Btrfs: introduce subvol uuids and times
[linux-2.6-block.git] / fs / btrfs / inode.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include "compat.h"
43 #include "ctree.h"
44 #include "disk-io.h"
45 #include "transaction.h"
46 #include "btrfs_inode.h"
47 #include "ioctl.h"
48 #include "print-tree.h"
49 #include "ordered-data.h"
50 #include "xattr.h"
51 #include "tree-log.h"
52 #include "volumes.h"
53 #include "compression.h"
54 #include "locking.h"
55 #include "free-space-cache.h"
56 #include "inode-map.h"
57
58 struct btrfs_iget_args {
59         u64 ino;
60         struct btrfs_root *root;
61 };
62
63 static const struct inode_operations btrfs_dir_inode_operations;
64 static const struct inode_operations btrfs_symlink_inode_operations;
65 static const struct inode_operations btrfs_dir_ro_inode_operations;
66 static const struct inode_operations btrfs_special_inode_operations;
67 static const struct inode_operations btrfs_file_inode_operations;
68 static const struct address_space_operations btrfs_aops;
69 static const struct address_space_operations btrfs_symlink_aops;
70 static const struct file_operations btrfs_dir_file_operations;
71 static struct extent_io_ops btrfs_extent_io_ops;
72
73 static struct kmem_cache *btrfs_inode_cachep;
74 struct kmem_cache *btrfs_trans_handle_cachep;
75 struct kmem_cache *btrfs_transaction_cachep;
76 struct kmem_cache *btrfs_path_cachep;
77 struct kmem_cache *btrfs_free_space_cachep;
78
79 #define S_SHIFT 12
80 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
81         [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
82         [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
83         [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
84         [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
85         [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
86         [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
87         [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
88 };
89
90 static int btrfs_setsize(struct inode *inode, loff_t newsize);
91 static int btrfs_truncate(struct inode *inode);
92 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
93 static noinline int cow_file_range(struct inode *inode,
94                                    struct page *locked_page,
95                                    u64 start, u64 end, int *page_started,
96                                    unsigned long *nr_written, int unlock);
97 static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
98                                 struct btrfs_root *root, struct inode *inode);
99
100 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
101                                      struct inode *inode,  struct inode *dir,
102                                      const struct qstr *qstr)
103 {
104         int err;
105
106         err = btrfs_init_acl(trans, inode, dir);
107         if (!err)
108                 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
109         return err;
110 }
111
112 /*
113  * this does all the hard work for inserting an inline extent into
114  * the btree.  The caller should have done a btrfs_drop_extents so that
115  * no overlapping inline items exist in the btree
116  */
117 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
118                                 struct btrfs_root *root, struct inode *inode,
119                                 u64 start, size_t size, size_t compressed_size,
120                                 int compress_type,
121                                 struct page **compressed_pages)
122 {
123         struct btrfs_key key;
124         struct btrfs_path *path;
125         struct extent_buffer *leaf;
126         struct page *page = NULL;
127         char *kaddr;
128         unsigned long ptr;
129         struct btrfs_file_extent_item *ei;
130         int err = 0;
131         int ret;
132         size_t cur_size = size;
133         size_t datasize;
134         unsigned long offset;
135
136         if (compressed_size && compressed_pages)
137                 cur_size = compressed_size;
138
139         path = btrfs_alloc_path();
140         if (!path)
141                 return -ENOMEM;
142
143         path->leave_spinning = 1;
144
145         key.objectid = btrfs_ino(inode);
146         key.offset = start;
147         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
148         datasize = btrfs_file_extent_calc_inline_size(cur_size);
149
150         inode_add_bytes(inode, size);
151         ret = btrfs_insert_empty_item(trans, root, path, &key,
152                                       datasize);
153         if (ret) {
154                 err = ret;
155                 goto fail;
156         }
157         leaf = path->nodes[0];
158         ei = btrfs_item_ptr(leaf, path->slots[0],
159                             struct btrfs_file_extent_item);
160         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
161         btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
162         btrfs_set_file_extent_encryption(leaf, ei, 0);
163         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
164         btrfs_set_file_extent_ram_bytes(leaf, ei, size);
165         ptr = btrfs_file_extent_inline_start(ei);
166
167         if (compress_type != BTRFS_COMPRESS_NONE) {
168                 struct page *cpage;
169                 int i = 0;
170                 while (compressed_size > 0) {
171                         cpage = compressed_pages[i];
172                         cur_size = min_t(unsigned long, compressed_size,
173                                        PAGE_CACHE_SIZE);
174
175                         kaddr = kmap_atomic(cpage);
176                         write_extent_buffer(leaf, kaddr, ptr, cur_size);
177                         kunmap_atomic(kaddr);
178
179                         i++;
180                         ptr += cur_size;
181                         compressed_size -= cur_size;
182                 }
183                 btrfs_set_file_extent_compression(leaf, ei,
184                                                   compress_type);
185         } else {
186                 page = find_get_page(inode->i_mapping,
187                                      start >> PAGE_CACHE_SHIFT);
188                 btrfs_set_file_extent_compression(leaf, ei, 0);
189                 kaddr = kmap_atomic(page);
190                 offset = start & (PAGE_CACHE_SIZE - 1);
191                 write_extent_buffer(leaf, kaddr + offset, ptr, size);
192                 kunmap_atomic(kaddr);
193                 page_cache_release(page);
194         }
195         btrfs_mark_buffer_dirty(leaf);
196         btrfs_free_path(path);
197
198         /*
199          * we're an inline extent, so nobody can
200          * extend the file past i_size without locking
201          * a page we already have locked.
202          *
203          * We must do any isize and inode updates
204          * before we unlock the pages.  Otherwise we
205          * could end up racing with unlink.
206          */
207         BTRFS_I(inode)->disk_i_size = inode->i_size;
208         ret = btrfs_update_inode(trans, root, inode);
209
210         return ret;
211 fail:
212         btrfs_free_path(path);
213         return err;
214 }
215
216
217 /*
218  * conditionally insert an inline extent into the file.  This
219  * does the checks required to make sure the data is small enough
220  * to fit as an inline extent.
221  */
222 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
223                                  struct btrfs_root *root,
224                                  struct inode *inode, u64 start, u64 end,
225                                  size_t compressed_size, int compress_type,
226                                  struct page **compressed_pages)
227 {
228         u64 isize = i_size_read(inode);
229         u64 actual_end = min(end + 1, isize);
230         u64 inline_len = actual_end - start;
231         u64 aligned_end = (end + root->sectorsize - 1) &
232                         ~((u64)root->sectorsize - 1);
233         u64 hint_byte;
234         u64 data_len = inline_len;
235         int ret;
236
237         if (compressed_size)
238                 data_len = compressed_size;
239
240         if (start > 0 ||
241             actual_end >= PAGE_CACHE_SIZE ||
242             data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
243             (!compressed_size &&
244             (actual_end & (root->sectorsize - 1)) == 0) ||
245             end + 1 < isize ||
246             data_len > root->fs_info->max_inline) {
247                 return 1;
248         }
249
250         ret = btrfs_drop_extents(trans, inode, start, aligned_end,
251                                  &hint_byte, 1);
252         if (ret)
253                 return ret;
254
255         if (isize > actual_end)
256                 inline_len = min_t(u64, isize, actual_end);
257         ret = insert_inline_extent(trans, root, inode, start,
258                                    inline_len, compressed_size,
259                                    compress_type, compressed_pages);
260         if (ret && ret != -ENOSPC) {
261                 btrfs_abort_transaction(trans, root, ret);
262                 return ret;
263         } else if (ret == -ENOSPC) {
264                 return 1;
265         }
266
267         btrfs_delalloc_release_metadata(inode, end + 1 - start);
268         btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
269         return 0;
270 }
271
272 struct async_extent {
273         u64 start;
274         u64 ram_size;
275         u64 compressed_size;
276         struct page **pages;
277         unsigned long nr_pages;
278         int compress_type;
279         struct list_head list;
280 };
281
282 struct async_cow {
283         struct inode *inode;
284         struct btrfs_root *root;
285         struct page *locked_page;
286         u64 start;
287         u64 end;
288         struct list_head extents;
289         struct btrfs_work work;
290 };
291
292 static noinline int add_async_extent(struct async_cow *cow,
293                                      u64 start, u64 ram_size,
294                                      u64 compressed_size,
295                                      struct page **pages,
296                                      unsigned long nr_pages,
297                                      int compress_type)
298 {
299         struct async_extent *async_extent;
300
301         async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
302         BUG_ON(!async_extent); /* -ENOMEM */
303         async_extent->start = start;
304         async_extent->ram_size = ram_size;
305         async_extent->compressed_size = compressed_size;
306         async_extent->pages = pages;
307         async_extent->nr_pages = nr_pages;
308         async_extent->compress_type = compress_type;
309         list_add_tail(&async_extent->list, &cow->extents);
310         return 0;
311 }
312
313 /*
314  * we create compressed extents in two phases.  The first
315  * phase compresses a range of pages that have already been
316  * locked (both pages and state bits are locked).
317  *
318  * This is done inside an ordered work queue, and the compression
319  * is spread across many cpus.  The actual IO submission is step
320  * two, and the ordered work queue takes care of making sure that
321  * happens in the same order things were put onto the queue by
322  * writepages and friends.
323  *
324  * If this code finds it can't get good compression, it puts an
325  * entry onto the work queue to write the uncompressed bytes.  This
326  * makes sure that both compressed inodes and uncompressed inodes
327  * are written in the same order that pdflush sent them down.
328  */
329 static noinline int compress_file_range(struct inode *inode,
330                                         struct page *locked_page,
331                                         u64 start, u64 end,
332                                         struct async_cow *async_cow,
333                                         int *num_added)
334 {
335         struct btrfs_root *root = BTRFS_I(inode)->root;
336         struct btrfs_trans_handle *trans;
337         u64 num_bytes;
338         u64 blocksize = root->sectorsize;
339         u64 actual_end;
340         u64 isize = i_size_read(inode);
341         int ret = 0;
342         struct page **pages = NULL;
343         unsigned long nr_pages;
344         unsigned long nr_pages_ret = 0;
345         unsigned long total_compressed = 0;
346         unsigned long total_in = 0;
347         unsigned long max_compressed = 128 * 1024;
348         unsigned long max_uncompressed = 128 * 1024;
349         int i;
350         int will_compress;
351         int compress_type = root->fs_info->compress_type;
352
353         /* if this is a small write inside eof, kick off a defrag */
354         if ((end - start + 1) < 16 * 1024 &&
355             (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
356                 btrfs_add_inode_defrag(NULL, inode);
357
358         actual_end = min_t(u64, isize, end + 1);
359 again:
360         will_compress = 0;
361         nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
362         nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
363
364         /*
365          * we don't want to send crud past the end of i_size through
366          * compression, that's just a waste of CPU time.  So, if the
367          * end of the file is before the start of our current
368          * requested range of bytes, we bail out to the uncompressed
369          * cleanup code that can deal with all of this.
370          *
371          * It isn't really the fastest way to fix things, but this is a
372          * very uncommon corner.
373          */
374         if (actual_end <= start)
375                 goto cleanup_and_bail_uncompressed;
376
377         total_compressed = actual_end - start;
378
379         /* we want to make sure that amount of ram required to uncompress
380          * an extent is reasonable, so we limit the total size in ram
381          * of a compressed extent to 128k.  This is a crucial number
382          * because it also controls how easily we can spread reads across
383          * cpus for decompression.
384          *
385          * We also want to make sure the amount of IO required to do
386          * a random read is reasonably small, so we limit the size of
387          * a compressed extent to 128k.
388          */
389         total_compressed = min(total_compressed, max_uncompressed);
390         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
391         num_bytes = max(blocksize,  num_bytes);
392         total_in = 0;
393         ret = 0;
394
395         /*
396          * we do compression for mount -o compress and when the
397          * inode has not been flagged as nocompress.  This flag can
398          * change at any time if we discover bad compression ratios.
399          */
400         if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
401             (btrfs_test_opt(root, COMPRESS) ||
402              (BTRFS_I(inode)->force_compress) ||
403              (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
404                 WARN_ON(pages);
405                 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
406                 if (!pages) {
407                         /* just bail out to the uncompressed code */
408                         goto cont;
409                 }
410
411                 if (BTRFS_I(inode)->force_compress)
412                         compress_type = BTRFS_I(inode)->force_compress;
413
414                 ret = btrfs_compress_pages(compress_type,
415                                            inode->i_mapping, start,
416                                            total_compressed, pages,
417                                            nr_pages, &nr_pages_ret,
418                                            &total_in,
419                                            &total_compressed,
420                                            max_compressed);
421
422                 if (!ret) {
423                         unsigned long offset = total_compressed &
424                                 (PAGE_CACHE_SIZE - 1);
425                         struct page *page = pages[nr_pages_ret - 1];
426                         char *kaddr;
427
428                         /* zero the tail end of the last page, we might be
429                          * sending it down to disk
430                          */
431                         if (offset) {
432                                 kaddr = kmap_atomic(page);
433                                 memset(kaddr + offset, 0,
434                                        PAGE_CACHE_SIZE - offset);
435                                 kunmap_atomic(kaddr);
436                         }
437                         will_compress = 1;
438                 }
439         }
440 cont:
441         if (start == 0) {
442                 trans = btrfs_join_transaction(root);
443                 if (IS_ERR(trans)) {
444                         ret = PTR_ERR(trans);
445                         trans = NULL;
446                         goto cleanup_and_out;
447                 }
448                 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
449
450                 /* lets try to make an inline extent */
451                 if (ret || total_in < (actual_end - start)) {
452                         /* we didn't compress the entire range, try
453                          * to make an uncompressed inline extent.
454                          */
455                         ret = cow_file_range_inline(trans, root, inode,
456                                                     start, end, 0, 0, NULL);
457                 } else {
458                         /* try making a compressed inline extent */
459                         ret = cow_file_range_inline(trans, root, inode,
460                                                     start, end,
461                                                     total_compressed,
462                                                     compress_type, pages);
463                 }
464                 if (ret <= 0) {
465                         /*
466                          * inline extent creation worked or returned error,
467                          * we don't need to create any more async work items.
468                          * Unlock and free up our temp pages.
469                          */
470                         extent_clear_unlock_delalloc(inode,
471                              &BTRFS_I(inode)->io_tree,
472                              start, end, NULL,
473                              EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
474                              EXTENT_CLEAR_DELALLOC |
475                              EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
476
477                         btrfs_end_transaction(trans, root);
478                         goto free_pages_out;
479                 }
480                 btrfs_end_transaction(trans, root);
481         }
482
483         if (will_compress) {
484                 /*
485                  * we aren't doing an inline extent round the compressed size
486                  * up to a block size boundary so the allocator does sane
487                  * things
488                  */
489                 total_compressed = (total_compressed + blocksize - 1) &
490                         ~(blocksize - 1);
491
492                 /*
493                  * one last check to make sure the compression is really a
494                  * win, compare the page count read with the blocks on disk
495                  */
496                 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
497                         ~(PAGE_CACHE_SIZE - 1);
498                 if (total_compressed >= total_in) {
499                         will_compress = 0;
500                 } else {
501                         num_bytes = total_in;
502                 }
503         }
504         if (!will_compress && pages) {
505                 /*
506                  * the compression code ran but failed to make things smaller,
507                  * free any pages it allocated and our page pointer array
508                  */
509                 for (i = 0; i < nr_pages_ret; i++) {
510                         WARN_ON(pages[i]->mapping);
511                         page_cache_release(pages[i]);
512                 }
513                 kfree(pages);
514                 pages = NULL;
515                 total_compressed = 0;
516                 nr_pages_ret = 0;
517
518                 /* flag the file so we don't compress in the future */
519                 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
520                     !(BTRFS_I(inode)->force_compress)) {
521                         BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
522                 }
523         }
524         if (will_compress) {
525                 *num_added += 1;
526
527                 /* the async work queues will take care of doing actual
528                  * allocation on disk for these compressed pages,
529                  * and will submit them to the elevator.
530                  */
531                 add_async_extent(async_cow, start, num_bytes,
532                                  total_compressed, pages, nr_pages_ret,
533                                  compress_type);
534
535                 if (start + num_bytes < end) {
536                         start += num_bytes;
537                         pages = NULL;
538                         cond_resched();
539                         goto again;
540                 }
541         } else {
542 cleanup_and_bail_uncompressed:
543                 /*
544                  * No compression, but we still need to write the pages in
545                  * the file we've been given so far.  redirty the locked
546                  * page if it corresponds to our extent and set things up
547                  * for the async work queue to run cow_file_range to do
548                  * the normal delalloc dance
549                  */
550                 if (page_offset(locked_page) >= start &&
551                     page_offset(locked_page) <= end) {
552                         __set_page_dirty_nobuffers(locked_page);
553                         /* unlocked later on in the async handlers */
554                 }
555                 add_async_extent(async_cow, start, end - start + 1,
556                                  0, NULL, 0, BTRFS_COMPRESS_NONE);
557                 *num_added += 1;
558         }
559
560 out:
561         return ret;
562
563 free_pages_out:
564         for (i = 0; i < nr_pages_ret; i++) {
565                 WARN_ON(pages[i]->mapping);
566                 page_cache_release(pages[i]);
567         }
568         kfree(pages);
569
570         goto out;
571
572 cleanup_and_out:
573         extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
574                                      start, end, NULL,
575                                      EXTENT_CLEAR_UNLOCK_PAGE |
576                                      EXTENT_CLEAR_DIRTY |
577                                      EXTENT_CLEAR_DELALLOC |
578                                      EXTENT_SET_WRITEBACK |
579                                      EXTENT_END_WRITEBACK);
580         if (!trans || IS_ERR(trans))
581                 btrfs_error(root->fs_info, ret, "Failed to join transaction");
582         else
583                 btrfs_abort_transaction(trans, root, ret);
584         goto free_pages_out;
585 }
586
587 /*
588  * phase two of compressed writeback.  This is the ordered portion
589  * of the code, which only gets called in the order the work was
590  * queued.  We walk all the async extents created by compress_file_range
591  * and send them down to the disk.
592  */
593 static noinline int submit_compressed_extents(struct inode *inode,
594                                               struct async_cow *async_cow)
595 {
596         struct async_extent *async_extent;
597         u64 alloc_hint = 0;
598         struct btrfs_trans_handle *trans;
599         struct btrfs_key ins;
600         struct extent_map *em;
601         struct btrfs_root *root = BTRFS_I(inode)->root;
602         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
603         struct extent_io_tree *io_tree;
604         int ret = 0;
605
606         if (list_empty(&async_cow->extents))
607                 return 0;
608
609
610         while (!list_empty(&async_cow->extents)) {
611                 async_extent = list_entry(async_cow->extents.next,
612                                           struct async_extent, list);
613                 list_del(&async_extent->list);
614
615                 io_tree = &BTRFS_I(inode)->io_tree;
616
617 retry:
618                 /* did the compression code fall back to uncompressed IO? */
619                 if (!async_extent->pages) {
620                         int page_started = 0;
621                         unsigned long nr_written = 0;
622
623                         lock_extent(io_tree, async_extent->start,
624                                          async_extent->start +
625                                          async_extent->ram_size - 1);
626
627                         /* allocate blocks */
628                         ret = cow_file_range(inode, async_cow->locked_page,
629                                              async_extent->start,
630                                              async_extent->start +
631                                              async_extent->ram_size - 1,
632                                              &page_started, &nr_written, 0);
633
634                         /* JDM XXX */
635
636                         /*
637                          * if page_started, cow_file_range inserted an
638                          * inline extent and took care of all the unlocking
639                          * and IO for us.  Otherwise, we need to submit
640                          * all those pages down to the drive.
641                          */
642                         if (!page_started && !ret)
643                                 extent_write_locked_range(io_tree,
644                                                   inode, async_extent->start,
645                                                   async_extent->start +
646                                                   async_extent->ram_size - 1,
647                                                   btrfs_get_extent,
648                                                   WB_SYNC_ALL);
649                         kfree(async_extent);
650                         cond_resched();
651                         continue;
652                 }
653
654                 lock_extent(io_tree, async_extent->start,
655                             async_extent->start + async_extent->ram_size - 1);
656
657                 trans = btrfs_join_transaction(root);
658                 if (IS_ERR(trans)) {
659                         ret = PTR_ERR(trans);
660                 } else {
661                         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
662                         ret = btrfs_reserve_extent(trans, root,
663                                            async_extent->compressed_size,
664                                            async_extent->compressed_size,
665                                            0, alloc_hint, &ins, 1);
666                         if (ret)
667                                 btrfs_abort_transaction(trans, root, ret);
668                         btrfs_end_transaction(trans, root);
669                 }
670
671                 if (ret) {
672                         int i;
673                         for (i = 0; i < async_extent->nr_pages; i++) {
674                                 WARN_ON(async_extent->pages[i]->mapping);
675                                 page_cache_release(async_extent->pages[i]);
676                         }
677                         kfree(async_extent->pages);
678                         async_extent->nr_pages = 0;
679                         async_extent->pages = NULL;
680                         unlock_extent(io_tree, async_extent->start,
681                                       async_extent->start +
682                                       async_extent->ram_size - 1);
683                         if (ret == -ENOSPC)
684                                 goto retry;
685                         goto out_free; /* JDM: Requeue? */
686                 }
687
688                 /*
689                  * here we're doing allocation and writeback of the
690                  * compressed pages
691                  */
692                 btrfs_drop_extent_cache(inode, async_extent->start,
693                                         async_extent->start +
694                                         async_extent->ram_size - 1, 0);
695
696                 em = alloc_extent_map();
697                 BUG_ON(!em); /* -ENOMEM */
698                 em->start = async_extent->start;
699                 em->len = async_extent->ram_size;
700                 em->orig_start = em->start;
701
702                 em->block_start = ins.objectid;
703                 em->block_len = ins.offset;
704                 em->bdev = root->fs_info->fs_devices->latest_bdev;
705                 em->compress_type = async_extent->compress_type;
706                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
707                 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
708
709                 while (1) {
710                         write_lock(&em_tree->lock);
711                         ret = add_extent_mapping(em_tree, em);
712                         write_unlock(&em_tree->lock);
713                         if (ret != -EEXIST) {
714                                 free_extent_map(em);
715                                 break;
716                         }
717                         btrfs_drop_extent_cache(inode, async_extent->start,
718                                                 async_extent->start +
719                                                 async_extent->ram_size - 1, 0);
720                 }
721
722                 ret = btrfs_add_ordered_extent_compress(inode,
723                                                 async_extent->start,
724                                                 ins.objectid,
725                                                 async_extent->ram_size,
726                                                 ins.offset,
727                                                 BTRFS_ORDERED_COMPRESSED,
728                                                 async_extent->compress_type);
729                 BUG_ON(ret); /* -ENOMEM */
730
731                 /*
732                  * clear dirty, set writeback and unlock the pages.
733                  */
734                 extent_clear_unlock_delalloc(inode,
735                                 &BTRFS_I(inode)->io_tree,
736                                 async_extent->start,
737                                 async_extent->start +
738                                 async_extent->ram_size - 1,
739                                 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
740                                 EXTENT_CLEAR_UNLOCK |
741                                 EXTENT_CLEAR_DELALLOC |
742                                 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
743
744                 ret = btrfs_submit_compressed_write(inode,
745                                     async_extent->start,
746                                     async_extent->ram_size,
747                                     ins.objectid,
748                                     ins.offset, async_extent->pages,
749                                     async_extent->nr_pages);
750
751                 BUG_ON(ret); /* -ENOMEM */
752                 alloc_hint = ins.objectid + ins.offset;
753                 kfree(async_extent);
754                 cond_resched();
755         }
756         ret = 0;
757 out:
758         return ret;
759 out_free:
760         kfree(async_extent);
761         goto out;
762 }
763
764 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
765                                       u64 num_bytes)
766 {
767         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
768         struct extent_map *em;
769         u64 alloc_hint = 0;
770
771         read_lock(&em_tree->lock);
772         em = search_extent_mapping(em_tree, start, num_bytes);
773         if (em) {
774                 /*
775                  * if block start isn't an actual block number then find the
776                  * first block in this inode and use that as a hint.  If that
777                  * block is also bogus then just don't worry about it.
