Btrfs: Cache free inode numbers in memory
[linux-2.6-block.git] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include "compat.h"
41 #include "ctree.h"
42 #include "disk-io.h"
43 #include "transaction.h"
44 #include "btrfs_inode.h"
45 #include "ioctl.h"
46 #include "print-tree.h"
47 #include "volumes.h"
48 #include "ordered-data.h"
49 #include "xattr.h"
50 #include "tree-log.h"
51 #include "compression.h"
52 #include "locking.h"
53 #include "free-space-cache.h"
54 #include "inode-map.h"
55
56 struct btrfs_iget_args {
57         u64 ino;
58         struct btrfs_root *root;
59 };
60
61 static const struct inode_operations btrfs_dir_inode_operations;
62 static const struct inode_operations btrfs_symlink_inode_operations;
63 static const struct inode_operations btrfs_dir_ro_inode_operations;
64 static const struct inode_operations btrfs_special_inode_operations;
65 static const struct inode_operations btrfs_file_inode_operations;
66 static const struct address_space_operations btrfs_aops;
67 static const struct address_space_operations btrfs_symlink_aops;
68 static const struct file_operations btrfs_dir_file_operations;
69 static struct extent_io_ops btrfs_extent_io_ops;
70
71 static struct kmem_cache *btrfs_inode_cachep;
72 struct kmem_cache *btrfs_trans_handle_cachep;
73 struct kmem_cache *btrfs_transaction_cachep;
74 struct kmem_cache *btrfs_path_cachep;
75 struct kmem_cache *btrfs_free_space_cachep;
76
77 #define S_SHIFT 12
78 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
79         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
80         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
81         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
82         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
83         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
84         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
85         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
86 };
87
88 static int btrfs_setsize(struct inode *inode, loff_t newsize);
89 static int btrfs_truncate(struct inode *inode);
90 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
91 static noinline int cow_file_range(struct inode *inode,
92                                    struct page *locked_page,
93                                    u64 start, u64 end, int *page_started,
94                                    unsigned long *nr_written, int unlock);
95
96 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
97                                      struct inode *inode,  struct inode *dir)
98 {
99         int err;
100
101         err = btrfs_init_acl(trans, inode, dir);
102         if (!err)
103                 err = btrfs_xattr_security_init(trans, inode, dir);
104         return err;
105 }
106
107 /*
108  * this does all the hard work for inserting an inline extent into
109  * the btree.  The caller should have done a btrfs_drop_extents so that
110  * no overlapping inline items exist in the btree
111  */
112 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
113                                 struct btrfs_root *root, struct inode *inode,
114                                 u64 start, size_t size, size_t compressed_size,
115                                 int compress_type,
116                                 struct page **compressed_pages)
117 {
118         struct btrfs_key key;
119         struct btrfs_path *path;
120         struct extent_buffer *leaf;
121         struct page *page = NULL;
122         char *kaddr;
123         unsigned long ptr;
124         struct btrfs_file_extent_item *ei;
125         int err = 0;
126         int ret;
127         size_t cur_size = size;
128         size_t datasize;
129         unsigned long offset;
130
131         if (compressed_size && compressed_pages)
132                 cur_size = compressed_size;
133
134         path = btrfs_alloc_path();
135         if (!path)
136                 return -ENOMEM;
137
138         path->leave_spinning = 1;
139         btrfs_set_trans_block_group(trans, inode);
140
141         key.objectid = inode->i_ino;
142         key.offset = start;
143         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
144         datasize = btrfs_file_extent_calc_inline_size(cur_size);
145
146         inode_add_bytes(inode, size);
147         ret = btrfs_insert_empty_item(trans, root, path, &key,
148                                       datasize);
149         BUG_ON(ret);
150         if (ret) {
151                 err = ret;
152                 goto fail;
153         }
154         leaf = path->nodes[0];
155         ei = btrfs_item_ptr(leaf, path->slots[0],
156                             struct btrfs_file_extent_item);
157         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
158         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
159         btrfs_set_file_extent_encryption(leaf, ei, 0);
160         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
161         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
162         ptr = btrfs_file_extent_inline_start(ei);
163
164         if (compress_type != BTRFS_COMPRESS_NONE) {
165                 struct page *cpage;
166                 int i = 0;
167                 while (compressed_size > 0) {
168                         cpage = compressed_pages[i];
169                         cur_size = min_t(unsigned long, compressed_size,
170                                        PAGE_CACHE_SIZE);
171
172                         kaddr = kmap_atomic(cpage, KM_USER0);
173                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
174                         kunmap_atomic(kaddr, KM_USER0);
175
176                         i++;
177                         ptr += cur_size;
178                         compressed_size -= cur_size;
179                 }
180                 btrfs_set_file_extent_compression(leaf, ei,
181                                                   compress_type);
182         } else {
183                 page = find_get_page(inode->i_mapping,
184                                      start >> PAGE_CACHE_SHIFT);
185                 btrfs_set_file_extent_compression(leaf, ei, 0);
186                 kaddr = kmap_atomic(page, KM_USER0);
187                 offset = start & (PAGE_CACHE_SIZE - 1);
188                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
189                 kunmap_atomic(kaddr, KM_USER0);
190                 page_cache_release(page);
191         }
192         btrfs_mark_buffer_dirty(leaf);
193         btrfs_free_path(path);
194
195         /*
196          * we're an inline extent, so nobody can
197          * extend the file past i_size without locking
198          * a page we already have locked.
199          *
200          * We must do any isize and inode updates
201          * before we unlock the pages.  Otherwise we
202          * could end up racing with unlink.
203          */
204         BTRFS_I(inode)->disk_i_size = inode->i_size;
205         btrfs_update_inode(trans, root, inode);
206
207         return 0;
208 fail:
209         btrfs_free_path(path);
210         return err;
211 }
212
213
214 /*
215  * conditionally insert an inline extent into the file.  This
216  * does the checks required to make sure the data is small enough
217  * to fit as an inline extent.
218  */
219 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
220                                  struct btrfs_root *root,
221                                  struct inode *inode, u64 start, u64 end,
222                                  size_t compressed_size, int compress_type,
223                                  struct page **compressed_pages)
224 {
225         u64 isize = i_size_read(inode);
226         u64 actual_end = min(end + 1, isize);
227         u64 inline_len = actual_end - start;
228         u64 aligned_end = (end + root->sectorsize - 1) &
229                         ~((u64)root->sectorsize - 1);
230         u64 hint_byte;
231         u64 data_len = inline_len;
232         int ret;
233
234         if (compressed_size)
235                 data_len = compressed_size;
236
237         if (start > 0 ||
238             actual_end >= PAGE_CACHE_SIZE ||
239             data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
240             (!compressed_size &&
241             (actual_end & (root->sectorsize - 1)) == 0) ||
242             end + 1 < isize ||
243             data_len > root->fs_info->max_inline) {
244                 return 1;
245         }
246
247         ret = btrfs_drop_extents(trans, inode, start, aligned_end,
248                                  &hint_byte, 1);
249         BUG_ON(ret);
250
251         if (isize > actual_end)
252                 inline_len = min_t(u64, isize, actual_end);
253         ret = insert_inline_extent(trans, root, inode, start,
254                                    inline_len, compressed_size,
255                                    compress_type, compressed_pages);
256         BUG_ON(ret);
257         btrfs_delalloc_release_metadata(inode, end + 1 - start);
258         btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
259         return 0;
260 }
261
262 struct async_extent {
263         u64 start;
264         u64 ram_size;
265         u64 compressed_size;
266         struct page **pages;
267         unsigned long nr_pages;
268         int compress_type;
269         struct list_head list;
270 };
271
272 struct async_cow {
273         struct inode *inode;
274         struct btrfs_root *root;
275         struct page *locked_page;
276         u64 start;
277         u64 end;
278         struct list_head extents;
279         struct btrfs_work work;
280 };
281
282 static noinline int add_async_extent(struct async_cow *cow,
283                                      u64 start, u64 ram_size,
284                                      u64 compressed_size,
285                                      struct page **pages,
286                                      unsigned long nr_pages,
287                                      int compress_type)
288 {
289         struct async_extent *async_extent;
290
291         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
292         BUG_ON(!async_extent);
293         async_extent->start = start;
294         async_extent->ram_size = ram_size;
295         async_extent->compressed_size = compressed_size;
296         async_extent->pages = pages;
297         async_extent->nr_pages = nr_pages;
298         async_extent->compress_type = compress_type;
299         list_add_tail(&async_extent->list, &cow->extents);
300         return 0;
301 }
302
303 /*
304  * we create compressed extents in two phases.  The first
305  * phase compresses a range of pages that have already been
306  * locked (both pages and state bits are locked).
307  *
308  * This is done inside an ordered work queue, and the compression
309  * is spread across many cpus.  The actual IO submission is step
310  * two, and the ordered work queue takes care of making sure that
311  * happens in the same order things were put onto the queue by
312  * writepages and friends.
313  *
314  * If this code finds it can't get good compression, it puts an
315  * entry onto the work queue to write the uncompressed bytes.  This
316  * makes sure that both compressed inodes and uncompressed inodes
317  * are written in the same order that pdflush sent them down.
318  */
319 static noinline int compress_file_range(struct inode *inode,
320                                         struct page *locked_page,
321                                         u64 start, u64 end,
322                                         struct async_cow *async_cow,
323                                         int *num_added)
324 {
325         struct btrfs_root *root = BTRFS_I(inode)->root;
326         struct btrfs_trans_handle *trans;
327         u64 num_bytes;
328         u64 blocksize = root->sectorsize;
329         u64 actual_end;
330         u64 isize = i_size_read(inode);
331         int ret = 0;
332         struct page **pages = NULL;
333         unsigned long nr_pages;
334         unsigned long nr_pages_ret = 0;
335         unsigned long total_compressed = 0;
336         unsigned long total_in = 0;
337         unsigned long max_compressed = 128 * 1024;
338         unsigned long max_uncompressed = 128 * 1024;
339         int i;
340         int will_compress;
341         int compress_type = root->fs_info->compress_type;
342
343         actual_end = min_t(u64, isize, end + 1);
344 again:
345         will_compress = 0;
346         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
347         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
348
349         /*
350          * we don't want to send crud past the end of i_size through
351          * compression, that's just a waste of CPU time.  So, if the
352          * end of the file is before the start of our current
353          * requested range of bytes, we bail out to the uncompressed
354          * cleanup code that can deal with all of this.
355          *
356          * It isn't really the fastest way to fix things, but this is a
357          * very uncommon corner.
358          */
359         if (actual_end <= start)
360                 goto cleanup_and_bail_uncompressed;
361
362         total_compressed = actual_end - start;
363
364         /* we want to make sure that amount of ram required to uncompress
365          * an extent is reasonable, so we limit the total size in ram
366          * of a compressed extent to 128k.  This is a crucial number
367          * because it also controls how easily we can spread reads across
368          * cpus for decompression.
369          *
370          * We also want to make sure the amount of IO required to do
371          * a random read is reasonably small, so we limit the size of
372          * a compressed extent to 128k.
373          */
374         total_compressed = min(total_compressed, max_uncompressed);
375         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
376         num_bytes = max(blocksize,  num_bytes);
377         total_in = 0;
378         ret = 0;
379
380         /*
381          * we do compression for mount -o compress and when the
382          * inode has not been flagged as nocompress.  This flag can
383          * change at any time if we discover bad compression ratios.
384          */
385         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
386             (btrfs_test_opt(root, COMPRESS) ||
387              (BTRFS_I(inode)->force_compress) ||
388              (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
389                 WARN_ON(pages);
390                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
391                 BUG_ON(!pages);
392
393                 if (BTRFS_I(inode)->force_compress)
394                         compress_type = BTRFS_I(inode)->force_compress;
395
396                 ret = btrfs_compress_pages(compress_type,
397                                            inode->i_mapping, start,
398                                            total_compressed, pages,
399                                            nr_pages, &nr_pages_ret,
400                                            &total_in,
401                                            &total_compressed,
402                                            max_compressed);
403
404                 if (!ret) {
405                         unsigned long offset = total_compressed &
406                                 (PAGE_CACHE_SIZE - 1);
407                         struct page *page = pages[nr_pages_ret - 1];
408                         char *kaddr;
409
410                         /* zero the tail end of the last page, we might be
411                          * sending it down to disk
412                          */
413                         if (offset) {
414                                 kaddr = kmap_atomic(page, KM_USER0);
415                                 memset(kaddr + offset, 0,
416                                        PAGE_CACHE_SIZE - offset);
417                                 kunmap_atomic(kaddr, KM_USER0);
418                         }
419                         will_compress = 1;
420                 }
421         }
422         if (start == 0) {
423                 trans = btrfs_join_transaction(root, 1);
424                 BUG_ON(IS_ERR(trans));
425                 btrfs_set_trans_block_group(trans, inode);
426                 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
427
428                 /* lets try to make an inline extent */
429                 if (ret || total_in < (actual_end - start)) {
430                         /* we didn't compress the entire range, try
431                          * to make an uncompressed inline extent.
432                          */
433                         ret = cow_file_range_inline(trans, root, inode,
434                                                     start, end, 0, 0, NULL);
435                 } else {
436                         /* try making a compressed inline extent */
437                         ret = cow_file_range_inline(trans, root, inode,
438                                                     start, end,
439                                                     total_compressed,
440                                                     compress_type, pages);
441                 }
442                 if (ret == 0) {
443                         /*
444                          * inline extent creation worked, we don't need
445                          * to create any more async work items.  Unlock
446                          * and free up our temp pages.
447                          */
448                         extent_clear_unlock_delalloc(inode,
449                              &BTRFS_I(inode)->io_tree,
450                              start, end, NULL,
451                              EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
452                              EXTENT_CLEAR_DELALLOC |
453                              EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
454
455                         btrfs_end_transaction(trans, root);
456                         goto free_pages_out;
457                 }
458                 btrfs_end_transaction(trans, root);
459         }
460
461         if (will_compress) {
462                 /*
463                  * we aren't doing an inline extent round the compressed size
464                  * up to a block size boundary so the allocator does sane
465                  * things
466                  */
467                 total_compressed = (total_compressed + blocksize - 1) &
468                         ~(blocksize - 1);
469
470                 /*
471                  * one last check to make sure the compression is really a
472                  * win, compare the page count read with the blocks on disk
473                  */
474                 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
475                         ~(PAGE_CACHE_SIZE - 1);
476                 if (total_compressed >= total_in) {
477                         will_compress = 0;
478                 } else {
479                         num_bytes = total_in;
480                 }
481         }
482         if (!will_compress && pages) {
483                 /*
484                  * the compression code ran but failed to make things smaller,
485                  * free any pages it allocated and our page pointer array
486                  */
487                 for (i = 0; i < nr_pages_ret; i++) {
488                         WARN_ON(pages[i]->mapping);
489                         page_cache_release(pages[i]);
490                 }
491                 kfree(pages);
492                 pages = NULL;
493                 total_compressed = 0;
494                 nr_pages_ret = 0;
495
496                 /* flag the file so we don't compress in the future */
497                 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
498                     !(BTRFS_I(inode)->force_compress)) {
499                         BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
500                 }
501         }
502         if (will_compress) {
503                 *num_added += 1;
504
505                 /* the async work queues will take care of doing actual
506                  * allocation on disk for these compressed pages,
507                  * and will submit them to the elevator.
508                  */
509                 add_async_extent(async_cow, start, num_bytes,
510                                  total_compressed, pages, nr_pages_ret,
511                                  compress_type);
512
513                 if (start + num_bytes < end) {
514                         start += num_bytes;
515                         pages = NULL;
516                         cond_resched();
517                         goto again;
518                 }
519         } else {
520 cleanup_and_bail_uncompressed:
521                 /*
522                  * No compression, but we still need to write the pages in
523                  * the file we've been given so far.  redirty the locked
524                  * page if it corresponds to our extent and set things up
525                  * for the async work queue to run cow_file_range to do
526                  * the normal delalloc dance
527                  */
528                 if (page_offset(locked_page) >= start &&
529                     page_offset(locked_page) <= end) {
530                         __set_page_dirty_nobuffers(locked_page);
531                         /* unlocked later on in the async handlers */
532                 }
533                 add_async_extent(async_cow, start, end - start + 1,
534                                  0, NULL, 0, BTRFS_COMPRESS_NONE);
535                 *num_added += 1;
536         }
537
538 out:
539         return 0;
540
541 free_pages_out:
542         for (i = 0; i < nr_pages_ret; i++) {
543                 WARN_ON(pages[i]->mapping);
544                 page_cache_release(pages[i]);
545         }
546         kfree(pages);
547
548         goto out;
549 }
550
551 /*
552  * phase two of compressed writeback.  This is the ordered portion
553  * of the code, which only gets called in the order the work was
554  * queued.  We walk all the async extents created by compress_file_range
555  * and send them down to the disk.
556  */
557 static noinline int submit_compressed_extents(struct inode *inode,
558                                               struct async_cow *async_cow)
559 {
560         struct async_extent *async_extent;
561         u64 alloc_hint = 0;
562         struct btrfs_trans_handle *trans;
563         struct btrfs_key ins;
564         struct extent_map *em;
565         struct btrfs_root *root = BTRFS_I(inode)->root;
566         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
567         struct extent_io_tree *io_tree;
568         int ret = 0;
569
570         if (list_empty(&async_cow->extents))
571                 return 0;
572
573
574         while (!list_empty(&async_cow->extents)) {
575                 async_extent = list_entry(async_cow->extents.next,
576                                           struct async_extent, list);
577                 list_del(&async_extent->list);
578
579                 io_tree = &BTRFS_I(inode)->io_tree;
580
581 retry:
582                 /* did the compression code fall back to uncompressed IO? */
583                 if (!async_extent->pages) {
584                         int page_started = 0;
585                         unsigned long nr_written = 0;
586
587                         lock_extent(io_tree, async_extent->start,
588                                          async_extent->start +
589                                          async_extent->ram_size - 1, GFP_NOFS);
590
591                         /* allocate blocks */
592                         ret = cow_file_range(inode, async_cow->locked_page,
593                                              async_extent->start,
594                                              async_extent->start +
595                                              async_extent->ram_size - 1,
596                                              &page_started, &nr_written, 0);
597
598                         /*
599                          * if page_started, cow_file_range inserted an
600                          * inline extent and took care of all the unlocking
601                          * and IO for us.  Otherwise, we need to submit
602                          * all those pages down to the drive.
603                          */
604                         if (!page_started && !ret)
605                                 extent_write_locked_range(io_tree,
606                                                   inode, async_extent->start,
607                                                   async_extent->start +
608                                                   async_extent->ram_size - 1,
609                                                   btrfs_get_extent,
610                                                   WB_SYNC_ALL);
611                         kfree(async_extent);
612                         cond_resched();
613                         continue;
614                 }
615
616                 lock_extent(io_tree, async_extent->start,
617                             async_extent->start + async_extent->ram_size - 1,
618                             GFP_NOFS);
619
620                 trans = btrfs_join_transaction(root, 1);
621                 BUG_ON(IS_ERR(trans));
622                 ret = btrfs_reserve_extent(trans, root,
623                                            async_extent->compressed_size,
624                                            async_extent->compressed_size,
625                                            0, alloc_hint,
626                                            (u64)-1, &ins, 1);
627                 btrfs_end_transaction(trans, root);
628
629                 if (ret) {
630                         int i;
631                         for (i = 0; i < async_extent->nr_pages; i++) {
632                                 WARN_ON(async_extent->pages[i]->mapping);
633                                 page_cache_release(async_extent->pages[i]);
634                         }
635                         kfree(async_extent->pages);
636                         async_extent->nr_pages = 0;
637                         async_extent->pages = NULL;
638                         unlock_extent(io_tree, async_extent->start,
639                                       async_extent->start +
640                                       async_extent->ram_size - 1, GFP_NOFS);
641                         goto retry;
642                 }
643
644                 /*
645                  * here we're doing allocation and writeback of the
646                  * compressed pages
647                  */
648                 btrfs_drop_extent_cache(inode, async_extent->start,
649                                         async_extent->start +
650                                         async_extent->ram_size - 1, 0);
651
652                 em = alloc_extent_map(GFP_NOFS);
653                 BUG_ON(!em);
654                 em->start = async_extent->start;
655                 em->len = async_extent->ram_size;
656                 em->orig_start = em->start;
657
658                 em->block_start = ins.objectid;
659                 em->block_len = ins.offset;
660                 em->bdev = root->fs_info->fs_devices->latest_bdev;
661                 em->compress_type = async_extent->compress_type;
662                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
663                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
664
665                 while (1) {
666                         write_lock(&em_tree->lock);
667                         ret = add_extent_mapping(em_tree, em);
668                         write_unlock(&em_tree->lock);
669                         if (ret != -EEXIST) {
670                                 free_extent_map(em);
671                                 break;
672                         }
673                         btrfs_drop_extent_cache(inode, async_extent->start,
674                                                 async_extent->start +
675                                                 async_extent->ram_size - 1, 0);
676                 }
677
678                 ret = btrfs_add_ordered_extent_compress(inode,
679                                                 async_extent->start,
680                                                 ins.objectid,
681                                                 async_extent->ram_size,
682                                                 ins.offset,
683                                                 BTRFS_ORDERED_COMPRESSED,
684                                                 async_extent->compress_type);
685                 BUG_ON(ret);
686
687                 /*
688                  * clear dirty, set writeback and unlock the pages.
689                  */
690                 extent_clear_unlock_delalloc(inode,
691                                 &BTRFS_I(inode)->io_tree,
692                                 async_extent->start,
693                                 async_extent->start +
694                                 async_extent->ram_size - 1,
695                                 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
696                                 EXTENT_CLEAR_UNLOCK |
697                                 EXTENT_CLEAR_DELALLOC |
698                                 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
699
700                 ret = btrfs_submit_compressed_write(inode,
701                                     async_extent->start,
702                                     async_extent->ram_size,
703                                     ins.objectid,
704                                     ins.offset, async_extent->pages,
705                                     async_extent->nr_pages);
706
707                 BUG_ON(ret);
708                 alloc_hint = ins.objectid + ins.offset;
709                 kfree(async_extent);
710                 cond_resched();
711         }
712
713         return 0;
714 }
715
716 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
717                                       u64 num_bytes)
718 {
719         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
720         struct extent_map *em;
721         u64 alloc_hint = 0;
722
723         read_lock(&em_tree->lock);
724         em = search_extent_mapping(em_tree, start, num_bytes);
725         if (em) {
726                 /*
727                  * if block start isn't an actual block number then find the
728                  * first block in this inode and use that as a hint.  If that
729                  * block is also bogus then just don't worry about it.
730                  */
731                 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
732                         free_extent_map(em);
733                         em = search_extent_mapping(em_tree, 0, 0);
734                         if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
735                                 alloc_hint = em->block_start;
736                         if (em)
737                                 free_extent_map(em);
738                 } else {
739                         alloc_hint = em->block_start;
740                         free_extent_map(em);
741                 }
742         }
743         read_unlock(&em_tree->lock);
744
745         return alloc_hint;
746 }
747
748 /*
749  * when extent_io.c finds a delayed allocation range in the file,
750  * the call backs end up in this code.  The basic idea is to
751  * allocate extents on disk for the range, and create ordered data structs
752  * in ram to track those extents.
753  *
754  * locked_page is the page that writepage had locked already.  We use
755  * it to make sure we don't do extra locks or unlocks.
756  *
757  * *page_started is set to one if we unlock locked_page and do everything
758  * required to start IO on it.  It may be clean and already done with
759  * IO when we return.
760  */
761 static noinline int cow_file_range(struct inode *inode,
762                                    struct page *locked_page,
763                                    u64 start, u64 end, int *page_started,
764                                    unsigned long *nr_written,
765                                    int unlock)
766 {
767         struct btrfs_root *root = BTRFS_I(inode)->root;
768         struct btrfs_trans_handle *trans;
769         u64 alloc_hint = 0;
770         u64 num_bytes;
771         unsigned long ram_size;
772         u64 disk_num_bytes;
773         u64 cur_alloc_size;
774         u64 blocksize = root->sectorsize;
775         struct btrfs_key ins;
776         struct extent_map *em;
777         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
778         int ret = 0;
779
780         BUG_ON(root == root->fs_info->tree_root);
781         trans = btrfs_join_transaction(root, 1);
782         BUG_ON(IS_ERR(trans));
783         btrfs_set_trans_block_group(trans, inode);
784         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
785
786         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
787         num_bytes = max(blocksize,  num_bytes);
788         disk_num_bytes = num_bytes;
789         ret = 0;
790
791         if (start == 0) {
792                 /* lets try to make an inline extent */
793                 ret = cow_file_range_inline(trans, root, inode,
794                                             start, end, 0, 0, NULL);
795                 if (ret == 0) {
796                         extent_clear_unlock_delalloc(inode,
797                                      &BTRFS_I(inode)->io_tree,
798                                      start, end, NULL,
799                                      EXTENT_CLEAR_UNLOCK_PAGE |
800                                      EXTENT_CLEAR_UNLOCK |
801                                      EXTENT_CLEAR_DELALLOC |
802                                      EXTENT_CLEAR_DIRTY |
803                                      EXTENT_SET_WRITEBACK |
804                                      EXTENT_END_WRITEBACK);
805
806                         *nr_written = *nr_written +
807                              (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
808                         *page_started = 1;
809                         ret = 0;
810                         goto out;
811                 }
812         }
813
814         BUG_ON(disk_num_bytes >
815                btrfs_super_total_bytes(&root->fs_info->super_copy));
816
817         alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
818         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
819
820         while (disk_num_bytes > 0) {
821                 unsigned long op;
822
823                 cur_alloc_size = disk_num_bytes;
824                 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
825                                            root->sectorsize, 0, alloc_hint,
826                                            (u64)-1, &ins, 1);
827                 BUG_ON(ret);
828
829                 em = alloc_extent_map(GFP_NOFS);
830                 BUG_ON(!em);
831                 em->start = start;
832                 em->orig_start = em->start;
833                 ram_size = ins.offset;
834                 em->len = ins.offset;
835
836                 em->block_start = ins.objectid;
837                 em->block_len = ins.offset;
838                 em->bdev = root->fs_info->fs_devices->latest_bdev;
839                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
840
841                 while (1) {
842                         write_lock(&em_tree->lock);
843                         ret = add_extent_mapping(em_tree, em);
844                         write_unlock(&em_tree->lock);
845                         if (ret != -EEXIST) {
846                                 free_extent_map(em);
847                                 break;
848                         }
849                         btrfs_drop_extent_cache(inode, start,
850                                                 start + ram_size - 1, 0);
851                 }
852
853                 cur_alloc_size = ins.offset;
854                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
855                                                ram_size, cur_alloc_size, 0);
856                 BUG_ON(ret);
857
858                 if (root->root_key.objectid ==
859                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
860                         ret = btrfs_reloc_clone_csums(inode, start,
861                                                       cur_alloc_size);
862                         BUG_ON(ret);
863                 }
864
865                 if (disk_num_bytes < cur_alloc_size)
866                         break;
867
868                 /* we're not doing compressed IO, don't unlock the first
869                  * page (which the caller expects to stay locked), don't
870                  * clear any dirty bits and don't set any writeback bits
871                  *
872                  * Do set the Private2 bit so we know this page was properly
873                  * setup for writepage
874                  */
875                 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
876                 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
877                         EXTENT_SET_PRIVATE2;
878
879                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
880                                              start, start + ram_size - 1,
881                                              locked_page, op);
882                 disk_num_bytes -= cur_alloc_size;
883                 num_bytes -= cur_alloc_size;
884                 alloc_hint = ins.objectid + ins.offset;
885                 start += cur_alloc_size;
886         }
887 out:
888         ret = 0;
889         btrfs_end_transaction(trans, root);
890
891         return ret;
892 }
893
894 /*
895  * work queue call back to started compression on a file and pages
896  */
897 static noinline void async_cow_start(struct btrfs_work *work)
898 {
899         struct async_cow *async_cow;
900         int num_added = 0;
901         async_cow = container_of(work, struct async_cow, work);
902
903         compress_file_range(async_cow->inode, async_cow->locked_page,
904                             async_cow->start, async_cow->end, async_cow,
905                             &num_added);
906         if (num_added == 0)
907                 async_cow->inode = NULL;
908 }
909
910 /*
911  * work queue call back to submit previously compressed pages
912  */
913 static noinline void async_cow_submit(struct btrfs_work *work)
914 {
915         struct async_cow *async_cow;
916         struct btrfs_root *root;
917         unsigned long nr_pages;
918
919         async_cow = container_of(work, struct async_cow, work);
920
921         root = async_cow->root;
922         nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
923                 PAGE_CACHE_SHIFT;
924
925         atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
926
927         if (atomic_read(&root->fs_info->async_delalloc_pages) <
928             5 * 1042 * 1024 &&
929             waitqueue_active(&root->fs_info->async_submit_wait))
930                 wake_up(&root->fs_info->async_submit_wait);
931
932         if (async_cow->inode)
933                 submit_compressed_extents(async_cow->inode, async_cow);
934 }
935
936 static noinline void async_cow_free(struct btrfs_work *work)
937 {
938         struct async_cow *async_cow;
939         async_cow = container_of(work, struct async_cow, work);
940         kfree(async_cow);
941 }
942
943 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
944                                 u64 start, u64 end, int *page_started,
945                                 unsigned long *nr_written)
946 {
947         struct async_cow *async_cow;
948         struct btrfs_root *root = BTRFS_I(inode)->root;
949         unsigned long nr_pages;
950         u64 cur_end;
951         int limit = 10 * 1024 * 1042;
952
953         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
954                          1, 0, NULL, GFP_NOFS);
955         while (start < end) {
956                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
957                 async_cow->inode = inode;
958                 async_cow->root = root;
959                 async_cow->locked_page = locked_page;
960                 async_cow->start = start;
961
962                 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
963                         cur_end = end;
964                 else
965                         cur_end = min(end, start + 512 * 1024 - 1);
966
967                 async_cow->end = cur_end;
968                 INIT_LIST_HEAD(&async_cow->extents);
969
970                 async_cow->work.func = async_cow_start;
971                 async_cow->work.ordered_func = async_cow_submit;
972                 async_cow->work.ordered_free = async_cow_free;
973                 async_cow->work.flags = 0;
974
975                 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
976                         PAGE_CACHE_SHIFT;
977                 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
978
979                 btrfs_queue_worker(&root->fs_info->delalloc_workers,
980                                    &async_cow->work);
981
982                 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
983                         wait_event(root->fs_info->async_submit_wait,
984                            (atomic_read(&root->fs_info->async_delalloc_pages) <
985                             limit));
986                 }
987
988                 while (atomic_read(&root->fs_info->async_submit_draining) &&
989                       atomic_read(&root->fs_info->async_delalloc_pages)) {
990                         wait_event(root->fs_info->async_submit_wait,
991                           (atomic_read(&root->fs_info->async_delalloc_pages) ==
992                            0));
993                 }
994
995                 *nr_written += nr_pages;
996                 start = cur_end + 1;
997         }
998         *page_started = 1;
999         return 0;
1000 }
1001
1002 static noinline int csum_exist_in_range(struct btrfs_root *root,
1003                                         u64 bytenr, u64 num_bytes)
1004 {
1005         int ret;
1006         struct btrfs_ordered_sum *sums;
1007         LIST_HEAD(list);
1008
1009         ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1010                                        bytenr + num_bytes - 1, &list);
1011         if (ret == 0 && list_empty(&list))
1012                 return 0;
1013
1014         while (!list_empty(&list)) {
1015                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1016                 list_del(&sums->list);
1017                 kfree(sums);
1018         }
1019         return 1;
1020 }
1021
1022 /*
1023  * when nowcow writeback call back.  This checks for snapshots or COW copies
1024  * of the extents that exist in the file, and COWs the file as required.
