Btrfs: Fix compile warnings on 32 bit machines
[linux-2.6-block.git] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/smp_lock.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/version.h>
38 #include <linux/xattr.h>
39 #include <linux/posix_acl.h>
40 #include <linux/falloc.h>
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "compat.h"
51 #include "tree-log.h"
52 #include "ref-cache.h"
53 #include "compression.h"
54
55 struct btrfs_iget_args {
56         u64 ino;
57         struct btrfs_root *root;
58 };
59
60 static struct inode_operations btrfs_dir_inode_operations;
61 static struct inode_operations btrfs_symlink_inode_operations;
62 static struct inode_operations btrfs_dir_ro_inode_operations;
63 static struct inode_operations btrfs_special_inode_operations;
64 static struct inode_operations btrfs_file_inode_operations;
65 static struct address_space_operations btrfs_aops;
66 static struct address_space_operations btrfs_symlink_aops;
67 static struct file_operations btrfs_dir_file_operations;
68 static struct extent_io_ops btrfs_extent_io_ops;
69
70 static struct kmem_cache *btrfs_inode_cachep;
71 struct kmem_cache *btrfs_trans_handle_cachep;
72 struct kmem_cache *btrfs_transaction_cachep;
73 struct kmem_cache *btrfs_bit_radix_cachep;
74 struct kmem_cache *btrfs_path_cachep;
75
76 #define S_SHIFT 12
77 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
79         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
80         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
81         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
82         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
83         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
84         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
85 };
86
87 static void btrfs_truncate(struct inode *inode);
88 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
89 static noinline int cow_file_range(struct inode *inode,
90                                    struct page *locked_page,
91                                    u64 start, u64 end, int *page_started,
92                                    unsigned long *nr_written, int unlock);
93
94 /*
95  * a very lame attempt at stopping writes when the FS is 85% full.  There
96  * are countless ways this is incorrect, but it is better than nothing.
97  */
98 int btrfs_check_free_space(struct btrfs_root *root, u64 num_required,
99                            int for_del)
100 {
101         u64 total;
102         u64 used;
103         u64 thresh;
104         unsigned long flags;
105         int ret = 0;
106
107         spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
108         total = btrfs_super_total_bytes(&root->fs_info->super_copy);
109         used = btrfs_super_bytes_used(&root->fs_info->super_copy);
110         if (for_del)
111                 thresh = total * 90;
112         else
113                 thresh = total * 85;
114
115         do_div(thresh, 100);
116
117         if (used + root->fs_info->delalloc_bytes + num_required > thresh)
118                 ret = -ENOSPC;
119         spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
120         return ret;
121 }
122
123 /*
124  * this does all the hard work for inserting an inline extent into
125  * the btree.  The caller should have done a btrfs_drop_extents so that
126  * no overlapping inline items exist in the btree
127  */
128 static int noinline insert_inline_extent(struct btrfs_trans_handle *trans,
129                                 struct btrfs_root *root, struct inode *inode,
130                                 u64 start, size_t size, size_t compressed_size,
131                                 struct page **compressed_pages)
132 {
133         struct btrfs_key key;
134         struct btrfs_path *path;
135         struct extent_buffer *leaf;
136         struct page *page = NULL;
137         char *kaddr;
138         unsigned long ptr;
139         struct btrfs_file_extent_item *ei;
140         int err = 0;
141         int ret;
142         size_t cur_size = size;
143         size_t datasize;
144         unsigned long offset;
145         int use_compress = 0;
146
147         if (compressed_size && compressed_pages) {
148                 use_compress = 1;
149                 cur_size = compressed_size;
150         }
151
152         path = btrfs_alloc_path(); if (!path)
153                 return -ENOMEM;
154
155         btrfs_set_trans_block_group(trans, inode);
156
157         key.objectid = inode->i_ino;
158         key.offset = start;
159         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
160         inode_add_bytes(inode, size);
161         datasize = btrfs_file_extent_calc_inline_size(cur_size);
162
163         inode_add_bytes(inode, size);
164         ret = btrfs_insert_empty_item(trans, root, path, &key,
165                                       datasize);
166         BUG_ON(ret);
167         if (ret) {
168                 err = ret;
169                 printk("got bad ret %d\n", ret);
170                 goto fail;
171         }
172         leaf = path->nodes[0];
173         ei = btrfs_item_ptr(leaf, path->slots[0],
174                             struct btrfs_file_extent_item);
175         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
176         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
177         btrfs_set_file_extent_encryption(leaf, ei, 0);
178         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
179         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
180         ptr = btrfs_file_extent_inline_start(ei);
181
182         if (use_compress) {
183                 struct page *cpage;
184                 int i = 0;
185                 while(compressed_size > 0) {
186                         cpage = compressed_pages[i];
187                         cur_size = min_t(unsigned long, compressed_size,
188                                        PAGE_CACHE_SIZE);
189
190                         kaddr = kmap(cpage);
191                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
192                         kunmap(cpage);
193
194                         i++;
195                         ptr += cur_size;
196                         compressed_size -= cur_size;
197                 }
198                 btrfs_set_file_extent_compression(leaf, ei,
199                                                   BTRFS_COMPRESS_ZLIB);
200         } else {
201                 page = find_get_page(inode->i_mapping,
202                                      start >> PAGE_CACHE_SHIFT);
203                 btrfs_set_file_extent_compression(leaf, ei, 0);
204                 kaddr = kmap_atomic(page, KM_USER0);
205                 offset = start & (PAGE_CACHE_SIZE - 1);
206                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
207                 kunmap_atomic(kaddr, KM_USER0);
208                 page_cache_release(page);
209         }
210         btrfs_mark_buffer_dirty(leaf);
211         btrfs_free_path(path);
212
213         BTRFS_I(inode)->disk_i_size = inode->i_size;
214         btrfs_update_inode(trans, root, inode);
215         return 0;
216 fail:
217         btrfs_free_path(path);
218         return err;
219 }
220
221
222 /*
223  * conditionally insert an inline extent into the file.  This
224  * does the checks required to make sure the data is small enough
225  * to fit as an inline extent.
226  */
227 static int cow_file_range_inline(struct btrfs_trans_handle *trans,
228                                  struct btrfs_root *root,
229                                  struct inode *inode, u64 start, u64 end,
230                                  size_t compressed_size,
231                                  struct page **compressed_pages)
232 {
233         u64 isize = i_size_read(inode);
234         u64 actual_end = min(end + 1, isize);
235         u64 inline_len = actual_end - start;
236         u64 aligned_end = (end + root->sectorsize - 1) &
237                         ~((u64)root->sectorsize - 1);
238         u64 hint_byte;
239         u64 data_len = inline_len;
240         int ret;
241
242         if (compressed_size)
243                 data_len = compressed_size;
244
245         if (start > 0 ||
246             actual_end >= PAGE_CACHE_SIZE ||
247             data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
248             (!compressed_size &&
249             (actual_end & (root->sectorsize - 1)) == 0) ||
250             end + 1 < isize ||
251             data_len > root->fs_info->max_inline) {
252                 return 1;
253         }
254
255         ret = btrfs_drop_extents(trans, root, inode, start,
256                                  aligned_end, start, &hint_byte);
257         BUG_ON(ret);
258
259         if (isize > actual_end)
260                 inline_len = min_t(u64, isize, actual_end);
261         ret = insert_inline_extent(trans, root, inode, start,
262                                    inline_len, compressed_size,
263                                    compressed_pages);
264         BUG_ON(ret);
265         btrfs_drop_extent_cache(inode, start, aligned_end, 0);
266         return 0;
267 }
268
269 struct async_extent {
270         u64 start;
271         u64 ram_size;
272         u64 compressed_size;
273         struct page **pages;
274         unsigned long nr_pages;
275         struct list_head list;
276 };
277
278 struct async_cow {
279         struct inode *inode;
280         struct btrfs_root *root;
281         struct page *locked_page;
282         u64 start;
283         u64 end;
284         struct list_head extents;
285         struct btrfs_work work;
286 };
287
288 static noinline int add_async_extent(struct async_cow *cow,
289                                      u64 start, u64 ram_size,
290                                      u64 compressed_size,
291                                      struct page **pages,
292                                      unsigned long nr_pages)
293 {
294         struct async_extent *async_extent;
295
296         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
297         async_extent->start = start;
298         async_extent->ram_size = ram_size;
299         async_extent->compressed_size = compressed_size;
300         async_extent->pages = pages;
301         async_extent->nr_pages = nr_pages;
302         list_add_tail(&async_extent->list, &cow->extents);
303         return 0;
304 }
305
306 /*
307  * we create compressed extents in two phases.  The first
308  * phase compresses a range of pages that have already been
309  * locked (both pages and state bits are locked).
310  *
311  * This is done inside an ordered work queue, and the compression
312  * is spread across many cpus.  The actual IO submission is step
313  * two, and the ordered work queue takes care of making sure that
314  * happens in the same order things were put onto the queue by
315  * writepages and friends.
316  *
317  * If this code finds it can't get good compression, it puts an
318  * entry onto the work queue to write the uncompressed bytes.  This
319  * makes sure that both compressed inodes and uncompressed inodes
320  * are written in the same order that pdflush sent them down.
321  */
322 static noinline int compress_file_range(struct inode *inode,
323                                         struct page *locked_page,
324                                         u64 start, u64 end,
325                                         struct async_cow *async_cow,
326                                         int *num_added)
327 {
328         struct btrfs_root *root = BTRFS_I(inode)->root;
329         struct btrfs_trans_handle *trans;
330         u64 num_bytes;
331         u64 orig_start;
332         u64 disk_num_bytes;
333         u64 blocksize = root->sectorsize;
334         u64 actual_end;
335         int ret = 0;
336         struct page **pages = NULL;
337         unsigned long nr_pages;
338         unsigned long nr_pages_ret = 0;
339         unsigned long total_compressed = 0;
340         unsigned long total_in = 0;
341         unsigned long max_compressed = 128 * 1024;
342         unsigned long max_uncompressed = 128 * 1024;
343         int i;
344         int will_compress;
345
346         orig_start = start;
347
348 again:
349         will_compress = 0;
350         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
351         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
352
353         actual_end = min_t(u64, i_size_read(inode), end + 1);
354         total_compressed = actual_end - start;
355
356         /* we want to make sure that amount of ram required to uncompress
357          * an extent is reasonable, so we limit the total size in ram
358          * of a compressed extent to 128k.  This is a crucial number
359          * because it also controls how easily we can spread reads across
360          * cpus for decompression.
361          *
362          * We also want to make sure the amount of IO required to do
363          * a random read is reasonably small, so we limit the size of
364          * a compressed extent to 128k.
365          */
366         total_compressed = min(total_compressed, max_uncompressed);
367         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
368         num_bytes = max(blocksize,  num_bytes);
369         disk_num_bytes = num_bytes;
370         total_in = 0;
371         ret = 0;
372
373         /*
374          * we do compression for mount -o compress and when the
375          * inode has not been flagged as nocompress.  This flag can
376          * change at any time if we discover bad compression ratios.
377          */
378         if (!btrfs_test_flag(inode, NOCOMPRESS) &&
379             btrfs_test_opt(root, COMPRESS)) {
380                 WARN_ON(pages);
381                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
382
383                 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
384                                                 total_compressed, pages,
385                                                 nr_pages, &nr_pages_ret,
386                                                 &total_in,
387                                                 &total_compressed,
388                                                 max_compressed);
389
390                 if (!ret) {
391                         unsigned long offset = total_compressed &
392                                 (PAGE_CACHE_SIZE - 1);
393                         struct page *page = pages[nr_pages_ret - 1];
394                         char *kaddr;
395
396                         /* zero the tail end of the last page, we might be
397                          * sending it down to disk
398                          */
399                         if (offset) {
400                                 kaddr = kmap_atomic(page, KM_USER0);
401                                 memset(kaddr + offset, 0,
402                                        PAGE_CACHE_SIZE - offset);
403                                 kunmap_atomic(kaddr, KM_USER0);
404                         }
405                         will_compress = 1;
406                 }
407         }
408         if (start == 0) {
409                 trans = btrfs_join_transaction(root, 1);
410                 BUG_ON(!trans);
411                 btrfs_set_trans_block_group(trans, inode);
412
413                 /* lets try to make an inline extent */
414                 if (ret || total_in < (actual_end - start)) {
415                         /* we didn't compress the entire range, try
416                          * to make an uncompressed inline extent.
417                          */
418                         ret = cow_file_range_inline(trans, root, inode,
419                                                     start, end, 0, NULL);
420                 } else {
421                         /* try making a compressed inline extent */
422                         ret = cow_file_range_inline(trans, root, inode,
423                                                     start, end,
424                                                     total_compressed, pages);
425                 }
426                 btrfs_end_transaction(trans, root);
427                 if (ret == 0) {
428                         /*
429                          * inline extent creation worked, we don't need
430                          * to create any more async work items.  Unlock
431                          * and free up our temp pages.
432                          */
433                         extent_clear_unlock_delalloc(inode,
434                                                      &BTRFS_I(inode)->io_tree,
435                                                      start, end, NULL, 1, 0,
436                                                      0, 1, 1, 1);
437                         ret = 0;
438                         goto free_pages_out;
439                 }
440         }
441
442         if (will_compress) {
443                 /*
444                  * we aren't doing an inline extent round the compressed size
445                  * up to a block size boundary so the allocator does sane
446                  * things
447                  */
448                 total_compressed = (total_compressed + blocksize - 1) &
449                         ~(blocksize - 1);
450
451                 /*
452                  * one last check to make sure the compression is really a
453                  * win, compare the page count read with the blocks on disk
454                  */
455                 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
456                         ~(PAGE_CACHE_SIZE - 1);
457                 if (total_compressed >= total_in) {
458                         will_compress = 0;
459                 } else {
460                         disk_num_bytes = total_compressed;
461                         num_bytes = total_in;
462                 }
463         }
464         if (!will_compress && pages) {
465                 /*
466                  * the compression code ran but failed to make things smaller,
467                  * free any pages it allocated and our page pointer array
468                  */
469                 for (i = 0; i < nr_pages_ret; i++) {
470                         WARN_ON(pages[i]->mapping);
471                         page_cache_release(pages[i]);
472                 }
473                 kfree(pages);
474                 pages = NULL;
475                 total_compressed = 0;
476                 nr_pages_ret = 0;
477
478                 /* flag the file so we don't compress in the future */
479                 btrfs_set_flag(inode, NOCOMPRESS);
480         }
481         if (will_compress) {
482                 *num_added += 1;
483
484                 /* the async work queues will take care of doing actual
485                  * allocation on disk for these compressed pages,
486                  * and will submit them to the elevator.
487                  */
488                 add_async_extent(async_cow, start, num_bytes,
489                                  total_compressed, pages, nr_pages_ret);
490
491                 if (start + num_bytes < end) {
492                         start += num_bytes;
493                         pages = NULL;
494                         cond_resched();
495                         goto again;
496                 }
497         } else {
498                 /*
499                  * No compression, but we still need to write the pages in
500                  * the file we've been given so far.  redirty the locked
501                  * page if it corresponds to our extent and set things up
502                  * for the async work queue to run cow_file_range to do
503                  * the normal delalloc dance
504                  */
505                 if (page_offset(locked_page) >= start &&
506                     page_offset(locked_page) <= end) {
507                         __set_page_dirty_nobuffers(locked_page);
508                         /* unlocked later on in the async handlers */
509                 }
510                 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
511                 *num_added += 1;
512         }
513
514 out:
515         return 0;
516
517 free_pages_out:
518         for (i = 0; i < nr_pages_ret; i++) {
519                 WARN_ON(pages[i]->mapping);
520                 page_cache_release(pages[i]);
521         }
522         if (pages)
523                 kfree(pages);
524
525         goto out;
526 }
527
528 /*
529  * phase two of compressed writeback.  This is the ordered portion
530  * of the code, which only gets called in the order the work was
531  * queued.  We walk all the async extents created by compress_file_range
532  * and send them down to the disk.
533  */
534 static noinline int submit_compressed_extents(struct inode *inode,
535                                               struct async_cow *async_cow)
536 {
537         struct async_extent *async_extent;
538         u64 alloc_hint = 0;
539         struct btrfs_trans_handle *trans;
540         struct btrfs_key ins;
541         struct extent_map *em;
542         struct btrfs_root *root = BTRFS_I(inode)->root;
543         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
544         struct extent_io_tree *io_tree;
545         int ret;
546
547         if (list_empty(&async_cow->extents))
548                 return 0;
549
550         trans = btrfs_join_transaction(root, 1);
551
552         while(!list_empty(&async_cow->extents)) {
553                 async_extent = list_entry(async_cow->extents.next,
554                                           struct async_extent, list);
555                 list_del(&async_extent->list);
556
557                 io_tree = &BTRFS_I(inode)->io_tree;
558
559                 /* did the compression code fall back to uncompressed IO? */
560                 if (!async_extent->pages) {
561                         int page_started = 0;
562                         unsigned long nr_written = 0;
563
564                         lock_extent(io_tree, async_extent->start,
565                                     async_extent->start + async_extent->ram_size - 1,
566                                     GFP_NOFS);
567
568                         /* allocate blocks */
569                         cow_file_range(inode, async_cow->locked_page,
570                                        async_extent->start,
571                                        async_extent->start +
572                                        async_extent->ram_size - 1,
573                                        &page_started, &nr_written, 0);
574
575                         /*
576                          * if page_started, cow_file_range inserted an
577                          * inline extent and took care of all the unlocking
578                          * and IO for us.  Otherwise, we need to submit
579                          * all those pages down to the drive.
580                          */
581                         if (!page_started)
582                                 extent_write_locked_range(io_tree,
583                                                   inode, async_extent->start,
584                                                   async_extent->start +
585                                                   async_extent->ram_size - 1,
586                                                   btrfs_get_extent,
587                                                   WB_SYNC_ALL);
588                         kfree(async_extent);
589                         cond_resched();
590                         continue;
591                 }
592
593                 lock_extent(io_tree, async_extent->start,
594                             async_extent->start + async_extent->ram_size - 1,
595                             GFP_NOFS);
596                 /*
597                  * here we're doing allocation and writeback of the
598                  * compressed pages
599                  */
600                 btrfs_drop_extent_cache(inode, async_extent->start,
601                                         async_extent->start +
602                                         async_extent->ram_size - 1, 0);
603
604                 ret = btrfs_reserve_extent(trans, root,
605                                            async_extent->compressed_size,
606                                            async_extent->compressed_size,
607                                            0, alloc_hint,
608                                            (u64)-1, &ins, 1);
609                 BUG_ON(ret);
610                 em = alloc_extent_map(GFP_NOFS);
611                 em->start = async_extent->start;
612                 em->len = async_extent->ram_size;
613                 em->orig_start = em->start;
614
615                 em->block_start = ins.objectid;
616                 em->block_len = ins.offset;
617                 em->bdev = root->fs_info->fs_devices->latest_bdev;
618                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
619                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
620
621                 while(1) {
622                         spin_lock(&em_tree->lock);
623                         ret = add_extent_mapping(em_tree, em);
624                         spin_unlock(&em_tree->lock);
625                         if (ret != -EEXIST) {
626                                 free_extent_map(em);
627                                 break;
628                         }
629                         btrfs_drop_extent_cache(inode, async_extent->start,
630                                                 async_extent->start +
631                                                 async_extent->ram_size - 1, 0);
632                 }
633
634                 ret = btrfs_add_ordered_extent(inode, async_extent->start,
635                                                ins.objectid,
636                                                async_extent->ram_size,
637                                                ins.offset,
638                                                BTRFS_ORDERED_COMPRESSED);
639                 BUG_ON(ret);
640
641                 btrfs_end_transaction(trans, root);
642
643                 /*
644                  * clear dirty, set writeback and unlock the pages.
645                  */
646                 extent_clear_unlock_delalloc(inode,
647                                              &BTRFS_I(inode)->io_tree,
648                                              async_extent->start,
649                                              async_extent->start +
650                                              async_extent->ram_size - 1,
651                                              NULL, 1, 1, 0, 1, 1, 0);
652
653                 ret = btrfs_submit_compressed_write(inode,
654                                          async_extent->start,
655                                          async_extent->ram_size,
656                                          ins.objectid,
657                                          ins.offset, async_extent->pages,
658                                          async_extent->nr_pages);
659
660                 BUG_ON(ret);
661                 trans = btrfs_join_transaction(root, 1);
662                 alloc_hint = ins.objectid + ins.offset;
663                 kfree(async_extent);
664                 cond_resched();
665         }
666
667         btrfs_end_transaction(trans, root);
668         return 0;
669 }
670
671 /*
672  * when extent_io.c finds a delayed allocation range in the file,
673  * the call backs end up in this code.  The basic idea is to
674  * allocate extents on disk for the range, and create ordered data structs
675  * in ram to track those extents.
676  *
677  * locked_page is the page that writepage had locked already.  We use
678  * it to make sure we don't do extra locks or unlocks.
