2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/aio.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/xattr.h>
38 #include <linux/posix_acl.h>
39 #include <linux/falloc.h>
40 #include <linux/slab.h>
41 #include <linux/ratelimit.h>
42 #include <linux/mount.h>
43 #include <linux/btrfs.h>
44 #include <linux/blkdev.h>
45 #include <linux/posix_acl_xattr.h>
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
55 #include "compression.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
63 struct btrfs_iget_args {
64 struct btrfs_key *location;
65 struct btrfs_root *root;
68 static const struct inode_operations btrfs_dir_inode_operations;
69 static const struct inode_operations btrfs_symlink_inode_operations;
70 static const struct inode_operations btrfs_dir_ro_inode_operations;
71 static const struct inode_operations btrfs_special_inode_operations;
72 static const struct inode_operations btrfs_file_inode_operations;
73 static const struct address_space_operations btrfs_aops;
74 static const struct address_space_operations btrfs_symlink_aops;
75 static const struct file_operations btrfs_dir_file_operations;
76 static struct extent_io_ops btrfs_extent_io_ops;
78 static struct kmem_cache *btrfs_inode_cachep;
79 static struct kmem_cache *btrfs_delalloc_work_cachep;
80 struct kmem_cache *btrfs_trans_handle_cachep;
81 struct kmem_cache *btrfs_transaction_cachep;
82 struct kmem_cache *btrfs_path_cachep;
83 struct kmem_cache *btrfs_free_space_cachep;
86 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
87 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
88 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
89 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
90 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
91 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
92 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
93 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
96 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
97 static int btrfs_truncate(struct inode *inode);
98 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
99 static noinline int cow_file_range(struct inode *inode,
100 struct page *locked_page,
101 u64 start, u64 end, int *page_started,
102 unsigned long *nr_written, int unlock);
103 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
104 u64 len, u64 orig_start,
105 u64 block_start, u64 block_len,
106 u64 orig_block_len, u64 ram_bytes,
109 static int btrfs_dirty_inode(struct inode *inode);
111 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
112 struct inode *inode, struct inode *dir,
113 const struct qstr *qstr)
117 err = btrfs_init_acl(trans, inode, dir);
119 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
124 * this does all the hard work for inserting an inline extent into
125 * the btree. The caller should have done a btrfs_drop_extents so that
126 * no overlapping inline items exist in the btree
128 static int insert_inline_extent(struct btrfs_trans_handle *trans,
129 struct btrfs_path *path, int extent_inserted,
130 struct btrfs_root *root, struct inode *inode,
131 u64 start, size_t size, size_t compressed_size,
133 struct page **compressed_pages)
135 struct extent_buffer *leaf;
136 struct page *page = NULL;
139 struct btrfs_file_extent_item *ei;
142 size_t cur_size = size;
143 unsigned long offset;
145 if (compressed_size && compressed_pages)
146 cur_size = compressed_size;
148 inode_add_bytes(inode, size);
150 if (!extent_inserted) {
151 struct btrfs_key key;
154 key.objectid = btrfs_ino(inode);
156 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
158 datasize = btrfs_file_extent_calc_inline_size(cur_size);
159 path->leave_spinning = 1;
160 ret = btrfs_insert_empty_item(trans, root, path, &key,
167 leaf = path->nodes[0];
168 ei = btrfs_item_ptr(leaf, path->slots[0],
169 struct btrfs_file_extent_item);
170 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
171 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
172 btrfs_set_file_extent_encryption(leaf, ei, 0);
173 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
174 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
175 ptr = btrfs_file_extent_inline_start(ei);
177 if (compress_type != BTRFS_COMPRESS_NONE) {
180 while (compressed_size > 0) {
181 cpage = compressed_pages[i];
182 cur_size = min_t(unsigned long, compressed_size,
185 kaddr = kmap_atomic(cpage);
186 write_extent_buffer(leaf, kaddr, ptr, cur_size);
187 kunmap_atomic(kaddr);
191 compressed_size -= cur_size;
193 btrfs_set_file_extent_compression(leaf, ei,
196 page = find_get_page(inode->i_mapping,
197 start >> PAGE_CACHE_SHIFT);
198 btrfs_set_file_extent_compression(leaf, ei, 0);
199 kaddr = kmap_atomic(page);
200 offset = start & (PAGE_CACHE_SIZE - 1);
201 write_extent_buffer(leaf, kaddr + offset, ptr, size);
202 kunmap_atomic(kaddr);
203 page_cache_release(page);
205 btrfs_mark_buffer_dirty(leaf);
206 btrfs_release_path(path);
209 * we're an inline extent, so nobody can
210 * extend the file past i_size without locking
211 * a page we already have locked.
213 * We must do any isize and inode updates
214 * before we unlock the pages. Otherwise we
215 * could end up racing with unlink.
217 BTRFS_I(inode)->disk_i_size = inode->i_size;
218 ret = btrfs_update_inode(trans, root, inode);
227 * conditionally insert an inline extent into the file. This
228 * does the checks required to make sure the data is small enough
229 * to fit as an inline extent.
231 static noinline int cow_file_range_inline(struct btrfs_root *root,
232 struct inode *inode, u64 start,
233 u64 end, size_t compressed_size,
235 struct page **compressed_pages)
237 struct btrfs_trans_handle *trans;
238 u64 isize = i_size_read(inode);
239 u64 actual_end = min(end + 1, isize);
240 u64 inline_len = actual_end - start;
241 u64 aligned_end = ALIGN(end, root->sectorsize);
242 u64 data_len = inline_len;
244 struct btrfs_path *path;
245 int extent_inserted = 0;
246 u32 extent_item_size;
249 data_len = compressed_size;
252 actual_end >= PAGE_CACHE_SIZE ||
253 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
255 (actual_end & (root->sectorsize - 1)) == 0) ||
257 data_len > root->fs_info->max_inline) {
261 path = btrfs_alloc_path();
265 trans = btrfs_join_transaction(root);
267 btrfs_free_path(path);
268 return PTR_ERR(trans);
270 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
272 if (compressed_size && compressed_pages)
273 extent_item_size = btrfs_file_extent_calc_inline_size(
276 extent_item_size = btrfs_file_extent_calc_inline_size(
279 ret = __btrfs_drop_extents(trans, root, inode, path,
280 start, aligned_end, NULL,
281 1, 1, extent_item_size, &extent_inserted);
283 btrfs_abort_transaction(trans, root, ret);
287 if (isize > actual_end)
288 inline_len = min_t(u64, isize, actual_end);
289 ret = insert_inline_extent(trans, path, extent_inserted,
291 inline_len, compressed_size,
292 compress_type, compressed_pages);
293 if (ret && ret != -ENOSPC) {
294 btrfs_abort_transaction(trans, root, ret);
296 } else if (ret == -ENOSPC) {
301 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
302 btrfs_delalloc_release_metadata(inode, end + 1 - start);
303 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
305 btrfs_free_path(path);
306 btrfs_end_transaction(trans, root);
310 struct async_extent {
315 unsigned long nr_pages;
317 struct list_head list;
322 struct btrfs_root *root;
323 struct page *locked_page;
326 struct list_head extents;
327 struct btrfs_work work;
330 static noinline int add_async_extent(struct async_cow *cow,
331 u64 start, u64 ram_size,
334 unsigned long nr_pages,
337 struct async_extent *async_extent;
339 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
340 BUG_ON(!async_extent); /* -ENOMEM */
341 async_extent->start = start;
342 async_extent->ram_size = ram_size;
343 async_extent->compressed_size = compressed_size;
344 async_extent->pages = pages;
345 async_extent->nr_pages = nr_pages;
346 async_extent->compress_type = compress_type;
347 list_add_tail(&async_extent->list, &cow->extents);
352 * we create compressed extents in two phases. The first
353 * phase compresses a range of pages that have already been
354 * locked (both pages and state bits are locked).
356 * This is done inside an ordered work queue, and the compression
357 * is spread across many cpus. The actual IO submission is step
358 * two, and the ordered work queue takes care of making sure that
359 * happens in the same order things were put onto the queue by
360 * writepages and friends.
362 * If this code finds it can't get good compression, it puts an
363 * entry onto the work queue to write the uncompressed bytes. This
364 * makes sure that both compressed inodes and uncompressed inodes
365 * are written in the same order that the flusher thread sent them
368 static noinline int compress_file_range(struct inode *inode,
369 struct page *locked_page,
371 struct async_cow *async_cow,
374 struct btrfs_root *root = BTRFS_I(inode)->root;
376 u64 blocksize = root->sectorsize;
378 u64 isize = i_size_read(inode);
380 struct page **pages = NULL;
381 unsigned long nr_pages;
382 unsigned long nr_pages_ret = 0;
383 unsigned long total_compressed = 0;
384 unsigned long total_in = 0;
385 unsigned long max_compressed = 128 * 1024;
386 unsigned long max_uncompressed = 128 * 1024;
389 int compress_type = root->fs_info->compress_type;
392 /* if this is a small write inside eof, kick off a defrag */
393 if ((end - start + 1) < 16 * 1024 &&
394 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
395 btrfs_add_inode_defrag(NULL, inode);
398 * skip compression for a small file range(<=blocksize) that
399 * isn't an inline extent, since it dosen't save disk space at all.
401 if ((end - start + 1) <= blocksize &&
402 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
403 goto cleanup_and_bail_uncompressed;
405 actual_end = min_t(u64, isize, end + 1);
408 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
409 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
412 * we don't want to send crud past the end of i_size through
413 * compression, that's just a waste of CPU time. So, if the
414 * end of the file is before the start of our current
415 * requested range of bytes, we bail out to the uncompressed
416 * cleanup code that can deal with all of this.
418 * It isn't really the fastest way to fix things, but this is a
419 * very uncommon corner.
421 if (actual_end <= start)
422 goto cleanup_and_bail_uncompressed;
424 total_compressed = actual_end - start;
426 /* we want to make sure that amount of ram required to uncompress
427 * an extent is reasonable, so we limit the total size in ram
428 * of a compressed extent to 128k. This is a crucial number
429 * because it also controls how easily we can spread reads across
430 * cpus for decompression.
432 * We also want to make sure the amount of IO required to do
433 * a random read is reasonably small, so we limit the size of
434 * a compressed extent to 128k.
436 total_compressed = min(total_compressed, max_uncompressed);
437 num_bytes = ALIGN(end - start + 1, blocksize);
438 num_bytes = max(blocksize, num_bytes);
443 * we do compression for mount -o compress and when the
444 * inode has not been flagged as nocompress. This flag can
445 * change at any time if we discover bad compression ratios.
447 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
448 (btrfs_test_opt(root, COMPRESS) ||
449 (BTRFS_I(inode)->force_compress) ||
450 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
452 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
454 /* just bail out to the uncompressed code */
458 if (BTRFS_I(inode)->force_compress)
459 compress_type = BTRFS_I(inode)->force_compress;
462 * we need to call clear_page_dirty_for_io on each
463 * page in the range. Otherwise applications with the file
464 * mmap'd can wander in and change the page contents while
465 * we are compressing them.
467 * If the compression fails for any reason, we set the pages
468 * dirty again later on.
470 extent_range_clear_dirty_for_io(inode, start, end);
472 ret = btrfs_compress_pages(compress_type,
473 inode->i_mapping, start,
474 total_compressed, pages,
475 nr_pages, &nr_pages_ret,
481 unsigned long offset = total_compressed &
482 (PAGE_CACHE_SIZE - 1);
483 struct page *page = pages[nr_pages_ret - 1];
486 /* zero the tail end of the last page, we might be
487 * sending it down to disk
490 kaddr = kmap_atomic(page);
491 memset(kaddr + offset, 0,
492 PAGE_CACHE_SIZE - offset);
493 kunmap_atomic(kaddr);
500 /* lets try to make an inline extent */
501 if (ret || total_in < (actual_end - start)) {
502 /* we didn't compress the entire range, try
503 * to make an uncompressed inline extent.
505 ret = cow_file_range_inline(root, inode, start, end,
508 /* try making a compressed inline extent */
509 ret = cow_file_range_inline(root, inode, start, end,
511 compress_type, pages);
514 unsigned long clear_flags = EXTENT_DELALLOC |
516 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
519 * inline extent creation worked or returned error,
520 * we don't need to create any more async work items.
521 * Unlock and free up our temp pages.
523 extent_clear_unlock_delalloc(inode, start, end, NULL,
524 clear_flags, PAGE_UNLOCK |
534 * we aren't doing an inline extent round the compressed size
535 * up to a block size boundary so the allocator does sane
538 total_compressed = ALIGN(total_compressed, blocksize);
541 * one last check to make sure the compression is really a
542 * win, compare the page count read with the blocks on disk
544 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
545 if (total_compressed >= total_in) {
548 num_bytes = total_in;
551 if (!will_compress && pages) {
553 * the compression code ran but failed to make things smaller,
554 * free any pages it allocated and our page pointer array
556 for (i = 0; i < nr_pages_ret; i++) {
557 WARN_ON(pages[i]->mapping);
558 page_cache_release(pages[i]);
562 total_compressed = 0;
565 /* flag the file so we don't compress in the future */
566 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
567 !(BTRFS_I(inode)->force_compress)) {
568 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
574 /* the async work queues will take care of doing actual
575 * allocation on disk for these compressed pages,
576 * and will submit them to the elevator.
578 add_async_extent(async_cow, start, num_bytes,
579 total_compressed, pages, nr_pages_ret,
582 if (start + num_bytes < end) {
589 cleanup_and_bail_uncompressed:
591 * No compression, but we still need to write the pages in
592 * the file we've been given so far. redirty the locked
593 * page if it corresponds to our extent and set things up
594 * for the async work queue to run cow_file_range to do
595 * the normal delalloc dance
597 if (page_offset(locked_page) >= start &&
598 page_offset(locked_page) <= end) {
599 __set_page_dirty_nobuffers(locked_page);
600 /* unlocked later on in the async handlers */
603 extent_range_redirty_for_io(inode, start, end);
604 add_async_extent(async_cow, start, end - start + 1,
605 0, NULL, 0, BTRFS_COMPRESS_NONE);
613 for (i = 0; i < nr_pages_ret; i++) {
614 WARN_ON(pages[i]->mapping);
615 page_cache_release(pages[i]);
623 * phase two of compressed writeback. This is the ordered portion
624 * of the code, which only gets called in the order the work was
625 * queued. We walk all the async extents created by compress_file_range
626 * and send them down to the disk.
628 static noinline int submit_compressed_extents(struct inode *inode,
629 struct async_cow *async_cow)
631 struct async_extent *async_extent;
633 struct btrfs_key ins;
634 struct extent_map *em;
635 struct btrfs_root *root = BTRFS_I(inode)->root;
636 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
637 struct extent_io_tree *io_tree;
640 if (list_empty(&async_cow->extents))
644 while (!list_empty(&async_cow->extents)) {
645 async_extent = list_entry(async_cow->extents.next,
646 struct async_extent, list);
647 list_del(&async_extent->list);
649 io_tree = &BTRFS_I(inode)->io_tree;
652 /* did the compression code fall back to uncompressed IO? */
653 if (!async_extent->pages) {
654 int page_started = 0;
655 unsigned long nr_written = 0;
657 lock_extent(io_tree, async_extent->start,
658 async_extent->start +
659 async_extent->ram_size - 1);
661 /* allocate blocks */
662 ret = cow_file_range(inode, async_cow->locked_page,
664 async_extent->start +
665 async_extent->ram_size - 1,
666 &page_started, &nr_written, 0);
671 * if page_started, cow_file_range inserted an
672 * inline extent and took care of all the unlocking
673 * and IO for us. Otherwise, we need to submit
674 * all those pages down to the drive.
676 if (!page_started && !ret)
677 extent_write_locked_range(io_tree,
678 inode, async_extent->start,
679 async_extent->start +
680 async_extent->ram_size - 1,
684 unlock_page(async_cow->locked_page);
690 lock_extent(io_tree, async_extent->start,
691 async_extent->start + async_extent->ram_size - 1);
693 ret = btrfs_reserve_extent(root,
694 async_extent->compressed_size,
695 async_extent->compressed_size,
696 0, alloc_hint, &ins, 1, 1);
700 for (i = 0; i < async_extent->nr_pages; i++) {
701 WARN_ON(async_extent->pages[i]->mapping);
702 page_cache_release(async_extent->pages[i]);
704 kfree(async_extent->pages);
705 async_extent->nr_pages = 0;
706 async_extent->pages = NULL;
708 if (ret == -ENOSPC) {
709 unlock_extent(io_tree, async_extent->start,
710 async_extent->start +
711 async_extent->ram_size - 1);
718 * here we're doing allocation and writeback of the
721 btrfs_drop_extent_cache(inode, async_extent->start,
722 async_extent->start +
723 async_extent->ram_size - 1, 0);
725 em = alloc_extent_map();
728 goto out_free_reserve;
730 em->start = async_extent->start;
731 em->len = async_extent->ram_size;
732 em->orig_start = em->start;
733 em->mod_start = em->start;
734 em->mod_len = em->len;
736 em->block_start = ins.objectid;
737 em->block_len = ins.offset;
738 em->orig_block_len = ins.offset;
739 em->ram_bytes = async_extent->ram_size;
740 em->bdev = root->fs_info->fs_devices->latest_bdev;
741 em->compress_type = async_extent->compress_type;
742 set_bit(EXTENT_FLAG_PINNED, &em->flags);
743 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
747 write_lock(&em_tree->lock);
748 ret = add_extent_mapping(em_tree, em, 1);
749 write_unlock(&em_tree->lock);
750 if (ret != -EEXIST) {
754 btrfs_drop_extent_cache(inode, async_extent->start,
755 async_extent->start +
756 async_extent->ram_size - 1, 0);
760 goto out_free_reserve;
762 ret = btrfs_add_ordered_extent_compress(inode,
765 async_extent->ram_size,
767 BTRFS_ORDERED_COMPRESSED,
768 async_extent->compress_type);
770 goto out_free_reserve;
773 * clear dirty, set writeback and unlock the pages.
775 extent_clear_unlock_delalloc(inode, async_extent->start,
776 async_extent->start +
777 async_extent->ram_size - 1,
778 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
779 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
781 ret = btrfs_submit_compressed_write(inode,
783 async_extent->ram_size,
785 ins.offset, async_extent->pages,
786 async_extent->nr_pages);
787 alloc_hint = ins.objectid + ins.offset;
797 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
799 extent_clear_unlock_delalloc(inode, async_extent->start,
800 async_extent->start +
801 async_extent->ram_size - 1,
802 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
803 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
804 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
805 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
810 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
813 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
814 struct extent_map *em;
817 read_lock(&em_tree->lock);
818 em = search_extent_mapping(em_tree, start, num_bytes);
821 * if block start isn't an actual block number then find the
822 * first block in this inode and use that as a hint. If that
823 * block is also bogus then just don't worry about it.
825 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
827 em = search_extent_mapping(em_tree, 0, 0);
828 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
829 alloc_hint = em->block_start;
833 alloc_hint = em->block_start;
837 read_unlock(&em_tree->lock);
843 * when extent_io.c finds a delayed allocation range in the file,
844 * the call backs end up in this code. The basic idea is to
845 * allocate extents on disk for the range, and create ordered data structs
846 * in ram to track those extents.
848 * locked_page is the page that writepage had locked already. We use
849 * it to make sure we don't do extra locks or unlocks.
851 * *page_started is set to one if we unlock locked_page and do everything
852 * required to start IO on it. It may be clean and already done with
855 static noinline int cow_file_range(struct inode *inode,
856 struct page *locked_page,
857 u64 start, u64 end, int *page_started,
858 unsigned long *nr_written,
861 struct btrfs_root *root = BTRFS_I(inode)->root;
864 unsigned long ram_size;
867 u64 blocksize = root->sectorsize;
868 struct btrfs_key ins;
869 struct extent_map *em;
870 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
873 if (btrfs_is_free_space_inode(inode)) {
879 num_bytes = ALIGN(end - start + 1, blocksize);
880 num_bytes = max(blocksize, num_bytes);
881 disk_num_bytes = num_bytes;
883 /* if this is a small write inside eof, kick off defrag */
884 if (num_bytes < 64 * 1024 &&
885 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
886 btrfs_add_inode_defrag(NULL, inode);
889 /* lets try to make an inline extent */
890 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
893 extent_clear_unlock_delalloc(inode, start, end, NULL,
894 EXTENT_LOCKED | EXTENT_DELALLOC |
895 EXTENT_DEFRAG, PAGE_UNLOCK |
896 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
899 *nr_written = *nr_written +
900 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
903 } else if (ret < 0) {
908 BUG_ON(disk_num_bytes >
909 btrfs_super_total_bytes(root->fs_info->super_copy));
911 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
912 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
914 while (disk_num_bytes > 0) {
917 cur_alloc_size = disk_num_bytes;
918 ret = btrfs_reserve_extent(root, cur_alloc_size,
919 root->sectorsize, 0, alloc_hint,
924 em = alloc_extent_map();
930 em->orig_start = em->start;
931 ram_size = ins.offset;
932 em->len = ins.offset;
933 em->mod_start = em->start;
934 em->mod_len = em->len;
936 em->block_start = ins.objectid;
937 em->block_len = ins.offset;
938 em->orig_block_len = ins.offset;
939 em->ram_bytes = ram_size;
940 em->bdev = root->fs_info->fs_devices->latest_bdev;
941 set_bit(EXTENT_FLAG_PINNED, &em->flags);
945 write_lock(&em_tree->lock);
946 ret = add_extent_mapping(em_tree, em, 1);
947 write_unlock(&em_tree->lock);
948 if (ret != -EEXIST) {
952 btrfs_drop_extent_cache(inode, start,
953 start + ram_size - 1, 0);
958 cur_alloc_size = ins.offset;
959 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
960 ram_size, cur_alloc_size, 0);
964 if (root->root_key.objectid ==
965 BTRFS_DATA_RELOC_TREE_OBJECTID) {
966 ret = btrfs_reloc_clone_csums(inode, start,
972 if (disk_num_bytes < cur_alloc_size)
975 /* we're not doing compressed IO, don't unlock the first
976 * page (which the caller expects to stay locked), don't
977 * clear any dirty bits and don't set any writeback bits
979 * Do set the Private2 bit so we know this page was properly
980 * setup for writepage
982 op = unlock ? PAGE_UNLOCK : 0;
983 op |= PAGE_SET_PRIVATE2;
985 extent_clear_unlock_delalloc(inode, start,
986 start + ram_size - 1, locked_page,
987 EXTENT_LOCKED | EXTENT_DELALLOC,
989 disk_num_bytes -= cur_alloc_size;
990 num_bytes -= cur_alloc_size;
991 alloc_hint = ins.objectid + ins.offset;
992 start += cur_alloc_size;
998 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
1000 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1001 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1002 EXTENT_DELALLOC | EXTENT_DEFRAG,
1003 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1004 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
1009 * work queue call back to started compression on a file and pages
1011 static noinline void async_cow_start(struct btrfs_work *work)
1013 struct async_cow *async_cow;
1015 async_cow = container_of(work, struct async_cow, work);
1017 compress_file_range(async_cow->inode, async_cow->locked_page,
1018 async_cow->start, async_cow->end, async_cow,
1020 if (num_added == 0) {
1021 btrfs_add_delayed_iput(async_cow->inode);
1022 async_cow->inode = NULL;
1027 * work queue call back to submit previously compressed pages
1029 static noinline void async_cow_submit(struct btrfs_work *work)
1031 struct async_cow *async_cow;
1032 struct btrfs_root *root;
1033 unsigned long nr_pages;
1035 async_cow = container_of(work, struct async_cow, work);
1037 root = async_cow->root;
1038 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1041 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1043 waitqueue_active(&root->fs_info->async_submit_wait))
1044 wake_up(&root->fs_info->async_submit_wait);
1046 if (async_cow->inode)
1047 submit_compressed_extents(async_cow->inode, async_cow);
1050 static noinline void async_cow_free(struct btrfs_work *work)
1052 struct async_cow *async_cow;
1053 async_cow = container_of(work, struct async_cow, work);
1054 if (async_cow->inode)
1055 btrfs_add_delayed_iput(async_cow->inode);
1059 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1060 u64 start, u64 end, int *page_started,
1061 unsigned long *nr_written)
1063 struct async_cow *async_cow;
1064 struct btrfs_root *root = BTRFS_I(inode)->root;
1065 unsigned long nr_pages;
1067 int limit = 10 * 1024 * 1024;
1069 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1070 1, 0, NULL, GFP_NOFS);
1071 while (start < end) {
1072 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1073 BUG_ON(!async_cow); /* -ENOMEM */
1074 async_cow->inode = igrab(inode);
1075 async_cow->root = root;
1076 async_cow->locked_page = locked_page;
1077 async_cow->start = start;
1079 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
1082 cur_end = min(end, start + 512 * 1024 - 1);
1084 async_cow->end = cur_end;
1085 INIT_LIST_HEAD(&async_cow->extents);
1087 btrfs_init_work(&async_cow->work, async_cow_start,
1088 async_cow_submit, async_cow_free);
1090 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1092 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1094 btrfs_queue_work(root->fs_info->delalloc_workers,
1097 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1098 wait_event(root->fs_info->async_submit_wait,
1099 (atomic_read(&root->fs_info->async_delalloc_pages) <
1103 while (atomic_read(&root->fs_info->async_submit_draining) &&
1104 atomic_read(&root->fs_info->async_delalloc_pages)) {
1105 wait_event(root->fs_info->async_submit_wait,
1106 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1110 *nr_written += nr_pages;
1111 start = cur_end + 1;
1117 static noinline int csum_exist_in_range(struct btrfs_root *root,
1118 u64 bytenr, u64 num_bytes)
1121 struct btrfs_ordered_sum *sums;
1124 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1125 bytenr + num_bytes - 1, &list, 0);
1126 if (ret == 0 && list_empty(&list))
1129 while (!list_empty(&list)) {
1130 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1131 list_del(&sums->list);
1138 * when nowcow writeback call back. This checks for snapshots or COW copies
1139 * of the extents that exist in the file, and COWs the file as required.