1025  *
1026  * If no cow copies or snapshots exist, we write directly to the existing
1027  * blocks on disk
1028  */
1029 static noinline int run_delalloc_nocow(struct inode *inode,
1030                                        struct page *locked_page,
1031                               u64 start, u64 end, int *page_started, int force,
1032                               unsigned long *nr_written)
1033 {
1034         struct btrfs_root *root = BTRFS_I(inode)->root;
1035         struct btrfs_trans_handle *trans;
1036         struct extent_buffer *leaf;
1037         struct btrfs_path *path;
1038         struct btrfs_file_extent_item *fi;
1039         struct btrfs_key found_key;
1040         u64 cow_start;
1041         u64 cur_offset;
1042         u64 extent_end;
1043         u64 extent_offset;
1044         u64 disk_bytenr;
1045         u64 num_bytes;
1046         int extent_type;
1047         int ret;
1048         int type;
1049         int nocow;
1050         int check_prev = 1;
1051         bool nolock = false;
1052
1053         path = btrfs_alloc_path();
1054         BUG_ON(!path);
1055         if (root == root->fs_info->tree_root) {
1056                 nolock = true;
1057                 trans = btrfs_join_transaction_nolock(root, 1);
1058         } else {
1059                 trans = btrfs_join_transaction(root, 1);
1060         }
1061         BUG_ON(IS_ERR(trans));
1062
1063         cow_start = (u64)-1;
1064         cur_offset = start;
1065         while (1) {
1066                 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1067                                                cur_offset, 0);
1068                 BUG_ON(ret < 0);
1069                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1070                         leaf = path->nodes[0];
1071                         btrfs_item_key_to_cpu(leaf, &found_key,
1072                                               path->slots[0] - 1);
1073                         if (found_key.objectid == inode->i_ino &&
1074                             found_key.type == BTRFS_EXTENT_DATA_KEY)
1075                                 path->slots[0]--;
1076                 }
1077                 check_prev = 0;
1078 next_slot:
1079                 leaf = path->nodes[0];
1080                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1081                         ret = btrfs_next_leaf(root, path);
1082                         if (ret < 0)
1083                                 BUG_ON(1);
1084                         if (ret > 0)
1085                                 break;
1086                         leaf = path->nodes[0];
1087                 }
1088
1089                 nocow = 0;
1090                 disk_bytenr = 0;
1091                 num_bytes = 0;
1092                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1093
1094                 if (found_key.objectid > inode->i_ino ||
1095                     found_key.type > BTRFS_EXTENT_DATA_KEY ||
1096                     found_key.offset > end)
1097                         break;
1098
1099                 if (found_key.offset > cur_offset) {
1100                         extent_end = found_key.offset;
1101                         extent_type = 0;
1102                         goto out_check;
1103                 }
1104
1105                 fi = btrfs_item_ptr(leaf, path->slots[0],
1106                                     struct btrfs_file_extent_item);
1107                 extent_type = btrfs_file_extent_type(leaf, fi);
1108
1109                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1110                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1111                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1112                         extent_offset = btrfs_file_extent_offset(leaf, fi);
1113                         extent_end = found_key.offset +
1114                                 btrfs_file_extent_num_bytes(leaf, fi);
1115                         if (extent_end <= start) {
1116                                 path->slots[0]++;
1117                                 goto next_slot;
1118                         }
1119                         if (disk_bytenr == 0)
1120                                 goto out_check;
1121                         if (btrfs_file_extent_compression(leaf, fi) ||
1122                             btrfs_file_extent_encryption(leaf, fi) ||
1123                             btrfs_file_extent_other_encoding(leaf, fi))
1124                                 goto out_check;
1125                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1126                                 goto out_check;
1127                         if (btrfs_extent_readonly(root, disk_bytenr))
1128                                 goto out_check;
1129                         if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
1130                                                   found_key.offset -
1131                                                   extent_offset, disk_bytenr))
1132                                 goto out_check;
1133                         disk_bytenr += extent_offset;
1134                         disk_bytenr += cur_offset - found_key.offset;
1135                         num_bytes = min(end + 1, extent_end) - cur_offset;
1136                         /*
1137                          * force cow if csum exists in the range.
1138                          * this ensure that csum for a given extent are
1139                          * either valid or do not exist.
1140                          */
1141                         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1142                                 goto out_check;
1143                         nocow = 1;
1144                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1145                         extent_end = found_key.offset +
1146                                 btrfs_file_extent_inline_len(leaf, fi);
1147                         extent_end = ALIGN(extent_end, root->sectorsize);
1148                 } else {
1149                         BUG_ON(1);
1150                 }
1151 out_check:
1152                 if (extent_end <= start) {
1153                         path->slots[0]++;
1154                         goto next_slot;
1155                 }
1156                 if (!nocow) {
1157                         if (cow_start == (u64)-1)
1158                                 cow_start = cur_offset;
1159                         cur_offset = extent_end;
1160                         if (cur_offset > end)
1161                                 break;
1162                         path->slots[0]++;
1163                         goto next_slot;
1164                 }
1165
1166                 btrfs_release_path(root, path);
1167                 if (cow_start != (u64)-1) {
1168                         ret = cow_file_range(inode, locked_page, cow_start,
1169                                         found_key.offset - 1, page_started,
1170                                         nr_written, 1);
1171                         BUG_ON(ret);
1172                         cow_start = (u64)-1;
1173                 }
1174
1175                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1176                         struct extent_map *em;
1177                         struct extent_map_tree *em_tree;
1178                         em_tree = &BTRFS_I(inode)->extent_tree;
1179                         em = alloc_extent_map(GFP_NOFS);
1180                         BUG_ON(!em);
1181                         em->start = cur_offset;
1182                         em->orig_start = em->start;
1183                         em->len = num_bytes;
1184                         em->block_len = num_bytes;
1185                         em->block_start = disk_bytenr;
1186                         em->bdev = root->fs_info->fs_devices->latest_bdev;
1187                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
1188                         while (1) {
1189                                 write_lock(&em_tree->lock);
1190                                 ret = add_extent_mapping(em_tree, em);
1191                                 write_unlock(&em_tree->lock);
1192                                 if (ret != -EEXIST) {
1193                                         free_extent_map(em);
1194                                         break;
1195                                 }
1196                                 btrfs_drop_extent_cache(inode, em->start,
1197                                                 em->start + em->len - 1, 0);
1198                         }
1199                         type = BTRFS_ORDERED_PREALLOC;
1200                 } else {
1201                         type = BTRFS_ORDERED_NOCOW;
1202                 }
1203
1204                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1205                                                num_bytes, num_bytes, type);
1206                 BUG_ON(ret);
1207
1208                 if (root->root_key.objectid ==
1209                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
1210                         ret = btrfs_reloc_clone_csums(inode, cur_offset,
1211                                                       num_bytes);
1212                         BUG_ON(ret);
1213                 }
1214
1215                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1216                                 cur_offset, cur_offset + num_bytes - 1,
1217                                 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1218                                 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1219                                 EXTENT_SET_PRIVATE2);
1220                 cur_offset = extent_end;
1221                 if (cur_offset > end)
1222                         break;
1223         }
1224         btrfs_release_path(root, path);
1225
1226         if (cur_offset <= end && cow_start == (u64)-1)
1227                 cow_start = cur_offset;
1228         if (cow_start != (u64)-1) {
1229                 ret = cow_file_range(inode, locked_page, cow_start, end,
1230                                      page_started, nr_written, 1);
1231                 BUG_ON(ret);
1232         }
1233
1234         if (nolock) {
1235                 ret = btrfs_end_transaction_nolock(trans, root);
1236                 BUG_ON(ret);
1237         } else {
1238                 ret = btrfs_end_transaction(trans, root);
1239                 BUG_ON(ret);
1240         }
1241         btrfs_free_path(path);
1242         return 0;
1243 }
1244
1245 /*
1246  * extent_io.c call back to do delayed allocation processing
1247  */
1248 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1249                               u64 start, u64 end, int *page_started,
1250                               unsigned long *nr_written)
1251 {
1252         int ret;
1253         struct btrfs_root *root = BTRFS_I(inode)->root;
1254
1255         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1256                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1257                                          page_started, 1, nr_written);
1258         else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1259                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1260                                          page_started, 0, nr_written);
1261         else if (!btrfs_test_opt(root, COMPRESS) &&
1262                  !(BTRFS_I(inode)->force_compress) &&
1263                  !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
1264                 ret = cow_file_range(inode, locked_page, start, end,
1265                                       page_started, nr_written, 1);
1266         else
1267                 ret = cow_file_range_async(inode, locked_page, start, end,
1268                                            page_started, nr_written);
1269         return ret;
1270 }
1271
1272 static int btrfs_split_extent_hook(struct inode *inode,
1273                                    struct extent_state *orig, u64 split)
1274 {
1275         /* not delalloc, ignore it */
1276         if (!(orig->state & EXTENT_DELALLOC))
1277                 return 0;
1278
1279         atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1280         return 0;
1281 }
1282
1283 /*
1284  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1285  * extents so we can keep track of new extents that are just merged onto old
1286  * extents, such as when we are doing sequential writes, so we can properly
1287  * account for the metadata space we'll need.
1288  */
1289 static int btrfs_merge_extent_hook(struct inode *inode,
1290                                    struct extent_state *new,
1291                                    struct extent_state *other)
1292 {
1293         /* not delalloc, ignore it */
1294         if (!(other->state & EXTENT_DELALLOC))
1295                 return 0;
1296
1297         atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1298         return 0;
1299 }
1300
1301 /*
1302  * extent_io.c set_bit_hook, used to track delayed allocation
1303  * bytes in this file, and to maintain the list of inodes that
1304  * have pending delalloc work to be done.
1305  */
1306 static int btrfs_set_bit_hook(struct inode *inode,
1307                               struct extent_state *state, int *bits)
1308 {
1309
1310         /*
1311          * set_bit and clear bit hooks normally require _irqsave/restore
1312          * but in this case, we are only testeing for the DELALLOC
1313          * bit, which is only set or cleared with irqs on
1314          */
1315         if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1316                 struct btrfs_root *root = BTRFS_I(inode)->root;
1317                 u64 len = state->end + 1 - state->start;
1318                 int do_list = (root->root_key.objectid !=
1319                                BTRFS_ROOT_TREE_OBJECTID);
1320
1321                 if (*bits & EXTENT_FIRST_DELALLOC)
1322                         *bits &= ~EXTENT_FIRST_DELALLOC;
1323                 else
1324                         atomic_inc(&BTRFS_I(inode)->outstanding_extents);
1325
1326                 spin_lock(&root->fs_info->delalloc_lock);
1327                 BTRFS_I(inode)->delalloc_bytes += len;
1328                 root->fs_info->delalloc_bytes += len;
1329                 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1330                         list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1331                                       &root->fs_info->delalloc_inodes);
1332                 }
1333                 spin_unlock(&root->fs_info->delalloc_lock);
1334         }
1335         return 0;
1336 }
1337
1338 /*
1339  * extent_io.c clear_bit_hook, see set_bit_hook for why
1340  */
1341 static int btrfs_clear_bit_hook(struct inode *inode,
1342                                 struct extent_state *state, int *bits)
1343 {
1344         /*
1345          * set_bit and clear bit hooks normally require _irqsave/restore
1346          * but in this case, we are only testeing for the DELALLOC
1347          * bit, which is only set or cleared with irqs on
1348          */
1349         if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1350                 struct btrfs_root *root = BTRFS_I(inode)->root;
1351                 u64 len = state->end + 1 - state->start;
1352                 int do_list = (root->root_key.objectid !=
1353                                BTRFS_ROOT_TREE_OBJECTID);
1354
1355                 if (*bits & EXTENT_FIRST_DELALLOC)
1356                         *bits &= ~EXTENT_FIRST_DELALLOC;
1357                 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1358                         atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1359
1360                 if (*bits & EXTENT_DO_ACCOUNTING)
1361                         btrfs_delalloc_release_metadata(inode, len);
1362
1363                 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1364                     && do_list)
1365                         btrfs_free_reserved_data_space(inode, len);
1366
1367                 spin_lock(&root->fs_info->delalloc_lock);
1368                 root->fs_info->delalloc_bytes -= len;
1369                 BTRFS_I(inode)->delalloc_bytes -= len;
1370
1371                 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1372                     !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1373                         list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1374                 }
1375                 spin_unlock(&root->fs_info->delalloc_lock);
1376         }
1377         return 0;
1378 }
1379
1380 /*
1381  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1382  * we don't create bios that span stripes or chunks
1383  */
1384 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1385                          size_t size, struct bio *bio,
1386                          unsigned long bio_flags)
1387 {
1388         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1389         struct btrfs_mapping_tree *map_tree;
1390         u64 logical = (u64)bio->bi_sector << 9;
1391         u64 length = 0;
1392         u64 map_length;
1393         int ret;
1394
1395         if (bio_flags & EXTENT_BIO_COMPRESSED)
1396                 return 0;
1397
1398         length = bio->bi_size;
1399         map_tree = &root->fs_info->mapping_tree;
1400         map_length = length;
1401         ret = btrfs_map_block(map_tree, READ, logical,
1402                               &map_length, NULL, 0);
1403
1404         if (map_length < length + size)
1405                 return 1;
1406         return ret;
1407 }
1408
1409 /*
1410  * in order to insert checksums into the metadata in large chunks,
1411  * we wait until bio submission time.   All the pages in the bio are
1412  * checksummed and sums are attached onto the ordered extent record.
1413  *
1414  * At IO completion time the cums attached on the ordered extent record
1415  * are inserted into the btree
1416  */
1417 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1418                                     struct bio *bio, int mirror_num,
1419                                     unsigned long bio_flags,
1420                                     u64 bio_offset)
1421 {
1422         struct btrfs_root *root = BTRFS_I(inode)->root;
1423         int ret = 0;
1424
1425         ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1426         BUG_ON(ret);
1427         return 0;
1428 }
1429
1430 /*
1431  * in order to insert checksums into the metadata in large chunks,
1432  * we wait until bio submission time.   All the pages in the bio are
1433  * checksummed and sums are attached onto the ordered extent record.
1434  *
1435  * At IO completion time the cums attached on the ordered extent record
1436  * are inserted into the btree
1437  */
1438 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1439                           int mirror_num, unsigned long bio_flags,
1440                           u64 bio_offset)
1441 {
1442         struct btrfs_root *root = BTRFS_I(inode)->root;
1443         return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1444 }
1445
1446 /*
1447  * extent_io.c submission hook. This does the right thing for csum calculation
1448  * on write, or reading the csums from the tree before a read
1449  */
1450 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1451                           int mirror_num, unsigned long bio_flags,
1452                           u64 bio_offset)
1453 {
1454         struct btrfs_root *root = BTRFS_I(inode)->root;
1455         int ret = 0;
1456         int skip_sum;
1457
1458         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1459
1460         if (root == root->fs_info->tree_root)
1461                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1462         else
1463                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1464         BUG_ON(ret);
1465
1466         if (!(rw & REQ_WRITE)) {
1467                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1468                         return btrfs_submit_compressed_read(inode, bio,
1469                                                     mirror_num, bio_flags);
1470                 } else if (!skip_sum) {
1471                         ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1472                         if (ret)
1473                                 return ret;
1474                 }
1475                 goto mapit;
1476         } else if (!skip_sum) {
1477                 /* csum items have already been cloned */
1478                 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1479                         goto mapit;
1480                 /* we're doing a write, do the async checksumming */
1481                 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1482                                    inode, rw, bio, mirror_num,
1483                                    bio_flags, bio_offset,
1484                                    __btrfs_submit_bio_start,
1485                                    __btrfs_submit_bio_done);
1486         }
1487
1488 mapit:
1489         return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1490 }
1491
1492 /*
1493  * given a list of ordered sums record them in the inode.  This happens
1494  * at IO completion time based on sums calculated at bio submission time.
1495  */
1496 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1497                              struct inode *inode, u64 file_offset,
1498                              struct list_head *list)
1499 {
1500         struct btrfs_ordered_sum *sum;
1501
1502         btrfs_set_trans_block_group(trans, inode);
1503
1504         list_for_each_entry(sum, list, list) {
1505                 btrfs_csum_file_blocks(trans,
1506                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
1507         }
1508         return 0;
1509 }
1510
1511 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1512                               struct extent_state **cached_state)
1513 {
1514         if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1515                 WARN_ON(1);
1516         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1517                                    cached_state, GFP_NOFS);
1518 }
1519
1520 /* see btrfs_writepage_start_hook for details on why this is required */
1521 struct btrfs_writepage_fixup {
1522         struct page *page;
1523         struct btrfs_work work;
1524 };
1525
1526 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1527 {
1528         struct btrfs_writepage_fixup *fixup;
1529         struct btrfs_ordered_extent *ordered;
1530         struct extent_state *cached_state = NULL;
1531         struct page *page;
1532         struct inode *inode;
1533         u64 page_start;
1534         u64 page_end;
1535
1536         fixup = container_of(work, struct btrfs_writepage_fixup, work);
1537         page = fixup->page;
1538 again:
1539         lock_page(page);
1540         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1541                 ClearPageChecked(page);
1542                 goto out_page;
1543         }
1544
1545         inode = page->mapping->host;
1546         page_start = page_offset(page);
1547         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1548
1549         lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1550                          &cached_state, GFP_NOFS);
1551
1552         /* already ordered? We're done */
1553         if (PagePrivate2(page))
1554                 goto out;
1555
1556         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1557         if (ordered) {
1558                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1559                                      page_end, &cached_state, GFP_NOFS);
1560                 unlock_page(page);
1561                 btrfs_start_ordered_extent(inode, ordered, 1);
1562                 goto again;
1563         }
1564
1565         BUG();
1566         btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1567         ClearPageChecked(page);
1568 out:
1569         unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1570                              &cached_state, GFP_NOFS);
1571 out_page:
1572         unlock_page(page);
1573         page_cache_release(page);
1574         kfree(fixup);
1575 }
1576
1577 /*
1578  * There are a few paths in the higher layers of the kernel that directly
1579  * set the page dirty bit without asking the filesystem if it is a
1580  * good idea.  This causes problems because we want to make sure COW
1581  * properly happens and the data=ordered rules are followed.
1582  *
1583  * In our case any range that doesn't have the ORDERED bit set
1584  * hasn't been properly setup for IO.  We kick off an async process
1585  * to fix it up.  The async helper will wait for ordered extents, set
1586  * the delalloc bit and make it safe to write the page.
1587  */
1588 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1589 {
1590         struct inode *inode = page->mapping->host;
1591         struct btrfs_writepage_fixup *fixup;
1592         struct btrfs_root *root = BTRFS_I(inode)->root;
1593
1594         /* this page is properly in the ordered list */
1595         if (TestClearPagePrivate2(page))
1596                 return 0;
1597
1598         if (PageChecked(page))
1599                 return -EAGAIN;
1600
1601         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1602         if (!fixup)
1603                 return -EAGAIN;
1604
1605         SetPageChecked(page);
1606         page_cache_get(page);
1607         fixup->work.func = btrfs_writepage_fixup_worker;
1608         fixup->page = page;
1609         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1610         return -EAGAIN;
1611 }
1612
1613 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1614                                        struct inode *inode, u64 file_pos,
1615                                        u64 disk_bytenr, u64 disk_num_bytes,
1616                                        u64 num_bytes, u64 ram_bytes,
1617                                        u8 compression, u8 encryption,
1618                                        u16 other_encoding, int extent_type)
1619 {
1620         struct btrfs_root *root = BTRFS_I(inode)->root;
1621         struct btrfs_file_extent_item *fi;
1622         struct btrfs_path *path;
1623         struct extent_buffer *leaf;
1624         struct btrfs_key ins;
1625         u64 hint;
1626         int ret;
1627
1628         path = btrfs_alloc_path();
1629         BUG_ON(!path);
1630
1631         path->leave_spinning = 1;
1632
1633         /*
1634          * we may be replacing one extent in the tree with another.
1635          * The new extent is pinned in the extent map, and we don't want
1636          * to drop it from the cache until it is completely in the btree.
1637          *
1638          * So, tell btrfs_drop_extents to leave this extent in the cache.
1639          * the caller is expected to unpin it and allow it to be merged
1640          * with the others.
1641          */
1642         ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1643                                  &hint, 0);
1644         BUG_ON(ret);
1645
1646         ins.objectid = inode->i_ino;
1647         ins.offset = file_pos;
1648         ins.type = BTRFS_EXTENT_DATA_KEY;
1649         ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1650         BUG_ON(ret);
1651         leaf = path->nodes[0];
1652         fi = btrfs_item_ptr(leaf, path->slots[0],
1653                             struct btrfs_file_extent_item);
1654         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1655         btrfs_set_file_extent_type(leaf, fi, extent_type);
1656         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1657         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1658         btrfs_set_file_extent_offset(leaf, fi, 0);
1659         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1660         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1661         btrfs_set_file_extent_compression(leaf, fi, compression);
1662         btrfs_set_file_extent_encryption(leaf, fi, encryption);
1663         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1664
1665         btrfs_unlock_up_safe(path, 1);
1666         btrfs_set_lock_blocking(leaf);
1667
1668         btrfs_mark_buffer_dirty(leaf);
1669
1670         inode_add_bytes(inode, num_bytes);
1671
1672         ins.objectid = disk_bytenr;
1673         ins.offset = disk_num_bytes;
1674         ins.type = BTRFS_EXTENT_ITEM_KEY;
1675         ret = btrfs_alloc_reserved_file_extent(trans, root,
1676                                         root->root_key.objectid,
1677                                         inode->i_ino, file_pos, &ins);
1678         BUG_ON(ret);
1679         btrfs_free_path(path);
1680
1681         return 0;
1682 }
1683
1684 /*
1685  * helper function for btrfs_finish_ordered_io, this
1686  * just reads in some of the csum leaves to prime them into ram
1687  * before we start the transaction.  It limits the amount of btree
1688  * reads required while inside the transaction.
1689  */
1690 /* as ordered data IO finishes, this gets called so we can finish
1691  * an ordered extent if the range of bytes in the file it covers are
1692  * fully written.
1693  */
1694 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1695 {
1696         struct btrfs_root *root = BTRFS_I(inode)->root;
1697         struct btrfs_trans_handle *trans = NULL;
1698         struct btrfs_ordered_extent *ordered_extent = NULL;
1699         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1700         struct extent_state *cached_state = NULL;
1701         int compress_type = 0;
1702         int ret;
1703         bool nolock = false;
1704
1705         ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1706                                              end - start + 1);
1707         if (!ret)
1708                 return 0;
1709         BUG_ON(!ordered_extent);
1710
1711         nolock = (root == root->fs_info->tree_root);
1712
1713         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1714                 BUG_ON(!list_empty(&ordered_extent->list));
1715                 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1716                 if (!ret) {
1717                         if (nolock)
1718                                 trans = btrfs_join_transaction_nolock(root, 1);
1719                         else
1720                                 trans = btrfs_join_transaction(root, 1);
1721                         BUG_ON(IS_ERR(trans));
1722                         btrfs_set_trans_block_group(trans, inode);
1723                         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1724                         ret = btrfs_update_inode(trans, root, inode);
1725                         BUG_ON(ret);
1726                 }
1727                 goto out;
1728         }
1729
1730         lock_extent_bits(io_tree, ordered_extent->file_offset,
1731                          ordered_extent->file_offset + ordered_extent->len - 1,
1732                          0, &cached_state, GFP_NOFS);
1733
1734         if (nolock)
1735                 trans = btrfs_join_transaction_nolock(root, 1);
1736         else
1737                 trans = btrfs_join_transaction(root, 1);
1738         BUG_ON(IS_ERR(trans));
1739         btrfs_set_trans_block_group(trans, inode);
1740         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1741
1742         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1743                 compress_type = ordered_extent->compress_type;
1744         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1745                 BUG_ON(compress_type);
1746                 ret = btrfs_mark_extent_written(trans, inode,
1747                                                 ordered_extent->file_offset,
1748                                                 ordered_extent->file_offset +
1749                                                 ordered_extent->len);
1750                 BUG_ON(ret);
1751         } else {
1752                 BUG_ON(root == root->fs_info->tree_root);
1753                 ret = insert_reserved_file_extent(trans, inode,
1754                                                 ordered_extent->file_offset,
1755                                                 ordered_extent->start,
1756                                                 ordered_extent->disk_len,
1757                                                 ordered_extent->len,
1758                                                 ordered_extent->len,
1759                                                 compress_type, 0, 0,
1760                                                 BTRFS_FILE_EXTENT_REG);
1761                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1762                                    ordered_extent->file_offset,
1763                                    ordered_extent->len);
1764                 BUG_ON(ret);
1765         }
1766         unlock_extent_cached(io_tree, ordered_extent->file_offset,
1767                              ordered_extent->file_offset +
1768                              ordered_extent->len - 1, &cached_state, GFP_NOFS);
1769
1770         add_pending_csums(trans, inode, ordered_extent->file_offset,
1771                           &ordered_extent->list);
1772
1773         ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1774         if (!ret) {
1775                 ret = btrfs_update_inode(trans, root, inode);
1776                 BUG_ON(ret);
1777         }
1778         ret = 0;
1779 out:
1780         if (nolock) {
1781                 if (trans)
1782                         btrfs_end_transaction_nolock(trans, root);
1783         } else {
1784                 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1785                 if (trans)
1786                         btrfs_end_transaction(trans, root);
1787         }
1788
1789         /* once for us */
1790         btrfs_put_ordered_extent(ordered_extent);
1791         /* once for the tree */
1792         btrfs_put_ordered_extent(ordered_extent);
1793
1794         return 0;
1795 }
1796
1797 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1798                                 struct extent_state *state, int uptodate)
1799 {
1800         trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1801
1802         ClearPagePrivate2(page);
1803         return btrfs_finish_ordered_io(page->mapping->host, start, end);
1804 }
1805
1806 /*
1807  * When IO fails, either with EIO or csum verification fails, we
1808  * try other mirrors that might have a good copy of the data.  This
1809  * io_failure_record is used to record state as we go through all the
1810  * mirrors.  If another mirror has good data, the page is set up to date
1811  * and things continue.  If a good mirror can't be found, the original
1812  * bio end_io callback is called to indicate things have failed.