679  *
680  * *page_started is set to one if we unlock locked_page and do everything
681  * required to start IO on it.  It may be clean and already done with
682  * IO when we return.
683  */
684 static noinline int cow_file_range(struct inode *inode,
685                                    struct page *locked_page,
686                                    u64 start, u64 end, int *page_started,
687                                    unsigned long *nr_written,
688                                    int unlock)
689 {
690         struct btrfs_root *root = BTRFS_I(inode)->root;
691         struct btrfs_trans_handle *trans;
692         u64 alloc_hint = 0;
693         u64 num_bytes;
694         unsigned long ram_size;
695         u64 disk_num_bytes;
696         u64 cur_alloc_size;
697         u64 blocksize = root->sectorsize;
698         u64 actual_end;
699         struct btrfs_key ins;
700         struct extent_map *em;
701         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
702         int ret = 0;
703
704         trans = btrfs_join_transaction(root, 1);
705         BUG_ON(!trans);
706         btrfs_set_trans_block_group(trans, inode);
707
708         actual_end = min_t(u64, i_size_read(inode), end + 1);
709
710         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
711         num_bytes = max(blocksize,  num_bytes);
712         disk_num_bytes = num_bytes;
713         ret = 0;
714
715         if (start == 0) {
716                 /* lets try to make an inline extent */
717                 ret = cow_file_range_inline(trans, root, inode,
718                                             start, end, 0, NULL);
719                 if (ret == 0) {
720                         extent_clear_unlock_delalloc(inode,
721                                                      &BTRFS_I(inode)->io_tree,
722                                                      start, end, NULL, 1, 1,
723                                                      1, 1, 1, 1);
724                         *nr_written = *nr_written +
725                              (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
726                         *page_started = 1;
727                         ret = 0;
728                         goto out;
729                 }
730         }
731
732         BUG_ON(disk_num_bytes >
733                btrfs_super_total_bytes(&root->fs_info->super_copy));
734
735         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
736
737         while(disk_num_bytes > 0) {
738                 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
739                 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
740                                            root->sectorsize, 0, alloc_hint,
741                                            (u64)-1, &ins, 1);
742                 if (ret) {
743                         BUG();
744                 }
745                 em = alloc_extent_map(GFP_NOFS);
746                 em->start = start;
747                 em->orig_start = em->start;
748
749                 ram_size = ins.offset;
750                 em->len = ins.offset;
751
752                 em->block_start = ins.objectid;
753                 em->block_len = ins.offset;
754                 em->bdev = root->fs_info->fs_devices->latest_bdev;
755                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
756
757                 while(1) {
758                         spin_lock(&em_tree->lock);
759                         ret = add_extent_mapping(em_tree, em);
760                         spin_unlock(&em_tree->lock);
761                         if (ret != -EEXIST) {
762                                 free_extent_map(em);
763                                 break;
764                         }
765                         btrfs_drop_extent_cache(inode, start,
766                                                 start + ram_size - 1, 0);
767                 }
768
769                 cur_alloc_size = ins.offset;
770                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771                                                ram_size, cur_alloc_size, 0);
772                 BUG_ON(ret);
773
774                 if (disk_num_bytes < cur_alloc_size) {
775                         printk("num_bytes %Lu cur_alloc %Lu\n", disk_num_bytes,
776                                cur_alloc_size);
777                         break;
778                 }
779                 /* we're not doing compressed IO, don't unlock the first
780                  * page (which the caller expects to stay locked), don't
781                  * clear any dirty bits and don't set any writeback bits
782                  */
783                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
784                                              start, start + ram_size - 1,
785                                              locked_page, unlock, 1,
786                                              1, 0, 0, 0);
787                 disk_num_bytes -= cur_alloc_size;
788                 num_bytes -= cur_alloc_size;
789                 alloc_hint = ins.objectid + ins.offset;
790                 start += cur_alloc_size;
791         }
792 out:
793         ret = 0;
794         btrfs_end_transaction(trans, root);
795
796         return ret;
797 }
798
799 /*
800  * work queue call back to started compression on a file and pages
801  */
802 static noinline void async_cow_start(struct btrfs_work *work)
803 {
804         struct async_cow *async_cow;
805         int num_added = 0;
806         async_cow = container_of(work, struct async_cow, work);
807
808         compress_file_range(async_cow->inode, async_cow->locked_page,
809                             async_cow->start, async_cow->end, async_cow,
810                             &num_added);
811         if (num_added == 0)
812                 async_cow->inode = NULL;
813 }
814
815 /*
816  * work queue call back to submit previously compressed pages
817  */
818 static noinline void async_cow_submit(struct btrfs_work *work)
819 {
820         struct async_cow *async_cow;
821         struct btrfs_root *root;
822         unsigned long nr_pages;
823
824         async_cow = container_of(work, struct async_cow, work);
825
826         root = async_cow->root;
827         nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
828                 PAGE_CACHE_SHIFT;
829
830         atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
831
832         if (atomic_read(&root->fs_info->async_delalloc_pages) <
833             5 * 1042 * 1024 &&
834             waitqueue_active(&root->fs_info->async_submit_wait))
835                 wake_up(&root->fs_info->async_submit_wait);
836
837         if (async_cow->inode) {
838                 submit_compressed_extents(async_cow->inode, async_cow);
839         }
840 }
841
842 static noinline void async_cow_free(struct btrfs_work *work)
843 {
844         struct async_cow *async_cow;
845         async_cow = container_of(work, struct async_cow, work);
846         kfree(async_cow);
847 }
848
849 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
850                                 u64 start, u64 end, int *page_started,
851                                 unsigned long *nr_written)
852 {
853         struct async_cow *async_cow;
854         struct btrfs_root *root = BTRFS_I(inode)->root;
855         unsigned long nr_pages;
856         u64 cur_end;
857         int limit = 10 * 1024 * 1042;
858
859         if (!btrfs_test_opt(root, COMPRESS)) {
860                 return cow_file_range(inode, locked_page, start, end,
861                                       page_started, nr_written, 1);
862         }
863
864         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED |
865                          EXTENT_DELALLOC, 1, 0, GFP_NOFS);
866         while(start < end) {
867                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
868                 async_cow->inode = inode;
869                 async_cow->root = root;
870                 async_cow->locked_page = locked_page;
871                 async_cow->start = start;
872
873                 if (btrfs_test_flag(inode, NOCOMPRESS))
874                         cur_end = end;
875                 else
876                         cur_end = min(end, start + 512 * 1024 - 1);
877
878                 async_cow->end = cur_end;
879                 INIT_LIST_HEAD(&async_cow->extents);
880
881                 async_cow->work.func = async_cow_start;
882                 async_cow->work.ordered_func = async_cow_submit;
883                 async_cow->work.ordered_free = async_cow_free;
884                 async_cow->work.flags = 0;
885
886                 while(atomic_read(&root->fs_info->async_submit_draining) &&
887                       atomic_read(&root->fs_info->async_delalloc_pages)) {
888                         wait_event(root->fs_info->async_submit_wait,
889                              (atomic_read(&root->fs_info->async_delalloc_pages)
890                               == 0));
891                 }
892
893                 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
894                         PAGE_CACHE_SHIFT;
895                 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
896
897                 btrfs_queue_worker(&root->fs_info->delalloc_workers,
898                                    &async_cow->work);
899
900                 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
901                         wait_event(root->fs_info->async_submit_wait,
902                            (atomic_read(&root->fs_info->async_delalloc_pages) <
903                             limit));
904                 }
905
906                 while(atomic_read(&root->fs_info->async_submit_draining) &&
907                       atomic_read(&root->fs_info->async_delalloc_pages)) {
908                         wait_event(root->fs_info->async_submit_wait,
909                           (atomic_read(&root->fs_info->async_delalloc_pages) ==
910                            0));
911                 }
912
913                 *nr_written += nr_pages;
914                 start = cur_end + 1;
915         }
916         *page_started = 1;
917         return 0;
918 }
919
920 /*
921  * when nowcow writeback call back.  This checks for snapshots or COW copies
922  * of the extents that exist in the file, and COWs the file as required.
923  *
924  * If no cow copies or snapshots exist, we write directly to the existing
925  * blocks on disk
926  */
927 static int run_delalloc_nocow(struct inode *inode, struct page *locked_page,
928                               u64 start, u64 end, int *page_started, int force,
929                               unsigned long *nr_written)
930 {
931         struct btrfs_root *root = BTRFS_I(inode)->root;
932         struct btrfs_trans_handle *trans;
933         struct extent_buffer *leaf;
934         struct btrfs_path *path;
935         struct btrfs_file_extent_item *fi;
936         struct btrfs_key found_key;
937         u64 cow_start;
938         u64 cur_offset;
939         u64 extent_end;
940         u64 disk_bytenr;
941         u64 num_bytes;
942         int extent_type;
943         int ret;
944         int type;
945         int nocow;
946         int check_prev = 1;
947
948         path = btrfs_alloc_path();
949         BUG_ON(!path);
950         trans = btrfs_join_transaction(root, 1);
951         BUG_ON(!trans);
952
953         cow_start = (u64)-1;
954         cur_offset = start;
955         while (1) {
956                 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
957                                                cur_offset, 0);
958                 BUG_ON(ret < 0);
959                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
960                         leaf = path->nodes[0];
961                         btrfs_item_key_to_cpu(leaf, &found_key,
962                                               path->slots[0] - 1);
963                         if (found_key.objectid == inode->i_ino &&
964                             found_key.type == BTRFS_EXTENT_DATA_KEY)
965                                 path->slots[0]--;
966                 }
967                 check_prev = 0;
968 next_slot:
969                 leaf = path->nodes[0];
970                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
971                         ret = btrfs_next_leaf(root, path);
972                         if (ret < 0)
973                                 BUG_ON(1);
974                         if (ret > 0)
975                                 break;
976                         leaf = path->nodes[0];
977                 }
978
979                 nocow = 0;
980                 disk_bytenr = 0;
981                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
982
983                 if (found_key.objectid > inode->i_ino ||
984                     found_key.type > BTRFS_EXTENT_DATA_KEY ||
985                     found_key.offset > end)
986                         break;
987
988                 if (found_key.offset > cur_offset) {
989                         extent_end = found_key.offset;
990                         goto out_check;
991                 }
992
993                 fi = btrfs_item_ptr(leaf, path->slots[0],
994                                     struct btrfs_file_extent_item);
995                 extent_type = btrfs_file_extent_type(leaf, fi);
996
997                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
998                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
999                         struct btrfs_block_group_cache *block_group;
1000                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1001                         extent_end = found_key.offset +
1002                                 btrfs_file_extent_num_bytes(leaf, fi);
1003                         if (extent_end <= start) {
1004                                 path->slots[0]++;
1005                                 goto next_slot;
1006                         }
1007                         if (btrfs_file_extent_compression(leaf, fi) ||
1008                             btrfs_file_extent_encryption(leaf, fi) ||
1009                             btrfs_file_extent_other_encoding(leaf, fi))
1010                                 goto out_check;
1011                         if (disk_bytenr == 0)
1012                                 goto out_check;
1013                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1014                                 goto out_check;
1015                         if (btrfs_cross_ref_exist(trans, root, disk_bytenr))
1016                                 goto out_check;
1017                         block_group = btrfs_lookup_block_group(root->fs_info,
1018                                                                disk_bytenr);
1019                         if (!block_group || block_group->ro)
1020                                 goto out_check;
1021                         disk_bytenr += btrfs_file_extent_offset(leaf, fi);
1022                         nocow = 1;
1023                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1024                         extent_end = found_key.offset +
1025                                 btrfs_file_extent_inline_len(leaf, fi);
1026                         extent_end = ALIGN(extent_end, root->sectorsize);
1027                 } else {
1028                         BUG_ON(1);
1029                 }
1030 out_check:
1031                 if (extent_end <= start) {
1032                         path->slots[0]++;
1033                         goto next_slot;
1034                 }
1035                 if (!nocow) {
1036                         if (cow_start == (u64)-1)
1037                                 cow_start = cur_offset;
1038                         cur_offset = extent_end;
1039                         if (cur_offset > end)
1040                                 break;
1041                         path->slots[0]++;
1042                         goto next_slot;
1043                 }
1044
1045                 btrfs_release_path(root, path);
1046                 if (cow_start != (u64)-1) {
1047                         ret = cow_file_range(inode, locked_page, cow_start,
1048                                         found_key.offset - 1, page_started,
1049                                         nr_written, 1);
1050                         BUG_ON(ret);
1051                         cow_start = (u64)-1;
1052                 }
1053
1054                 disk_bytenr += cur_offset - found_key.offset;
1055                 num_bytes = min(end + 1, extent_end) - cur_offset;
1056                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1057                         struct extent_map *em;
1058                         struct extent_map_tree *em_tree;
1059                         em_tree = &BTRFS_I(inode)->extent_tree;
1060                         em = alloc_extent_map(GFP_NOFS);
1061                         em->start = cur_offset;
1062                         em->orig_start = em->start;
1063                         em->len = num_bytes;
1064                         em->block_len = num_bytes;
1065                         em->block_start = disk_bytenr;
1066                         em->bdev = root->fs_info->fs_devices->latest_bdev;
1067                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
1068                         while (1) {
1069                                 spin_lock(&em_tree->lock);
1070                                 ret = add_extent_mapping(em_tree, em);
1071                                 spin_unlock(&em_tree->lock);
1072                                 if (ret != -EEXIST) {
1073                                         free_extent_map(em);
1074                                         break;
1075                                 }
1076                                 btrfs_drop_extent_cache(inode, em->start,
1077                                                 em->start + em->len - 1, 0);
1078                         }
1079                         type = BTRFS_ORDERED_PREALLOC;
1080                 } else {
1081                         type = BTRFS_ORDERED_NOCOW;
1082                 }
1083
1084                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1085                                                num_bytes, num_bytes, type);
1086                 BUG_ON(ret);
1087
1088                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1089                                         cur_offset, cur_offset + num_bytes - 1,
1090                                         locked_page, 1, 1, 1, 0, 0, 0);
1091                 cur_offset = extent_end;
1092                 if (cur_offset > end)
1093                         break;
1094         }
1095         btrfs_release_path(root, path);
1096
1097         if (cur_offset <= end && cow_start == (u64)-1)
1098                 cow_start = cur_offset;
1099         if (cow_start != (u64)-1) {
1100                 ret = cow_file_range(inode, locked_page, cow_start, end,
1101                                      page_started, nr_written, 1);
1102                 BUG_ON(ret);
1103         }
1104
1105         ret = btrfs_end_transaction(trans, root);
1106         BUG_ON(ret);
1107         btrfs_free_path(path);
1108         return 0;
1109 }
1110
1111 /*
1112  * extent_io.c call back to do delayed allocation processing
1113  */
1114 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1115                               u64 start, u64 end, int *page_started,
1116                               unsigned long *nr_written)
1117 {
1118         struct btrfs_root *root = BTRFS_I(inode)->root;
1119         int ret;
1120
1121         if (btrfs_test_opt(root, NODATACOW) ||
1122             btrfs_test_flag(inode, NODATACOW))
1123                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1124                                          page_started, 0, nr_written);
1125         else if (btrfs_test_flag(inode, PREALLOC))
1126                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1127                                          page_started, 1, nr_written);
1128         else
1129                 ret = cow_file_range_async(inode, locked_page, start, end,
1130                                      page_started, nr_written);
1131
1132         return ret;
1133 }
1134
1135 /*
1136  * extent_io.c set_bit_hook, used to track delayed allocation
1137  * bytes in this file, and to maintain the list of inodes that
1138  * have pending delalloc work to be done.
1139  */
1140 int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
1141                        unsigned long old, unsigned long bits)
1142 {
1143         unsigned long flags;
1144         if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1145                 struct btrfs_root *root = BTRFS_I(inode)->root;
1146                 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
1147                 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
1148                 root->fs_info->delalloc_bytes += end - start + 1;
1149                 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1150                         list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1151                                       &root->fs_info->delalloc_inodes);
1152                 }
1153                 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
1154         }
1155         return 0;
1156 }
1157
1158 /*
1159  * extent_io.c clear_bit_hook, see set_bit_hook for why
1160  */
1161 int btrfs_clear_bit_hook(struct inode *inode, u64 start, u64 end,
1162                          unsigned long old, unsigned long bits)
1163 {
1164         if ((old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
1165                 struct btrfs_root *root = BTRFS_I(inode)->root;
1166                 unsigned long flags;
1167
1168                 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
1169                 if (end - start + 1 > root->fs_info->delalloc_bytes) {
1170                         printk("warning: delalloc account %Lu %Lu\n",
1171                                end - start + 1, root->fs_info->delalloc_bytes);
1172                         root->fs_info->delalloc_bytes = 0;
1173                         BTRFS_I(inode)->delalloc_bytes = 0;
1174                 } else {
1175                         root->fs_info->delalloc_bytes -= end - start + 1;
1176                         BTRFS_I(inode)->delalloc_bytes -= end - start + 1;
1177                 }
1178                 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1179                     !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1180                         list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1181                 }
1182                 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
1183         }
1184         return 0;
1185 }
1186
1187 /*
1188  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1189  * we don't create bios that span stripes or chunks
1190  */
1191 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1192                          size_t size, struct bio *bio,
1193                          unsigned long bio_flags)
1194 {
1195         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1196         struct btrfs_mapping_tree *map_tree;
1197         u64 logical = (u64)bio->bi_sector << 9;
1198         u64 length = 0;
1199         u64 map_length;
1200         int ret;
1201
1202         if (bio_flags & EXTENT_BIO_COMPRESSED)
1203                 return 0;
1204
1205         length = bio->bi_size;
1206         map_tree = &root->fs_info->mapping_tree;
1207         map_length = length;
1208         ret = btrfs_map_block(map_tree, READ, logical,
1209                               &map_length, NULL, 0);
1210
1211         if (map_length < length + size) {
1212                 return 1;
1213         }
1214         return 0;
1215 }
1216
1217 /*
1218  * in order to insert checksums into the metadata in large chunks,
1219  * we wait until bio submission time.   All the pages in the bio are
1220  * checksummed and sums are attached onto the ordered extent record.
1221  *
1222  * At IO completion time the cums attached on the ordered extent record
1223  * are inserted into the btree
1224  */
1225 int __btrfs_submit_bio_start(struct inode *inode, int rw, struct bio *bio,
1226                           int mirror_num, unsigned long bio_flags)
1227 {
1228         struct btrfs_root *root = BTRFS_I(inode)->root;
1229         int ret = 0;
1230
1231         ret = btrfs_csum_one_bio(root, inode, bio);
1232         BUG_ON(ret);
1233         return 0;
1234 }
1235
1236 /*
1237  * in order to insert checksums into the metadata in large chunks,
1238  * we wait until bio submission time.   All the pages in the bio are
1239  * checksummed and sums are attached onto the ordered extent record.
1240  *
1241  * At IO completion time the cums attached on the ordered extent record
1242  * are inserted into the btree
1243  */
1244 int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1245                           int mirror_num, unsigned long bio_flags)
1246 {
1247         struct btrfs_root *root = BTRFS_I(inode)->root;
1248         return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1249 }
1250
1251 /*
1252  * extent_io.c submission hook. This does the right thing for csum calculation on write,
1253  * or reading the csums from the tree before a read
1254  */
1255 int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1256                           int mirror_num, unsigned long bio_flags)
1257 {
1258         struct btrfs_root *root = BTRFS_I(inode)->root;
1259         int ret = 0;
1260         int skip_sum;
1261
1262         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1263         BUG_ON(ret);
1264
1265         skip_sum = btrfs_test_opt(root, NODATASUM) ||
1266                 btrfs_test_flag(inode, NODATASUM);
1267
1268         if (!(rw & (1 << BIO_RW))) {
1269
1270                 if (bio_flags & EXTENT_BIO_COMPRESSED)
1271                         return btrfs_submit_compressed_read(inode, bio,
1272                                                     mirror_num, bio_flags);
1273                 else if (!skip_sum)
1274                         btrfs_lookup_bio_sums(root, inode, bio);
1275                 goto mapit;
1276         } else if (!skip_sum) {
1277                 /* we're doing a write, do the async checksumming */
1278                 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1279                                    inode, rw, bio, mirror_num,
1280                                    bio_flags, __btrfs_submit_bio_start,
1281                                    __btrfs_submit_bio_done);
1282         }
1283
1284 mapit:
1285         return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1286 }
1287
1288 /*
1289  * given a list of ordered sums record them in the inode.  This happens
1290  * at IO completion time based on sums calculated at bio submission time.