778                  */
779                 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
780                         free_extent_map(em);
781                         em = search_extent_mapping(em_tree, 0, 0);
782                         if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
783                                 alloc_hint = em->block_start;
784                         if (em)
785                                 free_extent_map(em);
786                 } else {
787                         alloc_hint = em->block_start;
788                         free_extent_map(em);
789                 }
790         }
791         read_unlock(&em_tree->lock);
792
793         return alloc_hint;
794 }
795
796 /*
797  * when extent_io.c finds a delayed allocation range in the file,
798  * the call backs end up in this code.  The basic idea is to
799  * allocate extents on disk for the range, and create ordered data structs
800  * in ram to track those extents.
801  *
802  * locked_page is the page that writepage had locked already.  We use
803  * it to make sure we don't do extra locks or unlocks.
804  *
805  * *page_started is set to one if we unlock locked_page and do everything
806  * required to start IO on it.  It may be clean and already done with
807  * IO when we return.
808  */
809 static noinline int cow_file_range(struct inode *inode,
810                                    struct page *locked_page,
811                                    u64 start, u64 end, int *page_started,
812                                    unsigned long *nr_written,
813                                    int unlock)
814 {
815         struct btrfs_root *root = BTRFS_I(inode)->root;
816         struct btrfs_trans_handle *trans;
817         u64 alloc_hint = 0;
818         u64 num_bytes;
819         unsigned long ram_size;
820         u64 disk_num_bytes;
821         u64 cur_alloc_size;
822         u64 blocksize = root->sectorsize;
823         struct btrfs_key ins;
824         struct extent_map *em;
825         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
826         int ret = 0;
827
828         BUG_ON(btrfs_is_free_space_inode(root, inode));
829         trans = btrfs_join_transaction(root);
830         if (IS_ERR(trans)) {
831                 extent_clear_unlock_delalloc(inode,
832                              &BTRFS_I(inode)->io_tree,
833                              start, end, locked_page,
834                              EXTENT_CLEAR_UNLOCK_PAGE |
835                              EXTENT_CLEAR_UNLOCK |
836                              EXTENT_CLEAR_DELALLOC |
837                              EXTENT_CLEAR_DIRTY |
838                              EXTENT_SET_WRITEBACK |
839                              EXTENT_END_WRITEBACK);
840                 return PTR_ERR(trans);
841         }
842         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
843
844         num_bytes = (end - start + blocksize) & ~(blocksize - 1);
845         num_bytes = max(blocksize,  num_bytes);
846         disk_num_bytes = num_bytes;
847         ret = 0;
848
849         /* if this is a small write inside eof, kick off defrag */
850         if (num_bytes < 64 * 1024 &&
851             (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
852                 btrfs_add_inode_defrag(trans, inode);
853
854         if (start == 0) {
855                 /* lets try to make an inline extent */
856                 ret = cow_file_range_inline(trans, root, inode,
857                                             start, end, 0, 0, NULL);
858                 if (ret == 0) {
859                         extent_clear_unlock_delalloc(inode,
860                                      &BTRFS_I(inode)->io_tree,
861                                      start, end, NULL,
862                                      EXTENT_CLEAR_UNLOCK_PAGE |
863                                      EXTENT_CLEAR_UNLOCK |
864                                      EXTENT_CLEAR_DELALLOC |
865                                      EXTENT_CLEAR_DIRTY |
866                                      EXTENT_SET_WRITEBACK |
867                                      EXTENT_END_WRITEBACK);
868
869                         *nr_written = *nr_written +
870                              (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
871                         *page_started = 1;
872                         goto out;
873                 } else if (ret < 0) {
874                         btrfs_abort_transaction(trans, root, ret);
875                         goto out_unlock;
876                 }
877         }
878
879         BUG_ON(disk_num_bytes >
880                btrfs_super_total_bytes(root->fs_info->super_copy));
881
882         alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
883         btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
884
885         while (disk_num_bytes > 0) {
886                 unsigned long op;
887
888                 cur_alloc_size = disk_num_bytes;
889                 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
890                                            root->sectorsize, 0, alloc_hint,
891                                            &ins, 1);
892                 if (ret < 0) {
893                         btrfs_abort_transaction(trans, root, ret);
894                         goto out_unlock;
895                 }
896
897                 em = alloc_extent_map();
898                 BUG_ON(!em); /* -ENOMEM */
899                 em->start = start;
900                 em->orig_start = em->start;
901                 ram_size = ins.offset;
902                 em->len = ins.offset;
903
904                 em->block_start = ins.objectid;
905                 em->block_len = ins.offset;
906                 em->bdev = root->fs_info->fs_devices->latest_bdev;
907                 set_bit(EXTENT_FLAG_PINNED, &em->flags);
908
909                 while (1) {
910                         write_lock(&em_tree->lock);
911                         ret = add_extent_mapping(em_tree, em);
912                         write_unlock(&em_tree->lock);
913                         if (ret != -EEXIST) {
914                                 free_extent_map(em);
915                                 break;
916                         }
917                         btrfs_drop_extent_cache(inode, start,
918                                                 start + ram_size - 1, 0);
919                 }
920
921                 cur_alloc_size = ins.offset;
922                 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
923                                                ram_size, cur_alloc_size, 0);
924                 BUG_ON(ret); /* -ENOMEM */
925
926                 if (root->root_key.objectid ==
927                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
928                         ret = btrfs_reloc_clone_csums(inode, start,
929                                                       cur_alloc_size);
930                         if (ret) {
931                                 btrfs_abort_transaction(trans, root, ret);
932                                 goto out_unlock;
933                         }
934                 }
935
936                 if (disk_num_bytes < cur_alloc_size)
937                         break;
938
939                 /* we're not doing compressed IO, don't unlock the first
940                  * page (which the caller expects to stay locked), don't
941                  * clear any dirty bits and don't set any writeback bits
942                  *
943                  * Do set the Private2 bit so we know this page was properly
944                  * setup for writepage
945                  */
946                 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
947                 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
948                         EXTENT_SET_PRIVATE2;
949
950                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
951                                              start, start + ram_size - 1,
952                                              locked_page, op);
953                 disk_num_bytes -= cur_alloc_size;
954                 num_bytes -= cur_alloc_size;
955                 alloc_hint = ins.objectid + ins.offset;
956                 start += cur_alloc_size;
957         }
958         ret = 0;
959 out:
960         btrfs_end_transaction(trans, root);
961
962         return ret;
963 out_unlock:
964         extent_clear_unlock_delalloc(inode,
965                      &BTRFS_I(inode)->io_tree,
966                      start, end, locked_page,
967                      EXTENT_CLEAR_UNLOCK_PAGE |
968                      EXTENT_CLEAR_UNLOCK |
969                      EXTENT_CLEAR_DELALLOC |
970                      EXTENT_CLEAR_DIRTY |
971                      EXTENT_SET_WRITEBACK |
972                      EXTENT_END_WRITEBACK);
973
974         goto out;
975 }
976
977 /*
978  * work queue call back to started compression on a file and pages
979  */
980 static noinline void async_cow_start(struct btrfs_work *work)
981 {
982         struct async_cow *async_cow;
983         int num_added = 0;
984         async_cow = container_of(work, struct async_cow, work);
985
986         compress_file_range(async_cow->inode, async_cow->locked_page,
987                             async_cow->start, async_cow->end, async_cow,
988                             &num_added);
989         if (num_added == 0) {
990                 btrfs_add_delayed_iput(async_cow->inode);
991                 async_cow->inode = NULL;
992         }
993 }
994
995 /*
996  * work queue call back to submit previously compressed pages
997  */
998 static noinline void async_cow_submit(struct btrfs_work *work)
999 {
1000         struct async_cow *async_cow;
1001         struct btrfs_root *root;
1002         unsigned long nr_pages;
1003
1004         async_cow = container_of(work, struct async_cow, work);
1005
1006         root = async_cow->root;
1007         nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1008                 PAGE_CACHE_SHIFT;
1009
1010         atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
1011
1012         if (atomic_read(&root->fs_info->async_delalloc_pages) <
1013             5 * 1042 * 1024 &&
1014             waitqueue_active(&root->fs_info->async_submit_wait))
1015                 wake_up(&root->fs_info->async_submit_wait);
1016
1017         if (async_cow->inode)
1018                 submit_compressed_extents(async_cow->inode, async_cow);
1019 }
1020
1021 static noinline void async_cow_free(struct btrfs_work *work)
1022 {
1023         struct async_cow *async_cow;
1024         async_cow = container_of(work, struct async_cow, work);
1025         if (async_cow->inode)
1026                 btrfs_add_delayed_iput(async_cow->inode);
1027         kfree(async_cow);
1028 }
1029
1030 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1031                                 u64 start, u64 end, int *page_started,
1032                                 unsigned long *nr_written)
1033 {
1034         struct async_cow *async_cow;
1035         struct btrfs_root *root = BTRFS_I(inode)->root;
1036         unsigned long nr_pages;
1037         u64 cur_end;
1038         int limit = 10 * 1024 * 1042;
1039
1040         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1041                          1, 0, NULL, GFP_NOFS);
1042         while (start < end) {
1043                 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1044                 BUG_ON(!async_cow); /* -ENOMEM */
1045                 async_cow->inode = igrab(inode);
1046                 async_cow->root = root;
1047                 async_cow->locked_page = locked_page;
1048                 async_cow->start = start;
1049
1050                 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
1051                         cur_end = end;
1052                 else
1053                         cur_end = min(end, start + 512 * 1024 - 1);
1054
1055                 async_cow->end = cur_end;
1056                 INIT_LIST_HEAD(&async_cow->extents);
1057
1058                 async_cow->work.func = async_cow_start;
1059                 async_cow->work.ordered_func = async_cow_submit;
1060                 async_cow->work.ordered_free = async_cow_free;
1061                 async_cow->work.flags = 0;
1062
1063                 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1064                         PAGE_CACHE_SHIFT;
1065                 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1066
1067                 btrfs_queue_worker(&root->fs_info->delalloc_workers,
1068                                    &async_cow->work);
1069
1070                 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1071                         wait_event(root->fs_info->async_submit_wait,
1072                            (atomic_read(&root->fs_info->async_delalloc_pages) <
1073                             limit));
1074                 }
1075
1076                 while (atomic_read(&root->fs_info->async_submit_draining) &&
1077                       atomic_read(&root->fs_info->async_delalloc_pages)) {
1078                         wait_event(root->fs_info->async_submit_wait,
1079                           (atomic_read(&root->fs_info->async_delalloc_pages) ==
1080                            0));
1081                 }
1082
1083                 *nr_written += nr_pages;
1084                 start = cur_end + 1;
1085         }
1086         *page_started = 1;
1087         return 0;
1088 }
1089
1090 static noinline int csum_exist_in_range(struct btrfs_root *root,
1091                                         u64 bytenr, u64 num_bytes)
1092 {
1093         int ret;
1094         struct btrfs_ordered_sum *sums;
1095         LIST_HEAD(list);
1096
1097         ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1098                                        bytenr + num_bytes - 1, &list, 0);
1099         if (ret == 0 && list_empty(&list))
1100                 return 0;
1101
1102         while (!list_empty(&list)) {
1103                 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1104                 list_del(&sums->list);
1105                 kfree(sums);
1106         }
1107         return 1;
1108 }
1109
1110 /*
1111  * when nowcow writeback call back.  This checks for snapshots or COW copies
1112  * of the extents that exist in the file, and COWs the file as required.
1113  *
1114  * If no cow copies or snapshots exist, we write directly to the existing
1115  * blocks on disk
1116  */
1117 static noinline int run_delalloc_nocow(struct inode *inode,
1118                                        struct page *locked_page,
1119                               u64 start, u64 end, int *page_started, int force,
1120                               unsigned long *nr_written)
1121 {
1122         struct btrfs_root *root = BTRFS_I(inode)->root;
1123         struct btrfs_trans_handle *trans;
1124         struct extent_buffer *leaf;
1125         struct btrfs_path *path;
1126         struct btrfs_file_extent_item *fi;
1127         struct btrfs_key found_key;
1128         u64 cow_start;
1129         u64 cur_offset;
1130         u64 extent_end;
1131         u64 extent_offset;
1132         u64 disk_bytenr;
1133         u64 num_bytes;
1134         int extent_type;
1135         int ret, err;
1136         int type;
1137         int nocow;
1138         int check_prev = 1;
1139         bool nolock;
1140         u64 ino = btrfs_ino(inode);
1141
1142         path = btrfs_alloc_path();
1143         if (!path) {
1144                 extent_clear_unlock_delalloc(inode,
1145                              &BTRFS_I(inode)->io_tree,
1146                              start, end, locked_page,
1147                              EXTENT_CLEAR_UNLOCK_PAGE |
1148                              EXTENT_CLEAR_UNLOCK |
1149                              EXTENT_CLEAR_DELALLOC |
1150                              EXTENT_CLEAR_DIRTY |
1151                              EXTENT_SET_WRITEBACK |
1152                              EXTENT_END_WRITEBACK);
1153                 return -ENOMEM;
1154         }
1155
1156         nolock = btrfs_is_free_space_inode(root, inode);
1157
1158         if (nolock)
1159                 trans = btrfs_join_transaction_nolock(root);
1160         else
1161                 trans = btrfs_join_transaction(root);
1162
1163         if (IS_ERR(trans)) {
1164                 extent_clear_unlock_delalloc(inode,
1165                              &BTRFS_I(inode)->io_tree,
1166                              start, end, locked_page,
1167                              EXTENT_CLEAR_UNLOCK_PAGE |
1168                              EXTENT_CLEAR_UNLOCK |
1169                              EXTENT_CLEAR_DELALLOC |
1170                              EXTENT_CLEAR_DIRTY |
1171                              EXTENT_SET_WRITEBACK |
1172                              EXTENT_END_WRITEBACK);
1173                 btrfs_free_path(path);
1174                 return PTR_ERR(trans);
1175         }
1176
1177         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1178
1179         cow_start = (u64)-1;
1180         cur_offset = start;
1181         while (1) {
1182                 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1183                                                cur_offset, 0);
1184                 if (ret < 0) {
1185                         btrfs_abort_transaction(trans, root, ret);
1186                         goto error;
1187                 }
1188                 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1189                         leaf = path->nodes[0];
1190                         btrfs_item_key_to_cpu(leaf, &found_key,
1191                                               path->slots[0] - 1);
1192                         if (found_key.objectid == ino &&
1193                             found_key.type == BTRFS_EXTENT_DATA_KEY)
1194                                 path->slots[0]--;
1195                 }
1196                 check_prev = 0;
1197 next_slot:
1198                 leaf = path->nodes[0];
1199                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1200                         ret = btrfs_next_leaf(root, path);
1201                         if (ret < 0) {
1202                                 btrfs_abort_transaction(trans, root, ret);
1203                                 goto error;
1204                         }
1205                         if (ret > 0)
1206                                 break;
1207                         leaf = path->nodes[0];
1208                 }
1209
1210                 nocow = 0;
1211                 disk_bytenr = 0;
1212                 num_bytes = 0;
1213                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1214
1215                 if (found_key.objectid > ino ||
1216                     found_key.type > BTRFS_EXTENT_DATA_KEY ||
1217                     found_key.offset > end)
1218                         break;
1219
1220                 if (found_key.offset > cur_offset) {
1221                         extent_end = found_key.offset;
1222                         extent_type = 0;
1223                         goto out_check;
1224                 }
1225
1226                 fi = btrfs_item_ptr(leaf, path->slots[0],
1227                                     struct btrfs_file_extent_item);
1228                 extent_type = btrfs_file_extent_type(leaf, fi);
1229
1230                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1231                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1232                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1233                         extent_offset = btrfs_file_extent_offset(leaf, fi);
1234                         extent_end = found_key.offset +
1235                                 btrfs_file_extent_num_bytes(leaf, fi);
1236                         if (extent_end <= start) {
1237                                 path->slots[0]++;
1238                                 goto next_slot;
1239                         }
1240                         if (disk_bytenr == 0)
1241                                 goto out_check;
1242                         if (btrfs_file_extent_compression(leaf, fi) ||
1243                             btrfs_file_extent_encryption(leaf, fi) ||
1244                             btrfs_file_extent_other_encoding(leaf, fi))
1245                                 goto out_check;
1246                         if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1247                                 goto out_check;
1248                         if (btrfs_extent_readonly(root, disk_bytenr))
1249                                 goto out_check;
1250                         if (btrfs_cross_ref_exist(trans, root, ino,
1251                                                   found_key.offset -
1252                                                   extent_offset, disk_bytenr))
1253                                 goto out_check;
1254                         disk_bytenr += extent_offset;
1255                         disk_bytenr += cur_offset - found_key.offset;
1256                         num_bytes = min(end + 1, extent_end) - cur_offset;
1257                         /*
1258                          * force cow if csum exists in the range.
1259                          * this ensure that csum for a given extent are
1260                          * either valid or do not exist.
1261                          */
1262                         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1263                                 goto out_check;
1264                         nocow = 1;
1265                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1266                         extent_end = found_key.offset +
1267                                 btrfs_file_extent_inline_len(leaf, fi);
1268                         extent_end = ALIGN(extent_end, root->sectorsize);
1269                 } else {
1270                         BUG_ON(1);
1271                 }
1272 out_check:
1273                 if (extent_end <= start) {
1274                         path->slots[0]++;
1275                         goto next_slot;
1276                 }
1277                 if (!nocow) {
1278                         if (cow_start == (u64)-1)
1279                                 cow_start = cur_offset;
1280                         cur_offset = extent_end;
1281                         if (cur_offset > end)
1282                                 break;
1283                         path->slots[0]++;
1284                         goto next_slot;
1285                 }
1286
1287                 btrfs_release_path(path);
1288                 if (cow_start != (u64)-1) {
1289                         ret = cow_file_range(inode, locked_page, cow_start,
1290                                         found_key.offset - 1, page_started,
1291                                         nr_written, 1);
1292                         if (ret) {
1293                                 btrfs_abort_transaction(trans, root, ret);
1294                                 goto error;
1295                         }
1296                         cow_start = (u64)-1;
1297                 }
1298
1299                 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1300                         struct extent_map *em;
1301                         struct extent_map_tree *em_tree;
1302                         em_tree = &BTRFS_I(inode)->extent_tree;
1303                         em = alloc_extent_map();
1304                         BUG_ON(!em); /* -ENOMEM */
1305                         em->start = cur_offset;
1306                         em->orig_start = em->start;
1307                         em->len = num_bytes;
1308                         em->block_len = num_bytes;
1309                         em->block_start = disk_bytenr;
1310                         em->bdev = root->fs_info->fs_devices->latest_bdev;
1311                         set_bit(EXTENT_FLAG_PINNED, &em->flags);
1312                         while (1) {
1313                                 write_lock(&em_tree->lock);
1314                                 ret = add_extent_mapping(em_tree, em);
1315                                 write_unlock(&em_tree->lock);
1316                                 if (ret != -EEXIST) {
1317                                         free_extent_map(em);
1318                                         break;
1319                                 }
1320                                 btrfs_drop_extent_cache(inode, em->start,
1321                                                 em->start + em->len - 1, 0);
1322                         }
1323                         type = BTRFS_ORDERED_PREALLOC;
1324                 } else {
1325                         type = BTRFS_ORDERED_NOCOW;
1326                 }
1327
1328                 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1329                                                num_bytes, num_bytes, type);
1330                 BUG_ON(ret); /* -ENOMEM */
1331
1332                 if (root->root_key.objectid ==
1333                     BTRFS_DATA_RELOC_TREE_OBJECTID) {
1334                         ret = btrfs_reloc_clone_csums(inode, cur_offset,
1335                                                       num_bytes);
1336                         if (ret) {
1337                                 btrfs_abort_transaction(trans, root, ret);
1338                                 goto error;
1339                         }
1340                 }
1341
1342                 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1343                                 cur_offset, cur_offset + num_bytes - 1,
1344                                 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1345                                 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1346                                 EXTENT_SET_PRIVATE2);
1347                 cur_offset = extent_end;
1348                 if (cur_offset > end)
1349                         break;
1350         }
1351         btrfs_release_path(path);
1352
1353         if (cur_offset <= end && cow_start == (u64)-1) {
1354                 cow_start = cur_offset;
1355                 cur_offset = end;
1356         }
1357
1358         if (cow_start != (u64)-1) {
1359                 ret = cow_file_range(inode, locked_page, cow_start, end,
1360                                      page_started, nr_written, 1);
1361                 if (ret) {
1362                         btrfs_abort_transaction(trans, root, ret);
1363                         goto error;
1364                 }
1365         }
1366
1367 error:
1368         if (nolock) {
1369                 err = btrfs_end_transaction_nolock(trans, root);
1370         } else {
1371                 err = btrfs_end_transaction(trans, root);
1372         }
1373         if (!ret)
1374                 ret = err;
1375
1376         if (ret && cur_offset < end)
1377                 extent_clear_unlock_delalloc(inode,
1378                              &BTRFS_I(inode)->io_tree,
1379                              cur_offset, end, locked_page,
1380                              EXTENT_CLEAR_UNLOCK_PAGE |
1381                              EXTENT_CLEAR_UNLOCK |
1382                              EXTENT_CLEAR_DELALLOC |
1383                              EXTENT_CLEAR_DIRTY |
1384                              EXTENT_SET_WRITEBACK |
1385                              EXTENT_END_WRITEBACK);
1386
1387         btrfs_free_path(path);
1388         return ret;
1389 }
1390
1391 /*
1392  * extent_io.c call back to do delayed allocation processing
1393  */
1394 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1395                               u64 start, u64 end, int *page_started,
1396                               unsigned long *nr_written)
1397 {
1398         int ret;
1399         struct btrfs_root *root = BTRFS_I(inode)->root;
1400
1401         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
1402                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1403                                          page_started, 1, nr_written);
1404         } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
1405                 ret = run_delalloc_nocow(inode, locked_page, start, end,
1406                                          page_started, 0, nr_written);
1407         } else if (!btrfs_test_opt(root, COMPRESS) &&
1408                    !(BTRFS_I(inode)->force_compress) &&
1409                    !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
1410                 ret = cow_file_range(inode, locked_page, start, end,
1411                                       page_started, nr_written, 1);
1412         } else {
1413                 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1414                         &BTRFS_I(inode)->runtime_flags);
1415                 ret = cow_file_range_async(inode, locked_page, start, end,
1416                                            page_started, nr_written);
1417         }
1418         return ret;
1419 }
1420
1421 static void btrfs_split_extent_hook(struct inode *inode,
1422                                     struct extent_state *orig, u64 split)
1423 {
1424         /* not delalloc, ignore it */
1425         if (!(orig->state & EXTENT_DELALLOC))
1426                 return;
1427
1428         spin_lock(&BTRFS_I(inode)->lock);
1429         BTRFS_I(inode)->outstanding_extents++;
1430         spin_unlock(&BTRFS_I(inode)->lock);
1431 }
1432
1433 /*
1434  * extent_io.c merge_extent_hook, used to track merged delayed allocation
1435  * extents so we can keep track of new extents that are just merged onto old
1436  * extents, such as when we are doing sequential writes, so we can properly
1437  * account for the metadata space we'll need.
1438  */
1439 static void btrfs_merge_extent_hook(struct inode *inode,
1440                                     struct extent_state *new,
1441                                     struct extent_state *other)
1442 {
1443         /* not delalloc, ignore it */
1444         if (!(other->state & EXTENT_DELALLOC))
1445                 return;
1446
1447         spin_lock(&BTRFS_I(inode)->lock);
1448         BTRFS_I(inode)->outstanding_extents--;
1449         spin_unlock(&BTRFS_I(inode)->lock);
1450 }
1451
1452 /*
1453  * extent_io.c set_bit_hook, used to track delayed allocation
1454  * bytes in this file, and to maintain the list of inodes that
1455  * have pending delalloc work to be done.