1813  */
1814 struct io_failure_record {
1815         struct page *page;
1816         u64 start;
1817         u64 len;
1818         u64 logical;
1819         unsigned long bio_flags;
1820         int last_mirror;
1821 };
1822
1823 static int btrfs_io_failed_hook(struct bio *failed_bio,
1824                          struct page *page, u64 start, u64 end,
1825                          struct extent_state *state)
1826 {
1827         struct io_failure_record *failrec = NULL;
1828         u64 private;
1829         struct extent_map *em;
1830         struct inode *inode = page->mapping->host;
1831         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1832         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1833         struct bio *bio;
1834         int num_copies;
1835         int ret;
1836         int rw;
1837         u64 logical;
1838
1839         ret = get_state_private(failure_tree, start, &private);
1840         if (ret) {
1841                 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1842                 if (!failrec)
1843                         return -ENOMEM;
1844                 failrec->start = start;
1845                 failrec->len = end - start + 1;
1846                 failrec->last_mirror = 0;
1847                 failrec->bio_flags = 0;
1848
1849                 read_lock(&em_tree->lock);
1850                 em = lookup_extent_mapping(em_tree, start, failrec->len);
1851                 if (em->start > start || em->start + em->len < start) {
1852                         free_extent_map(em);
1853                         em = NULL;
1854                 }
1855                 read_unlock(&em_tree->lock);
1856
1857                 if (!em || IS_ERR(em)) {
1858                         kfree(failrec);
1859                         return -EIO;
1860                 }
1861                 logical = start - em->start;
1862                 logical = em->block_start + logical;
1863                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1864                         logical = em->block_start;
1865                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1866                         extent_set_compress_type(&failrec->bio_flags,
1867                                                  em->compress_type);
1868                 }
1869                 failrec->logical = logical;
1870                 free_extent_map(em);
1871                 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1872                                 EXTENT_DIRTY, GFP_NOFS);
1873                 set_state_private(failure_tree, start,
1874                                  (u64)(unsigned long)failrec);
1875         } else {
1876                 failrec = (struct io_failure_record *)(unsigned long)private;
1877         }
1878         num_copies = btrfs_num_copies(
1879                               &BTRFS_I(inode)->root->fs_info->mapping_tree,
1880                               failrec->logical, failrec->len);
1881         failrec->last_mirror++;
1882         if (!state) {
1883                 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1884                 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1885                                                     failrec->start,
1886                                                     EXTENT_LOCKED);
1887                 if (state && state->start != failrec->start)
1888                         state = NULL;
1889                 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1890         }
1891         if (!state || failrec->last_mirror > num_copies) {
1892                 set_state_private(failure_tree, failrec->start, 0);
1893                 clear_extent_bits(failure_tree, failrec->start,
1894                                   failrec->start + failrec->len - 1,
1895                                   EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1896                 kfree(failrec);
1897                 return -EIO;
1898         }
1899         bio = bio_alloc(GFP_NOFS, 1);
1900         bio->bi_private = state;
1901         bio->bi_end_io = failed_bio->bi_end_io;
1902         bio->bi_sector = failrec->logical >> 9;
1903         bio->bi_bdev = failed_bio->bi_bdev;
1904         bio->bi_size = 0;
1905
1906         bio_add_page(bio, page, failrec->len, start - page_offset(page));
1907         if (failed_bio->bi_rw & REQ_WRITE)
1908                 rw = WRITE;
1909         else
1910                 rw = READ;
1911
1912         ret = BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1913                                                       failrec->last_mirror,
1914                                                       failrec->bio_flags, 0);
1915         return ret;
1916 }
1917
1918 /*
1919  * each time an IO finishes, we do a fast check in the IO failure tree
1920  * to see if we need to process or clean up an io_failure_record
1921  */
1922 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1923 {
1924         u64 private;
1925         u64 private_failure;
1926         struct io_failure_record *failure;
1927         int ret;
1928
1929         private = 0;
1930         if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1931                              (u64)-1, 1, EXTENT_DIRTY, 0)) {
1932                 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1933                                         start, &private_failure);
1934                 if (ret == 0) {
1935                         failure = (struct io_failure_record *)(unsigned long)
1936                                    private_failure;
1937                         set_state_private(&BTRFS_I(inode)->io_failure_tree,
1938                                           failure->start, 0);
1939                         clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1940                                           failure->start,
1941                                           failure->start + failure->len - 1,
1942                                           EXTENT_DIRTY | EXTENT_LOCKED,
1943                                           GFP_NOFS);
1944                         kfree(failure);
1945                 }
1946         }
1947         return 0;
1948 }
1949
1950 /*
1951  * when reads are done, we need to check csums to verify the data is correct
1952  * if there's a match, we allow the bio to finish.  If not, we go through
1953  * the io_failure_record routines to find good copies
1954  */
1955 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1956                                struct extent_state *state)
1957 {
1958         size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1959         struct inode *inode = page->mapping->host;
1960         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1961         char *kaddr;
1962         u64 private = ~(u32)0;
1963         int ret;
1964         struct btrfs_root *root = BTRFS_I(inode)->root;
1965         u32 csum = ~(u32)0;
1966
1967         if (PageChecked(page)) {
1968                 ClearPageChecked(page);
1969                 goto good;
1970         }
1971
1972         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1973                 return 0;
1974
1975         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1976             test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1977                 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1978                                   GFP_NOFS);
1979                 return 0;
1980         }
1981
1982         if (state && state->start == start) {
1983                 private = state->private;
1984                 ret = 0;
1985         } else {
1986                 ret = get_state_private(io_tree, start, &private);
1987         }
1988         kaddr = kmap_atomic(page, KM_USER0);
1989         if (ret)
1990                 goto zeroit;
1991
1992         csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
1993         btrfs_csum_final(csum, (char *)&csum);
1994         if (csum != private)
1995                 goto zeroit;
1996
1997         kunmap_atomic(kaddr, KM_USER0);
1998 good:
1999         /* if the io failure tree for this inode is non-empty,
2000          * check to see if we've recovered from a failed IO
2001          */
2002         btrfs_clean_io_failures(inode, start);
2003         return 0;
2004
2005 zeroit:
2006         if (printk_ratelimit()) {
2007                 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
2008                        "private %llu\n", page->mapping->host->i_ino,
2009                        (unsigned long long)start, csum,
2010                        (unsigned long long)private);
2011         }
2012         memset(kaddr + offset, 1, end - start + 1);
2013         flush_dcache_page(page);
2014         kunmap_atomic(kaddr, KM_USER0);
2015         if (private == 0)
2016                 return 0;
2017         return -EIO;
2018 }
2019
2020 struct delayed_iput {
2021         struct list_head list;
2022         struct inode *inode;
2023 };
2024
2025 void btrfs_add_delayed_iput(struct inode *inode)
2026 {
2027         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2028         struct delayed_iput *delayed;
2029
2030         if (atomic_add_unless(&inode->i_count, -1, 1))
2031                 return;
2032
2033         delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2034         delayed->inode = inode;
2035
2036         spin_lock(&fs_info->delayed_iput_lock);
2037         list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2038         spin_unlock(&fs_info->delayed_iput_lock);
2039 }
2040
2041 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2042 {
2043         LIST_HEAD(list);
2044         struct btrfs_fs_info *fs_info = root->fs_info;
2045         struct delayed_iput *delayed;
2046         int empty;
2047
2048         spin_lock(&fs_info->delayed_iput_lock);
2049         empty = list_empty(&fs_info->delayed_iputs);
2050         spin_unlock(&fs_info->delayed_iput_lock);
2051         if (empty)
2052                 return;
2053
2054         down_read(&root->fs_info->cleanup_work_sem);
2055         spin_lock(&fs_info->delayed_iput_lock);
2056         list_splice_init(&fs_info->delayed_iputs, &list);
2057         spin_unlock(&fs_info->delayed_iput_lock);
2058
2059         while (!list_empty(&list)) {
2060                 delayed = list_entry(list.next, struct delayed_iput, list);
2061                 list_del(&delayed->list);
2062                 iput(delayed->inode);
2063                 kfree(delayed);
2064         }
2065         up_read(&root->fs_info->cleanup_work_sem);
2066 }
2067
2068 /*
2069  * calculate extra metadata reservation when snapshotting a subvolume
2070  * contains orphan files.
2071  */
2072 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2073                                 struct btrfs_pending_snapshot *pending,
2074                                 u64 *bytes_to_reserve)
2075 {
2076         struct btrfs_root *root;
2077         struct btrfs_block_rsv *block_rsv;
2078         u64 num_bytes;
2079         int index;
2080
2081         root = pending->root;
2082         if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2083                 return;
2084
2085         block_rsv = root->orphan_block_rsv;
2086
2087         /* orphan block reservation for the snapshot */
2088         num_bytes = block_rsv->size;
2089
2090         /*
2091          * after the snapshot is created, COWing tree blocks may use more
2092          * space than it frees. So we should make sure there is enough
2093          * reserved space.
2094          */
2095         index = trans->transid & 0x1;
2096         if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2097                 num_bytes += block_rsv->size -
2098                              (block_rsv->reserved + block_rsv->freed[index]);
2099         }
2100
2101         *bytes_to_reserve += num_bytes;
2102 }
2103
2104 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2105                                 struct btrfs_pending_snapshot *pending)
2106 {
2107         struct btrfs_root *root = pending->root;
2108         struct btrfs_root *snap = pending->snap;
2109         struct btrfs_block_rsv *block_rsv;
2110         u64 num_bytes;
2111         int index;
2112         int ret;
2113
2114         if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2115                 return;
2116
2117         /* refill source subvolume's orphan block reservation */
2118         block_rsv = root->orphan_block_rsv;
2119         index = trans->transid & 0x1;
2120         if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2121                 num_bytes = block_rsv->size -
2122                             (block_rsv->reserved + block_rsv->freed[index]);
2123                 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2124                                               root->orphan_block_rsv,
2125                                               num_bytes);
2126                 BUG_ON(ret);
2127         }
2128
2129         /* setup orphan block reservation for the snapshot */
2130         block_rsv = btrfs_alloc_block_rsv(snap);
2131         BUG_ON(!block_rsv);
2132
2133         btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2134         snap->orphan_block_rsv = block_rsv;
2135
2136         num_bytes = root->orphan_block_rsv->size;
2137         ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2138                                       block_rsv, num_bytes);
2139         BUG_ON(ret);
2140
2141 #if 0
2142         /* insert orphan item for the snapshot */
2143         WARN_ON(!root->orphan_item_inserted);
2144         ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2145                                        snap->root_key.objectid);
2146         BUG_ON(ret);
2147         snap->orphan_item_inserted = 1;
2148 #endif
2149 }
2150
2151 enum btrfs_orphan_cleanup_state {
2152         ORPHAN_CLEANUP_STARTED  = 1,
2153         ORPHAN_CLEANUP_DONE     = 2,
2154 };
2155
2156 /*
2157  * This is called in transaction commmit time. If there are no orphan
2158  * files in the subvolume, it removes orphan item and frees block_rsv
2159  * structure.
2160  */
2161 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2162                               struct btrfs_root *root)
2163 {
2164         int ret;
2165
2166         if (!list_empty(&root->orphan_list) ||
2167             root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2168                 return;
2169
2170         if (root->orphan_item_inserted &&
2171             btrfs_root_refs(&root->root_item) > 0) {
2172                 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2173                                             root->root_key.objectid);
2174                 BUG_ON(ret);
2175                 root->orphan_item_inserted = 0;
2176         }
2177
2178         if (root->orphan_block_rsv) {
2179                 WARN_ON(root->orphan_block_rsv->size > 0);
2180                 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2181                 root->orphan_block_rsv = NULL;
2182         }
2183 }
2184
2185 /*
2186  * This creates an orphan entry for the given inode in case something goes
2187  * wrong in the middle of an unlink/truncate.
2188  *
2189  * NOTE: caller of this function should reserve 5 units of metadata for
2190  *       this function.
2191  */
2192 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2193 {
2194         struct btrfs_root *root = BTRFS_I(inode)->root;
2195         struct btrfs_block_rsv *block_rsv = NULL;
2196         int reserve = 0;
2197         int insert = 0;
2198         int ret;
2199
2200         if (!root->orphan_block_rsv) {
2201                 block_rsv = btrfs_alloc_block_rsv(root);
2202                 BUG_ON(!block_rsv);
2203         }
2204
2205         spin_lock(&root->orphan_lock);
2206         if (!root->orphan_block_rsv) {
2207                 root->orphan_block_rsv = block_rsv;
2208         } else if (block_rsv) {
2209                 btrfs_free_block_rsv(root, block_rsv);
2210                 block_rsv = NULL;
2211         }
2212
2213         if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2214                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2215 #if 0
2216                 /*
2217                  * For proper ENOSPC handling, we should do orphan
2218                  * cleanup when mounting. But this introduces backward
2219                  * compatibility issue.
2220                  */
2221                 if (!xchg(&root->orphan_item_inserted, 1))
2222                         insert = 2;
2223                 else
2224                         insert = 1;
2225 #endif
2226                 insert = 1;
2227         }
2228
2229         if (!BTRFS_I(inode)->orphan_meta_reserved) {
2230                 BTRFS_I(inode)->orphan_meta_reserved = 1;
2231                 reserve = 1;
2232         }
2233         spin_unlock(&root->orphan_lock);
2234
2235         if (block_rsv)
2236                 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2237
2238         /* grab metadata reservation from transaction handle */
2239         if (reserve) {
2240                 ret = btrfs_orphan_reserve_metadata(trans, inode);
2241                 BUG_ON(ret);
2242         }
2243
2244         /* insert an orphan item to track this unlinked/truncated file */
2245         if (insert >= 1) {
2246                 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2247                 BUG_ON(ret);
2248         }
2249
2250         /* insert an orphan item to track subvolume contains orphan files */
2251         if (insert >= 2) {
2252                 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2253                                                root->root_key.objectid);
2254                 BUG_ON(ret);
2255         }
2256         return 0;
2257 }
2258
2259 /*
2260  * We have done the truncate/delete so we can go ahead and remove the orphan
2261  * item for this particular inode.
2262  */
2263 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2264 {
2265         struct btrfs_root *root = BTRFS_I(inode)->root;
2266         int delete_item = 0;
2267         int release_rsv = 0;
2268         int ret = 0;
2269
2270         spin_lock(&root->orphan_lock);
2271         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2272                 list_del_init(&BTRFS_I(inode)->i_orphan);
2273                 delete_item = 1;
2274         }
2275
2276         if (BTRFS_I(inode)->orphan_meta_reserved) {
2277                 BTRFS_I(inode)->orphan_meta_reserved = 0;
2278                 release_rsv = 1;
2279         }
2280         spin_unlock(&root->orphan_lock);
2281
2282         if (trans && delete_item) {
2283                 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2284                 BUG_ON(ret);
2285         }
2286
2287         if (release_rsv)
2288                 btrfs_orphan_release_metadata(inode);
2289
2290         return 0;
2291 }
2292
2293 /*
2294  * this cleans up any orphans that may be left on the list from the last use
2295  * of this root.
2296  */
2297 int btrfs_orphan_cleanup(struct btrfs_root *root)
2298 {
2299         struct btrfs_path *path;
2300         struct extent_buffer *leaf;
2301         struct btrfs_key key, found_key;
2302         struct btrfs_trans_handle *trans;
2303         struct inode *inode;
2304         int ret = 0, nr_unlink = 0, nr_truncate = 0;
2305
2306         if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2307                 return 0;
2308
2309         path = btrfs_alloc_path();
2310         if (!path) {
2311                 ret = -ENOMEM;
2312                 goto out;
2313         }
2314         path->reada = -1;
2315
2316         key.objectid = BTRFS_ORPHAN_OBJECTID;
2317         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2318         key.offset = (u64)-1;
2319
2320         while (1) {
2321                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2322                 if (ret < 0)
2323                         goto out;
2324
2325                 /*
2326                  * if ret == 0 means we found what we were searching for, which
2327                  * is weird, but possible, so only screw with path if we didnt
2328                  * find the key and see if we have stuff that matches
2329                  */
2330                 if (ret > 0) {
2331                         ret = 0;
2332                         if (path->slots[0] == 0)
2333                                 break;
2334                         path->slots[0]--;
2335                 }
2336
2337                 /* pull out the item */
2338                 leaf = path->nodes[0];
2339                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2340
2341                 /* make sure the item matches what we want */
2342                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2343                         break;
2344                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2345                         break;
2346
2347                 /* release the path since we're done with it */
2348                 btrfs_release_path(root, path);
2349
2350                 /*
2351                  * this is where we are basically btrfs_lookup, without the
2352                  * crossing root thing.  we store the inode number in the
2353                  * offset of the orphan item.
2354                  */
2355                 found_key.objectid = found_key.offset;
2356                 found_key.type = BTRFS_INODE_ITEM_KEY;
2357                 found_key.offset = 0;
2358                 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2359                 if (IS_ERR(inode)) {
2360                         ret = PTR_ERR(inode);
2361                         goto out;
2362                 }
2363
2364                 /*
2365                  * add this inode to the orphan list so btrfs_orphan_del does
2366                  * the proper thing when we hit it
2367                  */
2368                 spin_lock(&root->orphan_lock);
2369                 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2370                 spin_unlock(&root->orphan_lock);
2371
2372                 /*
2373                  * if this is a bad inode, means we actually succeeded in
2374                  * removing the inode, but not the orphan record, which means
2375                  * we need to manually delete the orphan since iput will just
2376                  * do a destroy_inode
2377                  */
2378                 if (is_bad_inode(inode)) {
2379                         trans = btrfs_start_transaction(root, 0);
2380                         if (IS_ERR(trans)) {
2381                                 ret = PTR_ERR(trans);
2382                                 goto out;
2383                         }
2384                         btrfs_orphan_del(trans, inode);
2385                         btrfs_end_transaction(trans, root);
2386                         iput(inode);
2387                         continue;
2388                 }
2389
2390                 /* if we have links, this was a truncate, lets do that */
2391                 if (inode->i_nlink) {
2392                         if (!S_ISREG(inode->i_mode)) {
2393                                 WARN_ON(1);
2394                                 iput(inode);
2395                                 continue;
2396                         }
2397                         nr_truncate++;
2398                         ret = btrfs_truncate(inode);
2399                 } else {
2400                         nr_unlink++;
2401                 }
2402
2403                 /* this will do delete_inode and everything for us */
2404                 iput(inode);
2405                 if (ret)
2406                         goto out;
2407         }
2408         root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2409
2410         if (root->orphan_block_rsv)
2411                 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2412                                         (u64)-1);
2413
2414         if (root->orphan_block_rsv || root->orphan_item_inserted) {
2415                 trans = btrfs_join_transaction(root, 1);
2416                 if (!IS_ERR(trans))
2417                         btrfs_end_transaction(trans, root);
2418         }
2419
2420         if (nr_unlink)
2421                 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2422         if (nr_truncate)
2423                 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2424
2425 out:
2426         if (ret)
2427                 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2428         btrfs_free_path(path);
2429         return ret;
2430 }
2431
2432 /*
2433  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2434  * don't find any xattrs, we know there can't be any acls.
2435  *
2436  * slot is the slot the inode is in, objectid is the objectid of the inode
2437  */
2438 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2439                                           int slot, u64 objectid)
2440 {
2441         u32 nritems = btrfs_header_nritems(leaf);
2442         struct btrfs_key found_key;
2443         int scanned = 0;
2444
2445         slot++;
2446         while (slot < nritems) {
2447                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2448
2449                 /* we found a different objectid, there must not be acls */
2450                 if (found_key.objectid != objectid)
2451                         return 0;
2452
2453                 /* we found an xattr, assume we've got an acl */
2454                 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2455                         return 1;
2456
2457                 /*
2458                  * we found a key greater than an xattr key, there can't
2459                  * be any acls later on
2460                  */
2461                 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2462                         return 0;
2463
2464                 slot++;
2465                 scanned++;
2466
2467                 /*
2468                  * it goes inode, inode backrefs, xattrs, extents,
2469                  * so if there are a ton of hard links to an inode there can
2470                  * be a lot of backrefs.  Don't waste time searching too hard,
2471                  * this is just an optimization
2472                  */
2473                 if (scanned >= 8)
2474                         break;
2475         }
2476         /* we hit the end of the leaf before we found an xattr or
2477          * something larger than an xattr.  We have to assume the inode
2478          * has acls
2479          */
2480         return 1;
2481 }
2482
2483 /*
2484  * read an inode from the btree into the in-memory inode
2485  */
2486 static void btrfs_read_locked_inode(struct inode *inode)
2487 {
2488         struct btrfs_path *path;
2489         struct extent_buffer *leaf;
2490         struct btrfs_inode_item *inode_item;
2491         struct btrfs_timespec *tspec;
2492         struct btrfs_root *root = BTRFS_I(inode)->root;
2493         struct btrfs_key location;
2494         int maybe_acls;
2495         u64 alloc_group_block;
2496         u32 rdev;
2497         int ret;
2498
2499         path = btrfs_alloc_path();
2500         BUG_ON(!path);
2501         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2502
2503         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2504         if (ret)
2505                 goto make_bad;
2506
2507         leaf = path->nodes[0];
2508         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2509                                     struct btrfs_inode_item);
2510
2511         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2512         inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2513         inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2514         inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2515         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2516
2517         tspec = btrfs_inode_atime(inode_item);
2518         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2519         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2520
2521         tspec = btrfs_inode_mtime(inode_item);
2522         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2523         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2524
2525         tspec = btrfs_inode_ctime(inode_item);
2526         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2527         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2528
2529         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2530         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2531         BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2532         inode->i_generation = BTRFS_I(inode)->generation;
2533         inode->i_rdev = 0;
2534         rdev = btrfs_inode_rdev(leaf, inode_item);
2535
2536         BTRFS_I(inode)->index_cnt = (u64)-1;
2537         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2538
2539         alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
2540
2541         /*
2542          * try to precache a NULL acl entry for files that don't have
2543          * any xattrs or acls
2544          */
2545         maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
2546         if (!maybe_acls)
2547                 cache_no_acl(inode);
2548
2549         BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2550                                                 alloc_group_block, 0);
2551         btrfs_free_path(path);
2552         inode_item = NULL;
2553
2554         switch (inode->i_mode & S_IFMT) {
2555         case S_IFREG:
2556                 inode->i_mapping->a_ops = &btrfs_aops;
2557                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2558                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2559                 inode->i_fop = &btrfs_file_operations;
2560                 inode->i_op = &btrfs_file_inode_operations;
2561                 break;
2562         case S_IFDIR:
2563                 inode->i_fop = &btrfs_dir_file_operations;
2564                 if (root == root->fs_info->tree_root)
2565                         inode->i_op = &btrfs_dir_ro_inode_operations;
2566                 else
2567                         inode->i_op = &btrfs_dir_inode_operations;
2568                 break;
2569         case S_IFLNK:
2570                 inode->i_op = &btrfs_symlink_inode_operations;
2571                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2572                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2573                 break;
2574         default:
2575                 inode->i_op = &btrfs_special_inode_operations;
2576                 init_special_inode(inode, inode->i_mode, rdev);
2577                 break;
2578         }
2579
2580         btrfs_update_iflags(inode);
2581         return;
2582
2583 make_bad:
2584         btrfs_free_path(path);
2585         make_bad_inode(inode);
2586 }
2587
2588 /*
2589  * given a leaf and an inode, copy the inode fields into the leaf
2590  */
2591 static void fill_inode_item(struct btrfs_trans_handle *trans,
2592                             struct extent_buffer *leaf,
2593                             struct btrfs_inode_item *item,
2594                             struct inode *inode)
2595 {
2596         if (!leaf->map_token)
2597                 map_private_extent_buffer(leaf, (unsigned long)item,
2598                                           sizeof(struct btrfs_inode_item),
2599                                           &leaf->map_token, &leaf->kaddr,
2600                                           &leaf->map_start, &leaf->map_len,
2601                                           KM_USER1);
2602
2603         btrfs_set_inode_uid(leaf, item, inode->i_uid);
2604         btrfs_set_inode_gid(leaf, item, inode->i_gid);
2605         btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2606         btrfs_set_inode_mode(leaf, item, inode->i_mode);
2607         btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2608
2609         btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2610                                inode->i_atime.tv_sec);
2611         btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2612                                 inode->i_atime.tv_nsec);
2613
2614         btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2615                                inode->i_mtime.tv_sec);
2616         btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2617                                 inode->i_mtime.tv_nsec);
2618
2619         btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2620                                inode->i_ctime.tv_sec);
2621         btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2622                                 inode->i_ctime.tv_nsec);
2623
2624         btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2625         btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2626         btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2627         btrfs_set_inode_transid(leaf, item, trans->transid);
2628         btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2629         btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2630         btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
2631
2632         if (leaf->map_token) {
2633                 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
2634                 leaf->map_token = NULL;
2635         }
2636 }
2637
2638 /*
2639  * copy everything in the in-memory inode into the btree.
2640  */
2641 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2642                                 struct btrfs_root *root, struct inode *inode)
2643 {
2644         struct btrfs_inode_item *inode_item;
2645         struct btrfs_path *path;
2646         struct extent_buffer *leaf;
2647         int ret;
2648
2649         path = btrfs_alloc_path();
2650         BUG_ON(!path);
2651         path->leave_spinning = 1;
2652         ret = btrfs_lookup_inode(trans, root, path,
2653                                  &BTRFS_I(inode)->location, 1);
2654         if (ret) {
2655                 if (ret > 0)
2656                         ret = -ENOENT;
2657                 goto failed;
2658         }
2659
2660         btrfs_unlock_up_safe(path, 1);
2661         leaf = path->nodes[0];
2662         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2663                                   struct btrfs_inode_item);
2664
2665         fill_inode_item(trans, leaf, inode_item, inode);
2666         btrfs_mark_buffer_dirty(leaf);
2667         btrfs_set_inode_last_trans(trans, inode);
2668         ret = 0;
2669 failed:
2670         btrfs_free_path(path);
2671         return ret;
2672 }
2673
2674
2675 /*
2676  * unlink helper that gets used here in inode.c and in the tree logging
2677  * recovery code.  It remove a link in a directory with a given name, and
2678  * also drops the back refs in the inode to the directory
2679  */
2680 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2681                                 struct btrfs_root *root,
2682                                 struct inode *dir, struct inode *inode,
2683                                 const char *name, int name_len)
2684 {
2685         struct btrfs_path *path;
2686         int ret = 0;
2687         struct extent_buffer *leaf;
2688         struct btrfs_dir_item *di;
2689         struct btrfs_key key;
2690         u64 index;
2691
2692         path = btrfs_alloc_path();
2693         if (!path) {
2694                 ret = -ENOMEM;
2695                 goto out;
2696         }
2697
2698         path->leave_spinning = 1;
2699         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2700                                     name, name_len, -1);
2701         if (IS_ERR(di)) {
2702                 ret = PTR_ERR(di);
2703                 goto err;
2704         }
2705         if (!di) {
2706                 ret = -ENOENT;
2707                 goto err;
2708         }
2709         leaf = path->nodes[0];
2710         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2711         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2712         if (ret)
2713                 goto err;
2714         btrfs_release_path(root, path);
2715
2716         ret = btrfs_del_inode_ref(trans, root, name, name_len,
2717                                   inode->i_ino,
2718                                   dir->i_ino, &index);
2719         if (ret) {
2720                 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2721                        "inode %lu parent %lu\n", name_len, name,
2722                        inode->i_ino, dir->i_ino);
2723                 goto err;
2724         }
2725
2726         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2727                                          index, name, name_len, -1);
2728         if (IS_ERR(di)) {
2729                 ret = PTR_ERR(di);
2730                 goto err;
2731         }
2732         if (!di) {
2733                 ret = -ENOENT;
2734                 goto err;
2735         }
2736         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2737         btrfs_release_path(root, path);
2738
2739         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2740                                          inode, dir->i_ino);
2741         BUG_ON(ret != 0 && ret != -ENOENT);
2742
2743         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2744                                            dir, index);
2745         if (ret == -ENOENT)
2746                 ret = 0;
2747 err:
2748         btrfs_free_path(path);
2749         if (ret)
2750                 goto out;
2751
2752         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2753         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2754         btrfs_update_inode(trans, root, dir);
2755 out:
2756         return ret;
2757 }
2758
2759 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2760                        struct btrfs_root *root,
2761                        struct inode *dir, struct inode *inode,
2762                        const char *name, int name_len)
2763 {
2764         int ret;
2765         ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2766         if (!ret) {
2767                 btrfs_drop_nlink(inode);
2768                 ret = btrfs_update_inode(trans, root, inode);
2769         }
2770         return ret;
2771 }
2772                 
2773
2774 /* helper to check if there is any shared block in the path */
2775 static int check_path_shared(struct btrfs_root *root,
2776                              struct btrfs_path *path)
2777 {
2778         struct extent_buffer *eb;
2779         int level;
2780         u64 refs = 1;
2781
2782         for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2783                 int ret;
2784
2785                 if (!path->nodes[level])
2786                         break;
2787                 eb = path->nodes[level];
2788                 if (!btrfs_block_can_be_shared(root, eb))
2789                         continue;
2790                 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2791                                                &refs, NULL);
2792                 if (refs > 1)
2793                         return 1;
2794         }
2795         return 0;
2796 }
2797
2798 /*
2799  * helper to start transaction for unlink and rmdir.
2800  *
2801  * unlink and rmdir are special in btrfs, they do not always free space.
2802  * so in enospc case, we should make sure they will free space before
2803  * allowing them to use the global metadata reservation.