1291  */
1292 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1293                              struct inode *inode, u64 file_offset,
1294                              struct list_head *list)
1295 {
1296         struct list_head *cur;
1297         struct btrfs_ordered_sum *sum;
1298
1299         btrfs_set_trans_block_group(trans, inode);
1300         list_for_each(cur, list) {
1301                 sum = list_entry(cur, struct btrfs_ordered_sum, list);
1302                 btrfs_csum_file_blocks(trans, BTRFS_I(inode)->root,
1303                                        inode, sum);
1304         }
1305         return 0;
1306 }
1307
1308 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1309 {
1310         if ((end & (PAGE_CACHE_SIZE - 1)) == 0) {
1311                 WARN_ON(1);
1312         }
1313         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1314                                    GFP_NOFS);
1315 }
1316
1317 /* see btrfs_writepage_start_hook for details on why this is required */
1318 struct btrfs_writepage_fixup {
1319         struct page *page;
1320         struct btrfs_work work;
1321 };
1322
1323 void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1324 {
1325         struct btrfs_writepage_fixup *fixup;
1326         struct btrfs_ordered_extent *ordered;
1327         struct page *page;
1328         struct inode *inode;
1329         u64 page_start;
1330         u64 page_end;
1331
1332         fixup = container_of(work, struct btrfs_writepage_fixup, work);
1333         page = fixup->page;
1334 again:
1335         lock_page(page);
1336         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1337                 ClearPageChecked(page);
1338                 goto out_page;
1339         }
1340
1341         inode = page->mapping->host;
1342         page_start = page_offset(page);
1343         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1344
1345         lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1346
1347         /* already ordered? We're done */
1348         if (test_range_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
1349                              EXTENT_ORDERED, 0)) {
1350                 goto out;
1351         }
1352
1353         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1354         if (ordered) {
1355                 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1356                               page_end, GFP_NOFS);
1357                 unlock_page(page);
1358                 btrfs_start_ordered_extent(inode, ordered, 1);
1359                 goto again;
1360         }
1361
1362         btrfs_set_extent_delalloc(inode, page_start, page_end);
1363         ClearPageChecked(page);
1364 out:
1365         unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1366 out_page:
1367         unlock_page(page);
1368         page_cache_release(page);
1369 }
1370
1371 /*
1372  * There are a few paths in the higher layers of the kernel that directly
1373  * set the page dirty bit without asking the filesystem if it is a
1374  * good idea.  This causes problems because we want to make sure COW
1375  * properly happens and the data=ordered rules are followed.
1376  *
1377  * In our case any range that doesn't have the ORDERED bit set
1378  * hasn't been properly setup for IO.  We kick off an async process
1379  * to fix it up.  The async helper will wait for ordered extents, set
1380  * the delalloc bit and make it safe to write the page.
1381  */
1382 int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1383 {
1384         struct inode *inode = page->mapping->host;
1385         struct btrfs_writepage_fixup *fixup;
1386         struct btrfs_root *root = BTRFS_I(inode)->root;
1387         int ret;
1388
1389         ret = test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1390                              EXTENT_ORDERED, 0);
1391         if (ret)
1392                 return 0;
1393
1394         if (PageChecked(page))
1395                 return -EAGAIN;
1396
1397         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1398         if (!fixup)
1399                 return -EAGAIN;
1400
1401         SetPageChecked(page);
1402         page_cache_get(page);
1403         fixup->work.func = btrfs_writepage_fixup_worker;
1404         fixup->page = page;
1405         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1406         return -EAGAIN;
1407 }
1408
1409 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1410                                        struct inode *inode, u64 file_pos,
1411                                        u64 disk_bytenr, u64 disk_num_bytes,
1412                                        u64 num_bytes, u64 ram_bytes,
1413                                        u8 compression, u8 encryption,
1414                                        u16 other_encoding, int extent_type)
1415 {
1416         struct btrfs_root *root = BTRFS_I(inode)->root;
1417         struct btrfs_file_extent_item *fi;
1418         struct btrfs_path *path;
1419         struct extent_buffer *leaf;
1420         struct btrfs_key ins;
1421         u64 hint;
1422         int ret;
1423
1424         path = btrfs_alloc_path();
1425         BUG_ON(!path);
1426
1427         ret = btrfs_drop_extents(trans, root, inode, file_pos,
1428                                  file_pos + num_bytes, file_pos, &hint);
1429         BUG_ON(ret);
1430
1431         ins.objectid = inode->i_ino;
1432         ins.offset = file_pos;
1433         ins.type = BTRFS_EXTENT_DATA_KEY;
1434         ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1435         BUG_ON(ret);
1436         leaf = path->nodes[0];
1437         fi = btrfs_item_ptr(leaf, path->slots[0],
1438                             struct btrfs_file_extent_item);
1439         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1440         btrfs_set_file_extent_type(leaf, fi, extent_type);
1441         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1442         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1443         btrfs_set_file_extent_offset(leaf, fi, 0);
1444         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1445         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1446         btrfs_set_file_extent_compression(leaf, fi, compression);
1447         btrfs_set_file_extent_encryption(leaf, fi, encryption);
1448         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1449         btrfs_mark_buffer_dirty(leaf);
1450
1451         inode_add_bytes(inode, num_bytes);
1452         btrfs_drop_extent_cache(inode, file_pos, file_pos + num_bytes - 1, 0);
1453
1454         ins.objectid = disk_bytenr;
1455         ins.offset = disk_num_bytes;
1456         ins.type = BTRFS_EXTENT_ITEM_KEY;
1457         ret = btrfs_alloc_reserved_extent(trans, root, leaf->start,
1458                                           root->root_key.objectid,
1459                                           trans->transid, inode->i_ino, &ins);
1460         BUG_ON(ret);
1461
1462         btrfs_free_path(path);
1463         return 0;
1464 }
1465
1466 /* as ordered data IO finishes, this gets called so we can finish
1467  * an ordered extent if the range of bytes in the file it covers are
1468  * fully written.
1469  */
1470 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1471 {
1472         struct btrfs_root *root = BTRFS_I(inode)->root;
1473         struct btrfs_trans_handle *trans;
1474         struct btrfs_ordered_extent *ordered_extent;
1475         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1476         int compressed = 0;
1477         int ret;
1478
1479         ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
1480         if (!ret)
1481                 return 0;
1482
1483         trans = btrfs_join_transaction(root, 1);
1484
1485         ordered_extent = btrfs_lookup_ordered_extent(inode, start);
1486         BUG_ON(!ordered_extent);
1487         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1488                 goto nocow;
1489
1490         lock_extent(io_tree, ordered_extent->file_offset,
1491                     ordered_extent->file_offset + ordered_extent->len - 1,
1492                     GFP_NOFS);
1493
1494         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1495                 compressed = 1;
1496         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1497                 BUG_ON(compressed);
1498                 ret = btrfs_mark_extent_written(trans, root, inode,
1499                                                 ordered_extent->file_offset,
1500                                                 ordered_extent->file_offset +
1501                                                 ordered_extent->len);
1502                 BUG_ON(ret);
1503         } else {
1504                 ret = insert_reserved_file_extent(trans, inode,
1505                                                 ordered_extent->file_offset,
1506                                                 ordered_extent->start,
1507                                                 ordered_extent->disk_len,
1508                                                 ordered_extent->len,
1509                                                 ordered_extent->len,
1510                                                 compressed, 0, 0,
1511                                                 BTRFS_FILE_EXTENT_REG);
1512                 BUG_ON(ret);
1513         }
1514         unlock_extent(io_tree, ordered_extent->file_offset,
1515                     ordered_extent->file_offset + ordered_extent->len - 1,
1516                     GFP_NOFS);
1517 nocow:
1518         add_pending_csums(trans, inode, ordered_extent->file_offset,
1519                           &ordered_extent->list);
1520
1521         mutex_lock(&BTRFS_I(inode)->extent_mutex);
1522         btrfs_ordered_update_i_size(inode, ordered_extent);
1523         btrfs_update_inode(trans, root, inode);
1524         btrfs_remove_ordered_extent(inode, ordered_extent);
1525         mutex_unlock(&BTRFS_I(inode)->extent_mutex);
1526
1527         /* once for us */
1528         btrfs_put_ordered_extent(ordered_extent);
1529         /* once for the tree */
1530         btrfs_put_ordered_extent(ordered_extent);
1531
1532         btrfs_end_transaction(trans, root);
1533         return 0;
1534 }
1535
1536 int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1537                                 struct extent_state *state, int uptodate)
1538 {
1539         return btrfs_finish_ordered_io(page->mapping->host, start, end);
1540 }
1541
1542 /*
1543  * When IO fails, either with EIO or csum verification fails, we
1544  * try other mirrors that might have a good copy of the data.  This
1545  * io_failure_record is used to record state as we go through all the
1546  * mirrors.  If another mirror has good data, the page is set up to date
1547  * and things continue.  If a good mirror can't be found, the original
1548  * bio end_io callback is called to indicate things have failed.
1549  */
1550 struct io_failure_record {
1551         struct page *page;
1552         u64 start;
1553         u64 len;
1554         u64 logical;
1555         int last_mirror;
1556 };
1557
1558 int btrfs_io_failed_hook(struct bio *failed_bio,
1559                          struct page *page, u64 start, u64 end,
1560                          struct extent_state *state)
1561 {
1562         struct io_failure_record *failrec = NULL;
1563         u64 private;
1564         struct extent_map *em;
1565         struct inode *inode = page->mapping->host;
1566         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1567         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1568         struct bio *bio;
1569         int num_copies;
1570         int ret;
1571         int rw;
1572         u64 logical;
1573         unsigned long bio_flags = 0;
1574
1575         ret = get_state_private(failure_tree, start, &private);
1576         if (ret) {
1577                 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1578                 if (!failrec)
1579                         return -ENOMEM;
1580                 failrec->start = start;
1581                 failrec->len = end - start + 1;
1582                 failrec->last_mirror = 0;
1583
1584                 spin_lock(&em_tree->lock);
1585                 em = lookup_extent_mapping(em_tree, start, failrec->len);
1586                 if (em->start > start || em->start + em->len < start) {
1587                         free_extent_map(em);
1588                         em = NULL;
1589                 }
1590                 spin_unlock(&em_tree->lock);
1591
1592                 if (!em || IS_ERR(em)) {
1593                         kfree(failrec);
1594                         return -EIO;
1595                 }
1596                 logical = start - em->start;
1597                 logical = em->block_start + logical;
1598                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
1599                         bio_flags = EXTENT_BIO_COMPRESSED;
1600                 failrec->logical = logical;
1601                 free_extent_map(em);
1602                 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1603                                 EXTENT_DIRTY, GFP_NOFS);
1604                 set_state_private(failure_tree, start,
1605                                  (u64)(unsigned long)failrec);
1606         } else {
1607                 failrec = (struct io_failure_record *)(unsigned long)private;
1608         }
1609         num_copies = btrfs_num_copies(
1610                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
1611                               failrec->logical, failrec->len);
1612         failrec->last_mirror++;
1613         if (!state) {
1614                 spin_lock_irq(&BTRFS_I(inode)->io_tree.lock);
1615                 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1616                                                     failrec->start,
1617                                                     EXTENT_LOCKED);
1618                 if (state && state->start != failrec->start)
1619                         state = NULL;
1620                 spin_unlock_irq(&BTRFS_I(inode)->io_tree.lock);
1621         }
1622         if (!state || failrec->last_mirror > num_copies) {
1623                 set_state_private(failure_tree, failrec->start, 0);
1624                 clear_extent_bits(failure_tree, failrec->start,
1625                                   failrec->start + failrec->len - 1,
1626                                   EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1627                 kfree(failrec);
1628                 return -EIO;
1629         }
1630         bio = bio_alloc(GFP_NOFS, 1);
1631         bio->bi_private = state;
1632         bio->bi_end_io = failed_bio->bi_end_io;
1633         bio->bi_sector = failrec->logical >> 9;
1634         bio->bi_bdev = failed_bio->bi_bdev;
1635         bio->bi_size = 0;
1636         bio_add_page(bio, page, failrec->len, start - page_offset(page));
1637         if (failed_bio->bi_rw & (1 << BIO_RW))
1638                 rw = WRITE;
1639         else
1640                 rw = READ;
1641
1642         BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1643                                                       failrec->last_mirror,
1644                                                       bio_flags);
1645         return 0;
1646 }
1647
1648 /*
1649  * each time an IO finishes, we do a fast check in the IO failure tree
1650  * to see if we need to process or clean up an io_failure_record
1651  */
1652 int btrfs_clean_io_failures(struct inode *inode, u64 start)
1653 {
1654         u64 private;
1655         u64 private_failure;
1656         struct io_failure_record *failure;
1657         int ret;
1658
1659         private = 0;
1660         if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1661                              (u64)-1, 1, EXTENT_DIRTY)) {
1662                 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1663                                         start, &private_failure);
1664                 if (ret == 0) {
1665                         failure = (struct io_failure_record *)(unsigned long)
1666                                    private_failure;
1667                         set_state_private(&BTRFS_I(inode)->io_failure_tree,
1668                                           failure->start, 0);
1669                         clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1670                                           failure->start,
1671                                           failure->start + failure->len - 1,
1672                                           EXTENT_DIRTY | EXTENT_LOCKED,
1673                                           GFP_NOFS);
1674                         kfree(failure);
1675                 }
1676         }
1677         return 0;
1678 }
1679
1680 /*
1681  * when reads are done, we need to check csums to verify the data is correct
1682  * if there's a match, we allow the bio to finish.  If not, we go through
1683  * the io_failure_record routines to find good copies
1684  */
1685 int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1686                                struct extent_state *state)
1687 {
1688         size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1689         struct inode *inode = page->mapping->host;
1690         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1691         char *kaddr;
1692         u64 private = ~(u32)0;
1693         int ret;
1694         struct btrfs_root *root = BTRFS_I(inode)->root;
1695         u32 csum = ~(u32)0;
1696         unsigned long flags;
1697
1698         if (btrfs_test_opt(root, NODATASUM) ||
1699             btrfs_test_flag(inode, NODATASUM))
1700                 return 0;
1701         if (state && state->start == start) {
1702                 private = state->private;
1703                 ret = 0;
1704         } else {
1705                 ret = get_state_private(io_tree, start, &private);
1706         }
1707         local_irq_save(flags);
1708         kaddr = kmap_atomic(page, KM_IRQ0);
1709         if (ret) {
1710                 goto zeroit;
1711         }
1712         csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1713         btrfs_csum_final(csum, (char *)&csum);
1714         if (csum != private) {
1715                 goto zeroit;
1716         }
1717         kunmap_atomic(kaddr, KM_IRQ0);
1718         local_irq_restore(flags);
1719
1720         /* if the io failure tree for this inode is non-empty,
1721          * check to see if we've recovered from a failed IO
1722          */
1723         btrfs_clean_io_failures(inode, start);
1724         return 0;
1725
1726 zeroit:
1727         printk("btrfs csum failed ino %lu off %llu csum %u private %Lu\n",
1728                page->mapping->host->i_ino, (unsigned long long)start, csum,
1729                private);
1730         memset(kaddr + offset, 1, end - start + 1);
1731         flush_dcache_page(page);
1732         kunmap_atomic(kaddr, KM_IRQ0);
1733         local_irq_restore(flags);
1734         if (private == 0)
1735                 return 0;
1736         return -EIO;
1737 }
1738
1739 /*
1740  * This creates an orphan entry for the given inode in case something goes
1741  * wrong in the middle of an unlink/truncate.
1742  */
1743 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1744 {
1745         struct btrfs_root *root = BTRFS_I(inode)->root;
1746         int ret = 0;
1747
1748         spin_lock(&root->list_lock);
1749
1750         /* already on the orphan list, we're good */
1751         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
1752                 spin_unlock(&root->list_lock);
1753                 return 0;
1754         }
1755
1756         list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1757
1758         spin_unlock(&root->list_lock);
1759
1760         /*
1761          * insert an orphan item to track this unlinked/truncated file
1762          */
1763         ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
1764
1765         return ret;
1766 }
1767
1768 /*
1769  * We have done the truncate/delete so we can go ahead and remove the orphan
1770  * item for this particular inode.
1771  */
1772 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
1773 {
1774         struct btrfs_root *root = BTRFS_I(inode)->root;
1775         int ret = 0;
1776
1777         spin_lock(&root->list_lock);
1778
1779         if (list_empty(&BTRFS_I(inode)->i_orphan)) {
1780                 spin_unlock(&root->list_lock);
1781                 return 0;
1782         }
1783
1784         list_del_init(&BTRFS_I(inode)->i_orphan);
1785         if (!trans) {
1786                 spin_unlock(&root->list_lock);
1787                 return 0;
1788         }
1789
1790         spin_unlock(&root->list_lock);
1791
1792         ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
1793
1794         return ret;
1795 }
1796
1797 /*
1798  * this cleans up any orphans that may be left on the list from the last use
1799  * of this root.
1800  */
1801 void btrfs_orphan_cleanup(struct btrfs_root *root)
1802 {
1803         struct btrfs_path *path;
1804         struct extent_buffer *leaf;
1805         struct btrfs_item *item;
1806         struct btrfs_key key, found_key;
1807         struct btrfs_trans_handle *trans;
1808         struct inode *inode;
1809         int ret = 0, nr_unlink = 0, nr_truncate = 0;
1810
1811         /* don't do orphan cleanup if the fs is readonly. */
1812         if (root->fs_info->sb->s_flags & MS_RDONLY)
1813                 return;
1814
1815         path = btrfs_alloc_path();
1816         if (!path)
1817                 return;
1818         path->reada = -1;
1819
1820         key.objectid = BTRFS_ORPHAN_OBJECTID;
1821         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1822         key.offset = (u64)-1;
1823
1824
1825         while (1) {
1826                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1827                 if (ret < 0) {
1828                         printk(KERN_ERR "Error searching slot for orphan: %d"
1829                                "\n", ret);
1830                         break;
1831                 }
1832
1833                 /*
1834                  * if ret == 0 means we found what we were searching for, which
1835                  * is weird, but possible, so only screw with path if we didnt
1836                  * find the key and see if we have stuff that matches
1837                  */
1838                 if (ret > 0) {
1839                         if (path->slots[0] == 0)
1840                                 break;
1841                         path->slots[0]--;
1842                 }
1843
1844                 /* pull out the item */
1845                 leaf = path->nodes[0];
1846                 item = btrfs_item_nr(leaf, path->slots[0]);
1847                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1848
1849                 /* make sure the item matches what we want */
1850                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
1851                         break;
1852                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
1853                         break;
1854
1855                 /* release the path since we're done with it */
1856                 btrfs_release_path(root, path);
1857
1858                 /*
1859                  * this is where we are basically btrfs_lookup, without the
1860                  * crossing root thing.  we store the inode number in the
1861                  * offset of the orphan item.