1141 * If no cow copies or snapshots exist, we write directly to the existing
1144 static noinline int run_delalloc_nocow(struct inode *inode,
1145 struct page *locked_page,
1146 u64 start, u64 end, int *page_started, int force,
1147 unsigned long *nr_written)
1149 struct btrfs_root *root = BTRFS_I(inode)->root;
1150 struct btrfs_trans_handle *trans;
1151 struct extent_buffer *leaf;
1152 struct btrfs_path *path;
1153 struct btrfs_file_extent_item *fi;
1154 struct btrfs_key found_key;
1169 u64 ino = btrfs_ino(inode);
1171 path = btrfs_alloc_path();
1173 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1174 EXTENT_LOCKED | EXTENT_DELALLOC |
1175 EXTENT_DO_ACCOUNTING |
1176 EXTENT_DEFRAG, PAGE_UNLOCK |
1178 PAGE_SET_WRITEBACK |
1179 PAGE_END_WRITEBACK);
1183 nolock = btrfs_is_free_space_inode(inode);
1186 trans = btrfs_join_transaction_nolock(root);
1188 trans = btrfs_join_transaction(root);
1190 if (IS_ERR(trans)) {
1191 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1192 EXTENT_LOCKED | EXTENT_DELALLOC |
1193 EXTENT_DO_ACCOUNTING |
1194 EXTENT_DEFRAG, PAGE_UNLOCK |
1196 PAGE_SET_WRITEBACK |
1197 PAGE_END_WRITEBACK);
1198 btrfs_free_path(path);
1199 return PTR_ERR(trans);
1202 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1204 cow_start = (u64)-1;
1207 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1211 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1212 leaf = path->nodes[0];
1213 btrfs_item_key_to_cpu(leaf, &found_key,
1214 path->slots[0] - 1);
1215 if (found_key.objectid == ino &&
1216 found_key.type == BTRFS_EXTENT_DATA_KEY)
1221 leaf = path->nodes[0];
1222 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1223 ret = btrfs_next_leaf(root, path);
1228 leaf = path->nodes[0];
1234 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1236 if (found_key.objectid > ino ||
1237 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1238 found_key.offset > end)
1241 if (found_key.offset > cur_offset) {
1242 extent_end = found_key.offset;
1247 fi = btrfs_item_ptr(leaf, path->slots[0],
1248 struct btrfs_file_extent_item);
1249 extent_type = btrfs_file_extent_type(leaf, fi);
1251 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1252 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1253 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1254 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1255 extent_offset = btrfs_file_extent_offset(leaf, fi);
1256 extent_end = found_key.offset +
1257 btrfs_file_extent_num_bytes(leaf, fi);
1259 btrfs_file_extent_disk_num_bytes(leaf, fi);
1260 if (extent_end <= start) {
1264 if (disk_bytenr == 0)
1266 if (btrfs_file_extent_compression(leaf, fi) ||
1267 btrfs_file_extent_encryption(leaf, fi) ||
1268 btrfs_file_extent_other_encoding(leaf, fi))
1270 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1272 if (btrfs_extent_readonly(root, disk_bytenr))
1274 if (btrfs_cross_ref_exist(trans, root, ino,
1276 extent_offset, disk_bytenr))
1278 disk_bytenr += extent_offset;
1279 disk_bytenr += cur_offset - found_key.offset;
1280 num_bytes = min(end + 1, extent_end) - cur_offset;
1282 * if there are pending snapshots for this root,
1283 * we fall into common COW way.
1286 err = btrfs_start_nocow_write(root);
1291 * force cow if csum exists in the range.
1292 * this ensure that csum for a given extent are
1293 * either valid or do not exist.
1295 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1298 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1299 extent_end = found_key.offset +
1300 btrfs_file_extent_inline_len(leaf,
1301 path->slots[0], fi);
1302 extent_end = ALIGN(extent_end, root->sectorsize);
1307 if (extent_end <= start) {
1309 if (!nolock && nocow)
1310 btrfs_end_nocow_write(root);
1314 if (cow_start == (u64)-1)
1315 cow_start = cur_offset;
1316 cur_offset = extent_end;
1317 if (cur_offset > end)
1323 btrfs_release_path(path);
1324 if (cow_start != (u64)-1) {
1325 ret = cow_file_range(inode, locked_page,
1326 cow_start, found_key.offset - 1,
1327 page_started, nr_written, 1);
1329 if (!nolock && nocow)
1330 btrfs_end_nocow_write(root);
1333 cow_start = (u64)-1;
1336 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1337 struct extent_map *em;
1338 struct extent_map_tree *em_tree;
1339 em_tree = &BTRFS_I(inode)->extent_tree;
1340 em = alloc_extent_map();
1341 BUG_ON(!em); /* -ENOMEM */
1342 em->start = cur_offset;
1343 em->orig_start = found_key.offset - extent_offset;
1344 em->len = num_bytes;
1345 em->block_len = num_bytes;
1346 em->block_start = disk_bytenr;
1347 em->orig_block_len = disk_num_bytes;
1348 em->ram_bytes = ram_bytes;
1349 em->bdev = root->fs_info->fs_devices->latest_bdev;
1350 em->mod_start = em->start;
1351 em->mod_len = em->len;
1352 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1353 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1354 em->generation = -1;
1356 write_lock(&em_tree->lock);
1357 ret = add_extent_mapping(em_tree, em, 1);
1358 write_unlock(&em_tree->lock);
1359 if (ret != -EEXIST) {
1360 free_extent_map(em);
1363 btrfs_drop_extent_cache(inode, em->start,
1364 em->start + em->len - 1, 0);
1366 type = BTRFS_ORDERED_PREALLOC;
1368 type = BTRFS_ORDERED_NOCOW;
1371 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1372 num_bytes, num_bytes, type);
1373 BUG_ON(ret); /* -ENOMEM */
1375 if (root->root_key.objectid ==
1376 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1377 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1380 if (!nolock && nocow)
1381 btrfs_end_nocow_write(root);
1386 extent_clear_unlock_delalloc(inode, cur_offset,
1387 cur_offset + num_bytes - 1,
1388 locked_page, EXTENT_LOCKED |
1389 EXTENT_DELALLOC, PAGE_UNLOCK |
1391 if (!nolock && nocow)
1392 btrfs_end_nocow_write(root);
1393 cur_offset = extent_end;
1394 if (cur_offset > end)
1397 btrfs_release_path(path);
1399 if (cur_offset <= end && cow_start == (u64)-1) {
1400 cow_start = cur_offset;
1404 if (cow_start != (u64)-1) {
1405 ret = cow_file_range(inode, locked_page, cow_start, end,
1406 page_started, nr_written, 1);
1412 err = btrfs_end_transaction(trans, root);
1416 if (ret && cur_offset < end)
1417 extent_clear_unlock_delalloc(inode, cur_offset, end,
1418 locked_page, EXTENT_LOCKED |
1419 EXTENT_DELALLOC | EXTENT_DEFRAG |
1420 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1422 PAGE_SET_WRITEBACK |
1423 PAGE_END_WRITEBACK);
1424 btrfs_free_path(path);
1429 * extent_io.c call back to do delayed allocation processing
1431 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1432 u64 start, u64 end, int *page_started,
1433 unsigned long *nr_written)
1436 struct btrfs_root *root = BTRFS_I(inode)->root;
1438 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
1439 ret = run_delalloc_nocow(inode, locked_page, start, end,
1440 page_started, 1, nr_written);
1441 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
1442 ret = run_delalloc_nocow(inode, locked_page, start, end,
1443 page_started, 0, nr_written);
1444 } else if (!btrfs_test_opt(root, COMPRESS) &&
1445 !(BTRFS_I(inode)->force_compress) &&
1446 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
1447 ret = cow_file_range(inode, locked_page, start, end,
1448 page_started, nr_written, 1);
1450 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1451 &BTRFS_I(inode)->runtime_flags);
1452 ret = cow_file_range_async(inode, locked_page, start, end,
1453 page_started, nr_written);
1458 static void btrfs_split_extent_hook(struct inode *inode,
1459 struct extent_state *orig, u64 split)
1461 /* not delalloc, ignore it */
1462 if (!(orig->state & EXTENT_DELALLOC))
1465 spin_lock(&BTRFS_I(inode)->lock);
1466 BTRFS_I(inode)->outstanding_extents++;
1467 spin_unlock(&BTRFS_I(inode)->lock);
1471 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1472 * extents so we can keep track of new extents that are just merged onto old
1473 * extents, such as when we are doing sequential writes, so we can properly
1474 * account for the metadata space we'll need.
1476 static void btrfs_merge_extent_hook(struct inode *inode,
1477 struct extent_state *new,
1478 struct extent_state *other)
1480 /* not delalloc, ignore it */
1481 if (!(other->state & EXTENT_DELALLOC))
1484 spin_lock(&BTRFS_I(inode)->lock);
1485 BTRFS_I(inode)->outstanding_extents--;
1486 spin_unlock(&BTRFS_I(inode)->lock);
1489 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1490 struct inode *inode)
1492 spin_lock(&root->delalloc_lock);
1493 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1494 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1495 &root->delalloc_inodes);
1496 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1497 &BTRFS_I(inode)->runtime_flags);
1498 root->nr_delalloc_inodes++;
1499 if (root->nr_delalloc_inodes == 1) {
1500 spin_lock(&root->fs_info->delalloc_root_lock);
1501 BUG_ON(!list_empty(&root->delalloc_root));
1502 list_add_tail(&root->delalloc_root,
1503 &root->fs_info->delalloc_roots);
1504 spin_unlock(&root->fs_info->delalloc_root_lock);
1507 spin_unlock(&root->delalloc_lock);
1510 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1511 struct inode *inode)
1513 spin_lock(&root->delalloc_lock);
1514 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1515 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1516 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1517 &BTRFS_I(inode)->runtime_flags);
1518 root->nr_delalloc_inodes--;
1519 if (!root->nr_delalloc_inodes) {
1520 spin_lock(&root->fs_info->delalloc_root_lock);
1521 BUG_ON(list_empty(&root->delalloc_root));
1522 list_del_init(&root->delalloc_root);
1523 spin_unlock(&root->fs_info->delalloc_root_lock);
1526 spin_unlock(&root->delalloc_lock);
1530 * extent_io.c set_bit_hook, used to track delayed allocation
1531 * bytes in this file, and to maintain the list of inodes that
1532 * have pending delalloc work to be done.
1534 static void btrfs_set_bit_hook(struct inode *inode,
1535 struct extent_state *state, unsigned long *bits)
1539 * set_bit and clear bit hooks normally require _irqsave/restore
1540 * but in this case, we are only testing for the DELALLOC
1541 * bit, which is only set or cleared with irqs on
1543 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1544 struct btrfs_root *root = BTRFS_I(inode)->root;
1545 u64 len = state->end + 1 - state->start;
1546 bool do_list = !btrfs_is_free_space_inode(inode);
1548 if (*bits & EXTENT_FIRST_DELALLOC) {
1549 *bits &= ~EXTENT_FIRST_DELALLOC;
1551 spin_lock(&BTRFS_I(inode)->lock);
1552 BTRFS_I(inode)->outstanding_extents++;
1553 spin_unlock(&BTRFS_I(inode)->lock);
1556 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1557 root->fs_info->delalloc_batch);
1558 spin_lock(&BTRFS_I(inode)->lock);
1559 BTRFS_I(inode)->delalloc_bytes += len;
1560 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1561 &BTRFS_I(inode)->runtime_flags))
1562 btrfs_add_delalloc_inodes(root, inode);
1563 spin_unlock(&BTRFS_I(inode)->lock);
1568 * extent_io.c clear_bit_hook, see set_bit_hook for why
1570 static void btrfs_clear_bit_hook(struct inode *inode,
1571 struct extent_state *state,
1572 unsigned long *bits)
1575 * set_bit and clear bit hooks normally require _irqsave/restore
1576 * but in this case, we are only testing for the DELALLOC
1577 * bit, which is only set or cleared with irqs on
1579 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1580 struct btrfs_root *root = BTRFS_I(inode)->root;
1581 u64 len = state->end + 1 - state->start;
1582 bool do_list = !btrfs_is_free_space_inode(inode);
1584 if (*bits & EXTENT_FIRST_DELALLOC) {
1585 *bits &= ~EXTENT_FIRST_DELALLOC;
1586 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1587 spin_lock(&BTRFS_I(inode)->lock);
1588 BTRFS_I(inode)->outstanding_extents--;
1589 spin_unlock(&BTRFS_I(inode)->lock);
1593 * We don't reserve metadata space for space cache inodes so we
1594 * don't need to call dellalloc_release_metadata if there is an
1597 if (*bits & EXTENT_DO_ACCOUNTING &&
1598 root != root->fs_info->tree_root)
1599 btrfs_delalloc_release_metadata(inode, len);
1601 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1602 && do_list && !(state->state & EXTENT_NORESERVE))
1603 btrfs_free_reserved_data_space(inode, len);
1605 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1606 root->fs_info->delalloc_batch);
1607 spin_lock(&BTRFS_I(inode)->lock);
1608 BTRFS_I(inode)->delalloc_bytes -= len;
1609 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1610 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1611 &BTRFS_I(inode)->runtime_flags))
1612 btrfs_del_delalloc_inode(root, inode);
1613 spin_unlock(&BTRFS_I(inode)->lock);
1618 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1619 * we don't create bios that span stripes or chunks
1621 int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1622 size_t size, struct bio *bio,
1623 unsigned long bio_flags)
1625 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1626 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1631 if (bio_flags & EXTENT_BIO_COMPRESSED)
1634 length = bio->bi_iter.bi_size;
1635 map_length = length;
1636 ret = btrfs_map_block(root->fs_info, rw, logical,
1637 &map_length, NULL, 0);
1638 /* Will always return 0 with map_multi == NULL */
1640 if (map_length < length + size)
1646 * in order to insert checksums into the metadata in large chunks,
1647 * we wait until bio submission time. All the pages in the bio are
1648 * checksummed and sums are attached onto the ordered extent record.
1650 * At IO completion time the cums attached on the ordered extent record
1651 * are inserted into the btree
1653 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1654 struct bio *bio, int mirror_num,
1655 unsigned long bio_flags,
1658 struct btrfs_root *root = BTRFS_I(inode)->root;
1661 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1662 BUG_ON(ret); /* -ENOMEM */
1667 * in order to insert checksums into the metadata in large chunks,
1668 * we wait until bio submission time. All the pages in the bio are
1669 * checksummed and sums are attached onto the ordered extent record.
1671 * At IO completion time the cums attached on the ordered extent record
1672 * are inserted into the btree
1674 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1675 int mirror_num, unsigned long bio_flags,
1678 struct btrfs_root *root = BTRFS_I(inode)->root;
1681 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1683 bio_endio(bio, ret);
1688 * extent_io.c submission hook. This does the right thing for csum calculation
1689 * on write, or reading the csums from the tree before a read
1691 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1692 int mirror_num, unsigned long bio_flags,
1695 struct btrfs_root *root = BTRFS_I(inode)->root;
1699 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1701 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1703 if (btrfs_is_free_space_inode(inode))
1706 if (!(rw & REQ_WRITE)) {
1707 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1711 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1712 ret = btrfs_submit_compressed_read(inode, bio,
1716 } else if (!skip_sum) {
1717 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1722 } else if (async && !skip_sum) {
1723 /* csum items have already been cloned */
1724 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1726 /* we're doing a write, do the async checksumming */
1727 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1728 inode, rw, bio, mirror_num,
1729 bio_flags, bio_offset,
1730 __btrfs_submit_bio_start,
1731 __btrfs_submit_bio_done);
1733 } else if (!skip_sum) {
1734 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1740 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1744 bio_endio(bio, ret);
1749 * given a list of ordered sums record them in the inode. This happens
1750 * at IO completion time based on sums calculated at bio submission time.
1752 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1753 struct inode *inode, u64 file_offset,
1754 struct list_head *list)
1756 struct btrfs_ordered_sum *sum;
1758 list_for_each_entry(sum, list, list) {
1759 trans->adding_csums = 1;
1760 btrfs_csum_file_blocks(trans,
1761 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1762 trans->adding_csums = 0;
1767 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1768 struct extent_state **cached_state)
1770 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
1771 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1772 cached_state, GFP_NOFS);
1775 /* see btrfs_writepage_start_hook for details on why this is required */
1776 struct btrfs_writepage_fixup {
1778 struct btrfs_work work;
1781 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1783 struct btrfs_writepage_fixup *fixup;
1784 struct btrfs_ordered_extent *ordered;
1785 struct extent_state *cached_state = NULL;
1787 struct inode *inode;
1792 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1796 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1797 ClearPageChecked(page);
1801 inode = page->mapping->host;
1802 page_start = page_offset(page);
1803 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1805 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1808 /* already ordered? We're done */
1809 if (PagePrivate2(page))
1812 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1814 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1815 page_end, &cached_state, GFP_NOFS);
1817 btrfs_start_ordered_extent(inode, ordered, 1);
1818 btrfs_put_ordered_extent(ordered);
1822 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1824 mapping_set_error(page->mapping, ret);
1825 end_extent_writepage(page, ret, page_start, page_end);
1826 ClearPageChecked(page);
1830 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1831 ClearPageChecked(page);
1832 set_page_dirty(page);
1834 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1835 &cached_state, GFP_NOFS);
1838 page_cache_release(page);
1843 * There are a few paths in the higher layers of the kernel that directly
1844 * set the page dirty bit without asking the filesystem if it is a
1845 * good idea. This causes problems because we want to make sure COW
1846 * properly happens and the data=ordered rules are followed.
1848 * In our case any range that doesn't have the ORDERED bit set
1849 * hasn't been properly setup for IO. We kick off an async process
1850 * to fix it up. The async helper will wait for ordered extents, set
1851 * the delalloc bit and make it safe to write the page.
1853 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1855 struct inode *inode = page->mapping->host;
1856 struct btrfs_writepage_fixup *fixup;
1857 struct btrfs_root *root = BTRFS_I(inode)->root;
1859 /* this page is properly in the ordered list */
1860 if (TestClearPagePrivate2(page))
1863 if (PageChecked(page))
1866 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1870 SetPageChecked(page);
1871 page_cache_get(page);
1872 btrfs_init_work(&fixup->work, btrfs_writepage_fixup_worker, NULL, NULL);
1874 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
1878 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1879 struct inode *inode, u64 file_pos,
1880 u64 disk_bytenr, u64 disk_num_bytes,
1881 u64 num_bytes, u64 ram_bytes,
1882 u8 compression, u8 encryption,
1883 u16 other_encoding, int extent_type)
1885 struct btrfs_root *root = BTRFS_I(inode)->root;
1886 struct btrfs_file_extent_item *fi;
1887 struct btrfs_path *path;
1888 struct extent_buffer *leaf;
1889 struct btrfs_key ins;
1890 int extent_inserted = 0;
1893 path = btrfs_alloc_path();
1898 * we may be replacing one extent in the tree with another.
1899 * The new extent is pinned in the extent map, and we don't want
1900 * to drop it from the cache until it is completely in the btree.
1902 * So, tell btrfs_drop_extents to leave this extent in the cache.
1903 * the caller is expected to unpin it and allow it to be merged
1906 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
1907 file_pos + num_bytes, NULL, 0,
1908 1, sizeof(*fi), &extent_inserted);
1912 if (!extent_inserted) {
1913 ins.objectid = btrfs_ino(inode);
1914 ins.offset = file_pos;
1915 ins.type = BTRFS_EXTENT_DATA_KEY;
1917 path->leave_spinning = 1;
1918 ret = btrfs_insert_empty_item(trans, root, path, &ins,
1923 leaf = path->nodes[0];
1924 fi = btrfs_item_ptr(leaf, path->slots[0],
1925 struct btrfs_file_extent_item);
1926 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1927 btrfs_set_file_extent_type(leaf, fi, extent_type);
1928 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1929 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1930 btrfs_set_file_extent_offset(leaf, fi, 0);
1931 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1932 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1933 btrfs_set_file_extent_compression(leaf, fi, compression);
1934 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1935 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1937 btrfs_mark_buffer_dirty(leaf);
1938 btrfs_release_path(path);
1940 inode_add_bytes(inode, num_bytes);
1942 ins.objectid = disk_bytenr;
1943 ins.offset = disk_num_bytes;
1944 ins.type = BTRFS_EXTENT_ITEM_KEY;
1945 ret = btrfs_alloc_reserved_file_extent(trans, root,
1946 root->root_key.objectid,
1947 btrfs_ino(inode), file_pos, &ins);
1949 btrfs_free_path(path);
1954 /* snapshot-aware defrag */
1955 struct sa_defrag_extent_backref {
1956 struct rb_node node;
1957 struct old_sa_defrag_extent *old;
1966 struct old_sa_defrag_extent {
1967 struct list_head list;
1968 struct new_sa_defrag_extent *new;
1977 struct new_sa_defrag_extent {
1978 struct rb_root root;
1979 struct list_head head;
1980 struct btrfs_path *path;
1981 struct inode *inode;
1989 static int backref_comp(struct sa_defrag_extent_backref *b1,
1990 struct sa_defrag_extent_backref *b2)
1992 if (b1->root_id < b2->root_id)
1994 else if (b1->root_id > b2->root_id)
1997 if (b1->inum < b2->inum)
1999 else if (b1->inum > b2->inum)
2002 if (b1->file_pos < b2->file_pos)
2004 else if (b1->file_pos > b2->file_pos)
2008 * [------------------------------] ===> (a range of space)
2009 * |<--->| |<---->| =============> (fs/file tree A)
2010 * |<---------------------------->| ===> (fs/file tree B)
2012 * A range of space can refer to two file extents in one tree while
2013 * refer to only one file extent in another tree.
2015 * So we may process a disk offset more than one time(two extents in A)
2016 * and locate at the same extent(one extent in B), then insert two same
2017 * backrefs(both refer to the extent in B).
2022 static void backref_insert(struct rb_root *root,
2023 struct sa_defrag_extent_backref *backref)
2025 struct rb_node **p = &root->rb_node;
2026 struct rb_node *parent = NULL;
2027 struct sa_defrag_extent_backref *entry;
2032 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2034 ret = backref_comp(backref, entry);
2038 p = &(*p)->rb_right;
2041 rb_link_node(&backref->node, parent, p);
2042 rb_insert_color(&backref->node, root);
2046 * Note the backref might has changed, and in this case we just return 0.
2048 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2051 struct btrfs_file_extent_item *extent;
2052 struct btrfs_fs_info *fs_info;
2053 struct old_sa_defrag_extent *old = ctx;
2054 struct new_sa_defrag_extent *new = old->new;
2055 struct btrfs_path *path = new->path;
2056 struct btrfs_key key;
2057 struct btrfs_root *root;
2058 struct sa_defrag_extent_backref *backref;
2059 struct extent_buffer *leaf;
2060 struct inode *inode = new->inode;
2066 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2067 inum == btrfs_ino(inode))
2070 key.objectid = root_id;
2071 key.type = BTRFS_ROOT_ITEM_KEY;
2072 key.offset = (u64)-1;
2074 fs_info = BTRFS_I(inode)->root->fs_info;
2075 root = btrfs_read_fs_root_no_name(fs_info, &key);
2077 if (PTR_ERR(root) == -ENOENT)
2080 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2081 inum, offset, root_id);
2082 return PTR_ERR(root);
2085 key.objectid = inum;
2086 key.type = BTRFS_EXTENT_DATA_KEY;
2087 if (offset > (u64)-1 << 32)
2090 key.offset = offset;
2092 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2093 if (WARN_ON(ret < 0))
2100 leaf = path->nodes[0];
2101 slot = path->slots[0];
2103 if (slot >= btrfs_header_nritems(leaf)) {
2104 ret = btrfs_next_leaf(root, path);
2107 } else if (ret > 0) {
2116 btrfs_item_key_to_cpu(leaf, &key, slot);
2118 if (key.objectid > inum)
2121 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2124 extent = btrfs_item_ptr(leaf, slot,
2125 struct btrfs_file_extent_item);
2127 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2131 * 'offset' refers to the exact key.offset,
2132 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2133 * (key.offset - extent_offset).
2135 if (key.offset != offset)
2138 extent_offset = btrfs_file_extent_offset(leaf, extent);
2139 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2141 if (extent_offset >= old->extent_offset + old->offset +
2142 old->len || extent_offset + num_bytes <=
2143 old->extent_offset + old->offset)
2148 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2154 backref->root_id = root_id;
2155 backref->inum = inum;
2156 backref->file_pos = offset;
2157 backref->num_bytes = num_bytes;
2158 backref->extent_offset = extent_offset;
2159 backref->generation = btrfs_file_extent_generation(leaf, extent);
2161 backref_insert(&new->root, backref);
2164 btrfs_release_path(path);
2169 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2170 struct new_sa_defrag_extent *new)
2172 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2173 struct old_sa_defrag_extent *old, *tmp;
2178 list_for_each_entry_safe(old, tmp, &new->head, list) {
2179 ret = iterate_inodes_from_logical(old->bytenr +
2180 old->extent_offset, fs_info,
2181 path, record_one_backref,
2183 if (ret < 0 && ret != -ENOENT)
2186 /* no backref to be processed for this extent */
2188 list_del(&old->list);
2193 if (list_empty(&new->head))
2199 static int relink_is_mergable(struct extent_buffer *leaf,
2200 struct btrfs_file_extent_item *fi,
2201 struct new_sa_defrag_extent *new)
2203 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2206 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2209 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2212 if (btrfs_file_extent_encryption(leaf, fi) ||
2213 btrfs_file_extent_other_encoding(leaf, fi))
2220 * Note the backref might has changed, and in this case we just return 0.