1456  */
1457 static void btrfs_set_bit_hook(struct inode *inode,
1458                                struct extent_state *state, int *bits)
1459 {
1460
1461         /*
1462          * set_bit and clear bit hooks normally require _irqsave/restore
1463          * but in this case, we are only testing for the DELALLOC
1464          * bit, which is only set or cleared with irqs on
1465          */
1466         if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1467                 struct btrfs_root *root = BTRFS_I(inode)->root;
1468                 u64 len = state->end + 1 - state->start;
1469                 bool do_list = !btrfs_is_free_space_inode(root, inode);
1470
1471                 if (*bits & EXTENT_FIRST_DELALLOC) {
1472                         *bits &= ~EXTENT_FIRST_DELALLOC;
1473                 } else {
1474                         spin_lock(&BTRFS_I(inode)->lock);
1475                         BTRFS_I(inode)->outstanding_extents++;
1476                         spin_unlock(&BTRFS_I(inode)->lock);
1477                 }
1478
1479                 spin_lock(&root->fs_info->delalloc_lock);
1480                 BTRFS_I(inode)->delalloc_bytes += len;
1481                 root->fs_info->delalloc_bytes += len;
1482                 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1483                         list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1484                                       &root->fs_info->delalloc_inodes);
1485                 }
1486                 spin_unlock(&root->fs_info->delalloc_lock);
1487         }
1488 }
1489
1490 /*
1491  * extent_io.c clear_bit_hook, see set_bit_hook for why
1492  */
1493 static void btrfs_clear_bit_hook(struct inode *inode,
1494                                  struct extent_state *state, int *bits)
1495 {
1496         /*
1497          * set_bit and clear bit hooks normally require _irqsave/restore
1498          * but in this case, we are only testing for the DELALLOC
1499          * bit, which is only set or cleared with irqs on
1500          */
1501         if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1502                 struct btrfs_root *root = BTRFS_I(inode)->root;
1503                 u64 len = state->end + 1 - state->start;
1504                 bool do_list = !btrfs_is_free_space_inode(root, inode);
1505
1506                 if (*bits & EXTENT_FIRST_DELALLOC) {
1507                         *bits &= ~EXTENT_FIRST_DELALLOC;
1508                 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1509                         spin_lock(&BTRFS_I(inode)->lock);
1510                         BTRFS_I(inode)->outstanding_extents--;
1511                         spin_unlock(&BTRFS_I(inode)->lock);
1512                 }
1513
1514                 if (*bits & EXTENT_DO_ACCOUNTING)
1515                         btrfs_delalloc_release_metadata(inode, len);
1516
1517                 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1518                     && do_list)
1519                         btrfs_free_reserved_data_space(inode, len);
1520
1521                 spin_lock(&root->fs_info->delalloc_lock);
1522                 root->fs_info->delalloc_bytes -= len;
1523                 BTRFS_I(inode)->delalloc_bytes -= len;
1524
1525                 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1526                     !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1527                         list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1528                 }
1529                 spin_unlock(&root->fs_info->delalloc_lock);
1530         }
1531 }
1532
1533 /*
1534  * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1535  * we don't create bios that span stripes or chunks
1536  */
1537 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1538                          size_t size, struct bio *bio,
1539                          unsigned long bio_flags)
1540 {
1541         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1542         struct btrfs_mapping_tree *map_tree;
1543         u64 logical = (u64)bio->bi_sector << 9;
1544         u64 length = 0;
1545         u64 map_length;
1546         int ret;
1547
1548         if (bio_flags & EXTENT_BIO_COMPRESSED)
1549                 return 0;
1550
1551         length = bio->bi_size;
1552         map_tree = &root->fs_info->mapping_tree;
1553         map_length = length;
1554         ret = btrfs_map_block(map_tree, READ, logical,
1555                               &map_length, NULL, 0);
1556         /* Will always return 0 or 1 with map_multi == NULL */
1557         BUG_ON(ret < 0);
1558         if (map_length < length + size)
1559                 return 1;
1560         return 0;
1561 }
1562
1563 /*
1564  * in order to insert checksums into the metadata in large chunks,
1565  * we wait until bio submission time.   All the pages in the bio are
1566  * checksummed and sums are attached onto the ordered extent record.
1567  *
1568  * At IO completion time the cums attached on the ordered extent record
1569  * are inserted into the btree
1570  */
1571 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1572                                     struct bio *bio, int mirror_num,
1573                                     unsigned long bio_flags,
1574                                     u64 bio_offset)
1575 {
1576         struct btrfs_root *root = BTRFS_I(inode)->root;
1577         int ret = 0;
1578
1579         ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1580         BUG_ON(ret); /* -ENOMEM */
1581         return 0;
1582 }
1583
1584 /*
1585  * in order to insert checksums into the metadata in large chunks,
1586  * we wait until bio submission time.   All the pages in the bio are
1587  * checksummed and sums are attached onto the ordered extent record.
1588  *
1589  * At IO completion time the cums attached on the ordered extent record
1590  * are inserted into the btree
1591  */
1592 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1593                           int mirror_num, unsigned long bio_flags,
1594                           u64 bio_offset)
1595 {
1596         struct btrfs_root *root = BTRFS_I(inode)->root;
1597         return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1598 }
1599
1600 /*
1601  * extent_io.c submission hook. This does the right thing for csum calculation
1602  * on write, or reading the csums from the tree before a read
1603  */
1604 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1605                           int mirror_num, unsigned long bio_flags,
1606                           u64 bio_offset)
1607 {
1608         struct btrfs_root *root = BTRFS_I(inode)->root;
1609         int ret = 0;
1610         int skip_sum;
1611         int metadata = 0;
1612
1613         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1614
1615         if (btrfs_is_free_space_inode(root, inode))
1616                 metadata = 2;
1617
1618         if (!(rw & REQ_WRITE)) {
1619                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1620                 if (ret)
1621                         return ret;
1622
1623                 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1624                         return btrfs_submit_compressed_read(inode, bio,
1625                                                     mirror_num, bio_flags);
1626                 } else if (!skip_sum) {
1627                         ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1628                         if (ret)
1629                                 return ret;
1630                 }
1631                 goto mapit;
1632         } else if (!skip_sum) {
1633                 /* csum items have already been cloned */
1634                 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1635                         goto mapit;
1636                 /* we're doing a write, do the async checksumming */
1637                 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1638                                    inode, rw, bio, mirror_num,
1639                                    bio_flags, bio_offset,
1640                                    __btrfs_submit_bio_start,
1641                                    __btrfs_submit_bio_done);
1642         }
1643
1644 mapit:
1645         return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1646 }
1647
1648 /*
1649  * given a list of ordered sums record them in the inode.  This happens
1650  * at IO completion time based on sums calculated at bio submission time.
1651  */
1652 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1653                              struct inode *inode, u64 file_offset,
1654                              struct list_head *list)
1655 {
1656         struct btrfs_ordered_sum *sum;
1657
1658         list_for_each_entry(sum, list, list) {
1659                 btrfs_csum_file_blocks(trans,
1660                        BTRFS_I(inode)->root->fs_info->csum_root, sum);
1661         }
1662         return 0;
1663 }
1664
1665 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1666                               struct extent_state **cached_state)
1667 {
1668         if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1669                 WARN_ON(1);
1670         return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1671                                    cached_state, GFP_NOFS);
1672 }
1673
1674 /* see btrfs_writepage_start_hook for details on why this is required */
1675 struct btrfs_writepage_fixup {
1676         struct page *page;
1677         struct btrfs_work work;
1678 };
1679
1680 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1681 {
1682         struct btrfs_writepage_fixup *fixup;
1683         struct btrfs_ordered_extent *ordered;
1684         struct extent_state *cached_state = NULL;
1685         struct page *page;
1686         struct inode *inode;
1687         u64 page_start;
1688         u64 page_end;
1689         int ret;
1690
1691         fixup = container_of(work, struct btrfs_writepage_fixup, work);
1692         page = fixup->page;
1693 again:
1694         lock_page(page);
1695         if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1696                 ClearPageChecked(page);
1697                 goto out_page;
1698         }
1699
1700         inode = page->mapping->host;
1701         page_start = page_offset(page);
1702         page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1703
1704         lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1705                          &cached_state);
1706
1707         /* already ordered? We're done */
1708         if (PagePrivate2(page))
1709                 goto out;
1710
1711         ordered = btrfs_lookup_ordered_extent(inode, page_start);
1712         if (ordered) {
1713                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1714                                      page_end, &cached_state, GFP_NOFS);
1715                 unlock_page(page);
1716                 btrfs_start_ordered_extent(inode, ordered, 1);
1717                 btrfs_put_ordered_extent(ordered);
1718                 goto again;
1719         }
1720
1721         ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1722         if (ret) {
1723                 mapping_set_error(page->mapping, ret);
1724                 end_extent_writepage(page, ret, page_start, page_end);
1725                 ClearPageChecked(page);
1726                 goto out;
1727          }
1728
1729         btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1730         ClearPageChecked(page);
1731         set_page_dirty(page);
1732 out:
1733         unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1734                              &cached_state, GFP_NOFS);
1735 out_page:
1736         unlock_page(page);
1737         page_cache_release(page);
1738         kfree(fixup);
1739 }
1740
1741 /*
1742  * There are a few paths in the higher layers of the kernel that directly
1743  * set the page dirty bit without asking the filesystem if it is a
1744  * good idea.  This causes problems because we want to make sure COW
1745  * properly happens and the data=ordered rules are followed.
1746  *
1747  * In our case any range that doesn't have the ORDERED bit set
1748  * hasn't been properly setup for IO.  We kick off an async process
1749  * to fix it up.  The async helper will wait for ordered extents, set
1750  * the delalloc bit and make it safe to write the page.
1751  */
1752 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1753 {
1754         struct inode *inode = page->mapping->host;
1755         struct btrfs_writepage_fixup *fixup;
1756         struct btrfs_root *root = BTRFS_I(inode)->root;
1757
1758         /* this page is properly in the ordered list */
1759         if (TestClearPagePrivate2(page))
1760                 return 0;
1761
1762         if (PageChecked(page))
1763                 return -EAGAIN;
1764
1765         fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1766         if (!fixup)
1767                 return -EAGAIN;
1768
1769         SetPageChecked(page);
1770         page_cache_get(page);
1771         fixup->work.func = btrfs_writepage_fixup_worker;
1772         fixup->page = page;
1773         btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1774         return -EBUSY;
1775 }
1776
1777 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1778                                        struct inode *inode, u64 file_pos,
1779                                        u64 disk_bytenr, u64 disk_num_bytes,
1780                                        u64 num_bytes, u64 ram_bytes,
1781                                        u8 compression, u8 encryption,
1782                                        u16 other_encoding, int extent_type)
1783 {
1784         struct btrfs_root *root = BTRFS_I(inode)->root;
1785         struct btrfs_file_extent_item *fi;
1786         struct btrfs_path *path;
1787         struct extent_buffer *leaf;
1788         struct btrfs_key ins;
1789         u64 hint;
1790         int ret;
1791
1792         path = btrfs_alloc_path();
1793         if (!path)
1794                 return -ENOMEM;
1795
1796         path->leave_spinning = 1;
1797
1798         /*
1799          * we may be replacing one extent in the tree with another.
1800          * The new extent is pinned in the extent map, and we don't want
1801          * to drop it from the cache until it is completely in the btree.
1802          *
1803          * So, tell btrfs_drop_extents to leave this extent in the cache.
1804          * the caller is expected to unpin it and allow it to be merged
1805          * with the others.
1806          */
1807         ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1808                                  &hint, 0);
1809         if (ret)
1810                 goto out;
1811
1812         ins.objectid = btrfs_ino(inode);
1813         ins.offset = file_pos;
1814         ins.type = BTRFS_EXTENT_DATA_KEY;
1815         ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1816         if (ret)
1817                 goto out;
1818         leaf = path->nodes[0];
1819         fi = btrfs_item_ptr(leaf, path->slots[0],
1820                             struct btrfs_file_extent_item);
1821         btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1822         btrfs_set_file_extent_type(leaf, fi, extent_type);
1823         btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1824         btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1825         btrfs_set_file_extent_offset(leaf, fi, 0);
1826         btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1827         btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1828         btrfs_set_file_extent_compression(leaf, fi, compression);
1829         btrfs_set_file_extent_encryption(leaf, fi, encryption);
1830         btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1831
1832         btrfs_unlock_up_safe(path, 1);
1833         btrfs_set_lock_blocking(leaf);
1834
1835         btrfs_mark_buffer_dirty(leaf);
1836
1837         inode_add_bytes(inode, num_bytes);
1838
1839         ins.objectid = disk_bytenr;
1840         ins.offset = disk_num_bytes;
1841         ins.type = BTRFS_EXTENT_ITEM_KEY;
1842         ret = btrfs_alloc_reserved_file_extent(trans, root,
1843                                         root->root_key.objectid,
1844                                         btrfs_ino(inode), file_pos, &ins);
1845 out:
1846         btrfs_free_path(path);
1847
1848         return ret;
1849 }
1850
1851 /*
1852  * helper function for btrfs_finish_ordered_io, this
1853  * just reads in some of the csum leaves to prime them into ram
1854  * before we start the transaction.  It limits the amount of btree
1855  * reads required while inside the transaction.
1856  */
1857 /* as ordered data IO finishes, this gets called so we can finish
1858  * an ordered extent if the range of bytes in the file it covers are
1859  * fully written.
1860  */
1861 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
1862 {
1863         struct inode *inode = ordered_extent->inode;
1864         struct btrfs_root *root = BTRFS_I(inode)->root;
1865         struct btrfs_trans_handle *trans = NULL;
1866         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1867         struct extent_state *cached_state = NULL;
1868         int compress_type = 0;
1869         int ret;
1870         bool nolock;
1871
1872         nolock = btrfs_is_free_space_inode(root, inode);
1873
1874         if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
1875                 ret = -EIO;
1876                 goto out;
1877         }
1878
1879         if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1880                 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
1881                 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1882                 if (!ret) {
1883                         if (nolock)
1884                                 trans = btrfs_join_transaction_nolock(root);
1885                         else
1886                                 trans = btrfs_join_transaction(root);
1887                         if (IS_ERR(trans))
1888                                 return PTR_ERR(trans);
1889                         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1890                         ret = btrfs_update_inode_fallback(trans, root, inode);
1891                         if (ret) /* -ENOMEM or corruption */
1892                                 btrfs_abort_transaction(trans, root, ret);
1893                 }
1894                 goto out;
1895         }
1896
1897         lock_extent_bits(io_tree, ordered_extent->file_offset,
1898                          ordered_extent->file_offset + ordered_extent->len - 1,
1899                          0, &cached_state);
1900
1901         if (nolock)
1902                 trans = btrfs_join_transaction_nolock(root);
1903         else
1904                 trans = btrfs_join_transaction(root);
1905         if (IS_ERR(trans)) {
1906                 ret = PTR_ERR(trans);
1907                 trans = NULL;
1908                 goto out_unlock;
1909         }
1910         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1911
1912         if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1913                 compress_type = ordered_extent->compress_type;
1914         if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1915                 BUG_ON(compress_type);
1916                 ret = btrfs_mark_extent_written(trans, inode,
1917                                                 ordered_extent->file_offset,
1918                                                 ordered_extent->file_offset +
1919                                                 ordered_extent->len);
1920         } else {
1921                 BUG_ON(root == root->fs_info->tree_root);
1922                 ret = insert_reserved_file_extent(trans, inode,
1923                                                 ordered_extent->file_offset,
1924                                                 ordered_extent->start,
1925                                                 ordered_extent->disk_len,
1926                                                 ordered_extent->len,
1927                                                 ordered_extent->len,
1928                                                 compress_type, 0, 0,
1929                                                 BTRFS_FILE_EXTENT_REG);
1930                 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1931                                    ordered_extent->file_offset,
1932                                    ordered_extent->len);
1933         }
1934
1935         if (ret < 0) {
1936                 btrfs_abort_transaction(trans, root, ret);
1937                 goto out_unlock;
1938         }
1939
1940         add_pending_csums(trans, inode, ordered_extent->file_offset,
1941                           &ordered_extent->list);
1942
1943         ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1944         if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1945                 ret = btrfs_update_inode_fallback(trans, root, inode);
1946                 if (ret) { /* -ENOMEM or corruption */
1947                         btrfs_abort_transaction(trans, root, ret);
1948                         goto out_unlock;
1949                 }
1950         }
1951         ret = 0;
1952 out_unlock:
1953         unlock_extent_cached(io_tree, ordered_extent->file_offset,
1954                              ordered_extent->file_offset +
1955                              ordered_extent->len - 1, &cached_state, GFP_NOFS);
1956 out:
1957         if (root != root->fs_info->tree_root)
1958                 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1959         if (trans) {
1960                 if (nolock)
1961                         btrfs_end_transaction_nolock(trans, root);
1962                 else
1963                         btrfs_end_transaction(trans, root);
1964         }
1965
1966         if (ret)
1967                 clear_extent_uptodate(io_tree, ordered_extent->file_offset,
1968                                       ordered_extent->file_offset +
1969                                       ordered_extent->len - 1, NULL, GFP_NOFS);
1970
1971         /*
1972          * This needs to be dont to make sure anybody waiting knows we are done
1973          * upating everything for this ordered extent.
1974          */
1975         btrfs_remove_ordered_extent(inode, ordered_extent);
1976
1977         /* once for us */
1978         btrfs_put_ordered_extent(ordered_extent);
1979         /* once for the tree */
1980         btrfs_put_ordered_extent(ordered_extent);
1981
1982         return ret;
1983 }
1984
1985 static void finish_ordered_fn(struct btrfs_work *work)
1986 {
1987         struct btrfs_ordered_extent *ordered_extent;
1988         ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
1989         btrfs_finish_ordered_io(ordered_extent);
1990 }
1991
1992 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1993                                 struct extent_state *state, int uptodate)
1994 {
1995         struct inode *inode = page->mapping->host;
1996         struct btrfs_root *root = BTRFS_I(inode)->root;
1997         struct btrfs_ordered_extent *ordered_extent = NULL;
1998         struct btrfs_workers *workers;
1999
2000         trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2001
2002         ClearPagePrivate2(page);
2003         if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2004                                             end - start + 1, uptodate))
2005                 return 0;
2006
2007         ordered_extent->work.func = finish_ordered_fn;
2008         ordered_extent->work.flags = 0;
2009
2010         if (btrfs_is_free_space_inode(root, inode))
2011                 workers = &root->fs_info->endio_freespace_worker;
2012         else
2013                 workers = &root->fs_info->endio_write_workers;
2014         btrfs_queue_worker(workers, &ordered_extent->work);
2015
2016         return 0;
2017 }
2018
2019 /*
2020  * when reads are done, we need to check csums to verify the data is correct
2021  * if there's a match, we allow the bio to finish.  If not, the code in
2022  * extent_io.c will try to find good copies for us.
2023  */
2024 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
2025                                struct extent_state *state, int mirror)
2026 {
2027         size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
2028         struct inode *inode = page->mapping->host;
2029         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2030         char *kaddr;
2031         u64 private = ~(u32)0;
2032         int ret;
2033         struct btrfs_root *root = BTRFS_I(inode)->root;
2034         u32 csum = ~(u32)0;
2035
2036         if (PageChecked(page)) {
2037                 ClearPageChecked(page);
2038                 goto good;
2039         }
2040
2041         if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
2042                 goto good;
2043
2044         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
2045             test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
2046                 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2047                                   GFP_NOFS);
2048                 return 0;
2049         }
2050
2051         if (state && state->start == start) {
2052                 private = state->private;
2053                 ret = 0;
2054         } else {
2055                 ret = get_state_private(io_tree, start, &private);
2056         }
2057         kaddr = kmap_atomic(page);
2058         if (ret)
2059                 goto zeroit;
2060
2061         csum = btrfs_csum_data(root, kaddr + offset, csum,  end - start + 1);
2062         btrfs_csum_final(csum, (char *)&csum);
2063         if (csum != private)
2064                 goto zeroit;
2065
2066         kunmap_atomic(kaddr);
2067 good:
2068         return 0;
2069
2070 zeroit:
2071         printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
2072                        "private %llu\n",
2073                        (unsigned long long)btrfs_ino(page->mapping->host),
2074                        (unsigned long long)start, csum,
2075                        (unsigned long long)private);
2076         memset(kaddr + offset, 1, end - start + 1);
2077         flush_dcache_page(page);
2078         kunmap_atomic(kaddr);
2079         if (private == 0)
2080                 return 0;
2081         return -EIO;
2082 }
2083
2084 struct delayed_iput {
2085         struct list_head list;
2086         struct inode *inode;
2087 };
2088
2089 /* JDM: If this is fs-wide, why can't we add a pointer to
2090  * btrfs_inode instead and avoid the allocation? */
2091 void btrfs_add_delayed_iput(struct inode *inode)
2092 {
2093         struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2094         struct delayed_iput *delayed;
2095
2096         if (atomic_add_unless(&inode->i_count, -1, 1))
2097                 return;
2098
2099         delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2100         delayed->inode = inode;
2101
2102         spin_lock(&fs_info->delayed_iput_lock);
2103         list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2104         spin_unlock(&fs_info->delayed_iput_lock);
2105 }
2106
2107 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2108 {
2109         LIST_HEAD(list);
2110         struct btrfs_fs_info *fs_info = root->fs_info;
2111         struct delayed_iput *delayed;
2112         int empty;
2113
2114         spin_lock(&fs_info->delayed_iput_lock);
2115         empty = list_empty(&fs_info->delayed_iputs);
2116         spin_unlock(&fs_info->delayed_iput_lock);
2117         if (empty)
2118                 return;
2119
2120         down_read(&root->fs_info->cleanup_work_sem);
2121         spin_lock(&fs_info->delayed_iput_lock);
2122         list_splice_init(&fs_info->delayed_iputs, &list);
2123         spin_unlock(&fs_info->delayed_iput_lock);
2124
2125         while (!list_empty(&list)) {
2126                 delayed = list_entry(list.next, struct delayed_iput, list);
2127                 list_del(&delayed->list);
2128                 iput(delayed->inode);
2129                 kfree(delayed);
2130         }
2131         up_read(&root->fs_info->cleanup_work_sem);
2132 }
2133
2134 enum btrfs_orphan_cleanup_state {
2135         ORPHAN_CLEANUP_STARTED  = 1,
2136         ORPHAN_CLEANUP_DONE     = 2,
2137 };
2138
2139 /*
2140  * This is called in transaction commit time. If there are no orphan
2141  * files in the subvolume, it removes orphan item and frees block_rsv
2142  * structure.
2143  */
2144 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2145                               struct btrfs_root *root)
2146 {
2147         struct btrfs_block_rsv *block_rsv;
2148         int ret;
2149
2150         if (atomic_read(&root->orphan_inodes) ||
2151             root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2152                 return;
2153
2154         spin_lock(&root->orphan_lock);
2155         if (atomic_read(&root->orphan_inodes)) {
2156                 spin_unlock(&root->orphan_lock);
2157                 return;
2158         }
2159
2160         if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2161                 spin_unlock(&root->orphan_lock);
2162                 return;
2163         }
2164
2165         block_rsv = root->orphan_block_rsv;
2166         root->orphan_block_rsv = NULL;
2167         spin_unlock(&root->orphan_lock);
2168
2169         if (root->orphan_item_inserted &&
2170             btrfs_root_refs(&root->root_item) > 0) {
2171                 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2172                                             root->root_key.objectid);
2173                 BUG_ON(ret);
2174                 root->orphan_item_inserted = 0;
2175         }
2176
2177         if (block_rsv) {
2178                 WARN_ON(block_rsv->size > 0);
2179                 btrfs_free_block_rsv(root, block_rsv);
2180         }
2181 }
2182
2183 /*
2184  * This creates an orphan entry for the given inode in case something goes
2185  * wrong in the middle of an unlink/truncate.
2186  *
2187  * NOTE: caller of this function should reserve 5 units of metadata for
2188  *       this function.
2189  */
2190 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2191 {
2192         struct btrfs_root *root = BTRFS_I(inode)->root;
2193         struct btrfs_block_rsv *block_rsv = NULL;
2194         int reserve = 0;
2195         int insert = 0;
2196         int ret;
2197
2198         if (!root->orphan_block_rsv) {
2199                 block_rsv = btrfs_alloc_block_rsv(root);
2200                 if (!block_rsv)
2201                         return -ENOMEM;
2202         }
2203
2204         spin_lock(&root->orphan_lock);
2205         if (!root->orphan_block_rsv) {
2206                 root->orphan_block_rsv = block_rsv;
2207         } else if (block_rsv) {
2208                 btrfs_free_block_rsv(root, block_rsv);
2209                 block_rsv = NULL;
2210         }
2211
2212         if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2213                               &BTRFS_I(inode)->runtime_flags)) {
2214 #if 0
2215                 /*
2216                  * For proper ENOSPC handling, we should do orphan
2217                  * cleanup when mounting. But this introduces backward
2218                  * compatibility issue.