1862                  */
1863                 inode = btrfs_iget_locked(root->fs_info->sb,
1864                                           found_key.offset, root);
1865                 if (!inode)
1866                         break;
1867
1868                 if (inode->i_state & I_NEW) {
1869                         BTRFS_I(inode)->root = root;
1870
1871                         /* have to set the location manually */
1872                         BTRFS_I(inode)->location.objectid = inode->i_ino;
1873                         BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
1874                         BTRFS_I(inode)->location.offset = 0;
1875
1876                         btrfs_read_locked_inode(inode);
1877                         unlock_new_inode(inode);
1878                 }
1879
1880                 /*
1881                  * add this inode to the orphan list so btrfs_orphan_del does
1882                  * the proper thing when we hit it
1883                  */
1884                 spin_lock(&root->list_lock);
1885                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
1886                 spin_unlock(&root->list_lock);
1887
1888                 /*
1889                  * if this is a bad inode, means we actually succeeded in
1890                  * removing the inode, but not the orphan record, which means
1891                  * we need to manually delete the orphan since iput will just
1892                  * do a destroy_inode
1893                  */
1894                 if (is_bad_inode(inode)) {
1895                         trans = btrfs_start_transaction(root, 1);
1896                         btrfs_orphan_del(trans, inode);
1897                         btrfs_end_transaction(trans, root);
1898                         iput(inode);
1899                         continue;
1900                 }
1901
1902                 /* if we have links, this was a truncate, lets do that */
1903                 if (inode->i_nlink) {
1904                         nr_truncate++;
1905                         btrfs_truncate(inode);
1906                 } else {
1907                         nr_unlink++;
1908                 }
1909
1910                 /* this will do delete_inode and everything for us */
1911                 iput(inode);
1912         }
1913
1914         if (nr_unlink)
1915                 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
1916         if (nr_truncate)
1917                 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
1918
1919         btrfs_free_path(path);
1920 }
1921
1922 /*
1923  * read an inode from the btree into the in-memory inode
1924  */
1925 void btrfs_read_locked_inode(struct inode *inode)
1926 {
1927         struct btrfs_path *path;
1928         struct extent_buffer *leaf;
1929         struct btrfs_inode_item *inode_item;
1930         struct btrfs_timespec *tspec;
1931         struct btrfs_root *root = BTRFS_I(inode)->root;
1932         struct btrfs_key location;
1933         u64 alloc_group_block;
1934         u32 rdev;
1935         int ret;
1936
1937         path = btrfs_alloc_path();
1938         BUG_ON(!path);
1939         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
1940
1941         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
1942         if (ret)
1943                 goto make_bad;
1944
1945         leaf = path->nodes[0];
1946         inode_item = btrfs_item_ptr(leaf, path->slots[0],
1947                                     struct btrfs_inode_item);
1948
1949         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
1950         inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
1951         inode->i_uid = btrfs_inode_uid(leaf, inode_item);
1952         inode->i_gid = btrfs_inode_gid(leaf, inode_item);
1953         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
1954
1955         tspec = btrfs_inode_atime(inode_item);
1956         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1957         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1958
1959         tspec = btrfs_inode_mtime(inode_item);
1960         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1961         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1962
1963         tspec = btrfs_inode_ctime(inode_item);
1964         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
1965         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
1966
1967         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
1968         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
1969         inode->i_generation = BTRFS_I(inode)->generation;
1970         inode->i_rdev = 0;
1971         rdev = btrfs_inode_rdev(leaf, inode_item);
1972
1973         BTRFS_I(inode)->index_cnt = (u64)-1;
1974
1975         alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
1976         BTRFS_I(inode)->block_group = btrfs_lookup_block_group(root->fs_info,
1977                                                        alloc_group_block);
1978         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
1979         if (!BTRFS_I(inode)->block_group) {
1980                 BTRFS_I(inode)->block_group = btrfs_find_block_group(root,
1981                                                  NULL, 0,
1982                                                  BTRFS_BLOCK_GROUP_METADATA, 0);
1983         }
1984         btrfs_free_path(path);
1985         inode_item = NULL;
1986
1987         switch (inode->i_mode & S_IFMT) {
1988         case S_IFREG:
1989                 inode->i_mapping->a_ops = &btrfs_aops;
1990                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
1991                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
1992                 inode->i_fop = &btrfs_file_operations;
1993                 inode->i_op = &btrfs_file_inode_operations;
1994                 break;
1995         case S_IFDIR:
1996                 inode->i_fop = &btrfs_dir_file_operations;
1997                 if (root == root->fs_info->tree_root)
1998                         inode->i_op = &btrfs_dir_ro_inode_operations;
1999                 else
2000                         inode->i_op = &btrfs_dir_inode_operations;
2001                 break;
2002         case S_IFLNK:
2003                 inode->i_op = &btrfs_symlink_inode_operations;
2004                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2005                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2006                 break;
2007         default:
2008                 init_special_inode(inode, inode->i_mode, rdev);
2009                 break;
2010         }
2011         return;
2012
2013 make_bad:
2014         btrfs_free_path(path);
2015         make_bad_inode(inode);
2016 }
2017
2018 /*
2019  * given a leaf and an inode, copy the inode fields into the leaf
2020  */
2021 static void fill_inode_item(struct btrfs_trans_handle *trans,
2022                             struct extent_buffer *leaf,
2023                             struct btrfs_inode_item *item,
2024                             struct inode *inode)
2025 {
2026         btrfs_set_inode_uid(leaf, item, inode->i_uid);
2027         btrfs_set_inode_gid(leaf, item, inode->i_gid);
2028         btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2029         btrfs_set_inode_mode(leaf, item, inode->i_mode);
2030         btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2031
2032         btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2033                                inode->i_atime.tv_sec);
2034         btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2035                                 inode->i_atime.tv_nsec);
2036
2037         btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2038                                inode->i_mtime.tv_sec);
2039         btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2040                                 inode->i_mtime.tv_nsec);
2041
2042         btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2043                                inode->i_ctime.tv_sec);
2044         btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2045                                 inode->i_ctime.tv_nsec);
2046
2047         btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2048         btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2049         btrfs_set_inode_transid(leaf, item, trans->transid);
2050         btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2051         btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2052         btrfs_set_inode_block_group(leaf, item,
2053                                     BTRFS_I(inode)->block_group->key.objectid);
2054 }
2055
2056 /*
2057  * copy everything in the in-memory inode into the btree.
2058  */
2059 int noinline btrfs_update_inode(struct btrfs_trans_handle *trans,
2060                               struct btrfs_root *root,
2061                               struct inode *inode)
2062 {
2063         struct btrfs_inode_item *inode_item;
2064         struct btrfs_path *path;
2065         struct extent_buffer *leaf;
2066         int ret;
2067
2068         path = btrfs_alloc_path();
2069         BUG_ON(!path);
2070         ret = btrfs_lookup_inode(trans, root, path,
2071                                  &BTRFS_I(inode)->location, 1);
2072         if (ret) {
2073                 if (ret > 0)
2074                         ret = -ENOENT;
2075                 goto failed;
2076         }
2077
2078         leaf = path->nodes[0];
2079         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2080                                   struct btrfs_inode_item);
2081
2082         fill_inode_item(trans, leaf, inode_item, inode);
2083         btrfs_mark_buffer_dirty(leaf);
2084         btrfs_set_inode_last_trans(trans, inode);
2085         ret = 0;
2086 failed:
2087         btrfs_free_path(path);
2088         return ret;
2089 }
2090
2091
2092 /*
2093  * unlink helper that gets used here in inode.c and in the tree logging
2094  * recovery code.  It remove a link in a directory with a given name, and
2095  * also drops the back refs in the inode to the directory
2096  */
2097 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2098                        struct btrfs_root *root,
2099                        struct inode *dir, struct inode *inode,
2100                        const char *name, int name_len)
2101 {
2102         struct btrfs_path *path;
2103         int ret = 0;
2104         struct extent_buffer *leaf;
2105         struct btrfs_dir_item *di;
2106         struct btrfs_key key;
2107         u64 index;
2108
2109         path = btrfs_alloc_path();
2110         if (!path) {
2111                 ret = -ENOMEM;
2112                 goto err;
2113         }
2114
2115         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2116                                     name, name_len, -1);
2117         if (IS_ERR(di)) {
2118                 ret = PTR_ERR(di);
2119                 goto err;
2120         }
2121         if (!di) {
2122                 ret = -ENOENT;
2123                 goto err;
2124         }
2125         leaf = path->nodes[0];
2126         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2127         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2128         if (ret)
2129                 goto err;
2130         btrfs_release_path(root, path);
2131
2132         ret = btrfs_del_inode_ref(trans, root, name, name_len,
2133                                   inode->i_ino,
2134                                   dir->i_ino, &index);
2135         if (ret) {
2136                 printk("failed to delete reference to %.*s, "
2137                        "inode %lu parent %lu\n", name_len, name,
2138                        inode->i_ino, dir->i_ino);
2139                 goto err;
2140         }
2141
2142         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2143                                          index, name, name_len, -1);
2144         if (IS_ERR(di)) {
2145                 ret = PTR_ERR(di);
2146                 goto err;
2147         }
2148         if (!di) {
2149                 ret = -ENOENT;
2150                 goto err;
2151         }
2152         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2153         btrfs_release_path(root, path);
2154
2155         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2156                                          inode, dir->i_ino);
2157         BUG_ON(ret != 0 && ret != -ENOENT);
2158         if (ret != -ENOENT)
2159                 BTRFS_I(dir)->log_dirty_trans = trans->transid;
2160
2161         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2162                                            dir, index);
2163         BUG_ON(ret);
2164 err:
2165         btrfs_free_path(path);
2166         if (ret)
2167                 goto out;
2168
2169         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2170         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2171         btrfs_update_inode(trans, root, dir);
2172         btrfs_drop_nlink(inode);
2173         ret = btrfs_update_inode(trans, root, inode);
2174         dir->i_sb->s_dirt = 1;
2175 out:
2176         return ret;
2177 }
2178
2179 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2180 {
2181         struct btrfs_root *root;
2182         struct btrfs_trans_handle *trans;
2183         struct inode *inode = dentry->d_inode;
2184         int ret;
2185         unsigned long nr = 0;
2186
2187         root = BTRFS_I(dir)->root;
2188
2189         ret = btrfs_check_free_space(root, 1, 1);
2190         if (ret)
2191                 goto fail;
2192
2193         trans = btrfs_start_transaction(root, 1);
2194
2195         btrfs_set_trans_block_group(trans, dir);
2196         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2197                                  dentry->d_name.name, dentry->d_name.len);
2198
2199         if (inode->i_nlink == 0)
2200                 ret = btrfs_orphan_add(trans, inode);
2201
2202         nr = trans->blocks_used;
2203
2204         btrfs_end_transaction_throttle(trans, root);
2205 fail:
2206         btrfs_btree_balance_dirty(root, nr);
2207         return ret;
2208 }
2209
2210 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2211 {
2212         struct inode *inode = dentry->d_inode;
2213         int err = 0;
2214         int ret;
2215         struct btrfs_root *root = BTRFS_I(dir)->root;
2216         struct btrfs_trans_handle *trans;
2217         unsigned long nr = 0;
2218
2219         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
2220                 return -ENOTEMPTY;
2221         }
2222
2223         ret = btrfs_check_free_space(root, 1, 1);
2224         if (ret)
2225                 goto fail;
2226
2227         trans = btrfs_start_transaction(root, 1);
2228         btrfs_set_trans_block_group(trans, dir);
2229
2230         err = btrfs_orphan_add(trans, inode);
2231         if (err)
2232                 goto fail_trans;
2233
2234         /* now the directory is empty */
2235         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2236                                  dentry->d_name.name, dentry->d_name.len);
2237         if (!err) {
2238                 btrfs_i_size_write(inode, 0);
2239         }
2240
2241 fail_trans:
2242         nr = trans->blocks_used;
2243         ret = btrfs_end_transaction_throttle(trans, root);
2244 fail:
2245         btrfs_btree_balance_dirty(root, nr);
2246
2247         if (ret && !err)
2248                 err = ret;
2249         return err;
2250 }
2251
2252 /*
2253  * when truncating bytes in a file, it is possible to avoid reading
2254  * the leaves that contain only checksum items.  This can be the
2255  * majority of the IO required to delete a large file, but it must
2256  * be done carefully.
2257  *
2258  * The keys in the level just above the leaves are checked to make sure
2259  * the lowest key in a given leaf is a csum key, and starts at an offset
2260  * after the new  size.
2261  *
2262  * Then the key for the next leaf is checked to make sure it also has
2263  * a checksum item for the same file.  If it does, we know our target leaf
2264  * contains only checksum items, and it can be safely freed without reading
2265  * it.
2266  *
2267  * This is just an optimization targeted at large files.  It may do
2268  * nothing.  It will return 0 unless things went badly.
2269  */
2270 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2271                                      struct btrfs_root *root,
2272                                      struct btrfs_path *path,
2273                                      struct inode *inode, u64 new_size)
2274 {
2275         struct btrfs_key key;
2276         int ret;
2277         int nritems;
2278         struct btrfs_key found_key;
2279         struct btrfs_key other_key;
2280         struct btrfs_leaf_ref *ref;
2281         u64 leaf_gen;
2282         u64 leaf_start;
2283
2284         path->lowest_level = 1;
2285         key.objectid = inode->i_ino;
2286         key.type = BTRFS_CSUM_ITEM_KEY;
2287         key.offset = new_size;
2288 again:
2289         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2290         if (ret < 0)
2291                 goto out;
2292
2293         if (path->nodes[1] == NULL) {
2294                 ret = 0;
2295                 goto out;
2296         }
2297         ret = 0;
2298         btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2299         nritems = btrfs_header_nritems(path->nodes[1]);
2300
2301         if (!nritems)
2302                 goto out;
2303
2304         if (path->slots[1] >= nritems)
2305                 goto next_node;
2306
2307         /* did we find a key greater than anything we want to delete? */
2308         if (found_key.objectid > inode->i_ino ||
2309            (found_key.objectid == inode->i_ino && found_key.type > key.type))
2310                 goto out;
2311
2312         /* we check the next key in the node to make sure the leave contains
2313          * only checksum items.  This comparison doesn't work if our
2314          * leaf is the last one in the node
2315          */
2316         if (path->slots[1] + 1 >= nritems) {
2317 next_node:
2318                 /* search forward from the last key in the node, this
2319                  * will bring us into the next node in the tree
2320                  */
2321                 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2322
2323                 /* unlikely, but we inc below, so check to be safe */
2324                 if (found_key.offset == (u64)-1)
2325                         goto out;
2326
2327                 /* search_forward needs a path with locks held, do the
2328                  * search again for the original key.  It is possible
2329                  * this will race with a balance and return a path that
2330                  * we could modify, but this drop is just an optimization
2331                  * and is allowed to miss some leaves.
2332                  */
2333                 btrfs_release_path(root, path);
2334                 found_key.offset++;
2335
2336                 /* setup a max key for search_forward */
2337                 other_key.offset = (u64)-1;
2338                 other_key.type = key.type;
2339                 other_key.objectid = key.objectid;
2340
2341                 path->keep_locks = 1;
2342                 ret = btrfs_search_forward(root, &found_key, &other_key,
2343                                            path, 0, 0);
2344                 path->keep_locks = 0;
2345                 if (ret || found_key.objectid != key.objectid ||
2346                     found_key.type != key.type) {
2347                         ret = 0;
2348                         goto out;
2349                 }
2350
2351                 key.offset = found_key.offset;
2352                 btrfs_release_path(root, path);
2353                 cond_resched();
2354                 goto again;
2355         }
2356
2357         /* we know there's one more slot after us in the tree,
2358          * read that key so we can verify it is also a checksum item
2359          */
2360         btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2361
2362         if (found_key.objectid < inode->i_ino)
2363                 goto next_key;
2364
2365         if (found_key.type != key.type || found_key.offset < new_size)
2366                 goto next_key;
2367
2368         /*
2369          * if the key for the next leaf isn't a csum key from this objectid,
2370          * we can't be sure there aren't good items inside this leaf.
2371          * Bail out
2372          */
2373         if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2374                 goto out;
2375
2376         leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2377         leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
2378         /*
2379          * it is safe to delete this leaf, it contains only
2380          * csum items from this inode at an offset >= new_size
2381          */
2382         ret = btrfs_del_leaf(trans, root, path, leaf_start);
2383         BUG_ON(ret);
2384
2385         if (root->ref_cows && leaf_gen < trans->transid) {
2386                 ref = btrfs_alloc_leaf_ref(root, 0);
2387                 if (ref) {
2388                         ref->root_gen = root->root_key.offset;
2389                         ref->bytenr = leaf_start;
2390                         ref->owner = 0;
2391                         ref->generation = leaf_gen;
2392                         ref->nritems = 0;
2393
2394                         ret = btrfs_add_leaf_ref(root, ref, 0);
2395                         WARN_ON(ret);
2396                         btrfs_free_leaf_ref(root, ref);
2397                 } else {
2398                         WARN_ON(1);
2399                 }
2400         }
2401 next_key:
2402         btrfs_release_path(root, path);
2403
2404         if (other_key.objectid == inode->i_ino &&
2405             other_key.type == key.type && other_key.offset > key.offset) {
2406                 key.offset = other_key.offset;
2407                 cond_resched();
2408                 goto again;
2409         }
2410         ret = 0;
2411 out:
2412         /* fixup any changes we've made to the path */
2413         path->lowest_level = 0;
2414         path->keep_locks = 0;
2415         btrfs_release_path(root, path);
2416         return ret;
2417 }
2418
2419 /*
2420  * this can truncate away extent items, csum items and directory items.
2421  * It starts at a high offset and removes keys until it can't find
2422  * any higher than new_size
2423  *
2424  * csum items that cross the new i_size are truncated to the new size
2425  * as well.
2426  *
2427  * min_type is the minimum key type to truncate down to.  If set to 0, this
2428  * will kill all the items on this inode, including the INODE_ITEM_KEY.
2429  */
2430 noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2431                                         struct btrfs_root *root,
2432                                         struct inode *inode,
2433                                         u64 new_size, u32 min_type)
2434 {
2435         int ret;
2436         struct btrfs_path *path;
2437         struct btrfs_key key;
2438         struct btrfs_key found_key;
2439         u32 found_type;
2440         struct extent_buffer *leaf;
2441         struct btrfs_file_extent_item *fi;
2442         u64 extent_start = 0;
2443         u64 extent_num_bytes = 0;
2444         u64 item_end = 0;
2445         u64 root_gen = 0;
2446         u64 root_owner = 0;
2447         int found_extent;
2448         int del_item;
2449         int pending_del_nr = 0;
2450         int pending_del_slot = 0;
2451         int extent_type = -1;
2452         int encoding;
2453         u64 mask = root->sectorsize - 1;
2454
2455         if (root->ref_cows)
2456                 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
2457         path = btrfs_alloc_path();
2458         path->reada = -1;
2459         BUG_ON(!path);
2460
2461         /* FIXME, add redo link to tree so we don't leak on crash */
2462         key.objectid = inode->i_ino;
2463         key.offset = (u64)-1;
2464         key.type = (u8)-1;
2465
2466         btrfs_init_path(path);
2467
2468         ret = drop_csum_leaves(trans, root, path, inode, new_size);
2469         BUG_ON(ret);
2470
2471 search_again:
2472         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2473         if (ret < 0) {
2474                 goto error;
2475         }
2476         if (ret > 0) {
2477                 /* there are no items in the tree for us to truncate, we're
2478                  * done
2479                  */
2480                 if (path->slots[0] == 0) {
2481                         ret = 0;
2482                         goto error;
2483                 }
2484                 path->slots[0]--;
2485         }
2486
2487         while(1) {
2488                 fi = NULL;
2489                 leaf = path->nodes[0];
2490                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2491                 found_type = btrfs_key_type(&found_key);
2492                 encoding = 0;
2493
2494                 if (found_key.objectid != inode->i_ino)
2495                         break;
2496
2497                 if (found_type < min_type)
2498                         break;
2499
2500                 item_end = found_key.offset;
2501                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
2502                         fi = btrfs_item_ptr(leaf, path->slots[0],
2503                                             struct btrfs_file_extent_item);
2504                         extent_type = btrfs_file_extent_type(leaf, fi);
2505                         encoding = btrfs_file_extent_compression(leaf, fi);
2506                         encoding |= btrfs_file_extent_encryption(leaf, fi);
2507                         encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2508
2509                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2510                                 item_end +=
2511                                     btrfs_file_extent_num_bytes(leaf, fi);
2512                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2513                                 item_end += btrfs_file_extent_inline_len(leaf,
2514                                                                          fi);
2515                         }
2516                         item_end--;
2517                 }
2518                 if (found_type == BTRFS_CSUM_ITEM_KEY) {
2519                         ret = btrfs_csum_truncate(trans, root, path,
2520                                                   new_size);
2521                         BUG_ON(ret);
2522                 }
2523                 if (item_end < new_size) {
2524                         if (found_type == BTRFS_DIR_ITEM_KEY) {
2525                                 found_type = BTRFS_INODE_ITEM_KEY;
2526                         } else if (found_type == BTRFS_EXTENT_ITEM_KEY) {
2527                                 found_type = BTRFS_CSUM_ITEM_KEY;
2528                         } else if (found_type == BTRFS_EXTENT_DATA_KEY) {
2529                                 found_type = BTRFS_XATTR_ITEM_KEY;
2530                         } else if (found_type == BTRFS_XATTR_ITEM_KEY) {
2531                                 found_type = BTRFS_INODE_REF_KEY;
2532                         } else if (found_type) {
2533                                 found_type--;
2534                         } else {
2535                                 break;
2536                         }
2537                         btrfs_set_key_type(&key, found_type);
2538                         goto next;
2539                 }
2540                 if (found_key.offset >= new_size)
2541                         del_item = 1;
2542                 else
2543                         del_item = 0;
2544                 found_extent = 0;
2545
2546                 /* FIXME, shrink the extent if the ref count is only 1 */
2547                 if (found_type != BTRFS_EXTENT_DATA_KEY)
2548                         goto delete;
2549
2550                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
2551                         u64 num_dec;
2552                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
2553                         if (!del_item && !encoding) {
2554                                 u64 orig_num_bytes =
2555                                         btrfs_file_extent_num_bytes(leaf, fi);
2556                                 extent_num_bytes = new_size -
2557                                         found_key.offset + root->sectorsize - 1;
2558                                 extent_num_bytes = extent_num_bytes &
2559                                         ~((u64)root->sectorsize - 1);
2560                                 btrfs_set_file_extent_num_bytes(leaf, fi,
2561                                                          extent_num_bytes);
2562                                 num_dec = (orig_num_bytes -
2563                                            extent_num_bytes);
2564                                 if (root->ref_cows && extent_start != 0)
2565                                         inode_sub_bytes(inode, num_dec);
2566                                 btrfs_mark_buffer_dirty(leaf);
2567                         } else {
2568                                 extent_num_bytes =
2569                                         btrfs_file_extent_disk_num_bytes(leaf,
2570                                                                          fi);
2571                                 /* FIXME blocksize != 4096 */
2572                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
2573                                 if (extent_start != 0) {
2574                                         found_extent = 1;
2575                                         if (root->ref_cows)
2576                                                 inode_sub_bytes(inode, num_dec);
2577                                 }
2578                                 root_gen = btrfs_header_generation(leaf);
2579                                 root_owner = btrfs_header_owner(leaf);
2580                         }
2581                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
2582                         /*
2583                          * we can't truncate inline items that have had
2584                          * special encodings
2585                          */
2586                         if (!del_item &&
2587                             btrfs_file_extent_compression(leaf, fi) == 0 &&
2588                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
2589                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
2590                                 u32 size = new_size - found_key.offset;
2591
2592                                 if (root->ref_cows) {
2593                                         inode_sub_bytes(inode, item_end + 1 -
2594                                                         new_size);
2595                                 }
2596                                 size =
2597                                     btrfs_file_extent_calc_inline_size(size);
2598                                 ret = btrfs_truncate_item(trans, root, path,
2599                                                           size, 1);
2600                                 BUG_ON(ret);
2601                         } else if (root->ref_cows) {
2602                                 inode_sub_bytes(inode, item_end + 1 -
2603                                                 found_key.offset);
2604                         }
2605                 }
2606 delete:
2607                 if (del_item) {
2608                         if (!pending_del_nr) {
2609                                 /* no pending yet, add ourselves */
2610                                 pending_del_slot = path->slots[0];
2611                                 pending_del_nr = 1;
2612                         } else if (pending_del_nr &&
2613                                    path->slots[0] + 1 == pending_del_slot) {
2614                                 /* hop on the pending chunk */
2615                                 pending_del_nr++;
2616                                 pending_del_slot = path->slots[0];
2617                         } else {
2618                                 printk("bad pending slot %d pending_del_nr %d pending_del_slot %d\n", path->slots[0], pending_del_nr, pending_del_slot);
2619                         }
2620                 } else {
2621                         break;
2622                 }
2623                 if (found_extent) {
2624                         ret = btrfs_free_extent(trans, root, extent_start,
2625                                                 extent_num_bytes,
2626                                                 leaf->start, root_owner,
2627                                                 root_gen, inode->i_ino, 0);
2628                         BUG_ON(ret);
2629                 }
2630 next:
2631                 if (path->slots[0] == 0) {
2632                         if (pending_del_nr)
2633                                 goto del_pending;
2634                         btrfs_release_path(root, path);
2635                         goto search_again;
2636                 }
2637
2638                 path->slots[0]--;
2639                 if (pending_del_nr &&
2640                     path->slots[0] + 1 != pending_del_slot) {
2641                         struct btrfs_key debug;
2642 del_pending:
2643                         btrfs_item_key_to_cpu(path->nodes[0], &debug,
2644                                               pending_del_slot);
2645                         ret = btrfs_del_items(trans, root, path,
2646                                               pending_del_slot,
2647                                               pending_del_nr);
2648                         BUG_ON(ret);
2649                         pending_del_nr = 0;
2650                         btrfs_release_path(root, path);
2651                         goto search_again;
2652                 }
2653         }
2654         ret = 0;
2655 error:
2656         if (pending_del_nr) {
2657                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
2658                                       pending_del_nr);
2659         }
2660         btrfs_free_path(path);
2661         inode->i_sb->s_dirt = 1;
2662         return ret;
2663 }
2664
2665 /*
2666  * taken from block_truncate_page, but does cow as it zeros out
2667  * any bytes left in the last page in the file.