2222 static noinline int relink_extent_backref(struct btrfs_path *path,
2223 struct sa_defrag_extent_backref *prev,
2224 struct sa_defrag_extent_backref *backref)
2226 struct btrfs_file_extent_item *extent;
2227 struct btrfs_file_extent_item *item;
2228 struct btrfs_ordered_extent *ordered;
2229 struct btrfs_trans_handle *trans;
2230 struct btrfs_fs_info *fs_info;
2231 struct btrfs_root *root;
2232 struct btrfs_key key;
2233 struct extent_buffer *leaf;
2234 struct old_sa_defrag_extent *old = backref->old;
2235 struct new_sa_defrag_extent *new = old->new;
2236 struct inode *src_inode = new->inode;
2237 struct inode *inode;
2238 struct extent_state *cached = NULL;
2247 if (prev && prev->root_id == backref->root_id &&
2248 prev->inum == backref->inum &&
2249 prev->file_pos + prev->num_bytes == backref->file_pos)
2252 /* step 1: get root */
2253 key.objectid = backref->root_id;
2254 key.type = BTRFS_ROOT_ITEM_KEY;
2255 key.offset = (u64)-1;
2257 fs_info = BTRFS_I(src_inode)->root->fs_info;
2258 index = srcu_read_lock(&fs_info->subvol_srcu);
2260 root = btrfs_read_fs_root_no_name(fs_info, &key);
2262 srcu_read_unlock(&fs_info->subvol_srcu, index);
2263 if (PTR_ERR(root) == -ENOENT)
2265 return PTR_ERR(root);
2268 if (btrfs_root_readonly(root)) {
2269 srcu_read_unlock(&fs_info->subvol_srcu, index);
2273 /* step 2: get inode */
2274 key.objectid = backref->inum;
2275 key.type = BTRFS_INODE_ITEM_KEY;
2278 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2279 if (IS_ERR(inode)) {
2280 srcu_read_unlock(&fs_info->subvol_srcu, index);
2284 srcu_read_unlock(&fs_info->subvol_srcu, index);
2286 /* step 3: relink backref */
2287 lock_start = backref->file_pos;
2288 lock_end = backref->file_pos + backref->num_bytes - 1;
2289 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2292 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2294 btrfs_put_ordered_extent(ordered);
2298 trans = btrfs_join_transaction(root);
2299 if (IS_ERR(trans)) {
2300 ret = PTR_ERR(trans);
2304 key.objectid = backref->inum;
2305 key.type = BTRFS_EXTENT_DATA_KEY;
2306 key.offset = backref->file_pos;
2308 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2311 } else if (ret > 0) {
2316 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2317 struct btrfs_file_extent_item);
2319 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2320 backref->generation)
2323 btrfs_release_path(path);
2325 start = backref->file_pos;
2326 if (backref->extent_offset < old->extent_offset + old->offset)
2327 start += old->extent_offset + old->offset -
2328 backref->extent_offset;
2330 len = min(backref->extent_offset + backref->num_bytes,
2331 old->extent_offset + old->offset + old->len);
2332 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2334 ret = btrfs_drop_extents(trans, root, inode, start,
2339 key.objectid = btrfs_ino(inode);
2340 key.type = BTRFS_EXTENT_DATA_KEY;
2343 path->leave_spinning = 1;
2345 struct btrfs_file_extent_item *fi;
2347 struct btrfs_key found_key;
2349 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2354 leaf = path->nodes[0];
2355 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2357 fi = btrfs_item_ptr(leaf, path->slots[0],
2358 struct btrfs_file_extent_item);
2359 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2361 if (extent_len + found_key.offset == start &&
2362 relink_is_mergable(leaf, fi, new)) {
2363 btrfs_set_file_extent_num_bytes(leaf, fi,
2365 btrfs_mark_buffer_dirty(leaf);
2366 inode_add_bytes(inode, len);
2372 btrfs_release_path(path);
2377 ret = btrfs_insert_empty_item(trans, root, path, &key,
2380 btrfs_abort_transaction(trans, root, ret);
2384 leaf = path->nodes[0];
2385 item = btrfs_item_ptr(leaf, path->slots[0],
2386 struct btrfs_file_extent_item);
2387 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2388 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2389 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2390 btrfs_set_file_extent_num_bytes(leaf, item, len);
2391 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2392 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2393 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2394 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2395 btrfs_set_file_extent_encryption(leaf, item, 0);
2396 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2398 btrfs_mark_buffer_dirty(leaf);
2399 inode_add_bytes(inode, len);
2400 btrfs_release_path(path);
2402 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2404 backref->root_id, backref->inum,
2405 new->file_pos, 0); /* start - extent_offset */
2407 btrfs_abort_transaction(trans, root, ret);
2413 btrfs_release_path(path);
2414 path->leave_spinning = 0;
2415 btrfs_end_transaction(trans, root);
2417 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2423 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2425 struct old_sa_defrag_extent *old, *tmp;
2430 list_for_each_entry_safe(old, tmp, &new->head, list) {
2431 list_del(&old->list);
2437 static void relink_file_extents(struct new_sa_defrag_extent *new)
2439 struct btrfs_path *path;
2440 struct sa_defrag_extent_backref *backref;
2441 struct sa_defrag_extent_backref *prev = NULL;
2442 struct inode *inode;
2443 struct btrfs_root *root;
2444 struct rb_node *node;
2448 root = BTRFS_I(inode)->root;
2450 path = btrfs_alloc_path();
2454 if (!record_extent_backrefs(path, new)) {
2455 btrfs_free_path(path);
2458 btrfs_release_path(path);
2461 node = rb_first(&new->root);
2464 rb_erase(node, &new->root);
2466 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2468 ret = relink_extent_backref(path, prev, backref);
2481 btrfs_free_path(path);
2483 free_sa_defrag_extent(new);
2485 atomic_dec(&root->fs_info->defrag_running);
2486 wake_up(&root->fs_info->transaction_wait);
2489 static struct new_sa_defrag_extent *
2490 record_old_file_extents(struct inode *inode,
2491 struct btrfs_ordered_extent *ordered)
2493 struct btrfs_root *root = BTRFS_I(inode)->root;
2494 struct btrfs_path *path;
2495 struct btrfs_key key;
2496 struct old_sa_defrag_extent *old;
2497 struct new_sa_defrag_extent *new;
2500 new = kmalloc(sizeof(*new), GFP_NOFS);
2505 new->file_pos = ordered->file_offset;
2506 new->len = ordered->len;
2507 new->bytenr = ordered->start;
2508 new->disk_len = ordered->disk_len;
2509 new->compress_type = ordered->compress_type;
2510 new->root = RB_ROOT;
2511 INIT_LIST_HEAD(&new->head);
2513 path = btrfs_alloc_path();
2517 key.objectid = btrfs_ino(inode);
2518 key.type = BTRFS_EXTENT_DATA_KEY;
2519 key.offset = new->file_pos;
2521 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2524 if (ret > 0 && path->slots[0] > 0)
2527 /* find out all the old extents for the file range */
2529 struct btrfs_file_extent_item *extent;
2530 struct extent_buffer *l;
2539 slot = path->slots[0];
2541 if (slot >= btrfs_header_nritems(l)) {
2542 ret = btrfs_next_leaf(root, path);
2550 btrfs_item_key_to_cpu(l, &key, slot);
2552 if (key.objectid != btrfs_ino(inode))
2554 if (key.type != BTRFS_EXTENT_DATA_KEY)
2556 if (key.offset >= new->file_pos + new->len)
2559 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2561 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2562 if (key.offset + num_bytes < new->file_pos)
2565 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2569 extent_offset = btrfs_file_extent_offset(l, extent);
2571 old = kmalloc(sizeof(*old), GFP_NOFS);
2575 offset = max(new->file_pos, key.offset);
2576 end = min(new->file_pos + new->len, key.offset + num_bytes);
2578 old->bytenr = disk_bytenr;
2579 old->extent_offset = extent_offset;
2580 old->offset = offset - key.offset;
2581 old->len = end - offset;
2584 list_add_tail(&old->list, &new->head);
2590 btrfs_free_path(path);
2591 atomic_inc(&root->fs_info->defrag_running);
2596 btrfs_free_path(path);
2598 free_sa_defrag_extent(new);
2602 static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2605 struct btrfs_block_group_cache *cache;
2607 cache = btrfs_lookup_block_group(root->fs_info, start);
2610 spin_lock(&cache->lock);
2611 cache->delalloc_bytes -= len;
2612 spin_unlock(&cache->lock);
2614 btrfs_put_block_group(cache);
2617 /* as ordered data IO finishes, this gets called so we can finish
2618 * an ordered extent if the range of bytes in the file it covers are
2621 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2623 struct inode *inode = ordered_extent->inode;
2624 struct btrfs_root *root = BTRFS_I(inode)->root;
2625 struct btrfs_trans_handle *trans = NULL;
2626 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2627 struct extent_state *cached_state = NULL;
2628 struct new_sa_defrag_extent *new = NULL;
2629 int compress_type = 0;
2631 u64 logical_len = ordered_extent->len;
2633 bool truncated = false;
2635 nolock = btrfs_is_free_space_inode(inode);
2637 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2642 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2644 logical_len = ordered_extent->truncated_len;
2645 /* Truncated the entire extent, don't bother adding */
2650 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2651 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2652 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2654 trans = btrfs_join_transaction_nolock(root);
2656 trans = btrfs_join_transaction(root);
2657 if (IS_ERR(trans)) {
2658 ret = PTR_ERR(trans);
2662 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2663 ret = btrfs_update_inode_fallback(trans, root, inode);
2664 if (ret) /* -ENOMEM or corruption */
2665 btrfs_abort_transaction(trans, root, ret);
2669 lock_extent_bits(io_tree, ordered_extent->file_offset,
2670 ordered_extent->file_offset + ordered_extent->len - 1,
2673 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2674 ordered_extent->file_offset + ordered_extent->len - 1,
2675 EXTENT_DEFRAG, 1, cached_state);
2677 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2678 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2679 /* the inode is shared */
2680 new = record_old_file_extents(inode, ordered_extent);
2682 clear_extent_bit(io_tree, ordered_extent->file_offset,
2683 ordered_extent->file_offset + ordered_extent->len - 1,
2684 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2688 trans = btrfs_join_transaction_nolock(root);
2690 trans = btrfs_join_transaction(root);
2691 if (IS_ERR(trans)) {
2692 ret = PTR_ERR(trans);
2697 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2699 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2700 compress_type = ordered_extent->compress_type;
2701 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2702 BUG_ON(compress_type);
2703 ret = btrfs_mark_extent_written(trans, inode,
2704 ordered_extent->file_offset,
2705 ordered_extent->file_offset +
2708 BUG_ON(root == root->fs_info->tree_root);
2709 ret = insert_reserved_file_extent(trans, inode,
2710 ordered_extent->file_offset,
2711 ordered_extent->start,
2712 ordered_extent->disk_len,
2713 logical_len, logical_len,
2714 compress_type, 0, 0,
2715 BTRFS_FILE_EXTENT_REG);
2717 btrfs_release_delalloc_bytes(root,
2718 ordered_extent->start,
2719 ordered_extent->disk_len);
2721 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2722 ordered_extent->file_offset, ordered_extent->len,
2725 btrfs_abort_transaction(trans, root, ret);
2729 add_pending_csums(trans, inode, ordered_extent->file_offset,
2730 &ordered_extent->list);
2732 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2733 ret = btrfs_update_inode_fallback(trans, root, inode);
2734 if (ret) { /* -ENOMEM or corruption */
2735 btrfs_abort_transaction(trans, root, ret);
2740 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2741 ordered_extent->file_offset +
2742 ordered_extent->len - 1, &cached_state, GFP_NOFS);
2744 if (root != root->fs_info->tree_root)
2745 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2747 btrfs_end_transaction(trans, root);
2749 if (ret || truncated) {
2753 start = ordered_extent->file_offset + logical_len;
2755 start = ordered_extent->file_offset;
2756 end = ordered_extent->file_offset + ordered_extent->len - 1;
2757 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2759 /* Drop the cache for the part of the extent we didn't write. */
2760 btrfs_drop_extent_cache(inode, start, end, 0);
2763 * If the ordered extent had an IOERR or something else went
2764 * wrong we need to return the space for this ordered extent
2765 * back to the allocator. We only free the extent in the
2766 * truncated case if we didn't write out the extent at all.
2768 if ((ret || !logical_len) &&
2769 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2770 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2771 btrfs_free_reserved_extent(root, ordered_extent->start,
2772 ordered_extent->disk_len, 1);
2777 * This needs to be done to make sure anybody waiting knows we are done
2778 * updating everything for this ordered extent.
2780 btrfs_remove_ordered_extent(inode, ordered_extent);
2782 /* for snapshot-aware defrag */
2785 free_sa_defrag_extent(new);
2786 atomic_dec(&root->fs_info->defrag_running);
2788 relink_file_extents(new);
2793 btrfs_put_ordered_extent(ordered_extent);
2794 /* once for the tree */
2795 btrfs_put_ordered_extent(ordered_extent);
2800 static void finish_ordered_fn(struct btrfs_work *work)
2802 struct btrfs_ordered_extent *ordered_extent;
2803 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2804 btrfs_finish_ordered_io(ordered_extent);
2807 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
2808 struct extent_state *state, int uptodate)
2810 struct inode *inode = page->mapping->host;
2811 struct btrfs_root *root = BTRFS_I(inode)->root;
2812 struct btrfs_ordered_extent *ordered_extent = NULL;
2813 struct btrfs_workqueue *workers;
2815 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2817 ClearPagePrivate2(page);
2818 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2819 end - start + 1, uptodate))
2822 btrfs_init_work(&ordered_extent->work, finish_ordered_fn, NULL, NULL);
2824 if (btrfs_is_free_space_inode(inode))
2825 workers = root->fs_info->endio_freespace_worker;
2827 workers = root->fs_info->endio_write_workers;
2828 btrfs_queue_work(workers, &ordered_extent->work);
2834 * when reads are done, we need to check csums to verify the data is correct
2835 * if there's a match, we allow the bio to finish. If not, the code in
2836 * extent_io.c will try to find good copies for us.
2838 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
2839 u64 phy_offset, struct page *page,
2840 u64 start, u64 end, int mirror)
2842 size_t offset = start - page_offset(page);
2843 struct inode *inode = page->mapping->host;
2844 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2846 struct btrfs_root *root = BTRFS_I(inode)->root;
2849 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
2850 DEFAULT_RATELIMIT_BURST);
2852 if (PageChecked(page)) {
2853 ClearPageChecked(page);
2857 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
2860 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
2861 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
2862 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2867 phy_offset >>= inode->i_sb->s_blocksize_bits;
2868 csum_expected = *(((u32 *)io_bio->csum) + phy_offset);
2870 kaddr = kmap_atomic(page);
2871 csum = btrfs_csum_data(kaddr + offset, csum, end - start + 1);
2872 btrfs_csum_final(csum, (char *)&csum);
2873 if (csum != csum_expected)
2876 kunmap_atomic(kaddr);
2881 if (__ratelimit(&_rs))
2882 btrfs_info(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
2883 btrfs_ino(page->mapping->host), start, csum, csum_expected);
2884 memset(kaddr + offset, 1, end - start + 1);
2885 flush_dcache_page(page);
2886 kunmap_atomic(kaddr);
2887 if (csum_expected == 0)
2892 struct delayed_iput {
2893 struct list_head list;
2894 struct inode *inode;
2897 /* JDM: If this is fs-wide, why can't we add a pointer to
2898 * btrfs_inode instead and avoid the allocation? */
2899 void btrfs_add_delayed_iput(struct inode *inode)
2901 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2902 struct delayed_iput *delayed;
2904 if (atomic_add_unless(&inode->i_count, -1, 1))
2907 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2908 delayed->inode = inode;
2910 spin_lock(&fs_info->delayed_iput_lock);
2911 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2912 spin_unlock(&fs_info->delayed_iput_lock);
2915 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2918 struct btrfs_fs_info *fs_info = root->fs_info;
2919 struct delayed_iput *delayed;
2922 spin_lock(&fs_info->delayed_iput_lock);
2923 empty = list_empty(&fs_info->delayed_iputs);
2924 spin_unlock(&fs_info->delayed_iput_lock);
2928 spin_lock(&fs_info->delayed_iput_lock);
2929 list_splice_init(&fs_info->delayed_iputs, &list);
2930 spin_unlock(&fs_info->delayed_iput_lock);
2932 while (!list_empty(&list)) {
2933 delayed = list_entry(list.next, struct delayed_iput, list);
2934 list_del(&delayed->list);
2935 iput(delayed->inode);
2941 * This is called in transaction commit time. If there are no orphan
2942 * files in the subvolume, it removes orphan item and frees block_rsv
2945 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2946 struct btrfs_root *root)
2948 struct btrfs_block_rsv *block_rsv;
2951 if (atomic_read(&root->orphan_inodes) ||
2952 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2955 spin_lock(&root->orphan_lock);
2956 if (atomic_read(&root->orphan_inodes)) {
2957 spin_unlock(&root->orphan_lock);
2961 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2962 spin_unlock(&root->orphan_lock);
2966 block_rsv = root->orphan_block_rsv;
2967 root->orphan_block_rsv = NULL;
2968 spin_unlock(&root->orphan_lock);
2970 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
2971 btrfs_root_refs(&root->root_item) > 0) {
2972 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2973 root->root_key.objectid);
2975 btrfs_abort_transaction(trans, root, ret);
2977 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
2982 WARN_ON(block_rsv->size > 0);
2983 btrfs_free_block_rsv(root, block_rsv);
2988 * This creates an orphan entry for the given inode in case something goes
2989 * wrong in the middle of an unlink/truncate.
2991 * NOTE: caller of this function should reserve 5 units of metadata for
2994 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2996 struct btrfs_root *root = BTRFS_I(inode)->root;
2997 struct btrfs_block_rsv *block_rsv = NULL;
3002 if (!root->orphan_block_rsv) {
3003 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3008 spin_lock(&root->orphan_lock);
3009 if (!root->orphan_block_rsv) {
3010 root->orphan_block_rsv = block_rsv;
3011 } else if (block_rsv) {
3012 btrfs_free_block_rsv(root, block_rsv);
3016 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3017 &BTRFS_I(inode)->runtime_flags)) {
3020 * For proper ENOSPC handling, we should do orphan
3021 * cleanup when mounting. But this introduces backward
3022 * compatibility issue.
3024 if (!xchg(&root->orphan_item_inserted, 1))
3030 atomic_inc(&root->orphan_inodes);
3033 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3034 &BTRFS_I(inode)->runtime_flags))
3036 spin_unlock(&root->orphan_lock);
3038 /* grab metadata reservation from transaction handle */
3040 ret = btrfs_orphan_reserve_metadata(trans, inode);
3041 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
3044 /* insert an orphan item to track this unlinked/truncated file */
3046 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3048 atomic_dec(&root->orphan_inodes);
3050 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3051 &BTRFS_I(inode)->runtime_flags);
3052 btrfs_orphan_release_metadata(inode);
3054 if (ret != -EEXIST) {
3055 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3056 &BTRFS_I(inode)->runtime_flags);
3057 btrfs_abort_transaction(trans, root, ret);
3064 /* insert an orphan item to track subvolume contains orphan files */
3066 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3067 root->root_key.objectid);
3068 if (ret && ret != -EEXIST) {
3069 btrfs_abort_transaction(trans, root, ret);
3077 * We have done the truncate/delete so we can go ahead and remove the orphan
3078 * item for this particular inode.
3080 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3081 struct inode *inode)
3083 struct btrfs_root *root = BTRFS_I(inode)->root;
3084 int delete_item = 0;
3085 int release_rsv = 0;
3088 spin_lock(&root->orphan_lock);
3089 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3090 &BTRFS_I(inode)->runtime_flags))
3093 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3094 &BTRFS_I(inode)->runtime_flags))
3096 spin_unlock(&root->orphan_lock);
3099 atomic_dec(&root->orphan_inodes);
3101 ret = btrfs_del_orphan_item(trans, root,
3106 btrfs_orphan_release_metadata(inode);
3112 * this cleans up any orphans that may be left on the list from the last use
3115 int btrfs_orphan_cleanup(struct btrfs_root *root)
3117 struct btrfs_path *path;
3118 struct extent_buffer *leaf;
3119 struct btrfs_key key, found_key;
3120 struct btrfs_trans_handle *trans;
3121 struct inode *inode;
3122 u64 last_objectid = 0;
3123 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3125 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3128 path = btrfs_alloc_path();
3135 key.objectid = BTRFS_ORPHAN_OBJECTID;
3136 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
3137 key.offset = (u64)-1;
3140 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3145 * if ret == 0 means we found what we were searching for, which
3146 * is weird, but possible, so only screw with path if we didn't
3147 * find the key and see if we have stuff that matches
3151 if (path->slots[0] == 0)
3156 /* pull out the item */
3157 leaf = path->nodes[0];
3158 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3160 /* make sure the item matches what we want */
3161 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3163 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
3166 /* release the path since we're done with it */
3167 btrfs_release_path(path);
3170 * this is where we are basically btrfs_lookup, without the
3171 * crossing root thing. we store the inode number in the
3172 * offset of the orphan item.
3175 if (found_key.offset == last_objectid) {
3176 btrfs_err(root->fs_info,
3177 "Error removing orphan entry, stopping orphan cleanup");
3182 last_objectid = found_key.offset;
3184 found_key.objectid = found_key.offset;
3185 found_key.type = BTRFS_INODE_ITEM_KEY;
3186 found_key.offset = 0;
3187 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3188 ret = PTR_ERR_OR_ZERO(inode);
3189 if (ret && ret != -ESTALE)
3192 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3193 struct btrfs_root *dead_root;
3194 struct btrfs_fs_info *fs_info = root->fs_info;
3195 int is_dead_root = 0;
3198 * this is an orphan in the tree root. Currently these
3199 * could come from 2 sources:
3200 * a) a snapshot deletion in progress
3201 * b) a free space cache inode
3202 * We need to distinguish those two, as the snapshot
3203 * orphan must not get deleted.
3204 * find_dead_roots already ran before us, so if this
3205 * is a snapshot deletion, we should find the root
3206 * in the dead_roots list
3208 spin_lock(&fs_info->trans_lock);
3209 list_for_each_entry(dead_root, &fs_info->dead_roots,
3211 if (dead_root->root_key.objectid ==
3212 found_key.objectid) {
3217 spin_unlock(&fs_info->trans_lock);
3219 /* prevent this orphan from being found again */
3220 key.offset = found_key.objectid - 1;
3225 * Inode is already gone but the orphan item is still there,
3226 * kill the orphan item.
3228 if (ret == -ESTALE) {
3229 trans = btrfs_start_transaction(root, 1);
3230 if (IS_ERR(trans)) {
3231 ret = PTR_ERR(trans);
3234 btrfs_debug(root->fs_info, "auto deleting %Lu",
3235 found_key.objectid);
3236 ret = btrfs_del_orphan_item(trans, root,
3237 found_key.objectid);
3238 btrfs_end_transaction(trans, root);
3245 * add this inode to the orphan list so btrfs_orphan_del does
3246 * the proper thing when we hit it
3248 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3249 &BTRFS_I(inode)->runtime_flags);
3250 atomic_inc(&root->orphan_inodes);
3252 /* if we have links, this was a truncate, lets do that */
3253 if (inode->i_nlink) {
3254 if (WARN_ON(!S_ISREG(inode->i_mode))) {
3260 /* 1 for the orphan item deletion. */
3261 trans = btrfs_start_transaction(root, 1);
3262 if (IS_ERR(trans)) {
3264 ret = PTR_ERR(trans);
3267 ret = btrfs_orphan_add(trans, inode);
3268 btrfs_end_transaction(trans, root);
3274 ret = btrfs_truncate(inode);
3276 btrfs_orphan_del(NULL, inode);
3281 /* this will do delete_inode and everything for us */
3286 /* release the path since we're done with it */
3287 btrfs_release_path(path);
3289 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3291 if (root->orphan_block_rsv)
3292 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3295 if (root->orphan_block_rsv ||
3296 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3297 trans = btrfs_join_transaction(root);
3299 btrfs_end_transaction(trans, root);
3303 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3305 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3309 btrfs_crit(root->fs_info,
3310 "could not do orphan cleanup %d", ret);
3311 btrfs_free_path(path);
3316 * very simple check to peek ahead in the leaf looking for xattrs. If we
3317 * don't find any xattrs, we know there can't be any acls.