2219                  */
2220                 if (!xchg(&root->orphan_item_inserted, 1))
2221                         insert = 2;
2222                 else
2223                         insert = 1;
2224 #endif
2225                 insert = 1;
2226                 atomic_dec(&root->orphan_inodes);
2227         }
2228
2229         if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2230                               &BTRFS_I(inode)->runtime_flags))
2231                 reserve = 1;
2232         spin_unlock(&root->orphan_lock);
2233
2234         /* grab metadata reservation from transaction handle */
2235         if (reserve) {
2236                 ret = btrfs_orphan_reserve_metadata(trans, inode);
2237                 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
2238         }
2239
2240         /* insert an orphan item to track this unlinked/truncated file */
2241         if (insert >= 1) {
2242                 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
2243                 if (ret && ret != -EEXIST) {
2244                         clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2245                                   &BTRFS_I(inode)->runtime_flags);
2246                         btrfs_abort_transaction(trans, root, ret);
2247                         return ret;
2248                 }
2249                 ret = 0;
2250         }
2251
2252         /* insert an orphan item to track subvolume contains orphan files */
2253         if (insert >= 2) {
2254                 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2255                                                root->root_key.objectid);
2256                 if (ret && ret != -EEXIST) {
2257                         btrfs_abort_transaction(trans, root, ret);
2258                         return ret;
2259                 }
2260         }
2261         return 0;
2262 }
2263
2264 /*
2265  * We have done the truncate/delete so we can go ahead and remove the orphan
2266  * item for this particular inode.
2267  */
2268 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2269 {
2270         struct btrfs_root *root = BTRFS_I(inode)->root;
2271         int delete_item = 0;
2272         int release_rsv = 0;
2273         int ret = 0;
2274
2275         spin_lock(&root->orphan_lock);
2276         if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2277                                &BTRFS_I(inode)->runtime_flags))
2278                 delete_item = 1;
2279
2280         if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2281                                &BTRFS_I(inode)->runtime_flags))
2282                 release_rsv = 1;
2283         spin_unlock(&root->orphan_lock);
2284
2285         if (trans && delete_item) {
2286                 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
2287                 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
2288         }
2289
2290         if (release_rsv) {
2291                 btrfs_orphan_release_metadata(inode);
2292                 atomic_dec(&root->orphan_inodes);
2293         }
2294
2295         return 0;
2296 }
2297
2298 /*
2299  * this cleans up any orphans that may be left on the list from the last use
2300  * of this root.
2301  */
2302 int btrfs_orphan_cleanup(struct btrfs_root *root)
2303 {
2304         struct btrfs_path *path;
2305         struct extent_buffer *leaf;
2306         struct btrfs_key key, found_key;
2307         struct btrfs_trans_handle *trans;
2308         struct inode *inode;
2309         u64 last_objectid = 0;
2310         int ret = 0, nr_unlink = 0, nr_truncate = 0;
2311
2312         if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2313                 return 0;
2314
2315         path = btrfs_alloc_path();
2316         if (!path) {
2317                 ret = -ENOMEM;
2318                 goto out;
2319         }
2320         path->reada = -1;
2321
2322         key.objectid = BTRFS_ORPHAN_OBJECTID;
2323         btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2324         key.offset = (u64)-1;
2325
2326         while (1) {
2327                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2328                 if (ret < 0)
2329                         goto out;
2330
2331                 /*
2332                  * if ret == 0 means we found what we were searching for, which
2333                  * is weird, but possible, so only screw with path if we didn't
2334                  * find the key and see if we have stuff that matches
2335                  */
2336                 if (ret > 0) {
2337                         ret = 0;
2338                         if (path->slots[0] == 0)
2339                                 break;
2340                         path->slots[0]--;
2341                 }
2342
2343                 /* pull out the item */
2344                 leaf = path->nodes[0];
2345                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2346
2347                 /* make sure the item matches what we want */
2348                 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2349                         break;
2350                 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2351                         break;
2352
2353                 /* release the path since we're done with it */
2354                 btrfs_release_path(path);
2355
2356                 /*
2357                  * this is where we are basically btrfs_lookup, without the
2358                  * crossing root thing.  we store the inode number in the
2359                  * offset of the orphan item.
2360                  */
2361
2362                 if (found_key.offset == last_objectid) {
2363                         printk(KERN_ERR "btrfs: Error removing orphan entry, "
2364                                "stopping orphan cleanup\n");
2365                         ret = -EINVAL;
2366                         goto out;
2367                 }
2368
2369                 last_objectid = found_key.offset;
2370
2371                 found_key.objectid = found_key.offset;
2372                 found_key.type = BTRFS_INODE_ITEM_KEY;
2373                 found_key.offset = 0;
2374                 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2375                 ret = PTR_RET(inode);
2376                 if (ret && ret != -ESTALE)
2377                         goto out;
2378
2379                 if (ret == -ESTALE && root == root->fs_info->tree_root) {
2380                         struct btrfs_root *dead_root;
2381                         struct btrfs_fs_info *fs_info = root->fs_info;
2382                         int is_dead_root = 0;
2383
2384                         /*
2385                          * this is an orphan in the tree root. Currently these
2386                          * could come from 2 sources:
2387                          *  a) a snapshot deletion in progress
2388                          *  b) a free space cache inode
2389                          * We need to distinguish those two, as the snapshot
2390                          * orphan must not get deleted.
2391                          * find_dead_roots already ran before us, so if this
2392                          * is a snapshot deletion, we should find the root
2393                          * in the dead_roots list
2394                          */
2395                         spin_lock(&fs_info->trans_lock);
2396                         list_for_each_entry(dead_root, &fs_info->dead_roots,
2397                                             root_list) {
2398                                 if (dead_root->root_key.objectid ==
2399                                     found_key.objectid) {
2400                                         is_dead_root = 1;
2401                                         break;
2402                                 }
2403                         }
2404                         spin_unlock(&fs_info->trans_lock);
2405                         if (is_dead_root) {
2406                                 /* prevent this orphan from being found again */
2407                                 key.offset = found_key.objectid - 1;
2408                                 continue;
2409                         }
2410                 }
2411                 /*
2412                  * Inode is already gone but the orphan item is still there,
2413                  * kill the orphan item.
2414                  */
2415                 if (ret == -ESTALE) {
2416                         trans = btrfs_start_transaction(root, 1);
2417                         if (IS_ERR(trans)) {
2418                                 ret = PTR_ERR(trans);
2419                                 goto out;
2420                         }
2421                         printk(KERN_ERR "auto deleting %Lu\n",
2422                                found_key.objectid);
2423                         ret = btrfs_del_orphan_item(trans, root,
2424                                                     found_key.objectid);
2425                         BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
2426                         btrfs_end_transaction(trans, root);
2427                         continue;
2428                 }
2429
2430                 /*
2431                  * add this inode to the orphan list so btrfs_orphan_del does
2432                  * the proper thing when we hit it
2433                  */
2434                 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2435                         &BTRFS_I(inode)->runtime_flags);
2436
2437                 /* if we have links, this was a truncate, lets do that */
2438                 if (inode->i_nlink) {
2439                         if (!S_ISREG(inode->i_mode)) {
2440                                 WARN_ON(1);
2441                                 iput(inode);
2442                                 continue;
2443                         }
2444                         nr_truncate++;
2445                         ret = btrfs_truncate(inode);
2446                 } else {
2447                         nr_unlink++;
2448                 }
2449
2450                 /* this will do delete_inode and everything for us */
2451                 iput(inode);
2452                 if (ret)
2453                         goto out;
2454         }
2455         /* release the path since we're done with it */
2456         btrfs_release_path(path);
2457
2458         root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2459
2460         if (root->orphan_block_rsv)
2461                 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2462                                         (u64)-1);
2463
2464         if (root->orphan_block_rsv || root->orphan_item_inserted) {
2465                 trans = btrfs_join_transaction(root);
2466                 if (!IS_ERR(trans))
2467                         btrfs_end_transaction(trans, root);
2468         }
2469
2470         if (nr_unlink)
2471                 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2472         if (nr_truncate)
2473                 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2474
2475 out:
2476         if (ret)
2477                 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2478         btrfs_free_path(path);
2479         return ret;
2480 }
2481
2482 /*
2483  * very simple check to peek ahead in the leaf looking for xattrs.  If we
2484  * don't find any xattrs, we know there can't be any acls.
2485  *
2486  * slot is the slot the inode is in, objectid is the objectid of the inode
2487  */
2488 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2489                                           int slot, u64 objectid)
2490 {
2491         u32 nritems = btrfs_header_nritems(leaf);
2492         struct btrfs_key found_key;
2493         int scanned = 0;
2494
2495         slot++;
2496         while (slot < nritems) {
2497                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2498
2499                 /* we found a different objectid, there must not be acls */
2500                 if (found_key.objectid != objectid)
2501                         return 0;
2502
2503                 /* we found an xattr, assume we've got an acl */
2504                 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2505                         return 1;
2506
2507                 /*
2508                  * we found a key greater than an xattr key, there can't
2509                  * be any acls later on
2510                  */
2511                 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2512                         return 0;
2513
2514                 slot++;
2515                 scanned++;
2516
2517                 /*
2518                  * it goes inode, inode backrefs, xattrs, extents,
2519                  * so if there are a ton of hard links to an inode there can
2520                  * be a lot of backrefs.  Don't waste time searching too hard,
2521                  * this is just an optimization
2522                  */
2523                 if (scanned >= 8)
2524                         break;
2525         }
2526         /* we hit the end of the leaf before we found an xattr or
2527          * something larger than an xattr.  We have to assume the inode
2528          * has acls
2529          */
2530         return 1;
2531 }
2532
2533 /*
2534  * read an inode from the btree into the in-memory inode
2535  */
2536 static void btrfs_read_locked_inode(struct inode *inode)
2537 {
2538         struct btrfs_path *path;
2539         struct extent_buffer *leaf;
2540         struct btrfs_inode_item *inode_item;
2541         struct btrfs_timespec *tspec;
2542         struct btrfs_root *root = BTRFS_I(inode)->root;
2543         struct btrfs_key location;
2544         int maybe_acls;
2545         u32 rdev;
2546         int ret;
2547         bool filled = false;
2548
2549         ret = btrfs_fill_inode(inode, &rdev);
2550         if (!ret)
2551                 filled = true;
2552
2553         path = btrfs_alloc_path();
2554         if (!path)
2555                 goto make_bad;
2556
2557         path->leave_spinning = 1;
2558         memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2559
2560         ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2561         if (ret)
2562                 goto make_bad;
2563
2564         leaf = path->nodes[0];
2565
2566         if (filled)
2567                 goto cache_acl;
2568
2569         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2570                                     struct btrfs_inode_item);
2571         inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2572         set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2573         inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2574         inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2575         btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2576
2577         tspec = btrfs_inode_atime(inode_item);
2578         inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2579         inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2580
2581         tspec = btrfs_inode_mtime(inode_item);
2582         inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2583         inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2584
2585         tspec = btrfs_inode_ctime(inode_item);
2586         inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2587         inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2588
2589         inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2590         BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2591         inode->i_version = btrfs_inode_sequence(leaf, inode_item);
2592         inode->i_generation = BTRFS_I(inode)->generation;
2593         inode->i_rdev = 0;
2594         rdev = btrfs_inode_rdev(leaf, inode_item);
2595
2596         BTRFS_I(inode)->index_cnt = (u64)-1;
2597         BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2598 cache_acl:
2599         /*
2600          * try to precache a NULL acl entry for files that don't have
2601          * any xattrs or acls
2602          */
2603         maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2604                                            btrfs_ino(inode));
2605         if (!maybe_acls)
2606                 cache_no_acl(inode);
2607
2608         btrfs_free_path(path);
2609
2610         switch (inode->i_mode & S_IFMT) {
2611         case S_IFREG:
2612                 inode->i_mapping->a_ops = &btrfs_aops;
2613                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2614                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2615                 inode->i_fop = &btrfs_file_operations;
2616                 inode->i_op = &btrfs_file_inode_operations;
2617                 break;
2618         case S_IFDIR:
2619                 inode->i_fop = &btrfs_dir_file_operations;
2620                 if (root == root->fs_info->tree_root)
2621                         inode->i_op = &btrfs_dir_ro_inode_operations;
2622                 else
2623                         inode->i_op = &btrfs_dir_inode_operations;
2624                 break;
2625         case S_IFLNK:
2626                 inode->i_op = &btrfs_symlink_inode_operations;
2627                 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2628                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2629                 break;
2630         default:
2631                 inode->i_op = &btrfs_special_inode_operations;
2632                 init_special_inode(inode, inode->i_mode, rdev);
2633                 break;
2634         }
2635
2636         btrfs_update_iflags(inode);
2637         return;
2638
2639 make_bad:
2640         btrfs_free_path(path);
2641         make_bad_inode(inode);
2642 }
2643
2644 /*
2645  * given a leaf and an inode, copy the inode fields into the leaf
2646  */
2647 static void fill_inode_item(struct btrfs_trans_handle *trans,
2648                             struct extent_buffer *leaf,
2649                             struct btrfs_inode_item *item,
2650                             struct inode *inode)
2651 {
2652         btrfs_set_inode_uid(leaf, item, inode->i_uid);
2653         btrfs_set_inode_gid(leaf, item, inode->i_gid);
2654         btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2655         btrfs_set_inode_mode(leaf, item, inode->i_mode);
2656         btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2657
2658         btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2659                                inode->i_atime.tv_sec);
2660         btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2661                                 inode->i_atime.tv_nsec);
2662
2663         btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2664                                inode->i_mtime.tv_sec);
2665         btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2666                                 inode->i_mtime.tv_nsec);
2667
2668         btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2669                                inode->i_ctime.tv_sec);
2670         btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2671                                 inode->i_ctime.tv_nsec);
2672
2673         btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2674         btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2675         btrfs_set_inode_sequence(leaf, item, inode->i_version);
2676         btrfs_set_inode_transid(leaf, item, trans->transid);
2677         btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2678         btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2679         btrfs_set_inode_block_group(leaf, item, 0);
2680 }
2681
2682 /*
2683  * copy everything in the in-memory inode into the btree.
2684  */
2685 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
2686                                 struct btrfs_root *root, struct inode *inode)
2687 {
2688         struct btrfs_inode_item *inode_item;
2689         struct btrfs_path *path;
2690         struct extent_buffer *leaf;
2691         int ret;
2692
2693         path = btrfs_alloc_path();
2694         if (!path)
2695                 return -ENOMEM;
2696
2697         path->leave_spinning = 1;
2698         ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2699                                  1);
2700         if (ret) {
2701                 if (ret > 0)
2702                         ret = -ENOENT;
2703                 goto failed;
2704         }
2705
2706         btrfs_unlock_up_safe(path, 1);
2707         leaf = path->nodes[0];
2708         inode_item = btrfs_item_ptr(leaf, path->slots[0],
2709                                     struct btrfs_inode_item);
2710
2711         fill_inode_item(trans, leaf, inode_item, inode);
2712         btrfs_mark_buffer_dirty(leaf);
2713         btrfs_set_inode_last_trans(trans, inode);
2714         ret = 0;
2715 failed:
2716         btrfs_free_path(path);
2717         return ret;
2718 }
2719
2720 /*
2721  * copy everything in the in-memory inode into the btree.
2722  */
2723 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2724                                 struct btrfs_root *root, struct inode *inode)
2725 {
2726         int ret;
2727
2728         /*
2729          * If the inode is a free space inode, we can deadlock during commit
2730          * if we put it into the delayed code.
2731          *
2732          * The data relocation inode should also be directly updated
2733          * without delay
2734          */
2735         if (!btrfs_is_free_space_inode(root, inode)
2736             && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
2737                 btrfs_update_root_times(trans, root);
2738
2739                 ret = btrfs_delayed_update_inode(trans, root, inode);
2740                 if (!ret)
2741                         btrfs_set_inode_last_trans(trans, inode);
2742                 return ret;
2743         }
2744
2745         return btrfs_update_inode_item(trans, root, inode);
2746 }
2747
2748 static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
2749                                 struct btrfs_root *root, struct inode *inode)
2750 {
2751         int ret;
2752
2753         ret = btrfs_update_inode(trans, root, inode);
2754         if (ret == -ENOSPC)
2755                 return btrfs_update_inode_item(trans, root, inode);
2756         return ret;
2757 }
2758
2759 /*
2760  * unlink helper that gets used here in inode.c and in the tree logging
2761  * recovery code.  It remove a link in a directory with a given name, and
2762  * also drops the back refs in the inode to the directory
2763  */
2764 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2765                                 struct btrfs_root *root,
2766                                 struct inode *dir, struct inode *inode,
2767                                 const char *name, int name_len)
2768 {
2769         struct btrfs_path *path;
2770         int ret = 0;
2771         struct extent_buffer *leaf;
2772         struct btrfs_dir_item *di;
2773         struct btrfs_key key;
2774         u64 index;
2775         u64 ino = btrfs_ino(inode);
2776         u64 dir_ino = btrfs_ino(dir);
2777
2778         path = btrfs_alloc_path();
2779         if (!path) {
2780                 ret = -ENOMEM;
2781                 goto out;
2782         }
2783
2784         path->leave_spinning = 1;
2785         di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2786                                     name, name_len, -1);
2787         if (IS_ERR(di)) {
2788                 ret = PTR_ERR(di);
2789                 goto err;
2790         }
2791         if (!di) {
2792                 ret = -ENOENT;
2793                 goto err;
2794         }
2795         leaf = path->nodes[0];
2796         btrfs_dir_item_key_to_cpu(leaf, di, &key);
2797         ret = btrfs_delete_one_dir_name(trans, root, path, di);
2798         if (ret)
2799                 goto err;
2800         btrfs_release_path(path);
2801
2802         ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2803                                   dir_ino, &index);
2804         if (ret) {
2805                 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2806                        "inode %llu parent %llu\n", name_len, name,
2807                        (unsigned long long)ino, (unsigned long long)dir_ino);
2808                 btrfs_abort_transaction(trans, root, ret);
2809                 goto err;
2810         }
2811
2812         ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2813         if (ret) {
2814                 btrfs_abort_transaction(trans, root, ret);
2815                 goto err;
2816         }
2817
2818         ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2819                                          inode, dir_ino);
2820         if (ret != 0 && ret != -ENOENT) {
2821                 btrfs_abort_transaction(trans, root, ret);
2822                 goto err;
2823         }
2824
2825         ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2826                                            dir, index);
2827         if (ret == -ENOENT)
2828                 ret = 0;
2829 err:
2830         btrfs_free_path(path);
2831         if (ret)
2832                 goto out;
2833
2834         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2835         inode_inc_iversion(inode);
2836         inode_inc_iversion(dir);
2837         inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2838         btrfs_update_inode(trans, root, dir);
2839 out:
2840         return ret;
2841 }
2842
2843 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2844                        struct btrfs_root *root,
2845                        struct inode *dir, struct inode *inode,
2846                        const char *name, int name_len)
2847 {
2848         int ret;
2849         ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2850         if (!ret) {
2851                 btrfs_drop_nlink(inode);
2852                 ret = btrfs_update_inode(trans, root, inode);
2853         }
2854         return ret;
2855 }
2856                 
2857
2858 /* helper to check if there is any shared block in the path */
2859 static int check_path_shared(struct btrfs_root *root,
2860                              struct btrfs_path *path)
2861 {
2862         struct extent_buffer *eb;
2863         int level;
2864         u64 refs = 1;
2865
2866         for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2867                 int ret;
2868
2869                 if (!path->nodes[level])
2870                         break;
2871                 eb = path->nodes[level];
2872                 if (!btrfs_block_can_be_shared(root, eb))
2873                         continue;
2874                 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2875                                                &refs, NULL);
2876                 if (refs > 1)
2877                         return 1;
2878         }
2879         return 0;
2880 }
2881
2882 /*
2883  * helper to start transaction for unlink and rmdir.
2884  *
2885  * unlink and rmdir are special in btrfs, they do not always free space.
2886  * so in enospc case, we should make sure they will free space before
2887  * allowing them to use the global metadata reservation.
2888  */
2889 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2890                                                        struct dentry *dentry)
2891 {
2892         struct btrfs_trans_handle *trans;
2893         struct btrfs_root *root = BTRFS_I(dir)->root;
2894         struct btrfs_path *path;
2895         struct btrfs_inode_ref *ref;
2896         struct btrfs_dir_item *di;
2897         struct inode *inode = dentry->d_inode;
2898         u64 index;
2899         int check_link = 1;
2900         int err = -ENOSPC;
2901         int ret;
2902         u64 ino = btrfs_ino(inode);
2903         u64 dir_ino = btrfs_ino(dir);
2904
2905         /*
2906          * 1 for the possible orphan item
2907          * 1 for the dir item
2908          * 1 for the dir index
2909          * 1 for the inode ref
2910          * 1 for the inode ref in the tree log
2911          * 2 for the dir entries in the log
2912          * 1 for the inode
2913          */
2914         trans = btrfs_start_transaction(root, 8);
2915         if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2916                 return trans;
2917
2918         if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2919                 return ERR_PTR(-ENOSPC);
2920
2921         /* check if there is someone else holds reference */
2922         if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2923                 return ERR_PTR(-ENOSPC);
2924
2925         if (atomic_read(&inode->i_count) > 2)
2926                 return ERR_PTR(-ENOSPC);
2927
2928         if (xchg(&root->fs_info->enospc_unlink, 1))
2929                 return ERR_PTR(-ENOSPC);
2930
2931         path = btrfs_alloc_path();
2932         if (!path) {
2933                 root->fs_info->enospc_unlink = 0;
2934                 return ERR_PTR(-ENOMEM);
2935         }
2936
2937         /* 1 for the orphan item */
2938         trans = btrfs_start_transaction(root, 1);
2939         if (IS_ERR(trans)) {
2940                 btrfs_free_path(path);
2941                 root->fs_info->enospc_unlink = 0;
2942                 return trans;
2943         }
2944
2945         path->skip_locking = 1;
2946         path->search_commit_root = 1;
2947
2948         ret = btrfs_lookup_inode(trans, root, path,
2949                                 &BTRFS_I(dir)->location, 0);
2950         if (ret < 0) {
2951                 err = ret;
2952                 goto out;
2953         }
2954         if (ret == 0) {
2955                 if (check_path_shared(root, path))
2956                         goto out;
2957         } else {
2958                 check_link = 0;
2959         }
2960         btrfs_release_path(path);
2961
2962         ret = btrfs_lookup_inode(trans, root, path,
2963                                 &BTRFS_I(inode)->location, 0);
2964         if (ret < 0) {
2965                 err = ret;
2966                 goto out;
2967         }
2968         if (ret == 0) {
2969                 if (check_path_shared(root, path))
2970                         goto out;
2971         } else {
2972                 check_link = 0;
2973         }
2974         btrfs_release_path(path);
2975
2976         if (ret == 0 && S_ISREG(inode->i_mode)) {
2977                 ret = btrfs_lookup_file_extent(trans, root, path,
2978                                                ino, (u64)-1, 0);
2979                 if (ret < 0) {
2980                         err = ret;
2981                         goto out;
2982                 }
2983                 BUG_ON(ret == 0); /* Corruption */
2984                 if (check_path_shared(root, path))
2985                         goto out;
2986                 btrfs_release_path(path);
2987         }
2988
2989         if (!check_link) {
2990                 err = 0;
2991                 goto out;
2992         }
2993
2994         di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2995                                 dentry->d_name.name, dentry->d_name.len, 0);
2996         if (IS_ERR(di)) {
2997                 err = PTR_ERR(di);
2998                 goto out;
2999         }
3000         if (di) {
3001                 if (check_path_shared(root, path))
3002                         goto out;
3003         } else {
3004                 err = 0;
3005                 goto out;
3006         }
3007         btrfs_release_path(path);
3008
3009         ref = btrfs_lookup_inode_ref(trans, root, path,
3010                                 dentry->d_name.name, dentry->d_name.len,
3011                                 ino, dir_ino, 0);
3012         if (IS_ERR(ref)) {
3013                 err = PTR_ERR(ref);
3014                 goto out;
3015         }
3016         BUG_ON(!ref); /* Logic error */
3017         if (check_path_shared(root, path))
3018                 goto out;
3019         index = btrfs_inode_ref_index(path->nodes[0], ref);
3020         btrfs_release_path(path);
3021
3022         /*
3023          * This is a commit root search, if we can lookup inode item and other
3024          * relative items in the commit root, it means the transaction of
3025          * dir/file creation has been committed, and the dir index item that we
3026          * delay to insert has also been inserted into the commit root. So
3027          * we needn't worry about the delayed insertion of the dir index item
3028          * here.