2668  */
2669 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
2670 {
2671         struct inode *inode = mapping->host;
2672         struct btrfs_root *root = BTRFS_I(inode)->root;
2673         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2674         struct btrfs_ordered_extent *ordered;
2675         char *kaddr;
2676         u32 blocksize = root->sectorsize;
2677         pgoff_t index = from >> PAGE_CACHE_SHIFT;
2678         unsigned offset = from & (PAGE_CACHE_SIZE-1);
2679         struct page *page;
2680         int ret = 0;
2681         u64 page_start;
2682         u64 page_end;
2683
2684         if ((offset & (blocksize - 1)) == 0)
2685                 goto out;
2686
2687         ret = -ENOMEM;
2688 again:
2689         page = grab_cache_page(mapping, index);
2690         if (!page)
2691                 goto out;
2692
2693         page_start = page_offset(page);
2694         page_end = page_start + PAGE_CACHE_SIZE - 1;
2695
2696         if (!PageUptodate(page)) {
2697                 ret = btrfs_readpage(NULL, page);
2698                 lock_page(page);
2699                 if (page->mapping != mapping) {
2700                         unlock_page(page);
2701                         page_cache_release(page);
2702                         goto again;
2703                 }
2704                 if (!PageUptodate(page)) {
2705                         ret = -EIO;
2706                         goto out_unlock;
2707                 }
2708         }
2709         wait_on_page_writeback(page);
2710
2711         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
2712         set_page_extent_mapped(page);
2713
2714         ordered = btrfs_lookup_ordered_extent(inode, page_start);
2715         if (ordered) {
2716                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2717                 unlock_page(page);
2718                 page_cache_release(page);
2719                 btrfs_start_ordered_extent(inode, ordered, 1);
2720                 btrfs_put_ordered_extent(ordered);
2721                 goto again;
2722         }
2723
2724         btrfs_set_extent_delalloc(inode, page_start, page_end);
2725         ret = 0;
2726         if (offset != PAGE_CACHE_SIZE) {
2727                 kaddr = kmap(page);
2728                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2729                 flush_dcache_page(page);
2730                 kunmap(page);
2731         }
2732         ClearPageChecked(page);
2733         set_page_dirty(page);
2734         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
2735
2736 out_unlock:
2737         unlock_page(page);
2738         page_cache_release(page);
2739 out:
2740         return ret;
2741 }
2742
2743 int btrfs_cont_expand(struct inode *inode, loff_t size)
2744 {
2745         struct btrfs_trans_handle *trans;
2746         struct btrfs_root *root = BTRFS_I(inode)->root;
2747         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2748         struct extent_map *em;
2749         u64 mask = root->sectorsize - 1;
2750         u64 hole_start = (inode->i_size + mask) & ~mask;
2751         u64 block_end = (size + mask) & ~mask;
2752         u64 last_byte;
2753         u64 cur_offset;
2754         u64 hole_size;
2755         int err;
2756
2757         if (size <= hole_start)
2758                 return 0;
2759
2760         err = btrfs_check_free_space(root, 1, 0);
2761         if (err)
2762                 return err;
2763
2764         btrfs_truncate_page(inode->i_mapping, inode->i_size);
2765
2766         while (1) {
2767                 struct btrfs_ordered_extent *ordered;
2768                 btrfs_wait_ordered_range(inode, hole_start,
2769                                          block_end - hole_start);
2770                 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2771                 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
2772                 if (!ordered)
2773                         break;
2774                 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2775                 btrfs_put_ordered_extent(ordered);
2776         }
2777
2778         trans = btrfs_start_transaction(root, 1);
2779         btrfs_set_trans_block_group(trans, inode);
2780
2781         cur_offset = hole_start;
2782         while (1) {
2783                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2784                                 block_end - cur_offset, 0);
2785                 BUG_ON(IS_ERR(em) || !em);
2786                 last_byte = min(extent_map_end(em), block_end);
2787                 last_byte = (last_byte + mask) & ~mask;
2788                 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
2789                         u64 hint_byte = 0;
2790                         hole_size = last_byte - cur_offset;
2791                         err = btrfs_drop_extents(trans, root, inode,
2792                                                  cur_offset,
2793                                                  cur_offset + hole_size,
2794                                                  cur_offset, &hint_byte);
2795                         if (err)
2796                                 break;
2797                         err = btrfs_insert_file_extent(trans, root,
2798                                         inode->i_ino, cur_offset, 0,
2799                                         0, hole_size, 0, hole_size,
2800                                         0, 0, 0);
2801                         btrfs_drop_extent_cache(inode, hole_start,
2802                                         last_byte - 1, 0);
2803                 }
2804                 free_extent_map(em);
2805                 cur_offset = last_byte;
2806                 if (err || cur_offset >= block_end)
2807                         break;
2808         }
2809
2810         btrfs_end_transaction(trans, root);
2811         unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
2812         return err;
2813 }
2814
2815 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
2816 {
2817         struct inode *inode = dentry->d_inode;
2818         int err;
2819
2820         err = inode_change_ok(inode, attr);
2821         if (err)
2822                 return err;
2823
2824         if (S_ISREG(inode->i_mode) &&
2825             attr->ia_valid & ATTR_SIZE && attr->ia_size > inode->i_size) {
2826                 err = btrfs_cont_expand(inode, attr->ia_size);
2827                 if (err)
2828                         return err;
2829         }
2830
2831         err = inode_setattr(inode, attr);
2832
2833         if (!err && ((attr->ia_valid & ATTR_MODE)))
2834                 err = btrfs_acl_chmod(inode);
2835         return err;
2836 }
2837
2838 void btrfs_delete_inode(struct inode *inode)
2839 {
2840         struct btrfs_trans_handle *trans;
2841         struct btrfs_root *root = BTRFS_I(inode)->root;
2842         unsigned long nr;
2843         int ret;
2844
2845         truncate_inode_pages(&inode->i_data, 0);
2846         if (is_bad_inode(inode)) {
2847                 btrfs_orphan_del(NULL, inode);
2848                 goto no_delete;
2849         }
2850         btrfs_wait_ordered_range(inode, 0, (u64)-1);
2851
2852         btrfs_i_size_write(inode, 0);
2853         trans = btrfs_start_transaction(root, 1);
2854
2855         btrfs_set_trans_block_group(trans, inode);
2856         ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
2857         if (ret) {
2858                 btrfs_orphan_del(NULL, inode);
2859                 goto no_delete_lock;
2860         }
2861
2862         btrfs_orphan_del(trans, inode);
2863
2864         nr = trans->blocks_used;
2865         clear_inode(inode);
2866
2867         btrfs_end_transaction(trans, root);
2868         btrfs_btree_balance_dirty(root, nr);
2869         return;
2870
2871 no_delete_lock:
2872         nr = trans->blocks_used;
2873         btrfs_end_transaction(trans, root);
2874         btrfs_btree_balance_dirty(root, nr);
2875 no_delete:
2876         clear_inode(inode);
2877 }
2878
2879 /*
2880  * this returns the key found in the dir entry in the location pointer.
2881  * If no dir entries were found, location->objectid is 0.
2882  */
2883 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
2884                                struct btrfs_key *location)
2885 {
2886         const char *name = dentry->d_name.name;
2887         int namelen = dentry->d_name.len;
2888         struct btrfs_dir_item *di;
2889         struct btrfs_path *path;
2890         struct btrfs_root *root = BTRFS_I(dir)->root;
2891         int ret = 0;
2892
2893         path = btrfs_alloc_path();
2894         BUG_ON(!path);
2895
2896         di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
2897                                     namelen, 0);
2898         if (IS_ERR(di))
2899                 ret = PTR_ERR(di);
2900         if (!di || IS_ERR(di)) {
2901                 goto out_err;
2902         }
2903         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
2904 out:
2905         btrfs_free_path(path);
2906         return ret;
2907 out_err:
2908         location->objectid = 0;
2909         goto out;
2910 }
2911
2912 /*
2913  * when we hit a tree root in a directory, the btrfs part of the inode
2914  * needs to be changed to reflect the root directory of the tree root.  This
2915  * is kind of like crossing a mount point.
2916  */
2917 static int fixup_tree_root_location(struct btrfs_root *root,
2918                              struct btrfs_key *location,
2919                              struct btrfs_root **sub_root,
2920                              struct dentry *dentry)
2921 {
2922         struct btrfs_root_item *ri;
2923
2924         if (btrfs_key_type(location) != BTRFS_ROOT_ITEM_KEY)
2925                 return 0;
2926         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
2927                 return 0;
2928
2929         *sub_root = btrfs_read_fs_root(root->fs_info, location,
2930                                         dentry->d_name.name,
2931                                         dentry->d_name.len);
2932         if (IS_ERR(*sub_root))
2933                 return PTR_ERR(*sub_root);
2934
2935         ri = &(*sub_root)->root_item;
2936         location->objectid = btrfs_root_dirid(ri);
2937         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
2938         location->offset = 0;
2939
2940         return 0;
2941 }
2942
2943 static noinline void init_btrfs_i(struct inode *inode)
2944 {
2945         struct btrfs_inode *bi = BTRFS_I(inode);
2946
2947         bi->i_acl = NULL;
2948         bi->i_default_acl = NULL;
2949
2950         bi->generation = 0;
2951         bi->last_trans = 0;
2952         bi->logged_trans = 0;
2953         bi->delalloc_bytes = 0;
2954         bi->disk_i_size = 0;
2955         bi->flags = 0;
2956         bi->index_cnt = (u64)-1;
2957         bi->log_dirty_trans = 0;
2958         extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
2959         extent_io_tree_init(&BTRFS_I(inode)->io_tree,
2960                              inode->i_mapping, GFP_NOFS);
2961         extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
2962                              inode->i_mapping, GFP_NOFS);
2963         INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
2964         btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
2965         mutex_init(&BTRFS_I(inode)->csum_mutex);
2966         mutex_init(&BTRFS_I(inode)->extent_mutex);
2967         mutex_init(&BTRFS_I(inode)->log_mutex);
2968 }
2969
2970 static int btrfs_init_locked_inode(struct inode *inode, void *p)
2971 {
2972         struct btrfs_iget_args *args = p;
2973         inode->i_ino = args->ino;
2974         init_btrfs_i(inode);
2975         BTRFS_I(inode)->root = args->root;
2976         return 0;
2977 }
2978
2979 static int btrfs_find_actor(struct inode *inode, void *opaque)
2980 {
2981         struct btrfs_iget_args *args = opaque;
2982         return (args->ino == inode->i_ino &&
2983                 args->root == BTRFS_I(inode)->root);
2984 }
2985
2986 struct inode *btrfs_ilookup(struct super_block *s, u64 objectid,
2987                             struct btrfs_root *root, int wait)
2988 {
2989         struct inode *inode;
2990         struct btrfs_iget_args args;
2991         args.ino = objectid;
2992         args.root = root;
2993
2994         if (wait) {
2995                 inode = ilookup5(s, objectid, btrfs_find_actor,
2996                                  (void *)&args);
2997         } else {
2998                 inode = ilookup5_nowait(s, objectid, btrfs_find_actor,
2999                                         (void *)&args);
3000         }
3001         return inode;
3002 }
3003
3004 struct inode *btrfs_iget_locked(struct super_block *s, u64 objectid,
3005                                 struct btrfs_root *root)
3006 {
3007         struct inode *inode;
3008         struct btrfs_iget_args args;
3009         args.ino = objectid;
3010         args.root = root;
3011
3012         inode = iget5_locked(s, objectid, btrfs_find_actor,
3013                              btrfs_init_locked_inode,
3014                              (void *)&args);
3015         return inode;
3016 }
3017
3018 /* Get an inode object given its location and corresponding root.
3019  * Returns in *is_new if the inode was read from disk
3020  */
3021 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3022                          struct btrfs_root *root, int *is_new)
3023 {
3024         struct inode *inode;
3025
3026         inode = btrfs_iget_locked(s, location->objectid, root);
3027         if (!inode)
3028                 return ERR_PTR(-EACCES);
3029
3030         if (inode->i_state & I_NEW) {
3031                 BTRFS_I(inode)->root = root;
3032                 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3033                 btrfs_read_locked_inode(inode);
3034                 unlock_new_inode(inode);
3035                 if (is_new)
3036                         *is_new = 1;
3037         } else {
3038                 if (is_new)
3039                         *is_new = 0;
3040         }
3041
3042         return inode;
3043 }
3044
3045 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3046                                    struct nameidata *nd)
3047 {
3048         struct inode * inode;
3049         struct btrfs_inode *bi = BTRFS_I(dir);
3050         struct btrfs_root *root = bi->root;
3051         struct btrfs_root *sub_root = root;
3052         struct btrfs_key location;
3053         int ret, new, do_orphan = 0;
3054
3055         if (dentry->d_name.len > BTRFS_NAME_LEN)
3056                 return ERR_PTR(-ENAMETOOLONG);
3057
3058         ret = btrfs_inode_by_name(dir, dentry, &location);
3059
3060         if (ret < 0)
3061                 return ERR_PTR(ret);
3062
3063         inode = NULL;
3064         if (location.objectid) {
3065                 ret = fixup_tree_root_location(root, &location, &sub_root,
3066                                                 dentry);
3067                 if (ret < 0)
3068                         return ERR_PTR(ret);
3069                 if (ret > 0)
3070                         return ERR_PTR(-ENOENT);
3071                 inode = btrfs_iget(dir->i_sb, &location, sub_root, &new);
3072                 if (IS_ERR(inode))
3073                         return ERR_CAST(inode);
3074
3075                 /* the inode and parent dir are two different roots */
3076                 if (new && root != sub_root) {
3077                         igrab(inode);
3078                         sub_root->inode = inode;
3079                         do_orphan = 1;
3080                 }
3081         }
3082
3083         if (unlikely(do_orphan))
3084                 btrfs_orphan_cleanup(sub_root);
3085
3086         return d_splice_alias(inode, dentry);
3087 }
3088
3089 static unsigned char btrfs_filetype_table[] = {
3090         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3091 };
3092
3093 static int btrfs_real_readdir(struct file *filp, void *dirent,
3094                               filldir_t filldir)
3095 {
3096         struct inode *inode = filp->f_dentry->d_inode;
3097         struct btrfs_root *root = BTRFS_I(inode)->root;
3098         struct btrfs_item *item;
3099         struct btrfs_dir_item *di;
3100         struct btrfs_key key;
3101         struct btrfs_key found_key;
3102         struct btrfs_path *path;
3103         int ret;
3104         u32 nritems;
3105         struct extent_buffer *leaf;
3106         int slot;
3107         int advance;
3108         unsigned char d_type;
3109         int over = 0;
3110         u32 di_cur;
3111         u32 di_total;
3112         u32 di_len;
3113         int key_type = BTRFS_DIR_INDEX_KEY;
3114         char tmp_name[32];
3115         char *name_ptr;
3116         int name_len;
3117
3118         /* FIXME, use a real flag for deciding about the key type */
3119         if (root->fs_info->tree_root == root)
3120                 key_type = BTRFS_DIR_ITEM_KEY;
3121
3122         /* special case for "." */
3123         if (filp->f_pos == 0) {
3124                 over = filldir(dirent, ".", 1,
3125                                1, inode->i_ino,
3126                                DT_DIR);
3127                 if (over)
3128                         return 0;
3129                 filp->f_pos = 1;
3130         }
3131         /* special case for .., just use the back ref */
3132         if (filp->f_pos == 1) {
3133                 u64 pino = parent_ino(filp->f_path.dentry);
3134                 over = filldir(dirent, "..", 2,
3135                                2, pino, DT_DIR);
3136                 if (over)
3137                         return 0;
3138                 filp->f_pos = 2;
3139         }
3140
3141         path = btrfs_alloc_path();
3142         path->reada = 2;
3143
3144         btrfs_set_key_type(&key, key_type);
3145         key.offset = filp->f_pos;
3146         key.objectid = inode->i_ino;
3147
3148         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3149         if (ret < 0)
3150                 goto err;
3151         advance = 0;
3152
3153         while (1) {
3154                 leaf = path->nodes[0];
3155                 nritems = btrfs_header_nritems(leaf);
3156                 slot = path->slots[0];
3157                 if (advance || slot >= nritems) {
3158                         if (slot >= nritems - 1) {
3159                                 ret = btrfs_next_leaf(root, path);
3160                                 if (ret)
3161                                         break;
3162                                 leaf = path->nodes[0];
3163                                 nritems = btrfs_header_nritems(leaf);
3164                                 slot = path->slots[0];
3165                         } else {
3166                                 slot++;
3167                                 path->slots[0]++;
3168                         }
3169                 }
3170                 advance = 1;
3171                 item = btrfs_item_nr(leaf, slot);
3172                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3173
3174                 if (found_key.objectid != key.objectid)
3175                         break;
3176                 if (btrfs_key_type(&found_key) != key_type)
3177                         break;
3178                 if (found_key.offset < filp->f_pos)
3179                         continue;
3180
3181                 filp->f_pos = found_key.offset;
3182
3183                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3184                 di_cur = 0;
3185                 di_total = btrfs_item_size(leaf, item);
3186
3187                 while (di_cur < di_total) {
3188                         struct btrfs_key location;
3189
3190                         name_len = btrfs_dir_name_len(leaf, di);
3191                         if (name_len <= sizeof(tmp_name)) {
3192                                 name_ptr = tmp_name;
3193                         } else {
3194                                 name_ptr = kmalloc(name_len, GFP_NOFS);
3195                                 if (!name_ptr) {
3196                                         ret = -ENOMEM;
3197                                         goto err;
3198                                 }
3199                         }
3200                         read_extent_buffer(leaf, name_ptr,
3201                                            (unsigned long)(di + 1), name_len);
3202
3203                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3204                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
3205                         over = filldir(dirent, name_ptr, name_len,
3206                                        found_key.offset, location.objectid,
3207                                        d_type);
3208
3209                         if (name_ptr != tmp_name)
3210                                 kfree(name_ptr);
3211
3212                         if (over)
3213                                 goto nopos;
3214
3215                         di_len = btrfs_dir_name_len(leaf, di) +
3216                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
3217                         di_cur += di_len;
3218                         di = (struct btrfs_dir_item *)((char *)di + di_len);
3219                 }
3220         }
3221
3222         /* Reached end of directory/root. Bump pos past the last item. */
3223         if (key_type == BTRFS_DIR_INDEX_KEY)
3224                 filp->f_pos = INT_LIMIT(typeof(filp->f_pos));
3225         else
3226                 filp->f_pos++;
3227 nopos:
3228         ret = 0;
3229 err:
3230         btrfs_free_path(path);
3231         return ret;
3232 }
3233
3234 int btrfs_write_inode(struct inode *inode, int wait)
3235 {
3236         struct btrfs_root *root = BTRFS_I(inode)->root;
3237         struct btrfs_trans_handle *trans;
3238         int ret = 0;
3239
3240         if (root->fs_info->closing > 1)
3241                 return 0;
3242
3243         if (wait) {
3244                 trans = btrfs_join_transaction(root, 1);
3245                 btrfs_set_trans_block_group(trans, inode);
3246                 ret = btrfs_commit_transaction(trans, root);
3247         }
3248         return ret;
3249 }
3250
3251 /*
3252  * This is somewhat expensive, updating the tree every time the
3253  * inode changes.  But, it is most likely to find the inode in cache.