2804  */
2805 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2806                                                        struct dentry *dentry)
2807 {
2808         struct btrfs_trans_handle *trans;
2809         struct btrfs_root *root = BTRFS_I(dir)->root;
2810         struct btrfs_path *path;
2811         struct btrfs_inode_ref *ref;
2812         struct btrfs_dir_item *di;
2813         struct inode *inode = dentry->d_inode;
2814         u64 index;
2815         int check_link = 1;
2816         int err = -ENOSPC;
2817         int ret;
2818
2819         trans = btrfs_start_transaction(root, 10);
2820         if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2821                 return trans;
2822
2823         if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2824                 return ERR_PTR(-ENOSPC);
2825
2826         /* check if there is someone else holds reference */
2827         if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2828                 return ERR_PTR(-ENOSPC);
2829
2830         if (atomic_read(&inode->i_count) > 2)
2831                 return ERR_PTR(-ENOSPC);
2832
2833         if (xchg(&root->fs_info->enospc_unlink, 1))
2834                 return ERR_PTR(-ENOSPC);
2835
2836         path = btrfs_alloc_path();
2837         if (!path) {
2838                 root->fs_info->enospc_unlink = 0;
2839                 return ERR_PTR(-ENOMEM);
2840         }
2841
2842         trans = btrfs_start_transaction(root, 0);
2843         if (IS_ERR(trans)) {
2844                 btrfs_free_path(path);
2845                 root->fs_info->enospc_unlink = 0;
2846                 return trans;
2847         }
2848
2849         path->skip_locking = 1;
2850         path->search_commit_root = 1;
2851
2852         ret = btrfs_lookup_inode(trans, root, path,
2853                                 &BTRFS_I(dir)->location, 0);
2854         if (ret < 0) {
2855                 err = ret;
2856                 goto out;
2857         }
2858         if (ret == 0) {
2859                 if (check_path_shared(root, path))
2860                         goto out;
2861         } else {
2862                 check_link = 0;
2863         }
2864         btrfs_release_path(root, path);
2865
2866         ret = btrfs_lookup_inode(trans, root, path,
2867                                 &BTRFS_I(inode)->location, 0);
2868         if (ret < 0) {
2869                 err = ret;
2870                 goto out;
2871         }
2872         if (ret == 0) {
2873                 if (check_path_shared(root, path))
2874                         goto out;
2875         } else {
2876                 check_link = 0;
2877         }
2878         btrfs_release_path(root, path);
2879
2880         if (ret == 0 && S_ISREG(inode->i_mode)) {
2881                 ret = btrfs_lookup_file_extent(trans, root, path,
2882                                                inode->i_ino, (u64)-1, 0);
2883                 if (ret < 0) {
2884                         err = ret;
2885                         goto out;
2886                 }
2887                 BUG_ON(ret == 0);
2888                 if (check_path_shared(root, path))
2889                         goto out;
2890                 btrfs_release_path(root, path);
2891         }
2892
2893         if (!check_link) {
2894                 err = 0;
2895                 goto out;
2896         }
2897
2898         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2899                                 dentry->d_name.name, dentry->d_name.len, 0);
2900         if (IS_ERR(di)) {
2901                 err = PTR_ERR(di);
2902                 goto out;
2903         }
2904         if (di) {
2905                 if (check_path_shared(root, path))
2906                         goto out;
2907         } else {
2908                 err = 0;
2909                 goto out;
2910         }
2911         btrfs_release_path(root, path);
2912
2913         ref = btrfs_lookup_inode_ref(trans, root, path,
2914                                 dentry->d_name.name, dentry->d_name.len,
2915                                 inode->i_ino, dir->i_ino, 0);
2916         if (IS_ERR(ref)) {
2917                 err = PTR_ERR(ref);
2918                 goto out;
2919         }
2920         BUG_ON(!ref);
2921         if (check_path_shared(root, path))
2922                 goto out;
2923         index = btrfs_inode_ref_index(path->nodes[0], ref);
2924         btrfs_release_path(root, path);
2925
2926         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index,
2927                                 dentry->d_name.name, dentry->d_name.len, 0);
2928         if (IS_ERR(di)) {
2929                 err = PTR_ERR(di);
2930                 goto out;
2931         }
2932         BUG_ON(ret == -ENOENT);
2933         if (check_path_shared(root, path))
2934                 goto out;
2935
2936         err = 0;
2937 out:
2938         btrfs_free_path(path);
2939         if (err) {
2940                 btrfs_end_transaction(trans, root);
2941                 root->fs_info->enospc_unlink = 0;
2942                 return ERR_PTR(err);
2943         }
2944
2945         trans->block_rsv = &root->fs_info->global_block_rsv;
2946         return trans;
2947 }
2948
2949 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2950                                struct btrfs_root *root)
2951 {
2952         if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2953                 BUG_ON(!root->fs_info->enospc_unlink);
2954                 root->fs_info->enospc_unlink = 0;
2955         }
2956         btrfs_end_transaction_throttle(trans, root);
2957 }
2958
2959 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2960 {
2961         struct btrfs_root *root = BTRFS_I(dir)->root;
2962         struct btrfs_trans_handle *trans;
2963         struct inode *inode = dentry->d_inode;
2964         int ret;
2965         unsigned long nr = 0;
2966
2967         trans = __unlink_start_trans(dir, dentry);
2968         if (IS_ERR(trans))
2969                 return PTR_ERR(trans);
2970
2971         btrfs_set_trans_block_group(trans, dir);
2972
2973         btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2974
2975         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2976                                  dentry->d_name.name, dentry->d_name.len);
2977         BUG_ON(ret);
2978
2979         if (inode->i_nlink == 0) {
2980                 ret = btrfs_orphan_add(trans, inode);
2981                 BUG_ON(ret);
2982         }
2983
2984         nr = trans->blocks_used;
2985         __unlink_end_trans(trans, root);
2986         btrfs_btree_balance_dirty(root, nr);
2987         return ret;
2988 }
2989
2990 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2991                         struct btrfs_root *root,
2992                         struct inode *dir, u64 objectid,
2993                         const char *name, int name_len)
2994 {
2995         struct btrfs_path *path;
2996         struct extent_buffer *leaf;
2997         struct btrfs_dir_item *di;
2998         struct btrfs_key key;
2999         u64 index;
3000         int ret;
3001
3002         path = btrfs_alloc_path();
3003         if (!path)
3004                 return -ENOMEM;
3005
3006         di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
3007                                    name, name_len, -1);
3008         BUG_ON(!di || IS_ERR(di));
3009
3010         leaf = path->nodes[0];
3011         btrfs_dir_item_key_to_cpu(leaf, di, &key);
3012         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3013         ret = btrfs_delete_one_dir_name(trans, root, path, di);
3014         BUG_ON(ret);
3015         btrfs_release_path(root, path);
3016
3017         ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3018                                  objectid, root->root_key.objectid,
3019                                  dir->i_ino, &index, name, name_len);
3020         if (ret < 0) {
3021                 BUG_ON(ret != -ENOENT);
3022                 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
3023                                                  name, name_len);
3024                 BUG_ON(!di || IS_ERR(di));
3025
3026                 leaf = path->nodes[0];
3027                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3028                 btrfs_release_path(root, path);
3029                 index = key.offset;
3030         }
3031
3032         di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
3033                                          index, name, name_len, -1);
3034         BUG_ON(!di || IS_ERR(di));
3035
3036         leaf = path->nodes[0];
3037         btrfs_dir_item_key_to_cpu(leaf, di, &key);
3038         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3039         ret = btrfs_delete_one_dir_name(trans, root, path, di);
3040         BUG_ON(ret);
3041         btrfs_release_path(root, path);
3042
3043         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3044         dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3045         ret = btrfs_update_inode(trans, root, dir);
3046         BUG_ON(ret);
3047
3048         btrfs_free_path(path);
3049         return 0;
3050 }
3051
3052 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3053 {
3054         struct inode *inode = dentry->d_inode;
3055         int err = 0;
3056         struct btrfs_root *root = BTRFS_I(dir)->root;
3057         struct btrfs_trans_handle *trans;
3058         unsigned long nr = 0;
3059
3060         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
3061             inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
3062                 return -ENOTEMPTY;
3063
3064         trans = __unlink_start_trans(dir, dentry);
3065         if (IS_ERR(trans))
3066                 return PTR_ERR(trans);
3067
3068         btrfs_set_trans_block_group(trans, dir);
3069
3070         if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3071                 err = btrfs_unlink_subvol(trans, root, dir,
3072                                           BTRFS_I(inode)->location.objectid,
3073                                           dentry->d_name.name,
3074                                           dentry->d_name.len);
3075                 goto out;
3076         }
3077
3078         err = btrfs_orphan_add(trans, inode);
3079         if (err)
3080                 goto out;
3081
3082         /* now the directory is empty */
3083         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3084                                  dentry->d_name.name, dentry->d_name.len);
3085         if (!err)
3086                 btrfs_i_size_write(inode, 0);
3087 out:
3088         nr = trans->blocks_used;
3089         __unlink_end_trans(trans, root);
3090         btrfs_btree_balance_dirty(root, nr);
3091
3092         return err;
3093 }
3094
3095 #if 0
3096 /*
3097  * when truncating bytes in a file, it is possible to avoid reading
3098  * the leaves that contain only checksum items.  This can be the
3099  * majority of the IO required to delete a large file, but it must
3100  * be done carefully.
3101  *
3102  * The keys in the level just above the leaves are checked to make sure
3103  * the lowest key in a given leaf is a csum key, and starts at an offset
3104  * after the new  size.
3105  *
3106  * Then the key for the next leaf is checked to make sure it also has
3107  * a checksum item for the same file.  If it does, we know our target leaf
3108  * contains only checksum items, and it can be safely freed without reading
3109  * it.
3110  *
3111  * This is just an optimization targeted at large files.  It may do
3112  * nothing.  It will return 0 unless things went badly.
3113  */
3114 static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
3115                                      struct btrfs_root *root,
3116                                      struct btrfs_path *path,
3117                                      struct inode *inode, u64 new_size)
3118 {
3119         struct btrfs_key key;
3120         int ret;
3121         int nritems;
3122         struct btrfs_key found_key;
3123         struct btrfs_key other_key;
3124         struct btrfs_leaf_ref *ref;
3125         u64 leaf_gen;
3126         u64 leaf_start;
3127
3128         path->lowest_level = 1;
3129         key.objectid = inode->i_ino;
3130         key.type = BTRFS_CSUM_ITEM_KEY;
3131         key.offset = new_size;
3132 again:
3133         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3134         if (ret < 0)
3135                 goto out;
3136
3137         if (path->nodes[1] == NULL) {
3138                 ret = 0;
3139                 goto out;
3140         }
3141         ret = 0;
3142         btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
3143         nritems = btrfs_header_nritems(path->nodes[1]);
3144
3145         if (!nritems)
3146                 goto out;
3147
3148         if (path->slots[1] >= nritems)
3149                 goto next_node;
3150
3151         /* did we find a key greater than anything we want to delete? */
3152         if (found_key.objectid > inode->i_ino ||
3153            (found_key.objectid == inode->i_ino && found_key.type > key.type))
3154                 goto out;
3155
3156         /* we check the next key in the node to make sure the leave contains
3157          * only checksum items.  This comparison doesn't work if our
3158          * leaf is the last one in the node
3159          */
3160         if (path->slots[1] + 1 >= nritems) {
3161 next_node:
3162                 /* search forward from the last key in the node, this
3163                  * will bring us into the next node in the tree
3164                  */
3165                 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
3166
3167                 /* unlikely, but we inc below, so check to be safe */
3168                 if (found_key.offset == (u64)-1)
3169                         goto out;
3170
3171                 /* search_forward needs a path with locks held, do the
3172                  * search again for the original key.  It is possible
3173                  * this will race with a balance and return a path that
3174                  * we could modify, but this drop is just an optimization
3175                  * and is allowed to miss some leaves.
3176                  */
3177                 btrfs_release_path(root, path);
3178                 found_key.offset++;
3179
3180                 /* setup a max key for search_forward */
3181                 other_key.offset = (u64)-1;
3182                 other_key.type = key.type;
3183                 other_key.objectid = key.objectid;
3184
3185                 path->keep_locks = 1;
3186                 ret = btrfs_search_forward(root, &found_key, &other_key,
3187                                            path, 0, 0);
3188                 path->keep_locks = 0;
3189                 if (ret || found_key.objectid != key.objectid ||
3190                     found_key.type != key.type) {
3191                         ret = 0;
3192                         goto out;
3193                 }
3194
3195                 key.offset = found_key.offset;
3196                 btrfs_release_path(root, path);
3197                 cond_resched();
3198                 goto again;
3199         }
3200
3201         /* we know there's one more slot after us in the tree,
3202          * read that key so we can verify it is also a checksum item
3203          */
3204         btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
3205
3206         if (found_key.objectid < inode->i_ino)
3207                 goto next_key;
3208
3209         if (found_key.type != key.type || found_key.offset < new_size)
3210                 goto next_key;
3211
3212         /*
3213          * if the key for the next leaf isn't a csum key from this objectid,
3214          * we can't be sure there aren't good items inside this leaf.
3215          * Bail out
3216          */
3217         if (other_key.objectid != inode->i_ino || other_key.type != key.type)
3218                 goto out;
3219
3220         leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
3221         leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
3222         /*
3223          * it is safe to delete this leaf, it contains only
3224          * csum items from this inode at an offset >= new_size
3225          */
3226         ret = btrfs_del_leaf(trans, root, path, leaf_start);
3227         BUG_ON(ret);
3228
3229         if (root->ref_cows && leaf_gen < trans->transid) {
3230                 ref = btrfs_alloc_leaf_ref(root, 0);
3231                 if (ref) {
3232                         ref->root_gen = root->root_key.offset;
3233                         ref->bytenr = leaf_start;
3234                         ref->owner = 0;
3235                         ref->generation = leaf_gen;
3236                         ref->nritems = 0;
3237
3238                         btrfs_sort_leaf_ref(ref);
3239
3240                         ret = btrfs_add_leaf_ref(root, ref, 0);
3241                         WARN_ON(ret);
3242                         btrfs_free_leaf_ref(root, ref);
3243                 } else {
3244                         WARN_ON(1);
3245                 }
3246         }
3247 next_key:
3248         btrfs_release_path(root, path);
3249
3250         if (other_key.objectid == inode->i_ino &&
3251             other_key.type == key.type && other_key.offset > key.offset) {
3252                 key.offset = other_key.offset;
3253                 cond_resched();
3254                 goto again;
3255         }
3256         ret = 0;
3257 out:
3258         /* fixup any changes we've made to the path */
3259         path->lowest_level = 0;
3260         path->keep_locks = 0;
3261         btrfs_release_path(root, path);
3262         return ret;
3263 }
3264
3265 #endif
3266
3267 /*
3268  * this can truncate away extent items, csum items and directory items.
3269  * It starts at a high offset and removes keys until it can't find
3270  * any higher than new_size
3271  *
3272  * csum items that cross the new i_size are truncated to the new size
3273  * as well.
3274  *
3275  * min_type is the minimum key type to truncate down to.  If set to 0, this
3276  * will kill all the items on this inode, including the INODE_ITEM_KEY.
3277  */
3278 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3279                                struct btrfs_root *root,
3280                                struct inode *inode,
3281                                u64 new_size, u32 min_type)
3282 {
3283         struct btrfs_path *path;
3284         struct extent_buffer *leaf;
3285         struct btrfs_file_extent_item *fi;
3286         struct btrfs_key key;
3287         struct btrfs_key found_key;
3288         u64 extent_start = 0;
3289         u64 extent_num_bytes = 0;
3290         u64 extent_offset = 0;
3291         u64 item_end = 0;
3292         u64 mask = root->sectorsize - 1;
3293         u32 found_type = (u8)-1;
3294         int found_extent;
3295         int del_item;
3296         int pending_del_nr = 0;
3297         int pending_del_slot = 0;
3298         int extent_type = -1;
3299         int encoding;
3300         int ret;
3301         int err = 0;
3302
3303         BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3304
3305         if (root->ref_cows || root == root->fs_info->tree_root)
3306                 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3307
3308         path = btrfs_alloc_path();
3309         BUG_ON(!path);
3310         path->reada = -1;
3311
3312         key.objectid = inode->i_ino;
3313         key.offset = (u64)-1;
3314         key.type = (u8)-1;
3315
3316 search_again:
3317         path->leave_spinning = 1;
3318         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3319         if (ret < 0) {
3320                 err = ret;
3321                 goto out;
3322         }
3323
3324         if (ret > 0) {
3325                 /* there are no items in the tree for us to truncate, we're
3326                  * done
3327                  */
3328                 if (path->slots[0] == 0)
3329                         goto out;
3330                 path->slots[0]--;
3331         }
3332
3333         while (1) {
3334                 fi = NULL;
3335                 leaf = path->nodes[0];
3336                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3337                 found_type = btrfs_key_type(&found_key);
3338                 encoding = 0;
3339
3340                 if (found_key.objectid != inode->i_ino)
3341                         break;
3342
3343                 if (found_type < min_type)
3344                         break;
3345
3346                 item_end = found_key.offset;
3347                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3348                         fi = btrfs_item_ptr(leaf, path->slots[0],
3349                                             struct btrfs_file_extent_item);
3350                         extent_type = btrfs_file_extent_type(leaf, fi);
3351                         encoding = btrfs_file_extent_compression(leaf, fi);
3352                         encoding |= btrfs_file_extent_encryption(leaf, fi);
3353                         encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3354
3355                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3356                                 item_end +=
3357                                     btrfs_file_extent_num_bytes(leaf, fi);
3358                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3359                                 item_end += btrfs_file_extent_inline_len(leaf,
3360                                                                          fi);
3361                         }
3362                         item_end--;
3363                 }
3364                 if (found_type > min_type) {
3365                         del_item = 1;
3366                 } else {
3367                         if (item_end < new_size)
3368                                 break;
3369                         if (found_key.offset >= new_size)
3370                                 del_item = 1;
3371                         else
3372                                 del_item = 0;
3373                 }
3374                 found_extent = 0;
3375                 /* FIXME, shrink the extent if the ref count is only 1 */
3376                 if (found_type != BTRFS_EXTENT_DATA_KEY)
3377                         goto delete;
3378
3379                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3380                         u64 num_dec;
3381                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3382                         if (!del_item && !encoding) {
3383                                 u64 orig_num_bytes =
3384                                         btrfs_file_extent_num_bytes(leaf, fi);
3385                                 extent_num_bytes = new_size -
3386                                         found_key.offset + root->sectorsize - 1;
3387                                 extent_num_bytes = extent_num_bytes &
3388                                         ~((u64)root->sectorsize - 1);
3389                                 btrfs_set_file_extent_num_bytes(leaf, fi,
3390                                                          extent_num_bytes);
3391                                 num_dec = (orig_num_bytes -
3392                                            extent_num_bytes);
3393                                 if (root->ref_cows && extent_start != 0)
3394                                         inode_sub_bytes(inode, num_dec);
3395                                 btrfs_mark_buffer_dirty(leaf);
3396                         } else {
3397                                 extent_num_bytes =
3398                                         btrfs_file_extent_disk_num_bytes(leaf,
3399                                                                          fi);
3400                                 extent_offset = found_key.offset -
3401                                         btrfs_file_extent_offset(leaf, fi);
3402
3403                                 /* FIXME blocksize != 4096 */
3404                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3405                                 if (extent_start != 0) {
3406                                         found_extent = 1;
3407                                         if (root->ref_cows)
3408                                                 inode_sub_bytes(inode, num_dec);
3409                                 }
3410                         }
3411                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3412                         /*
3413                          * we can't truncate inline items that have had
3414                          * special encodings
3415                          */
3416                         if (!del_item &&
3417                             btrfs_file_extent_compression(leaf, fi) == 0 &&
3418                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
3419                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3420                                 u32 size = new_size - found_key.offset;
3421
3422                                 if (root->ref_cows) {
3423                                         inode_sub_bytes(inode, item_end + 1 -
3424                                                         new_size);
3425                                 }
3426                                 size =
3427                                     btrfs_file_extent_calc_inline_size(size);
3428                                 ret = btrfs_truncate_item(trans, root, path,
3429                                                           size, 1);
3430                                 BUG_ON(ret);
3431                         } else if (root->ref_cows) {
3432                                 inode_sub_bytes(inode, item_end + 1 -
3433                                                 found_key.offset);
3434                         }
3435                 }
3436 delete:
3437                 if (del_item) {
3438                         if (!pending_del_nr) {
3439                                 /* no pending yet, add ourselves */
3440                                 pending_del_slot = path->slots[0];
3441                                 pending_del_nr = 1;
3442                         } else if (pending_del_nr &&
3443                                    path->slots[0] + 1 == pending_del_slot) {
3444                                 /* hop on the pending chunk */
3445                                 pending_del_nr++;
3446                                 pending_del_slot = path->slots[0];
3447                         } else {
3448                                 BUG();
3449                         }
3450                 } else {
3451                         break;
3452                 }
3453                 if (found_extent && (root->ref_cows ||
3454                                      root == root->fs_info->tree_root)) {
3455                         btrfs_set_path_blocking(path);
3456                         ret = btrfs_free_extent(trans, root, extent_start,
3457                                                 extent_num_bytes, 0,
3458                                                 btrfs_header_owner(leaf),
3459                                                 inode->i_ino, extent_offset);
3460                         BUG_ON(ret);
3461                 }
3462
3463                 if (found_type == BTRFS_INODE_ITEM_KEY)
3464                         break;
3465
3466                 if (path->slots[0] == 0 ||
3467                     path->slots[0] != pending_del_slot) {
3468                         if (root->ref_cows) {
3469                                 err = -EAGAIN;
3470                                 goto out;
3471                         }
3472                         if (pending_del_nr) {
3473                                 ret = btrfs_del_items(trans, root, path,
3474                                                 pending_del_slot,
3475                                                 pending_del_nr);
3476                                 BUG_ON(ret);
3477                                 pending_del_nr = 0;
3478                         }
3479                         btrfs_release_path(root, path);
3480                         goto search_again;
3481                 } else {
3482                         path->slots[0]--;
3483                 }
3484         }
3485 out:
3486         if (pending_del_nr) {
3487                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3488                                       pending_del_nr);
3489                 BUG_ON(ret);
3490         }
3491         btrfs_free_path(path);
3492         return err;
3493 }
3494
3495 /*
3496  * taken from block_truncate_page, but does cow as it zeros out
3497  * any bytes left in the last page in the file.
3498  */
3499 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3500 {
3501         struct inode *inode = mapping->host;
3502         struct btrfs_root *root = BTRFS_I(inode)->root;
3503         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3504         struct btrfs_ordered_extent *ordered;
3505         struct extent_state *cached_state = NULL;
3506         char *kaddr;
3507         u32 blocksize = root->sectorsize;
3508         pgoff_t index = from >> PAGE_CACHE_SHIFT;
3509         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3510         struct page *page;
3511         int ret = 0;
3512         u64 page_start;
3513         u64 page_end;
3514
3515         if ((offset & (blocksize - 1)) == 0)
3516                 goto out;
3517         ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3518         if (ret)
3519                 goto out;
3520
3521         ret = -ENOMEM;
3522 again:
3523         page = grab_cache_page(mapping, index);
3524         if (!page) {
3525                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3526                 goto out;
3527         }
3528
3529         page_start = page_offset(page);
3530         page_end = page_start + PAGE_CACHE_SIZE - 1;
3531
3532         if (!PageUptodate(page)) {
3533                 ret = btrfs_readpage(NULL, page);
3534                 lock_page(page);
3535                 if (page->mapping != mapping) {
3536                         unlock_page(page);
3537                         page_cache_release(page);
3538                         goto again;
3539                 }
3540                 if (!PageUptodate(page)) {
3541                         ret = -EIO;
3542                         goto out_unlock;
3543                 }
3544         }
3545         wait_on_page_writeback(page);
3546
3547         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3548                          GFP_NOFS);
3549         set_page_extent_mapped(page);
3550
3551         ordered = btrfs_lookup_ordered_extent(inode, page_start);
3552         if (ordered) {
3553                 unlock_extent_cached(io_tree, page_start, page_end,
3554                                      &cached_state, GFP_NOFS);
3555                 unlock_page(page);
3556                 page_cache_release(page);
3557                 btrfs_start_ordered_extent(inode, ordered, 1);
3558                 btrfs_put_ordered_extent(ordered);
3559                 goto again;
3560         }
3561
3562         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3563                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3564                           0, 0, &cached_state, GFP_NOFS);
3565
3566         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3567                                         &cached_state);
3568         if (ret) {
3569                 unlock_extent_cached(io_tree, page_start, page_end,
3570                                      &cached_state, GFP_NOFS);
3571                 goto out_unlock;
3572         }
3573
3574         ret = 0;
3575         if (offset != PAGE_CACHE_SIZE) {
3576                 kaddr = kmap(page);
3577                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3578                 flush_dcache_page(page);
3579                 kunmap(page);
3580         }
3581         ClearPageChecked(page);
3582         set_page_dirty(page);
3583         unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3584                              GFP_NOFS);
3585
3586 out_unlock:
3587         if (ret)
3588                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3589         unlock_page(page);
3590         page_cache_release(page);
3591 out:
3592         return ret;
3593 }
3594
3595 /*
3596  * This function puts in dummy file extents for the area we're creating a hole
3597  * for.  So if we are truncating this file to a larger size we need to insert
3598  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3599  * the range between oldsize and size
3600  */
3601 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
3602 {
3603         struct btrfs_trans_handle *trans;
3604         struct btrfs_root *root = BTRFS_I(inode)->root;
3605         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3606         struct extent_map *em = NULL;
3607         struct extent_state *cached_state = NULL;
3608         u64 mask = root->sectorsize - 1;
3609         u64 hole_start = (oldsize + mask) & ~mask;
3610         u64 block_end = (size + mask) & ~mask;
3611         u64 last_byte;
3612         u64 cur_offset;
3613         u64 hole_size;
3614         int err = 0;
3615
3616         if (size <= hole_start)
3617                 return 0;
3618
3619         while (1) {
3620                 struct btrfs_ordered_extent *ordered;
3621                 btrfs_wait_ordered_range(inode, hole_start,
3622                                          block_end - hole_start);
3623                 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3624                                  &cached_state, GFP_NOFS);
3625                 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3626                 if (!ordered)
3627                         break;
3628                 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3629                                      &cached_state, GFP_NOFS);
3630                 btrfs_put_ordered_extent(ordered);
3631         }
3632
3633         cur_offset = hole_start;
3634         while (1) {
3635                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3636                                 block_end - cur_offset, 0);
3637                 BUG_ON(IS_ERR(em) || !em);
3638                 last_byte = min(extent_map_end(em), block_end);
3639                 last_byte = (last_byte + mask) & ~mask;
3640                 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3641                         u64 hint_byte = 0;
3642                         hole_size = last_byte - cur_offset;
3643
3644                         trans = btrfs_start_transaction(root, 2);
3645                         if (IS_ERR(trans)) {
3646                                 err = PTR_ERR(trans);
3647                                 break;
3648                         }
3649                         btrfs_set_trans_block_group(trans, inode);
3650
3651                         err = btrfs_drop_extents(trans, inode, cur_offset,
3652                                                  cur_offset + hole_size,
3653                                                  &hint_byte, 1);
3654                         if (err)
3655                                 break;
3656
3657                         err = btrfs_insert_file_extent(trans, root,
3658                                         inode->i_ino, cur_offset, 0,
3659                                         0, hole_size, 0, hole_size,
3660                                         0, 0, 0);
3661                         if (err)
3662                                 break;
3663
3664                         btrfs_drop_extent_cache(inode, hole_start,
3665                                         last_byte - 1, 0);
3666
3667                         btrfs_end_transaction(trans, root);
3668                 }
3669                 free_extent_map(em);
3670                 em = NULL;
3671                 cur_offset = last_byte;
3672                 if (cur_offset >= block_end)
3673                         break;
3674         }
3675
3676         free_extent_map(em);
3677         unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3678                              GFP_NOFS);
3679         return err;
3680 }
3681
3682 static int btrfs_setsize(struct inode *inode, loff_t newsize)
3683 {
3684         loff_t oldsize = i_size_read(inode);
3685         int ret;
3686
3687         if (newsize == oldsize)
3688                 return 0;
3689
3690         if (newsize > oldsize) {
3691                 i_size_write(inode, newsize);
3692                 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3693                 truncate_pagecache(inode, oldsize, newsize);
3694                 ret = btrfs_cont_expand(inode, oldsize, newsize);
3695                 if (ret) {
3696                         btrfs_setsize(inode, oldsize);
3697                         return ret;
3698                 }
3699
3700                 mark_inode_dirty(inode);
3701         } else {
3702
3703                 /*
3704                  * We're truncating a file that used to have good data down to
3705                  * zero. Make sure it gets into the ordered flush list so that
3706                  * any new writes get down to disk quickly.
3707                  */
3708                 if (newsize == 0)
3709                         BTRFS_I(inode)->ordered_data_close = 1;
3710
3711                 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3712                 truncate_setsize(inode, newsize);
3713                 ret = btrfs_truncate(inode);
3714         }
3715
3716         return ret;
3717 }
3718
3719 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3720 {
3721         struct inode *inode = dentry->d_inode;
3722         struct btrfs_root *root = BTRFS_I(inode)->root;
3723         int err;
3724
3725         if (btrfs_root_readonly(root))
3726                 return -EROFS;
3727
3728         err = inode_change_ok(inode, attr);
3729         if (err)
3730                 return err;
3731
3732         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3733                 err = btrfs_setsize(inode, attr->ia_size);
3734                 if (err)
3735                         return err;
3736         }
3737
3738         if (attr->ia_valid) {
3739                 setattr_copy(inode, attr);
3740                 mark_inode_dirty(inode);
3741
3742                 if (attr->ia_valid & ATTR_MODE)
3743                         err = btrfs_acl_chmod(inode);
3744         }
3745
3746         return err;
3747 }
3748
3749 void btrfs_evict_inode(struct inode *inode)
3750 {
3751         struct btrfs_trans_handle *trans;
3752         struct btrfs_root *root = BTRFS_I(inode)->root;
3753         unsigned long nr;
3754         int ret;
3755
3756         trace_btrfs_inode_evict(inode);
3757
3758         truncate_inode_pages(&inode->i_data, 0);
3759         if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3760                                root == root->fs_info->tree_root))
3761                 goto no_delete;
3762
3763         if (is_bad_inode(inode)) {
3764                 btrfs_orphan_del(NULL, inode);
3765                 goto no_delete;
3766         }
3767         /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3768         btrfs_wait_ordered_range(inode, 0, (u64)-1);
3769
3770         if (root->fs_info->log_root_recovering) {
3771                 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3772                 goto no_delete;
3773         }
3774
3775         if (inode->i_nlink > 0) {
3776                 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3777                 goto no_delete;
3778         }
3779
3780         btrfs_i_size_write(inode, 0);
3781
3782         while (1) {
3783                 trans = btrfs_start_transaction(root, 0);
3784                 BUG_ON(IS_ERR(trans));
3785                 btrfs_set_trans_block_group(trans, inode);
3786                 trans->block_rsv = root->orphan_block_rsv;
3787
3788                 ret = btrfs_block_rsv_check(trans, root,
3789                                             root->orphan_block_rsv, 0, 5);
3790                 if (ret) {
3791                         BUG_ON(ret != -EAGAIN);
3792                         ret = btrfs_commit_transaction(trans, root);
3793                         BUG_ON(ret);
3794                         continue;
3795                 }
3796
3797                 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3798                 if (ret != -EAGAIN)
3799                         break;
3800
3801                 nr = trans->blocks_used;
3802                 btrfs_end_transaction(trans, root);
3803                 trans = NULL;
3804                 btrfs_btree_balance_dirty(root, nr);
3805
3806         }
3807
3808         if (ret == 0) {
3809                 ret = btrfs_orphan_del(trans, inode);
3810                 BUG_ON(ret);
3811         }
3812
3813         if (!(root == root->fs_info->tree_root ||
3814               root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
3815                 btrfs_return_ino(root, inode->i_ino);
3816
3817         nr = trans->blocks_used;
3818         btrfs_end_transaction(trans, root);
3819         btrfs_btree_balance_dirty(root, nr);
3820 no_delete:
3821         end_writeback(inode);
3822         return;
3823 }
3824
3825 /*
3826  * this returns the key found in the dir entry in the location pointer.
3827  * If no dir entries were found, location->objectid is 0.
3828  */
3829 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3830                                struct btrfs_key *location)
3831 {
3832         const char *name = dentry->d_name.name;
3833         int namelen = dentry->d_name.len;
3834         struct btrfs_dir_item *di;
3835         struct btrfs_path *path;
3836         struct btrfs_root *root = BTRFS_I(dir)->root;
3837         int ret = 0;
3838
3839         path = btrfs_alloc_path();
3840         BUG_ON(!path);
3841
3842         di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3843                                     namelen, 0);
3844         if (IS_ERR(di))
3845                 ret = PTR_ERR(di);
3846
3847         if (!di || IS_ERR(di))
3848                 goto out_err;
3849
3850         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3851 out:
3852         btrfs_free_path(path);
3853         return ret;
3854 out_err:
3855         location->objectid = 0;
3856         goto out;
3857 }
3858
3859 /*
3860  * when we hit a tree root in a directory, the btrfs part of the inode
3861  * needs to be changed to reflect the root directory of the tree root.  This
3862  * is kind of like crossing a mount point.