3319 * slot is the slot the inode is in, objectid is the objectid of the inode
3321 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3322 int slot, u64 objectid,
3323 int *first_xattr_slot)
3325 u32 nritems = btrfs_header_nritems(leaf);
3326 struct btrfs_key found_key;
3327 static u64 xattr_access = 0;
3328 static u64 xattr_default = 0;
3331 if (!xattr_access) {
3332 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3333 strlen(POSIX_ACL_XATTR_ACCESS));
3334 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3335 strlen(POSIX_ACL_XATTR_DEFAULT));
3339 *first_xattr_slot = -1;
3340 while (slot < nritems) {
3341 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3343 /* we found a different objectid, there must not be acls */
3344 if (found_key.objectid != objectid)
3347 /* we found an xattr, assume we've got an acl */
3348 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3349 if (*first_xattr_slot == -1)
3350 *first_xattr_slot = slot;
3351 if (found_key.offset == xattr_access ||
3352 found_key.offset == xattr_default)
3357 * we found a key greater than an xattr key, there can't
3358 * be any acls later on
3360 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3367 * it goes inode, inode backrefs, xattrs, extents,
3368 * so if there are a ton of hard links to an inode there can
3369 * be a lot of backrefs. Don't waste time searching too hard,
3370 * this is just an optimization
3375 /* we hit the end of the leaf before we found an xattr or
3376 * something larger than an xattr. We have to assume the inode
3379 if (*first_xattr_slot == -1)
3380 *first_xattr_slot = slot;
3385 * read an inode from the btree into the in-memory inode
3387 static void btrfs_read_locked_inode(struct inode *inode)
3389 struct btrfs_path *path;
3390 struct extent_buffer *leaf;
3391 struct btrfs_inode_item *inode_item;
3392 struct btrfs_timespec *tspec;
3393 struct btrfs_root *root = BTRFS_I(inode)->root;
3394 struct btrfs_key location;
3399 bool filled = false;
3400 int first_xattr_slot;
3402 ret = btrfs_fill_inode(inode, &rdev);
3406 path = btrfs_alloc_path();
3410 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3412 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3416 leaf = path->nodes[0];
3421 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3422 struct btrfs_inode_item);
3423 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3424 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3425 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3426 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3427 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3429 tspec = btrfs_inode_atime(inode_item);
3430 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3431 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3433 tspec = btrfs_inode_mtime(inode_item);
3434 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3435 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3437 tspec = btrfs_inode_ctime(inode_item);
3438 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3439 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3441 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3442 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3443 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3446 * If we were modified in the current generation and evicted from memory
3447 * and then re-read we need to do a full sync since we don't have any
3448 * idea about which extents were modified before we were evicted from
3451 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3452 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3453 &BTRFS_I(inode)->runtime_flags);
3455 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3456 inode->i_generation = BTRFS_I(inode)->generation;
3458 rdev = btrfs_inode_rdev(leaf, inode_item);
3460 BTRFS_I(inode)->index_cnt = (u64)-1;
3461 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3465 if (inode->i_nlink != 1 ||
3466 path->slots[0] >= btrfs_header_nritems(leaf))
3469 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3470 if (location.objectid != btrfs_ino(inode))
3473 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3474 if (location.type == BTRFS_INODE_REF_KEY) {
3475 struct btrfs_inode_ref *ref;
3477 ref = (struct btrfs_inode_ref *)ptr;
3478 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3479 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3480 struct btrfs_inode_extref *extref;
3482 extref = (struct btrfs_inode_extref *)ptr;
3483 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3488 * try to precache a NULL acl entry for files that don't have
3489 * any xattrs or acls
3491 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3492 btrfs_ino(inode), &first_xattr_slot);
3493 if (first_xattr_slot != -1) {
3494 path->slots[0] = first_xattr_slot;
3495 ret = btrfs_load_inode_props(inode, path);
3497 btrfs_err(root->fs_info,
3498 "error loading props for ino %llu (root %llu): %d",
3500 root->root_key.objectid, ret);
3502 btrfs_free_path(path);
3505 cache_no_acl(inode);
3507 switch (inode->i_mode & S_IFMT) {
3509 inode->i_mapping->a_ops = &btrfs_aops;
3510 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3511 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3512 inode->i_fop = &btrfs_file_operations;
3513 inode->i_op = &btrfs_file_inode_operations;
3516 inode->i_fop = &btrfs_dir_file_operations;
3517 if (root == root->fs_info->tree_root)
3518 inode->i_op = &btrfs_dir_ro_inode_operations;
3520 inode->i_op = &btrfs_dir_inode_operations;
3523 inode->i_op = &btrfs_symlink_inode_operations;
3524 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3525 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3528 inode->i_op = &btrfs_special_inode_operations;
3529 init_special_inode(inode, inode->i_mode, rdev);
3533 btrfs_update_iflags(inode);
3537 btrfs_free_path(path);
3538 make_bad_inode(inode);
3542 * given a leaf and an inode, copy the inode fields into the leaf
3544 static void fill_inode_item(struct btrfs_trans_handle *trans,
3545 struct extent_buffer *leaf,
3546 struct btrfs_inode_item *item,
3547 struct inode *inode)
3549 struct btrfs_map_token token;
3551 btrfs_init_map_token(&token);
3553 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3554 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3555 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3557 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3558 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3560 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3561 inode->i_atime.tv_sec, &token);
3562 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3563 inode->i_atime.tv_nsec, &token);
3565 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3566 inode->i_mtime.tv_sec, &token);
3567 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3568 inode->i_mtime.tv_nsec, &token);
3570 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3571 inode->i_ctime.tv_sec, &token);
3572 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3573 inode->i_ctime.tv_nsec, &token);
3575 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3577 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3579 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3580 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3581 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3582 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3583 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3587 * copy everything in the in-memory inode into the btree.
3589 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3590 struct btrfs_root *root, struct inode *inode)
3592 struct btrfs_inode_item *inode_item;
3593 struct btrfs_path *path;
3594 struct extent_buffer *leaf;
3597 path = btrfs_alloc_path();
3601 path->leave_spinning = 1;
3602 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3610 leaf = path->nodes[0];
3611 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3612 struct btrfs_inode_item);
3614 fill_inode_item(trans, leaf, inode_item, inode);
3615 btrfs_mark_buffer_dirty(leaf);
3616 btrfs_set_inode_last_trans(trans, inode);
3619 btrfs_free_path(path);
3624 * copy everything in the in-memory inode into the btree.
3626 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3627 struct btrfs_root *root, struct inode *inode)
3632 * If the inode is a free space inode, we can deadlock during commit
3633 * if we put it into the delayed code.
3635 * The data relocation inode should also be directly updated
3638 if (!btrfs_is_free_space_inode(inode)
3639 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
3640 btrfs_update_root_times(trans, root);
3642 ret = btrfs_delayed_update_inode(trans, root, inode);
3644 btrfs_set_inode_last_trans(trans, inode);
3648 return btrfs_update_inode_item(trans, root, inode);
3651 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3652 struct btrfs_root *root,
3653 struct inode *inode)
3657 ret = btrfs_update_inode(trans, root, inode);
3659 return btrfs_update_inode_item(trans, root, inode);
3664 * unlink helper that gets used here in inode.c and in the tree logging
3665 * recovery code. It remove a link in a directory with a given name, and
3666 * also drops the back refs in the inode to the directory
3668 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3669 struct btrfs_root *root,
3670 struct inode *dir, struct inode *inode,
3671 const char *name, int name_len)
3673 struct btrfs_path *path;
3675 struct extent_buffer *leaf;
3676 struct btrfs_dir_item *di;
3677 struct btrfs_key key;
3679 u64 ino = btrfs_ino(inode);
3680 u64 dir_ino = btrfs_ino(dir);
3682 path = btrfs_alloc_path();
3688 path->leave_spinning = 1;
3689 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3690 name, name_len, -1);
3699 leaf = path->nodes[0];
3700 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3701 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3704 btrfs_release_path(path);
3707 * If we don't have dir index, we have to get it by looking up
3708 * the inode ref, since we get the inode ref, remove it directly,
3709 * it is unnecessary to do delayed deletion.
3711 * But if we have dir index, needn't search inode ref to get it.
3712 * Since the inode ref is close to the inode item, it is better
3713 * that we delay to delete it, and just do this deletion when
3714 * we update the inode item.
3716 if (BTRFS_I(inode)->dir_index) {
3717 ret = btrfs_delayed_delete_inode_ref(inode);
3719 index = BTRFS_I(inode)->dir_index;
3724 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3727 btrfs_info(root->fs_info,
3728 "failed to delete reference to %.*s, inode %llu parent %llu",
3729 name_len, name, ino, dir_ino);
3730 btrfs_abort_transaction(trans, root, ret);
3734 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3736 btrfs_abort_transaction(trans, root, ret);
3740 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
3742 if (ret != 0 && ret != -ENOENT) {
3743 btrfs_abort_transaction(trans, root, ret);
3747 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3752 btrfs_abort_transaction(trans, root, ret);
3754 btrfs_free_path(path);
3758 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3759 inode_inc_iversion(inode);
3760 inode_inc_iversion(dir);
3761 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3762 ret = btrfs_update_inode(trans, root, dir);
3767 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3768 struct btrfs_root *root,
3769 struct inode *dir, struct inode *inode,
3770 const char *name, int name_len)
3773 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3776 ret = btrfs_update_inode(trans, root, inode);
3782 * helper to start transaction for unlink and rmdir.
3784 * unlink and rmdir are special in btrfs, they do not always free space, so
3785 * if we cannot make our reservations the normal way try and see if there is
3786 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3787 * allow the unlink to occur.
3789 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
3791 struct btrfs_trans_handle *trans;
3792 struct btrfs_root *root = BTRFS_I(dir)->root;
3796 * 1 for the possible orphan item
3797 * 1 for the dir item
3798 * 1 for the dir index
3799 * 1 for the inode ref
3802 trans = btrfs_start_transaction(root, 5);
3803 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3806 if (PTR_ERR(trans) == -ENOSPC) {
3807 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
3809 trans = btrfs_start_transaction(root, 0);
3812 ret = btrfs_cond_migrate_bytes(root->fs_info,
3813 &root->fs_info->trans_block_rsv,
3816 btrfs_end_transaction(trans, root);
3817 return ERR_PTR(ret);
3819 trans->block_rsv = &root->fs_info->trans_block_rsv;
3820 trans->bytes_reserved = num_bytes;
3825 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3827 struct btrfs_root *root = BTRFS_I(dir)->root;
3828 struct btrfs_trans_handle *trans;
3829 struct inode *inode = dentry->d_inode;
3832 trans = __unlink_start_trans(dir);
3834 return PTR_ERR(trans);
3836 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3838 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3839 dentry->d_name.name, dentry->d_name.len);
3843 if (inode->i_nlink == 0) {
3844 ret = btrfs_orphan_add(trans, inode);
3850 btrfs_end_transaction(trans, root);
3851 btrfs_btree_balance_dirty(root);
3855 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3856 struct btrfs_root *root,
3857 struct inode *dir, u64 objectid,
3858 const char *name, int name_len)
3860 struct btrfs_path *path;
3861 struct extent_buffer *leaf;
3862 struct btrfs_dir_item *di;
3863 struct btrfs_key key;
3866 u64 dir_ino = btrfs_ino(dir);
3868 path = btrfs_alloc_path();
3872 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3873 name, name_len, -1);
3874 if (IS_ERR_OR_NULL(di)) {
3882 leaf = path->nodes[0];
3883 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3884 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3885 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3887 btrfs_abort_transaction(trans, root, ret);
3890 btrfs_release_path(path);
3892 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3893 objectid, root->root_key.objectid,
3894 dir_ino, &index, name, name_len);
3896 if (ret != -ENOENT) {
3897 btrfs_abort_transaction(trans, root, ret);
3900 di = btrfs_search_dir_index_item(root, path, dir_ino,
3902 if (IS_ERR_OR_NULL(di)) {
3907 btrfs_abort_transaction(trans, root, ret);
3911 leaf = path->nodes[0];
3912 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3913 btrfs_release_path(path);
3916 btrfs_release_path(path);
3918 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3920 btrfs_abort_transaction(trans, root, ret);
3924 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3925 inode_inc_iversion(dir);
3926 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3927 ret = btrfs_update_inode_fallback(trans, root, dir);
3929 btrfs_abort_transaction(trans, root, ret);
3931 btrfs_free_path(path);
3935 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3937 struct inode *inode = dentry->d_inode;
3939 struct btrfs_root *root = BTRFS_I(dir)->root;
3940 struct btrfs_trans_handle *trans;
3942 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
3944 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3947 trans = __unlink_start_trans(dir);
3949 return PTR_ERR(trans);
3951 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3952 err = btrfs_unlink_subvol(trans, root, dir,
3953 BTRFS_I(inode)->location.objectid,
3954 dentry->d_name.name,
3955 dentry->d_name.len);
3959 err = btrfs_orphan_add(trans, inode);
3963 /* now the directory is empty */
3964 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3965 dentry->d_name.name, dentry->d_name.len);
3967 btrfs_i_size_write(inode, 0);
3969 btrfs_end_transaction(trans, root);
3970 btrfs_btree_balance_dirty(root);
3976 * this can truncate away extent items, csum items and directory items.
3977 * It starts at a high offset and removes keys until it can't find
3978 * any higher than new_size
3980 * csum items that cross the new i_size are truncated to the new size
3983 * min_type is the minimum key type to truncate down to. If set to 0, this
3984 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3986 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3987 struct btrfs_root *root,
3988 struct inode *inode,
3989 u64 new_size, u32 min_type)
3991 struct btrfs_path *path;
3992 struct extent_buffer *leaf;
3993 struct btrfs_file_extent_item *fi;
3994 struct btrfs_key key;
3995 struct btrfs_key found_key;
3996 u64 extent_start = 0;
3997 u64 extent_num_bytes = 0;
3998 u64 extent_offset = 0;
4000 u64 last_size = (u64)-1;
4001 u32 found_type = (u8)-1;
4004 int pending_del_nr = 0;
4005 int pending_del_slot = 0;
4006 int extent_type = -1;
4009 u64 ino = btrfs_ino(inode);
4011 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4013 path = btrfs_alloc_path();
4019 * We want to drop from the next block forward in case this new size is
4020 * not block aligned since we will be keeping the last block of the
4021 * extent just the way it is.
4023 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4024 root == root->fs_info->tree_root)
4025 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4026 root->sectorsize), (u64)-1, 0);
4029 * This function is also used to drop the items in the log tree before
4030 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4031 * it is used to drop the loged items. So we shouldn't kill the delayed
4034 if (min_type == 0 && root == BTRFS_I(inode)->root)
4035 btrfs_kill_delayed_inode_items(inode);
4038 key.offset = (u64)-1;
4042 path->leave_spinning = 1;
4043 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4050 /* there are no items in the tree for us to truncate, we're
4053 if (path->slots[0] == 0)
4060 leaf = path->nodes[0];
4061 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4062 found_type = btrfs_key_type(&found_key);
4064 if (found_key.objectid != ino)
4067 if (found_type < min_type)
4070 item_end = found_key.offset;
4071 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4072 fi = btrfs_item_ptr(leaf, path->slots[0],
4073 struct btrfs_file_extent_item);
4074 extent_type = btrfs_file_extent_type(leaf, fi);
4075 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4077 btrfs_file_extent_num_bytes(leaf, fi);
4078 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4079 item_end += btrfs_file_extent_inline_len(leaf,
4080 path->slots[0], fi);
4084 if (found_type > min_type) {
4087 if (item_end < new_size)
4089 if (found_key.offset >= new_size)
4095 /* FIXME, shrink the extent if the ref count is only 1 */
4096 if (found_type != BTRFS_EXTENT_DATA_KEY)
4100 last_size = found_key.offset;
4102 last_size = new_size;
4104 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4106 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4108 u64 orig_num_bytes =
4109 btrfs_file_extent_num_bytes(leaf, fi);
4110 extent_num_bytes = ALIGN(new_size -
4113 btrfs_set_file_extent_num_bytes(leaf, fi,
4115 num_dec = (orig_num_bytes -
4117 if (test_bit(BTRFS_ROOT_REF_COWS,
4120 inode_sub_bytes(inode, num_dec);
4121 btrfs_mark_buffer_dirty(leaf);
4124 btrfs_file_extent_disk_num_bytes(leaf,
4126 extent_offset = found_key.offset -
4127 btrfs_file_extent_offset(leaf, fi);
4129 /* FIXME blocksize != 4096 */
4130 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4131 if (extent_start != 0) {
4133 if (test_bit(BTRFS_ROOT_REF_COWS,
4135 inode_sub_bytes(inode, num_dec);
4138 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4140 * we can't truncate inline items that have had
4144 btrfs_file_extent_compression(leaf, fi) == 0 &&
4145 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4146 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4147 u32 size = new_size - found_key.offset;
4149 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4150 inode_sub_bytes(inode, item_end + 1 -
4154 * update the ram bytes to properly reflect
4155 * the new size of our item
4157 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4159 btrfs_file_extent_calc_inline_size(size);
4160 btrfs_truncate_item(root, path, size, 1);
4161 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4163 inode_sub_bytes(inode, item_end + 1 -
4169 if (!pending_del_nr) {
4170 /* no pending yet, add ourselves */
4171 pending_del_slot = path->slots[0];
4173 } else if (pending_del_nr &&
4174 path->slots[0] + 1 == pending_del_slot) {
4175 /* hop on the pending chunk */
4177 pending_del_slot = path->slots[0];
4185 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4186 root == root->fs_info->tree_root)) {
4187 btrfs_set_path_blocking(path);
4188 ret = btrfs_free_extent(trans, root, extent_start,
4189 extent_num_bytes, 0,
4190 btrfs_header_owner(leaf),
4191 ino, extent_offset, 0);
4195 if (found_type == BTRFS_INODE_ITEM_KEY)
4198 if (path->slots[0] == 0 ||
4199 path->slots[0] != pending_del_slot) {
4200 if (pending_del_nr) {
4201 ret = btrfs_del_items(trans, root, path,
4205 btrfs_abort_transaction(trans,
4211 btrfs_release_path(path);
4218 if (pending_del_nr) {
4219 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4222 btrfs_abort_transaction(trans, root, ret);
4225 if (last_size != (u64)-1)
4226 btrfs_ordered_update_i_size(inode, last_size, NULL);
4227 btrfs_free_path(path);
4232 * btrfs_truncate_page - read, zero a chunk and write a page
4233 * @inode - inode that we're zeroing
4234 * @from - the offset to start zeroing
4235 * @len - the length to zero, 0 to zero the entire range respective to the
4237 * @front - zero up to the offset instead of from the offset on
4239 * This will find the page for the "from" offset and cow the page and zero the
4240 * part we want to zero. This is used with truncate and hole punching.
4242 int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4245 struct address_space *mapping = inode->i_mapping;
4246 struct btrfs_root *root = BTRFS_I(inode)->root;
4247 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4248 struct btrfs_ordered_extent *ordered;
4249 struct extent_state *cached_state = NULL;
4251 u32 blocksize = root->sectorsize;
4252 pgoff_t index = from >> PAGE_CACHE_SHIFT;
4253 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4255 gfp_t mask = btrfs_alloc_write_mask(mapping);
4260 if ((offset & (blocksize - 1)) == 0 &&
4261 (!len || ((len & (blocksize - 1)) == 0)))
4263 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
4268 page = find_or_create_page(mapping, index, mask);
4270 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4275 page_start = page_offset(page);
4276 page_end = page_start + PAGE_CACHE_SIZE - 1;
4278 if (!PageUptodate(page)) {
4279 ret = btrfs_readpage(NULL, page);
4281 if (page->mapping != mapping) {
4283 page_cache_release(page);
4286 if (!PageUptodate(page)) {
4291 wait_on_page_writeback(page);
4293 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
4294 set_page_extent_mapped(page);
4296 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4298 unlock_extent_cached(io_tree, page_start, page_end,
4299 &cached_state, GFP_NOFS);
4301 page_cache_release(page);
4302 btrfs_start_ordered_extent(inode, ordered, 1);
4303 btrfs_put_ordered_extent(ordered);
4307 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
4308 EXTENT_DIRTY | EXTENT_DELALLOC |
4309 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4310 0, 0, &cached_state, GFP_NOFS);
4312 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4315 unlock_extent_cached(io_tree, page_start, page_end,
4316 &cached_state, GFP_NOFS);
4320 if (offset != PAGE_CACHE_SIZE) {
4322 len = PAGE_CACHE_SIZE - offset;
4325 memset(kaddr, 0, offset);
4327 memset(kaddr + offset, 0, len);
4328 flush_dcache_page(page);
4331 ClearPageChecked(page);
4332 set_page_dirty(page);
4333 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4338 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4340 page_cache_release(page);
4345 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4346 u64 offset, u64 len)
4348 struct btrfs_trans_handle *trans;
4352 * Still need to make sure the inode looks like it's been updated so
4353 * that any holes get logged if we fsync.
4355 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4356 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4357 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4358 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4363 * 1 - for the one we're dropping
4364 * 1 - for the one we're adding
4365 * 1 - for updating the inode.
4367 trans = btrfs_start_transaction(root, 3);
4369 return PTR_ERR(trans);
4371 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4373 btrfs_abort_transaction(trans, root, ret);
4374 btrfs_end_transaction(trans, root);
4378 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4379 0, 0, len, 0, len, 0, 0, 0);
4381 btrfs_abort_transaction(trans, root, ret);
4383 btrfs_update_inode(trans, root, inode);
4384 btrfs_end_transaction(trans, root);
4389 * This function puts in dummy file extents for the area we're creating a hole
4390 * for. So if we are truncating this file to a larger size we need to insert
4391 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4392 * the range between oldsize and size
4394 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4396 struct btrfs_root *root = BTRFS_I(inode)->root;
4397 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4398 struct extent_map *em = NULL;
4399 struct extent_state *cached_state = NULL;
4400 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4401 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4402 u64 block_end = ALIGN(size, root->sectorsize);
4409 * If our size started in the middle of a page we need to zero out the
4410 * rest of the page before we expand the i_size, otherwise we could
4411 * expose stale data.
4413 err = btrfs_truncate_page(inode, oldsize, 0, 0);
4417 if (size <= hole_start)
4421 struct btrfs_ordered_extent *ordered;
4423 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
4425 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4426 block_end - hole_start);
4429 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4430 &cached_state, GFP_NOFS);
4431 btrfs_start_ordered_extent(inode, ordered, 1);
4432 btrfs_put_ordered_extent(ordered);
4435 cur_offset = hole_start;
4437 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4438 block_end - cur_offset, 0);
4444 last_byte = min(extent_map_end(em), block_end);
4445 last_byte = ALIGN(last_byte , root->sectorsize);
4446 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4447 struct extent_map *hole_em;
4448 hole_size = last_byte - cur_offset;
4450 err = maybe_insert_hole(root, inode, cur_offset,
4454 btrfs_drop_extent_cache(inode, cur_offset,
4455 cur_offset + hole_size - 1, 0);
4456 hole_em = alloc_extent_map();
4458 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4459 &BTRFS_I(inode)->runtime_flags);
4462 hole_em->start = cur_offset;
4463 hole_em->len = hole_size;
4464 hole_em->orig_start = cur_offset;
4466 hole_em->block_start = EXTENT_MAP_HOLE;
4467 hole_em->block_len = 0;
4468 hole_em->orig_block_len = 0;
4469 hole_em->ram_bytes = hole_size;
4470 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4471 hole_em->compress_type = BTRFS_COMPRESS_NONE;
4472 hole_em->generation = root->fs_info->generation;
4475 write_lock(&em_tree->lock);
4476 err = add_extent_mapping(em_tree, hole_em, 1);
4477 write_unlock(&em_tree->lock);
4480 btrfs_drop_extent_cache(inode, cur_offset,
4484 free_extent_map(hole_em);
4487 free_extent_map(em);
4489 cur_offset = last_byte;
4490 if (cur_offset >= block_end)
4493 free_extent_map(em);
4494 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4499 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4501 struct btrfs_root *root = BTRFS_I(inode)->root;
4502 struct btrfs_trans_handle *trans;
4503 loff_t oldsize = i_size_read(inode);
4504 loff_t newsize = attr->ia_size;
4505 int mask = attr->ia_valid;
4509 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4510 * special case where we need to update the times despite not having
4511 * these flags set. For all other operations the VFS set these flags
4512 * explicitly if it wants a timestamp update.
4514 if (newsize != oldsize) {
4515 inode_inc_iversion(inode);
4516 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4517 inode->i_ctime = inode->i_mtime =
4518 current_fs_time(inode->i_sb);
4521 if (newsize > oldsize) {
4522 truncate_pagecache(inode, newsize);
4523 ret = btrfs_cont_expand(inode, oldsize, newsize);
4527 trans = btrfs_start_transaction(root, 1);
4529 return PTR_ERR(trans);
4531 i_size_write(inode, newsize);
4532 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4533 ret = btrfs_update_inode(trans, root, inode);
4534 btrfs_end_transaction(trans, root);
4538 * We're truncating a file that used to have good data down to
4539 * zero. Make sure it gets into the ordered flush list so that
4540 * any new writes get down to disk quickly.
4543 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4544 &BTRFS_I(inode)->runtime_flags);
4547 * 1 for the orphan item we're going to add
4548 * 1 for the orphan item deletion.
4550 trans = btrfs_start_transaction(root, 2);
4552 return PTR_ERR(trans);
4555 * We need to do this in case we fail at _any_ point during the
4556 * actual truncate. Once we do the truncate_setsize we could
4557 * invalidate pages which forces any outstanding ordered io to
4558 * be instantly completed which will give us extents that need
4559 * to be truncated. If we fail to get an orphan inode down we
4560 * could have left over extents that were never meant to live,
4561 * so we need to garuntee from this point on that everything
4562 * will be consistent.
4564 ret = btrfs_orphan_add(trans, inode);
4565 btrfs_end_transaction(trans, root);
4569 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4570 truncate_setsize(inode, newsize);
4572 /* Disable nonlocked read DIO to avoid the end less truncate */
4573 btrfs_inode_block_unlocked_dio(inode);
4574 inode_dio_wait(inode);
4575 btrfs_inode_resume_unlocked_dio(inode);
4577 ret = btrfs_truncate(inode);
4578 if (ret && inode->i_nlink) {
4582 * failed to truncate, disk_i_size is only adjusted down
4583 * as we remove extents, so it should represent the true
4584 * size of the inode, so reset the in memory size and
4585 * delete our orphan entry.
4587 trans = btrfs_join_transaction(root);
4588 if (IS_ERR(trans)) {
4589 btrfs_orphan_del(NULL, inode);
4592 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4593 err = btrfs_orphan_del(trans, inode);
4595 btrfs_abort_transaction(trans, root, err);
4596 btrfs_end_transaction(trans, root);
4603 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4605 struct inode *inode = dentry->d_inode;
4606 struct btrfs_root *root = BTRFS_I(inode)->root;
4609 if (btrfs_root_readonly(root))
4612 err = inode_change_ok(inode, attr);
4616 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
4617 err = btrfs_setsize(inode, attr);
4622 if (attr->ia_valid) {
4623 setattr_copy(inode, attr);
4624 inode_inc_iversion(inode);
4625 err = btrfs_dirty_inode(inode);
4627 if (!err && attr->ia_valid & ATTR_MODE)
4628 err = posix_acl_chmod(inode, inode->i_mode);
4635 * While truncating the inode pages during eviction, we get the VFS calling
4636 * btrfs_invalidatepage() against each page of the inode. This is slow because
4637 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4638 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4639 * extent_state structures over and over, wasting lots of time.
4641 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4642 * those expensive operations on a per page basis and do only the ordered io
4643 * finishing, while we release here the extent_map and extent_state structures,
4644 * without the excessive merging and splitting.