3254  * FIXME, needs more benchmarking...there are no reasons other than performance
3255  * to keep or drop this code.
3256  */
3257 void btrfs_dirty_inode(struct inode *inode)
3258 {
3259         struct btrfs_root *root = BTRFS_I(inode)->root;
3260         struct btrfs_trans_handle *trans;
3261
3262         trans = btrfs_join_transaction(root, 1);
3263         btrfs_set_trans_block_group(trans, inode);
3264         btrfs_update_inode(trans, root, inode);
3265         btrfs_end_transaction(trans, root);
3266 }
3267
3268 /*
3269  * find the highest existing sequence number in a directory
3270  * and then set the in-memory index_cnt variable to reflect
3271  * free sequence numbers
3272  */
3273 static int btrfs_set_inode_index_count(struct inode *inode)
3274 {
3275         struct btrfs_root *root = BTRFS_I(inode)->root;
3276         struct btrfs_key key, found_key;
3277         struct btrfs_path *path;
3278         struct extent_buffer *leaf;
3279         int ret;
3280
3281         key.objectid = inode->i_ino;
3282         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3283         key.offset = (u64)-1;
3284
3285         path = btrfs_alloc_path();
3286         if (!path)
3287                 return -ENOMEM;
3288
3289         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3290         if (ret < 0)
3291                 goto out;
3292         /* FIXME: we should be able to handle this */
3293         if (ret == 0)
3294                 goto out;
3295         ret = 0;
3296
3297         /*
3298          * MAGIC NUMBER EXPLANATION:
3299          * since we search a directory based on f_pos we have to start at 2
3300          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3301          * else has to start at 2
3302          */
3303         if (path->slots[0] == 0) {
3304                 BTRFS_I(inode)->index_cnt = 2;
3305                 goto out;
3306         }
3307
3308         path->slots[0]--;
3309
3310         leaf = path->nodes[0];
3311         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3312
3313         if (found_key.objectid != inode->i_ino ||
3314             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
3315                 BTRFS_I(inode)->index_cnt = 2;
3316                 goto out;
3317         }
3318
3319         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
3320 out:
3321         btrfs_free_path(path);
3322         return ret;
3323 }
3324
3325 /*
3326  * helper to find a free sequence number in a given directory.  This current
3327  * code is very simple, later versions will do smarter things in the btree
3328  */
3329 static int btrfs_set_inode_index(struct inode *dir, struct inode *inode,
3330                                  u64 *index)
3331 {
3332         int ret = 0;
3333
3334         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
3335                 ret = btrfs_set_inode_index_count(dir);
3336                 if (ret) {
3337                         return ret;
3338                 }
3339         }
3340
3341         *index = BTRFS_I(dir)->index_cnt;
3342         BTRFS_I(dir)->index_cnt++;
3343
3344         return ret;
3345 }
3346
3347 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
3348                                      struct btrfs_root *root,
3349                                      struct inode *dir,
3350                                      const char *name, int name_len,
3351                                      u64 ref_objectid,
3352                                      u64 objectid,
3353                                      struct btrfs_block_group_cache *group,
3354                                      int mode, u64 *index)
3355 {
3356         struct inode *inode;
3357         struct btrfs_inode_item *inode_item;
3358         struct btrfs_block_group_cache *new_inode_group;
3359         struct btrfs_key *location;
3360         struct btrfs_path *path;
3361         struct btrfs_inode_ref *ref;
3362         struct btrfs_key key[2];
3363         u32 sizes[2];
3364         unsigned long ptr;
3365         int ret;
3366         int owner;
3367
3368         path = btrfs_alloc_path();
3369         BUG_ON(!path);
3370
3371         inode = new_inode(root->fs_info->sb);
3372         if (!inode)
3373                 return ERR_PTR(-ENOMEM);
3374
3375         if (dir) {
3376                 ret = btrfs_set_inode_index(dir, inode, index);
3377                 if (ret)
3378                         return ERR_PTR(ret);
3379         }
3380         /*
3381          * index_cnt is ignored for everything but a dir,
3382          * btrfs_get_inode_index_count has an explanation for the magic
3383          * number
3384          */
3385         init_btrfs_i(inode);
3386         BTRFS_I(inode)->index_cnt = 2;
3387         BTRFS_I(inode)->root = root;
3388         BTRFS_I(inode)->generation = trans->transid;
3389
3390         if (mode & S_IFDIR)
3391                 owner = 0;
3392         else
3393                 owner = 1;
3394         new_inode_group = btrfs_find_block_group(root, group, 0,
3395                                        BTRFS_BLOCK_GROUP_METADATA, owner);
3396         if (!new_inode_group) {
3397                 printk("find_block group failed\n");
3398                 new_inode_group = group;
3399         }
3400         BTRFS_I(inode)->block_group = new_inode_group;
3401
3402         key[0].objectid = objectid;
3403         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
3404         key[0].offset = 0;
3405
3406         key[1].objectid = objectid;
3407         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
3408         key[1].offset = ref_objectid;
3409
3410         sizes[0] = sizeof(struct btrfs_inode_item);
3411         sizes[1] = name_len + sizeof(*ref);
3412
3413         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
3414         if (ret != 0)
3415                 goto fail;
3416
3417         if (objectid > root->highest_inode)
3418                 root->highest_inode = objectid;
3419
3420         inode->i_uid = current->fsuid;
3421         inode->i_gid = current->fsgid;
3422         inode->i_mode = mode;
3423         inode->i_ino = objectid;
3424         inode_set_bytes(inode, 0);
3425         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3426         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3427                                   struct btrfs_inode_item);
3428         fill_inode_item(trans, path->nodes[0], inode_item, inode);
3429
3430         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
3431                              struct btrfs_inode_ref);
3432         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
3433         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
3434         ptr = (unsigned long)(ref + 1);
3435         write_extent_buffer(path->nodes[0], name, ptr, name_len);
3436
3437         btrfs_mark_buffer_dirty(path->nodes[0]);
3438         btrfs_free_path(path);
3439
3440         location = &BTRFS_I(inode)->location;
3441         location->objectid = objectid;
3442         location->offset = 0;
3443         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
3444
3445         insert_inode_hash(inode);
3446         return inode;
3447 fail:
3448         if (dir)
3449                 BTRFS_I(dir)->index_cnt--;
3450         btrfs_free_path(path);
3451         return ERR_PTR(ret);
3452 }
3453
3454 static inline u8 btrfs_inode_type(struct inode *inode)
3455 {
3456         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
3457 }
3458
3459 /*
3460  * utility function to add 'inode' into 'parent_inode' with
3461  * a give name and a given sequence number.
3462  * if 'add_backref' is true, also insert a backref from the
3463  * inode to the parent directory.
3464  */
3465 int btrfs_add_link(struct btrfs_trans_handle *trans,
3466                    struct inode *parent_inode, struct inode *inode,
3467                    const char *name, int name_len, int add_backref, u64 index)
3468 {
3469         int ret;
3470         struct btrfs_key key;
3471         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
3472
3473         key.objectid = inode->i_ino;
3474         btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
3475         key.offset = 0;
3476
3477         ret = btrfs_insert_dir_item(trans, root, name, name_len,
3478                                     parent_inode->i_ino,
3479                                     &key, btrfs_inode_type(inode),
3480                                     index);
3481         if (ret == 0) {
3482                 if (add_backref) {
3483                         ret = btrfs_insert_inode_ref(trans, root,
3484                                                      name, name_len,
3485                                                      inode->i_ino,
3486                                                      parent_inode->i_ino,
3487                                                      index);
3488                 }
3489                 btrfs_i_size_write(parent_inode, parent_inode->i_size +
3490                                    name_len * 2);
3491                 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
3492                 ret = btrfs_update_inode(trans, root, parent_inode);
3493         }
3494         return ret;
3495 }
3496
3497 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
3498                             struct dentry *dentry, struct inode *inode,
3499                             int backref, u64 index)
3500 {
3501         int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3502                                  inode, dentry->d_name.name,
3503                                  dentry->d_name.len, backref, index);
3504         if (!err) {
3505                 d_instantiate(dentry, inode);
3506                 return 0;
3507         }
3508         if (err > 0)
3509                 err = -EEXIST;
3510         return err;
3511 }
3512
3513 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
3514                         int mode, dev_t rdev)
3515 {
3516         struct btrfs_trans_handle *trans;
3517         struct btrfs_root *root = BTRFS_I(dir)->root;
3518         struct inode *inode = NULL;
3519         int err;
3520         int drop_inode = 0;
3521         u64 objectid;
3522         unsigned long nr = 0;
3523         u64 index = 0;
3524
3525         if (!new_valid_dev(rdev))
3526                 return -EINVAL;
3527
3528         err = btrfs_check_free_space(root, 1, 0);
3529         if (err)
3530                 goto fail;
3531
3532         trans = btrfs_start_transaction(root, 1);
3533         btrfs_set_trans_block_group(trans, dir);
3534
3535         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3536         if (err) {
3537                 err = -ENOSPC;
3538                 goto out_unlock;
3539         }
3540
3541         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3542                                 dentry->d_name.len,
3543                                 dentry->d_parent->d_inode->i_ino, objectid,
3544                                 BTRFS_I(dir)->block_group, mode, &index);
3545         err = PTR_ERR(inode);
3546         if (IS_ERR(inode))
3547                 goto out_unlock;
3548
3549         err = btrfs_init_acl(inode, dir);
3550         if (err) {
3551                 drop_inode = 1;
3552                 goto out_unlock;
3553         }
3554
3555         btrfs_set_trans_block_group(trans, inode);
3556         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3557         if (err)
3558                 drop_inode = 1;
3559         else {
3560                 inode->i_op = &btrfs_special_inode_operations;
3561                 init_special_inode(inode, inode->i_mode, rdev);
3562                 btrfs_update_inode(trans, root, inode);
3563         }
3564         dir->i_sb->s_dirt = 1;
3565         btrfs_update_inode_block_group(trans, inode);
3566         btrfs_update_inode_block_group(trans, dir);
3567 out_unlock:
3568         nr = trans->blocks_used;
3569         btrfs_end_transaction_throttle(trans, root);
3570 fail:
3571         if (drop_inode) {
3572                 inode_dec_link_count(inode);
3573                 iput(inode);
3574         }
3575         btrfs_btree_balance_dirty(root, nr);
3576         return err;
3577 }
3578
3579 static int btrfs_create(struct inode *dir, struct dentry *dentry,
3580                         int mode, struct nameidata *nd)
3581 {
3582         struct btrfs_trans_handle *trans;
3583         struct btrfs_root *root = BTRFS_I(dir)->root;
3584         struct inode *inode = NULL;
3585         int err;
3586         int drop_inode = 0;
3587         unsigned long nr = 0;
3588         u64 objectid;
3589         u64 index = 0;
3590
3591         err = btrfs_check_free_space(root, 1, 0);
3592         if (err)
3593                 goto fail;
3594         trans = btrfs_start_transaction(root, 1);
3595         btrfs_set_trans_block_group(trans, dir);
3596
3597         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3598         if (err) {
3599                 err = -ENOSPC;
3600                 goto out_unlock;
3601         }
3602
3603         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3604                                 dentry->d_name.len,
3605                                 dentry->d_parent->d_inode->i_ino,
3606                                 objectid, BTRFS_I(dir)->block_group, mode,
3607                                 &index);
3608         err = PTR_ERR(inode);
3609         if (IS_ERR(inode))
3610                 goto out_unlock;
3611
3612         err = btrfs_init_acl(inode, dir);
3613         if (err) {
3614                 drop_inode = 1;
3615                 goto out_unlock;
3616         }
3617
3618         btrfs_set_trans_block_group(trans, inode);
3619         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
3620         if (err)
3621                 drop_inode = 1;
3622         else {
3623                 inode->i_mapping->a_ops = &btrfs_aops;
3624                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3625                 inode->i_fop = &btrfs_file_operations;
3626                 inode->i_op = &btrfs_file_inode_operations;
3627                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3628         }
3629         dir->i_sb->s_dirt = 1;
3630         btrfs_update_inode_block_group(trans, inode);
3631         btrfs_update_inode_block_group(trans, dir);
3632 out_unlock:
3633         nr = trans->blocks_used;
3634         btrfs_end_transaction_throttle(trans, root);
3635 fail:
3636         if (drop_inode) {
3637                 inode_dec_link_count(inode);
3638                 iput(inode);
3639         }
3640         btrfs_btree_balance_dirty(root, nr);
3641         return err;
3642 }
3643
3644 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
3645                       struct dentry *dentry)
3646 {
3647         struct btrfs_trans_handle *trans;
3648         struct btrfs_root *root = BTRFS_I(dir)->root;
3649         struct inode *inode = old_dentry->d_inode;
3650         u64 index;
3651         unsigned long nr = 0;
3652         int err;
3653         int drop_inode = 0;
3654
3655         if (inode->i_nlink == 0)
3656                 return -ENOENT;
3657
3658         btrfs_inc_nlink(inode);
3659         err = btrfs_check_free_space(root, 1, 0);
3660         if (err)
3661                 goto fail;
3662         err = btrfs_set_inode_index(dir, inode, &index);
3663         if (err)
3664                 goto fail;
3665
3666         trans = btrfs_start_transaction(root, 1);
3667
3668         btrfs_set_trans_block_group(trans, dir);
3669         atomic_inc(&inode->i_count);
3670
3671         err = btrfs_add_nondir(trans, dentry, inode, 1, index);
3672
3673         if (err)
3674                 drop_inode = 1;
3675
3676         dir->i_sb->s_dirt = 1;
3677         btrfs_update_inode_block_group(trans, dir);
3678         err = btrfs_update_inode(trans, root, inode);
3679
3680         if (err)
3681                 drop_inode = 1;
3682
3683         nr = trans->blocks_used;
3684         btrfs_end_transaction_throttle(trans, root);
3685 fail:
3686         if (drop_inode) {
3687                 inode_dec_link_count(inode);
3688                 iput(inode);
3689         }
3690         btrfs_btree_balance_dirty(root, nr);
3691         return err;
3692 }
3693
3694 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3695 {
3696         struct inode *inode = NULL;
3697         struct btrfs_trans_handle *trans;
3698         struct btrfs_root *root = BTRFS_I(dir)->root;
3699         int err = 0;
3700         int drop_on_err = 0;
3701         u64 objectid = 0;
3702         u64 index = 0;
3703         unsigned long nr = 1;
3704
3705         err = btrfs_check_free_space(root, 1, 0);
3706         if (err)
3707                 goto out_unlock;
3708
3709         trans = btrfs_start_transaction(root, 1);
3710         btrfs_set_trans_block_group(trans, dir);
3711
3712         if (IS_ERR(trans)) {
3713                 err = PTR_ERR(trans);
3714                 goto out_unlock;
3715         }
3716
3717         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
3718         if (err) {
3719                 err = -ENOSPC;
3720                 goto out_unlock;
3721         }
3722
3723         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
3724                                 dentry->d_name.len,
3725                                 dentry->d_parent->d_inode->i_ino, objectid,
3726                                 BTRFS_I(dir)->block_group, S_IFDIR | mode,
3727                                 &index);
3728         if (IS_ERR(inode)) {
3729                 err = PTR_ERR(inode);
3730                 goto out_fail;
3731         }
3732
3733         drop_on_err = 1;
3734
3735         err = btrfs_init_acl(inode, dir);
3736         if (err)
3737                 goto out_fail;
3738
3739         inode->i_op = &btrfs_dir_inode_operations;
3740         inode->i_fop = &btrfs_dir_file_operations;
3741         btrfs_set_trans_block_group(trans, inode);
3742
3743         btrfs_i_size_write(inode, 0);
3744         err = btrfs_update_inode(trans, root, inode);
3745         if (err)
3746                 goto out_fail;
3747
3748         err = btrfs_add_link(trans, dentry->d_parent->d_inode,
3749                                  inode, dentry->d_name.name,
3750                                  dentry->d_name.len, 0, index);
3751         if (err)
3752                 goto out_fail;
3753
3754         d_instantiate(dentry, inode);
3755         drop_on_err = 0;
3756         dir->i_sb->s_dirt = 1;
3757         btrfs_update_inode_block_group(trans, inode);
3758         btrfs_update_inode_block_group(trans, dir);
3759
3760 out_fail:
3761         nr = trans->blocks_used;
3762         btrfs_end_transaction_throttle(trans, root);
3763
3764 out_unlock:
3765         if (drop_on_err)
3766                 iput(inode);
3767         btrfs_btree_balance_dirty(root, nr);
3768         return err;
3769 }
3770
3771 /* helper for btfs_get_extent.  Given an existing extent in the tree,
3772  * and an extent that you want to insert, deal with overlap and insert
3773  * the new extent into the tree.
3774  */
3775 static int merge_extent_mapping(struct extent_map_tree *em_tree,
3776                                 struct extent_map *existing,
3777                                 struct extent_map *em,
3778                                 u64 map_start, u64 map_len)
3779 {
3780         u64 start_diff;
3781
3782         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
3783         start_diff = map_start - em->start;
3784         em->start = map_start;
3785         em->len = map_len;
3786         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
3787             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3788                 em->block_start += start_diff;
3789                 em->block_len -= start_diff;
3790         }
3791         return add_extent_mapping(em_tree, em);
3792 }
3793
3794 static noinline int uncompress_inline(struct btrfs_path *path,
3795                                       struct inode *inode, struct page *page,
3796                                       size_t pg_offset, u64 extent_offset,
3797                                       struct btrfs_file_extent_item *item)
3798 {
3799         int ret;
3800         struct extent_buffer *leaf = path->nodes[0];
3801         char *tmp;
3802         size_t max_size;
3803         unsigned long inline_size;
3804         unsigned long ptr;
3805
3806         WARN_ON(pg_offset != 0);
3807         max_size = btrfs_file_extent_ram_bytes(leaf, item);
3808         inline_size = btrfs_file_extent_inline_item_len(leaf,
3809                                         btrfs_item_nr(leaf, path->slots[0]));
3810         tmp = kmalloc(inline_size, GFP_NOFS);
3811         ptr = btrfs_file_extent_inline_start(item);
3812
3813         read_extent_buffer(leaf, tmp, ptr, inline_size);
3814
3815         max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
3816         ret = btrfs_zlib_decompress(tmp, page, extent_offset,
3817                                     inline_size, max_size);
3818         if (ret) {
3819                 char *kaddr = kmap_atomic(page, KM_USER0);
3820                 unsigned long copy_size = min_t(u64,
3821                                   PAGE_CACHE_SIZE - pg_offset,
3822                                   max_size - extent_offset);
3823                 memset(kaddr + pg_offset, 0, copy_size);
3824                 kunmap_atomic(kaddr, KM_USER0);
3825         }
3826         kfree(tmp);
3827         return 0;
3828 }
3829
3830 /*
3831  * a bit scary, this does extent mapping from logical file offset to the disk.
3832  * the ugly parts come from merging extents from the disk with the
3833  * in-ram representation.  This gets more complex because of the data=ordered code,
3834  * where the in-ram extents might be locked pending data=ordered completion.
3835  *
3836  * This also copies inline extents directly into the page.