3863  */
3864 static int fixup_tree_root_location(struct btrfs_root *root,
3865                                     struct inode *dir,
3866                                     struct dentry *dentry,
3867                                     struct btrfs_key *location,
3868                                     struct btrfs_root **sub_root)
3869 {
3870         struct btrfs_path *path;
3871         struct btrfs_root *new_root;
3872         struct btrfs_root_ref *ref;
3873         struct extent_buffer *leaf;
3874         int ret;
3875         int err = 0;
3876
3877         path = btrfs_alloc_path();
3878         if (!path) {
3879                 err = -ENOMEM;
3880                 goto out;
3881         }
3882
3883         err = -ENOENT;
3884         ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3885                                   BTRFS_I(dir)->root->root_key.objectid,
3886                                   location->objectid);
3887         if (ret) {
3888                 if (ret < 0)
3889                         err = ret;
3890                 goto out;
3891         }
3892
3893         leaf = path->nodes[0];
3894         ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3895         if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3896             btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3897                 goto out;
3898
3899         ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3900                                    (unsigned long)(ref + 1),
3901                                    dentry->d_name.len);
3902         if (ret)
3903                 goto out;
3904
3905         btrfs_release_path(root->fs_info->tree_root, path);
3906
3907         new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3908         if (IS_ERR(new_root)) {
3909                 err = PTR_ERR(new_root);
3910                 goto out;
3911         }
3912
3913         if (btrfs_root_refs(&new_root->root_item) == 0) {
3914                 err = -ENOENT;
3915                 goto out;
3916         }
3917
3918         *sub_root = new_root;
3919         location->objectid = btrfs_root_dirid(&new_root->root_item);
3920         location->type = BTRFS_INODE_ITEM_KEY;
3921         location->offset = 0;
3922         err = 0;
3923 out:
3924         btrfs_free_path(path);
3925         return err;
3926 }
3927
3928 static void inode_tree_add(struct inode *inode)
3929 {
3930         struct btrfs_root *root = BTRFS_I(inode)->root;
3931         struct btrfs_inode *entry;
3932         struct rb_node **p;
3933         struct rb_node *parent;
3934 again:
3935         p = &root->inode_tree.rb_node;
3936         parent = NULL;
3937
3938         if (inode_unhashed(inode))
3939                 return;
3940
3941         spin_lock(&root->inode_lock);
3942         while (*p) {
3943                 parent = *p;
3944                 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3945
3946                 if (inode->i_ino < entry->vfs_inode.i_ino)
3947                         p = &parent->rb_left;
3948                 else if (inode->i_ino > entry->vfs_inode.i_ino)
3949                         p = &parent->rb_right;
3950                 else {
3951                         WARN_ON(!(entry->vfs_inode.i_state &
3952                                   (I_WILL_FREE | I_FREEING)));
3953                         rb_erase(parent, &root->inode_tree);
3954                         RB_CLEAR_NODE(parent);
3955                         spin_unlock(&root->inode_lock);
3956                         goto again;
3957                 }
3958         }
3959         rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3960         rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3961         spin_unlock(&root->inode_lock);
3962 }
3963
3964 static void inode_tree_del(struct inode *inode)
3965 {
3966         struct btrfs_root *root = BTRFS_I(inode)->root;
3967         int empty = 0;
3968
3969         spin_lock(&root->inode_lock);
3970         if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3971                 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3972                 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3973                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3974         }
3975         spin_unlock(&root->inode_lock);
3976
3977         /*
3978          * Free space cache has inodes in the tree root, but the tree root has a
3979          * root_refs of 0, so this could end up dropping the tree root as a
3980          * snapshot, so we need the extra !root->fs_info->tree_root check to
3981          * make sure we don't drop it.
3982          */
3983         if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3984             root != root->fs_info->tree_root) {
3985                 synchronize_srcu(&root->fs_info->subvol_srcu);
3986                 spin_lock(&root->inode_lock);
3987                 empty = RB_EMPTY_ROOT(&root->inode_tree);
3988                 spin_unlock(&root->inode_lock);
3989                 if (empty)
3990                         btrfs_add_dead_root(root);
3991         }
3992 }
3993
3994 int btrfs_invalidate_inodes(struct btrfs_root *root)
3995 {
3996         struct rb_node *node;
3997         struct rb_node *prev;
3998         struct btrfs_inode *entry;
3999         struct inode *inode;
4000         u64 objectid = 0;
4001
4002         WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4003
4004         spin_lock(&root->inode_lock);
4005 again:
4006         node = root->inode_tree.rb_node;
4007         prev = NULL;
4008         while (node) {
4009                 prev = node;
4010                 entry = rb_entry(node, struct btrfs_inode, rb_node);
4011
4012                 if (objectid < entry->vfs_inode.i_ino)
4013                         node = node->rb_left;
4014                 else if (objectid > entry->vfs_inode.i_ino)
4015                         node = node->rb_right;
4016                 else
4017                         break;
4018         }
4019         if (!node) {
4020                 while (prev) {
4021                         entry = rb_entry(prev, struct btrfs_inode, rb_node);
4022                         if (objectid <= entry->vfs_inode.i_ino) {
4023                                 node = prev;
4024                                 break;
4025                         }
4026                         prev = rb_next(prev);
4027                 }
4028         }
4029         while (node) {
4030                 entry = rb_entry(node, struct btrfs_inode, rb_node);
4031                 objectid = entry->vfs_inode.i_ino + 1;
4032                 inode = igrab(&entry->vfs_inode);
4033                 if (inode) {
4034                         spin_unlock(&root->inode_lock);
4035                         if (atomic_read(&inode->i_count) > 1)
4036                                 d_prune_aliases(inode);
4037                         /*
4038                          * btrfs_drop_inode will have it removed from
4039                          * the inode cache when its usage count
4040                          * hits zero.
4041                          */
4042                         iput(inode);
4043                         cond_resched();
4044                         spin_lock(&root->inode_lock);
4045                         goto again;
4046                 }
4047
4048                 if (cond_resched_lock(&root->inode_lock))
4049                         goto again;
4050
4051                 node = rb_next(node);
4052         }
4053         spin_unlock(&root->inode_lock);
4054         return 0;
4055 }
4056
4057 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4058 {
4059         struct btrfs_iget_args *args = p;
4060         inode->i_ino = args->ino;
4061         BTRFS_I(inode)->root = args->root;
4062         btrfs_set_inode_space_info(args->root, inode);
4063         return 0;
4064 }
4065
4066 static int btrfs_find_actor(struct inode *inode, void *opaque)
4067 {
4068         struct btrfs_iget_args *args = opaque;
4069         return args->ino == inode->i_ino &&
4070                 args->root == BTRFS_I(inode)->root;
4071 }
4072
4073 static struct inode *btrfs_iget_locked(struct super_block *s,
4074                                        u64 objectid,
4075                                        struct btrfs_root *root)
4076 {
4077         struct inode *inode;
4078         struct btrfs_iget_args args;
4079         args.ino = objectid;
4080         args.root = root;
4081
4082         inode = iget5_locked(s, objectid, btrfs_find_actor,
4083                              btrfs_init_locked_inode,
4084                              (void *)&args);
4085         return inode;
4086 }
4087
4088 /* Get an inode object given its location and corresponding root.
4089  * Returns in *is_new if the inode was read from disk
4090  */
4091 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4092                          struct btrfs_root *root, int *new)
4093 {
4094         struct inode *inode;
4095
4096         inode = btrfs_iget_locked(s, location->objectid, root);
4097         if (!inode)
4098                 return ERR_PTR(-ENOMEM);
4099
4100         if (inode->i_state & I_NEW) {
4101                 BTRFS_I(inode)->root = root;
4102                 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4103                 btrfs_read_locked_inode(inode);
4104                 inode_tree_add(inode);
4105                 unlock_new_inode(inode);
4106                 if (new)
4107                         *new = 1;
4108         }
4109
4110         return inode;
4111 }
4112
4113 static struct inode *new_simple_dir(struct super_block *s,
4114                                     struct btrfs_key *key,
4115                                     struct btrfs_root *root)
4116 {
4117         struct inode *inode = new_inode(s);
4118
4119         if (!inode)
4120                 return ERR_PTR(-ENOMEM);
4121
4122         BTRFS_I(inode)->root = root;
4123         memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4124         BTRFS_I(inode)->dummy_inode = 1;
4125
4126         inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4127         inode->i_op = &simple_dir_inode_operations;
4128         inode->i_fop = &simple_dir_operations;
4129         inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4130         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4131
4132         return inode;
4133 }
4134
4135 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4136 {
4137         struct inode *inode;
4138         struct btrfs_root *root = BTRFS_I(dir)->root;
4139         struct btrfs_root *sub_root = root;
4140         struct btrfs_key location;
4141         int index;
4142         int ret;
4143
4144         if (dentry->d_name.len > BTRFS_NAME_LEN)
4145                 return ERR_PTR(-ENAMETOOLONG);
4146
4147         ret = btrfs_inode_by_name(dir, dentry, &location);
4148
4149         if (ret < 0)
4150                 return ERR_PTR(ret);
4151
4152         if (location.objectid == 0)
4153                 return NULL;
4154
4155         if (location.type == BTRFS_INODE_ITEM_KEY) {
4156                 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4157                 return inode;
4158         }
4159
4160         BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4161
4162         index = srcu_read_lock(&root->fs_info->subvol_srcu);
4163         ret = fixup_tree_root_location(root, dir, dentry,
4164                                        &location, &sub_root);
4165         if (ret < 0) {
4166                 if (ret != -ENOENT)
4167                         inode = ERR_PTR(ret);
4168                 else
4169                         inode = new_simple_dir(dir->i_sb, &location, sub_root);
4170         } else {
4171                 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4172         }
4173         srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4174
4175         if (!IS_ERR(inode) && root != sub_root) {
4176                 down_read(&root->fs_info->cleanup_work_sem);
4177                 if (!(inode->i_sb->s_flags & MS_RDONLY))
4178                         ret = btrfs_orphan_cleanup(sub_root);
4179                 up_read(&root->fs_info->cleanup_work_sem);
4180                 if (ret)
4181                         inode = ERR_PTR(ret);
4182         }
4183
4184         return inode;
4185 }
4186
4187 static int btrfs_dentry_delete(const struct dentry *dentry)
4188 {
4189         struct btrfs_root *root;
4190
4191         if (!dentry->d_inode && !IS_ROOT(dentry))
4192                 dentry = dentry->d_parent;
4193
4194         if (dentry->d_inode) {
4195                 root = BTRFS_I(dentry->d_inode)->root;
4196                 if (btrfs_root_refs(&root->root_item) == 0)
4197                         return 1;
4198         }
4199         return 0;
4200 }
4201
4202 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4203                                    struct nameidata *nd)
4204 {
4205         struct inode *inode;
4206
4207         inode = btrfs_lookup_dentry(dir, dentry);
4208         if (IS_ERR(inode))
4209                 return ERR_CAST(inode);
4210
4211         return d_splice_alias(inode, dentry);
4212 }
4213
4214 static unsigned char btrfs_filetype_table[] = {
4215         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4216 };
4217
4218 static int btrfs_real_readdir(struct file *filp, void *dirent,
4219                               filldir_t filldir)
4220 {
4221         struct inode *inode = filp->f_dentry->d_inode;
4222         struct btrfs_root *root = BTRFS_I(inode)->root;
4223         struct btrfs_item *item;
4224         struct btrfs_dir_item *di;
4225         struct btrfs_key key;
4226         struct btrfs_key found_key;
4227         struct btrfs_path *path;
4228         int ret;
4229         struct extent_buffer *leaf;
4230         int slot;
4231         unsigned char d_type;
4232         int over = 0;
4233         u32 di_cur;
4234         u32 di_total;
4235         u32 di_len;
4236         int key_type = BTRFS_DIR_INDEX_KEY;
4237         char tmp_name[32];
4238         char *name_ptr;
4239         int name_len;
4240
4241         /* FIXME, use a real flag for deciding about the key type */
4242         if (root->fs_info->tree_root == root)
4243                 key_type = BTRFS_DIR_ITEM_KEY;
4244
4245         /* special case for "." */
4246         if (filp->f_pos == 0) {
4247                 over = filldir(dirent, ".", 1,
4248                                1, inode->i_ino,
4249                                DT_DIR);
4250                 if (over)
4251                         return 0;
4252                 filp->f_pos = 1;
4253         }
4254         /* special case for .., just use the back ref */
4255         if (filp->f_pos == 1) {
4256                 u64 pino = parent_ino(filp->f_path.dentry);
4257                 over = filldir(dirent, "..", 2,
4258                                2, pino, DT_DIR);
4259                 if (over)
4260                         return 0;
4261                 filp->f_pos = 2;
4262         }
4263         path = btrfs_alloc_path();
4264         path->reada = 2;
4265
4266         btrfs_set_key_type(&key, key_type);
4267         key.offset = filp->f_pos;
4268         key.objectid = inode->i_ino;
4269
4270         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4271         if (ret < 0)
4272                 goto err;
4273
4274         while (1) {
4275                 leaf = path->nodes[0];
4276                 slot = path->slots[0];
4277                 if (slot >= btrfs_header_nritems(leaf)) {
4278                         ret = btrfs_next_leaf(root, path);
4279                         if (ret < 0)
4280                                 goto err;
4281                         else if (ret > 0)
4282                                 break;
4283                         continue;
4284                 }
4285
4286                 item = btrfs_item_nr(leaf, slot);
4287                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4288
4289                 if (found_key.objectid != key.objectid)
4290                         break;
4291                 if (btrfs_key_type(&found_key) != key_type)
4292                         break;
4293                 if (found_key.offset < filp->f_pos)
4294                         goto next;
4295
4296                 filp->f_pos = found_key.offset;
4297
4298                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4299                 di_cur = 0;
4300                 di_total = btrfs_item_size(leaf, item);
4301
4302                 while (di_cur < di_total) {
4303                         struct btrfs_key location;
4304
4305                         if (verify_dir_item(root, leaf, di))
4306                                 break;
4307
4308                         name_len = btrfs_dir_name_len(leaf, di);
4309                         if (name_len <= sizeof(tmp_name)) {
4310                                 name_ptr = tmp_name;
4311                         } else {
4312                                 name_ptr = kmalloc(name_len, GFP_NOFS);
4313                                 if (!name_ptr) {
4314                                         ret = -ENOMEM;
4315                                         goto err;
4316                                 }
4317                         }
4318                         read_extent_buffer(leaf, name_ptr,
4319                                            (unsigned long)(di + 1), name_len);
4320
4321                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4322                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
4323
4324                         /* is this a reference to our own snapshot? If so
4325                          * skip it
4326                          */
4327                         if (location.type == BTRFS_ROOT_ITEM_KEY &&
4328                             location.objectid == root->root_key.objectid) {
4329                                 over = 0;
4330                                 goto skip;
4331                         }
4332                         over = filldir(dirent, name_ptr, name_len,
4333                                        found_key.offset, location.objectid,
4334                                        d_type);
4335
4336 skip:
4337                         if (name_ptr != tmp_name)
4338                                 kfree(name_ptr);
4339
4340                         if (over)
4341                                 goto nopos;
4342                         di_len = btrfs_dir_name_len(leaf, di) +
4343                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
4344                         di_cur += di_len;
4345                         di = (struct btrfs_dir_item *)((char *)di + di_len);
4346                 }
4347 next:
4348                 path->slots[0]++;
4349         }
4350
4351         /* Reached end of directory/root. Bump pos past the last item. */
4352         if (key_type == BTRFS_DIR_INDEX_KEY)
4353                 /*
4354                  * 32-bit glibc will use getdents64, but then strtol -
4355                  * so the last number we can serve is this.
4356                  */
4357                 filp->f_pos = 0x7fffffff;
4358         else
4359                 filp->f_pos++;
4360 nopos:
4361         ret = 0;
4362 err:
4363         btrfs_free_path(path);
4364         return ret;
4365 }
4366
4367 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4368 {
4369         struct btrfs_root *root = BTRFS_I(inode)->root;
4370         struct btrfs_trans_handle *trans;
4371         int ret = 0;
4372         bool nolock = false;
4373
4374         if (BTRFS_I(inode)->dummy_inode)
4375                 return 0;
4376
4377         smp_mb();
4378         nolock = (root->fs_info->closing && root == root->fs_info->tree_root);
4379
4380         if (wbc->sync_mode == WB_SYNC_ALL) {
4381                 if (nolock)
4382                         trans = btrfs_join_transaction_nolock(root, 1);
4383                 else
4384                         trans = btrfs_join_transaction(root, 1);
4385                 if (IS_ERR(trans))
4386                         return PTR_ERR(trans);
4387                 btrfs_set_trans_block_group(trans, inode);
4388                 if (nolock)
4389                         ret = btrfs_end_transaction_nolock(trans, root);
4390                 else
4391                         ret = btrfs_commit_transaction(trans, root);
4392         }
4393         return ret;
4394 }
4395
4396 /*
4397  * This is somewhat expensive, updating the tree every time the
4398  * inode changes.  But, it is most likely to find the inode in cache.
4399  * FIXME, needs more benchmarking...there are no reasons other than performance
4400  * to keep or drop this code.
4401  */
4402 void btrfs_dirty_inode(struct inode *inode)
4403 {
4404         struct btrfs_root *root = BTRFS_I(inode)->root;
4405         struct btrfs_trans_handle *trans;
4406         int ret;
4407
4408         if (BTRFS_I(inode)->dummy_inode)
4409                 return;
4410
4411         trans = btrfs_join_transaction(root, 1);
4412         BUG_ON(IS_ERR(trans));
4413         btrfs_set_trans_block_group(trans, inode);
4414
4415         ret = btrfs_update_inode(trans, root, inode);
4416         if (ret && ret == -ENOSPC) {
4417                 /* whoops, lets try again with the full transaction */
4418                 btrfs_end_transaction(trans, root);
4419                 trans = btrfs_start_transaction(root, 1);
4420                 if (IS_ERR(trans)) {
4421                         if (printk_ratelimit()) {
4422                                 printk(KERN_ERR "btrfs: fail to "
4423                                        "dirty  inode %lu error %ld\n",
4424                                        inode->i_ino, PTR_ERR(trans));
4425                         }
4426                         return;
4427                 }
4428                 btrfs_set_trans_block_group(trans, inode);
4429
4430                 ret = btrfs_update_inode(trans, root, inode);
4431                 if (ret) {
4432                         if (printk_ratelimit()) {
4433                                 printk(KERN_ERR "btrfs: fail to "
4434                                        "dirty  inode %lu error %d\n",
4435                                        inode->i_ino, ret);
4436                         }
4437                 }
4438         }
4439         btrfs_end_transaction(trans, root);
4440 }
4441
4442 /*
4443  * find the highest existing sequence number in a directory
4444  * and then set the in-memory index_cnt variable to reflect
4445  * free sequence numbers
4446  */
4447 static int btrfs_set_inode_index_count(struct inode *inode)
4448 {
4449         struct btrfs_root *root = BTRFS_I(inode)->root;
4450         struct btrfs_key key, found_key;
4451         struct btrfs_path *path;
4452         struct extent_buffer *leaf;
4453         int ret;
4454
4455         key.objectid = inode->i_ino;
4456         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4457         key.offset = (u64)-1;
4458
4459         path = btrfs_alloc_path();
4460         if (!path)
4461                 return -ENOMEM;
4462
4463         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4464         if (ret < 0)
4465                 goto out;
4466         /* FIXME: we should be able to handle this */
4467         if (ret == 0)
4468                 goto out;
4469         ret = 0;
4470
4471         /*
4472          * MAGIC NUMBER EXPLANATION:
4473          * since we search a directory based on f_pos we have to start at 2
4474          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4475          * else has to start at 2
4476          */
4477         if (path->slots[0] == 0) {
4478                 BTRFS_I(inode)->index_cnt = 2;
4479                 goto out;
4480         }
4481
4482         path->slots[0]--;
4483
4484         leaf = path->nodes[0];
4485         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4486
4487         if (found_key.objectid != inode->i_ino ||
4488             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4489                 BTRFS_I(inode)->index_cnt = 2;
4490                 goto out;
4491         }
4492
4493         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4494 out:
4495         btrfs_free_path(path);
4496         return ret;
4497 }
4498
4499 /*
4500  * helper to find a free sequence number in a given directory.  This current
4501  * code is very simple, later versions will do smarter things in the btree
4502  */
4503 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4504 {
4505         int ret = 0;
4506
4507         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4508                 ret = btrfs_set_inode_index_count(dir);
4509                 if (ret)
4510                         return ret;
4511         }
4512
4513         *index = BTRFS_I(dir)->index_cnt;
4514         BTRFS_I(dir)->index_cnt++;
4515
4516         return ret;
4517 }
4518
4519 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4520                                      struct btrfs_root *root,
4521                                      struct inode *dir,
4522                                      const char *name, int name_len,
4523                                      u64 ref_objectid, u64 objectid,
4524                                      u64 alloc_hint, int mode, u64 *index)
4525 {
4526         struct inode *inode;
4527         struct btrfs_inode_item *inode_item;
4528         struct btrfs_key *location;
4529         struct btrfs_path *path;
4530         struct btrfs_inode_ref *ref;
4531         struct btrfs_key key[2];
4532         u32 sizes[2];
4533         unsigned long ptr;
4534         int ret;
4535         int owner;
4536
4537         path = btrfs_alloc_path();
4538         BUG_ON(!path);
4539
4540         inode = new_inode(root->fs_info->sb);
4541         if (!inode) {
4542                 btrfs_free_path(path);
4543                 return ERR_PTR(-ENOMEM);
4544         }
4545
4546         /*
4547          * we have to initialize this early, so we can reclaim the inode
4548          * number if we fail afterwards in this function.
4549          */
4550         inode->i_ino = objectid;
4551
4552         if (dir) {
4553                 trace_btrfs_inode_request(dir);
4554
4555                 ret = btrfs_set_inode_index(dir, index);
4556                 if (ret) {
4557                         btrfs_free_path(path);
4558                         iput(inode);
4559                         return ERR_PTR(ret);
4560                 }
4561         }
4562         /*
4563          * index_cnt is ignored for everything but a dir,
4564          * btrfs_get_inode_index_count has an explanation for the magic
4565          * number
4566          */
4567         BTRFS_I(inode)->index_cnt = 2;
4568         BTRFS_I(inode)->root = root;
4569         BTRFS_I(inode)->generation = trans->transid;
4570         inode->i_generation = BTRFS_I(inode)->generation;
4571         btrfs_set_inode_space_info(root, inode);
4572
4573         if (mode & S_IFDIR)
4574                 owner = 0;
4575         else
4576                 owner = 1;
4577         BTRFS_I(inode)->block_group =
4578                         btrfs_find_block_group(root, 0, alloc_hint, owner);
4579
4580         key[0].objectid = objectid;
4581         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4582         key[0].offset = 0;
4583
4584         key[1].objectid = objectid;
4585         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4586         key[1].offset = ref_objectid;
4587
4588         sizes[0] = sizeof(struct btrfs_inode_item);
4589         sizes[1] = name_len + sizeof(*ref);
4590
4591         path->leave_spinning = 1;
4592         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4593         if (ret != 0)
4594                 goto fail;
4595
4596         inode_init_owner(inode, dir, mode);
4597         inode_set_bytes(inode, 0);
4598         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4599         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4600                                   struct btrfs_inode_item);
4601         fill_inode_item(trans, path->nodes[0], inode_item, inode);
4602
4603         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4604                              struct btrfs_inode_ref);
4605         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4606         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4607         ptr = (unsigned long)(ref + 1);
4608         write_extent_buffer(path->nodes[0], name, ptr, name_len);
4609
4610         btrfs_mark_buffer_dirty(path->nodes[0]);
4611         btrfs_free_path(path);
4612
4613         location = &BTRFS_I(inode)->location;
4614         location->objectid = objectid;
4615         location->offset = 0;
4616         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4617
4618         btrfs_inherit_iflags(inode, dir);
4619
4620         if ((mode & S_IFREG)) {
4621                 if (btrfs_test_opt(root, NODATASUM))
4622                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4623                 if (btrfs_test_opt(root, NODATACOW) ||
4624                     (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
4625                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4626         }
4627
4628         insert_inode_hash(inode);
4629         inode_tree_add(inode);
4630
4631         trace_btrfs_inode_new(inode);
4632
4633         return inode;
4634 fail:
4635         if (dir)
4636                 BTRFS_I(dir)->index_cnt--;
4637         btrfs_free_path(path);
4638         iput(inode);
4639         return ERR_PTR(ret);
4640 }
4641
4642 static inline u8 btrfs_inode_type(struct inode *inode)
4643 {
4644         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4645 }
4646
4647 /*
4648  * utility function to add 'inode' into 'parent_inode' with
4649  * a give name and a given sequence number.
4650  * if 'add_backref' is true, also insert a backref from the
4651  * inode to the parent directory.
4652  */
4653 int btrfs_add_link(struct btrfs_trans_handle *trans,
4654                    struct inode *parent_inode, struct inode *inode,
4655                    const char *name, int name_len, int add_backref, u64 index)
4656 {
4657         int ret = 0;
4658         struct btrfs_key key;
4659         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4660
4661         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4662                 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4663         } else {
4664                 key.objectid = inode->i_ino;
4665                 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4666                 key.offset = 0;
4667         }
4668
4669         if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4670                 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4671                                          key.objectid, root->root_key.objectid,
4672                                          parent_inode->i_ino,
4673                                          index, name, name_len);
4674         } else if (add_backref) {
4675                 ret = btrfs_insert_inode_ref(trans, root,
4676                                              name, name_len, inode->i_ino,
4677                                              parent_inode->i_ino, index);
4678         }
4679
4680         if (ret == 0) {
4681                 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4682                                             parent_inode->i_ino, &key,
4683                                             btrfs_inode_type(inode), index);
4684                 BUG_ON(ret);
4685
4686                 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4687                                    name_len * 2);
4688                 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4689                 ret = btrfs_update_inode(trans, root, parent_inode);
4690         }
4691         return ret;
4692 }
4693
4694 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4695                             struct inode *dir, struct dentry *dentry,
4696                             struct inode *inode, int backref, u64 index)
4697 {
4698         int err = btrfs_add_link(trans, dir, inode,
4699                                  dentry->d_name.name, dentry->d_name.len,
4700                                  backref, index);
4701         if (!err) {
4702                 d_instantiate(dentry, inode);
4703                 return 0;
4704         }
4705         if (err > 0)
4706                 err = -EEXIST;
4707         return err;
4708 }
4709
4710 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4711                         int mode, dev_t rdev)
4712 {
4713         struct btrfs_trans_handle *trans;
4714         struct btrfs_root *root = BTRFS_I(dir)->root;
4715         struct inode *inode = NULL;
4716         int err;
4717         int drop_inode = 0;
4718         u64 objectid;
4719         unsigned long nr = 0;
4720         u64 index = 0;
4721
4722         if (!new_valid_dev(rdev))
4723                 return -EINVAL;
4724
4725         /*
4726          * 2 for inode item and ref
4727          * 2 for dir items
4728          * 1 for xattr if selinux is on
4729          */
4730         trans = btrfs_start_transaction(root, 5);
4731         if (IS_ERR(trans))
4732                 return PTR_ERR(trans);
4733
4734         btrfs_set_trans_block_group(trans, dir);
4735
4736         err = btrfs_find_free_ino(root, &objectid);
4737         if (err)
4738                 goto out_unlock;
4739
4740         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4741                                 dentry->d_name.len, dir->i_ino, objectid,
4742                                 BTRFS_I(dir)->block_group, mode, &index);
4743         err = PTR_ERR(inode);
4744         if (IS_ERR(inode))
4745                 goto out_unlock;
4746
4747         err = btrfs_init_inode_security(trans, inode, dir);
4748         if (err) {
4749                 drop_inode = 1;
4750                 goto out_unlock;
4751         }
4752
4753         btrfs_set_trans_block_group(trans, inode);
4754         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4755         if (err)
4756                 drop_inode = 1;
4757         else {
4758                 inode->i_op = &btrfs_special_inode_operations;
4759                 init_special_inode(inode, inode->i_mode, rdev);
4760                 btrfs_update_inode(trans, root, inode);
4761         }
4762         btrfs_update_inode_block_group(trans, inode);
4763         btrfs_update_inode_block_group(trans, dir);
4764 out_unlock:
4765         nr = trans->blocks_used;
4766         btrfs_end_transaction_throttle(trans, root);
4767         btrfs_btree_balance_dirty(root, nr);
4768         if (drop_inode) {
4769                 inode_dec_link_count(inode);
4770                 iput(inode);
4771         }
4772         return err;
4773 }
4774
4775 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4776                         int mode, struct nameidata *nd)
4777 {
4778         struct btrfs_trans_handle *trans;
4779         struct btrfs_root *root = BTRFS_I(dir)->root;
4780         struct inode *inode = NULL;
4781         int drop_inode = 0;
4782         int err;
4783         unsigned long nr = 0;
4784         u64 objectid;
4785         u64 index = 0;
4786
4787         /*
4788          * 2 for inode item and ref
4789          * 2 for dir items
4790          * 1 for xattr if selinux is on
4791          */
4792         trans = btrfs_start_transaction(root, 5);
4793         if (IS_ERR(trans))
4794                 return PTR_ERR(trans);
4795
4796         btrfs_set_trans_block_group(trans, dir);
4797
4798         err = btrfs_find_free_ino(root, &objectid);
4799         if (err)
4800                 goto out_unlock;
4801
4802         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4803                                 dentry->d_name.len, dir->i_ino, objectid,
4804                                 BTRFS_I(dir)->block_group, mode, &index);
4805         err = PTR_ERR(inode);
4806         if (IS_ERR(inode))
4807                 goto out_unlock;
4808
4809         err = btrfs_init_inode_security(trans, inode, dir);
4810         if (err) {
4811                 drop_inode = 1;
4812                 goto out_unlock;
4813         }
4814
4815         btrfs_set_trans_block_group(trans, inode);
4816         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4817         if (err)
4818                 drop_inode = 1;
4819         else {
4820                 inode->i_mapping->a_ops = &btrfs_aops;
4821                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4822                 inode->i_fop = &btrfs_file_operations;
4823                 inode->i_op = &btrfs_file_inode_operations;
4824                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4825         }
4826         btrfs_update_inode_block_group(trans, inode);
4827         btrfs_update_inode_block_group(trans, dir);
4828 out_unlock:
4829         nr = trans->blocks_used;
4830         btrfs_end_transaction_throttle(trans, root);
4831         if (drop_inode) {
4832                 inode_dec_link_count(inode);
4833                 iput(inode);
4834         }
4835         btrfs_btree_balance_dirty(root, nr);
4836         return err;
4837 }
4838
4839 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4840                       struct dentry *dentry)
4841 {
4842         struct btrfs_trans_handle *trans;
4843         struct btrfs_root *root = BTRFS_I(dir)->root;
4844         struct inode *inode = old_dentry->d_inode;
4845         u64 index;
4846         unsigned long nr = 0;
4847         int err;
4848         int drop_inode = 0;
4849
4850         if (inode->i_nlink == 0)
4851                 return -ENOENT;
4852
4853         /* do not allow sys_link's with other subvols of the same device */
4854         if (root->objectid != BTRFS_I(inode)->root->objectid)
4855                 return -EXDEV;
4856
4857         if (inode->i_nlink == ~0U)
4858                 return -EMLINK;
4859
4860         err = btrfs_set_inode_index(dir, &index);
4861         if (err)
4862                 goto fail;
4863
4864         /*
4865          * 2 items for inode and inode ref
4866          * 2 items for dir items
4867          * 1 item for parent inode
4868          */
4869         trans = btrfs_start_transaction(root, 5);
4870         if (IS_ERR(trans)) {
4871                 err = PTR_ERR(trans);
4872                 goto fail;
4873         }
4874
4875         btrfs_inc_nlink(inode);
4876         inode->i_ctime = CURRENT_TIME;
4877
4878         btrfs_set_trans_block_group(trans, dir);
4879         ihold(inode);
4880
4881         err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
4882
4883         if (err) {
4884                 drop_inode = 1;
4885         } else {
4886                 struct dentry *parent = dget_parent(dentry);
4887                 btrfs_update_inode_block_group(trans, dir);
4888                 err = btrfs_update_inode(trans, root, inode);
4889                 BUG_ON(err);
4890                 btrfs_log_new_name(trans, inode, NULL, parent);
4891                 dput(parent);
4892         }
4893
4894         nr = trans->blocks_used;
4895         btrfs_end_transaction_throttle(trans, root);
4896 fail:
4897         if (drop_inode) {
4898                 inode_dec_link_count(inode);
4899                 iput(inode);
4900         }
4901         btrfs_btree_balance_dirty(root, nr);
4902         return err;
4903 }
4904
4905 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4906 {
4907         struct inode *inode = NULL;
4908         struct btrfs_trans_handle *trans;
4909         struct btrfs_root *root = BTRFS_I(dir)->root;
4910         int err = 0;
4911         int drop_on_err = 0;
4912         u64 objectid = 0;
4913         u64 index = 0;
4914         unsigned long nr = 1;
4915
4916         /*
4917          * 2 items for inode and ref
4918          * 2 items for dir items
4919          * 1 for xattr if selinux is on
4920          */
4921         trans = btrfs_start_transaction(root, 5);
4922         if (IS_ERR(trans))
4923                 return PTR_ERR(trans);
4924         btrfs_set_trans_block_group(trans, dir);
4925
4926         err = btrfs_find_free_ino(root, &objectid);
4927         if (err)
4928                 goto out_fail;
4929
4930         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4931                                 dentry->d_name.len, dir->i_ino, objectid,
4932                                 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4933                                 &index);
4934         if (IS_ERR(inode)) {
4935                 err = PTR_ERR(inode);
4936                 goto out_fail;
4937         }
4938
4939         drop_on_err = 1;
4940
4941         err = btrfs_init_inode_security(trans, inode, dir);
4942         if (err)
4943                 goto out_fail;
4944
4945         inode->i_op = &btrfs_dir_inode_operations;
4946         inode->i_fop = &btrfs_dir_file_operations;
4947         btrfs_set_trans_block_group(trans, inode);
4948
4949         btrfs_i_size_write(inode, 0);
4950         err = btrfs_update_inode(trans, root, inode);
4951         if (err)
4952                 goto out_fail;
4953
4954         err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4955                              dentry->d_name.len, 0, index);
4956         if (err)
4957                 goto out_fail;
4958
4959         d_instantiate(dentry, inode);
4960         drop_on_err = 0;
4961         btrfs_update_inode_block_group(trans, inode);
4962         btrfs_update_inode_block_group(trans, dir);
4963
4964 out_fail:
4965         nr = trans->blocks_used;
4966         btrfs_end_transaction_throttle(trans, root);
4967         if (drop_on_err)
4968                 iput(inode);
4969         btrfs_btree_balance_dirty(root, nr);
4970         return err;
4971 }
4972
4973 /* helper for btfs_get_extent.  Given an existing extent in the tree,
4974  * and an extent that you want to insert, deal with overlap and insert
4975  * the new extent into the tree.