3029          */
3030         di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
3031                                 dentry->d_name.name, dentry->d_name.len, 0);
3032         if (IS_ERR(di)) {
3033                 err = PTR_ERR(di);
3034                 goto out;
3035         }
3036         BUG_ON(ret == -ENOENT);
3037         if (check_path_shared(root, path))
3038                 goto out;
3039
3040         err = 0;
3041 out:
3042         btrfs_free_path(path);
3043         /* Migrate the orphan reservation over */
3044         if (!err)
3045                 err = btrfs_block_rsv_migrate(trans->block_rsv,
3046                                 &root->fs_info->global_block_rsv,
3047                                 trans->bytes_reserved);
3048
3049         if (err) {
3050                 btrfs_end_transaction(trans, root);
3051                 root->fs_info->enospc_unlink = 0;
3052                 return ERR_PTR(err);
3053         }
3054
3055         trans->block_rsv = &root->fs_info->global_block_rsv;
3056         return trans;
3057 }
3058
3059 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
3060                                struct btrfs_root *root)
3061 {
3062         if (trans->block_rsv == &root->fs_info->global_block_rsv) {
3063                 btrfs_block_rsv_release(root, trans->block_rsv,
3064                                         trans->bytes_reserved);
3065                 trans->block_rsv = &root->fs_info->trans_block_rsv;
3066                 BUG_ON(!root->fs_info->enospc_unlink);
3067                 root->fs_info->enospc_unlink = 0;
3068         }
3069         btrfs_end_transaction(trans, root);
3070 }
3071
3072 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3073 {
3074         struct btrfs_root *root = BTRFS_I(dir)->root;
3075         struct btrfs_trans_handle *trans;
3076         struct inode *inode = dentry->d_inode;
3077         int ret;
3078         unsigned long nr = 0;
3079
3080         trans = __unlink_start_trans(dir, dentry);
3081         if (IS_ERR(trans))
3082                 return PTR_ERR(trans);
3083
3084         btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3085
3086         ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3087                                  dentry->d_name.name, dentry->d_name.len);
3088         if (ret)
3089                 goto out;
3090
3091         if (inode->i_nlink == 0) {
3092                 ret = btrfs_orphan_add(trans, inode);
3093                 if (ret)
3094                         goto out;
3095         }
3096
3097 out:
3098         nr = trans->blocks_used;
3099         __unlink_end_trans(trans, root);
3100         btrfs_btree_balance_dirty(root, nr);
3101         return ret;
3102 }
3103
3104 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3105                         struct btrfs_root *root,
3106                         struct inode *dir, u64 objectid,
3107                         const char *name, int name_len)
3108 {
3109         struct btrfs_path *path;
3110         struct extent_buffer *leaf;
3111         struct btrfs_dir_item *di;
3112         struct btrfs_key key;
3113         u64 index;
3114         int ret;
3115         u64 dir_ino = btrfs_ino(dir);
3116
3117         path = btrfs_alloc_path();
3118         if (!path)
3119                 return -ENOMEM;
3120
3121         di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3122                                    name, name_len, -1);
3123         if (IS_ERR_OR_NULL(di)) {
3124                 if (!di)
3125                         ret = -ENOENT;
3126                 else
3127                         ret = PTR_ERR(di);
3128                 goto out;
3129         }
3130
3131         leaf = path->nodes[0];
3132         btrfs_dir_item_key_to_cpu(leaf, di, &key);
3133         WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3134         ret = btrfs_delete_one_dir_name(trans, root, path, di);
3135         if (ret) {
3136                 btrfs_abort_transaction(trans, root, ret);
3137                 goto out;
3138         }
3139         btrfs_release_path(path);
3140
3141         ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3142                                  objectid, root->root_key.objectid,
3143                                  dir_ino, &index, name, name_len);
3144         if (ret < 0) {
3145                 if (ret != -ENOENT) {
3146                         btrfs_abort_transaction(trans, root, ret);
3147                         goto out;
3148                 }
3149                 di = btrfs_search_dir_index_item(root, path, dir_ino,
3150                                                  name, name_len);
3151                 if (IS_ERR_OR_NULL(di)) {
3152                         if (!di)
3153                                 ret = -ENOENT;
3154                         else
3155                                 ret = PTR_ERR(di);
3156                         btrfs_abort_transaction(trans, root, ret);
3157                         goto out;
3158                 }
3159
3160                 leaf = path->nodes[0];
3161                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3162                 btrfs_release_path(path);
3163                 index = key.offset;
3164         }
3165         btrfs_release_path(path);
3166
3167         ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3168         if (ret) {
3169                 btrfs_abort_transaction(trans, root, ret);
3170                 goto out;
3171         }
3172
3173         btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3174         inode_inc_iversion(dir);
3175         dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3176         ret = btrfs_update_inode(trans, root, dir);
3177         if (ret)
3178                 btrfs_abort_transaction(trans, root, ret);
3179 out:
3180         btrfs_free_path(path);
3181         return ret;
3182 }
3183
3184 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3185 {
3186         struct inode *inode = dentry->d_inode;
3187         int err = 0;
3188         struct btrfs_root *root = BTRFS_I(dir)->root;
3189         struct btrfs_trans_handle *trans;
3190         unsigned long nr = 0;
3191
3192         if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
3193             btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3194                 return -ENOTEMPTY;
3195
3196         trans = __unlink_start_trans(dir, dentry);
3197         if (IS_ERR(trans))
3198                 return PTR_ERR(trans);
3199
3200         if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3201                 err = btrfs_unlink_subvol(trans, root, dir,
3202                                           BTRFS_I(inode)->location.objectid,
3203                                           dentry->d_name.name,
3204                                           dentry->d_name.len);
3205                 goto out;
3206         }
3207
3208         err = btrfs_orphan_add(trans, inode);
3209         if (err)
3210                 goto out;
3211
3212         /* now the directory is empty */
3213         err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3214                                  dentry->d_name.name, dentry->d_name.len);
3215         if (!err)
3216                 btrfs_i_size_write(inode, 0);
3217 out:
3218         nr = trans->blocks_used;
3219         __unlink_end_trans(trans, root);
3220         btrfs_btree_balance_dirty(root, nr);
3221
3222         return err;
3223 }
3224
3225 /*
3226  * this can truncate away extent items, csum items and directory items.
3227  * It starts at a high offset and removes keys until it can't find
3228  * any higher than new_size
3229  *
3230  * csum items that cross the new i_size are truncated to the new size
3231  * as well.
3232  *
3233  * min_type is the minimum key type to truncate down to.  If set to 0, this
3234  * will kill all the items on this inode, including the INODE_ITEM_KEY.
3235  */
3236 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3237                                struct btrfs_root *root,
3238                                struct inode *inode,
3239                                u64 new_size, u32 min_type)
3240 {
3241         struct btrfs_path *path;
3242         struct extent_buffer *leaf;
3243         struct btrfs_file_extent_item *fi;
3244         struct btrfs_key key;
3245         struct btrfs_key found_key;
3246         u64 extent_start = 0;
3247         u64 extent_num_bytes = 0;
3248         u64 extent_offset = 0;
3249         u64 item_end = 0;
3250         u64 mask = root->sectorsize - 1;
3251         u32 found_type = (u8)-1;
3252         int found_extent;
3253         int del_item;
3254         int pending_del_nr = 0;
3255         int pending_del_slot = 0;
3256         int extent_type = -1;
3257         int ret;
3258         int err = 0;
3259         u64 ino = btrfs_ino(inode);
3260
3261         BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3262
3263         path = btrfs_alloc_path();
3264         if (!path)
3265                 return -ENOMEM;
3266         path->reada = -1;
3267
3268         if (root->ref_cows || root == root->fs_info->tree_root)
3269                 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3270
3271         /*
3272          * This function is also used to drop the items in the log tree before
3273          * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3274          * it is used to drop the loged items. So we shouldn't kill the delayed
3275          * items.
3276          */
3277         if (min_type == 0 && root == BTRFS_I(inode)->root)
3278                 btrfs_kill_delayed_inode_items(inode);
3279
3280         key.objectid = ino;
3281         key.offset = (u64)-1;
3282         key.type = (u8)-1;
3283
3284 search_again:
3285         path->leave_spinning = 1;
3286         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3287         if (ret < 0) {
3288                 err = ret;
3289                 goto out;
3290         }
3291
3292         if (ret > 0) {
3293                 /* there are no items in the tree for us to truncate, we're
3294                  * done
3295                  */
3296                 if (path->slots[0] == 0)
3297                         goto out;
3298                 path->slots[0]--;
3299         }
3300
3301         while (1) {
3302                 fi = NULL;
3303                 leaf = path->nodes[0];
3304                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3305                 found_type = btrfs_key_type(&found_key);
3306
3307                 if (found_key.objectid != ino)
3308                         break;
3309
3310                 if (found_type < min_type)
3311                         break;
3312
3313                 item_end = found_key.offset;
3314                 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3315                         fi = btrfs_item_ptr(leaf, path->slots[0],
3316                                             struct btrfs_file_extent_item);
3317                         extent_type = btrfs_file_extent_type(leaf, fi);
3318                         if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3319                                 item_end +=
3320                                     btrfs_file_extent_num_bytes(leaf, fi);
3321                         } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3322                                 item_end += btrfs_file_extent_inline_len(leaf,
3323                                                                          fi);
3324                         }
3325                         item_end--;
3326                 }
3327                 if (found_type > min_type) {
3328                         del_item = 1;
3329                 } else {
3330                         if (item_end < new_size)
3331                                 break;
3332                         if (found_key.offset >= new_size)
3333                                 del_item = 1;
3334                         else
3335                                 del_item = 0;
3336                 }
3337                 found_extent = 0;
3338                 /* FIXME, shrink the extent if the ref count is only 1 */
3339                 if (found_type != BTRFS_EXTENT_DATA_KEY)
3340                         goto delete;
3341
3342                 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3343                         u64 num_dec;
3344                         extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3345                         if (!del_item) {
3346                                 u64 orig_num_bytes =
3347                                         btrfs_file_extent_num_bytes(leaf, fi);
3348                                 extent_num_bytes = new_size -
3349                                         found_key.offset + root->sectorsize - 1;
3350                                 extent_num_bytes = extent_num_bytes &
3351                                         ~((u64)root->sectorsize - 1);
3352                                 btrfs_set_file_extent_num_bytes(leaf, fi,
3353                                                          extent_num_bytes);
3354                                 num_dec = (orig_num_bytes -
3355                                            extent_num_bytes);
3356                                 if (root->ref_cows && extent_start != 0)
3357                                         inode_sub_bytes(inode, num_dec);
3358                                 btrfs_mark_buffer_dirty(leaf);
3359                         } else {
3360                                 extent_num_bytes =
3361                                         btrfs_file_extent_disk_num_bytes(leaf,
3362                                                                          fi);
3363                                 extent_offset = found_key.offset -
3364                                         btrfs_file_extent_offset(leaf, fi);
3365
3366                                 /* FIXME blocksize != 4096 */
3367                                 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3368                                 if (extent_start != 0) {
3369                                         found_extent = 1;
3370                                         if (root->ref_cows)
3371                                                 inode_sub_bytes(inode, num_dec);
3372                                 }
3373                         }
3374                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3375                         /*
3376                          * we can't truncate inline items that have had
3377                          * special encodings
3378                          */
3379                         if (!del_item &&
3380                             btrfs_file_extent_compression(leaf, fi) == 0 &&
3381                             btrfs_file_extent_encryption(leaf, fi) == 0 &&
3382                             btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3383                                 u32 size = new_size - found_key.offset;
3384
3385                                 if (root->ref_cows) {
3386                                         inode_sub_bytes(inode, item_end + 1 -
3387                                                         new_size);
3388                                 }
3389                                 size =
3390                                     btrfs_file_extent_calc_inline_size(size);
3391                                 btrfs_truncate_item(trans, root, path,
3392                                                     size, 1);
3393                         } else if (root->ref_cows) {
3394                                 inode_sub_bytes(inode, item_end + 1 -
3395                                                 found_key.offset);
3396                         }
3397                 }
3398 delete:
3399                 if (del_item) {
3400                         if (!pending_del_nr) {
3401                                 /* no pending yet, add ourselves */
3402                                 pending_del_slot = path->slots[0];
3403                                 pending_del_nr = 1;
3404                         } else if (pending_del_nr &&
3405                                    path->slots[0] + 1 == pending_del_slot) {
3406                                 /* hop on the pending chunk */
3407                                 pending_del_nr++;
3408                                 pending_del_slot = path->slots[0];
3409                         } else {
3410                                 BUG();
3411                         }
3412                 } else {
3413                         break;
3414                 }
3415                 if (found_extent && (root->ref_cows ||
3416                                      root == root->fs_info->tree_root)) {
3417                         btrfs_set_path_blocking(path);
3418                         ret = btrfs_free_extent(trans, root, extent_start,
3419                                                 extent_num_bytes, 0,
3420                                                 btrfs_header_owner(leaf),
3421                                                 ino, extent_offset, 0);
3422                         BUG_ON(ret);
3423                 }
3424
3425                 if (found_type == BTRFS_INODE_ITEM_KEY)
3426                         break;
3427
3428                 if (path->slots[0] == 0 ||
3429                     path->slots[0] != pending_del_slot) {
3430                         if (root->ref_cows &&
3431                             BTRFS_I(inode)->location.objectid !=
3432                                                 BTRFS_FREE_INO_OBJECTID) {
3433                                 err = -EAGAIN;
3434                                 goto out;
3435                         }
3436                         if (pending_del_nr) {
3437                                 ret = btrfs_del_items(trans, root, path,
3438                                                 pending_del_slot,
3439                                                 pending_del_nr);
3440                                 if (ret) {
3441                                         btrfs_abort_transaction(trans,
3442                                                                 root, ret);
3443                                         goto error;
3444                                 }
3445                                 pending_del_nr = 0;
3446                         }
3447                         btrfs_release_path(path);
3448                         goto search_again;
3449                 } else {
3450                         path->slots[0]--;
3451                 }
3452         }
3453 out:
3454         if (pending_del_nr) {
3455                 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3456                                       pending_del_nr);
3457                 if (ret)
3458                         btrfs_abort_transaction(trans, root, ret);
3459         }
3460 error:
3461         btrfs_free_path(path);
3462         return err;
3463 }
3464
3465 /*
3466  * taken from block_truncate_page, but does cow as it zeros out
3467  * any bytes left in the last page in the file.
3468  */
3469 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3470 {
3471         struct inode *inode = mapping->host;
3472         struct btrfs_root *root = BTRFS_I(inode)->root;
3473         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3474         struct btrfs_ordered_extent *ordered;
3475         struct extent_state *cached_state = NULL;
3476         char *kaddr;
3477         u32 blocksize = root->sectorsize;
3478         pgoff_t index = from >> PAGE_CACHE_SHIFT;
3479         unsigned offset = from & (PAGE_CACHE_SIZE-1);
3480         struct page *page;
3481         gfp_t mask = btrfs_alloc_write_mask(mapping);
3482         int ret = 0;
3483         u64 page_start;
3484         u64 page_end;
3485
3486         if ((offset & (blocksize - 1)) == 0)
3487                 goto out;
3488         ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3489         if (ret)
3490                 goto out;
3491
3492         ret = -ENOMEM;
3493 again:
3494         page = find_or_create_page(mapping, index, mask);
3495         if (!page) {
3496                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3497                 goto out;
3498         }
3499
3500         page_start = page_offset(page);
3501         page_end = page_start + PAGE_CACHE_SIZE - 1;
3502
3503         if (!PageUptodate(page)) {
3504                 ret = btrfs_readpage(NULL, page);
3505                 lock_page(page);
3506                 if (page->mapping != mapping) {
3507                         unlock_page(page);
3508                         page_cache_release(page);
3509                         goto again;
3510                 }
3511                 if (!PageUptodate(page)) {
3512                         ret = -EIO;
3513                         goto out_unlock;
3514                 }
3515         }
3516         wait_on_page_writeback(page);
3517
3518         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
3519         set_page_extent_mapped(page);
3520
3521         ordered = btrfs_lookup_ordered_extent(inode, page_start);
3522         if (ordered) {
3523                 unlock_extent_cached(io_tree, page_start, page_end,
3524                                      &cached_state, GFP_NOFS);
3525                 unlock_page(page);
3526                 page_cache_release(page);
3527                 btrfs_start_ordered_extent(inode, ordered, 1);
3528                 btrfs_put_ordered_extent(ordered);
3529                 goto again;
3530         }
3531
3532         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3533                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3534                           0, 0, &cached_state, GFP_NOFS);
3535
3536         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3537                                         &cached_state);
3538         if (ret) {
3539                 unlock_extent_cached(io_tree, page_start, page_end,
3540                                      &cached_state, GFP_NOFS);
3541                 goto out_unlock;
3542         }
3543
3544         ret = 0;
3545         if (offset != PAGE_CACHE_SIZE) {
3546                 kaddr = kmap(page);
3547                 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3548                 flush_dcache_page(page);
3549                 kunmap(page);
3550         }
3551         ClearPageChecked(page);
3552         set_page_dirty(page);
3553         unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3554                              GFP_NOFS);
3555
3556 out_unlock:
3557         if (ret)
3558                 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3559         unlock_page(page);
3560         page_cache_release(page);
3561 out:
3562         return ret;
3563 }
3564
3565 /*
3566  * This function puts in dummy file extents for the area we're creating a hole
3567  * for.  So if we are truncating this file to a larger size we need to insert
3568  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3569  * the range between oldsize and size
3570  */
3571 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
3572 {
3573         struct btrfs_trans_handle *trans;
3574         struct btrfs_root *root = BTRFS_I(inode)->root;
3575         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3576         struct extent_map *em = NULL;
3577         struct extent_state *cached_state = NULL;
3578         u64 mask = root->sectorsize - 1;
3579         u64 hole_start = (oldsize + mask) & ~mask;
3580         u64 block_end = (size + mask) & ~mask;
3581         u64 last_byte;
3582         u64 cur_offset;
3583         u64 hole_size;
3584         int err = 0;
3585
3586         if (size <= hole_start)
3587                 return 0;
3588
3589         while (1) {
3590                 struct btrfs_ordered_extent *ordered;
3591                 btrfs_wait_ordered_range(inode, hole_start,
3592                                          block_end - hole_start);
3593                 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3594                                  &cached_state);
3595                 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3596                 if (!ordered)
3597                         break;
3598                 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3599                                      &cached_state, GFP_NOFS);
3600                 btrfs_put_ordered_extent(ordered);
3601         }
3602
3603         cur_offset = hole_start;
3604         while (1) {
3605                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3606                                 block_end - cur_offset, 0);
3607                 if (IS_ERR(em)) {
3608                         err = PTR_ERR(em);
3609                         break;
3610                 }
3611                 last_byte = min(extent_map_end(em), block_end);
3612                 last_byte = (last_byte + mask) & ~mask;
3613                 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3614                         u64 hint_byte = 0;
3615                         hole_size = last_byte - cur_offset;
3616
3617                         trans = btrfs_start_transaction(root, 3);
3618                         if (IS_ERR(trans)) {
3619                                 err = PTR_ERR(trans);
3620                                 break;
3621                         }
3622
3623                         err = btrfs_drop_extents(trans, inode, cur_offset,
3624                                                  cur_offset + hole_size,
3625                                                  &hint_byte, 1);
3626                         if (err) {
3627                                 btrfs_abort_transaction(trans, root, err);
3628                                 btrfs_end_transaction(trans, root);
3629                                 break;
3630                         }
3631
3632                         err = btrfs_insert_file_extent(trans, root,
3633                                         btrfs_ino(inode), cur_offset, 0,
3634                                         0, hole_size, 0, hole_size,
3635                                         0, 0, 0);
3636                         if (err) {
3637                                 btrfs_abort_transaction(trans, root, err);
3638                                 btrfs_end_transaction(trans, root);
3639                                 break;
3640                         }
3641
3642                         btrfs_drop_extent_cache(inode, hole_start,
3643                                         last_byte - 1, 0);
3644
3645                         btrfs_update_inode(trans, root, inode);
3646                         btrfs_end_transaction(trans, root);
3647                 }
3648                 free_extent_map(em);
3649                 em = NULL;
3650                 cur_offset = last_byte;
3651                 if (cur_offset >= block_end)
3652                         break;
3653         }
3654
3655         free_extent_map(em);
3656         unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3657                              GFP_NOFS);
3658         return err;
3659 }
3660
3661 static int btrfs_setsize(struct inode *inode, loff_t newsize)
3662 {
3663         struct btrfs_root *root = BTRFS_I(inode)->root;
3664         struct btrfs_trans_handle *trans;
3665         loff_t oldsize = i_size_read(inode);
3666         int ret;
3667
3668         if (newsize == oldsize)
3669                 return 0;
3670
3671         if (newsize > oldsize) {
3672                 truncate_pagecache(inode, oldsize, newsize);
3673                 ret = btrfs_cont_expand(inode, oldsize, newsize);
3674                 if (ret)
3675                         return ret;
3676
3677                 trans = btrfs_start_transaction(root, 1);
3678                 if (IS_ERR(trans))
3679                         return PTR_ERR(trans);
3680
3681                 i_size_write(inode, newsize);
3682                 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3683                 ret = btrfs_update_inode(trans, root, inode);
3684                 btrfs_end_transaction(trans, root);
3685         } else {
3686
3687                 /*
3688                  * We're truncating a file that used to have good data down to
3689                  * zero. Make sure it gets into the ordered flush list so that
3690                  * any new writes get down to disk quickly.
3691                  */
3692                 if (newsize == 0)
3693                         set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
3694                                 &BTRFS_I(inode)->runtime_flags);
3695
3696                 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3697                 truncate_setsize(inode, newsize);
3698                 ret = btrfs_truncate(inode);
3699         }
3700
3701         return ret;
3702 }
3703
3704 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3705 {
3706         struct inode *inode = dentry->d_inode;
3707         struct btrfs_root *root = BTRFS_I(inode)->root;
3708         int err;
3709
3710         if (btrfs_root_readonly(root))
3711                 return -EROFS;
3712
3713         err = inode_change_ok(inode, attr);
3714         if (err)
3715                 return err;
3716
3717         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3718                 err = btrfs_setsize(inode, attr->ia_size);
3719                 if (err)
3720                         return err;
3721         }
3722
3723         if (attr->ia_valid) {
3724                 setattr_copy(inode, attr);
3725                 inode_inc_iversion(inode);
3726                 err = btrfs_dirty_inode(inode);
3727
3728                 if (!err && attr->ia_valid & ATTR_MODE)
3729                         err = btrfs_acl_chmod(inode);
3730         }
3731
3732         return err;
3733 }
3734
3735 void btrfs_evict_inode(struct inode *inode)
3736 {
3737         struct btrfs_trans_handle *trans;
3738         struct btrfs_root *root = BTRFS_I(inode)->root;
3739         struct btrfs_block_rsv *rsv, *global_rsv;
3740         u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
3741         unsigned long nr;
3742         int ret;
3743
3744         trace_btrfs_inode_evict(inode);
3745
3746         truncate_inode_pages(&inode->i_data, 0);
3747         if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3748                                btrfs_is_free_space_inode(root, inode)))
3749                 goto no_delete;
3750
3751         if (is_bad_inode(inode)) {
3752                 btrfs_orphan_del(NULL, inode);
3753                 goto no_delete;
3754         }
3755         /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3756         btrfs_wait_ordered_range(inode, 0, (u64)-1);
3757
3758         if (root->fs_info->log_root_recovering) {
3759                 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3760                                  &BTRFS_I(inode)->runtime_flags));
3761                 goto no_delete;
3762         }
3763
3764         if (inode->i_nlink > 0) {
3765                 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3766                 goto no_delete;
3767         }
3768
3769         rsv = btrfs_alloc_block_rsv(root);
3770         if (!rsv) {
3771                 btrfs_orphan_del(NULL, inode);
3772                 goto no_delete;
3773         }
3774         rsv->size = min_size;
3775         global_rsv = &root->fs_info->global_block_rsv;
3776
3777         btrfs_i_size_write(inode, 0);
3778
3779         /*
3780          * This is a bit simpler than btrfs_truncate since
3781          *
3782          * 1) We've already reserved our space for our orphan item in the
3783          *    unlink.