4646 static void evict_inode_truncate_pages(struct inode *inode)
4648 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4649 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4650 struct rb_node *node;
4652 ASSERT(inode->i_state & I_FREEING);
4653 truncate_inode_pages_final(&inode->i_data);
4655 write_lock(&map_tree->lock);
4656 while (!RB_EMPTY_ROOT(&map_tree->map)) {
4657 struct extent_map *em;
4659 node = rb_first(&map_tree->map);
4660 em = rb_entry(node, struct extent_map, rb_node);
4661 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
4662 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
4663 remove_extent_mapping(map_tree, em);
4664 free_extent_map(em);
4666 write_unlock(&map_tree->lock);
4668 spin_lock(&io_tree->lock);
4669 while (!RB_EMPTY_ROOT(&io_tree->state)) {
4670 struct extent_state *state;
4671 struct extent_state *cached_state = NULL;
4673 node = rb_first(&io_tree->state);
4674 state = rb_entry(node, struct extent_state, rb_node);
4675 atomic_inc(&state->refs);
4676 spin_unlock(&io_tree->lock);
4678 lock_extent_bits(io_tree, state->start, state->end,
4680 clear_extent_bit(io_tree, state->start, state->end,
4681 EXTENT_LOCKED | EXTENT_DIRTY |
4682 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
4683 EXTENT_DEFRAG, 1, 1,
4684 &cached_state, GFP_NOFS);
4685 free_extent_state(state);
4687 spin_lock(&io_tree->lock);
4689 spin_unlock(&io_tree->lock);
4692 void btrfs_evict_inode(struct inode *inode)
4694 struct btrfs_trans_handle *trans;
4695 struct btrfs_root *root = BTRFS_I(inode)->root;
4696 struct btrfs_block_rsv *rsv, *global_rsv;
4697 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
4700 trace_btrfs_inode_evict(inode);
4702 evict_inode_truncate_pages(inode);
4704 if (inode->i_nlink &&
4705 ((btrfs_root_refs(&root->root_item) != 0 &&
4706 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
4707 btrfs_is_free_space_inode(inode)))
4710 if (is_bad_inode(inode)) {
4711 btrfs_orphan_del(NULL, inode);
4714 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4715 btrfs_wait_ordered_range(inode, 0, (u64)-1);
4717 if (root->fs_info->log_root_recovering) {
4718 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
4719 &BTRFS_I(inode)->runtime_flags));
4723 if (inode->i_nlink > 0) {
4724 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
4725 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
4729 ret = btrfs_commit_inode_delayed_inode(inode);
4731 btrfs_orphan_del(NULL, inode);
4735 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4737 btrfs_orphan_del(NULL, inode);
4740 rsv->size = min_size;
4742 global_rsv = &root->fs_info->global_block_rsv;
4744 btrfs_i_size_write(inode, 0);
4747 * This is a bit simpler than btrfs_truncate since we've already
4748 * reserved our space for our orphan item in the unlink, so we just
4749 * need to reserve some slack space in case we add bytes and update
4750 * inode item when doing the truncate.
4753 ret = btrfs_block_rsv_refill(root, rsv, min_size,
4754 BTRFS_RESERVE_FLUSH_LIMIT);
4757 * Try and steal from the global reserve since we will
4758 * likely not use this space anyway, we want to try as
4759 * hard as possible to get this to work.
4762 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
4765 btrfs_warn(root->fs_info,
4766 "Could not get space for a delete, will truncate on mount %d",
4768 btrfs_orphan_del(NULL, inode);
4769 btrfs_free_block_rsv(root, rsv);
4773 trans = btrfs_join_transaction(root);
4774 if (IS_ERR(trans)) {
4775 btrfs_orphan_del(NULL, inode);
4776 btrfs_free_block_rsv(root, rsv);
4780 trans->block_rsv = rsv;
4782 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
4786 trans->block_rsv = &root->fs_info->trans_block_rsv;
4787 btrfs_end_transaction(trans, root);
4789 btrfs_btree_balance_dirty(root);
4792 btrfs_free_block_rsv(root, rsv);
4795 * Errors here aren't a big deal, it just means we leave orphan items
4796 * in the tree. They will be cleaned up on the next mount.
4799 trans->block_rsv = root->orphan_block_rsv;
4800 btrfs_orphan_del(trans, inode);
4802 btrfs_orphan_del(NULL, inode);
4805 trans->block_rsv = &root->fs_info->trans_block_rsv;
4806 if (!(root == root->fs_info->tree_root ||
4807 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4808 btrfs_return_ino(root, btrfs_ino(inode));
4810 btrfs_end_transaction(trans, root);
4811 btrfs_btree_balance_dirty(root);
4813 btrfs_remove_delayed_node(inode);
4819 * this returns the key found in the dir entry in the location pointer.
4820 * If no dir entries were found, location->objectid is 0.
4822 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4823 struct btrfs_key *location)
4825 const char *name = dentry->d_name.name;
4826 int namelen = dentry->d_name.len;
4827 struct btrfs_dir_item *di;
4828 struct btrfs_path *path;
4829 struct btrfs_root *root = BTRFS_I(dir)->root;
4832 path = btrfs_alloc_path();
4836 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
4841 if (IS_ERR_OR_NULL(di))
4844 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
4846 btrfs_free_path(path);
4849 location->objectid = 0;
4854 * when we hit a tree root in a directory, the btrfs part of the inode
4855 * needs to be changed to reflect the root directory of the tree root. This
4856 * is kind of like crossing a mount point.
4858 static int fixup_tree_root_location(struct btrfs_root *root,
4860 struct dentry *dentry,
4861 struct btrfs_key *location,
4862 struct btrfs_root **sub_root)
4864 struct btrfs_path *path;
4865 struct btrfs_root *new_root;
4866 struct btrfs_root_ref *ref;
4867 struct extent_buffer *leaf;
4871 path = btrfs_alloc_path();
4878 ret = btrfs_find_item(root->fs_info->tree_root, path,
4879 BTRFS_I(dir)->root->root_key.objectid,
4880 location->objectid, BTRFS_ROOT_REF_KEY, NULL);
4887 leaf = path->nodes[0];
4888 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4889 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4890 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
4893 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
4894 (unsigned long)(ref + 1),
4895 dentry->d_name.len);
4899 btrfs_release_path(path);
4901 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4902 if (IS_ERR(new_root)) {
4903 err = PTR_ERR(new_root);
4907 *sub_root = new_root;
4908 location->objectid = btrfs_root_dirid(&new_root->root_item);
4909 location->type = BTRFS_INODE_ITEM_KEY;
4910 location->offset = 0;
4913 btrfs_free_path(path);
4917 static void inode_tree_add(struct inode *inode)
4919 struct btrfs_root *root = BTRFS_I(inode)->root;
4920 struct btrfs_inode *entry;
4922 struct rb_node *parent;
4923 struct rb_node *new = &BTRFS_I(inode)->rb_node;
4924 u64 ino = btrfs_ino(inode);
4926 if (inode_unhashed(inode))
4929 spin_lock(&root->inode_lock);
4930 p = &root->inode_tree.rb_node;
4933 entry = rb_entry(parent, struct btrfs_inode, rb_node);
4935 if (ino < btrfs_ino(&entry->vfs_inode))
4936 p = &parent->rb_left;
4937 else if (ino > btrfs_ino(&entry->vfs_inode))
4938 p = &parent->rb_right;
4940 WARN_ON(!(entry->vfs_inode.i_state &
4941 (I_WILL_FREE | I_FREEING)));
4942 rb_replace_node(parent, new, &root->inode_tree);
4943 RB_CLEAR_NODE(parent);
4944 spin_unlock(&root->inode_lock);
4948 rb_link_node(new, parent, p);
4949 rb_insert_color(new, &root->inode_tree);
4950 spin_unlock(&root->inode_lock);
4953 static void inode_tree_del(struct inode *inode)
4955 struct btrfs_root *root = BTRFS_I(inode)->root;
4958 spin_lock(&root->inode_lock);
4959 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
4960 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4961 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
4962 empty = RB_EMPTY_ROOT(&root->inode_tree);
4964 spin_unlock(&root->inode_lock);
4966 if (empty && btrfs_root_refs(&root->root_item) == 0) {
4967 synchronize_srcu(&root->fs_info->subvol_srcu);
4968 spin_lock(&root->inode_lock);
4969 empty = RB_EMPTY_ROOT(&root->inode_tree);
4970 spin_unlock(&root->inode_lock);
4972 btrfs_add_dead_root(root);
4976 void btrfs_invalidate_inodes(struct btrfs_root *root)
4978 struct rb_node *node;
4979 struct rb_node *prev;
4980 struct btrfs_inode *entry;
4981 struct inode *inode;
4984 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
4985 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4987 spin_lock(&root->inode_lock);
4989 node = root->inode_tree.rb_node;
4993 entry = rb_entry(node, struct btrfs_inode, rb_node);
4995 if (objectid < btrfs_ino(&entry->vfs_inode))
4996 node = node->rb_left;
4997 else if (objectid > btrfs_ino(&entry->vfs_inode))
4998 node = node->rb_right;
5004 entry = rb_entry(prev, struct btrfs_inode, rb_node);
5005 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
5009 prev = rb_next(prev);
5013 entry = rb_entry(node, struct btrfs_inode, rb_node);
5014 objectid = btrfs_ino(&entry->vfs_inode) + 1;
5015 inode = igrab(&entry->vfs_inode);
5017 spin_unlock(&root->inode_lock);
5018 if (atomic_read(&inode->i_count) > 1)
5019 d_prune_aliases(inode);
5021 * btrfs_drop_inode will have it removed from
5022 * the inode cache when its usage count
5027 spin_lock(&root->inode_lock);
5031 if (cond_resched_lock(&root->inode_lock))
5034 node = rb_next(node);
5036 spin_unlock(&root->inode_lock);
5039 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5041 struct btrfs_iget_args *args = p;
5042 inode->i_ino = args->location->objectid;
5043 memcpy(&BTRFS_I(inode)->location, args->location,
5044 sizeof(*args->location));
5045 BTRFS_I(inode)->root = args->root;
5049 static int btrfs_find_actor(struct inode *inode, void *opaque)
5051 struct btrfs_iget_args *args = opaque;
5052 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5053 args->root == BTRFS_I(inode)->root;
5056 static struct inode *btrfs_iget_locked(struct super_block *s,
5057 struct btrfs_key *location,
5058 struct btrfs_root *root)
5060 struct inode *inode;
5061 struct btrfs_iget_args args;
5062 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5064 args.location = location;
5067 inode = iget5_locked(s, hashval, btrfs_find_actor,
5068 btrfs_init_locked_inode,
5073 /* Get an inode object given its location and corresponding root.
5074 * Returns in *is_new if the inode was read from disk
5076 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5077 struct btrfs_root *root, int *new)
5079 struct inode *inode;
5081 inode = btrfs_iget_locked(s, location, root);
5083 return ERR_PTR(-ENOMEM);
5085 if (inode->i_state & I_NEW) {
5086 btrfs_read_locked_inode(inode);
5087 if (!is_bad_inode(inode)) {
5088 inode_tree_add(inode);
5089 unlock_new_inode(inode);
5093 unlock_new_inode(inode);
5095 inode = ERR_PTR(-ESTALE);
5102 static struct inode *new_simple_dir(struct super_block *s,
5103 struct btrfs_key *key,
5104 struct btrfs_root *root)
5106 struct inode *inode = new_inode(s);
5109 return ERR_PTR(-ENOMEM);
5111 BTRFS_I(inode)->root = root;
5112 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5113 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5115 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5116 inode->i_op = &btrfs_dir_ro_inode_operations;
5117 inode->i_fop = &simple_dir_operations;
5118 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5119 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5124 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5126 struct inode *inode;
5127 struct btrfs_root *root = BTRFS_I(dir)->root;
5128 struct btrfs_root *sub_root = root;
5129 struct btrfs_key location;
5133 if (dentry->d_name.len > BTRFS_NAME_LEN)
5134 return ERR_PTR(-ENAMETOOLONG);
5136 ret = btrfs_inode_by_name(dir, dentry, &location);
5138 return ERR_PTR(ret);
5140 if (location.objectid == 0)
5141 return ERR_PTR(-ENOENT);
5143 if (location.type == BTRFS_INODE_ITEM_KEY) {
5144 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5148 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5150 index = srcu_read_lock(&root->fs_info->subvol_srcu);
5151 ret = fixup_tree_root_location(root, dir, dentry,
5152 &location, &sub_root);
5155 inode = ERR_PTR(ret);
5157 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5159 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5161 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5163 if (!IS_ERR(inode) && root != sub_root) {
5164 down_read(&root->fs_info->cleanup_work_sem);
5165 if (!(inode->i_sb->s_flags & MS_RDONLY))
5166 ret = btrfs_orphan_cleanup(sub_root);
5167 up_read(&root->fs_info->cleanup_work_sem);
5170 inode = ERR_PTR(ret);
5177 static int btrfs_dentry_delete(const struct dentry *dentry)
5179 struct btrfs_root *root;
5180 struct inode *inode = dentry->d_inode;
5182 if (!inode && !IS_ROOT(dentry))
5183 inode = dentry->d_parent->d_inode;
5186 root = BTRFS_I(inode)->root;
5187 if (btrfs_root_refs(&root->root_item) == 0)
5190 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5196 static void btrfs_dentry_release(struct dentry *dentry)
5198 kfree(dentry->d_fsdata);
5201 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5204 struct inode *inode;
5206 inode = btrfs_lookup_dentry(dir, dentry);
5207 if (IS_ERR(inode)) {
5208 if (PTR_ERR(inode) == -ENOENT)
5211 return ERR_CAST(inode);
5214 return d_materialise_unique(dentry, inode);
5217 unsigned char btrfs_filetype_table[] = {
5218 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5221 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5223 struct inode *inode = file_inode(file);
5224 struct btrfs_root *root = BTRFS_I(inode)->root;
5225 struct btrfs_item *item;
5226 struct btrfs_dir_item *di;
5227 struct btrfs_key key;
5228 struct btrfs_key found_key;
5229 struct btrfs_path *path;
5230 struct list_head ins_list;
5231 struct list_head del_list;
5233 struct extent_buffer *leaf;
5235 unsigned char d_type;
5240 int key_type = BTRFS_DIR_INDEX_KEY;
5244 int is_curr = 0; /* ctx->pos points to the current index? */
5246 /* FIXME, use a real flag for deciding about the key type */
5247 if (root->fs_info->tree_root == root)
5248 key_type = BTRFS_DIR_ITEM_KEY;
5250 if (!dir_emit_dots(file, ctx))
5253 path = btrfs_alloc_path();
5259 if (key_type == BTRFS_DIR_INDEX_KEY) {
5260 INIT_LIST_HEAD(&ins_list);
5261 INIT_LIST_HEAD(&del_list);
5262 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5265 btrfs_set_key_type(&key, key_type);
5266 key.offset = ctx->pos;
5267 key.objectid = btrfs_ino(inode);
5269 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5274 leaf = path->nodes[0];
5275 slot = path->slots[0];
5276 if (slot >= btrfs_header_nritems(leaf)) {
5277 ret = btrfs_next_leaf(root, path);
5285 item = btrfs_item_nr(slot);
5286 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5288 if (found_key.objectid != key.objectid)
5290 if (btrfs_key_type(&found_key) != key_type)
5292 if (found_key.offset < ctx->pos)
5294 if (key_type == BTRFS_DIR_INDEX_KEY &&
5295 btrfs_should_delete_dir_index(&del_list,
5299 ctx->pos = found_key.offset;
5302 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5304 di_total = btrfs_item_size(leaf, item);
5306 while (di_cur < di_total) {
5307 struct btrfs_key location;
5309 if (verify_dir_item(root, leaf, di))
5312 name_len = btrfs_dir_name_len(leaf, di);
5313 if (name_len <= sizeof(tmp_name)) {
5314 name_ptr = tmp_name;
5316 name_ptr = kmalloc(name_len, GFP_NOFS);
5322 read_extent_buffer(leaf, name_ptr,
5323 (unsigned long)(di + 1), name_len);
5325 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5326 btrfs_dir_item_key_to_cpu(leaf, di, &location);
5329 /* is this a reference to our own snapshot? If so
5332 * In contrast to old kernels, we insert the snapshot's
5333 * dir item and dir index after it has been created, so
5334 * we won't find a reference to our own snapshot. We
5335 * still keep the following code for backward
5338 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5339 location.objectid == root->root_key.objectid) {
5343 over = !dir_emit(ctx, name_ptr, name_len,
5344 location.objectid, d_type);
5347 if (name_ptr != tmp_name)
5352 di_len = btrfs_dir_name_len(leaf, di) +
5353 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5355 di = (struct btrfs_dir_item *)((char *)di + di_len);
5361 if (key_type == BTRFS_DIR_INDEX_KEY) {
5364 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
5369 /* Reached end of directory/root. Bump pos past the last item. */
5373 * Stop new entries from being returned after we return the last
5376 * New directory entries are assigned a strictly increasing
5377 * offset. This means that new entries created during readdir
5378 * are *guaranteed* to be seen in the future by that readdir.
5379 * This has broken buggy programs which operate on names as
5380 * they're returned by readdir. Until we re-use freed offsets
5381 * we have this hack to stop new entries from being returned
5382 * under the assumption that they'll never reach this huge
5385 * This is being careful not to overflow 32bit loff_t unless the
5386 * last entry requires it because doing so has broken 32bit apps
5389 if (key_type == BTRFS_DIR_INDEX_KEY) {
5390 if (ctx->pos >= INT_MAX)
5391 ctx->pos = LLONG_MAX;
5398 if (key_type == BTRFS_DIR_INDEX_KEY)
5399 btrfs_put_delayed_items(&ins_list, &del_list);
5400 btrfs_free_path(path);
5404 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5406 struct btrfs_root *root = BTRFS_I(inode)->root;
5407 struct btrfs_trans_handle *trans;
5409 bool nolock = false;
5411 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5414 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5417 if (wbc->sync_mode == WB_SYNC_ALL) {
5419 trans = btrfs_join_transaction_nolock(root);
5421 trans = btrfs_join_transaction(root);
5423 return PTR_ERR(trans);
5424 ret = btrfs_commit_transaction(trans, root);
5430 * This is somewhat expensive, updating the tree every time the
5431 * inode changes. But, it is most likely to find the inode in cache.
5432 * FIXME, needs more benchmarking...there are no reasons other than performance
5433 * to keep or drop this code.
5435 static int btrfs_dirty_inode(struct inode *inode)
5437 struct btrfs_root *root = BTRFS_I(inode)->root;
5438 struct btrfs_trans_handle *trans;
5441 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5444 trans = btrfs_join_transaction(root);
5446 return PTR_ERR(trans);
5448 ret = btrfs_update_inode(trans, root, inode);
5449 if (ret && ret == -ENOSPC) {
5450 /* whoops, lets try again with the full transaction */
5451 btrfs_end_transaction(trans, root);
5452 trans = btrfs_start_transaction(root, 1);
5454 return PTR_ERR(trans);
5456 ret = btrfs_update_inode(trans, root, inode);
5458 btrfs_end_transaction(trans, root);
5459 if (BTRFS_I(inode)->delayed_node)
5460 btrfs_balance_delayed_items(root);
5466 * This is a copy of file_update_time. We need this so we can return error on
5467 * ENOSPC for updating the inode in the case of file write and mmap writes.
5469 static int btrfs_update_time(struct inode *inode, struct timespec *now,
5472 struct btrfs_root *root = BTRFS_I(inode)->root;
5474 if (btrfs_root_readonly(root))
5477 if (flags & S_VERSION)
5478 inode_inc_iversion(inode);
5479 if (flags & S_CTIME)
5480 inode->i_ctime = *now;
5481 if (flags & S_MTIME)
5482 inode->i_mtime = *now;
5483 if (flags & S_ATIME)
5484 inode->i_atime = *now;
5485 return btrfs_dirty_inode(inode);
5489 * find the highest existing sequence number in a directory
5490 * and then set the in-memory index_cnt variable to reflect
5491 * free sequence numbers
5493 static int btrfs_set_inode_index_count(struct inode *inode)
5495 struct btrfs_root *root = BTRFS_I(inode)->root;
5496 struct btrfs_key key, found_key;
5497 struct btrfs_path *path;
5498 struct extent_buffer *leaf;
5501 key.objectid = btrfs_ino(inode);
5502 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
5503 key.offset = (u64)-1;
5505 path = btrfs_alloc_path();
5509 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5512 /* FIXME: we should be able to handle this */
5518 * MAGIC NUMBER EXPLANATION:
5519 * since we search a directory based on f_pos we have to start at 2
5520 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5521 * else has to start at 2
5523 if (path->slots[0] == 0) {
5524 BTRFS_I(inode)->index_cnt = 2;
5530 leaf = path->nodes[0];
5531 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5533 if (found_key.objectid != btrfs_ino(inode) ||
5534 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
5535 BTRFS_I(inode)->index_cnt = 2;
5539 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5541 btrfs_free_path(path);
5546 * helper to find a free sequence number in a given directory. This current
5547 * code is very simple, later versions will do smarter things in the btree
5549 int btrfs_set_inode_index(struct inode *dir, u64 *index)
5553 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
5554 ret = btrfs_inode_delayed_dir_index_count(dir);
5556 ret = btrfs_set_inode_index_count(dir);
5562 *index = BTRFS_I(dir)->index_cnt;
5563 BTRFS_I(dir)->index_cnt++;
5568 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5569 struct btrfs_root *root,
5571 const char *name, int name_len,
5572 u64 ref_objectid, u64 objectid,
5573 umode_t mode, u64 *index)
5575 struct inode *inode;
5576 struct btrfs_inode_item *inode_item;
5577 struct btrfs_key *location;
5578 struct btrfs_path *path;
5579 struct btrfs_inode_ref *ref;
5580 struct btrfs_key key[2];
5582 int nitems = name ? 2 : 1;
5586 path = btrfs_alloc_path();
5588 return ERR_PTR(-ENOMEM);
5590 inode = new_inode(root->fs_info->sb);
5592 btrfs_free_path(path);
5593 return ERR_PTR(-ENOMEM);
5597 * we have to initialize this early, so we can reclaim the inode
5598 * number if we fail afterwards in this function.
5600 inode->i_ino = objectid;
5603 trace_btrfs_inode_request(dir);
5605 ret = btrfs_set_inode_index(dir, index);
5607 btrfs_free_path(path);
5609 return ERR_PTR(ret);
5615 * index_cnt is ignored for everything but a dir,
5616 * btrfs_get_inode_index_count has an explanation for the magic
5619 BTRFS_I(inode)->index_cnt = 2;
5620 BTRFS_I(inode)->dir_index = *index;
5621 BTRFS_I(inode)->root = root;
5622 BTRFS_I(inode)->generation = trans->transid;
5623 inode->i_generation = BTRFS_I(inode)->generation;
5626 * We could have gotten an inode number from somebody who was fsynced
5627 * and then removed in this same transaction, so let's just set full
5628 * sync since it will be a full sync anyway and this will blow away the
5629 * old info in the log.
5631 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5633 key[0].objectid = objectid;
5634 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
5637 sizes[0] = sizeof(struct btrfs_inode_item);
5641 * Start new inodes with an inode_ref. This is slightly more
5642 * efficient for small numbers of hard links since they will
5643 * be packed into one item. Extended refs will kick in if we
5644 * add more hard links than can fit in the ref item.
5646 key[1].objectid = objectid;
5647 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
5648 key[1].offset = ref_objectid;
5650 sizes[1] = name_len + sizeof(*ref);
5653 path->leave_spinning = 1;
5654 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
5658 inode_init_owner(inode, dir, mode);
5659 inode_set_bytes(inode, 0);
5660 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5661 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5662 struct btrfs_inode_item);
5663 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5664 sizeof(*inode_item));
5665 fill_inode_item(trans, path->nodes[0], inode_item, inode);
5668 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5669 struct btrfs_inode_ref);
5670 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
5671 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
5672 ptr = (unsigned long)(ref + 1);
5673 write_extent_buffer(path->nodes[0], name, ptr, name_len);
5676 btrfs_mark_buffer_dirty(path->nodes[0]);
5677 btrfs_free_path(path);
5679 location = &BTRFS_I(inode)->location;
5680 location->objectid = objectid;
5681 location->offset = 0;
5682 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
5684 btrfs_inherit_iflags(inode, dir);
5686 if (S_ISREG(mode)) {
5687 if (btrfs_test_opt(root, NODATASUM))
5688 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
5689 if (btrfs_test_opt(root, NODATACOW))
5690 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5691 BTRFS_INODE_NODATASUM;
5694 btrfs_insert_inode_hash(inode);
5695 inode_tree_add(inode);
5697 trace_btrfs_inode_new(inode);
5698 btrfs_set_inode_last_trans(trans, inode);
5700 btrfs_update_root_times(trans, root);
5702 ret = btrfs_inode_inherit_props(trans, inode, dir);
5704 btrfs_err(root->fs_info,
5705 "error inheriting props for ino %llu (root %llu): %d",
5706 btrfs_ino(inode), root->root_key.objectid, ret);
5711 BTRFS_I(dir)->index_cnt--;
5712 btrfs_free_path(path);
5714 return ERR_PTR(ret);
5717 static inline u8 btrfs_inode_type(struct inode *inode)
5719 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5723 * utility function to add 'inode' into 'parent_inode' with
5724 * a give name and a given sequence number.
5725 * if 'add_backref' is true, also insert a backref from the
5726 * inode to the parent directory.