4976  */
4977 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4978                                 struct extent_map *existing,
4979                                 struct extent_map *em,
4980                                 u64 map_start, u64 map_len)
4981 {
4982         u64 start_diff;
4983
4984         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4985         start_diff = map_start - em->start;
4986         em->start = map_start;
4987         em->len = map_len;
4988         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4989             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4990                 em->block_start += start_diff;
4991                 em->block_len -= start_diff;
4992         }
4993         return add_extent_mapping(em_tree, em);
4994 }
4995
4996 static noinline int uncompress_inline(struct btrfs_path *path,
4997                                       struct inode *inode, struct page *page,
4998                                       size_t pg_offset, u64 extent_offset,
4999                                       struct btrfs_file_extent_item *item)
5000 {
5001         int ret;
5002         struct extent_buffer *leaf = path->nodes[0];
5003         char *tmp;
5004         size_t max_size;
5005         unsigned long inline_size;
5006         unsigned long ptr;
5007         int compress_type;
5008
5009         WARN_ON(pg_offset != 0);
5010         compress_type = btrfs_file_extent_compression(leaf, item);
5011         max_size = btrfs_file_extent_ram_bytes(leaf, item);
5012         inline_size = btrfs_file_extent_inline_item_len(leaf,
5013                                         btrfs_item_nr(leaf, path->slots[0]));
5014         tmp = kmalloc(inline_size, GFP_NOFS);
5015         ptr = btrfs_file_extent_inline_start(item);
5016
5017         read_extent_buffer(leaf, tmp, ptr, inline_size);
5018
5019         max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
5020         ret = btrfs_decompress(compress_type, tmp, page,
5021                                extent_offset, inline_size, max_size);
5022         if (ret) {
5023                 char *kaddr = kmap_atomic(page, KM_USER0);
5024                 unsigned long copy_size = min_t(u64,
5025                                   PAGE_CACHE_SIZE - pg_offset,
5026                                   max_size - extent_offset);
5027                 memset(kaddr + pg_offset, 0, copy_size);
5028                 kunmap_atomic(kaddr, KM_USER0);
5029         }
5030         kfree(tmp);
5031         return 0;
5032 }
5033
5034 /*
5035  * a bit scary, this does extent mapping from logical file offset to the disk.
5036  * the ugly parts come from merging extents from the disk with the in-ram
5037  * representation.  This gets more complex because of the data=ordered code,
5038  * where the in-ram extents might be locked pending data=ordered completion.
5039  *
5040  * This also copies inline extents directly into the page.
5041  */
5042
5043 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
5044                                     size_t pg_offset, u64 start, u64 len,
5045                                     int create)
5046 {
5047         int ret;
5048         int err = 0;
5049         u64 bytenr;
5050         u64 extent_start = 0;
5051         u64 extent_end = 0;
5052         u64 objectid = inode->i_ino;
5053         u32 found_type;
5054         struct btrfs_path *path = NULL;
5055         struct btrfs_root *root = BTRFS_I(inode)->root;
5056         struct btrfs_file_extent_item *item;
5057         struct extent_buffer *leaf;
5058         struct btrfs_key found_key;
5059         struct extent_map *em = NULL;
5060         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5061         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5062         struct btrfs_trans_handle *trans = NULL;
5063         int compress_type;
5064
5065 again:
5066         read_lock(&em_tree->lock);
5067         em = lookup_extent_mapping(em_tree, start, len);
5068         if (em)
5069                 em->bdev = root->fs_info->fs_devices->latest_bdev;
5070         read_unlock(&em_tree->lock);
5071
5072         if (em) {
5073                 if (em->start > start || em->start + em->len <= start)
5074                         free_extent_map(em);
5075                 else if (em->block_start == EXTENT_MAP_INLINE && page)
5076                         free_extent_map(em);
5077                 else
5078                         goto out;
5079         }
5080         em = alloc_extent_map(GFP_NOFS);
5081         if (!em) {
5082                 err = -ENOMEM;
5083                 goto out;
5084         }
5085         em->bdev = root->fs_info->fs_devices->latest_bdev;
5086         em->start = EXTENT_MAP_HOLE;
5087         em->orig_start = EXTENT_MAP_HOLE;
5088         em->len = (u64)-1;
5089         em->block_len = (u64)-1;
5090
5091         if (!path) {
5092                 path = btrfs_alloc_path();
5093                 BUG_ON(!path);
5094         }
5095
5096         ret = btrfs_lookup_file_extent(trans, root, path,
5097                                        objectid, start, trans != NULL);
5098         if (ret < 0) {
5099                 err = ret;
5100                 goto out;
5101         }
5102
5103         if (ret != 0) {
5104                 if (path->slots[0] == 0)
5105                         goto not_found;
5106                 path->slots[0]--;
5107         }
5108
5109         leaf = path->nodes[0];
5110         item = btrfs_item_ptr(leaf, path->slots[0],
5111                               struct btrfs_file_extent_item);
5112         /* are we inside the extent that was found? */
5113         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5114         found_type = btrfs_key_type(&found_key);
5115         if (found_key.objectid != objectid ||
5116             found_type != BTRFS_EXTENT_DATA_KEY) {
5117                 goto not_found;
5118         }
5119
5120         found_type = btrfs_file_extent_type(leaf, item);
5121         extent_start = found_key.offset;
5122         compress_type = btrfs_file_extent_compression(leaf, item);
5123         if (found_type == BTRFS_FILE_EXTENT_REG ||
5124             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5125                 extent_end = extent_start +
5126                        btrfs_file_extent_num_bytes(leaf, item);
5127         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5128                 size_t size;
5129                 size = btrfs_file_extent_inline_len(leaf, item);
5130                 extent_end = (extent_start + size + root->sectorsize - 1) &
5131                         ~((u64)root->sectorsize - 1);
5132         }
5133
5134         if (start >= extent_end) {
5135                 path->slots[0]++;
5136                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5137                         ret = btrfs_next_leaf(root, path);
5138                         if (ret < 0) {
5139                                 err = ret;
5140                                 goto out;
5141                         }
5142                         if (ret > 0)
5143                                 goto not_found;
5144                         leaf = path->nodes[0];
5145                 }
5146                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5147                 if (found_key.objectid != objectid ||
5148                     found_key.type != BTRFS_EXTENT_DATA_KEY)
5149                         goto not_found;
5150                 if (start + len <= found_key.offset)
5151                         goto not_found;
5152                 em->start = start;
5153                 em->len = found_key.offset - start;
5154                 goto not_found_em;
5155         }
5156
5157         if (found_type == BTRFS_FILE_EXTENT_REG ||
5158             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5159                 em->start = extent_start;
5160                 em->len = extent_end - extent_start;
5161                 em->orig_start = extent_start -
5162                                  btrfs_file_extent_offset(leaf, item);
5163                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5164                 if (bytenr == 0) {
5165                         em->block_start = EXTENT_MAP_HOLE;
5166                         goto insert;
5167                 }
5168                 if (compress_type != BTRFS_COMPRESS_NONE) {
5169                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5170                         em->compress_type = compress_type;
5171                         em->block_start = bytenr;
5172                         em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5173                                                                          item);
5174                 } else {
5175                         bytenr += btrfs_file_extent_offset(leaf, item);
5176                         em->block_start = bytenr;
5177                         em->block_len = em->len;
5178                         if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5179                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5180                 }
5181                 goto insert;
5182         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5183                 unsigned long ptr;
5184                 char *map;
5185                 size_t size;
5186                 size_t extent_offset;
5187                 size_t copy_size;
5188
5189                 em->block_start = EXTENT_MAP_INLINE;
5190                 if (!page || create) {
5191                         em->start = extent_start;
5192                         em->len = extent_end - extent_start;
5193                         goto out;
5194                 }
5195
5196                 size = btrfs_file_extent_inline_len(leaf, item);
5197                 extent_offset = page_offset(page) + pg_offset - extent_start;
5198                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5199                                 size - extent_offset);
5200                 em->start = extent_start + extent_offset;
5201                 em->len = (copy_size + root->sectorsize - 1) &
5202                         ~((u64)root->sectorsize - 1);
5203                 em->orig_start = EXTENT_MAP_INLINE;
5204                 if (compress_type) {
5205                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5206                         em->compress_type = compress_type;
5207                 }
5208                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5209                 if (create == 0 && !PageUptodate(page)) {
5210                         if (btrfs_file_extent_compression(leaf, item) !=
5211                             BTRFS_COMPRESS_NONE) {
5212                                 ret = uncompress_inline(path, inode, page,
5213                                                         pg_offset,
5214                                                         extent_offset, item);
5215                                 BUG_ON(ret);
5216                         } else {
5217                                 map = kmap(page);
5218                                 read_extent_buffer(leaf, map + pg_offset, ptr,
5219                                                    copy_size);
5220                                 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5221                                         memset(map + pg_offset + copy_size, 0,
5222                                                PAGE_CACHE_SIZE - pg_offset -
5223                                                copy_size);
5224                                 }
5225                                 kunmap(page);
5226                         }
5227                         flush_dcache_page(page);
5228                 } else if (create && PageUptodate(page)) {
5229                         WARN_ON(1);
5230                         if (!trans) {
5231                                 kunmap(page);
5232                                 free_extent_map(em);
5233                                 em = NULL;
5234                                 btrfs_release_path(root, path);
5235                                 trans = btrfs_join_transaction(root, 1);
5236                                 if (IS_ERR(trans))
5237                                         return ERR_CAST(trans);
5238                                 goto again;
5239                         }
5240                         map = kmap(page);
5241                         write_extent_buffer(leaf, map + pg_offset, ptr,
5242                                             copy_size);
5243                         kunmap(page);
5244                         btrfs_mark_buffer_dirty(leaf);
5245                 }
5246                 set_extent_uptodate(io_tree, em->start,
5247                                     extent_map_end(em) - 1, NULL, GFP_NOFS);
5248                 goto insert;
5249         } else {
5250                 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5251                 WARN_ON(1);
5252         }
5253 not_found:
5254         em->start = start;
5255         em->len = len;
5256 not_found_em:
5257         em->block_start = EXTENT_MAP_HOLE;
5258         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5259 insert:
5260         btrfs_release_path(root, path);
5261         if (em->start > start || extent_map_end(em) <= start) {
5262                 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5263                        "[%llu %llu]\n", (unsigned long long)em->start,
5264                        (unsigned long long)em->len,
5265                        (unsigned long long)start,
5266                        (unsigned long long)len);
5267                 err = -EIO;
5268                 goto out;
5269         }
5270
5271         err = 0;
5272         write_lock(&em_tree->lock);
5273         ret = add_extent_mapping(em_tree, em);
5274         /* it is possible that someone inserted the extent into the tree
5275          * while we had the lock dropped.  It is also possible that
5276          * an overlapping map exists in the tree
5277          */
5278         if (ret == -EEXIST) {
5279                 struct extent_map *existing;
5280
5281                 ret = 0;
5282
5283                 existing = lookup_extent_mapping(em_tree, start, len);
5284                 if (existing && (existing->start > start ||
5285                     existing->start + existing->len <= start)) {
5286                         free_extent_map(existing);
5287                         existing = NULL;
5288                 }
5289                 if (!existing) {
5290                         existing = lookup_extent_mapping(em_tree, em->start,
5291                                                          em->len);
5292                         if (existing) {
5293                                 err = merge_extent_mapping(em_tree, existing,
5294                                                            em, start,
5295                                                            root->sectorsize);
5296                                 free_extent_map(existing);
5297                                 if (err) {
5298                                         free_extent_map(em);
5299                                         em = NULL;
5300                                 }
5301                         } else {
5302                                 err = -EIO;
5303                                 free_extent_map(em);
5304                                 em = NULL;
5305                         }
5306                 } else {
5307                         free_extent_map(em);
5308                         em = existing;
5309                         err = 0;
5310                 }
5311         }
5312         write_unlock(&em_tree->lock);
5313 out:
5314
5315         trace_btrfs_get_extent(root, em);
5316
5317         if (path)
5318                 btrfs_free_path(path);
5319         if (trans) {
5320                 ret = btrfs_end_transaction(trans, root);
5321                 if (!err)
5322                         err = ret;
5323         }
5324         if (err) {
5325                 free_extent_map(em);
5326                 return ERR_PTR(err);
5327         }
5328         return em;
5329 }
5330
5331 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5332                                            size_t pg_offset, u64 start, u64 len,
5333                                            int create)
5334 {
5335         struct extent_map *em;
5336         struct extent_map *hole_em = NULL;
5337         u64 range_start = start;
5338         u64 end;
5339         u64 found;
5340         u64 found_end;
5341         int err = 0;
5342
5343         em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5344         if (IS_ERR(em))
5345                 return em;
5346         if (em) {
5347                 /*
5348                  * if our em maps to a hole, there might
5349                  * actually be delalloc bytes behind it
5350                  */
5351                 if (em->block_start != EXTENT_MAP_HOLE)
5352                         return em;
5353                 else
5354                         hole_em = em;
5355         }
5356
5357         /* check to see if we've wrapped (len == -1 or similar) */
5358         end = start + len;
5359         if (end < start)
5360                 end = (u64)-1;
5361         else
5362                 end -= 1;
5363
5364         em = NULL;
5365
5366         /* ok, we didn't find anything, lets look for delalloc */
5367         found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5368                                  end, len, EXTENT_DELALLOC, 1);
5369         found_end = range_start + found;
5370         if (found_end < range_start)
5371                 found_end = (u64)-1;
5372
5373         /*
5374          * we didn't find anything useful, return
5375          * the original results from get_extent()
5376          */
5377         if (range_start > end || found_end <= start) {
5378                 em = hole_em;
5379                 hole_em = NULL;
5380                 goto out;
5381         }
5382
5383         /* adjust the range_start to make sure it doesn't
5384          * go backwards from the start they passed in
5385          */
5386         range_start = max(start,range_start);
5387         found = found_end - range_start;
5388
5389         if (found > 0) {
5390                 u64 hole_start = start;
5391                 u64 hole_len = len;
5392
5393                 em = alloc_extent_map(GFP_NOFS);
5394                 if (!em) {
5395                         err = -ENOMEM;
5396                         goto out;
5397                 }
5398                 /*
5399                  * when btrfs_get_extent can't find anything it
5400                  * returns one huge hole
5401                  *
5402                  * make sure what it found really fits our range, and
5403                  * adjust to make sure it is based on the start from
5404                  * the caller
5405                  */
5406                 if (hole_em) {
5407                         u64 calc_end = extent_map_end(hole_em);
5408
5409                         if (calc_end <= start || (hole_em->start > end)) {
5410                                 free_extent_map(hole_em);
5411                                 hole_em = NULL;
5412                         } else {
5413                                 hole_start = max(hole_em->start, start);
5414                                 hole_len = calc_end - hole_start;
5415                         }
5416                 }
5417                 em->bdev = NULL;
5418                 if (hole_em && range_start > hole_start) {
5419                         /* our hole starts before our delalloc, so we
5420                          * have to return just the parts of the hole
5421                          * that go until  the delalloc starts
5422                          */
5423                         em->len = min(hole_len,
5424                                       range_start - hole_start);
5425                         em->start = hole_start;
5426                         em->orig_start = hole_start;
5427                         /*
5428                          * don't adjust block start at all,
5429                          * it is fixed at EXTENT_MAP_HOLE
5430                          */
5431                         em->block_start = hole_em->block_start;
5432                         em->block_len = hole_len;
5433                 } else {
5434                         em->start = range_start;
5435                         em->len = found;
5436                         em->orig_start = range_start;
5437                         em->block_start = EXTENT_MAP_DELALLOC;
5438                         em->block_len = found;
5439                 }
5440         } else if (hole_em) {
5441                 return hole_em;
5442         }
5443 out:
5444
5445         free_extent_map(hole_em);
5446         if (err) {
5447                 free_extent_map(em);
5448                 return ERR_PTR(err);
5449         }
5450         return em;
5451 }
5452
5453 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5454                                                   struct extent_map *em,
5455                                                   u64 start, u64 len)
5456 {
5457         struct btrfs_root *root = BTRFS_I(inode)->root;
5458         struct btrfs_trans_handle *trans;
5459         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5460         struct btrfs_key ins;
5461         u64 alloc_hint;
5462         int ret;
5463         bool insert = false;
5464
5465         /*
5466          * Ok if the extent map we looked up is a hole and is for the exact
5467          * range we want, there is no reason to allocate a new one, however if
5468          * it is not right then we need to free this one and drop the cache for
5469          * our range.
5470          */
5471         if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5472             em->len != len) {
5473                 free_extent_map(em);
5474                 em = NULL;
5475                 insert = true;
5476                 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5477         }
5478
5479         trans = btrfs_join_transaction(root, 0);
5480         if (IS_ERR(trans))
5481                 return ERR_CAST(trans);
5482
5483         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5484
5485         alloc_hint = get_extent_allocation_hint(inode, start, len);
5486         ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5487                                    alloc_hint, (u64)-1, &ins, 1);
5488         if (ret) {
5489                 em = ERR_PTR(ret);
5490                 goto out;
5491         }
5492
5493         if (!em) {
5494                 em = alloc_extent_map(GFP_NOFS);
5495                 if (!em) {
5496                         em = ERR_PTR(-ENOMEM);
5497                         goto out;
5498                 }
5499         }
5500
5501         em->start = start;
5502         em->orig_start = em->start;
5503         em->len = ins.offset;
5504
5505         em->block_start = ins.objectid;
5506         em->block_len = ins.offset;
5507         em->bdev = root->fs_info->fs_devices->latest_bdev;
5508
5509         /*
5510          * We need to do this because if we're using the original em we searched
5511          * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5512          */
5513         em->flags = 0;
5514         set_bit(EXTENT_FLAG_PINNED, &em->flags);
5515
5516         while (insert) {
5517                 write_lock(&em_tree->lock);
5518                 ret = add_extent_mapping(em_tree, em);
5519                 write_unlock(&em_tree->lock);
5520                 if (ret != -EEXIST)
5521                         break;
5522                 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5523         }
5524
5525         ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5526                                            ins.offset, ins.offset, 0);
5527         if (ret) {
5528                 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5529                 em = ERR_PTR(ret);
5530         }
5531 out:
5532         btrfs_end_transaction(trans, root);
5533         return em;
5534 }
5535
5536 /*
5537  * returns 1 when the nocow is safe, < 1 on error, 0 if the
5538  * block must be cow'd
5539  */
5540 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5541                                       struct inode *inode, u64 offset, u64 len)
5542 {
5543         struct btrfs_path *path;
5544         int ret;
5545         struct extent_buffer *leaf;
5546         struct btrfs_root *root = BTRFS_I(inode)->root;
5547         struct btrfs_file_extent_item *fi;
5548         struct btrfs_key key;
5549         u64 disk_bytenr;
5550         u64 backref_offset;
5551         u64 extent_end;
5552         u64 num_bytes;
5553         int slot;
5554         int found_type;
5555
5556         path = btrfs_alloc_path();
5557         if (!path)
5558                 return -ENOMEM;
5559
5560         ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
5561                                        offset, 0);
5562         if (ret < 0)
5563                 goto out;
5564
5565         slot = path->slots[0];
5566         if (ret == 1) {
5567                 if (slot == 0) {
5568                         /* can't find the item, must cow */
5569                         ret = 0;
5570                         goto out;
5571                 }
5572                 slot--;
5573         }
5574         ret = 0;
5575         leaf = path->nodes[0];
5576         btrfs_item_key_to_cpu(leaf, &key, slot);
5577         if (key.objectid != inode->i_ino ||
5578             key.type != BTRFS_EXTENT_DATA_KEY) {
5579                 /* not our file or wrong item type, must cow */
5580                 goto out;
5581         }
5582
5583         if (key.offset > offset) {
5584                 /* Wrong offset, must cow */
5585                 goto out;
5586         }
5587
5588         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5589         found_type = btrfs_file_extent_type(leaf, fi);
5590         if (found_type != BTRFS_FILE_EXTENT_REG &&
5591             found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5592                 /* not a regular extent, must cow */
5593                 goto out;
5594         }
5595         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5596         backref_offset = btrfs_file_extent_offset(leaf, fi);
5597
5598         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5599         if (extent_end < offset + len) {
5600                 /* extent doesn't include our full range, must cow */
5601                 goto out;
5602         }
5603
5604         if (btrfs_extent_readonly(root, disk_bytenr))
5605                 goto out;
5606
5607         /*
5608          * look for other files referencing this extent, if we
5609          * find any we must cow
5610          */
5611         if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5612                                   key.offset - backref_offset, disk_bytenr))
5613                 goto out;
5614
5615         /*
5616          * adjust disk_bytenr and num_bytes to cover just the bytes
5617          * in this extent we are about to write.  If there
5618          * are any csums in that range we have to cow in order
5619          * to keep the csums correct
5620          */
5621         disk_bytenr += backref_offset;
5622         disk_bytenr += offset - key.offset;
5623         num_bytes = min(offset + len, extent_end) - offset;
5624         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5625                                 goto out;
5626         /*
5627          * all of the above have passed, it is safe to overwrite this extent
5628          * without cow
5629          */
5630         ret = 1;
5631 out:
5632         btrfs_free_path(path);
5633         return ret;
5634 }
5635
5636 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5637                                    struct buffer_head *bh_result, int create)
5638 {
5639         struct extent_map *em;
5640         struct btrfs_root *root = BTRFS_I(inode)->root;
5641         u64 start = iblock << inode->i_blkbits;
5642         u64 len = bh_result->b_size;
5643         struct btrfs_trans_handle *trans;
5644
5645         em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5646         if (IS_ERR(em))
5647                 return PTR_ERR(em);
5648
5649         /*
5650          * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5651          * io.  INLINE is special, and we could probably kludge it in here, but
5652          * it's still buffered so for safety lets just fall back to the generic
5653          * buffered path.
5654          *
5655          * For COMPRESSED we _have_ to read the entire extent in so we can
5656          * decompress it, so there will be buffering required no matter what we
5657          * do, so go ahead and fallback to buffered.
5658          *
5659          * We return -ENOTBLK because thats what makes DIO go ahead and go back
5660          * to buffered IO.  Don't blame me, this is the price we pay for using
5661          * the generic code.
5662          */
5663         if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5664             em->block_start == EXTENT_MAP_INLINE) {
5665                 free_extent_map(em);
5666                 return -ENOTBLK;
5667         }
5668
5669         /* Just a good old fashioned hole, return */
5670         if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5671                         test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5672                 free_extent_map(em);
5673                 /* DIO will do one hole at a time, so just unlock a sector */
5674                 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5675                               start + root->sectorsize - 1, GFP_NOFS);
5676                 return 0;
5677         }
5678
5679         /*
5680          * We don't allocate a new extent in the following cases
5681          *
5682          * 1) The inode is marked as NODATACOW.  In this case we'll just use the
5683          * existing extent.
5684          * 2) The extent is marked as PREALLOC.  We're good to go here and can
5685          * just use the extent.
