowait mode.
1110  *
1111  * Return true if btrfs_lock_ordered_range does not return any extents,
1112  * otherwise false.
1113  */
1114 bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end,
1115                                   struct extent_state **cached_state)
1116 {
1117         struct btrfs_ordered_extent *ordered;
1118
1119         if (!try_lock_extent(&inode->io_tree, start, end, cached_state))
1120                 return false;
1121
1122         ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1);
1123         if (!ordered)
1124                 return true;
1125
1126         btrfs_put_ordered_extent(ordered);
1127         unlock_extent(&inode->io_tree, start, end, cached_state);
1128
1129         return false;
1130 }
1131
1132 /* Split out a new ordered extent for this first @len bytes of @ordered. */
1133 struct btrfs_ordered_extent *btrfs_split_ordered_extent(
1134                         struct btrfs_ordered_extent *ordered, u64 len)
1135 {
1136         struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1137         struct btrfs_root *root = inode->root;
1138         struct btrfs_fs_info *fs_info = root->fs_info;
1139         u64 file_offset = ordered->file_offset;
1140         u64 disk_bytenr = ordered->disk_bytenr;
1141         unsigned long flags = ordered->flags;
1142         struct btrfs_ordered_sum *sum, *tmpsum;
1143         struct btrfs_ordered_extent *new;
1144         struct rb_node *node;
1145         u64 offset = 0;
1146
1147         trace_btrfs_ordered_extent_split(inode, ordered);
1148
1149         ASSERT(!(flags & (1U << BTRFS_ORDERED_COMPRESSED)));
1150
1151         /*
1152          * The entire bio must be covered by the ordered extent, but we can't
1153          * reduce the original extent to a zero length either.
1154          */
1155         if (WARN_ON_ONCE(len >= ordered->num_bytes))
1156                 return ERR_PTR(-EINVAL);
1157         /* We cannot split partially completed ordered extents. */
1158         if (ordered->bytes_left) {
1159                 ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS));
1160                 if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes))
1161                         return ERR_PTR(-EINVAL);
1162         }
1163         /* We cannot split a compressed ordered extent. */
1164         if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes))
1165                 return ERR_PTR(-EINVAL);
1166
1167         new = alloc_ordered_extent(inode, file_offset, len, len, disk_bytenr,
1168                                    len, 0, flags, ordered->compress_type);
1169         if (IS_ERR(new))
1170                 return new;
1171
1172         /* One ref for the tree. */
1173         refcount_inc(&new->refs);
1174
1175         spin_lock_irq(&root->ordered_extent_lock);
1176         spin_lock(&inode->ordered_tree_lock);
1177         /* Remove from tree once */
1178         node = &ordered->rb_node;
1179         rb_erase(node, &inode->ordered_tree);
1180         RB_CLEAR_NODE(node);
1181         if (inode->ordered_tree_last == node)
1182                 inode->ordered_tree_last = NULL;
1183
1184         ordered->file_offset += len;
1185         ordered->disk_bytenr += len;
1186         ordered->num_bytes -= len;
1187         ordered->disk_num_bytes -= len;
1188
1189         if (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags)) {
1190                 ASSERT(ordered->bytes_left == 0);
1191                 new->bytes_left = 0;
1192         } else {
1193                 ordered->bytes_left -= len;
1194         }
1195
1196         if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) {
1197                 if (ordered->truncated_len > len) {
1198                         ordered->truncated_len -= len;
1199                 } else {
1200                         new->truncated_len = ordered->truncated_len;
1201                         ordered->truncated_len = 0;
1202                 }
1203         }
1204
1205         list_for_each_entry_safe(sum, tmpsum, &ordered->list, list) {
1206                 if (offset == len)
1207                         break;
1208                 list_move_tail(&sum->list, &new->list);
1209                 offset += sum->len;
1210         }
1211
1212         /* Re-insert the node */
1213         node = tree_insert(&inode->ordered_tree, ordered->file_offset,
1214                            &ordered->rb_node);
1215         if (node)
1216                 btrfs_panic(fs_info, -EEXIST,
1217                         "zoned: inconsistency in ordered tree at offset %llu",
1218                         ordered->file_offset);
1219
1220         node = tree_insert(&inode->ordered_tree, new->file_offset, &new->rb_node);
1221         if (node)
1222                 btrfs_panic(fs_info, -EEXIST,
1223                         "zoned: inconsistency in ordered tree at offset %llu",
1224                         new->file_offset);
1225         spin_unlock(&inode->ordered_tree_lock);
1226
1227         list_add_tail(&new->root_extent_list, &root->ordered_extents);
1228         root->nr_ordered_extents++;
1229         spin_unlock_irq(&root->ordered_extent_lock);
1230         return new;
1231 }
1232
1233 int __init ordered_data_init(void)
1234 {
1235         btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1236                                      sizeof(struct btrfs_ordered_extent), 0,
1237                                      SLAB_MEM_SPREAD,
1238                                      NULL);
1239         if (!btrfs_ordered_extent_cache)
1240                 return -ENOMEM;
1241
1242         return 0;
1243 }
1244
1245 void __cold ordered_data_exit(void)
1246 {
1247         kmem_cache_destroy(btrfs_ordered_extent_cache);
1248 }