5728 int btrfs_add_link(struct btrfs_trans_handle *trans,
5729 struct inode *parent_inode, struct inode *inode,
5730 const char *name, int name_len, int add_backref, u64 index)
5733 struct btrfs_key key;
5734 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5735 u64 ino = btrfs_ino(inode);
5736 u64 parent_ino = btrfs_ino(parent_inode);
5738 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5739 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5742 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
5746 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5747 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
5748 key.objectid, root->root_key.objectid,
5749 parent_ino, index, name, name_len);
5750 } else if (add_backref) {
5751 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
5755 /* Nothing to clean up yet */
5759 ret = btrfs_insert_dir_item(trans, root, name, name_len,
5761 btrfs_inode_type(inode), index);
5762 if (ret == -EEXIST || ret == -EOVERFLOW)
5765 btrfs_abort_transaction(trans, root, ret);
5769 btrfs_i_size_write(parent_inode, parent_inode->i_size +
5771 inode_inc_iversion(parent_inode);
5772 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
5773 ret = btrfs_update_inode(trans, root, parent_inode);
5775 btrfs_abort_transaction(trans, root, ret);
5779 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5782 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
5783 key.objectid, root->root_key.objectid,
5784 parent_ino, &local_index, name, name_len);
5786 } else if (add_backref) {
5790 err = btrfs_del_inode_ref(trans, root, name, name_len,
5791 ino, parent_ino, &local_index);
5796 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
5797 struct inode *dir, struct dentry *dentry,
5798 struct inode *inode, int backref, u64 index)
5800 int err = btrfs_add_link(trans, dir, inode,
5801 dentry->d_name.name, dentry->d_name.len,
5808 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
5809 umode_t mode, dev_t rdev)
5811 struct btrfs_trans_handle *trans;
5812 struct btrfs_root *root = BTRFS_I(dir)->root;
5813 struct inode *inode = NULL;
5819 if (!new_valid_dev(rdev))
5823 * 2 for inode item and ref
5825 * 1 for xattr if selinux is on
5827 trans = btrfs_start_transaction(root, 5);
5829 return PTR_ERR(trans);
5831 err = btrfs_find_free_ino(root, &objectid);
5835 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5836 dentry->d_name.len, btrfs_ino(dir), objectid,
5838 if (IS_ERR(inode)) {
5839 err = PTR_ERR(inode);
5843 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5850 * If the active LSM wants to access the inode during
5851 * d_instantiate it needs these. Smack checks to see
5852 * if the filesystem supports xattrs by looking at the
5856 inode->i_op = &btrfs_special_inode_operations;
5857 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
5861 init_special_inode(inode, inode->i_mode, rdev);
5862 btrfs_update_inode(trans, root, inode);
5863 d_instantiate(dentry, inode);
5866 btrfs_end_transaction(trans, root);
5867 btrfs_balance_delayed_items(root);
5868 btrfs_btree_balance_dirty(root);
5870 inode_dec_link_count(inode);
5876 static int btrfs_create(struct inode *dir, struct dentry *dentry,
5877 umode_t mode, bool excl)
5879 struct btrfs_trans_handle *trans;
5880 struct btrfs_root *root = BTRFS_I(dir)->root;
5881 struct inode *inode = NULL;
5882 int drop_inode_on_err = 0;
5888 * 2 for inode item and ref
5890 * 1 for xattr if selinux is on
5892 trans = btrfs_start_transaction(root, 5);
5894 return PTR_ERR(trans);
5896 err = btrfs_find_free_ino(root, &objectid);
5900 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5901 dentry->d_name.len, btrfs_ino(dir), objectid,
5903 if (IS_ERR(inode)) {
5904 err = PTR_ERR(inode);
5907 drop_inode_on_err = 1;
5909 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5913 err = btrfs_update_inode(trans, root, inode);
5918 * If the active LSM wants to access the inode during
5919 * d_instantiate it needs these. Smack checks to see
5920 * if the filesystem supports xattrs by looking at the
5923 inode->i_fop = &btrfs_file_operations;
5924 inode->i_op = &btrfs_file_inode_operations;
5926 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
5930 inode->i_mapping->a_ops = &btrfs_aops;
5931 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5932 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5933 d_instantiate(dentry, inode);
5936 btrfs_end_transaction(trans, root);
5937 if (err && drop_inode_on_err) {
5938 inode_dec_link_count(inode);
5941 btrfs_balance_delayed_items(root);
5942 btrfs_btree_balance_dirty(root);
5946 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
5947 struct dentry *dentry)
5949 struct btrfs_trans_handle *trans;
5950 struct btrfs_root *root = BTRFS_I(dir)->root;
5951 struct inode *inode = old_dentry->d_inode;
5956 /* do not allow sys_link's with other subvols of the same device */
5957 if (root->objectid != BTRFS_I(inode)->root->objectid)
5960 if (inode->i_nlink >= BTRFS_LINK_MAX)
5963 err = btrfs_set_inode_index(dir, &index);
5968 * 2 items for inode and inode ref
5969 * 2 items for dir items
5970 * 1 item for parent inode
5972 trans = btrfs_start_transaction(root, 5);
5973 if (IS_ERR(trans)) {
5974 err = PTR_ERR(trans);
5978 /* There are several dir indexes for this inode, clear the cache. */
5979 BTRFS_I(inode)->dir_index = 0ULL;
5981 inode_inc_iversion(inode);
5982 inode->i_ctime = CURRENT_TIME;
5984 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
5986 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5991 struct dentry *parent = dentry->d_parent;
5992 err = btrfs_update_inode(trans, root, inode);
5995 if (inode->i_nlink == 1) {
5997 * If new hard link count is 1, it's a file created
5998 * with open(2) O_TMPFILE flag.
6000 err = btrfs_orphan_del(trans, inode);
6004 d_instantiate(dentry, inode);
6005 btrfs_log_new_name(trans, inode, NULL, parent);
6008 btrfs_end_transaction(trans, root);
6009 btrfs_balance_delayed_items(root);
6012 inode_dec_link_count(inode);
6015 btrfs_btree_balance_dirty(root);
6019 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6021 struct inode *inode = NULL;
6022 struct btrfs_trans_handle *trans;
6023 struct btrfs_root *root = BTRFS_I(dir)->root;
6025 int drop_on_err = 0;
6030 * 2 items for inode and ref
6031 * 2 items for dir items
6032 * 1 for xattr if selinux is on
6034 trans = btrfs_start_transaction(root, 5);
6036 return PTR_ERR(trans);
6038 err = btrfs_find_free_ino(root, &objectid);
6042 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6043 dentry->d_name.len, btrfs_ino(dir), objectid,
6044 S_IFDIR | mode, &index);
6045 if (IS_ERR(inode)) {
6046 err = PTR_ERR(inode);
6052 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6056 inode->i_op = &btrfs_dir_inode_operations;
6057 inode->i_fop = &btrfs_dir_file_operations;
6059 btrfs_i_size_write(inode, 0);
6060 err = btrfs_update_inode(trans, root, inode);
6064 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6065 dentry->d_name.len, 0, index);
6069 d_instantiate(dentry, inode);
6073 btrfs_end_transaction(trans, root);
6076 btrfs_balance_delayed_items(root);
6077 btrfs_btree_balance_dirty(root);
6081 /* helper for btfs_get_extent. Given an existing extent in the tree,
6082 * and an extent that you want to insert, deal with overlap and insert
6083 * the new extent into the tree.
6085 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6086 struct extent_map *existing,
6087 struct extent_map *em,
6088 u64 map_start, u64 map_len)
6092 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6093 start_diff = map_start - em->start;
6094 em->start = map_start;
6096 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6097 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6098 em->block_start += start_diff;
6099 em->block_len -= start_diff;
6101 return add_extent_mapping(em_tree, em, 0);
6104 static noinline int uncompress_inline(struct btrfs_path *path,
6105 struct inode *inode, struct page *page,
6106 size_t pg_offset, u64 extent_offset,
6107 struct btrfs_file_extent_item *item)
6110 struct extent_buffer *leaf = path->nodes[0];
6113 unsigned long inline_size;
6117 WARN_ON(pg_offset != 0);
6118 compress_type = btrfs_file_extent_compression(leaf, item);
6119 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6120 inline_size = btrfs_file_extent_inline_item_len(leaf,
6121 btrfs_item_nr(path->slots[0]));
6122 tmp = kmalloc(inline_size, GFP_NOFS);
6125 ptr = btrfs_file_extent_inline_start(item);
6127 read_extent_buffer(leaf, tmp, ptr, inline_size);
6129 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
6130 ret = btrfs_decompress(compress_type, tmp, page,
6131 extent_offset, inline_size, max_size);
6137 * a bit scary, this does extent mapping from logical file offset to the disk.
6138 * the ugly parts come from merging extents from the disk with the in-ram
6139 * representation. This gets more complex because of the data=ordered code,
6140 * where the in-ram extents might be locked pending data=ordered completion.
6142 * This also copies inline extents directly into the page.
6145 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6146 size_t pg_offset, u64 start, u64 len,
6151 u64 extent_start = 0;
6153 u64 objectid = btrfs_ino(inode);
6155 struct btrfs_path *path = NULL;
6156 struct btrfs_root *root = BTRFS_I(inode)->root;
6157 struct btrfs_file_extent_item *item;
6158 struct extent_buffer *leaf;
6159 struct btrfs_key found_key;
6160 struct extent_map *em = NULL;
6161 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6162 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6163 struct btrfs_trans_handle *trans = NULL;
6164 const bool new_inline = !page || create;
6167 read_lock(&em_tree->lock);
6168 em = lookup_extent_mapping(em_tree, start, len);
6170 em->bdev = root->fs_info->fs_devices->latest_bdev;
6171 read_unlock(&em_tree->lock);
6174 if (em->start > start || em->start + em->len <= start)
6175 free_extent_map(em);
6176 else if (em->block_start == EXTENT_MAP_INLINE && page)
6177 free_extent_map(em);
6181 em = alloc_extent_map();
6186 em->bdev = root->fs_info->fs_devices->latest_bdev;
6187 em->start = EXTENT_MAP_HOLE;
6188 em->orig_start = EXTENT_MAP_HOLE;
6190 em->block_len = (u64)-1;
6193 path = btrfs_alloc_path();
6199 * Chances are we'll be called again, so go ahead and do
6205 ret = btrfs_lookup_file_extent(trans, root, path,
6206 objectid, start, trans != NULL);
6213 if (path->slots[0] == 0)
6218 leaf = path->nodes[0];
6219 item = btrfs_item_ptr(leaf, path->slots[0],
6220 struct btrfs_file_extent_item);
6221 /* are we inside the extent that was found? */
6222 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6223 found_type = btrfs_key_type(&found_key);
6224 if (found_key.objectid != objectid ||
6225 found_type != BTRFS_EXTENT_DATA_KEY) {
6227 * If we backup past the first extent we want to move forward
6228 * and see if there is an extent in front of us, otherwise we'll
6229 * say there is a hole for our whole search range which can
6236 found_type = btrfs_file_extent_type(leaf, item);
6237 extent_start = found_key.offset;
6238 if (found_type == BTRFS_FILE_EXTENT_REG ||
6239 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6240 extent_end = extent_start +
6241 btrfs_file_extent_num_bytes(leaf, item);
6242 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6244 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6245 extent_end = ALIGN(extent_start + size, root->sectorsize);
6248 if (start >= extent_end) {
6250 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6251 ret = btrfs_next_leaf(root, path);
6258 leaf = path->nodes[0];
6260 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6261 if (found_key.objectid != objectid ||
6262 found_key.type != BTRFS_EXTENT_DATA_KEY)
6264 if (start + len <= found_key.offset)
6267 em->orig_start = start;
6268 em->len = found_key.offset - start;
6272 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6274 if (found_type == BTRFS_FILE_EXTENT_REG ||
6275 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6277 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6281 size_t extent_offset;
6287 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6288 extent_offset = page_offset(page) + pg_offset - extent_start;
6289 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
6290 size - extent_offset);
6291 em->start = extent_start + extent_offset;
6292 em->len = ALIGN(copy_size, root->sectorsize);
6293 em->orig_block_len = em->len;
6294 em->orig_start = em->start;
6295 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6296 if (create == 0 && !PageUptodate(page)) {
6297 if (btrfs_file_extent_compression(leaf, item) !=
6298 BTRFS_COMPRESS_NONE) {
6299 ret = uncompress_inline(path, inode, page,
6301 extent_offset, item);
6308 read_extent_buffer(leaf, map + pg_offset, ptr,
6310 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6311 memset(map + pg_offset + copy_size, 0,
6312 PAGE_CACHE_SIZE - pg_offset -
6317 flush_dcache_page(page);
6318 } else if (create && PageUptodate(page)) {
6322 free_extent_map(em);
6325 btrfs_release_path(path);
6326 trans = btrfs_join_transaction(root);
6329 return ERR_CAST(trans);
6333 write_extent_buffer(leaf, map + pg_offset, ptr,
6336 btrfs_mark_buffer_dirty(leaf);
6338 set_extent_uptodate(io_tree, em->start,
6339 extent_map_end(em) - 1, NULL, GFP_NOFS);
6344 em->orig_start = start;
6347 em->block_start = EXTENT_MAP_HOLE;
6348 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6350 btrfs_release_path(path);
6351 if (em->start > start || extent_map_end(em) <= start) {
6352 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6353 em->start, em->len, start, len);
6359 write_lock(&em_tree->lock);
6360 ret = add_extent_mapping(em_tree, em, 0);
6361 /* it is possible that someone inserted the extent into the tree
6362 * while we had the lock dropped. It is also possible that
6363 * an overlapping map exists in the tree
6365 if (ret == -EEXIST) {
6366 struct extent_map *existing;
6370 existing = lookup_extent_mapping(em_tree, start, len);
6371 if (existing && (existing->start > start ||
6372 existing->start + existing->len <= start)) {
6373 free_extent_map(existing);
6377 existing = lookup_extent_mapping(em_tree, em->start,
6380 err = merge_extent_mapping(em_tree, existing,
6383 free_extent_map(existing);
6385 free_extent_map(em);
6390 free_extent_map(em);
6394 free_extent_map(em);
6399 write_unlock(&em_tree->lock);
6402 trace_btrfs_get_extent(root, em);
6405 btrfs_free_path(path);
6407 ret = btrfs_end_transaction(trans, root);
6412 free_extent_map(em);
6413 return ERR_PTR(err);
6415 BUG_ON(!em); /* Error is always set */
6419 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6420 size_t pg_offset, u64 start, u64 len,
6423 struct extent_map *em;
6424 struct extent_map *hole_em = NULL;
6425 u64 range_start = start;
6431 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6438 * - a pre-alloc extent,
6439 * there might actually be delalloc bytes behind it.
6441 if (em->block_start != EXTENT_MAP_HOLE &&
6442 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6448 /* check to see if we've wrapped (len == -1 or similar) */
6457 /* ok, we didn't find anything, lets look for delalloc */
6458 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6459 end, len, EXTENT_DELALLOC, 1);
6460 found_end = range_start + found;
6461 if (found_end < range_start)
6462 found_end = (u64)-1;
6465 * we didn't find anything useful, return
6466 * the original results from get_extent()
6468 if (range_start > end || found_end <= start) {
6474 /* adjust the range_start to make sure it doesn't
6475 * go backwards from the start they passed in
6477 range_start = max(start, range_start);
6478 found = found_end - range_start;
6481 u64 hole_start = start;
6484 em = alloc_extent_map();
6490 * when btrfs_get_extent can't find anything it
6491 * returns one huge hole
6493 * make sure what it found really fits our range, and
6494 * adjust to make sure it is based on the start from
6498 u64 calc_end = extent_map_end(hole_em);
6500 if (calc_end <= start || (hole_em->start > end)) {
6501 free_extent_map(hole_em);
6504 hole_start = max(hole_em->start, start);
6505 hole_len = calc_end - hole_start;
6509 if (hole_em && range_start > hole_start) {
6510 /* our hole starts before our delalloc, so we
6511 * have to return just the parts of the hole
6512 * that go until the delalloc starts
6514 em->len = min(hole_len,
6515 range_start - hole_start);
6516 em->start = hole_start;
6517 em->orig_start = hole_start;
6519 * don't adjust block start at all,
6520 * it is fixed at EXTENT_MAP_HOLE
6522 em->block_start = hole_em->block_start;
6523 em->block_len = hole_len;
6524 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6525 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6527 em->start = range_start;
6529 em->orig_start = range_start;
6530 em->block_start = EXTENT_MAP_DELALLOC;
6531 em->block_len = found;
6533 } else if (hole_em) {
6538 free_extent_map(hole_em);
6540 free_extent_map(em);
6541 return ERR_PTR(err);
6546 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6549 struct btrfs_root *root = BTRFS_I(inode)->root;
6550 struct extent_map *em;
6551 struct btrfs_key ins;
6555 alloc_hint = get_extent_allocation_hint(inode, start, len);
6556 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
6557 alloc_hint, &ins, 1, 1);
6559 return ERR_PTR(ret);
6561 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
6562 ins.offset, ins.offset, ins.offset, 0);
6564 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
6568 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6569 ins.offset, ins.offset, 0);
6571 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
6572 free_extent_map(em);
6573 return ERR_PTR(ret);
6580 * returns 1 when the nocow is safe, < 1 on error, 0 if the
6581 * block must be cow'd
6583 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
6584 u64 *orig_start, u64 *orig_block_len,
6587 struct btrfs_trans_handle *trans;
6588 struct btrfs_path *path;
6590 struct extent_buffer *leaf;
6591 struct btrfs_root *root = BTRFS_I(inode)->root;
6592 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6593 struct btrfs_file_extent_item *fi;
6594 struct btrfs_key key;
6601 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
6603 path = btrfs_alloc_path();
6607 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
6612 slot = path->slots[0];
6615 /* can't find the item, must cow */
6622 leaf = path->nodes[0];
6623 btrfs_item_key_to_cpu(leaf, &key, slot);
6624 if (key.objectid != btrfs_ino(inode) ||
6625 key.type != BTRFS_EXTENT_DATA_KEY) {
6626 /* not our file or wrong item type, must cow */
6630 if (key.offset > offset) {
6631 /* Wrong offset, must cow */
6635 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6636 found_type = btrfs_file_extent_type(leaf, fi);
6637 if (found_type != BTRFS_FILE_EXTENT_REG &&
6638 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6639 /* not a regular extent, must cow */
6643 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
6646 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
6647 if (extent_end <= offset)
6650 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
6651 if (disk_bytenr == 0)
6654 if (btrfs_file_extent_compression(leaf, fi) ||
6655 btrfs_file_extent_encryption(leaf, fi) ||
6656 btrfs_file_extent_other_encoding(leaf, fi))
6659 backref_offset = btrfs_file_extent_offset(leaf, fi);
6662 *orig_start = key.offset - backref_offset;
6663 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6664 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6667 if (btrfs_extent_readonly(root, disk_bytenr))
6670 num_bytes = min(offset + *len, extent_end) - offset;
6671 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6674 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
6675 ret = test_range_bit(io_tree, offset, range_end,
6676 EXTENT_DELALLOC, 0, NULL);
6683 btrfs_release_path(path);
6686 * look for other files referencing this extent, if we
6687 * find any we must cow
6689 trans = btrfs_join_transaction(root);
6690 if (IS_ERR(trans)) {
6695 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
6696 key.offset - backref_offset, disk_bytenr);
6697 btrfs_end_transaction(trans, root);
6704 * adjust disk_bytenr and num_bytes to cover just the bytes
6705 * in this extent we are about to write. If there
6706 * are any csums in that range we have to cow in order
6707 * to keep the csums correct
6709 disk_bytenr += backref_offset;
6710 disk_bytenr += offset - key.offset;
6711 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
6714 * all of the above have passed, it is safe to overwrite this extent
6720 btrfs_free_path(path);
6724 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
6726 struct radix_tree_root *root = &inode->i_mapping->page_tree;
6728 void **pagep = NULL;
6729 struct page *page = NULL;
6733 start_idx = start >> PAGE_CACHE_SHIFT;
6736 * end is the last byte in the last page. end == start is legal
6738 end_idx = end >> PAGE_CACHE_SHIFT;
6742 /* Most of the code in this while loop is lifted from
6743 * find_get_page. It's been modified to begin searching from a
6744 * page and return just the first page found in that range. If the
6745 * found idx is less than or equal to the end idx then we know that
6746 * a page exists. If no pages are found or if those pages are
6747 * outside of the range then we're fine (yay!) */
6748 while (page == NULL &&
6749 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
6750 page = radix_tree_deref_slot(pagep);
6751 if (unlikely(!page))
6754 if (radix_tree_exception(page)) {
6755 if (radix_tree_deref_retry(page)) {
6760 * Otherwise, shmem/tmpfs must be storing a swap entry
6761 * here as an exceptional entry: so return it without
6762 * attempting to raise page count.
6765 break; /* TODO: Is this relevant for this use case? */
6768 if (!page_cache_get_speculative(page)) {
6774 * Has the page moved?
6775 * This is part of the lockless pagecache protocol. See
6776 * include/linux/pagemap.h for details.
6778 if (unlikely(page != *pagep)) {
6779 page_cache_release(page);
6785 if (page->index <= end_idx)
6787 page_cache_release(page);
6794 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
6795 struct extent_state **cached_state, int writing)
6797 struct btrfs_ordered_extent *ordered;
6801 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6804 * We're concerned with the entire range that we're going to be
6805 * doing DIO to, so we need to make sure theres no ordered
6806 * extents in this range.
6808 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6809 lockend - lockstart + 1);
6812 * We need to make sure there are no buffered pages in this
6813 * range either, we could have raced between the invalidate in
6814 * generic_file_direct_write and locking the extent. The
6815 * invalidate needs to happen so that reads after a write do not
6820 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
6823 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6824 cached_state, GFP_NOFS);
6827 btrfs_start_ordered_extent(inode, ordered, 1);
6828 btrfs_put_ordered_extent(ordered);
6830 /* Screw you mmap */
6831 ret = filemap_write_and_wait_range(inode->i_mapping,
6838 * If we found a page that couldn't be invalidated just
6839 * fall back to buffered.
6841 ret = invalidate_inode_pages2_range(inode->i_mapping,
6842 lockstart >> PAGE_CACHE_SHIFT,
6843 lockend >> PAGE_CACHE_SHIFT);
6854 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
6855 u64 len, u64 orig_start,
6856 u64 block_start, u64 block_len,
6857 u64 orig_block_len, u64 ram_bytes,
6860 struct extent_map_tree *em_tree;
6861 struct extent_map *em;
6862 struct btrfs_root *root = BTRFS_I(inode)->root;
6865 em_tree = &BTRFS_I(inode)->extent_tree;
6866 em = alloc_extent_map();
6868 return ERR_PTR(-ENOMEM);
6871 em->orig_start = orig_start;
6872 em->mod_start = start;
6875 em->block_len = block_len;
6876 em->block_start = block_start;
6877 em->bdev = root->fs_info->fs_devices->latest_bdev;
6878 em->orig_block_len = orig_block_len;
6879 em->ram_bytes = ram_bytes;
6880 em->generation = -1;
6881 set_bit(EXTENT_FLAG_PINNED, &em->flags);
6882 if (type == BTRFS_ORDERED_PREALLOC)
6883 set_bit(EXTENT_FLAG_FILLING, &em->flags);
6886 btrfs_drop_extent_cache(inode, em->start,
6887 em->start + em->len - 1, 0);
6888 write_lock(&em_tree->lock);
6889 ret = add_extent_mapping(em_tree, em, 1);
6890 write_unlock(&em_tree->lock);
6891 } while (ret == -EEXIST);
6894 free_extent_map(em);
6895 return ERR_PTR(ret);
6902 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
6903 struct buffer_head *bh_result, int create)
6905 struct extent_map *em;
6906 struct btrfs_root *root = BTRFS_I(inode)->root;
6907 struct extent_state *cached_state = NULL;
6908 u64 start = iblock << inode->i_blkbits;
6909 u64 lockstart, lockend;
6910 u64 len = bh_result->b_size;
6911 int unlock_bits = EXTENT_LOCKED;
6915 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
6917 len = min_t(u64, len, root->sectorsize);
6920 lockend = start + len - 1;
6923 * If this errors out it's because we couldn't invalidate pagecache for
6924 * this range and we need to fallback to buffered.
6926 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
6929 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
6936 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
6937 * io. INLINE is special, and we could probably kludge it in here, but
6938 * it's still buffered so for safety lets just fall back to the generic
6941 * For COMPRESSED we _have_ to read the entire extent in so we can
6942 * decompress it, so there will be buffering required no matter what we
6943 * do, so go ahead and fallback to buffered.
6945 * We return -ENOTBLK because thats what makes DIO go ahead and go back
6946 * to buffered IO. Don't blame me, this is the price we pay for using
6949 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
6950 em->block_start == EXTENT_MAP_INLINE) {
6951 free_extent_map(em);
6956 /* Just a good old fashioned hole, return */
6957 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
6958 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6959 free_extent_map(em);
6964 * We don't allocate a new extent in the following cases
6966 * 1) The inode is marked as NODATACOW. In this case we'll just use the
6968 * 2) The extent is marked as PREALLOC. We're good to go here and can
6969 * just use the extent.
6973 len = min(len, em->len - (start - em->start));
6974 lockstart = start + len;
6978 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
6979 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
6980 em->block_start != EXTENT_MAP_HOLE)) {
6983 u64 block_start, orig_start, orig_block_len, ram_bytes;
6985 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6986 type = BTRFS_ORDERED_PREALLOC;
6988 type = BTRFS_ORDERED_NOCOW;
6989 len = min(len, em->len - (start - em->start));
6990 block_start = em->block_start + (start - em->start);
6992 if (can_nocow_extent(inode, start, &len, &orig_start,
6993 &orig_block_len, &ram_bytes) == 1) {
6994 if (type == BTRFS_ORDERED_PREALLOC) {
6995 free_extent_map(em);
6996 em = create_pinned_em(inode, start, len,
7005 ret = btrfs_add_ordered_extent_dio(inode, start,
7006 block_start, len, len, type);
7008 free_extent_map(em);
7016 * this will cow the extent, reset the len in case we changed
7019 len = bh_result->b_size;
7020 free_extent_map(em);
7021 em = btrfs_new_extent_direct(inode, start, len);
7026 len = min(len, em->len - (start - em->start));
7028 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7030 bh_result->b_size = len;
7031 bh_result->b_bdev = em->bdev;
7032 set_buffer_mapped(bh_result);
7034 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7035 set_buffer_new(bh_result);
7038 * Need to update the i_size under the extent lock so buffered
7039 * readers will get the updated i_size when we unlock.
7041 if (start + len > i_size_read(inode))
7042 i_size_write(inode, start + len);
7044 spin_lock(&BTRFS_I(inode)->lock);
7045 BTRFS_I(inode)->outstanding_extents++;
7046 spin_unlock(&BTRFS_I(inode)->lock);
7048 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7049 lockstart + len - 1, EXTENT_DELALLOC, NULL,
7050 &cached_state, GFP_NOFS);
7055 * In the case of write we need to clear and unlock the entire range,
7056 * in the case of read we need to unlock only the end area that we
7057 * aren't using if there is any left over space.