3784          * 2) We're going to delete the inode item, so we don't need to update
3785          *    it at all.
3786          *
3787          * So we just need to reserve some slack space in case we add bytes when
3788          * doing the truncate.
3789          */
3790         while (1) {
3791                 ret = btrfs_block_rsv_refill_noflush(root, rsv, min_size);
3792
3793                 /*
3794                  * Try and steal from the global reserve since we will
3795                  * likely not use this space anyway, we want to try as
3796                  * hard as possible to get this to work.
3797                  */
3798                 if (ret)
3799                         ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
3800
3801                 if (ret) {
3802                         printk(KERN_WARNING "Could not get space for a "
3803                                "delete, will truncate on mount %d\n", ret);
3804                         btrfs_orphan_del(NULL, inode);
3805                         btrfs_free_block_rsv(root, rsv);
3806                         goto no_delete;
3807                 }
3808
3809                 trans = btrfs_start_transaction(root, 0);
3810                 if (IS_ERR(trans)) {
3811                         btrfs_orphan_del(NULL, inode);
3812                         btrfs_free_block_rsv(root, rsv);
3813                         goto no_delete;
3814                 }
3815
3816                 trans->block_rsv = rsv;
3817
3818                 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3819                 if (ret != -EAGAIN)
3820                         break;
3821
3822                 nr = trans->blocks_used;
3823                 btrfs_end_transaction(trans, root);
3824                 trans = NULL;
3825                 btrfs_btree_balance_dirty(root, nr);
3826         }
3827
3828         btrfs_free_block_rsv(root, rsv);
3829
3830         if (ret == 0) {
3831                 trans->block_rsv = root->orphan_block_rsv;
3832                 ret = btrfs_orphan_del(trans, inode);
3833                 BUG_ON(ret);
3834         }
3835
3836         trans->block_rsv = &root->fs_info->trans_block_rsv;
3837         if (!(root == root->fs_info->tree_root ||
3838               root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
3839                 btrfs_return_ino(root, btrfs_ino(inode));
3840
3841         nr = trans->blocks_used;
3842         btrfs_end_transaction(trans, root);
3843         btrfs_btree_balance_dirty(root, nr);
3844 no_delete:
3845         clear_inode(inode);
3846         return;
3847 }
3848
3849 /*
3850  * this returns the key found in the dir entry in the location pointer.
3851  * If no dir entries were found, location->objectid is 0.
3852  */
3853 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3854                                struct btrfs_key *location)
3855 {
3856         const char *name = dentry->d_name.name;
3857         int namelen = dentry->d_name.len;
3858         struct btrfs_dir_item *di;
3859         struct btrfs_path *path;
3860         struct btrfs_root *root = BTRFS_I(dir)->root;
3861         int ret = 0;
3862
3863         path = btrfs_alloc_path();
3864         if (!path)
3865                 return -ENOMEM;
3866
3867         di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
3868                                     namelen, 0);
3869         if (IS_ERR(di))
3870                 ret = PTR_ERR(di);
3871
3872         if (IS_ERR_OR_NULL(di))
3873                 goto out_err;
3874
3875         btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3876 out:
3877         btrfs_free_path(path);
3878         return ret;
3879 out_err:
3880         location->objectid = 0;
3881         goto out;
3882 }
3883
3884 /*
3885  * when we hit a tree root in a directory, the btrfs part of the inode
3886  * needs to be changed to reflect the root directory of the tree root.  This
3887  * is kind of like crossing a mount point.
3888  */
3889 static int fixup_tree_root_location(struct btrfs_root *root,
3890                                     struct inode *dir,
3891                                     struct dentry *dentry,
3892                                     struct btrfs_key *location,
3893                                     struct btrfs_root **sub_root)
3894 {
3895         struct btrfs_path *path;
3896         struct btrfs_root *new_root;
3897         struct btrfs_root_ref *ref;
3898         struct extent_buffer *leaf;
3899         int ret;
3900         int err = 0;
3901
3902         path = btrfs_alloc_path();
3903         if (!path) {
3904                 err = -ENOMEM;
3905                 goto out;
3906         }
3907
3908         err = -ENOENT;
3909         ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3910                                   BTRFS_I(dir)->root->root_key.objectid,
3911                                   location->objectid);
3912         if (ret) {
3913                 if (ret < 0)
3914                         err = ret;
3915                 goto out;
3916         }
3917
3918         leaf = path->nodes[0];
3919         ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3920         if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
3921             btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3922                 goto out;
3923
3924         ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3925                                    (unsigned long)(ref + 1),
3926                                    dentry->d_name.len);
3927         if (ret)
3928                 goto out;
3929
3930         btrfs_release_path(path);
3931
3932         new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3933         if (IS_ERR(new_root)) {
3934                 err = PTR_ERR(new_root);
3935                 goto out;
3936         }
3937
3938         if (btrfs_root_refs(&new_root->root_item) == 0) {
3939                 err = -ENOENT;
3940                 goto out;
3941         }
3942
3943         *sub_root = new_root;
3944         location->objectid = btrfs_root_dirid(&new_root->root_item);
3945         location->type = BTRFS_INODE_ITEM_KEY;
3946         location->offset = 0;
3947         err = 0;
3948 out:
3949         btrfs_free_path(path);
3950         return err;
3951 }
3952
3953 static void inode_tree_add(struct inode *inode)
3954 {
3955         struct btrfs_root *root = BTRFS_I(inode)->root;
3956         struct btrfs_inode *entry;
3957         struct rb_node **p;
3958         struct rb_node *parent;
3959         u64 ino = btrfs_ino(inode);
3960 again:
3961         p = &root->inode_tree.rb_node;
3962         parent = NULL;
3963
3964         if (inode_unhashed(inode))
3965                 return;
3966
3967         spin_lock(&root->inode_lock);
3968         while (*p) {
3969                 parent = *p;
3970                 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3971
3972                 if (ino < btrfs_ino(&entry->vfs_inode))
3973                         p = &parent->rb_left;
3974                 else if (ino > btrfs_ino(&entry->vfs_inode))
3975                         p = &parent->rb_right;
3976                 else {
3977                         WARN_ON(!(entry->vfs_inode.i_state &
3978                                   (I_WILL_FREE | I_FREEING)));
3979                         rb_erase(parent, &root->inode_tree);
3980                         RB_CLEAR_NODE(parent);
3981                         spin_unlock(&root->inode_lock);
3982                         goto again;
3983                 }
3984         }
3985         rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3986         rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3987         spin_unlock(&root->inode_lock);
3988 }
3989
3990 static void inode_tree_del(struct inode *inode)
3991 {
3992         struct btrfs_root *root = BTRFS_I(inode)->root;
3993         int empty = 0;
3994
3995         spin_lock(&root->inode_lock);
3996         if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3997                 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3998                 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3999                 empty = RB_EMPTY_ROOT(&root->inode_tree);
4000         }
4001         spin_unlock(&root->inode_lock);
4002
4003         /*
4004          * Free space cache has inodes in the tree root, but the tree root has a
4005          * root_refs of 0, so this could end up dropping the tree root as a
4006          * snapshot, so we need the extra !root->fs_info->tree_root check to
4007          * make sure we don't drop it.
4008          */
4009         if (empty && btrfs_root_refs(&root->root_item) == 0 &&
4010             root != root->fs_info->tree_root) {
4011                 synchronize_srcu(&root->fs_info->subvol_srcu);
4012                 spin_lock(&root->inode_lock);
4013                 empty = RB_EMPTY_ROOT(&root->inode_tree);
4014                 spin_unlock(&root->inode_lock);
4015                 if (empty)
4016                         btrfs_add_dead_root(root);
4017         }
4018 }
4019
4020 void btrfs_invalidate_inodes(struct btrfs_root *root)
4021 {
4022         struct rb_node *node;
4023         struct rb_node *prev;
4024         struct btrfs_inode *entry;
4025         struct inode *inode;
4026         u64 objectid = 0;
4027
4028         WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4029
4030         spin_lock(&root->inode_lock);
4031 again:
4032         node = root->inode_tree.rb_node;
4033         prev = NULL;
4034         while (node) {
4035                 prev = node;
4036                 entry = rb_entry(node, struct btrfs_inode, rb_node);
4037
4038                 if (objectid < btrfs_ino(&entry->vfs_inode))
4039                         node = node->rb_left;
4040                 else if (objectid > btrfs_ino(&entry->vfs_inode))
4041                         node = node->rb_right;
4042                 else
4043                         break;
4044         }
4045         if (!node) {
4046                 while (prev) {
4047                         entry = rb_entry(prev, struct btrfs_inode, rb_node);
4048                         if (objectid <= btrfs_ino(&entry->vfs_inode)) {
4049                                 node = prev;
4050                                 break;
4051                         }
4052                         prev = rb_next(prev);
4053                 }
4054         }
4055         while (node) {
4056                 entry = rb_entry(node, struct btrfs_inode, rb_node);
4057                 objectid = btrfs_ino(&entry->vfs_inode) + 1;
4058                 inode = igrab(&entry->vfs_inode);
4059                 if (inode) {
4060                         spin_unlock(&root->inode_lock);
4061                         if (atomic_read(&inode->i_count) > 1)
4062                                 d_prune_aliases(inode);
4063                         /*
4064                          * btrfs_drop_inode will have it removed from
4065                          * the inode cache when its usage count
4066                          * hits zero.
4067                          */
4068                         iput(inode);
4069                         cond_resched();
4070                         spin_lock(&root->inode_lock);
4071                         goto again;
4072                 }
4073
4074                 if (cond_resched_lock(&root->inode_lock))
4075                         goto again;
4076
4077                 node = rb_next(node);
4078         }
4079         spin_unlock(&root->inode_lock);
4080 }
4081
4082 static int btrfs_init_locked_inode(struct inode *inode, void *p)
4083 {
4084         struct btrfs_iget_args *args = p;
4085         inode->i_ino = args->ino;
4086         BTRFS_I(inode)->root = args->root;
4087         btrfs_set_inode_space_info(args->root, inode);
4088         return 0;
4089 }
4090
4091 static int btrfs_find_actor(struct inode *inode, void *opaque)
4092 {
4093         struct btrfs_iget_args *args = opaque;
4094         return args->ino == btrfs_ino(inode) &&
4095                 args->root == BTRFS_I(inode)->root;
4096 }
4097
4098 static struct inode *btrfs_iget_locked(struct super_block *s,
4099                                        u64 objectid,
4100                                        struct btrfs_root *root)
4101 {
4102         struct inode *inode;
4103         struct btrfs_iget_args args;
4104         args.ino = objectid;
4105         args.root = root;
4106
4107         inode = iget5_locked(s, objectid, btrfs_find_actor,
4108                              btrfs_init_locked_inode,
4109                              (void *)&args);
4110         return inode;
4111 }
4112
4113 /* Get an inode object given its location and corresponding root.
4114  * Returns in *is_new if the inode was read from disk
4115  */
4116 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
4117                          struct btrfs_root *root, int *new)
4118 {
4119         struct inode *inode;
4120
4121         inode = btrfs_iget_locked(s, location->objectid, root);
4122         if (!inode)
4123                 return ERR_PTR(-ENOMEM);
4124
4125         if (inode->i_state & I_NEW) {
4126                 BTRFS_I(inode)->root = root;
4127                 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4128                 btrfs_read_locked_inode(inode);
4129                 if (!is_bad_inode(inode)) {
4130                         inode_tree_add(inode);
4131                         unlock_new_inode(inode);
4132                         if (new)
4133                                 *new = 1;
4134                 } else {
4135                         unlock_new_inode(inode);
4136                         iput(inode);
4137                         inode = ERR_PTR(-ESTALE);
4138                 }
4139         }
4140
4141         return inode;
4142 }
4143
4144 static struct inode *new_simple_dir(struct super_block *s,
4145                                     struct btrfs_key *key,
4146                                     struct btrfs_root *root)
4147 {
4148         struct inode *inode = new_inode(s);
4149
4150         if (!inode)
4151                 return ERR_PTR(-ENOMEM);
4152
4153         BTRFS_I(inode)->root = root;
4154         memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4155         set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4156
4157         inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4158         inode->i_op = &btrfs_dir_ro_inode_operations;
4159         inode->i_fop = &simple_dir_operations;
4160         inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4161         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4162
4163         return inode;
4164 }
4165
4166 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
4167 {
4168         struct inode *inode;
4169         struct btrfs_root *root = BTRFS_I(dir)->root;
4170         struct btrfs_root *sub_root = root;
4171         struct btrfs_key location;
4172         int index;
4173         int ret = 0;
4174
4175         if (dentry->d_name.len > BTRFS_NAME_LEN)
4176                 return ERR_PTR(-ENAMETOOLONG);
4177
4178         if (unlikely(d_need_lookup(dentry))) {
4179                 memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
4180                 kfree(dentry->d_fsdata);
4181                 dentry->d_fsdata = NULL;
4182                 /* This thing is hashed, drop it for now */
4183                 d_drop(dentry);
4184         } else {
4185                 ret = btrfs_inode_by_name(dir, dentry, &location);
4186         }
4187
4188         if (ret < 0)
4189                 return ERR_PTR(ret);
4190
4191         if (location.objectid == 0)
4192                 return NULL;
4193
4194         if (location.type == BTRFS_INODE_ITEM_KEY) {
4195                 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4196                 return inode;
4197         }
4198
4199         BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4200
4201         index = srcu_read_lock(&root->fs_info->subvol_srcu);
4202         ret = fixup_tree_root_location(root, dir, dentry,
4203                                        &location, &sub_root);
4204         if (ret < 0) {
4205                 if (ret != -ENOENT)
4206                         inode = ERR_PTR(ret);
4207                 else
4208                         inode = new_simple_dir(dir->i_sb, &location, sub_root);
4209         } else {
4210                 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4211         }
4212         srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4213
4214         if (!IS_ERR(inode) && root != sub_root) {
4215                 down_read(&root->fs_info->cleanup_work_sem);
4216                 if (!(inode->i_sb->s_flags & MS_RDONLY))
4217                         ret = btrfs_orphan_cleanup(sub_root);
4218                 up_read(&root->fs_info->cleanup_work_sem);
4219                 if (ret)
4220                         inode = ERR_PTR(ret);
4221         }
4222
4223         return inode;
4224 }
4225
4226 static int btrfs_dentry_delete(const struct dentry *dentry)
4227 {
4228         struct btrfs_root *root;
4229         struct inode *inode = dentry->d_inode;
4230
4231         if (!inode && !IS_ROOT(dentry))
4232                 inode = dentry->d_parent->d_inode;
4233
4234         if (inode) {
4235                 root = BTRFS_I(inode)->root;
4236                 if (btrfs_root_refs(&root->root_item) == 0)
4237                         return 1;
4238
4239                 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
4240                         return 1;
4241         }
4242         return 0;
4243 }
4244
4245 static void btrfs_dentry_release(struct dentry *dentry)
4246 {
4247         if (dentry->d_fsdata)
4248                 kfree(dentry->d_fsdata);
4249 }
4250
4251 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4252                                    struct nameidata *nd)
4253 {
4254         struct dentry *ret;
4255
4256         ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
4257         if (unlikely(d_need_lookup(dentry))) {
4258                 spin_lock(&dentry->d_lock);
4259                 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
4260                 spin_unlock(&dentry->d_lock);
4261         }
4262         return ret;
4263 }
4264
4265 unsigned char btrfs_filetype_table[] = {
4266         DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4267 };
4268
4269 static int btrfs_real_readdir(struct file *filp, void *dirent,
4270                               filldir_t filldir)
4271 {
4272         struct inode *inode = filp->f_dentry->d_inode;
4273         struct btrfs_root *root = BTRFS_I(inode)->root;
4274         struct btrfs_item *item;
4275         struct btrfs_dir_item *di;
4276         struct btrfs_key key;
4277         struct btrfs_key found_key;
4278         struct btrfs_path *path;
4279         struct list_head ins_list;
4280         struct list_head del_list;
4281         int ret;
4282         struct extent_buffer *leaf;
4283         int slot;
4284         unsigned char d_type;
4285         int over = 0;
4286         u32 di_cur;
4287         u32 di_total;
4288         u32 di_len;
4289         int key_type = BTRFS_DIR_INDEX_KEY;
4290         char tmp_name[32];
4291         char *name_ptr;
4292         int name_len;
4293         int is_curr = 0;        /* filp->f_pos points to the current index? */
4294
4295         /* FIXME, use a real flag for deciding about the key type */
4296         if (root->fs_info->tree_root == root)
4297                 key_type = BTRFS_DIR_ITEM_KEY;
4298
4299         /* special case for "." */
4300         if (filp->f_pos == 0) {
4301                 over = filldir(dirent, ".", 1,
4302                                filp->f_pos, btrfs_ino(inode), DT_DIR);
4303                 if (over)
4304                         return 0;
4305                 filp->f_pos = 1;
4306         }
4307         /* special case for .., just use the back ref */
4308         if (filp->f_pos == 1) {
4309                 u64 pino = parent_ino(filp->f_path.dentry);
4310                 over = filldir(dirent, "..", 2,
4311                                filp->f_pos, pino, DT_DIR);
4312                 if (over)
4313                         return 0;
4314                 filp->f_pos = 2;
4315         }
4316         path = btrfs_alloc_path();
4317         if (!path)
4318                 return -ENOMEM;
4319
4320         path->reada = 1;
4321
4322         if (key_type == BTRFS_DIR_INDEX_KEY) {
4323                 INIT_LIST_HEAD(&ins_list);
4324                 INIT_LIST_HEAD(&del_list);
4325                 btrfs_get_delayed_items(inode, &ins_list, &del_list);
4326         }
4327
4328         btrfs_set_key_type(&key, key_type);
4329         key.offset = filp->f_pos;
4330         key.objectid = btrfs_ino(inode);
4331
4332         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4333         if (ret < 0)
4334                 goto err;
4335
4336         while (1) {
4337                 leaf = path->nodes[0];
4338                 slot = path->slots[0];
4339                 if (slot >= btrfs_header_nritems(leaf)) {
4340                         ret = btrfs_next_leaf(root, path);
4341                         if (ret < 0)
4342                                 goto err;
4343                         else if (ret > 0)
4344                                 break;
4345                         continue;
4346                 }
4347
4348                 item = btrfs_item_nr(leaf, slot);
4349                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4350
4351                 if (found_key.objectid != key.objectid)
4352                         break;
4353                 if (btrfs_key_type(&found_key) != key_type)
4354                         break;
4355                 if (found_key.offset < filp->f_pos)
4356                         goto next;
4357                 if (key_type == BTRFS_DIR_INDEX_KEY &&
4358                     btrfs_should_delete_dir_index(&del_list,
4359                                                   found_key.offset))
4360                         goto next;
4361
4362                 filp->f_pos = found_key.offset;
4363                 is_curr = 1;
4364
4365                 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4366                 di_cur = 0;
4367                 di_total = btrfs_item_size(leaf, item);
4368
4369                 while (di_cur < di_total) {
4370                         struct btrfs_key location;
4371
4372                         if (verify_dir_item(root, leaf, di))
4373                                 break;
4374
4375                         name_len = btrfs_dir_name_len(leaf, di);
4376                         if (name_len <= sizeof(tmp_name)) {
4377                                 name_ptr = tmp_name;
4378                         } else {
4379                                 name_ptr = kmalloc(name_len, GFP_NOFS);
4380                                 if (!name_ptr) {
4381                                         ret = -ENOMEM;
4382                                         goto err;
4383                                 }
4384                         }
4385                         read_extent_buffer(leaf, name_ptr,
4386                                            (unsigned long)(di + 1), name_len);
4387
4388                         d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4389                         btrfs_dir_item_key_to_cpu(leaf, di, &location);
4390
4391
4392                         /* is this a reference to our own snapshot? If so
4393                          * skip it.
4394                          *
4395                          * In contrast to old kernels, we insert the snapshot's
4396                          * dir item and dir index after it has been created, so
4397                          * we won't find a reference to our own snapshot. We
4398                          * still keep the following code for backward
4399                          * compatibility.
4400                          */
4401                         if (location.type == BTRFS_ROOT_ITEM_KEY &&
4402                             location.objectid == root->root_key.objectid) {
4403                                 over = 0;
4404                                 goto skip;
4405                         }
4406                         over = filldir(dirent, name_ptr, name_len,
4407                                        found_key.offset, location.objectid,
4408                                        d_type);
4409
4410 skip:
4411                         if (name_ptr != tmp_name)
4412                                 kfree(name_ptr);
4413
4414                         if (over)
4415                                 goto nopos;
4416                         di_len = btrfs_dir_name_len(leaf, di) +
4417                                  btrfs_dir_data_len(leaf, di) + sizeof(*di);
4418                         di_cur += di_len;
4419                         di = (struct btrfs_dir_item *)((char *)di + di_len);
4420                 }
4421 next:
4422                 path->slots[0]++;
4423         }
4424
4425         if (key_type == BTRFS_DIR_INDEX_KEY) {
4426                 if (is_curr)
4427                         filp->f_pos++;
4428                 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4429                                                       &ins_list);
4430                 if (ret)
4431                         goto nopos;
4432         }
4433
4434         /* Reached end of directory/root. Bump pos past the last item. */
4435         if (key_type == BTRFS_DIR_INDEX_KEY)
4436                 /*
4437                  * 32-bit glibc will use getdents64, but then strtol -
4438                  * so the last number we can serve is this.
4439                  */
4440                 filp->f_pos = 0x7fffffff;
4441         else
4442                 filp->f_pos++;
4443 nopos:
4444         ret = 0;
4445 err:
4446         if (key_type == BTRFS_DIR_INDEX_KEY)
4447                 btrfs_put_delayed_items(&ins_list, &del_list);
4448         btrfs_free_path(path);
4449         return ret;
4450 }
4451
4452 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4453 {
4454         struct btrfs_root *root = BTRFS_I(inode)->root;
4455         struct btrfs_trans_handle *trans;
4456         int ret = 0;
4457         bool nolock = false;
4458
4459         if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4460                 return 0;
4461
4462         if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(root, inode))
4463                 nolock = true;
4464
4465         if (wbc->sync_mode == WB_SYNC_ALL) {
4466                 if (nolock)
4467                         trans = btrfs_join_transaction_nolock(root);
4468                 else
4469                         trans = btrfs_join_transaction(root);
4470                 if (IS_ERR(trans))
4471                         return PTR_ERR(trans);
4472                 if (nolock)
4473                         ret = btrfs_end_transaction_nolock(trans, root);
4474                 else
4475                         ret = btrfs_commit_transaction(trans, root);
4476         }
4477         return ret;
4478 }
4479
4480 /*
4481  * This is somewhat expensive, updating the tree every time the
4482  * inode changes.  But, it is most likely to find the inode in cache.
4483  * FIXME, needs more benchmarking...there are no reasons other than performance
4484  * to keep or drop this code.
4485  */
4486 int btrfs_dirty_inode(struct inode *inode)
4487 {
4488         struct btrfs_root *root = BTRFS_I(inode)->root;
4489         struct btrfs_trans_handle *trans;
4490         int ret;
4491
4492         if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4493                 return 0;
4494
4495         trans = btrfs_join_transaction(root);
4496         if (IS_ERR(trans))
4497                 return PTR_ERR(trans);
4498
4499         ret = btrfs_update_inode(trans, root, inode);
4500         if (ret && ret == -ENOSPC) {
4501                 /* whoops, lets try again with the full transaction */
4502                 btrfs_end_transaction(trans, root);
4503                 trans = btrfs_start_transaction(root, 1);
4504                 if (IS_ERR(trans))
4505                         return PTR_ERR(trans);
4506
4507                 ret = btrfs_update_inode(trans, root, inode);
4508         }
4509         btrfs_end_transaction(trans, root);
4510         if (BTRFS_I(inode)->delayed_node)
4511                 btrfs_balance_delayed_items(root);
4512
4513         return ret;
4514 }
4515
4516 /*
4517  * This is a copy of file_update_time.  We need this so we can return error on
4518  * ENOSPC for updating the inode in the case of file write and mmap writes.