5686          *
5687          */
5688         if (!create) {
5689                 len = em->len - (start - em->start);
5690                 goto map;
5691         }
5692
5693         if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5694             ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5695              em->block_start != EXTENT_MAP_HOLE)) {
5696                 int type;
5697                 int ret;
5698                 u64 block_start;
5699
5700                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5701                         type = BTRFS_ORDERED_PREALLOC;
5702                 else
5703                         type = BTRFS_ORDERED_NOCOW;
5704                 len = min(len, em->len - (start - em->start));
5705                 block_start = em->block_start + (start - em->start);
5706
5707                 /*
5708                  * we're not going to log anything, but we do need
5709                  * to make sure the current transaction stays open
5710                  * while we look for nocow cross refs
5711                  */
5712                 trans = btrfs_join_transaction(root, 0);
5713                 if (IS_ERR(trans))
5714                         goto must_cow;
5715
5716                 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5717                         ret = btrfs_add_ordered_extent_dio(inode, start,
5718                                            block_start, len, len, type);
5719                         btrfs_end_transaction(trans, root);
5720                         if (ret) {
5721                                 free_extent_map(em);
5722                                 return ret;
5723                         }
5724                         goto unlock;
5725                 }
5726                 btrfs_end_transaction(trans, root);
5727         }
5728 must_cow:
5729         /*
5730          * this will cow the extent, reset the len in case we changed
5731          * it above
5732          */
5733         len = bh_result->b_size;
5734         em = btrfs_new_extent_direct(inode, em, start, len);
5735         if (IS_ERR(em))
5736                 return PTR_ERR(em);
5737         len = min(len, em->len - (start - em->start));
5738 unlock:
5739         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5740                           EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5741                           0, NULL, GFP_NOFS);
5742 map:
5743         bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5744                 inode->i_blkbits;
5745         bh_result->b_size = len;
5746         bh_result->b_bdev = em->bdev;
5747         set_buffer_mapped(bh_result);
5748         if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5749                 set_buffer_new(bh_result);
5750
5751         free_extent_map(em);
5752
5753         return 0;
5754 }
5755
5756 struct btrfs_dio_private {
5757         struct inode *inode;
5758         u64 logical_offset;
5759         u64 disk_bytenr;
5760         u64 bytes;
5761         u32 *csums;
5762         void *private;
5763
5764         /* number of bios pending for this dio */
5765         atomic_t pending_bios;
5766
5767         /* IO errors */
5768         int errors;
5769
5770         struct bio *orig_bio;
5771 };
5772
5773 static void btrfs_endio_direct_read(struct bio *bio, int err)
5774 {
5775         struct btrfs_dio_private *dip = bio->bi_private;
5776         struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5777         struct bio_vec *bvec = bio->bi_io_vec;
5778         struct inode *inode = dip->inode;
5779         struct btrfs_root *root = BTRFS_I(inode)->root;
5780         u64 start;
5781         u32 *private = dip->csums;
5782
5783         start = dip->logical_offset;
5784         do {
5785                 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5786                         struct page *page = bvec->bv_page;
5787                         char *kaddr;
5788                         u32 csum = ~(u32)0;
5789                         unsigned long flags;
5790
5791                         local_irq_save(flags);
5792                         kaddr = kmap_atomic(page, KM_IRQ0);
5793                         csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5794                                                csum, bvec->bv_len);
5795                         btrfs_csum_final(csum, (char *)&csum);
5796                         kunmap_atomic(kaddr, KM_IRQ0);
5797                         local_irq_restore(flags);
5798
5799                         flush_dcache_page(bvec->bv_page);
5800                         if (csum != *private) {
5801                                 printk(KERN_ERR "btrfs csum failed ino %lu off"
5802                                       " %llu csum %u private %u\n",
5803                                       inode->i_ino, (unsigned long long)start,
5804                                       csum, *private);
5805                                 err = -EIO;
5806                         }
5807                 }
5808
5809                 start += bvec->bv_len;
5810                 private++;
5811                 bvec++;
5812         } while (bvec <= bvec_end);
5813
5814         unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5815                       dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5816         bio->bi_private = dip->private;
5817
5818         kfree(dip->csums);
5819         kfree(dip);
5820
5821         /* If we had a csum failure make sure to clear the uptodate flag */
5822         if (err)
5823                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
5824         dio_end_io(bio, err);
5825 }
5826
5827 static void btrfs_endio_direct_write(struct bio *bio, int err)
5828 {
5829         struct btrfs_dio_private *dip = bio->bi_private;
5830         struct inode *inode = dip->inode;
5831         struct btrfs_root *root = BTRFS_I(inode)->root;
5832         struct btrfs_trans_handle *trans;
5833         struct btrfs_ordered_extent *ordered = NULL;
5834         struct extent_state *cached_state = NULL;
5835         u64 ordered_offset = dip->logical_offset;
5836         u64 ordered_bytes = dip->bytes;
5837         int ret;
5838
5839         if (err)
5840                 goto out_done;
5841 again:
5842         ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5843                                                    &ordered_offset,
5844                                                    ordered_bytes);
5845         if (!ret)
5846                 goto out_test;
5847
5848         BUG_ON(!ordered);
5849
5850         trans = btrfs_join_transaction(root, 1);
5851         if (IS_ERR(trans)) {
5852                 err = -ENOMEM;
5853                 goto out;
5854         }
5855         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5856
5857         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5858                 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5859                 if (!ret)
5860                         ret = btrfs_update_inode(trans, root, inode);
5861                 err = ret;
5862                 goto out;
5863         }
5864
5865         lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5866                          ordered->file_offset + ordered->len - 1, 0,
5867                          &cached_state, GFP_NOFS);
5868
5869         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5870                 ret = btrfs_mark_extent_written(trans, inode,
5871                                                 ordered->file_offset,
5872                                                 ordered->file_offset +
5873                                                 ordered->len);
5874                 if (ret) {
5875                         err = ret;
5876                         goto out_unlock;
5877                 }
5878         } else {
5879                 ret = insert_reserved_file_extent(trans, inode,
5880                                                   ordered->file_offset,
5881                                                   ordered->start,
5882                                                   ordered->disk_len,
5883                                                   ordered->len,
5884                                                   ordered->len,
5885                                                   0, 0, 0,
5886                                                   BTRFS_FILE_EXTENT_REG);
5887                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5888                                    ordered->file_offset, ordered->len);
5889                 if (ret) {
5890                         err = ret;
5891                         WARN_ON(1);
5892                         goto out_unlock;
5893                 }
5894         }
5895
5896         add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5897         ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5898         if (!ret)
5899                 btrfs_update_inode(trans, root, inode);
5900         ret = 0;
5901 out_unlock:
5902         unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5903                              ordered->file_offset + ordered->len - 1,
5904                              &cached_state, GFP_NOFS);
5905 out:
5906         btrfs_delalloc_release_metadata(inode, ordered->len);
5907         btrfs_end_transaction(trans, root);
5908         ordered_offset = ordered->file_offset + ordered->len;
5909         btrfs_put_ordered_extent(ordered);
5910         btrfs_put_ordered_extent(ordered);
5911
5912 out_test:
5913         /*
5914          * our bio might span multiple ordered extents.  If we haven't
5915          * completed the accounting for the whole dio, go back and try again
5916          */
5917         if (ordered_offset < dip->logical_offset + dip->bytes) {
5918                 ordered_bytes = dip->logical_offset + dip->bytes -
5919                         ordered_offset;
5920                 goto again;
5921         }
5922 out_done:
5923         bio->bi_private = dip->private;
5924
5925         kfree(dip->csums);
5926         kfree(dip);
5927
5928         /* If we had an error make sure to clear the uptodate flag */
5929         if (err)
5930                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
5931         dio_end_io(bio, err);
5932 }
5933
5934 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5935                                     struct bio *bio, int mirror_num,
5936                                     unsigned long bio_flags, u64 offset)
5937 {
5938         int ret;
5939         struct btrfs_root *root = BTRFS_I(inode)->root;
5940         ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5941         BUG_ON(ret);
5942         return 0;
5943 }
5944
5945 static void btrfs_end_dio_bio(struct bio *bio, int err)
5946 {
5947         struct btrfs_dio_private *dip = bio->bi_private;
5948
5949         if (err) {
5950                 printk(KERN_ERR "btrfs direct IO failed ino %lu rw %lu "
5951                       "sector %#Lx len %u err no %d\n",
5952                       dip->inode->i_ino, bio->bi_rw,
5953                       (unsigned long long)bio->bi_sector, bio->bi_size, err);
5954                 dip->errors = 1;
5955
5956                 /*
5957                  * before atomic variable goto zero, we must make sure
5958                  * dip->errors is perceived to be set.
5959                  */
5960                 smp_mb__before_atomic_dec();
5961         }
5962
5963         /* if there are more bios still pending for this dio, just exit */
5964         if (!atomic_dec_and_test(&dip->pending_bios))
5965                 goto out;
5966
5967         if (dip->errors)
5968                 bio_io_error(dip->orig_bio);
5969         else {
5970                 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5971                 bio_endio(dip->orig_bio, 0);
5972         }
5973 out:
5974         bio_put(bio);
5975 }
5976
5977 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5978                                        u64 first_sector, gfp_t gfp_flags)
5979 {
5980         int nr_vecs = bio_get_nr_vecs(bdev);
5981         return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5982 }
5983
5984 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5985                                          int rw, u64 file_offset, int skip_sum,
5986                                          u32 *csums, int async_submit)
5987 {
5988         int write = rw & REQ_WRITE;
5989         struct btrfs_root *root = BTRFS_I(inode)->root;
5990         int ret;
5991
5992         bio_get(bio);
5993         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5994         if (ret)
5995                 goto err;
5996
5997         if (skip_sum)
5998                 goto map;
5999
6000         if (write && async_submit) {
6001                 ret = btrfs_wq_submit_bio(root->fs_info,
6002                                    inode, rw, bio, 0, 0,
6003                                    file_offset,
6004                                    __btrfs_submit_bio_start_direct_io,
6005                                    __btrfs_submit_bio_done);
6006                 goto err;
6007         } else if (write) {
6008                 /*
6009                  * If we aren't doing async submit, calculate the csum of the
6010                  * bio now.
6011                  */
6012                 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
6013                 if (ret)
6014                         goto err;
6015         } else if (!skip_sum) {
6016                 ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
6017                                           file_offset, csums);
6018                 if (ret)
6019                         goto err;
6020         }
6021
6022 map:
6023         ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
6024 err:
6025         bio_put(bio);
6026         return ret;
6027 }
6028
6029 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
6030                                     int skip_sum)
6031 {
6032         struct inode *inode = dip->inode;
6033         struct btrfs_root *root = BTRFS_I(inode)->root;
6034         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6035         struct bio *bio;
6036         struct bio *orig_bio = dip->orig_bio;
6037         struct bio_vec *bvec = orig_bio->bi_io_vec;
6038         u64 start_sector = orig_bio->bi_sector;
6039         u64 file_offset = dip->logical_offset;
6040         u64 submit_len = 0;
6041         u64 map_length;
6042         int nr_pages = 0;
6043         u32 *csums = dip->csums;
6044         int ret = 0;
6045         int async_submit = 0;
6046         int write = rw & REQ_WRITE;
6047
6048         map_length = orig_bio->bi_size;
6049         ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6050                               &map_length, NULL, 0);
6051         if (ret) {
6052                 bio_put(bio);
6053                 return -EIO;
6054         }
6055
6056         if (map_length >= orig_bio->bi_size) {
6057                 bio = orig_bio;
6058                 goto submit;
6059         }
6060
6061         async_submit = 1;
6062         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
6063         if (!bio)
6064                 return -ENOMEM;
6065         bio->bi_private = dip;
6066         bio->bi_end_io = btrfs_end_dio_bio;
6067         atomic_inc(&dip->pending_bios);
6068
6069         while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6070                 if (unlikely(map_length < submit_len + bvec->bv_len ||
6071                     bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6072                                  bvec->bv_offset) < bvec->bv_len)) {
6073                         /*
6074                          * inc the count before we submit the bio so
6075                          * we know the end IO handler won't happen before
6076                          * we inc the count. Otherwise, the dip might get freed
6077                          * before we're done setting it up
6078                          */
6079                         atomic_inc(&dip->pending_bios);
6080                         ret = __btrfs_submit_dio_bio(bio, inode, rw,
6081                                                      file_offset, skip_sum,
6082                                                      csums, async_submit);
6083                         if (ret) {
6084                                 bio_put(bio);
6085                                 atomic_dec(&dip->pending_bios);
6086                                 goto out_err;
6087                         }
6088
6089                         /* Write's use the ordered csums */
6090                         if (!write && !skip_sum)
6091                                 csums = csums + nr_pages;
6092                         start_sector += submit_len >> 9;
6093                         file_offset += submit_len;
6094
6095                         submit_len = 0;
6096                         nr_pages = 0;
6097
6098                         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6099                                                   start_sector, GFP_NOFS);
6100                         if (!bio)
6101                                 goto out_err;
6102                         bio->bi_private = dip;
6103                         bio->bi_end_io = btrfs_end_dio_bio;
6104
6105                         map_length = orig_bio->bi_size;
6106                         ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6107                                               &map_length, NULL, 0);
6108                         if (ret) {
6109                                 bio_put(bio);
6110                                 goto out_err;
6111                         }
6112                 } else {
6113                         submit_len += bvec->bv_len;
6114                         nr_pages ++;
6115                         bvec++;
6116                 }
6117         }
6118
6119 submit:
6120         ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6121                                      csums, async_submit);
6122         if (!ret)
6123                 return 0;
6124
6125         bio_put(bio);
6126 out_err:
6127         dip->errors = 1;
6128         /*
6129          * before atomic variable goto zero, we must
6130          * make sure dip->errors is perceived to be set.
6131          */
6132         smp_mb__before_atomic_dec();
6133         if (atomic_dec_and_test(&dip->pending_bios))
6134                 bio_io_error(dip->orig_bio);
6135
6136         /* bio_end_io() will handle error, so we needn't return it */
6137         return 0;
6138 }
6139
6140 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6141                                 loff_t file_offset)
6142 {
6143         struct btrfs_root *root = BTRFS_I(inode)->root;
6144         struct btrfs_dio_private *dip;
6145         struct bio_vec *bvec = bio->bi_io_vec;
6146         int skip_sum;
6147         int write = rw & REQ_WRITE;
6148         int ret = 0;
6149
6150         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6151
6152         dip = kmalloc(sizeof(*dip), GFP_NOFS);
6153         if (!dip) {
6154                 ret = -ENOMEM;
6155                 goto free_ordered;
6156         }
6157         dip->csums = NULL;
6158
6159         /* Write's use the ordered csum stuff, so we don't need dip->csums */
6160         if (!write && !skip_sum) {
6161                 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6162                 if (!dip->csums) {
6163                         kfree(dip);
6164                         ret = -ENOMEM;
6165                         goto free_ordered;
6166                 }
6167         }
6168
6169         dip->private = bio->bi_private;
6170         dip->inode = inode;
6171         dip->logical_offset = file_offset;
6172
6173         dip->bytes = 0;
6174         do {
6175                 dip->bytes += bvec->bv_len;
6176                 bvec++;
6177         } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6178
6179         dip->disk_bytenr = (u64)bio->bi_sector << 9;
6180         bio->bi_private = dip;
6181         dip->errors = 0;
6182         dip->orig_bio = bio;
6183         atomic_set(&dip->pending_bios, 0);
6184
6185         if (write)
6186                 bio->bi_end_io = btrfs_endio_direct_write;
6187         else
6188                 bio->bi_end_io = btrfs_endio_direct_read;
6189
6190         ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6191         if (!ret)
6192                 return;
6193 free_ordered:
6194         /*
6195          * If this is a write, we need to clean up the reserved space and kill
6196          * the ordered extent.
6197          */
6198         if (write) {
6199                 struct btrfs_ordered_extent *ordered;
6200                 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6201                 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6202                     !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6203                         btrfs_free_reserved_extent(root, ordered->start,
6204                                                    ordered->disk_len);
6205                 btrfs_put_ordered_extent(ordered);
6206                 btrfs_put_ordered_extent(ordered);
6207         }
6208         bio_endio(bio, ret);
6209 }
6210
6211 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6212                         const struct iovec *iov, loff_t offset,
6213                         unsigned long nr_segs)
6214 {
6215         int seg;
6216         int i;
6217         size_t size;
6218         unsigned long addr;
6219         unsigned blocksize_mask = root->sectorsize - 1;
6220         ssize_t retval = -EINVAL;
6221         loff_t end = offset;
6222
6223         if (offset & blocksize_mask)
6224                 goto out;
6225
6226         /* Check the memory alignment.  Blocks cannot straddle pages */
6227         for (seg = 0; seg < nr_segs; seg++) {
6228                 addr = (unsigned long)iov[seg].iov_base;
6229                 size = iov[seg].iov_len;
6230                 end += size;
6231                 if ((addr & blocksize_mask) || (size & blocksize_mask))
6232                         goto out;
6233
6234                 /* If this is a write we don't need to check anymore */
6235                 if (rw & WRITE)
6236                         continue;
6237
6238                 /*
6239                  * Check to make sure we don't have duplicate iov_base's in this
6240                  * iovec, if so return EINVAL, otherwise we'll get csum errors
6241                  * when reading back.
6242                  */
6243                 for (i = seg + 1; i < nr_segs; i++) {
6244                         if (iov[seg].iov_base == iov[i].iov_base)
6245                                 goto out;
6246                 }
6247         }
6248         retval = 0;
6249 out:
6250         return retval;
6251 }
6252 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6253                         const struct iovec *iov, loff_t offset,
6254                         unsigned long nr_segs)
6255 {
6256         struct file *file = iocb->ki_filp;
6257         struct inode *inode = file->f_mapping->host;
6258         struct btrfs_ordered_extent *ordered;
6259         struct extent_state *cached_state = NULL;
6260         u64 lockstart, lockend;
6261         ssize_t ret;
6262         int writing = rw & WRITE;
6263         int write_bits = 0;
6264         size_t count = iov_length(iov, nr_segs);
6265
6266         if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6267                             offset, nr_segs)) {
6268                 return 0;
6269         }
6270
6271         lockstart = offset;
6272         lockend = offset + count - 1;
6273
6274         if (writing) {
6275                 ret = btrfs_delalloc_reserve_space(inode, count);
6276                 if (ret)
6277                         goto out;
6278         }
6279
6280         while (1) {
6281                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6282                                  0, &cached_state, GFP_NOFS);
6283                 /*
6284                  * We're concerned with the entire range that we're going to be
6285                  * doing DIO to, so we need to make sure theres no ordered
6286                  * extents in this range.
6287                  */
6288                 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6289                                                      lockend - lockstart + 1);
6290                 if (!ordered)
6291                         break;
6292                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6293                                      &cached_state, GFP_NOFS);
6294                 btrfs_start_ordered_extent(inode, ordered, 1);
6295                 btrfs_put_ordered_extent(ordered);
6296                 cond_resched();
6297         }
6298
6299         /*
6300          * we don't use btrfs_set_extent_delalloc because we don't want
6301          * the dirty or uptodate bits
6302          */
6303         if (writing) {
6304                 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6305                 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6306                                      EXTENT_DELALLOC, 0, NULL, &cached_state,
6307                                      GFP_NOFS);
6308                 if (ret) {
6309                         clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6310                                          lockend, EXTENT_LOCKED | write_bits,
6311                                          1, 0, &cached_state, GFP_NOFS);
6312                         goto out;
6313                 }
6314         }
6315
6316         free_extent_state(cached_state);
6317         cached_state = NULL;
6318
6319         ret = __blockdev_direct_IO(rw, iocb, inode,
6320                    BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6321                    iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6322                    btrfs_submit_direct, 0);
6323
6324         if (ret < 0 && ret != -EIOCBQUEUED) {
6325                 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6326                               offset + iov_length(iov, nr_segs) - 1,
6327                               EXTENT_LOCKED | write_bits, 1, 0,
6328                               &cached_state, GFP_NOFS);
6329         } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6330                 /*
6331                  * We're falling back to buffered, unlock the section we didn't
6332                  * do IO on.
6333                  */
6334                 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6335                               offset + iov_length(iov, nr_segs) - 1,
6336                               EXTENT_LOCKED | write_bits, 1, 0,
6337                               &cached_state, GFP_NOFS);
6338         }
6339 out:
6340         free_extent_state(cached_state);
6341         return ret;
6342 }
6343
6344 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6345                 __u64 start, __u64 len)
6346 {
6347         return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6348 }
6349
6350 int btrfs_readpage(struct file *file, struct page *page)
6351 {
6352         struct extent_io_tree *tree;
6353         tree = &BTRFS_I(page->mapping->host)->io_tree;
6354         return extent_read_full_page(tree, page, btrfs_get_extent);
6355 }
6356
6357 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6358 {
6359         struct extent_io_tree *tree;
6360
6361
6362         if (current->flags & PF_MEMALLOC) {
6363                 redirty_page_for_writepage(wbc, page);
6364                 unlock_page(page);
6365                 return 0;
6366         }
6367         tree = &BTRFS_I(page->mapping->host)->io_tree;
6368         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6369 }
6370
6371 int btrfs_writepages(struct address_space *mapping,
6372                      struct writeback_control *wbc)
6373 {
6374         struct extent_io_tree *tree;
6375
6376         tree = &BTRFS_I(mapping->host)->io_tree;
6377         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6378 }
6379
6380 static int
6381 btrfs_readpages(struct file *file, struct address_space *mapping,
6382                 struct list_head *pages, unsigned nr_pages)
6383 {
6384         struct extent_io_tree *tree;
6385         tree = &BTRFS_I(mapping->host)->io_tree;
6386         return extent_readpages(tree, mapping, pages, nr_pages,
6387                                 btrfs_get_extent);
6388 }
6389 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6390 {
6391         struct extent_io_tree *tree;
6392         struct extent_map_tree *map;
6393         int ret;
6394
6395         tree = &BTRFS_I(page->mapping->host)->io_tree;
6396         map = &BTRFS_I(page->mapping->host)->extent_tree;
6397         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6398         if (ret == 1) {
6399                 ClearPagePrivate(page);
6400                 set_page_private(page, 0);
6401                 page_cache_release(page);
6402         }
6403         return ret;
6404 }
6405
6406 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6407 {
6408         if (PageWriteback(page) || PageDirty(page))
6409                 return 0;
6410         return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6411 }
6412
6413 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6414 {
6415         struct extent_io_tree *tree;
6416         struct btrfs_ordered_extent *ordered;
6417         struct extent_state *cached_state = NULL;
6418         u64 page_start = page_offset(page);
6419         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6420
6421
6422         /*
6423          * we have the page locked, so new writeback can't start,
6424          * and the dirty bit won't be cleared while we are here.
6425          *
6426          * Wait for IO on this page so that we can safely clear
6427          * the PagePrivate2 bit and do ordered accounting
6428          */
6429         wait_on_page_writeback(page);
6430
6431         tree = &BTRFS_I(page->mapping->host)->io_tree;
6432         if (offset) {
6433                 btrfs_releasepage(page, GFP_NOFS);
6434                 return;
6435         }
6436         lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6437                          GFP_NOFS);
6438         ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6439                                            page_offset(page));
6440         if (ordered) {
6441                 /*
6442                  * IO on this page will never be started, so we need
6443                  * to account for any ordered extents now
6444                  */
6445                 clear_extent_bit(tree, page_start, page_end,
6446                                  EXTENT_DIRTY | EXTENT_DELALLOC |
6447                                  EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6448                                  &cached_state, GFP_NOFS);
6449                 /*
6450                  * whoever cleared the private bit is responsible
6451                  * for the finish_ordered_io
6452                  */
6453                 if (TestClearPagePrivate2(page)) {
6454                         btrfs_finish_ordered_io(page->mapping->host,
6455                                                 page_start, page_end);
6456                 }
6457                 btrfs_put_ordered_extent(ordered);
6458                 cached_state = NULL;
6459                 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6460                                  GFP_NOFS);
6461         }
6462         clear_extent_bit(tree, page_start, page_end,
6463                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6464                  EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6465         __btrfs_releasepage(page, GFP_NOFS);
6466
6467         ClearPageChecked(page);
6468         if (PagePrivate(page)) {
6469                 ClearPagePrivate(page);
6470                 set_page_private(page, 0);
6471                 page_cache_release(page);
6472         }
6473 }
6474
6475 /*
6476  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6477  * called from a page fault handler when a page is first dirtied. Hence we must
6478  * be careful to check for EOF conditions here. We set the page up correctly
6479  * for a written page which means we get ENOSPC checking when writing into
6480  * holes and correct delalloc and unwritten extent mapping on filesystems that
6481  * support these features.
6482  *
6483  * We are not allowed to take the i_mutex here so we have to play games to
6484  * protect against truncate races as the page could now be beyond EOF.  Because
6485  * vmtruncate() writes the inode size before removing pages, once we have the
6486  * page lock we can determine safely if the page is beyond EOF. If it is not
6487  * beyond EOF, then the page is guaranteed safe against truncation until we
6488  * unlock the page.
6489  */
6490 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6491 {
6492         struct page *page = vmf->page;
6493         struct inode *inode = fdentry(vma->vm_file)->d_inode;
6494         struct btrfs_root *root = BTRFS_I(inode)->root;
6495         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6496         struct btrfs_ordered_extent *ordered;
6497         struct extent_state *cached_state = NULL;
6498         char *kaddr;
6499         unsigned long zero_start;
6500         loff_t size;
6501         int ret;
6502         u64 page_start;
6503         u64 page_end;
6504
6505         ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6506         if (ret) {
6507                 if (ret == -ENOMEM)
6508                         ret = VM_FAULT_OOM;
6509                 else /* -ENOSPC, -EIO, etc */
6510                         ret = VM_FAULT_SIGBUS;
6511                 goto out;
6512         }
6513
6514         ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6515 again:
6516         lock_page(page);
6517         size = i_size_read(inode);
6518         page_start = page_offset(page);
6519         page_end = page_start + PAGE_CACHE_SIZE - 1;
6520
6521         if ((page->mapping != inode->i_mapping) ||
6522             (page_start >= size)) {
6523                 /* page got truncated out from underneath us */
6524                 goto out_unlock;
6525         }
6526         wait_on_page_writeback(page);
6527
6528         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6529                          GFP_NOFS);
6530         set_page_extent_mapped(page);
6531
6532         /*
6533          * we can't set the delalloc bits if there are pending ordered
6534          * extents.  Drop our locks and wait for them to finish
6535          */
6536         ordered = btrfs_lookup_ordered_extent(inode, page_start);
6537         if (ordered) {
6538                 unlock_extent_cached(io_tree, page_start, page_end,
6539                                      &cached_state, GFP_NOFS);
6540                 unlock_page(page);
6541                 btrfs_start_ordered_extent(inode, ordered, 1);
6542                 btrfs_put_ordered_extent(ordered);
6543                 goto again;
6544         }
6545
6546         /*
6547          * XXX - page_mkwrite gets called every time the page is dirtied, even
6548          * if it was already dirty, so for space accounting reasons we need to
6549          * clear any delalloc bits for the range we are fixing to save.  There
6550          * is probably a better way to do this, but for now keep consistent with
6551          * prepare_pages in the normal write path.
6552          */
6553         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6554                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6555                           0, 0, &cached_state, GFP_NOFS);
6556
6557         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6558                                         &cached_state);
6559         if (ret) {
6560                 unlock_extent_cached(io_tree, page_start, page_end,
6561                                      &cached_state, GFP_NOFS);
6562                 ret = VM_FAULT_SIGBUS;
6563                 goto out_unlock;
6564         }
6565         ret = 0;
6566
6567         /* page is wholly or partially inside EOF */
6568         if (page_start + PAGE_CACHE_SIZE > size)
6569                 zero_start = size & ~PAGE_CACHE_MASK;
6570         else
6571                 zero_start = PAGE_CACHE_SIZE;
6572
6573         if (zero_start != PAGE_CACHE_SIZE) {
6574                 kaddr = kmap(page);
6575                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6576                 flush_dcache_page(page);
6577                 kunmap(page);
6578         }
6579         ClearPageChecked(page);
6580         set_page_dirty(page);
6581         SetPageUptodate(page);
6582
6583         BTRFS_I(inode)->last_trans = root->fs_info->generation;
6584         BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6585
6586         unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6587
6588 out_unlock:
6589         if (!ret)
6590                 return VM_FAULT_LOCKED;
6591         unlock_page(page);
6592         btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6593 out:
6594         return ret;
6595 }
6596
6597 static int btrfs_truncate(struct inode *inode)
6598 {
6599         struct btrfs_root *root = BTRFS_I(inode)->root;
6600         int ret;
6601         int err = 0;
6602         struct btrfs_trans_handle *trans;
6603         unsigned long nr;
6604         u64 mask = root->sectorsize - 1;
6605
6606         ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6607         if (ret)
6608                 return ret;
6609
6610         btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6611         btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6612
6613         trans = btrfs_start_transaction(root, 5);
6614         if (IS_ERR(trans))
6615                 return PTR_ERR(trans);
6616
6617         btrfs_set_trans_block_group(trans, inode);
6618
6619         ret = btrfs_orphan_add(trans, inode);
6620         if (ret) {
6621                 btrfs_end_transaction(trans, root);
6622                 return ret;
6623         }
6624
6625         nr = trans->blocks_used;
6626         btrfs_end_transaction(trans, root);
6627         btrfs_btree_balance_dirty(root, nr);
6628
6629         /* Now start a transaction for the truncate */
6630         trans = btrfs_start_transaction(root, 0);
6631         if (IS_ERR(trans))
6632                 return PTR_ERR(trans);
6633         btrfs_set_trans_block_group(trans, inode);
6634         trans->block_rsv = root->orphan_block_rsv;
6635
6636         /*
6637          * setattr is responsible for setting the ordered_data_close flag,
6638          * but that is only tested during the last file release.  That
6639          * could happen well after the next commit, leaving a great big
6640          * window where new writes may get lost if someone chooses to write
6641          * to this file after truncating to zero
6642          *
6643          * The inode doesn't have any dirty data here, and so if we commit
6644          * this is a noop.  If someone immediately starts writing to the inode
6645          * it is very likely we'll catch some of their writes in this
6646          * transaction, and the commit will find this file on the ordered
6647          * data list with good things to send down.
6648          *
6649          * This is a best effort solution, there is still a window where
6650          * using truncate to replace the contents of the file will
6651          * end up with a zero length file after a crash.
6652          */
6653         if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6654                 btrfs_add_ordered_operation(trans, root, inode);
6655
6656         while (1) {
6657                 if (!trans) {
6658                         trans = btrfs_start_transaction(root, 0);
6659                         if (IS_ERR(trans))
6660                                 return PTR_ERR(trans);
6661                         btrfs_set_trans_block_group(trans, inode);
6662                         trans->block_rsv = root->orphan_block_rsv;
6663                 }
6664
6665                 ret = btrfs_block_rsv_check(trans, root,
6666                                             root->orphan_block_rsv, 0, 5);
6667                 if (ret == -EAGAIN) {
6668                         ret = btrfs_commit_transaction(trans, root);
6669                         if (ret)
6670                                 return ret;
6671                         trans = NULL;
6672                         continue;
6673                 } else if (ret) {
6674                         err = ret;
6675                         break;
6676                 }
6677
6678                 ret = btrfs_truncate_inode_items(trans, root, inode,
6679                                                  inode->i_size,
6680                                                  BTRFS_EXTENT_DATA_KEY);
6681                 if (ret != -EAGAIN) {
6682                         err = ret;
6683                         break;
6684                 }
6685
6686                 ret = btrfs_update_inode(trans, root, inode);
6687                 if (ret) {
6688                         err = ret;
6689                         break;
6690                 }
6691
6692                 nr = trans->blocks_used;
6693                 btrfs_end_transaction(trans, root);
6694                 trans = NULL;
6695                 btrfs_btree_balance_dirty(root, nr);
6696         }
6697
6698         if (ret == 0 && inode->i_nlink > 0) {
6699                 ret = btrfs_orphan_del(trans, inode);
6700                 if (ret)
6701                         err = ret;
6702         } else if (ret && inode->i_nlink > 0) {
6703                 /*
6704                  * Failed to do the truncate, remove us from the in memory
6705                  * orphan list.
6706                  */
6707                 ret = btrfs_orphan_del(NULL, inode);
6708         }
6709
6710         ret = btrfs_update_inode(trans, root, inode);
6711         if (ret && !err)
6712                 err = ret;
6713
6714         nr = trans->blocks_used;
6715         ret = btrfs_end_transaction_throttle(trans, root);
6716         if (ret && !err)
6717                 err = ret;
6718         btrfs_btree_balance_dirty(root, nr);
6719
6720         return err;
6721 }
6722
6723 /*
6724  * create a new subvolume directory/inode (helper for the ioctl).