3837  */
3838 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
3839                                     size_t pg_offset, u64 start, u64 len,
3840                                     int create)
3841 {
3842         int ret;
3843         int err = 0;
3844         u64 bytenr;
3845         u64 extent_start = 0;
3846         u64 extent_end = 0;
3847         u64 objectid = inode->i_ino;
3848         u32 found_type;
3849         struct btrfs_path *path = NULL;
3850         struct btrfs_root *root = BTRFS_I(inode)->root;
3851         struct btrfs_file_extent_item *item;
3852         struct extent_buffer *leaf;
3853         struct btrfs_key found_key;
3854         struct extent_map *em = NULL;
3855         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3856         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3857         struct btrfs_trans_handle *trans = NULL;
3858         int compressed;
3859
3860 again:
3861         spin_lock(&em_tree->lock);
3862         em = lookup_extent_mapping(em_tree, start, len);
3863         if (em)
3864                 em->bdev = root->fs_info->fs_devices->latest_bdev;
3865         spin_unlock(&em_tree->lock);
3866
3867         if (em) {
3868                 if (em->start > start || em->start + em->len <= start)
3869                         free_extent_map(em);
3870                 else if (em->block_start == EXTENT_MAP_INLINE && page)
3871                         free_extent_map(em);
3872                 else
3873                         goto out;
3874         }
3875         em = alloc_extent_map(GFP_NOFS);
3876         if (!em) {
3877                 err = -ENOMEM;
3878                 goto out;
3879         }
3880         em->bdev = root->fs_info->fs_devices->latest_bdev;
3881         em->start = EXTENT_MAP_HOLE;
3882         em->orig_start = EXTENT_MAP_HOLE;
3883         em->len = (u64)-1;
3884         em->block_len = (u64)-1;
3885
3886         if (!path) {
3887                 path = btrfs_alloc_path();
3888                 BUG_ON(!path);
3889         }
3890
3891         ret = btrfs_lookup_file_extent(trans, root, path,
3892                                        objectid, start, trans != NULL);
3893         if (ret < 0) {
3894                 err = ret;
3895                 goto out;
3896         }
3897
3898         if (ret != 0) {
3899                 if (path->slots[0] == 0)
3900                         goto not_found;
3901                 path->slots[0]--;
3902         }
3903
3904         leaf = path->nodes[0];
3905         item = btrfs_item_ptr(leaf, path->slots[0],
3906                               struct btrfs_file_extent_item);
3907         /* are we inside the extent that was found? */
3908         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3909         found_type = btrfs_key_type(&found_key);
3910         if (found_key.objectid != objectid ||
3911             found_type != BTRFS_EXTENT_DATA_KEY) {
3912                 goto not_found;
3913         }
3914
3915         found_type = btrfs_file_extent_type(leaf, item);
3916         extent_start = found_key.offset;
3917         compressed = btrfs_file_extent_compression(leaf, item);
3918         if (found_type == BTRFS_FILE_EXTENT_REG ||
3919             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
3920                 extent_end = extent_start +
3921                        btrfs_file_extent_num_bytes(leaf, item);
3922         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
3923                 size_t size;
3924                 size = btrfs_file_extent_inline_len(leaf, item);
3925                 extent_end = (extent_start + size + root->sectorsize - 1) &
3926                         ~((u64)root->sectorsize - 1);
3927         }
3928
3929         if (start >= extent_end) {
3930                 path->slots[0]++;
3931                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3932                         ret = btrfs_next_leaf(root, path);
3933                         if (ret < 0) {
3934                                 err = ret;
3935                                 goto out;
3936                         }
3937                         if (ret > 0)
3938                                 goto not_found;
3939                         leaf = path->nodes[0];
3940                 }
3941                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3942                 if (found_key.objectid != objectid ||
3943                     found_key.type != BTRFS_EXTENT_DATA_KEY)
3944                         goto not_found;
3945                 if (start + len <= found_key.offset)
3946                         goto not_found;
3947                 em->start = start;
3948                 em->len = found_key.offset - start;
3949                 goto not_found_em;
3950         }
3951
3952         if (found_type == BTRFS_FILE_EXTENT_REG ||
3953             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
3954                 em->start = extent_start;
3955                 em->len = extent_end - extent_start;
3956                 em->orig_start = extent_start -
3957                                  btrfs_file_extent_offset(leaf, item);
3958                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
3959                 if (bytenr == 0) {
3960                         em->block_start = EXTENT_MAP_HOLE;
3961                         goto insert;
3962                 }
3963                 if (compressed) {
3964                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3965                         em->block_start = bytenr;
3966                         em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
3967                                                                          item);
3968                 } else {
3969                         bytenr += btrfs_file_extent_offset(leaf, item);
3970                         em->block_start = bytenr;
3971                         em->block_len = em->len;
3972                         if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
3973                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
3974                 }
3975                 goto insert;
3976         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
3977                 unsigned long ptr;
3978                 char *map;
3979                 size_t size;
3980                 size_t extent_offset;
3981                 size_t copy_size;
3982
3983                 em->block_start = EXTENT_MAP_INLINE;
3984                 if (!page || create) {
3985                         em->start = extent_start;
3986                         em->len = extent_end - extent_start;
3987                         goto out;
3988                 }
3989
3990                 size = btrfs_file_extent_inline_len(leaf, item);
3991                 extent_offset = page_offset(page) + pg_offset - extent_start;
3992                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3993                                 size - extent_offset);
3994                 em->start = extent_start + extent_offset;
3995                 em->len = (copy_size + root->sectorsize - 1) &
3996                         ~((u64)root->sectorsize - 1);
3997                 em->orig_start = EXTENT_MAP_INLINE;
3998                 if (compressed)
3999                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4000                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
4001                 if (create == 0 && !PageUptodate(page)) {
4002                         if (btrfs_file_extent_compression(leaf, item) ==
4003                             BTRFS_COMPRESS_ZLIB) {
4004                                 ret = uncompress_inline(path, inode, page,
4005                                                         pg_offset,
4006                                                         extent_offset, item);
4007                                 BUG_ON(ret);
4008                         } else {
4009                                 map = kmap(page);
4010                                 read_extent_buffer(leaf, map + pg_offset, ptr,
4011                                                    copy_size);
4012                                 kunmap(page);
4013                         }
4014                         flush_dcache_page(page);
4015                 } else if (create && PageUptodate(page)) {
4016                         if (!trans) {
4017                                 kunmap(page);
4018                                 free_extent_map(em);
4019                                 em = NULL;
4020                                 btrfs_release_path(root, path);
4021                                 trans = btrfs_join_transaction(root, 1);
4022                                 goto again;
4023                         }
4024                         map = kmap(page);
4025                         write_extent_buffer(leaf, map + pg_offset, ptr,
4026                                             copy_size);
4027                         kunmap(page);
4028                         btrfs_mark_buffer_dirty(leaf);
4029                 }
4030                 set_extent_uptodate(io_tree, em->start,
4031                                     extent_map_end(em) - 1, GFP_NOFS);
4032                 goto insert;
4033         } else {
4034                 printk("unkknown found_type %d\n", found_type);
4035                 WARN_ON(1);
4036         }
4037 not_found:
4038         em->start = start;
4039         em->len = len;
4040 not_found_em:
4041         em->block_start = EXTENT_MAP_HOLE;
4042         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
4043 insert:
4044         btrfs_release_path(root, path);
4045         if (em->start > start || extent_map_end(em) <= start) {
4046                 printk("bad extent! em: [%Lu %Lu] passed [%Lu %Lu]\n", em->start, em->len, start, len);
4047                 err = -EIO;
4048                 goto out;
4049         }
4050
4051         err = 0;
4052         spin_lock(&em_tree->lock);
4053         ret = add_extent_mapping(em_tree, em);
4054         /* it is possible that someone inserted the extent into the tree
4055          * while we had the lock dropped.  It is also possible that
4056          * an overlapping map exists in the tree
4057          */
4058         if (ret == -EEXIST) {
4059                 struct extent_map *existing;
4060
4061                 ret = 0;
4062
4063                 existing = lookup_extent_mapping(em_tree, start, len);
4064                 if (existing && (existing->start > start ||
4065                     existing->start + existing->len <= start)) {
4066                         free_extent_map(existing);
4067                         existing = NULL;
4068                 }
4069                 if (!existing) {
4070                         existing = lookup_extent_mapping(em_tree, em->start,
4071                                                          em->len);
4072                         if (existing) {
4073                                 err = merge_extent_mapping(em_tree, existing,
4074                                                            em, start,
4075                                                            root->sectorsize);
4076                                 free_extent_map(existing);
4077                                 if (err) {
4078                                         free_extent_map(em);
4079                                         em = NULL;
4080                                 }
4081                         } else {
4082                                 err = -EIO;
4083                                 printk("failing to insert %Lu %Lu\n",
4084                                        start, len);
4085                                 free_extent_map(em);
4086                                 em = NULL;
4087                         }
4088                 } else {
4089                         free_extent_map(em);
4090                         em = existing;
4091                         err = 0;
4092                 }
4093         }
4094         spin_unlock(&em_tree->lock);
4095 out:
4096         if (path)
4097                 btrfs_free_path(path);
4098         if (trans) {
4099                 ret = btrfs_end_transaction(trans, root);
4100                 if (!err) {
4101                         err = ret;
4102                 }
4103         }
4104         if (err) {
4105                 free_extent_map(em);
4106                 WARN_ON(1);
4107                 return ERR_PTR(err);
4108         }
4109         return em;
4110 }
4111
4112 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4113                         const struct iovec *iov, loff_t offset,
4114                         unsigned long nr_segs)
4115 {
4116         return -EINVAL;
4117 }
4118
4119 static sector_t btrfs_bmap(struct address_space *mapping, sector_t iblock)
4120 {
4121         return extent_bmap(mapping, iblock, btrfs_get_extent);
4122 }
4123
4124 int btrfs_readpage(struct file *file, struct page *page)
4125 {
4126         struct extent_io_tree *tree;
4127         tree = &BTRFS_I(page->mapping->host)->io_tree;
4128         return extent_read_full_page(tree, page, btrfs_get_extent);
4129 }
4130
4131 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
4132 {
4133         struct extent_io_tree *tree;
4134
4135
4136         if (current->flags & PF_MEMALLOC) {
4137                 redirty_page_for_writepage(wbc, page);
4138                 unlock_page(page);
4139                 return 0;
4140         }
4141         tree = &BTRFS_I(page->mapping->host)->io_tree;
4142         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
4143 }
4144
4145 int btrfs_writepages(struct address_space *mapping,
4146                      struct writeback_control *wbc)
4147 {
4148         struct extent_io_tree *tree;
4149
4150         tree = &BTRFS_I(mapping->host)->io_tree;
4151         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4152 }
4153
4154 static int
4155 btrfs_readpages(struct file *file, struct address_space *mapping,
4156                 struct list_head *pages, unsigned nr_pages)
4157 {
4158         struct extent_io_tree *tree;
4159         tree = &BTRFS_I(mapping->host)->io_tree;
4160         return extent_readpages(tree, mapping, pages, nr_pages,
4161                                 btrfs_get_extent);
4162 }
4163 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4164 {
4165         struct extent_io_tree *tree;
4166         struct extent_map_tree *map;
4167         int ret;
4168
4169         tree = &BTRFS_I(page->mapping->host)->io_tree;
4170         map = &BTRFS_I(page->mapping->host)->extent_tree;
4171         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
4172         if (ret == 1) {
4173                 ClearPagePrivate(page);
4174                 set_page_private(page, 0);
4175                 page_cache_release(page);
4176         }
4177         return ret;
4178 }
4179
4180 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4181 {
4182         if (PageWriteback(page) || PageDirty(page))
4183                 return 0;
4184         return __btrfs_releasepage(page, gfp_flags);
4185 }
4186
4187 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
4188 {
4189         struct extent_io_tree *tree;
4190         struct btrfs_ordered_extent *ordered;
4191         u64 page_start = page_offset(page);
4192         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
4193
4194         wait_on_page_writeback(page);
4195         tree = &BTRFS_I(page->mapping->host)->io_tree;
4196         if (offset) {
4197                 btrfs_releasepage(page, GFP_NOFS);
4198                 return;
4199         }
4200
4201         lock_extent(tree, page_start, page_end, GFP_NOFS);
4202         ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4203                                            page_offset(page));
4204         if (ordered) {
4205                 /*
4206                  * IO on this page will never be started, so we need
4207                  * to account for any ordered extents now
4208                  */
4209                 clear_extent_bit(tree, page_start, page_end,
4210                                  EXTENT_DIRTY | EXTENT_DELALLOC |
4211                                  EXTENT_LOCKED, 1, 0, GFP_NOFS);
4212                 btrfs_finish_ordered_io(page->mapping->host,
4213                                         page_start, page_end);
4214                 btrfs_put_ordered_extent(ordered);
4215                 lock_extent(tree, page_start, page_end, GFP_NOFS);
4216         }
4217         clear_extent_bit(tree, page_start, page_end,
4218                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4219                  EXTENT_ORDERED,
4220                  1, 1, GFP_NOFS);
4221         __btrfs_releasepage(page, GFP_NOFS);
4222
4223         ClearPageChecked(page);
4224         if (PagePrivate(page)) {
4225                 ClearPagePrivate(page);
4226                 set_page_private(page, 0);
4227                 page_cache_release(page);
4228         }
4229 }
4230
4231 /*
4232  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4233  * called from a page fault handler when a page is first dirtied. Hence we must
4234  * be careful to check for EOF conditions here. We set the page up correctly
4235  * for a written page which means we get ENOSPC checking when writing into
4236  * holes and correct delalloc and unwritten extent mapping on filesystems that
4237  * support these features.
4238  *
4239  * We are not allowed to take the i_mutex here so we have to play games to
4240  * protect against truncate races as the page could now be beyond EOF.  Because
4241  * vmtruncate() writes the inode size before removing pages, once we have the
4242  * page lock we can determine safely if the page is beyond EOF. If it is not
4243  * beyond EOF, then the page is guaranteed safe against truncation until we
4244  * unlock the page.
4245  */
4246 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4247 {
4248         struct inode *inode = fdentry(vma->vm_file)->d_inode;
4249         struct btrfs_root *root = BTRFS_I(inode)->root;
4250         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4251         struct btrfs_ordered_extent *ordered;
4252         char *kaddr;
4253         unsigned long zero_start;
4254         loff_t size;
4255         int ret;
4256         u64 page_start;
4257         u64 page_end;
4258
4259         ret = btrfs_check_free_space(root, PAGE_CACHE_SIZE, 0);
4260         if (ret)
4261                 goto out;
4262
4263         ret = -EINVAL;
4264 again:
4265         lock_page(page);
4266         size = i_size_read(inode);
4267         page_start = page_offset(page);
4268         page_end = page_start + PAGE_CACHE_SIZE - 1;
4269
4270         if ((page->mapping != inode->i_mapping) ||
4271             (page_start >= size)) {
4272                 /* page got truncated out from underneath us */
4273                 goto out_unlock;
4274         }
4275         wait_on_page_writeback(page);
4276
4277         lock_extent(io_tree, page_start, page_end, GFP_NOFS);
4278         set_page_extent_mapped(page);
4279
4280         /*
4281          * we can't set the delalloc bits if there are pending ordered
4282          * extents.  Drop our locks and wait for them to finish
4283          */
4284         ordered = btrfs_lookup_ordered_extent(inode, page_start);
4285         if (ordered) {
4286                 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4287                 unlock_page(page);
4288                 btrfs_start_ordered_extent(inode, ordered, 1);
4289                 btrfs_put_ordered_extent(ordered);
4290                 goto again;
4291         }
4292
4293         btrfs_set_extent_delalloc(inode, page_start, page_end);
4294         ret = 0;
4295
4296         /* page is wholly or partially inside EOF */
4297         if (page_start + PAGE_CACHE_SIZE > size)
4298                 zero_start = size & ~PAGE_CACHE_MASK;
4299         else
4300                 zero_start = PAGE_CACHE_SIZE;
4301
4302         if (zero_start != PAGE_CACHE_SIZE) {
4303                 kaddr = kmap(page);
4304                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
4305                 flush_dcache_page(page);
4306                 kunmap(page);
4307         }
4308         ClearPageChecked(page);
4309         set_page_dirty(page);
4310         unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4311
4312 out_unlock:
4313         unlock_page(page);
4314 out:
4315         return ret;
4316 }
4317
4318 static void btrfs_truncate(struct inode *inode)
4319 {
4320         struct btrfs_root *root = BTRFS_I(inode)->root;
4321         int ret;
4322         struct btrfs_trans_handle *trans;
4323         unsigned long nr;
4324         u64 mask = root->sectorsize - 1;
4325
4326         if (!S_ISREG(inode->i_mode))
4327                 return;
4328         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4329                 return;
4330
4331         btrfs_truncate_page(inode->i_mapping, inode->i_size);
4332         btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
4333
4334         trans = btrfs_start_transaction(root, 1);
4335         btrfs_set_trans_block_group(trans, inode);
4336         btrfs_i_size_write(inode, inode->i_size);
4337
4338         ret = btrfs_orphan_add(trans, inode);
4339         if (ret)
4340                 goto out;
4341         /* FIXME, add redo link to tree so we don't leak on crash */
4342         ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
4343                                       BTRFS_EXTENT_DATA_KEY);
4344         btrfs_update_inode(trans, root, inode);
4345
4346         ret = btrfs_orphan_del(trans, inode);
4347         BUG_ON(ret);
4348
4349 out:
4350         nr = trans->blocks_used;
4351         ret = btrfs_end_transaction_throttle(trans, root);
4352         BUG_ON(ret);
4353         btrfs_btree_balance_dirty(root, nr);
4354 }
4355
4356 /*
4357  * Invalidate a single dcache entry at the root of the filesystem.
4358  * Needed after creation of snapshot or subvolume.
4359  */
4360 void btrfs_invalidate_dcache_root(struct btrfs_root *root, char *name,
4361                                   int namelen)
4362 {
4363         struct dentry *alias, *entry;
4364         struct qstr qstr;
4365
4366         alias = d_find_alias(root->fs_info->sb->s_root->d_inode);
4367         if (alias) {
4368                 qstr.name = name;
4369                 qstr.len = namelen;
4370                 /* change me if btrfs ever gets a d_hash operation */
4371                 qstr.hash = full_name_hash(qstr.name, qstr.len);
4372                 entry = d_lookup(alias, &qstr);
4373                 dput(alias);
4374                 if (entry) {
4375                         d_invalidate(entry);
4376                         dput(entry);
4377                 }
4378         }
4379 }
4380
4381 /*
4382  * create a new subvolume directory/inode (helper for the ioctl).