4519  */
4520 static int btrfs_update_time(struct inode *inode, struct timespec *now,
4521                              int flags)
4522 {
4523         if (flags & S_VERSION)
4524                 inode_inc_iversion(inode);
4525         if (flags & S_CTIME)
4526                 inode->i_ctime = *now;
4527         if (flags & S_MTIME)
4528                 inode->i_mtime = *now;
4529         if (flags & S_ATIME)
4530                 inode->i_atime = *now;
4531         return btrfs_dirty_inode(inode);
4532 }
4533
4534 /*
4535  * find the highest existing sequence number in a directory
4536  * and then set the in-memory index_cnt variable to reflect
4537  * free sequence numbers
4538  */
4539 static int btrfs_set_inode_index_count(struct inode *inode)
4540 {
4541         struct btrfs_root *root = BTRFS_I(inode)->root;
4542         struct btrfs_key key, found_key;
4543         struct btrfs_path *path;
4544         struct extent_buffer *leaf;
4545         int ret;
4546
4547         key.objectid = btrfs_ino(inode);
4548         btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4549         key.offset = (u64)-1;
4550
4551         path = btrfs_alloc_path();
4552         if (!path)
4553                 return -ENOMEM;
4554
4555         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4556         if (ret < 0)
4557                 goto out;
4558         /* FIXME: we should be able to handle this */
4559         if (ret == 0)
4560                 goto out;
4561         ret = 0;
4562
4563         /*
4564          * MAGIC NUMBER EXPLANATION:
4565          * since we search a directory based on f_pos we have to start at 2
4566          * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4567          * else has to start at 2
4568          */
4569         if (path->slots[0] == 0) {
4570                 BTRFS_I(inode)->index_cnt = 2;
4571                 goto out;
4572         }
4573
4574         path->slots[0]--;
4575
4576         leaf = path->nodes[0];
4577         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4578
4579         if (found_key.objectid != btrfs_ino(inode) ||
4580             btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4581                 BTRFS_I(inode)->index_cnt = 2;
4582                 goto out;
4583         }
4584
4585         BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4586 out:
4587         btrfs_free_path(path);
4588         return ret;
4589 }
4590
4591 /*
4592  * helper to find a free sequence number in a given directory.  This current
4593  * code is very simple, later versions will do smarter things in the btree
4594  */
4595 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4596 {
4597         int ret = 0;
4598
4599         if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4600                 ret = btrfs_inode_delayed_dir_index_count(dir);
4601                 if (ret) {
4602                         ret = btrfs_set_inode_index_count(dir);
4603                         if (ret)
4604                                 return ret;
4605                 }
4606         }
4607
4608         *index = BTRFS_I(dir)->index_cnt;
4609         BTRFS_I(dir)->index_cnt++;
4610
4611         return ret;
4612 }
4613
4614 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4615                                      struct btrfs_root *root,
4616                                      struct inode *dir,
4617                                      const char *name, int name_len,
4618                                      u64 ref_objectid, u64 objectid,
4619                                      umode_t mode, u64 *index)
4620 {
4621         struct inode *inode;
4622         struct btrfs_inode_item *inode_item;
4623         struct btrfs_key *location;
4624         struct btrfs_path *path;
4625         struct btrfs_inode_ref *ref;
4626         struct btrfs_key key[2];
4627         u32 sizes[2];
4628         unsigned long ptr;
4629         int ret;
4630         int owner;
4631
4632         path = btrfs_alloc_path();
4633         if (!path)
4634                 return ERR_PTR(-ENOMEM);
4635
4636         inode = new_inode(root->fs_info->sb);
4637         if (!inode) {
4638                 btrfs_free_path(path);
4639                 return ERR_PTR(-ENOMEM);
4640         }
4641
4642         /*
4643          * we have to initialize this early, so we can reclaim the inode
4644          * number if we fail afterwards in this function.
4645          */
4646         inode->i_ino = objectid;
4647
4648         if (dir) {
4649                 trace_btrfs_inode_request(dir);
4650
4651                 ret = btrfs_set_inode_index(dir, index);
4652                 if (ret) {
4653                         btrfs_free_path(path);
4654                         iput(inode);
4655                         return ERR_PTR(ret);
4656                 }
4657         }
4658         /*
4659          * index_cnt is ignored for everything but a dir,
4660          * btrfs_get_inode_index_count has an explanation for the magic
4661          * number
4662          */
4663         BTRFS_I(inode)->index_cnt = 2;
4664         BTRFS_I(inode)->root = root;
4665         BTRFS_I(inode)->generation = trans->transid;
4666         inode->i_generation = BTRFS_I(inode)->generation;
4667         btrfs_set_inode_space_info(root, inode);
4668
4669         if (S_ISDIR(mode))
4670                 owner = 0;
4671         else
4672                 owner = 1;
4673
4674         key[0].objectid = objectid;
4675         btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4676         key[0].offset = 0;
4677
4678         key[1].objectid = objectid;
4679         btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4680         key[1].offset = ref_objectid;
4681
4682         sizes[0] = sizeof(struct btrfs_inode_item);
4683         sizes[1] = name_len + sizeof(*ref);
4684
4685         path->leave_spinning = 1;
4686         ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4687         if (ret != 0)
4688                 goto fail;
4689
4690         inode_init_owner(inode, dir, mode);
4691         inode_set_bytes(inode, 0);
4692         inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4693         inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4694                                   struct btrfs_inode_item);
4695         fill_inode_item(trans, path->nodes[0], inode_item, inode);
4696
4697         ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4698                              struct btrfs_inode_ref);
4699         btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4700         btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4701         ptr = (unsigned long)(ref + 1);
4702         write_extent_buffer(path->nodes[0], name, ptr, name_len);
4703
4704         btrfs_mark_buffer_dirty(path->nodes[0]);
4705         btrfs_free_path(path);
4706
4707         location = &BTRFS_I(inode)->location;
4708         location->objectid = objectid;
4709         location->offset = 0;
4710         btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4711
4712         btrfs_inherit_iflags(inode, dir);
4713
4714         if (S_ISREG(mode)) {
4715                 if (btrfs_test_opt(root, NODATASUM))
4716                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4717                 if (btrfs_test_opt(root, NODATACOW) ||
4718                     (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
4719                         BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4720         }
4721
4722         insert_inode_hash(inode);
4723         inode_tree_add(inode);
4724
4725         trace_btrfs_inode_new(inode);
4726         btrfs_set_inode_last_trans(trans, inode);
4727
4728         btrfs_update_root_times(trans, root);
4729
4730         return inode;
4731 fail:
4732         if (dir)
4733                 BTRFS_I(dir)->index_cnt--;
4734         btrfs_free_path(path);
4735         iput(inode);
4736         return ERR_PTR(ret);
4737 }
4738
4739 static inline u8 btrfs_inode_type(struct inode *inode)
4740 {
4741         return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4742 }
4743
4744 /*
4745  * utility function to add 'inode' into 'parent_inode' with
4746  * a give name and a given sequence number.
4747  * if 'add_backref' is true, also insert a backref from the
4748  * inode to the parent directory.
4749  */
4750 int btrfs_add_link(struct btrfs_trans_handle *trans,
4751                    struct inode *parent_inode, struct inode *inode,
4752                    const char *name, int name_len, int add_backref, u64 index)
4753 {
4754         int ret = 0;
4755         struct btrfs_key key;
4756         struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4757         u64 ino = btrfs_ino(inode);
4758         u64 parent_ino = btrfs_ino(parent_inode);
4759
4760         if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4761                 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4762         } else {
4763                 key.objectid = ino;
4764                 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4765                 key.offset = 0;
4766         }
4767
4768         if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4769                 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4770                                          key.objectid, root->root_key.objectid,
4771                                          parent_ino, index, name, name_len);
4772         } else if (add_backref) {
4773                 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4774                                              parent_ino, index);
4775         }
4776
4777         /* Nothing to clean up yet */
4778         if (ret)
4779                 return ret;
4780
4781         ret = btrfs_insert_dir_item(trans, root, name, name_len,
4782                                     parent_inode, &key,
4783                                     btrfs_inode_type(inode), index);
4784         if (ret == -EEXIST)
4785                 goto fail_dir_item;
4786         else if (ret) {
4787                 btrfs_abort_transaction(trans, root, ret);
4788                 return ret;
4789         }
4790
4791         btrfs_i_size_write(parent_inode, parent_inode->i_size +
4792                            name_len * 2);
4793         inode_inc_iversion(parent_inode);
4794         parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4795         ret = btrfs_update_inode(trans, root, parent_inode);
4796         if (ret)
4797                 btrfs_abort_transaction(trans, root, ret);
4798         return ret;
4799
4800 fail_dir_item:
4801         if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4802                 u64 local_index;
4803                 int err;
4804                 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4805                                  key.objectid, root->root_key.objectid,
4806                                  parent_ino, &local_index, name, name_len);
4807
4808         } else if (add_backref) {
4809                 u64 local_index;
4810                 int err;
4811
4812                 err = btrfs_del_inode_ref(trans, root, name, name_len,
4813                                           ino, parent_ino, &local_index);
4814         }
4815         return ret;
4816 }
4817
4818 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4819                             struct inode *dir, struct dentry *dentry,
4820                             struct inode *inode, int backref, u64 index)
4821 {
4822         int err = btrfs_add_link(trans, dir, inode,
4823                                  dentry->d_name.name, dentry->d_name.len,
4824                                  backref, index);
4825         if (err > 0)
4826                 err = -EEXIST;
4827         return err;
4828 }
4829
4830 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4831                         umode_t mode, dev_t rdev)
4832 {
4833         struct btrfs_trans_handle *trans;
4834         struct btrfs_root *root = BTRFS_I(dir)->root;
4835         struct inode *inode = NULL;
4836         int err;
4837         int drop_inode = 0;
4838         u64 objectid;
4839         unsigned long nr = 0;
4840         u64 index = 0;
4841
4842         if (!new_valid_dev(rdev))
4843                 return -EINVAL;
4844
4845         /*
4846          * 2 for inode item and ref
4847          * 2 for dir items
4848          * 1 for xattr if selinux is on
4849          */
4850         trans = btrfs_start_transaction(root, 5);
4851         if (IS_ERR(trans))
4852                 return PTR_ERR(trans);
4853
4854         err = btrfs_find_free_ino(root, &objectid);
4855         if (err)
4856                 goto out_unlock;
4857
4858         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4859                                 dentry->d_name.len, btrfs_ino(dir), objectid,
4860                                 mode, &index);
4861         if (IS_ERR(inode)) {
4862                 err = PTR_ERR(inode);
4863                 goto out_unlock;
4864         }
4865
4866         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4867         if (err) {
4868                 drop_inode = 1;
4869                 goto out_unlock;
4870         }
4871
4872         /*
4873         * If the active LSM wants to access the inode during
4874         * d_instantiate it needs these. Smack checks to see
4875         * if the filesystem supports xattrs by looking at the
4876         * ops vector.
4877         */
4878
4879         inode->i_op = &btrfs_special_inode_operations;
4880         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4881         if (err)
4882                 drop_inode = 1;
4883         else {
4884                 init_special_inode(inode, inode->i_mode, rdev);
4885                 btrfs_update_inode(trans, root, inode);
4886                 d_instantiate(dentry, inode);
4887         }
4888 out_unlock:
4889         nr = trans->blocks_used;
4890         btrfs_end_transaction(trans, root);
4891         btrfs_btree_balance_dirty(root, nr);
4892         if (drop_inode) {
4893                 inode_dec_link_count(inode);
4894                 iput(inode);
4895         }
4896         return err;
4897 }
4898
4899 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4900                         umode_t mode, struct nameidata *nd)
4901 {
4902         struct btrfs_trans_handle *trans;
4903         struct btrfs_root *root = BTRFS_I(dir)->root;
4904         struct inode *inode = NULL;
4905         int drop_inode = 0;
4906         int err;
4907         unsigned long nr = 0;
4908         u64 objectid;
4909         u64 index = 0;
4910
4911         /*
4912          * 2 for inode item and ref
4913          * 2 for dir items
4914          * 1 for xattr if selinux is on
4915          */
4916         trans = btrfs_start_transaction(root, 5);
4917         if (IS_ERR(trans))
4918                 return PTR_ERR(trans);
4919
4920         err = btrfs_find_free_ino(root, &objectid);
4921         if (err)
4922                 goto out_unlock;
4923
4924         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4925                                 dentry->d_name.len, btrfs_ino(dir), objectid,
4926                                 mode, &index);
4927         if (IS_ERR(inode)) {
4928                 err = PTR_ERR(inode);
4929                 goto out_unlock;
4930         }
4931
4932         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4933         if (err) {
4934                 drop_inode = 1;
4935                 goto out_unlock;
4936         }
4937
4938         /*
4939         * If the active LSM wants to access the inode during
4940         * d_instantiate it needs these. Smack checks to see
4941         * if the filesystem supports xattrs by looking at the
4942         * ops vector.
4943         */
4944         inode->i_fop = &btrfs_file_operations;
4945         inode->i_op = &btrfs_file_inode_operations;
4946
4947         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4948         if (err)
4949                 drop_inode = 1;
4950         else {
4951                 inode->i_mapping->a_ops = &btrfs_aops;
4952                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4953                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4954                 d_instantiate(dentry, inode);
4955         }
4956 out_unlock:
4957         nr = trans->blocks_used;
4958         btrfs_end_transaction(trans, root);
4959         if (drop_inode) {
4960                 inode_dec_link_count(inode);
4961                 iput(inode);
4962         }
4963         btrfs_btree_balance_dirty(root, nr);
4964         return err;
4965 }
4966
4967 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4968                       struct dentry *dentry)
4969 {
4970         struct btrfs_trans_handle *trans;
4971         struct btrfs_root *root = BTRFS_I(dir)->root;
4972         struct inode *inode = old_dentry->d_inode;
4973         u64 index;
4974         unsigned long nr = 0;
4975         int err;
4976         int drop_inode = 0;
4977
4978         /* do not allow sys_link's with other subvols of the same device */
4979         if (root->objectid != BTRFS_I(inode)->root->objectid)
4980                 return -EXDEV;
4981
4982         if (inode->i_nlink == ~0U)
4983                 return -EMLINK;
4984
4985         err = btrfs_set_inode_index(dir, &index);
4986         if (err)
4987                 goto fail;
4988
4989         /*
4990          * 2 items for inode and inode ref
4991          * 2 items for dir items
4992          * 1 item for parent inode
4993          */
4994         trans = btrfs_start_transaction(root, 5);
4995         if (IS_ERR(trans)) {
4996                 err = PTR_ERR(trans);
4997                 goto fail;
4998         }
4999
5000         btrfs_inc_nlink(inode);
5001         inode_inc_iversion(inode);
5002         inode->i_ctime = CURRENT_TIME;
5003         ihold(inode);
5004
5005         err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5006
5007         if (err) {
5008                 drop_inode = 1;
5009         } else {
5010                 struct dentry *parent = dentry->d_parent;
5011                 err = btrfs_update_inode(trans, root, inode);
5012                 if (err)
5013                         goto fail;
5014                 d_instantiate(dentry, inode);
5015                 btrfs_log_new_name(trans, inode, NULL, parent);
5016         }
5017
5018         nr = trans->blocks_used;
5019         btrfs_end_transaction(trans, root);
5020 fail:
5021         if (drop_inode) {
5022                 inode_dec_link_count(inode);
5023                 iput(inode);
5024         }
5025         btrfs_btree_balance_dirty(root, nr);
5026         return err;
5027 }
5028
5029 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
5030 {
5031         struct inode *inode = NULL;
5032         struct btrfs_trans_handle *trans;
5033         struct btrfs_root *root = BTRFS_I(dir)->root;
5034         int err = 0;
5035         int drop_on_err = 0;
5036         u64 objectid = 0;
5037         u64 index = 0;
5038         unsigned long nr = 1;
5039
5040         /*
5041          * 2 items for inode and ref
5042          * 2 items for dir items
5043          * 1 for xattr if selinux is on
5044          */
5045         trans = btrfs_start_transaction(root, 5);
5046         if (IS_ERR(trans))
5047                 return PTR_ERR(trans);
5048
5049         err = btrfs_find_free_ino(root, &objectid);
5050         if (err)
5051                 goto out_fail;
5052
5053         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5054                                 dentry->d_name.len, btrfs_ino(dir), objectid,
5055                                 S_IFDIR | mode, &index);
5056         if (IS_ERR(inode)) {
5057                 err = PTR_ERR(inode);
5058                 goto out_fail;
5059         }
5060
5061         drop_on_err = 1;
5062
5063         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5064         if (err)
5065                 goto out_fail;
5066
5067         inode->i_op = &btrfs_dir_inode_operations;
5068         inode->i_fop = &btrfs_dir_file_operations;
5069
5070         btrfs_i_size_write(inode, 0);
5071         err = btrfs_update_inode(trans, root, inode);
5072         if (err)
5073                 goto out_fail;
5074
5075         err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5076                              dentry->d_name.len, 0, index);
5077         if (err)
5078                 goto out_fail;
5079
5080         d_instantiate(dentry, inode);
5081         drop_on_err = 0;
5082
5083 out_fail:
5084         nr = trans->blocks_used;
5085         btrfs_end_transaction(trans, root);
5086         if (drop_on_err)
5087                 iput(inode);
5088         btrfs_btree_balance_dirty(root, nr);
5089         return err;
5090 }
5091
5092 /* helper for btfs_get_extent.  Given an existing extent in the tree,
5093  * and an extent that you want to insert, deal with overlap and insert
5094  * the new extent into the tree.
5095  */
5096 static int merge_extent_mapping(struct extent_map_tree *em_tree,
5097                                 struct extent_map *existing,
5098                                 struct extent_map *em,
5099                                 u64 map_start, u64 map_len)
5100 {
5101         u64 start_diff;
5102
5103         BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5104         start_diff = map_start - em->start;
5105         em->start = map_start;
5106         em->len = map_len;
5107         if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5108             !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
5109                 em->block_start += start_diff;
5110                 em->block_len -= start_diff;
5111         }
5112         return add_extent_mapping(em_tree, em);
5113 }
5114
5115 static noinline int uncompress_inline(struct btrfs_path *path,
5116                                       struct inode *inode, struct page *page,
5117                                       size_t pg_offset, u64 extent_offset,
5118                                       struct btrfs_file_extent_item *item)
5119 {
5120         int ret;
5121         struct extent_buffer *leaf = path->nodes[0];
5122         char *tmp;
5123         size_t max_size;
5124         unsigned long inline_size;
5125         unsigned long ptr;
5126         int compress_type;
5127
5128         WARN_ON(pg_offset != 0);
5129         compress_type = btrfs_file_extent_compression(leaf, item);
5130         max_size = btrfs_file_extent_ram_bytes(leaf, item);
5131         inline_size = btrfs_file_extent_inline_item_len(leaf,
5132                                         btrfs_item_nr(leaf, path->slots[0]));
5133         tmp = kmalloc(inline_size, GFP_NOFS);
5134         if (!tmp)
5135                 return -ENOMEM;
5136         ptr = btrfs_file_extent_inline_start(item);
5137
5138         read_extent_buffer(leaf, tmp, ptr, inline_size);
5139
5140         max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
5141         ret = btrfs_decompress(compress_type, tmp, page,
5142                                extent_offset, inline_size, max_size);
5143         if (ret) {
5144                 char *kaddr = kmap_atomic(page);
5145                 unsigned long copy_size = min_t(u64,
5146                                   PAGE_CACHE_SIZE - pg_offset,
5147                                   max_size - extent_offset);
5148                 memset(kaddr + pg_offset, 0, copy_size);
5149                 kunmap_atomic(kaddr);
5150         }
5151         kfree(tmp);
5152         return 0;
5153 }
5154
5155 /*
5156  * a bit scary, this does extent mapping from logical file offset to the disk.
5157  * the ugly parts come from merging extents from the disk with the in-ram
5158  * representation.  This gets more complex because of the data=ordered code,
5159  * where the in-ram extents might be locked pending data=ordered completion.
5160  *
5161  * This also copies inline extents directly into the page.