7059 if (lockstart < lockend) {
7060 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7061 lockend, unlock_bits, 1, 0,
7062 &cached_state, GFP_NOFS);
7064 free_extent_state(cached_state);
7067 free_extent_map(em);
7072 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7073 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7077 static void btrfs_endio_direct_read(struct bio *bio, int err)
7079 struct btrfs_dio_private *dip = bio->bi_private;
7080 struct bio_vec *bvec;
7081 struct inode *inode = dip->inode;
7082 struct btrfs_root *root = BTRFS_I(inode)->root;
7083 struct bio *dio_bio;
7084 u32 *csums = (u32 *)dip->csum;
7088 start = dip->logical_offset;
7089 bio_for_each_segment_all(bvec, bio, i) {
7090 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
7091 struct page *page = bvec->bv_page;
7094 unsigned long flags;
7096 local_irq_save(flags);
7097 kaddr = kmap_atomic(page);
7098 csum = btrfs_csum_data(kaddr + bvec->bv_offset,
7099 csum, bvec->bv_len);
7100 btrfs_csum_final(csum, (char *)&csum);
7101 kunmap_atomic(kaddr);
7102 local_irq_restore(flags);
7104 flush_dcache_page(bvec->bv_page);
7105 if (csum != csums[i]) {
7106 btrfs_err(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
7107 btrfs_ino(inode), start, csum,
7113 start += bvec->bv_len;
7116 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
7117 dip->logical_offset + dip->bytes - 1);
7118 dio_bio = dip->dio_bio;
7122 /* If we had a csum failure make sure to clear the uptodate flag */
7124 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7125 dio_end_io(dio_bio, err);
7129 static void btrfs_endio_direct_write(struct bio *bio, int err)
7131 struct btrfs_dio_private *dip = bio->bi_private;
7132 struct inode *inode = dip->inode;
7133 struct btrfs_root *root = BTRFS_I(inode)->root;
7134 struct btrfs_ordered_extent *ordered = NULL;
7135 u64 ordered_offset = dip->logical_offset;
7136 u64 ordered_bytes = dip->bytes;
7137 struct bio *dio_bio;
7143 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
7145 ordered_bytes, !err);
7149 btrfs_init_work(&ordered->work, finish_ordered_fn, NULL, NULL);
7150 btrfs_queue_work(root->fs_info->endio_write_workers,
7154 * our bio might span multiple ordered extents. If we haven't
7155 * completed the accounting for the whole dio, go back and try again
7157 if (ordered_offset < dip->logical_offset + dip->bytes) {
7158 ordered_bytes = dip->logical_offset + dip->bytes -
7164 dio_bio = dip->dio_bio;
7168 /* If we had an error make sure to clear the uptodate flag */
7170 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7171 dio_end_io(dio_bio, err);
7175 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
7176 struct bio *bio, int mirror_num,
7177 unsigned long bio_flags, u64 offset)
7180 struct btrfs_root *root = BTRFS_I(inode)->root;
7181 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
7182 BUG_ON(ret); /* -ENOMEM */
7186 static void btrfs_end_dio_bio(struct bio *bio, int err)
7188 struct btrfs_dio_private *dip = bio->bi_private;
7191 btrfs_err(BTRFS_I(dip->inode)->root->fs_info,
7192 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
7193 btrfs_ino(dip->inode), bio->bi_rw,
7194 (unsigned long long)bio->bi_iter.bi_sector,
7195 bio->bi_iter.bi_size, err);
7199 * before atomic variable goto zero, we must make sure
7200 * dip->errors is perceived to be set.
7202 smp_mb__before_atomic();
7205 /* if there are more bios still pending for this dio, just exit */
7206 if (!atomic_dec_and_test(&dip->pending_bios))
7210 bio_io_error(dip->orig_bio);
7212 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
7213 bio_endio(dip->orig_bio, 0);
7219 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
7220 u64 first_sector, gfp_t gfp_flags)
7222 int nr_vecs = bio_get_nr_vecs(bdev);
7223 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
7226 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
7227 int rw, u64 file_offset, int skip_sum,
7230 struct btrfs_dio_private *dip = bio->bi_private;
7231 int write = rw & REQ_WRITE;
7232 struct btrfs_root *root = BTRFS_I(inode)->root;
7236 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7241 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
7249 if (write && async_submit) {
7250 ret = btrfs_wq_submit_bio(root->fs_info,
7251 inode, rw, bio, 0, 0,
7253 __btrfs_submit_bio_start_direct_io,
7254 __btrfs_submit_bio_done);
7258 * If we aren't doing async submit, calculate the csum of the
7261 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
7264 } else if (!skip_sum) {
7265 ret = btrfs_lookup_bio_sums_dio(root, inode, dip, bio,
7272 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
7278 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
7281 struct inode *inode = dip->inode;
7282 struct btrfs_root *root = BTRFS_I(inode)->root;
7284 struct bio *orig_bio = dip->orig_bio;
7285 struct bio_vec *bvec = orig_bio->bi_io_vec;
7286 u64 start_sector = orig_bio->bi_iter.bi_sector;
7287 u64 file_offset = dip->logical_offset;
7292 int async_submit = 0;
7294 map_length = orig_bio->bi_iter.bi_size;
7295 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
7296 &map_length, NULL, 0);
7302 if (map_length >= orig_bio->bi_iter.bi_size) {
7307 /* async crcs make it difficult to collect full stripe writes. */
7308 if (btrfs_get_alloc_profile(root, 1) &
7309 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
7314 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7317 bio->bi_private = dip;
7318 bio->bi_end_io = btrfs_end_dio_bio;
7319 atomic_inc(&dip->pending_bios);
7321 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
7322 if (unlikely(map_length < submit_len + bvec->bv_len ||
7323 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
7324 bvec->bv_offset) < bvec->bv_len)) {
7326 * inc the count before we submit the bio so
7327 * we know the end IO handler won't happen before
7328 * we inc the count. Otherwise, the dip might get freed
7329 * before we're done setting it up
7331 atomic_inc(&dip->pending_bios);
7332 ret = __btrfs_submit_dio_bio(bio, inode, rw,
7333 file_offset, skip_sum,
7337 atomic_dec(&dip->pending_bios);
7341 start_sector += submit_len >> 9;
7342 file_offset += submit_len;
7347 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7348 start_sector, GFP_NOFS);
7351 bio->bi_private = dip;
7352 bio->bi_end_io = btrfs_end_dio_bio;
7354 map_length = orig_bio->bi_iter.bi_size;
7355 ret = btrfs_map_block(root->fs_info, rw,
7357 &map_length, NULL, 0);
7363 submit_len += bvec->bv_len;
7370 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
7379 * before atomic variable goto zero, we must
7380 * make sure dip->errors is perceived to be set.
7382 smp_mb__before_atomic();
7383 if (atomic_dec_and_test(&dip->pending_bios))
7384 bio_io_error(dip->orig_bio);
7386 /* bio_end_io() will handle error, so we needn't return it */
7390 static void btrfs_submit_direct(int rw, struct bio *dio_bio,
7391 struct inode *inode, loff_t file_offset)
7393 struct btrfs_root *root = BTRFS_I(inode)->root;
7394 struct btrfs_dio_private *dip;
7398 int write = rw & REQ_WRITE;
7402 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7404 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
7410 if (!skip_sum && !write) {
7411 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
7412 sum_len = dio_bio->bi_iter.bi_size >>
7413 inode->i_sb->s_blocksize_bits;
7414 sum_len *= csum_size;
7419 dip = kmalloc(sizeof(*dip) + sum_len, GFP_NOFS);
7425 dip->private = dio_bio->bi_private;
7427 dip->logical_offset = file_offset;
7428 dip->bytes = dio_bio->bi_iter.bi_size;
7429 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
7430 io_bio->bi_private = dip;
7432 dip->orig_bio = io_bio;
7433 dip->dio_bio = dio_bio;
7434 atomic_set(&dip->pending_bios, 0);
7437 io_bio->bi_end_io = btrfs_endio_direct_write;
7439 io_bio->bi_end_io = btrfs_endio_direct_read;
7441 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
7450 * If this is a write, we need to clean up the reserved space and kill
7451 * the ordered extent.
7454 struct btrfs_ordered_extent *ordered;
7455 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
7456 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
7457 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
7458 btrfs_free_reserved_extent(root, ordered->start,
7459 ordered->disk_len, 1);
7460 btrfs_put_ordered_extent(ordered);
7461 btrfs_put_ordered_extent(ordered);
7463 bio_endio(dio_bio, ret);
7466 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
7467 const struct iov_iter *iter, loff_t offset)
7471 unsigned blocksize_mask = root->sectorsize - 1;
7472 ssize_t retval = -EINVAL;
7474 if (offset & blocksize_mask)
7477 if (iov_iter_alignment(iter) & blocksize_mask)
7480 /* If this is a write we don't need to check anymore */
7484 * Check to make sure we don't have duplicate iov_base's in this
7485 * iovec, if so return EINVAL, otherwise we'll get csum errors
7486 * when reading back.
7488 for (seg = 0; seg < iter->nr_segs; seg++) {
7489 for (i = seg + 1; i < iter->nr_segs; i++) {
7490 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
7499 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
7500 struct iov_iter *iter, loff_t offset)
7502 struct file *file = iocb->ki_filp;
7503 struct inode *inode = file->f_mapping->host;
7507 bool relock = false;
7510 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iter, offset))
7513 atomic_inc(&inode->i_dio_count);
7514 smp_mb__after_atomic();
7517 * The generic stuff only does filemap_write_and_wait_range, which
7518 * isn't enough if we've written compressed pages to this area, so
7519 * we need to flush the dirty pages again to make absolutely sure
7520 * that any outstanding dirty pages are on disk.
7522 count = iov_iter_count(iter);
7523 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
7524 &BTRFS_I(inode)->runtime_flags))
7525 filemap_fdatawrite_range(inode->i_mapping, offset, count);
7529 * If the write DIO is beyond the EOF, we need update
7530 * the isize, but it is protected by i_mutex. So we can
7531 * not unlock the i_mutex at this case.
7533 if (offset + count <= inode->i_size) {
7534 mutex_unlock(&inode->i_mutex);
7537 ret = btrfs_delalloc_reserve_space(inode, count);
7540 } else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7541 &BTRFS_I(inode)->runtime_flags))) {
7542 inode_dio_done(inode);
7543 flags = DIO_LOCKING | DIO_SKIP_HOLES;
7547 ret = __blockdev_direct_IO(rw, iocb, inode,
7548 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
7549 iter, offset, btrfs_get_blocks_direct, NULL,
7550 btrfs_submit_direct, flags);
7552 if (ret < 0 && ret != -EIOCBQUEUED)
7553 btrfs_delalloc_release_space(inode, count);
7554 else if (ret >= 0 && (size_t)ret < count)
7555 btrfs_delalloc_release_space(inode,
7556 count - (size_t)ret);
7558 btrfs_delalloc_release_metadata(inode, 0);
7562 inode_dio_done(inode);
7564 mutex_lock(&inode->i_mutex);
7569 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
7571 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7572 __u64 start, __u64 len)
7576 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
7580 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
7583 int btrfs_readpage(struct file *file, struct page *page)
7585 struct extent_io_tree *tree;
7586 tree = &BTRFS_I(page->mapping->host)->io_tree;
7587 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
7590 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
7592 struct extent_io_tree *tree;
7595 if (current->flags & PF_MEMALLOC) {
7596 redirty_page_for_writepage(wbc, page);
7600 tree = &BTRFS_I(page->mapping->host)->io_tree;
7601 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
7604 static int btrfs_writepages(struct address_space *mapping,
7605 struct writeback_control *wbc)
7607 struct extent_io_tree *tree;
7609 tree = &BTRFS_I(mapping->host)->io_tree;
7610 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
7614 btrfs_readpages(struct file *file, struct address_space *mapping,
7615 struct list_head *pages, unsigned nr_pages)
7617 struct extent_io_tree *tree;
7618 tree = &BTRFS_I(mapping->host)->io_tree;
7619 return extent_readpages(tree, mapping, pages, nr_pages,
7622 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7624 struct extent_io_tree *tree;
7625 struct extent_map_tree *map;
7628 tree = &BTRFS_I(page->mapping->host)->io_tree;
7629 map = &BTRFS_I(page->mapping->host)->extent_tree;
7630 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
7632 ClearPagePrivate(page);
7633 set_page_private(page, 0);
7634 page_cache_release(page);
7639 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7641 if (PageWriteback(page) || PageDirty(page))
7643 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
7646 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
7647 unsigned int length)
7649 struct inode *inode = page->mapping->host;
7650 struct extent_io_tree *tree;
7651 struct btrfs_ordered_extent *ordered;
7652 struct extent_state *cached_state = NULL;
7653 u64 page_start = page_offset(page);
7654 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
7655 int inode_evicting = inode->i_state & I_FREEING;
7658 * we have the page locked, so new writeback can't start,
7659 * and the dirty bit won't be cleared while we are here.
7661 * Wait for IO on this page so that we can safely clear
7662 * the PagePrivate2 bit and do ordered accounting
7664 wait_on_page_writeback(page);
7666 tree = &BTRFS_I(inode)->io_tree;
7668 btrfs_releasepage(page, GFP_NOFS);
7672 if (!inode_evicting)
7673 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
7674 ordered = btrfs_lookup_ordered_extent(inode, page_start);
7677 * IO on this page will never be started, so we need
7678 * to account for any ordered extents now
7680 if (!inode_evicting)
7681 clear_extent_bit(tree, page_start, page_end,
7682 EXTENT_DIRTY | EXTENT_DELALLOC |
7683 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7684 EXTENT_DEFRAG, 1, 0, &cached_state,
7687 * whoever cleared the private bit is responsible
7688 * for the finish_ordered_io
7690 if (TestClearPagePrivate2(page)) {
7691 struct btrfs_ordered_inode_tree *tree;
7694 tree = &BTRFS_I(inode)->ordered_tree;
7696 spin_lock_irq(&tree->lock);
7697 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
7698 new_len = page_start - ordered->file_offset;
7699 if (new_len < ordered->truncated_len)
7700 ordered->truncated_len = new_len;
7701 spin_unlock_irq(&tree->lock);
7703 if (btrfs_dec_test_ordered_pending(inode, &ordered,
7705 PAGE_CACHE_SIZE, 1))
7706 btrfs_finish_ordered_io(ordered);
7708 btrfs_put_ordered_extent(ordered);
7709 if (!inode_evicting) {
7710 cached_state = NULL;
7711 lock_extent_bits(tree, page_start, page_end, 0,
7716 if (!inode_evicting) {
7717 clear_extent_bit(tree, page_start, page_end,
7718 EXTENT_LOCKED | EXTENT_DIRTY |
7719 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
7720 EXTENT_DEFRAG, 1, 1,
7721 &cached_state, GFP_NOFS);
7723 __btrfs_releasepage(page, GFP_NOFS);
7726 ClearPageChecked(page);
7727 if (PagePrivate(page)) {
7728 ClearPagePrivate(page);
7729 set_page_private(page, 0);
7730 page_cache_release(page);
7735 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
7736 * called from a page fault handler when a page is first dirtied. Hence we must
7737 * be careful to check for EOF conditions here. We set the page up correctly
7738 * for a written page which means we get ENOSPC checking when writing into
7739 * holes and correct delalloc and unwritten extent mapping on filesystems that
7740 * support these features.
7742 * We are not allowed to take the i_mutex here so we have to play games to
7743 * protect against truncate races as the page could now be beyond EOF. Because
7744 * vmtruncate() writes the inode size before removing pages, once we have the
7745 * page lock we can determine safely if the page is beyond EOF. If it is not
7746 * beyond EOF, then the page is guaranteed safe against truncation until we
7749 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
7751 struct page *page = vmf->page;
7752 struct inode *inode = file_inode(vma->vm_file);
7753 struct btrfs_root *root = BTRFS_I(inode)->root;
7754 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7755 struct btrfs_ordered_extent *ordered;
7756 struct extent_state *cached_state = NULL;
7758 unsigned long zero_start;
7765 sb_start_pagefault(inode->i_sb);
7766 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
7768 ret = file_update_time(vma->vm_file);
7774 else /* -ENOSPC, -EIO, etc */
7775 ret = VM_FAULT_SIGBUS;
7781 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
7784 size = i_size_read(inode);
7785 page_start = page_offset(page);
7786 page_end = page_start + PAGE_CACHE_SIZE - 1;
7788 if ((page->mapping != inode->i_mapping) ||
7789 (page_start >= size)) {
7790 /* page got truncated out from underneath us */
7793 wait_on_page_writeback(page);
7795 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
7796 set_page_extent_mapped(page);
7799 * we can't set the delalloc bits if there are pending ordered
7800 * extents. Drop our locks and wait for them to finish
7802 ordered = btrfs_lookup_ordered_extent(inode, page_start);
7804 unlock_extent_cached(io_tree, page_start, page_end,
7805 &cached_state, GFP_NOFS);
7807 btrfs_start_ordered_extent(inode, ordered, 1);
7808 btrfs_put_ordered_extent(ordered);
7813 * XXX - page_mkwrite gets called every time the page is dirtied, even
7814 * if it was already dirty, so for space accounting reasons we need to
7815 * clear any delalloc bits for the range we are fixing to save. There
7816 * is probably a better way to do this, but for now keep consistent with
7817 * prepare_pages in the normal write path.
7819 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
7820 EXTENT_DIRTY | EXTENT_DELALLOC |
7821 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
7822 0, 0, &cached_state, GFP_NOFS);
7824 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
7827 unlock_extent_cached(io_tree, page_start, page_end,
7828 &cached_state, GFP_NOFS);
7829 ret = VM_FAULT_SIGBUS;
7834 /* page is wholly or partially inside EOF */
7835 if (page_start + PAGE_CACHE_SIZE > size)
7836 zero_start = size & ~PAGE_CACHE_MASK;
7838 zero_start = PAGE_CACHE_SIZE;
7840 if (zero_start != PAGE_CACHE_SIZE) {
7842 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
7843 flush_dcache_page(page);
7846 ClearPageChecked(page);
7847 set_page_dirty(page);
7848 SetPageUptodate(page);
7850 BTRFS_I(inode)->last_trans = root->fs_info->generation;
7851 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
7852 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
7854 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
7858 sb_end_pagefault(inode->i_sb);
7859 return VM_FAULT_LOCKED;
7863 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
7865 sb_end_pagefault(inode->i_sb);
7869 static int btrfs_truncate(struct inode *inode)
7871 struct btrfs_root *root = BTRFS_I(inode)->root;
7872 struct btrfs_block_rsv *rsv;
7875 struct btrfs_trans_handle *trans;
7876 u64 mask = root->sectorsize - 1;
7877 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
7879 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
7885 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
7886 * 3 things going on here
7888 * 1) We need to reserve space for our orphan item and the space to
7889 * delete our orphan item. Lord knows we don't want to have a dangling
7890 * orphan item because we didn't reserve space to remove it.
7892 * 2) We need to reserve space to update our inode.
7894 * 3) We need to have something to cache all the space that is going to
7895 * be free'd up by the truncate operation, but also have some slack
7896 * space reserved in case it uses space during the truncate (thank you
7897 * very much snapshotting).
7899 * And we need these to all be seperate. The fact is we can use alot of
7900 * space doing the truncate, and we have no earthly idea how much space
7901 * we will use, so we need the truncate reservation to be seperate so it
7902 * doesn't end up using space reserved for updating the inode or
7903 * removing the orphan item. We also need to be able to stop the
7904 * transaction and start a new one, which means we need to be able to
7905 * update the inode several times, and we have no idea of knowing how
7906 * many times that will be, so we can't just reserve 1 item for the
7907 * entirety of the opration, so that has to be done seperately as well.
7908 * Then there is the orphan item, which does indeed need to be held on
7909 * to for the whole operation, and we need nobody to touch this reserved
7910 * space except the orphan code.
7912 * So that leaves us with
7914 * 1) root->orphan_block_rsv - for the orphan deletion.
7915 * 2) rsv - for the truncate reservation, which we will steal from the
7916 * transaction reservation.
7917 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
7918 * updating the inode.
7920 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
7923 rsv->size = min_size;
7927 * 1 for the truncate slack space
7928 * 1 for updating the inode.
7930 trans = btrfs_start_transaction(root, 2);
7931 if (IS_ERR(trans)) {
7932 err = PTR_ERR(trans);
7936 /* Migrate the slack space for the truncate to our reserve */
7937 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
7942 * setattr is responsible for setting the ordered_data_close flag,
7943 * but that is only tested during the last file release. That
7944 * could happen well after the next commit, leaving a great big
7945 * window where new writes may get lost if someone chooses to write
7946 * to this file after truncating to zero
7948 * The inode doesn't have any dirty data here, and so if we commit
7949 * this is a noop. If someone immediately starts writing to the inode
7950 * it is very likely we'll catch some of their writes in this
7951 * transaction, and the commit will find this file on the ordered
7952 * data list with good things to send down.
7954 * This is a best effort solution, there is still a window where
7955 * using truncate to replace the contents of the file will
7956 * end up with a zero length file after a crash.
7958 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
7959 &BTRFS_I(inode)->runtime_flags))
7960 btrfs_add_ordered_operation(trans, root, inode);
7963 * So if we truncate and then write and fsync we normally would just
7964 * write the extents that changed, which is a problem if we need to
7965 * first truncate that entire inode. So set this flag so we write out
7966 * all of the extents in the inode to the sync log so we're completely
7969 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
7970 trans->block_rsv = rsv;
7973 ret = btrfs_truncate_inode_items(trans, root, inode,
7975 BTRFS_EXTENT_DATA_KEY);
7976 if (ret != -ENOSPC) {
7981 trans->block_rsv = &root->fs_info->trans_block_rsv;
7982 ret = btrfs_update_inode(trans, root, inode);
7988 btrfs_end_transaction(trans, root);
7989 btrfs_btree_balance_dirty(root);
7991 trans = btrfs_start_transaction(root, 2);
7992 if (IS_ERR(trans)) {
7993 ret = err = PTR_ERR(trans);
7998 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
8000 BUG_ON(ret); /* shouldn't happen */
8001 trans->block_rsv = rsv;
8004 if (ret == 0 && inode->i_nlink > 0) {
8005 trans->block_rsv = root->orphan_block_rsv;
8006 ret = btrfs_orphan_del(trans, inode);
8012 trans->block_rsv = &root->fs_info->trans_block_rsv;
8013 ret = btrfs_update_inode(trans, root, inode);
8017 ret = btrfs_end_transaction(trans, root);
8018 btrfs_btree_balance_dirty(root);
8022 btrfs_free_block_rsv(root, rsv);
8031 * create a new subvolume directory/inode (helper for the ioctl).
8033 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8034 struct btrfs_root *new_root,
8035 struct btrfs_root *parent_root,
8038 struct inode *inode;
8042 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8043 new_dirid, new_dirid,
8044 S_IFDIR | (~current_umask() & S_IRWXUGO),
8047 return PTR_ERR(inode);
8048 inode->i_op = &btrfs_dir_inode_operations;
8049 inode->i_fop = &btrfs_dir_file_operations;
8051 set_nlink(inode, 1);
8052 btrfs_i_size_write(inode, 0);
8054 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8056 btrfs_err(new_root->fs_info,
8057 "error inheriting subvolume %llu properties: %d",
8058 new_root->root_key.objectid, err);
8060 err = btrfs_update_inode(trans, new_root, inode);
8066 struct inode *btrfs_alloc_inode(struct super_block *sb)
8068 struct btrfs_inode *ei;
8069 struct inode *inode;
8071 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
8078 ei->last_sub_trans = 0;
8079 ei->logged_trans = 0;
8080 ei->delalloc_bytes = 0;
8081 ei->disk_i_size = 0;
8084 ei->index_cnt = (u64)-1;
8086 ei->last_unlink_trans = 0;
8087 ei->last_log_commit = 0;
8089 spin_lock_init(&ei->lock);
8090 ei->outstanding_extents = 0;
8091 ei->reserved_extents = 0;
8093 ei->runtime_flags = 0;
8094 ei->force_compress = BTRFS_COMPRESS_NONE;
8096 ei->delayed_node = NULL;
8098 inode = &ei->vfs_inode;
8099 extent_map_tree_init(&ei->extent_tree);
8100 extent_io_tree_init(&ei->io_tree, &inode->i_data);
8101 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
8102 ei->io_tree.track_uptodate = 1;
8103 ei->io_failure_tree.track_uptodate = 1;
8104 atomic_set(&ei->sync_writers, 0);
8105 mutex_init(&ei->log_mutex);
8106 mutex_init(&ei->delalloc_mutex);
8107 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8108 INIT_LIST_HEAD(&ei->delalloc_inodes);
8109 INIT_LIST_HEAD(&ei->ordered_operations);
8110 RB_CLEAR_NODE(&ei->rb_node);
8115 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8116 void btrfs_test_destroy_inode(struct inode *inode)
8118 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8119 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8123 static void btrfs_i_callback(struct rcu_head *head)
8125 struct inode *inode = container_of(head, struct inode, i_rcu);
8126 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8129 void btrfs_destroy_inode(struct inode *inode)
8131 struct btrfs_ordered_extent *ordered;
8132 struct btrfs_root *root = BTRFS_I(inode)->root;
8134 WARN_ON(!hlist_empty(&inode->i_dentry));
8135 WARN_ON(inode->i_data.nrpages);
8136 WARN_ON(BTRFS_I(inode)->outstanding_extents);
8137 WARN_ON(BTRFS_I(inode)->reserved_extents);
8138 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
8139 WARN_ON(BTRFS_I(inode)->csum_bytes);
8142 * This can happen where we create an inode, but somebody else also
8143 * created the same inode and we need to destroy the one we already
8150 * Make sure we're properly removed from the ordered operation
8154 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
8155 spin_lock(&root->fs_info->ordered_root_lock);
8156 list_del_init(&BTRFS_I(inode)->ordered_operations);
8157 spin_unlock(&root->fs_info->ordered_root_lock);
8160 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8161 &BTRFS_I(inode)->runtime_flags)) {
8162 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
8164 atomic_dec(&root->orphan_inodes);
8168 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8172 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
8173 ordered->file_offset, ordered->len);
8174 btrfs_remove_ordered_extent(inode, ordered);
8175 btrfs_put_ordered_extent(ordered);
8176 btrfs_put_ordered_extent(ordered);
8179 inode_tree_del(inode);
8180 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8182 call_rcu(&inode->i_rcu, btrfs_i_callback);
8185 int btrfs_drop_inode(struct inode *inode)
8187 struct btrfs_root *root = BTRFS_I(inode)->root;
8192 /* the snap/subvol tree is on deleting */
8193 if (btrfs_root_refs(&root->root_item) == 0)
8196 return generic_drop_inode(inode);
8199 static void init_once(void *foo)
8201 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8203 inode_init_once(&ei->vfs_inode);
8206 void btrfs_destroy_cachep(void)
8209 * Make sure all delayed rcu free inodes are flushed before we
8213 if (btrfs_inode_cachep)
8214 kmem_cache_destroy(btrfs_inode_cachep);
8215 if (btrfs_trans_handle_cachep)
8216 kmem_cache_destroy(btrfs_trans_handle_cachep);
8217 if (btrfs_transaction_cachep)
8218 kmem_cache_destroy(btrfs_transaction_cachep);
8219 if (btrfs_path_cachep)
8220 kmem_cache_destroy(btrfs_path_cachep);
8221 if (btrfs_free_space_cachep)
8222 kmem_cache_destroy(btrfs_free_space_cachep);
8223 if (btrfs_delalloc_work_cachep)
8224 kmem_cache_destroy(btrfs_delalloc_work_cachep);
8227 int btrfs_init_cachep(void)
8229 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8230 sizeof(struct btrfs_inode), 0,
8231 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
8232 if (!btrfs_inode_cachep)
8235 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
8236 sizeof(struct btrfs_trans_handle), 0,
8237 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8238 if (!btrfs_trans_handle_cachep)
8241 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
8242 sizeof(struct btrfs_transaction), 0,
8243 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8244 if (!btrfs_transaction_cachep)
8247 btrfs_path_cachep = kmem_cache_create("btrfs_path",
8248 sizeof(struct btrfs_path), 0,
8249 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8250 if (!btrfs_path_cachep)
8253 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
8254 sizeof(struct btrfs_free_space), 0,
8255 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8256 if (!btrfs_free_space_cachep)
8259 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
8260 sizeof(struct btrfs_delalloc_work), 0,
8261 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
8263 if (!btrfs_delalloc_work_cachep)
8268 btrfs_destroy_cachep();
8272 static int btrfs_getattr(struct vfsmount *mnt,
8273 struct dentry *dentry, struct kstat *stat)
8276 struct inode *inode = dentry->d_inode;
8277 u32 blocksize = inode->i_sb->s_blocksize;
8279 generic_fillattr(inode, stat);
8280 stat->dev = BTRFS_I(inode)->root->anon_dev;
8281 stat->blksize = PAGE_CACHE_SIZE;
8283 spin_lock(&BTRFS_I(inode)->lock);
8284 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
8285 spin_unlock(&BTRFS_I(inode)->lock);
8286 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
8287 ALIGN(delalloc_bytes, blocksize)) >> 9;
8291 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
8292 struct inode *new_dir, struct dentry *new_dentry)
8294 struct btrfs_trans_handle *trans;
8295 struct btrfs_root *root = BTRFS_I(old_dir)->root;
8296 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8297 struct inode *new_inode = new_dentry->d_inode;
8298 struct inode *old_inode = old_dentry->d_inode;
8299 struct timespec ctime = CURRENT_TIME;
8303 u64 old_ino = btrfs_ino(old_inode);
8305 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8308 /* we only allow rename subvolume link between subvolumes */
8309 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8312 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8313 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
8316 if (S_ISDIR(old_inode->i_mode) && new_inode &&
8317 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8321 /* check for collisions, even if the name isn't there */
8322 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
8323 new_dentry->d_name.name,
8324 new_dentry->d_name.len);
8327 if (ret == -EEXIST) {
8329 * eexist without a new_inode */
8330 if (WARN_ON(!new_inode)) {
8334 /* maybe -EOVERFLOW */
8341 * we're using rename to replace one file with another.