6725  */
6726 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6727                              struct btrfs_root *new_root,
6728                              u64 new_dirid, u64 alloc_hint)
6729 {
6730         struct inode *inode;
6731         int err;
6732         u64 index = 0;
6733
6734         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
6735                                 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
6736         if (IS_ERR(inode))
6737                 return PTR_ERR(inode);
6738         inode->i_op = &btrfs_dir_inode_operations;
6739         inode->i_fop = &btrfs_dir_file_operations;
6740
6741         inode->i_nlink = 1;
6742         btrfs_i_size_write(inode, 0);
6743
6744         err = btrfs_update_inode(trans, new_root, inode);
6745         BUG_ON(err);
6746
6747         iput(inode);
6748         return 0;
6749 }
6750
6751 /* helper function for file defrag and space balancing.  This
6752  * forces readahead on a given range of bytes in an inode
6753  */
6754 unsigned long btrfs_force_ra(struct address_space *mapping,
6755                               struct file_ra_state *ra, struct file *file,
6756                               pgoff_t offset, pgoff_t last_index)
6757 {
6758         pgoff_t req_size = last_index - offset + 1;
6759
6760         page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6761         return offset + req_size;
6762 }
6763
6764 struct inode *btrfs_alloc_inode(struct super_block *sb)
6765 {
6766         struct btrfs_inode *ei;
6767         struct inode *inode;
6768
6769         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6770         if (!ei)
6771                 return NULL;
6772
6773         ei->root = NULL;
6774         ei->space_info = NULL;
6775         ei->generation = 0;
6776         ei->sequence = 0;
6777         ei->last_trans = 0;
6778         ei->last_sub_trans = 0;
6779         ei->logged_trans = 0;
6780         ei->delalloc_bytes = 0;
6781         ei->reserved_bytes = 0;
6782         ei->disk_i_size = 0;
6783         ei->flags = 0;
6784         ei->index_cnt = (u64)-1;
6785         ei->last_unlink_trans = 0;
6786
6787         atomic_set(&ei->outstanding_extents, 0);
6788         atomic_set(&ei->reserved_extents, 0);
6789
6790         ei->ordered_data_close = 0;
6791         ei->orphan_meta_reserved = 0;
6792         ei->dummy_inode = 0;
6793         ei->force_compress = BTRFS_COMPRESS_NONE;
6794
6795         inode = &ei->vfs_inode;
6796         extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
6797         extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
6798         extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
6799         mutex_init(&ei->log_mutex);
6800         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6801         INIT_LIST_HEAD(&ei->i_orphan);
6802         INIT_LIST_HEAD(&ei->delalloc_inodes);
6803         INIT_LIST_HEAD(&ei->ordered_operations);
6804         RB_CLEAR_NODE(&ei->rb_node);
6805
6806         return inode;
6807 }
6808
6809 static void btrfs_i_callback(struct rcu_head *head)
6810 {
6811         struct inode *inode = container_of(head, struct inode, i_rcu);
6812         INIT_LIST_HEAD(&inode->i_dentry);
6813         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6814 }
6815
6816 void btrfs_destroy_inode(struct inode *inode)
6817 {
6818         struct btrfs_ordered_extent *ordered;
6819         struct btrfs_root *root = BTRFS_I(inode)->root;
6820
6821         WARN_ON(!list_empty(&inode->i_dentry));
6822         WARN_ON(inode->i_data.nrpages);
6823         WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
6824         WARN_ON(atomic_read(&BTRFS_I(inode)->reserved_extents));
6825
6826         /*
6827          * This can happen where we create an inode, but somebody else also
6828          * created the same inode and we need to destroy the one we already
6829          * created.
6830          */
6831         if (!root)
6832                 goto free;
6833
6834         /*
6835          * Make sure we're properly removed from the ordered operation
6836          * lists.
6837          */
6838         smp_mb();
6839         if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6840                 spin_lock(&root->fs_info->ordered_extent_lock);
6841                 list_del_init(&BTRFS_I(inode)->ordered_operations);
6842                 spin_unlock(&root->fs_info->ordered_extent_lock);
6843         }
6844
6845         if (root == root->fs_info->tree_root) {
6846                 struct btrfs_block_group_cache *block_group;
6847
6848                 block_group = btrfs_lookup_block_group(root->fs_info,
6849                                                 BTRFS_I(inode)->block_group);
6850                 if (block_group && block_group->inode == inode) {
6851                         spin_lock(&block_group->lock);
6852                         block_group->inode = NULL;
6853                         spin_unlock(&block_group->lock);
6854                         btrfs_put_block_group(block_group);
6855                 } else if (block_group) {
6856                         btrfs_put_block_group(block_group);
6857                 }
6858         }
6859
6860         spin_lock(&root->orphan_lock);
6861         if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6862                 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
6863                        inode->i_ino);
6864                 list_del_init(&BTRFS_I(inode)->i_orphan);
6865         }
6866         spin_unlock(&root->orphan_lock);
6867
6868         while (1) {
6869                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6870                 if (!ordered)
6871                         break;
6872                 else {
6873                         printk(KERN_ERR "btrfs found ordered "
6874                                "extent %llu %llu on inode cleanup\n",
6875                                (unsigned long long)ordered->file_offset,
6876                                (unsigned long long)ordered->len);
6877                         btrfs_remove_ordered_extent(inode, ordered);
6878                         btrfs_put_ordered_extent(ordered);
6879                         btrfs_put_ordered_extent(ordered);
6880                 }
6881         }
6882         inode_tree_del(inode);
6883         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6884 free:
6885         call_rcu(&inode->i_rcu, btrfs_i_callback);
6886 }
6887
6888 int btrfs_drop_inode(struct inode *inode)
6889 {
6890         struct btrfs_root *root = BTRFS_I(inode)->root;
6891
6892         if (btrfs_root_refs(&root->root_item) == 0 &&
6893             root != root->fs_info->tree_root)
6894                 return 1;
6895         else
6896                 return generic_drop_inode(inode);
6897 }
6898
6899 static void init_once(void *foo)
6900 {
6901         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6902
6903         inode_init_once(&ei->vfs_inode);
6904 }
6905
6906 void btrfs_destroy_cachep(void)
6907 {
6908         if (btrfs_inode_cachep)
6909                 kmem_cache_destroy(btrfs_inode_cachep);
6910         if (btrfs_trans_handle_cachep)
6911                 kmem_cache_destroy(btrfs_trans_handle_cachep);
6912         if (btrfs_transaction_cachep)
6913                 kmem_cache_destroy(btrfs_transaction_cachep);
6914         if (btrfs_path_cachep)
6915                 kmem_cache_destroy(btrfs_path_cachep);
6916         if (btrfs_free_space_cachep)
6917                 kmem_cache_destroy(btrfs_free_space_cachep);
6918 }
6919
6920 int btrfs_init_cachep(void)
6921 {
6922         btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6923                         sizeof(struct btrfs_inode), 0,
6924                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6925         if (!btrfs_inode_cachep)
6926                 goto fail;
6927
6928         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6929                         sizeof(struct btrfs_trans_handle), 0,
6930                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6931         if (!btrfs_trans_handle_cachep)
6932                 goto fail;
6933
6934         btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6935                         sizeof(struct btrfs_transaction), 0,
6936                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6937         if (!btrfs_transaction_cachep)
6938                 goto fail;
6939
6940         btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6941                         sizeof(struct btrfs_path), 0,
6942                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6943         if (!btrfs_path_cachep)
6944                 goto fail;
6945
6946         btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6947                         sizeof(struct btrfs_free_space), 0,
6948                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6949         if (!btrfs_free_space_cachep)
6950                 goto fail;
6951
6952         return 0;
6953 fail:
6954         btrfs_destroy_cachep();
6955         return -ENOMEM;
6956 }
6957
6958 static int btrfs_getattr(struct vfsmount *mnt,
6959                          struct dentry *dentry, struct kstat *stat)
6960 {
6961         struct inode *inode = dentry->d_inode;
6962         generic_fillattr(inode, stat);
6963         stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
6964         stat->blksize = PAGE_CACHE_SIZE;
6965         stat->blocks = (inode_get_bytes(inode) +
6966                         BTRFS_I(inode)->delalloc_bytes) >> 9;
6967         return 0;
6968 }
6969
6970 /*
6971  * If a file is moved, it will inherit the cow and compression flags of the new
6972  * directory.
6973  */
6974 static void fixup_inode_flags(struct inode *dir, struct inode *inode)
6975 {
6976         struct btrfs_inode *b_dir = BTRFS_I(dir);
6977         struct btrfs_inode *b_inode = BTRFS_I(inode);
6978
6979         if (b_dir->flags & BTRFS_INODE_NODATACOW)
6980                 b_inode->flags |= BTRFS_INODE_NODATACOW;
6981         else
6982                 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
6983
6984         if (b_dir->flags & BTRFS_INODE_COMPRESS)
6985                 b_inode->flags |= BTRFS_INODE_COMPRESS;
6986         else
6987                 b_inode->flags &= ~BTRFS_INODE_COMPRESS;
6988 }
6989
6990 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6991                            struct inode *new_dir, struct dentry *new_dentry)
6992 {
6993         struct btrfs_trans_handle *trans;
6994         struct btrfs_root *root = BTRFS_I(old_dir)->root;
6995         struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6996         struct inode *new_inode = new_dentry->d_inode;
6997         struct inode *old_inode = old_dentry->d_inode;
6998         struct timespec ctime = CURRENT_TIME;
6999         u64 index = 0;
7000         u64 root_objectid;
7001         int ret;
7002
7003         if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
7004                 return -EPERM;
7005
7006         /* we only allow rename subvolume link between subvolumes */
7007         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
7008                 return -EXDEV;
7009
7010         if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
7011             (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
7012                 return -ENOTEMPTY;
7013
7014         if (S_ISDIR(old_inode->i_mode) && new_inode &&
7015             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
7016                 return -ENOTEMPTY;
7017         /*
7018          * we're using rename to replace one file with another.
7019          * and the replacement file is large.  Start IO on it now so
7020          * we don't add too much work to the end of the transaction
7021          */
7022         if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
7023             old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
7024                 filemap_flush(old_inode->i_mapping);
7025
7026         /* close the racy window with snapshot create/destroy ioctl */
7027         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
7028                 down_read(&root->fs_info->subvol_sem);
7029         /*
7030          * We want to reserve the absolute worst case amount of items.  So if
7031          * both inodes are subvols and we need to unlink them then that would
7032          * require 4 item modifications, but if they are both normal inodes it
7033          * would require 5 item modifications, so we'll assume their normal
7034          * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
7035          * should cover the worst case number of items we'll modify.
7036          */
7037         trans = btrfs_start_transaction(root, 20);
7038         if (IS_ERR(trans)) {
7039                 ret = PTR_ERR(trans);
7040                 goto out_notrans;
7041         }
7042
7043         btrfs_set_trans_block_group(trans, new_dir);
7044
7045         if (dest != root)
7046                 btrfs_record_root_in_trans(trans, dest);
7047
7048         ret = btrfs_set_inode_index(new_dir, &index);
7049         if (ret)
7050                 goto out_fail;
7051
7052         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7053                 /* force full log commit if subvolume involved. */
7054                 root->fs_info->last_trans_log_full_commit = trans->transid;
7055         } else {
7056                 ret = btrfs_insert_inode_ref(trans, dest,
7057                                              new_dentry->d_name.name,
7058                                              new_dentry->d_name.len,
7059                                              old_inode->i_ino,
7060                                              new_dir->i_ino, index);
7061                 if (ret)
7062                         goto out_fail;
7063                 /*
7064                  * this is an ugly little race, but the rename is required
7065                  * to make sure that if we crash, the inode is either at the
7066                  * old name or the new one.  pinning the log transaction lets
7067                  * us make sure we don't allow a log commit to come in after
7068                  * we unlink the name but before we add the new name back in.
7069                  */
7070                 btrfs_pin_log_trans(root);
7071         }
7072         /*
7073          * make sure the inode gets flushed if it is replacing
7074          * something.
7075          */
7076         if (new_inode && new_inode->i_size &&
7077             old_inode && S_ISREG(old_inode->i_mode)) {
7078                 btrfs_add_ordered_operation(trans, root, old_inode);
7079         }
7080
7081         old_dir->i_ctime = old_dir->i_mtime = ctime;
7082         new_dir->i_ctime = new_dir->i_mtime = ctime;
7083         old_inode->i_ctime = ctime;
7084
7085         if (old_dentry->d_parent != new_dentry->d_parent)
7086                 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7087
7088         if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7089                 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7090                 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7091                                         old_dentry->d_name.name,
7092                                         old_dentry->d_name.len);
7093         } else {
7094                 ret = __btrfs_unlink_inode(trans, root, old_dir,
7095                                         old_dentry->d_inode,
7096                                         old_dentry->d_name.name,
7097                                         old_dentry->d_name.len);
7098                 if (!ret)
7099                         ret = btrfs_update_inode(trans, root, old_inode);
7100         }
7101         BUG_ON(ret);
7102
7103         if (new_inode) {
7104                 new_inode->i_ctime = CURRENT_TIME;
7105                 if (unlikely(new_inode->i_ino ==
7106                              BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7107                         root_objectid = BTRFS_I(new_inode)->location.objectid;
7108                         ret = btrfs_unlink_subvol(trans, dest, new_dir,
7109                                                 root_objectid,
7110                                                 new_dentry->d_name.name,
7111                                                 new_dentry->d_name.len);
7112                         BUG_ON(new_inode->i_nlink == 0);
7113                 } else {
7114                         ret = btrfs_unlink_inode(trans, dest, new_dir,
7115                                                  new_dentry->d_inode,
7116                                                  new_dentry->d_name.name,
7117                                                  new_dentry->d_name.len);
7118                 }
7119                 BUG_ON(ret);
7120                 if (new_inode->i_nlink == 0) {
7121                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
7122                         BUG_ON(ret);
7123                 }
7124         }
7125
7126         fixup_inode_flags(new_dir, old_inode);
7127
7128         ret = btrfs_add_link(trans, new_dir, old_inode,
7129                              new_dentry->d_name.name,
7130                              new_dentry->d_name.len, 0, index);
7131         BUG_ON(ret);
7132
7133         if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
7134                 struct dentry *parent = dget_parent(new_dentry);
7135                 btrfs_log_new_name(trans, old_inode, old_dir, parent);
7136                 dput(parent);
7137                 btrfs_end_log_trans(root);
7138         }
7139 out_fail:
7140         btrfs_end_transaction_throttle(trans, root);
7141 out_notrans:
7142         if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
7143                 up_read(&root->fs_info->subvol_sem);
7144
7145         return ret;
7146 }
7147
7148 /*
7149  * some fairly slow code that needs optimization. This walks the list
7150  * of all the inodes with pending delalloc and forces them to disk.
7151  */
7152 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
7153 {
7154         struct list_head *head = &root->fs_info->delalloc_inodes;
7155         struct btrfs_inode *binode;
7156         struct inode *inode;
7157
7158         if (root->fs_info->sb->s_flags & MS_RDONLY)
7159                 return -EROFS;
7160
7161         spin_lock(&root->fs_info->delalloc_lock);
7162         while (!list_empty(head)) {
7163                 binode = list_entry(head->next, struct btrfs_inode,
7164                                     delalloc_inodes);
7165                 inode = igrab(&binode->vfs_inode);
7166                 if (!inode)
7167                         list_del_init(&binode->delalloc_inodes);
7168                 spin_unlock(&root->fs_info->delalloc_lock);
7169                 if (inode) {
7170                         filemap_flush(inode->i_mapping);
7171                         if (delay_iput)
7172                                 btrfs_add_delayed_iput(inode);
7173                         else
7174                                 iput(inode);
7175                 }
7176                 cond_resched();
7177                 spin_lock(&root->fs_info->delalloc_lock);
7178         }
7179         spin_unlock(&root->fs_info->delalloc_lock);
7180
7181         /* the filemap_flush will queue IO into the worker threads, but
7182          * we have to make sure the IO is actually started and that
7183          * ordered extents get created before we return
7184          */
7185         atomic_inc(&root->fs_info->async_submit_draining);
7186         while (atomic_read(&root->fs_info->nr_async_submits) ||
7187               atomic_read(&root->fs_info->async_delalloc_pages)) {
7188                 wait_event(root->fs_info->async_submit_wait,
7189                    (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7190                     atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7191         }
7192         atomic_dec(&root->fs_info->async_submit_draining);
7193         return 0;
7194 }
7195
7196 int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput,
7197                                    int sync)
7198 {
7199         struct btrfs_inode *binode;
7200         struct inode *inode = NULL;
7201
7202         spin_lock(&root->fs_info->delalloc_lock);
7203         while (!list_empty(&root->fs_info->delalloc_inodes)) {
7204                 binode = list_entry(root->fs_info->delalloc_inodes.next,
7205                                     struct btrfs_inode, delalloc_inodes);
7206                 inode = igrab(&binode->vfs_inode);
7207                 if (inode) {
7208                         list_move_tail(&binode->delalloc_inodes,
7209                                        &root->fs_info->delalloc_inodes);
7210                         break;
7211                 }
7212
7213                 list_del_init(&binode->delalloc_inodes);
7214                 cond_resched_lock(&root->fs_info->delalloc_lock);
7215         }
7216         spin_unlock(&root->fs_info->delalloc_lock);
7217
7218         if (inode) {
7219                 if (sync) {
7220                         filemap_write_and_wait(inode->i_mapping);
7221                         /*
7222                          * We have to do this because compression doesn't
7223                          * actually set PG_writeback until it submits the pages
7224                          * for IO, which happens in an async thread, so we could
7225                          * race and not actually wait for any writeback pages
7226                          * because they've not been submitted yet.  Technically
7227                          * this could still be the case for the ordered stuff
7228                          * since the async thread may not have started to do its
7229                          * work yet.  If this becomes the case then we need to
7230                          * figure out a way to make sure that in writepage we
7231                          * wait for any async pages to be submitted before
7232                          * returning so that fdatawait does what its supposed to
7233                          * do.
7234                          */
7235                         btrfs_wait_ordered_range(inode, 0, (u64)-1);
7236                 } else {
7237                         filemap_flush(inode->i_mapping);
7238                 }
7239                 if (delay_iput)
7240                         btrfs_add_delayed_iput(inode);
7241                 else
7242                         iput(inode);
7243                 return 1;
7244         }
7245         return 0;
7246 }
7247
7248 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7249                          const char *symname)
7250 {
7251         struct btrfs_trans_handle *trans;
7252         struct btrfs_root *root = BTRFS_I(dir)->root;
7253         struct btrfs_path *path;
7254         struct btrfs_key key;
7255         struct inode *inode = NULL;
7256         int err;
7257         int drop_inode = 0;
7258         u64 objectid;
7259         u64 index = 0 ;
7260         int name_len;
7261         int datasize;
7262         unsigned long ptr;
7263         struct btrfs_file_extent_item *ei;
7264         struct extent_buffer *leaf;
7265         unsigned long nr = 0;
7266
7267         name_len = strlen(symname) + 1;
7268         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7269                 return -ENAMETOOLONG;
7270
7271         /*
7272          * 2 items for inode item and ref
7273          * 2 items for dir items
7274          * 1 item for xattr if selinux is on
7275          */
7276         trans = btrfs_start_transaction(root, 5);
7277         if (IS_ERR(trans))
7278                 return PTR_ERR(trans);
7279
7280         btrfs_set_trans_block_group(trans, dir);
7281
7282         err = btrfs_find_free_ino(root, &objectid);
7283         if (err)
7284                 goto out_unlock;
7285
7286         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7287                                 dentry->d_name.len, dir->i_ino, objectid,
7288                                 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
7289                                 &index);
7290         err = PTR_ERR(inode);
7291         if (IS_ERR(inode))
7292                 goto out_unlock;
7293
7294         err = btrfs_init_inode_security(trans, inode, dir);
7295         if (err) {
7296                 drop_inode = 1;
7297                 goto out_unlock;
7298         }
7299
7300         btrfs_set_trans_block_group(trans, inode);
7301         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7302         if (err)
7303                 drop_inode = 1;
7304         else {
7305                 inode->i_mapping->a_ops = &btrfs_aops;
7306                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7307                 inode->i_fop = &btrfs_file_operations;
7308                 inode->i_op = &btrfs_file_inode_operations;
7309                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7310         }
7311         btrfs_update_inode_block_group(trans, inode);
7312         btrfs_update_inode_block_group(trans, dir);
7313         if (drop_inode)
7314                 goto out_unlock;
7315
7316         path = btrfs_alloc_path();
7317         BUG_ON(!path);
7318         key.objectid = inode->i_ino;
7319         key.offset = 0;
7320         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7321         datasize = btrfs_file_extent_calc_inline_size(name_len);
7322         err = btrfs_insert_empty_item(trans, root, path, &key,
7323                                       datasize);
7324         if (err) {
7325                 drop_inode = 1;
7326                 goto out_unlock;
7327         }
7328         leaf = path->nodes[0];
7329         ei = btrfs_item_ptr(leaf, path->slots[0],
7330                             struct btrfs_file_extent_item);
7331         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7332         btrfs_set_file_extent_type(leaf, ei,
7333                                    BTRFS_FILE_EXTENT_INLINE);
7334         btrfs_set_file_extent_encryption(leaf, ei, 0);
7335         btrfs_set_file_extent_compression(leaf, ei, 0);
7336         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7337         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7338
7339         ptr = btrfs_file_extent_inline_start(ei);
7340         write_extent_buffer(leaf, symname, ptr, name_len);
7341         btrfs_mark_buffer_dirty(leaf);
7342         btrfs_free_path(path);
7343
7344         inode->i_op = &btrfs_symlink_inode_operations;
7345         inode->i_mapping->a_ops = &btrfs_symlink_aops;
7346         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7347         inode_set_bytes(inode, name_len);
7348         btrfs_i_size_write(inode, name_len - 1);
7349         err = btrfs_update_inode(trans, root, inode);
7350         if (err)
7351                 drop_inode = 1;
7352
7353 out_unlock:
7354         nr = trans->blocks_used;
7355         btrfs_end_transaction_throttle(trans, root);
7356         if (drop_inode) {
7357                 inode_dec_link_count(inode);
7358                 iput(inode);
7359         }
7360         btrfs_btree_balance_dirty(root, nr);
7361         return err;
7362 }
7363
7364 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7365                                        u64 start, u64 num_bytes, u64 min_size,
7366                                        loff_t actual_len, u64 *alloc_hint,
7367                                        struct btrfs_trans_handle *trans)
7368 {
7369         struct btrfs_root *root = BTRFS_I(inode)->root;
7370         struct btrfs_key ins;
7371         u64 cur_offset = start;
7372         u64 i_size;
7373         int ret = 0;
7374         bool own_trans = true;
7375
7376         if (trans)
7377                 own_trans = false;
7378         while (num_bytes > 0) {
7379                 if (own_trans) {
7380                         trans = btrfs_start_transaction(root, 3);
7381                         if (IS_ERR(trans)) {
7382                                 ret = PTR_ERR(trans);
7383                                 break;
7384                         }
7385                 }
7386
7387                 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7388                                            0, *alloc_hint, (u64)-1, &ins, 1);
7389                 if (ret) {
7390                         if (own_trans)
7391                                 btrfs_end_transaction(trans, root);
7392                         break;
7393                 }
7394
7395                 ret = insert_reserved_file_extent(trans, inode,
7396                                                   cur_offset, ins.objectid,
7397                                                   ins.offset, ins.offset,
7398                                                   ins.offset, 0, 0, 0,
7399                                                   BTRFS_FILE_EXTENT_PREALLOC);
7400                 BUG_ON(ret);
7401                 btrfs_drop_extent_cache(inode, cur_offset,
7402                                         cur_offset + ins.offset -1, 0);
7403
7404                 num_bytes -= ins.offset;
7405                 cur_offset += ins.offset;
7406                 *alloc_hint = ins.objectid + ins.offset;
7407
7408                 inode->i_ctime = CURRENT_TIME;
7409                 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7410                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7411                     (actual_len > inode->i_size) &&
7412                     (cur_offset > inode->i_size)) {
7413                         if (cur_offset > actual_len)
7414                                 i_size = actual_len;
7415                         else
7416                                 i_size = cur_offset;
7417                         i_size_write(inode, i_size);
7418                         btrfs_ordered_update_i_size(inode, i_size, NULL);
7419                 }
7420
7421                 ret = btrfs_update_inode(trans, root, inode);
7422                 BUG_ON(ret);
7423
7424                 if (own_trans)
7425                         btrfs_end_transaction(trans, root);
7426         }
7427         return ret;
7428 }
7429
7430 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7431                               u64 start, u64 num_bytes, u64 min_size,
7432                               loff_t actual_len, u64 *alloc_hint)
7433 {
7434         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7435                                            min_size, actual_len, alloc_hint,
7436                                            NULL);
7437 }
7438
7439 int btrfs_prealloc_file_range_trans(struct inode *inode,
7440                                     struct btrfs_trans_handle *trans, int mode,
7441                                     u64 start, u64 num_bytes, u64 min_size,
7442                                     loff_t actual_len, u64 *alloc_hint)
7443 {
7444         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7445                                            min_size, actual_len, alloc_hint, trans);
7446 }
7447
7448 static int btrfs_set_page_dirty(struct page *page)
7449 {
7450         return __set_page_dirty_nobuffers(page);
7451 }
7452
7453 static int btrfs_permission(struct inode *inode, int mask, unsigned int flags)
7454 {
7455         struct btrfs_root *root = BTRFS_I(inode)->root;
7456
7457         if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7458                 return -EROFS;
7459         if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
7460                 return -EACCES;
7461         return generic_permission(inode, mask, flags, btrfs_check_acl);
7462 }
7463
7464 static const struct inode_operations btrfs_dir_inode_operations = {
7465         .getattr        = btrfs_getattr,
7466         .lookup         = btrfs_lookup,
7467         .create         = btrfs_create,
7468         .unlink         = btrfs_unlink,
7469         .link           = btrfs_link,
7470         .mkdir          = btrfs_mkdir,
7471         .rmdir          = btrfs_rmdir,
7472         .rename         = btrfs_rename,
7473         .symlink        = btrfs_symlink,
7474         .setattr        = btrfs_setattr,
7475         .mknod          = btrfs_mknod,
7476         .setxattr       = btrfs_setxattr,
7477         .getxattr       = btrfs_getxattr,
7478         .listxattr      = btrfs_listxattr,
7479         .removexattr    = btrfs_removexattr,
7480         .permission     = btrfs_permission,
7481 };
7482 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7483         .lookup         = btrfs_lookup,
7484         .permission     = btrfs_permission,
7485 };
7486
7487 static const struct file_operations btrfs_dir_file_operations = {
7488         .llseek         = generic_file_llseek,
7489         .read           = generic_read_dir,
7490         .readdir        = btrfs_real_readdir,
7491         .unlocked_ioctl = btrfs_ioctl,
7492 #ifdef CONFIG_COMPAT
7493         .compat_ioctl   = btrfs_ioctl,
7494 #endif
7495         .release        = btrfs_release_file,
7496         .fsync          = btrfs_sync_file,
7497 };
7498
7499 static struct extent_io_ops btrfs_extent_io_ops = {
7500         .fill_delalloc = run_delalloc_range,
7501         .submit_bio_hook = btrfs_submit_bio_hook,
7502         .merge_bio_hook = btrfs_merge_bio_hook,
7503         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
7504         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
7505         .writepage_start_hook = btrfs_writepage_start_hook,
7506         .readpage_io_failed_hook = btrfs_io_failed_hook,
7507         .set_bit_hook = btrfs_set_bit_hook,
7508         .clear_bit_hook = btrfs_clear_bit_hook,
7509         .merge_extent_hook = btrfs_merge_extent_hook,
7510         .split_extent_hook = btrfs_split_extent_hook,
7511 };
7512
7513 /*
7514  * btrfs doesn't support the bmap operation because swapfiles
7515  * use bmap to make a mapping of extents in the file.  They assume
7516  * these extents won't change over the life of the file and they
7517  * use the bmap result to do IO directly to the drive.
7518  *
7519  * the btrfs bmap call would return logical addresses that aren't
7520  * suitable for IO and they also will change frequently as COW
7521  * operations happen.  So, swapfile + btrfs == corruption.
7522  *
7523  * For now we're avoiding this by dropping bmap.
7524  */
7525 static const struct address_space_operations btrfs_aops = {
7526         .readpage       = btrfs_readpage,
7527         .writepage      = btrfs_writepage,
7528         .writepages     = btrfs_writepages,
7529         .readpages      = btrfs_readpages,
7530         .sync_page      = block_sync_page,
7531         .direct_IO      = btrfs_direct_IO,
7532         .invalidatepage = btrfs_invalidatepage,
7533         .releasepage    = btrfs_releasepage,
7534         .set_page_dirty = btrfs_set_page_dirty,
7535         .error_remove_page = generic_error_remove_page,
7536 };
7537
7538 static const struct address_space_operations btrfs_symlink_aops = {
7539         .readpage       = btrfs_readpage,
7540         .writepage      = btrfs_writepage,
7541         .invalidatepage = btrfs_invalidatepage,
7542         .releasepage    = btrfs_releasepage,
7543 };
7544
7545 static const struct inode_operations btrfs_file_inode_operations = {
7546         .getattr        = btrfs_getattr,
7547         .setattr        = btrfs_setattr,
7548         .setxattr       = btrfs_setxattr,
7549         .getxattr       = btrfs_getxattr,
7550         .listxattr      = btrfs_listxattr,
7551         .removexattr    = btrfs_removexattr,
7552         .permission     = btrfs_permission,
7553         .fiemap         = btrfs_fiemap,
7554 };
7555 static const struct inode_operations btrfs_special_inode_operations = {
7556         .getattr        = btrfs_getattr,
7557         .setattr        = btrfs_setattr,
7558         .permission     = btrfs_permission,
7559         .setxattr       = btrfs_setxattr,
7560         .getxattr       = btrfs_getxattr,
7561         .listxattr      = btrfs_listxattr,
7562         .removexattr    = btrfs_removexattr,
7563 };
7564 static const struct inode_operations btrfs_symlink_inode_operations = {
7565         .readlink       = generic_readlink,
7566         .follow_link    = page_follow_link_light,
7567         .put_link       = page_put_link,
7568         .getattr        = btrfs_getattr,
7569         .permission     = btrfs_permission,
7570         .setxattr       = btrfs_setxattr,
7571         .getxattr       = btrfs_getxattr,
7572         .listxattr      = btrfs_listxattr,
7573         .removexattr    = btrfs_removexattr,
7574 };
7575
7576 const struct dentry_operations btrfs_dentry_operations = {
7577         .d_delete       = btrfs_dentry_delete,
7578 };