4383  */
4384 int btrfs_create_subvol_root(struct btrfs_root *new_root, struct dentry *dentry,
4385                 struct btrfs_trans_handle *trans, u64 new_dirid,
4386                 struct btrfs_block_group_cache *block_group)
4387 {
4388         struct inode *inode;
4389         int error;
4390         u64 index = 0;
4391
4392         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
4393                                 new_dirid, block_group, S_IFDIR | 0700, &index);
4394         if (IS_ERR(inode))
4395                 return PTR_ERR(inode);
4396         inode->i_op = &btrfs_dir_inode_operations;
4397         inode->i_fop = &btrfs_dir_file_operations;
4398         new_root->inode = inode;
4399
4400         inode->i_nlink = 1;
4401         btrfs_i_size_write(inode, 0);
4402
4403         error = btrfs_update_inode(trans, new_root, inode);
4404         if (error)
4405                 return error;
4406
4407         atomic_inc(&inode->i_count);
4408         d_instantiate(dentry, inode);
4409         return 0;
4410 }
4411
4412 /* helper function for file defrag and space balancing.  This
4413  * forces readahead on a given range of bytes in an inode
4414  */
4415 unsigned long btrfs_force_ra(struct address_space *mapping,
4416                               struct file_ra_state *ra, struct file *file,
4417                               pgoff_t offset, pgoff_t last_index)
4418 {
4419         pgoff_t req_size = last_index - offset + 1;
4420
4421         page_cache_sync_readahead(mapping, ra, file, offset, req_size);
4422         return offset + req_size;
4423 }
4424
4425 struct inode *btrfs_alloc_inode(struct super_block *sb)
4426 {
4427         struct btrfs_inode *ei;
4428
4429         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
4430         if (!ei)
4431                 return NULL;
4432         ei->last_trans = 0;
4433         ei->logged_trans = 0;
4434         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
4435         ei->i_acl = BTRFS_ACL_NOT_CACHED;
4436         ei->i_default_acl = BTRFS_ACL_NOT_CACHED;
4437         INIT_LIST_HEAD(&ei->i_orphan);
4438         return &ei->vfs_inode;
4439 }
4440
4441 void btrfs_destroy_inode(struct inode *inode)
4442 {
4443         struct btrfs_ordered_extent *ordered;
4444         WARN_ON(!list_empty(&inode->i_dentry));
4445         WARN_ON(inode->i_data.nrpages);
4446
4447         if (BTRFS_I(inode)->i_acl &&
4448             BTRFS_I(inode)->i_acl != BTRFS_ACL_NOT_CACHED)
4449                 posix_acl_release(BTRFS_I(inode)->i_acl);
4450         if (BTRFS_I(inode)->i_default_acl &&
4451             BTRFS_I(inode)->i_default_acl != BTRFS_ACL_NOT_CACHED)
4452                 posix_acl_release(BTRFS_I(inode)->i_default_acl);
4453
4454         spin_lock(&BTRFS_I(inode)->root->list_lock);
4455         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
4456                 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
4457                        " list\n", inode->i_ino);
4458                 dump_stack();
4459         }
4460         spin_unlock(&BTRFS_I(inode)->root->list_lock);
4461
4462         while(1) {
4463                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
4464                 if (!ordered)
4465                         break;
4466                 else {
4467                         printk("found ordered extent %Lu %Lu\n",
4468                                ordered->file_offset, ordered->len);
4469                         btrfs_remove_ordered_extent(inode, ordered);
4470                         btrfs_put_ordered_extent(ordered);
4471                         btrfs_put_ordered_extent(ordered);
4472                 }
4473         }
4474         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
4475         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
4476 }
4477
4478 static void init_once(void *foo)
4479 {
4480         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
4481
4482         inode_init_once(&ei->vfs_inode);
4483 }
4484
4485 void btrfs_destroy_cachep(void)
4486 {
4487         if (btrfs_inode_cachep)
4488                 kmem_cache_destroy(btrfs_inode_cachep);
4489         if (btrfs_trans_handle_cachep)
4490                 kmem_cache_destroy(btrfs_trans_handle_cachep);
4491         if (btrfs_transaction_cachep)
4492                 kmem_cache_destroy(btrfs_transaction_cachep);
4493         if (btrfs_bit_radix_cachep)
4494                 kmem_cache_destroy(btrfs_bit_radix_cachep);
4495         if (btrfs_path_cachep)
4496                 kmem_cache_destroy(btrfs_path_cachep);
4497 }
4498
4499 struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
4500                                        unsigned long extra_flags,
4501                                        void (*ctor)(void *))
4502 {
4503         return kmem_cache_create(name, size, 0, (SLAB_RECLAIM_ACCOUNT |
4504                                  SLAB_MEM_SPREAD | extra_flags), ctor);
4505 }
4506
4507 int btrfs_init_cachep(void)
4508 {
4509         btrfs_inode_cachep = btrfs_cache_create("btrfs_inode_cache",
4510                                           sizeof(struct btrfs_inode),
4511                                           0, init_once);
4512         if (!btrfs_inode_cachep)
4513                 goto fail;
4514         btrfs_trans_handle_cachep =
4515                         btrfs_cache_create("btrfs_trans_handle_cache",
4516                                            sizeof(struct btrfs_trans_handle),
4517                                            0, NULL);
4518         if (!btrfs_trans_handle_cachep)
4519                 goto fail;
4520         btrfs_transaction_cachep = btrfs_cache_create("btrfs_transaction_cache",
4521                                              sizeof(struct btrfs_transaction),
4522                                              0, NULL);
4523         if (!btrfs_transaction_cachep)
4524                 goto fail;
4525         btrfs_path_cachep = btrfs_cache_create("btrfs_path_cache",
4526                                          sizeof(struct btrfs_path),
4527                                          0, NULL);
4528         if (!btrfs_path_cachep)
4529                 goto fail;
4530         btrfs_bit_radix_cachep = btrfs_cache_create("btrfs_radix", 256,
4531                                               SLAB_DESTROY_BY_RCU, NULL);
4532         if (!btrfs_bit_radix_cachep)
4533                 goto fail;
4534         return 0;
4535 fail:
4536         btrfs_destroy_cachep();
4537         return -ENOMEM;
4538 }
4539
4540 static int btrfs_getattr(struct vfsmount *mnt,
4541                          struct dentry *dentry, struct kstat *stat)
4542 {
4543         struct inode *inode = dentry->d_inode;
4544         generic_fillattr(inode, stat);
4545         stat->blksize = PAGE_CACHE_SIZE;
4546         stat->blocks = (inode_get_bytes(inode) +
4547                         BTRFS_I(inode)->delalloc_bytes) >> 9;
4548         return 0;
4549 }
4550
4551 static int btrfs_rename(struct inode * old_dir, struct dentry *old_dentry,
4552                            struct inode * new_dir,struct dentry *new_dentry)
4553 {
4554         struct btrfs_trans_handle *trans;
4555         struct btrfs_root *root = BTRFS_I(old_dir)->root;
4556         struct inode *new_inode = new_dentry->d_inode;
4557         struct inode *old_inode = old_dentry->d_inode;
4558         struct timespec ctime = CURRENT_TIME;
4559         u64 index = 0;
4560         int ret;
4561
4562         if (S_ISDIR(old_inode->i_mode) && new_inode &&
4563             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) {
4564                 return -ENOTEMPTY;
4565         }
4566
4567         ret = btrfs_check_free_space(root, 1, 0);
4568         if (ret)
4569                 goto out_unlock;
4570
4571         trans = btrfs_start_transaction(root, 1);
4572
4573         btrfs_set_trans_block_group(trans, new_dir);
4574
4575         btrfs_inc_nlink(old_dentry->d_inode);
4576         old_dir->i_ctime = old_dir->i_mtime = ctime;
4577         new_dir->i_ctime = new_dir->i_mtime = ctime;
4578         old_inode->i_ctime = ctime;
4579
4580         ret = btrfs_unlink_inode(trans, root, old_dir, old_dentry->d_inode,
4581                                  old_dentry->d_name.name,
4582                                  old_dentry->d_name.len);
4583         if (ret)
4584                 goto out_fail;
4585
4586         if (new_inode) {
4587                 new_inode->i_ctime = CURRENT_TIME;
4588                 ret = btrfs_unlink_inode(trans, root, new_dir,
4589                                          new_dentry->d_inode,
4590                                          new_dentry->d_name.name,
4591                                          new_dentry->d_name.len);
4592                 if (ret)
4593                         goto out_fail;
4594                 if (new_inode->i_nlink == 0) {
4595                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4596                         if (ret)
4597                                 goto out_fail;
4598                 }
4599
4600         }
4601         ret = btrfs_set_inode_index(new_dir, old_inode, &index);
4602         if (ret)
4603                 goto out_fail;
4604
4605         ret = btrfs_add_link(trans, new_dentry->d_parent->d_inode,
4606                              old_inode, new_dentry->d_name.name,
4607                              new_dentry->d_name.len, 1, index);
4608         if (ret)
4609                 goto out_fail;
4610
4611 out_fail:
4612         btrfs_end_transaction_throttle(trans, root);
4613 out_unlock:
4614         return ret;
4615 }
4616
4617 /*
4618  * some fairly slow code that needs optimization. This walks the list
4619  * of all the inodes with pending delalloc and forces them to disk.
4620  */
4621 int btrfs_start_delalloc_inodes(struct btrfs_root *root)
4622 {
4623         struct list_head *head = &root->fs_info->delalloc_inodes;
4624         struct btrfs_inode *binode;
4625         struct inode *inode;
4626         unsigned long flags;
4627
4628         spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
4629         while(!list_empty(head)) {
4630                 binode = list_entry(head->next, struct btrfs_inode,
4631                                     delalloc_inodes);
4632                 inode = igrab(&binode->vfs_inode);
4633                 if (!inode)
4634                         list_del_init(&binode->delalloc_inodes);
4635                 spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
4636                 if (inode) {
4637                         filemap_flush(inode->i_mapping);
4638                         iput(inode);
4639                 }
4640                 cond_resched();
4641                 spin_lock_irqsave(&root->fs_info->delalloc_lock, flags);
4642         }
4643         spin_unlock_irqrestore(&root->fs_info->delalloc_lock, flags);
4644
4645         /* the filemap_flush will queue IO into the worker threads, but
4646          * we have to make sure the IO is actually started and that
4647          * ordered extents get created before we return
4648          */
4649         atomic_inc(&root->fs_info->async_submit_draining);
4650         while(atomic_read(&root->fs_info->nr_async_submits) ||
4651               atomic_read(&root->fs_info->async_delalloc_pages)) {
4652                 wait_event(root->fs_info->async_submit_wait,
4653                    (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
4654                     atomic_read(&root->fs_info->async_delalloc_pages) == 0));
4655         }
4656         atomic_dec(&root->fs_info->async_submit_draining);
4657         return 0;
4658 }
4659
4660 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
4661                          const char *symname)
4662 {
4663         struct btrfs_trans_handle *trans;
4664         struct btrfs_root *root = BTRFS_I(dir)->root;
4665         struct btrfs_path *path;
4666         struct btrfs_key key;
4667         struct inode *inode = NULL;
4668         int err;
4669         int drop_inode = 0;
4670         u64 objectid;
4671         u64 index = 0 ;
4672         int name_len;
4673         int datasize;
4674         unsigned long ptr;
4675         struct btrfs_file_extent_item *ei;
4676         struct extent_buffer *leaf;
4677         unsigned long nr = 0;
4678
4679         name_len = strlen(symname) + 1;
4680         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
4681                 return -ENAMETOOLONG;
4682
4683         err = btrfs_check_free_space(root, 1, 0);
4684         if (err)
4685                 goto out_fail;
4686
4687         trans = btrfs_start_transaction(root, 1);
4688         btrfs_set_trans_block_group(trans, dir);
4689
4690         err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4691         if (err) {
4692                 err = -ENOSPC;
4693                 goto out_unlock;
4694         }
4695
4696         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4697                                 dentry->d_name.len,
4698                                 dentry->d_parent->d_inode->i_ino, objectid,
4699                                 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
4700                                 &index);
4701         err = PTR_ERR(inode);
4702         if (IS_ERR(inode))
4703                 goto out_unlock;
4704
4705         err = btrfs_init_acl(inode, dir);
4706         if (err) {
4707                 drop_inode = 1;
4708                 goto out_unlock;
4709         }
4710
4711         btrfs_set_trans_block_group(trans, inode);
4712         err = btrfs_add_nondir(trans, dentry, inode, 0, index);
4713         if (err)
4714                 drop_inode = 1;
4715         else {
4716                 inode->i_mapping->a_ops = &btrfs_aops;
4717                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4718                 inode->i_fop = &btrfs_file_operations;
4719                 inode->i_op = &btrfs_file_inode_operations;
4720                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4721         }
4722         dir->i_sb->s_dirt = 1;
4723         btrfs_update_inode_block_group(trans, inode);
4724         btrfs_update_inode_block_group(trans, dir);
4725         if (drop_inode)
4726                 goto out_unlock;
4727
4728         path = btrfs_alloc_path();
4729         BUG_ON(!path);
4730         key.objectid = inode->i_ino;
4731         key.offset = 0;
4732         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
4733         datasize = btrfs_file_extent_calc_inline_size(name_len);
4734         err = btrfs_insert_empty_item(trans, root, path, &key,
4735                                       datasize);
4736         if (err) {
4737                 drop_inode = 1;
4738                 goto out_unlock;
4739         }
4740         leaf = path->nodes[0];
4741         ei = btrfs_item_ptr(leaf, path->slots[0],
4742                             struct btrfs_file_extent_item);
4743         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
4744         btrfs_set_file_extent_type(leaf, ei,
4745                                    BTRFS_FILE_EXTENT_INLINE);
4746         btrfs_set_file_extent_encryption(leaf, ei, 0);
4747         btrfs_set_file_extent_compression(leaf, ei, 0);
4748         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
4749         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
4750
4751         ptr = btrfs_file_extent_inline_start(ei);
4752         write_extent_buffer(leaf, symname, ptr, name_len);
4753         btrfs_mark_buffer_dirty(leaf);
4754         btrfs_free_path(path);
4755
4756         inode->i_op = &btrfs_symlink_inode_operations;
4757         inode->i_mapping->a_ops = &btrfs_symlink_aops;
4758         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4759         inode_set_bytes(inode, name_len);
4760         btrfs_i_size_write(inode, name_len - 1);
4761         err = btrfs_update_inode(trans, root, inode);
4762         if (err)
4763                 drop_inode = 1;
4764
4765 out_unlock:
4766         nr = trans->blocks_used;
4767         btrfs_end_transaction_throttle(trans, root);
4768 out_fail:
4769         if (drop_inode) {
4770                 inode_dec_link_count(inode);
4771                 iput(inode);
4772         }
4773         btrfs_btree_balance_dirty(root, nr);
4774         return err;
4775 }
4776
4777 static int prealloc_file_range(struct inode *inode, u64 start, u64 end,
4778                                u64 alloc_hint, int mode)
4779 {
4780         struct btrfs_trans_handle *trans;
4781         struct btrfs_root *root = BTRFS_I(inode)->root;
4782         struct btrfs_key ins;
4783         u64 alloc_size;
4784         u64 cur_offset = start;
4785         u64 num_bytes = end - start;
4786         int ret = 0;
4787
4788         trans = btrfs_join_transaction(root, 1);
4789         BUG_ON(!trans);
4790         btrfs_set_trans_block_group(trans, inode);
4791
4792         while (num_bytes > 0) {
4793                 alloc_size = min(num_bytes, root->fs_info->max_extent);
4794                 ret = btrfs_reserve_extent(trans, root, alloc_size,
4795                                            root->sectorsize, 0, alloc_hint,
4796                                            (u64)-1, &ins, 1);
4797                 if (ret) {
4798                         WARN_ON(1);
4799                         goto out;
4800                 }
4801                 ret = insert_reserved_file_extent(trans, inode,
4802                                                   cur_offset, ins.objectid,
4803                                                   ins.offset, ins.offset,
4804                                                   ins.offset, 0, 0, 0,
4805                                                   BTRFS_FILE_EXTENT_PREALLOC);
4806                 BUG_ON(ret);
4807                 num_bytes -= ins.offset;
4808                 cur_offset += ins.offset;
4809                 alloc_hint = ins.objectid + ins.offset;
4810         }
4811 out:
4812         if (cur_offset > start) {
4813                 inode->i_ctime = CURRENT_TIME;
4814                 btrfs_set_flag(inode, PREALLOC);
4815                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
4816                     cur_offset > i_size_read(inode))
4817                         btrfs_i_size_write(inode, cur_offset);
4818                 ret = btrfs_update_inode(trans, root, inode);
4819                 BUG_ON(ret);
4820         }
4821
4822         btrfs_end_transaction(trans, root);
4823         return ret;
4824 }
4825
4826 static long btrfs_fallocate(struct inode *inode, int mode,
4827                             loff_t offset, loff_t len)
4828 {
4829         u64 cur_offset;
4830         u64 last_byte;
4831         u64 alloc_start;
4832         u64 alloc_end;
4833         u64 alloc_hint = 0;
4834         u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
4835         struct extent_map *em;
4836         int ret;
4837
4838         alloc_start = offset & ~mask;
4839         alloc_end =  (offset + len + mask) & ~mask;
4840
4841         mutex_lock(&inode->i_mutex);
4842         if (alloc_start > inode->i_size) {
4843                 ret = btrfs_cont_expand(inode, alloc_start);
4844                 if (ret)
4845                         goto out;
4846         }
4847
4848         while (1) {
4849                 struct btrfs_ordered_extent *ordered;
4850                 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start,
4851                             alloc_end - 1, GFP_NOFS);
4852                 ordered = btrfs_lookup_first_ordered_extent(inode,
4853                                                             alloc_end - 1);
4854                 if (ordered &&
4855                     ordered->file_offset + ordered->len > alloc_start &&
4856                     ordered->file_offset < alloc_end) {
4857                         btrfs_put_ordered_extent(ordered);
4858                         unlock_extent(&BTRFS_I(inode)->io_tree,
4859                                       alloc_start, alloc_end - 1, GFP_NOFS);
4860                         btrfs_wait_ordered_range(inode, alloc_start,
4861                                                  alloc_end - alloc_start);
4862                 } else {
4863                         if (ordered)
4864                                 btrfs_put_ordered_extent(ordered);
4865                         break;
4866                 }
4867         }
4868
4869         cur_offset = alloc_start;
4870         while (1) {
4871                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4872                                       alloc_end - cur_offset, 0);
4873                 BUG_ON(IS_ERR(em) || !em);
4874                 last_byte = min(extent_map_end(em), alloc_end);
4875                 last_byte = (last_byte + mask) & ~mask;
4876                 if (em->block_start == EXTENT_MAP_HOLE) {
4877                         ret = prealloc_file_range(inode, cur_offset,
4878                                         last_byte, alloc_hint, mode);
4879                         if (ret < 0) {
4880                                 free_extent_map(em);
4881                                 break;
4882                         }
4883                 }
4884                 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
4885                         alloc_hint = em->block_start;
4886                 free_extent_map(em);
4887
4888                 cur_offset = last_byte;
4889                 if (cur_offset >= alloc_end) {
4890                         ret = 0;
4891                         break;
4892                 }
4893         }
4894         unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, alloc_end - 1,
4895                       GFP_NOFS);
4896 out:
4897         mutex_unlock(&inode->i_mutex);
4898         return ret;
4899 }
4900
4901 static int btrfs_set_page_dirty(struct page *page)
4902 {
4903         return __set_page_dirty_nobuffers(page);
4904 }
4905
4906 static int btrfs_permission(struct inode *inode, int mask)
4907 {
4908         if (btrfs_test_flag(inode, READONLY) && (mask & MAY_WRITE))
4909                 return -EACCES;
4910         return generic_permission(inode, mask, btrfs_check_acl);
4911 }
4912
4913 static struct inode_operations btrfs_dir_inode_operations = {
4914         .lookup         = btrfs_lookup,
4915         .create         = btrfs_create,
4916         .unlink         = btrfs_unlink,
4917         .link           = btrfs_link,
4918         .mkdir          = btrfs_mkdir,
4919         .rmdir          = btrfs_rmdir,
4920         .rename         = btrfs_rename,
4921         .symlink        = btrfs_symlink,
4922         .setattr        = btrfs_setattr,
4923         .mknod          = btrfs_mknod,
4924         .setxattr       = btrfs_setxattr,
4925         .getxattr       = btrfs_getxattr,
4926         .listxattr      = btrfs_listxattr,
4927         .removexattr    = btrfs_removexattr,
4928         .permission     = btrfs_permission,
4929 };
4930 static struct inode_operations btrfs_dir_ro_inode_operations = {
4931         .lookup         = btrfs_lookup,
4932         .permission     = btrfs_permission,
4933 };
4934 static struct file_operations btrfs_dir_file_operations = {
4935         .llseek         = generic_file_llseek,
4936         .read           = generic_read_dir,
4937         .readdir        = btrfs_real_readdir,
4938         .unlocked_ioctl = btrfs_ioctl,
4939 #ifdef CONFIG_COMPAT
4940         .compat_ioctl   = btrfs_ioctl,
4941 #endif
4942         .release        = btrfs_release_file,
4943         .fsync          = btrfs_sync_file,
4944 };
4945
4946 static struct extent_io_ops btrfs_extent_io_ops = {
4947         .fill_delalloc = run_delalloc_range,
4948         .submit_bio_hook = btrfs_submit_bio_hook,
4949         .merge_bio_hook = btrfs_merge_bio_hook,
4950         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
4951         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
4952         .writepage_start_hook = btrfs_writepage_start_hook,
4953         .readpage_io_failed_hook = btrfs_io_failed_hook,
4954         .set_bit_hook = btrfs_set_bit_hook,
4955         .clear_bit_hook = btrfs_clear_bit_hook,
4956 };
4957
4958 static struct address_space_operations btrfs_aops = {
4959         .readpage       = btrfs_readpage,
4960         .writepage      = btrfs_writepage,
4961         .writepages     = btrfs_writepages,
4962         .readpages      = btrfs_readpages,
4963         .sync_page      = block_sync_page,
4964         .bmap           = btrfs_bmap,
4965         .direct_IO      = btrfs_direct_IO,
4966         .invalidatepage = btrfs_invalidatepage,
4967         .releasepage    = btrfs_releasepage,
4968         .set_page_dirty = btrfs_set_page_dirty,
4969 };
4970
4971 static struct address_space_operations btrfs_symlink_aops = {
4972         .readpage       = btrfs_readpage,
4973         .writepage      = btrfs_writepage,
4974         .invalidatepage = btrfs_invalidatepage,
4975         .releasepage    = btrfs_releasepage,
4976 };
4977
4978 static struct inode_operations btrfs_file_inode_operations = {
4979         .truncate       = btrfs_truncate,
4980         .getattr        = btrfs_getattr,
4981         .setattr        = btrfs_setattr,
4982         .setxattr       = btrfs_setxattr,
4983         .getxattr       = btrfs_getxattr,
4984         .listxattr      = btrfs_listxattr,
4985         .removexattr    = btrfs_removexattr,
4986         .permission     = btrfs_permission,
4987         .fallocate      = btrfs_fallocate,
4988 };
4989 static struct inode_operations btrfs_special_inode_operations = {
4990         .getattr        = btrfs_getattr,
4991         .setattr        = btrfs_setattr,
4992         .permission     = btrfs_permission,
4993         .setxattr       = btrfs_setxattr,
4994         .getxattr       = btrfs_getxattr,
4995         .listxattr      = btrfs_listxattr,
4996         .removexattr    = btrfs_removexattr,
4997 };
4998 static struct inode_operations btrfs_symlink_inode_operations = {
4999         .readlink       = generic_readlink,
5000         .follow_link    = page_follow_link_light,
5001         .put_link       = page_put_link,
5002         .permission     = btrfs_permission,
5003 };