8342 * and the replacement file is large. Start IO on it now so
8343 * we don't add too much work to the end of the transaction
8345 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
8346 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
8347 filemap_flush(old_inode->i_mapping);
8349 /* close the racy window with snapshot create/destroy ioctl */
8350 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8351 down_read(&root->fs_info->subvol_sem);
8353 * We want to reserve the absolute worst case amount of items. So if
8354 * both inodes are subvols and we need to unlink them then that would
8355 * require 4 item modifications, but if they are both normal inodes it
8356 * would require 5 item modifications, so we'll assume their normal
8357 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8358 * should cover the worst case number of items we'll modify.
8360 trans = btrfs_start_transaction(root, 11);
8361 if (IS_ERR(trans)) {
8362 ret = PTR_ERR(trans);
8367 btrfs_record_root_in_trans(trans, dest);
8369 ret = btrfs_set_inode_index(new_dir, &index);
8373 BTRFS_I(old_inode)->dir_index = 0ULL;
8374 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8375 /* force full log commit if subvolume involved. */
8376 btrfs_set_log_full_commit(root->fs_info, trans);
8378 ret = btrfs_insert_inode_ref(trans, dest,
8379 new_dentry->d_name.name,
8380 new_dentry->d_name.len,
8382 btrfs_ino(new_dir), index);
8386 * this is an ugly little race, but the rename is required
8387 * to make sure that if we crash, the inode is either at the
8388 * old name or the new one. pinning the log transaction lets
8389 * us make sure we don't allow a log commit to come in after
8390 * we unlink the name but before we add the new name back in.
8392 btrfs_pin_log_trans(root);
8395 * make sure the inode gets flushed if it is replacing
8398 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
8399 btrfs_add_ordered_operation(trans, root, old_inode);
8401 inode_inc_iversion(old_dir);
8402 inode_inc_iversion(new_dir);
8403 inode_inc_iversion(old_inode);
8404 old_dir->i_ctime = old_dir->i_mtime = ctime;
8405 new_dir->i_ctime = new_dir->i_mtime = ctime;
8406 old_inode->i_ctime = ctime;
8408 if (old_dentry->d_parent != new_dentry->d_parent)
8409 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8411 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8412 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8413 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8414 old_dentry->d_name.name,
8415 old_dentry->d_name.len);
8417 ret = __btrfs_unlink_inode(trans, root, old_dir,
8418 old_dentry->d_inode,
8419 old_dentry->d_name.name,
8420 old_dentry->d_name.len);
8422 ret = btrfs_update_inode(trans, root, old_inode);
8425 btrfs_abort_transaction(trans, root, ret);
8430 inode_inc_iversion(new_inode);
8431 new_inode->i_ctime = CURRENT_TIME;
8432 if (unlikely(btrfs_ino(new_inode) ==
8433 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8434 root_objectid = BTRFS_I(new_inode)->location.objectid;
8435 ret = btrfs_unlink_subvol(trans, dest, new_dir,
8437 new_dentry->d_name.name,
8438 new_dentry->d_name.len);
8439 BUG_ON(new_inode->i_nlink == 0);
8441 ret = btrfs_unlink_inode(trans, dest, new_dir,
8442 new_dentry->d_inode,
8443 new_dentry->d_name.name,
8444 new_dentry->d_name.len);
8446 if (!ret && new_inode->i_nlink == 0)
8447 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
8449 btrfs_abort_transaction(trans, root, ret);
8454 ret = btrfs_add_link(trans, new_dir, old_inode,
8455 new_dentry->d_name.name,
8456 new_dentry->d_name.len, 0, index);
8458 btrfs_abort_transaction(trans, root, ret);
8462 if (old_inode->i_nlink == 1)
8463 BTRFS_I(old_inode)->dir_index = index;
8465 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
8466 struct dentry *parent = new_dentry->d_parent;
8467 btrfs_log_new_name(trans, old_inode, old_dir, parent);
8468 btrfs_end_log_trans(root);
8471 btrfs_end_transaction(trans, root);
8473 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8474 up_read(&root->fs_info->subvol_sem);
8479 static void btrfs_run_delalloc_work(struct btrfs_work *work)
8481 struct btrfs_delalloc_work *delalloc_work;
8482 struct inode *inode;
8484 delalloc_work = container_of(work, struct btrfs_delalloc_work,
8486 inode = delalloc_work->inode;
8487 if (delalloc_work->wait) {
8488 btrfs_wait_ordered_range(inode, 0, (u64)-1);
8490 filemap_flush(inode->i_mapping);
8491 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8492 &BTRFS_I(inode)->runtime_flags))
8493 filemap_flush(inode->i_mapping);
8496 if (delalloc_work->delay_iput)
8497 btrfs_add_delayed_iput(inode);
8500 complete(&delalloc_work->completion);
8503 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
8504 int wait, int delay_iput)
8506 struct btrfs_delalloc_work *work;
8508 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
8512 init_completion(&work->completion);
8513 INIT_LIST_HEAD(&work->list);
8514 work->inode = inode;
8516 work->delay_iput = delay_iput;
8517 btrfs_init_work(&work->work, btrfs_run_delalloc_work, NULL, NULL);
8522 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
8524 wait_for_completion(&work->completion);
8525 kmem_cache_free(btrfs_delalloc_work_cachep, work);
8529 * some fairly slow code that needs optimization. This walks the list
8530 * of all the inodes with pending delalloc and forces them to disk.
8532 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
8535 struct btrfs_inode *binode;
8536 struct inode *inode;
8537 struct btrfs_delalloc_work *work, *next;
8538 struct list_head works;
8539 struct list_head splice;
8542 INIT_LIST_HEAD(&works);
8543 INIT_LIST_HEAD(&splice);
8545 mutex_lock(&root->delalloc_mutex);
8546 spin_lock(&root->delalloc_lock);
8547 list_splice_init(&root->delalloc_inodes, &splice);
8548 while (!list_empty(&splice)) {
8549 binode = list_entry(splice.next, struct btrfs_inode,
8552 list_move_tail(&binode->delalloc_inodes,
8553 &root->delalloc_inodes);
8554 inode = igrab(&binode->vfs_inode);
8556 cond_resched_lock(&root->delalloc_lock);
8559 spin_unlock(&root->delalloc_lock);
8561 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
8562 if (unlikely(!work)) {
8564 btrfs_add_delayed_iput(inode);
8570 list_add_tail(&work->list, &works);
8571 btrfs_queue_work(root->fs_info->flush_workers,
8574 if (nr != -1 && ret >= nr)
8577 spin_lock(&root->delalloc_lock);
8579 spin_unlock(&root->delalloc_lock);
8582 list_for_each_entry_safe(work, next, &works, list) {
8583 list_del_init(&work->list);
8584 btrfs_wait_and_free_delalloc_work(work);
8587 if (!list_empty_careful(&splice)) {
8588 spin_lock(&root->delalloc_lock);
8589 list_splice_tail(&splice, &root->delalloc_inodes);
8590 spin_unlock(&root->delalloc_lock);
8592 mutex_unlock(&root->delalloc_mutex);
8596 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
8600 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
8603 ret = __start_delalloc_inodes(root, delay_iput, -1);
8607 * the filemap_flush will queue IO into the worker threads, but
8608 * we have to make sure the IO is actually started and that
8609 * ordered extents get created before we return
8611 atomic_inc(&root->fs_info->async_submit_draining);
8612 while (atomic_read(&root->fs_info->nr_async_submits) ||
8613 atomic_read(&root->fs_info->async_delalloc_pages)) {
8614 wait_event(root->fs_info->async_submit_wait,
8615 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
8616 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8618 atomic_dec(&root->fs_info->async_submit_draining);
8622 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
8625 struct btrfs_root *root;
8626 struct list_head splice;
8629 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
8632 INIT_LIST_HEAD(&splice);
8634 mutex_lock(&fs_info->delalloc_root_mutex);
8635 spin_lock(&fs_info->delalloc_root_lock);
8636 list_splice_init(&fs_info->delalloc_roots, &splice);
8637 while (!list_empty(&splice) && nr) {
8638 root = list_first_entry(&splice, struct btrfs_root,
8640 root = btrfs_grab_fs_root(root);
8642 list_move_tail(&root->delalloc_root,
8643 &fs_info->delalloc_roots);
8644 spin_unlock(&fs_info->delalloc_root_lock);
8646 ret = __start_delalloc_inodes(root, delay_iput, nr);
8647 btrfs_put_fs_root(root);
8655 spin_lock(&fs_info->delalloc_root_lock);
8657 spin_unlock(&fs_info->delalloc_root_lock);
8660 atomic_inc(&fs_info->async_submit_draining);
8661 while (atomic_read(&fs_info->nr_async_submits) ||
8662 atomic_read(&fs_info->async_delalloc_pages)) {
8663 wait_event(fs_info->async_submit_wait,
8664 (atomic_read(&fs_info->nr_async_submits) == 0 &&
8665 atomic_read(&fs_info->async_delalloc_pages) == 0));
8667 atomic_dec(&fs_info->async_submit_draining);
8669 if (!list_empty_careful(&splice)) {
8670 spin_lock(&fs_info->delalloc_root_lock);
8671 list_splice_tail(&splice, &fs_info->delalloc_roots);
8672 spin_unlock(&fs_info->delalloc_root_lock);
8674 mutex_unlock(&fs_info->delalloc_root_mutex);
8678 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
8679 const char *symname)
8681 struct btrfs_trans_handle *trans;
8682 struct btrfs_root *root = BTRFS_I(dir)->root;
8683 struct btrfs_path *path;
8684 struct btrfs_key key;
8685 struct inode *inode = NULL;
8693 struct btrfs_file_extent_item *ei;
8694 struct extent_buffer *leaf;
8696 name_len = strlen(symname);
8697 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
8698 return -ENAMETOOLONG;
8701 * 2 items for inode item and ref
8702 * 2 items for dir items
8703 * 1 item for xattr if selinux is on
8705 trans = btrfs_start_transaction(root, 5);
8707 return PTR_ERR(trans);
8709 err = btrfs_find_free_ino(root, &objectid);
8713 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
8714 dentry->d_name.len, btrfs_ino(dir), objectid,
8715 S_IFLNK|S_IRWXUGO, &index);
8716 if (IS_ERR(inode)) {
8717 err = PTR_ERR(inode);
8721 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
8728 * If the active LSM wants to access the inode during
8729 * d_instantiate it needs these. Smack checks to see
8730 * if the filesystem supports xattrs by looking at the
8733 inode->i_fop = &btrfs_file_operations;
8734 inode->i_op = &btrfs_file_inode_operations;
8736 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
8740 inode->i_mapping->a_ops = &btrfs_aops;
8741 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
8742 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
8747 path = btrfs_alloc_path();
8753 key.objectid = btrfs_ino(inode);
8755 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
8756 datasize = btrfs_file_extent_calc_inline_size(name_len);
8757 err = btrfs_insert_empty_item(trans, root, path, &key,
8761 btrfs_free_path(path);
8764 leaf = path->nodes[0];
8765 ei = btrfs_item_ptr(leaf, path->slots[0],
8766 struct btrfs_file_extent_item);
8767 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8768 btrfs_set_file_extent_type(leaf, ei,
8769 BTRFS_FILE_EXTENT_INLINE);
8770 btrfs_set_file_extent_encryption(leaf, ei, 0);
8771 btrfs_set_file_extent_compression(leaf, ei, 0);
8772 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8773 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8775 ptr = btrfs_file_extent_inline_start(ei);
8776 write_extent_buffer(leaf, symname, ptr, name_len);
8777 btrfs_mark_buffer_dirty(leaf);
8778 btrfs_free_path(path);
8780 inode->i_op = &btrfs_symlink_inode_operations;
8781 inode->i_mapping->a_ops = &btrfs_symlink_aops;
8782 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
8783 inode_set_bytes(inode, name_len);
8784 btrfs_i_size_write(inode, name_len);
8785 err = btrfs_update_inode(trans, root, inode);
8791 d_instantiate(dentry, inode);
8792 btrfs_end_transaction(trans, root);
8794 inode_dec_link_count(inode);
8797 btrfs_btree_balance_dirty(root);
8801 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8802 u64 start, u64 num_bytes, u64 min_size,
8803 loff_t actual_len, u64 *alloc_hint,
8804 struct btrfs_trans_handle *trans)
8806 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
8807 struct extent_map *em;
8808 struct btrfs_root *root = BTRFS_I(inode)->root;
8809 struct btrfs_key ins;
8810 u64 cur_offset = start;
8814 bool own_trans = true;
8818 while (num_bytes > 0) {
8820 trans = btrfs_start_transaction(root, 3);
8821 if (IS_ERR(trans)) {
8822 ret = PTR_ERR(trans);
8827 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
8828 cur_bytes = max(cur_bytes, min_size);
8829 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
8830 *alloc_hint, &ins, 1, 0);
8833 btrfs_end_transaction(trans, root);
8837 ret = insert_reserved_file_extent(trans, inode,
8838 cur_offset, ins.objectid,
8839 ins.offset, ins.offset,
8840 ins.offset, 0, 0, 0,
8841 BTRFS_FILE_EXTENT_PREALLOC);
8843 btrfs_free_reserved_extent(root, ins.objectid,
8845 btrfs_abort_transaction(trans, root, ret);
8847 btrfs_end_transaction(trans, root);
8850 btrfs_drop_extent_cache(inode, cur_offset,
8851 cur_offset + ins.offset -1, 0);
8853 em = alloc_extent_map();
8855 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
8856 &BTRFS_I(inode)->runtime_flags);
8860 em->start = cur_offset;
8861 em->orig_start = cur_offset;
8862 em->len = ins.offset;
8863 em->block_start = ins.objectid;
8864 em->block_len = ins.offset;
8865 em->orig_block_len = ins.offset;
8866 em->ram_bytes = ins.offset;
8867 em->bdev = root->fs_info->fs_devices->latest_bdev;
8868 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
8869 em->generation = trans->transid;
8872 write_lock(&em_tree->lock);
8873 ret = add_extent_mapping(em_tree, em, 1);
8874 write_unlock(&em_tree->lock);
8877 btrfs_drop_extent_cache(inode, cur_offset,
8878 cur_offset + ins.offset - 1,
8881 free_extent_map(em);
8883 num_bytes -= ins.offset;
8884 cur_offset += ins.offset;
8885 *alloc_hint = ins.objectid + ins.offset;
8887 inode_inc_iversion(inode);
8888 inode->i_ctime = CURRENT_TIME;
8889 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
8890 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
8891 (actual_len > inode->i_size) &&
8892 (cur_offset > inode->i_size)) {
8893 if (cur_offset > actual_len)
8894 i_size = actual_len;
8896 i_size = cur_offset;
8897 i_size_write(inode, i_size);
8898 btrfs_ordered_update_i_size(inode, i_size, NULL);
8901 ret = btrfs_update_inode(trans, root, inode);
8904 btrfs_abort_transaction(trans, root, ret);
8906 btrfs_end_transaction(trans, root);
8911 btrfs_end_transaction(trans, root);
8916 int btrfs_prealloc_file_range(struct inode *inode, int mode,
8917 u64 start, u64 num_bytes, u64 min_size,
8918 loff_t actual_len, u64 *alloc_hint)
8920 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8921 min_size, actual_len, alloc_hint,
8925 int btrfs_prealloc_file_range_trans(struct inode *inode,
8926 struct btrfs_trans_handle *trans, int mode,
8927 u64 start, u64 num_bytes, u64 min_size,
8928 loff_t actual_len, u64 *alloc_hint)
8930 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8931 min_size, actual_len, alloc_hint, trans);
8934 static int btrfs_set_page_dirty(struct page *page)
8936 return __set_page_dirty_nobuffers(page);
8939 static int btrfs_permission(struct inode *inode, int mask)
8941 struct btrfs_root *root = BTRFS_I(inode)->root;
8942 umode_t mode = inode->i_mode;
8944 if (mask & MAY_WRITE &&
8945 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
8946 if (btrfs_root_readonly(root))
8948 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
8951 return generic_permission(inode, mask);
8954 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
8956 struct btrfs_trans_handle *trans;
8957 struct btrfs_root *root = BTRFS_I(dir)->root;
8958 struct inode *inode = NULL;
8964 * 5 units required for adding orphan entry
8966 trans = btrfs_start_transaction(root, 5);
8968 return PTR_ERR(trans);
8970 ret = btrfs_find_free_ino(root, &objectid);
8974 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
8975 btrfs_ino(dir), objectid, mode, &index);
8976 if (IS_ERR(inode)) {
8977 ret = PTR_ERR(inode);
8982 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
8986 ret = btrfs_update_inode(trans, root, inode);
8990 inode->i_fop = &btrfs_file_operations;
8991 inode->i_op = &btrfs_file_inode_operations;
8993 inode->i_mapping->a_ops = &btrfs_aops;
8994 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
8995 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
8997 ret = btrfs_orphan_add(trans, inode);
9001 d_tmpfile(dentry, inode);
9002 mark_inode_dirty(inode);
9005 btrfs_end_transaction(trans, root);
9008 btrfs_balance_delayed_items(root);
9009 btrfs_btree_balance_dirty(root);
9014 static const struct inode_operations btrfs_dir_inode_operations = {
9015 .getattr = btrfs_getattr,
9016 .lookup = btrfs_lookup,
9017 .create = btrfs_create,
9018 .unlink = btrfs_unlink,
9020 .mkdir = btrfs_mkdir,
9021 .rmdir = btrfs_rmdir,
9022 .rename = btrfs_rename,
9023 .symlink = btrfs_symlink,
9024 .setattr = btrfs_setattr,
9025 .mknod = btrfs_mknod,
9026 .setxattr = btrfs_setxattr,
9027 .getxattr = btrfs_getxattr,
9028 .listxattr = btrfs_listxattr,
9029 .removexattr = btrfs_removexattr,
9030 .permission = btrfs_permission,
9031 .get_acl = btrfs_get_acl,
9032 .set_acl = btrfs_set_acl,
9033 .update_time = btrfs_update_time,
9034 .tmpfile = btrfs_tmpfile,
9036 static const struct inode_operations btrfs_dir_ro_inode_operations = {
9037 .lookup = btrfs_lookup,
9038 .permission = btrfs_permission,
9039 .get_acl = btrfs_get_acl,
9040 .set_acl = btrfs_set_acl,
9041 .update_time = btrfs_update_time,
9044 static const struct file_operations btrfs_dir_file_operations = {
9045 .llseek = generic_file_llseek,
9046 .read = generic_read_dir,
9047 .iterate = btrfs_real_readdir,
9048 .unlocked_ioctl = btrfs_ioctl,
9049 #ifdef CONFIG_COMPAT
9050 .compat_ioctl = btrfs_ioctl,
9052 .release = btrfs_release_file,
9053 .fsync = btrfs_sync_file,
9056 static struct extent_io_ops btrfs_extent_io_ops = {
9057 .fill_delalloc = run_delalloc_range,
9058 .submit_bio_hook = btrfs_submit_bio_hook,
9059 .merge_bio_hook = btrfs_merge_bio_hook,
9060 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
9061 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
9062 .writepage_start_hook = btrfs_writepage_start_hook,
9063 .set_bit_hook = btrfs_set_bit_hook,
9064 .clear_bit_hook = btrfs_clear_bit_hook,
9065 .merge_extent_hook = btrfs_merge_extent_hook,
9066 .split_extent_hook = btrfs_split_extent_hook,
9070 * btrfs doesn't support the bmap operation because swapfiles
9071 * use bmap to make a mapping of extents in the file. They assume
9072 * these extents won't change over the life of the file and they
9073 * use the bmap result to do IO directly to the drive.
9075 * the btrfs bmap call would return logical addresses that aren't
9076 * suitable for IO and they also will change frequently as COW
9077 * operations happen. So, swapfile + btrfs == corruption.
9079 * For now we're avoiding this by dropping bmap.
9081 static const struct address_space_operations btrfs_aops = {
9082 .readpage = btrfs_readpage,
9083 .writepage = btrfs_writepage,
9084 .writepages = btrfs_writepages,
9085 .readpages = btrfs_readpages,
9086 .direct_IO = btrfs_direct_IO,
9087 .invalidatepage = btrfs_invalidatepage,
9088 .releasepage = btrfs_releasepage,
9089 .set_page_dirty = btrfs_set_page_dirty,
9090 .error_remove_page = generic_error_remove_page,
9093 static const struct address_space_operations btrfs_symlink_aops = {
9094 .readpage = btrfs_readpage,
9095 .writepage = btrfs_writepage,
9096 .invalidatepage = btrfs_invalidatepage,
9097 .releasepage = btrfs_releasepage,
9100 static const struct inode_operations btrfs_file_inode_operations = {
9101 .getattr = btrfs_getattr,
9102 .setattr = btrfs_setattr,
9103 .setxattr = btrfs_setxattr,
9104 .getxattr = btrfs_getxattr,
9105 .listxattr = btrfs_listxattr,
9106 .removexattr = btrfs_removexattr,
9107 .permission = btrfs_permission,
9108 .fiemap = btrfs_fiemap,
9109 .get_acl = btrfs_get_acl,
9110 .set_acl = btrfs_set_acl,
9111 .update_time = btrfs_update_time,
9113 static const struct inode_operations btrfs_special_inode_operations = {
9114 .getattr = btrfs_getattr,
9115 .setattr = btrfs_setattr,
9116 .permission = btrfs_permission,
9117 .setxattr = btrfs_setxattr,
9118 .getxattr = btrfs_getxattr,
9119 .listxattr = btrfs_listxattr,
9120 .removexattr = btrfs_removexattr,
9121 .get_acl = btrfs_get_acl,
9122 .set_acl = btrfs_set_acl,
9123 .update_time = btrfs_update_time,
9125 static const struct inode_operations btrfs_symlink_inode_operations = {
9126 .readlink = generic_readlink,
9127 .follow_link = page_follow_link_light,
9128 .put_link = page_put_link,
9129 .getattr = btrfs_getattr,
9130 .setattr = btrfs_setattr,
9131 .permission = btrfs_permission,
9132 .setxattr = btrfs_setxattr,
9133 .getxattr = btrfs_getxattr,
9134 .listxattr = btrfs_listxattr,
9135 .removexattr = btrfs_removexattr,
9136 .update_time = btrfs_update_time,
9139 const struct dentry_operations btrfs_dentry_operations = {
9140 .d_delete = btrfs_dentry_delete,
9141 .d_release = btrfs_dentry_release,