5162  */
5163
5164 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
5165                                     size_t pg_offset, u64 start, u64 len,
5166                                     int create)
5167 {
5168         int ret;
5169         int err = 0;
5170         u64 bytenr;
5171         u64 extent_start = 0;
5172         u64 extent_end = 0;
5173         u64 objectid = btrfs_ino(inode);
5174         u32 found_type;
5175         struct btrfs_path *path = NULL;
5176         struct btrfs_root *root = BTRFS_I(inode)->root;
5177         struct btrfs_file_extent_item *item;
5178         struct extent_buffer *leaf;
5179         struct btrfs_key found_key;
5180         struct extent_map *em = NULL;
5181         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5182         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5183         struct btrfs_trans_handle *trans = NULL;
5184         int compress_type;
5185
5186 again:
5187         read_lock(&em_tree->lock);
5188         em = lookup_extent_mapping(em_tree, start, len);
5189         if (em)
5190                 em->bdev = root->fs_info->fs_devices->latest_bdev;
5191         read_unlock(&em_tree->lock);
5192
5193         if (em) {
5194                 if (em->start > start || em->start + em->len <= start)
5195                         free_extent_map(em);
5196                 else if (em->block_start == EXTENT_MAP_INLINE && page)
5197                         free_extent_map(em);
5198                 else
5199                         goto out;
5200         }
5201         em = alloc_extent_map();
5202         if (!em) {
5203                 err = -ENOMEM;
5204                 goto out;
5205         }
5206         em->bdev = root->fs_info->fs_devices->latest_bdev;
5207         em->start = EXTENT_MAP_HOLE;
5208         em->orig_start = EXTENT_MAP_HOLE;
5209         em->len = (u64)-1;
5210         em->block_len = (u64)-1;
5211
5212         if (!path) {
5213                 path = btrfs_alloc_path();
5214                 if (!path) {
5215                         err = -ENOMEM;
5216                         goto out;
5217                 }
5218                 /*
5219                  * Chances are we'll be called again, so go ahead and do
5220                  * readahead
5221                  */
5222                 path->reada = 1;
5223         }
5224
5225         ret = btrfs_lookup_file_extent(trans, root, path,
5226                                        objectid, start, trans != NULL);
5227         if (ret < 0) {
5228                 err = ret;
5229                 goto out;
5230         }
5231
5232         if (ret != 0) {
5233                 if (path->slots[0] == 0)
5234                         goto not_found;
5235                 path->slots[0]--;
5236         }
5237
5238         leaf = path->nodes[0];
5239         item = btrfs_item_ptr(leaf, path->slots[0],
5240                               struct btrfs_file_extent_item);
5241         /* are we inside the extent that was found? */
5242         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5243         found_type = btrfs_key_type(&found_key);
5244         if (found_key.objectid != objectid ||
5245             found_type != BTRFS_EXTENT_DATA_KEY) {
5246                 goto not_found;
5247         }
5248
5249         found_type = btrfs_file_extent_type(leaf, item);
5250         extent_start = found_key.offset;
5251         compress_type = btrfs_file_extent_compression(leaf, item);
5252         if (found_type == BTRFS_FILE_EXTENT_REG ||
5253             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5254                 extent_end = extent_start +
5255                        btrfs_file_extent_num_bytes(leaf, item);
5256         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5257                 size_t size;
5258                 size = btrfs_file_extent_inline_len(leaf, item);
5259                 extent_end = (extent_start + size + root->sectorsize - 1) &
5260                         ~((u64)root->sectorsize - 1);
5261         }
5262
5263         if (start >= extent_end) {
5264                 path->slots[0]++;
5265                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5266                         ret = btrfs_next_leaf(root, path);
5267                         if (ret < 0) {
5268                                 err = ret;
5269                                 goto out;
5270                         }
5271                         if (ret > 0)
5272                                 goto not_found;
5273                         leaf = path->nodes[0];
5274                 }
5275                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5276                 if (found_key.objectid != objectid ||
5277                     found_key.type != BTRFS_EXTENT_DATA_KEY)
5278                         goto not_found;
5279                 if (start + len <= found_key.offset)
5280                         goto not_found;
5281                 em->start = start;
5282                 em->len = found_key.offset - start;
5283                 goto not_found_em;
5284         }
5285
5286         if (found_type == BTRFS_FILE_EXTENT_REG ||
5287             found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5288                 em->start = extent_start;
5289                 em->len = extent_end - extent_start;
5290                 em->orig_start = extent_start -
5291                                  btrfs_file_extent_offset(leaf, item);
5292                 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5293                 if (bytenr == 0) {
5294                         em->block_start = EXTENT_MAP_HOLE;
5295                         goto insert;
5296                 }
5297                 if (compress_type != BTRFS_COMPRESS_NONE) {
5298                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5299                         em->compress_type = compress_type;
5300                         em->block_start = bytenr;
5301                         em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5302                                                                          item);
5303                 } else {
5304                         bytenr += btrfs_file_extent_offset(leaf, item);
5305                         em->block_start = bytenr;
5306                         em->block_len = em->len;
5307                         if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5308                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5309                 }
5310                 goto insert;
5311         } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5312                 unsigned long ptr;
5313                 char *map;
5314                 size_t size;
5315                 size_t extent_offset;
5316                 size_t copy_size;
5317
5318                 em->block_start = EXTENT_MAP_INLINE;
5319                 if (!page || create) {
5320                         em->start = extent_start;
5321                         em->len = extent_end - extent_start;
5322                         goto out;
5323                 }
5324
5325                 size = btrfs_file_extent_inline_len(leaf, item);
5326                 extent_offset = page_offset(page) + pg_offset - extent_start;
5327                 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5328                                 size - extent_offset);
5329                 em->start = extent_start + extent_offset;
5330                 em->len = (copy_size + root->sectorsize - 1) &
5331                         ~((u64)root->sectorsize - 1);
5332                 em->orig_start = EXTENT_MAP_INLINE;
5333                 if (compress_type) {
5334                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5335                         em->compress_type = compress_type;
5336                 }
5337                 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5338                 if (create == 0 && !PageUptodate(page)) {
5339                         if (btrfs_file_extent_compression(leaf, item) !=
5340                             BTRFS_COMPRESS_NONE) {
5341                                 ret = uncompress_inline(path, inode, page,
5342                                                         pg_offset,
5343                                                         extent_offset, item);
5344                                 BUG_ON(ret); /* -ENOMEM */
5345                         } else {
5346                                 map = kmap(page);
5347                                 read_extent_buffer(leaf, map + pg_offset, ptr,
5348                                                    copy_size);
5349                                 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5350                                         memset(map + pg_offset + copy_size, 0,
5351                                                PAGE_CACHE_SIZE - pg_offset -
5352                                                copy_size);
5353                                 }
5354                                 kunmap(page);
5355                         }
5356                         flush_dcache_page(page);
5357                 } else if (create && PageUptodate(page)) {
5358                         BUG();
5359                         if (!trans) {
5360                                 kunmap(page);
5361                                 free_extent_map(em);
5362                                 em = NULL;
5363
5364                                 btrfs_release_path(path);
5365                                 trans = btrfs_join_transaction(root);
5366
5367                                 if (IS_ERR(trans))
5368                                         return ERR_CAST(trans);
5369                                 goto again;
5370                         }
5371                         map = kmap(page);
5372                         write_extent_buffer(leaf, map + pg_offset, ptr,
5373                                             copy_size);
5374                         kunmap(page);
5375                         btrfs_mark_buffer_dirty(leaf);
5376                 }
5377                 set_extent_uptodate(io_tree, em->start,
5378                                     extent_map_end(em) - 1, NULL, GFP_NOFS);
5379                 goto insert;
5380         } else {
5381                 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5382                 WARN_ON(1);
5383         }
5384 not_found:
5385         em->start = start;
5386         em->len = len;
5387 not_found_em:
5388         em->block_start = EXTENT_MAP_HOLE;
5389         set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5390 insert:
5391         btrfs_release_path(path);
5392         if (em->start > start || extent_map_end(em) <= start) {
5393                 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5394                        "[%llu %llu]\n", (unsigned long long)em->start,
5395                        (unsigned long long)em->len,
5396                        (unsigned long long)start,
5397                        (unsigned long long)len);
5398                 err = -EIO;
5399                 goto out;
5400         }
5401
5402         err = 0;
5403         write_lock(&em_tree->lock);
5404         ret = add_extent_mapping(em_tree, em);
5405         /* it is possible that someone inserted the extent into the tree
5406          * while we had the lock dropped.  It is also possible that
5407          * an overlapping map exists in the tree
5408          */
5409         if (ret == -EEXIST) {
5410                 struct extent_map *existing;
5411
5412                 ret = 0;
5413
5414                 existing = lookup_extent_mapping(em_tree, start, len);
5415                 if (existing && (existing->start > start ||
5416                     existing->start + existing->len <= start)) {
5417                         free_extent_map(existing);
5418                         existing = NULL;
5419                 }
5420                 if (!existing) {
5421                         existing = lookup_extent_mapping(em_tree, em->start,
5422                                                          em->len);
5423                         if (existing) {
5424                                 err = merge_extent_mapping(em_tree, existing,
5425                                                            em, start,
5426                                                            root->sectorsize);
5427                                 free_extent_map(existing);
5428                                 if (err) {
5429                                         free_extent_map(em);
5430                                         em = NULL;
5431                                 }
5432                         } else {
5433                                 err = -EIO;
5434                                 free_extent_map(em);
5435                                 em = NULL;
5436                         }
5437                 } else {
5438                         free_extent_map(em);
5439                         em = existing;
5440                         err = 0;
5441                 }
5442         }
5443         write_unlock(&em_tree->lock);
5444 out:
5445
5446         trace_btrfs_get_extent(root, em);
5447
5448         if (path)
5449                 btrfs_free_path(path);
5450         if (trans) {
5451                 ret = btrfs_end_transaction(trans, root);
5452                 if (!err)
5453                         err = ret;
5454         }
5455         if (err) {
5456                 free_extent_map(em);
5457                 return ERR_PTR(err);
5458         }
5459         BUG_ON(!em); /* Error is always set */
5460         return em;
5461 }
5462
5463 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5464                                            size_t pg_offset, u64 start, u64 len,
5465                                            int create)
5466 {
5467         struct extent_map *em;
5468         struct extent_map *hole_em = NULL;
5469         u64 range_start = start;
5470         u64 end;
5471         u64 found;
5472         u64 found_end;
5473         int err = 0;
5474
5475         em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5476         if (IS_ERR(em))
5477                 return em;
5478         if (em) {
5479                 /*
5480                  * if our em maps to a hole, there might
5481                  * actually be delalloc bytes behind it
5482                  */
5483                 if (em->block_start != EXTENT_MAP_HOLE)
5484                         return em;
5485                 else
5486                         hole_em = em;
5487         }
5488
5489         /* check to see if we've wrapped (len == -1 or similar) */
5490         end = start + len;
5491         if (end < start)
5492                 end = (u64)-1;
5493         else
5494                 end -= 1;
5495
5496         em = NULL;
5497
5498         /* ok, we didn't find anything, lets look for delalloc */
5499         found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5500                                  end, len, EXTENT_DELALLOC, 1);
5501         found_end = range_start + found;
5502         if (found_end < range_start)
5503                 found_end = (u64)-1;
5504
5505         /*
5506          * we didn't find anything useful, return
5507          * the original results from get_extent()
5508          */
5509         if (range_start > end || found_end <= start) {
5510                 em = hole_em;
5511                 hole_em = NULL;
5512                 goto out;
5513         }
5514
5515         /* adjust the range_start to make sure it doesn't
5516          * go backwards from the start they passed in
5517          */
5518         range_start = max(start,range_start);
5519         found = found_end - range_start;
5520
5521         if (found > 0) {
5522                 u64 hole_start = start;
5523                 u64 hole_len = len;
5524
5525                 em = alloc_extent_map();
5526                 if (!em) {
5527                         err = -ENOMEM;
5528                         goto out;
5529                 }
5530                 /*
5531                  * when btrfs_get_extent can't find anything it
5532                  * returns one huge hole
5533                  *
5534                  * make sure what it found really fits our range, and
5535                  * adjust to make sure it is based on the start from
5536                  * the caller
5537                  */
5538                 if (hole_em) {
5539                         u64 calc_end = extent_map_end(hole_em);
5540
5541                         if (calc_end <= start || (hole_em->start > end)) {
5542                                 free_extent_map(hole_em);
5543                                 hole_em = NULL;
5544                         } else {
5545                                 hole_start = max(hole_em->start, start);
5546                                 hole_len = calc_end - hole_start;
5547                         }
5548                 }
5549                 em->bdev = NULL;
5550                 if (hole_em && range_start > hole_start) {
5551                         /* our hole starts before our delalloc, so we
5552                          * have to return just the parts of the hole
5553                          * that go until  the delalloc starts
5554                          */
5555                         em->len = min(hole_len,
5556                                       range_start - hole_start);
5557                         em->start = hole_start;
5558                         em->orig_start = hole_start;
5559                         /*
5560                          * don't adjust block start at all,
5561                          * it is fixed at EXTENT_MAP_HOLE
5562                          */
5563                         em->block_start = hole_em->block_start;
5564                         em->block_len = hole_len;
5565                 } else {
5566                         em->start = range_start;
5567                         em->len = found;
5568                         em->orig_start = range_start;
5569                         em->block_start = EXTENT_MAP_DELALLOC;
5570                         em->block_len = found;
5571                 }
5572         } else if (hole_em) {
5573                 return hole_em;
5574         }
5575 out:
5576
5577         free_extent_map(hole_em);
5578         if (err) {
5579                 free_extent_map(em);
5580                 return ERR_PTR(err);
5581         }
5582         return em;
5583 }
5584
5585 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5586                                                   struct extent_map *em,
5587                                                   u64 start, u64 len)
5588 {
5589         struct btrfs_root *root = BTRFS_I(inode)->root;
5590         struct btrfs_trans_handle *trans;
5591         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5592         struct btrfs_key ins;
5593         u64 alloc_hint;
5594         int ret;
5595         bool insert = false;
5596
5597         /*
5598          * Ok if the extent map we looked up is a hole and is for the exact
5599          * range we want, there is no reason to allocate a new one, however if
5600          * it is not right then we need to free this one and drop the cache for
5601          * our range.
5602          */
5603         if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5604             em->len != len) {
5605                 free_extent_map(em);
5606                 em = NULL;
5607                 insert = true;
5608                 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5609         }
5610
5611         trans = btrfs_join_transaction(root);
5612         if (IS_ERR(trans))
5613                 return ERR_CAST(trans);
5614
5615         if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
5616                 btrfs_add_inode_defrag(trans, inode);
5617
5618         trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5619
5620         alloc_hint = get_extent_allocation_hint(inode, start, len);
5621         ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5622                                    alloc_hint, &ins, 1);
5623         if (ret) {
5624                 em = ERR_PTR(ret);
5625                 goto out;
5626         }
5627
5628         if (!em) {
5629                 em = alloc_extent_map();
5630                 if (!em) {
5631                         em = ERR_PTR(-ENOMEM);
5632                         goto out;
5633                 }
5634         }
5635
5636         em->start = start;
5637         em->orig_start = em->start;
5638         em->len = ins.offset;
5639
5640         em->block_start = ins.objectid;
5641         em->block_len = ins.offset;
5642         em->bdev = root->fs_info->fs_devices->latest_bdev;
5643
5644         /*
5645          * We need to do this because if we're using the original em we searched
5646          * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5647          */
5648         em->flags = 0;
5649         set_bit(EXTENT_FLAG_PINNED, &em->flags);
5650
5651         while (insert) {
5652                 write_lock(&em_tree->lock);
5653                 ret = add_extent_mapping(em_tree, em);
5654                 write_unlock(&em_tree->lock);
5655                 if (ret != -EEXIST)
5656                         break;
5657                 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5658         }
5659
5660         ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5661                                            ins.offset, ins.offset, 0);
5662         if (ret) {
5663                 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5664                 em = ERR_PTR(ret);
5665         }
5666 out:
5667         btrfs_end_transaction(trans, root);
5668         return em;
5669 }
5670
5671 /*
5672  * returns 1 when the nocow is safe, < 1 on error, 0 if the
5673  * block must be cow'd
5674  */
5675 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5676                                       struct inode *inode, u64 offset, u64 len)
5677 {
5678         struct btrfs_path *path;
5679         int ret;
5680         struct extent_buffer *leaf;
5681         struct btrfs_root *root = BTRFS_I(inode)->root;
5682         struct btrfs_file_extent_item *fi;
5683         struct btrfs_key key;
5684         u64 disk_bytenr;
5685         u64 backref_offset;
5686         u64 extent_end;
5687         u64 num_bytes;
5688         int slot;
5689         int found_type;
5690
5691         path = btrfs_alloc_path();
5692         if (!path)
5693                 return -ENOMEM;
5694
5695         ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
5696                                        offset, 0);
5697         if (ret < 0)
5698                 goto out;
5699
5700         slot = path->slots[0];
5701         if (ret == 1) {
5702                 if (slot == 0) {
5703                         /* can't find the item, must cow */
5704                         ret = 0;
5705                         goto out;
5706                 }
5707                 slot--;
5708         }
5709         ret = 0;
5710         leaf = path->nodes[0];
5711         btrfs_item_key_to_cpu(leaf, &key, slot);
5712         if (key.objectid != btrfs_ino(inode) ||
5713             key.type != BTRFS_EXTENT_DATA_KEY) {
5714                 /* not our file or wrong item type, must cow */
5715                 goto out;
5716         }
5717
5718         if (key.offset > offset) {
5719                 /* Wrong offset, must cow */
5720                 goto out;
5721         }
5722
5723         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5724         found_type = btrfs_file_extent_type(leaf, fi);
5725         if (found_type != BTRFS_FILE_EXTENT_REG &&
5726             found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5727                 /* not a regular extent, must cow */
5728                 goto out;
5729         }
5730         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5731         backref_offset = btrfs_file_extent_offset(leaf, fi);
5732
5733         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5734         if (extent_end < offset + len) {
5735                 /* extent doesn't include our full range, must cow */
5736                 goto out;
5737         }
5738
5739         if (btrfs_extent_readonly(root, disk_bytenr))
5740                 goto out;
5741
5742         /*
5743          * look for other files referencing this extent, if we
5744          * find any we must cow
5745          */
5746         if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
5747                                   key.offset - backref_offset, disk_bytenr))
5748                 goto out;
5749
5750         /*
5751          * adjust disk_bytenr and num_bytes to cover just the bytes
5752          * in this extent we are about to write.  If there
5753          * are any csums in that range we have to cow in order
5754          * to keep the csums correct
5755          */
5756         disk_bytenr += backref_offset;
5757         disk_bytenr += offset - key.offset;
5758         num_bytes = min(offset + len, extent_end) - offset;
5759         if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5760                                 goto out;
5761         /*
5762          * all of the above have passed, it is safe to overwrite this extent
5763          * without cow
5764          */
5765         ret = 1;
5766 out:
5767         btrfs_free_path(path);
5768         return ret;
5769 }
5770
5771 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5772                                    struct buffer_head *bh_result, int create)
5773 {
5774         struct extent_map *em;
5775         struct btrfs_root *root = BTRFS_I(inode)->root;
5776         u64 start = iblock << inode->i_blkbits;
5777         u64 len = bh_result->b_size;
5778         struct btrfs_trans_handle *trans;
5779
5780         em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5781         if (IS_ERR(em))
5782                 return PTR_ERR(em);
5783
5784         /*
5785          * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5786          * io.  INLINE is special, and we could probably kludge it in here, but
5787          * it's still buffered so for safety lets just fall back to the generic
5788          * buffered path.
5789          *
5790          * For COMPRESSED we _have_ to read the entire extent in so we can
5791          * decompress it, so there will be buffering required no matter what we
5792          * do, so go ahead and fallback to buffered.
5793          *
5794          * We return -ENOTBLK because thats what makes DIO go ahead and go back
5795          * to buffered IO.  Don't blame me, this is the price we pay for using
5796          * the generic code.
5797          */
5798         if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5799             em->block_start == EXTENT_MAP_INLINE) {
5800                 free_extent_map(em);
5801                 return -ENOTBLK;
5802         }
5803
5804         /* Just a good old fashioned hole, return */
5805         if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5806                         test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5807                 free_extent_map(em);
5808                 /* DIO will do one hole at a time, so just unlock a sector */
5809                 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5810                               start + root->sectorsize - 1);
5811                 return 0;
5812         }
5813
5814         /*
5815          * We don't allocate a new extent in the following cases
5816          *
5817          * 1) The inode is marked as NODATACOW.  In this case we'll just use the
5818          * existing extent.
5819          * 2) The extent is marked as PREALLOC.  We're good to go here and can
5820          * just use the extent.
5821          *
5822          */
5823         if (!create) {
5824                 len = em->len - (start - em->start);
5825                 goto map;
5826         }
5827
5828         if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5829             ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5830              em->block_start != EXTENT_MAP_HOLE)) {
5831                 int type;
5832                 int ret;
5833                 u64 block_start;
5834
5835                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5836                         type = BTRFS_ORDERED_PREALLOC;
5837                 else
5838                         type = BTRFS_ORDERED_NOCOW;
5839                 len = min(len, em->len - (start - em->start));
5840                 block_start = em->block_start + (start - em->start);
5841
5842                 /*
5843                  * we're not going to log anything, but we do need
5844                  * to make sure the current transaction stays open
5845                  * while we look for nocow cross refs
5846                  */
5847                 trans = btrfs_join_transaction(root);
5848                 if (IS_ERR(trans))
5849                         goto must_cow;
5850
5851                 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5852                         ret = btrfs_add_ordered_extent_dio(inode, start,
5853                                            block_start, len, len, type);
5854                         btrfs_end_transaction(trans, root);
5855                         if (ret) {
5856                                 free_extent_map(em);
5857                                 return ret;
5858                         }
5859                         goto unlock;
5860                 }
5861                 btrfs_end_transaction(trans, root);
5862         }
5863 must_cow:
5864         /*
5865          * this will cow the extent, reset the len in case we changed
5866          * it above
5867          */
5868         len = bh_result->b_size;
5869         em = btrfs_new_extent_direct(inode, em, start, len);
5870         if (IS_ERR(em))
5871                 return PTR_ERR(em);
5872         len = min(len, em->len - (start - em->start));
5873 unlock:
5874         clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5875                           EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5876                           0, NULL, GFP_NOFS);
5877 map:
5878         bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5879                 inode->i_blkbits;
5880         bh_result->b_size = len;
5881         bh_result->b_bdev = em->bdev;
5882         set_buffer_mapped(bh_result);
5883         if (create) {
5884                 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5885                         set_buffer_new(bh_result);
5886
5887                 /*
5888                  * Need to update the i_size under the extent lock so buffered
5889                  * readers will get the updated i_size when we unlock.
5890                  */
5891                 if (start + len > i_size_read(inode))
5892                         i_size_write(inode, start + len);
5893         }
5894
5895         free_extent_map(em);
5896
5897         return 0;
5898 }
5899
5900 struct btrfs_dio_private {
5901         struct inode *inode;
5902         u64 logical_offset;
5903         u64 disk_bytenr;
5904         u64 bytes;
5905         u32 *csums;
5906         void *private;
5907
5908         /* number of bios pending for this dio */
5909         atomic_t pending_bios;
5910
5911         /* IO errors */
5912         int errors;
5913
5914         struct bio *orig_bio;
5915 };
5916
5917 static void btrfs_endio_direct_read(struct bio *bio, int err)
5918 {
5919         struct btrfs_dio_private *dip = bio->bi_private;
5920         struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5921         struct bio_vec *bvec = bio->bi_io_vec;
5922         struct inode *inode = dip->inode;
5923         struct btrfs_root *root = BTRFS_I(inode)->root;
5924         u64 start;
5925         u32 *private = dip->csums;
5926
5927         start = dip->logical_offset;
5928         do {
5929                 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5930                         struct page *page = bvec->bv_page;
5931                         char *kaddr;
5932                         u32 csum = ~(u32)0;
5933                         unsigned long flags;
5934
5935                         local_irq_save(flags);
5936                         kaddr = kmap_atomic(page);
5937                         csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5938                                                csum, bvec->bv_len);
5939                         btrfs_csum_final(csum, (char *)&csum);
5940                         kunmap_atomic(kaddr);
5941                         local_irq_restore(flags);
5942
5943                         flush_dcache_page(bvec->bv_page);
5944                         if (csum != *private) {
5945                                 printk(KERN_ERR "btrfs csum failed ino %llu off"
5946                                       " %llu csum %u private %u\n",
5947                                       (unsigned long long)btrfs_ino(inode),
5948                                       (unsigned long long)start,
5949                                       csum, *private);
5950                                 err = -EIO;
5951                         }
5952                 }
5953
5954                 start += bvec->bv_len;
5955                 private++;
5956                 bvec++;
5957         } while (bvec <= bvec_end);
5958
5959         unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5960                       dip->logical_offset + dip->bytes - 1);
5961         bio->bi_private = dip->private;
5962
5963         kfree(dip->csums);
5964         kfree(dip);
5965
5966         /* If we had a csum failure make sure to clear the uptodate flag */
5967         if (err)
5968                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
5969         dio_end_io(bio, err);
5970 }
5971
5972 static void btrfs_endio_direct_write(struct bio *bio, int err)
5973 {
5974         struct btrfs_dio_private *dip = bio->bi_private;
5975         struct inode *inode = dip->inode;
5976         struct btrfs_root *root = BTRFS_I(inode)->root;
5977         struct btrfs_ordered_extent *ordered = NULL;
5978         u64 ordered_offset = dip->logical_offset;
5979         u64 ordered_bytes = dip->bytes;
5980         int ret;
5981
5982         if (err)
5983                 goto out_done;
5984 again:
5985         ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5986                                                    &ordered_offset,
5987                                                    ordered_bytes, !err);
5988         if (!ret)
5989                 goto out_test;
5990
5991         ordered->work.func = finish_ordered_fn;
5992         ordered->work.flags = 0;
5993         btrfs_queue_worker(&root->fs_info->endio_write_workers,
5994                            &ordered->work);
5995 out_test:
5996         /*
5997          * our bio might span multiple ordered extents.  If we haven't
5998          * completed the accounting for the whole dio, go back and try again
5999          */
6000         if (ordered_offset < dip->logical_offset + dip->bytes) {
6001                 ordered_bytes = dip->logical_offset + dip->bytes -
6002                         ordered_offset;
6003                 ordered = NULL;
6004                 goto again;
6005         }
6006 out_done:
6007         bio->bi_private = dip->private;
6008
6009         kfree(dip);
6010
6011         /* If we had an error make sure to clear the uptodate flag */
6012         if (err)
6013                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
6014         dio_end_io(bio, err);
6015 }
6016
6017 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
6018                                     struct bio *bio, int mirror_num,
6019                                     unsigned long bio_flags, u64 offset)
6020 {
6021         int ret;
6022         struct btrfs_root *root = BTRFS_I(inode)->root;
6023         ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
6024         BUG_ON(ret); /* -ENOMEM */
6025         return 0;
6026 }
6027
6028 static void btrfs_end_dio_bio(struct bio *bio, int err)
6029 {
6030         struct btrfs_dio_private *dip = bio->bi_private;
6031
6032         if (err) {
6033                 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
6034                       "sector %#Lx len %u err no %d\n",
6035                       (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
6036                       (unsigned long long)bio->bi_sector, bio->bi_size, err);
6037                 dip->errors = 1;
6038
6039                 /*
6040                  * before atomic variable goto zero, we must make sure
6041                  * dip->errors is perceived to be set.
6042                  */
6043                 smp_mb__before_atomic_dec();
6044         }
6045
6046         /* if there are more bios still pending for this dio, just exit */
6047         if (!atomic_dec_and_test(&dip->pending_bios))
6048                 goto out;
6049
6050         if (dip->errors)
6051                 bio_io_error(dip->orig_bio);
6052         else {
6053                 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
6054                 bio_endio(dip->orig_bio, 0);
6055         }
6056 out:
6057         bio_put(bio);
6058 }
6059
6060 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
6061                                        u64 first_sector, gfp_t gfp_flags)
6062 {
6063         int nr_vecs = bio_get_nr_vecs(bdev);
6064         return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
6065 }
6066
6067 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
6068                                          int rw, u64 file_offset, int skip_sum,
6069                                          u32 *csums, int async_submit)
6070 {
6071         int write = rw & REQ_WRITE;
6072         struct btrfs_root *root = BTRFS_I(inode)->root;
6073         int ret;
6074
6075         bio_get(bio);
6076
6077         if (!write) {
6078                 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
6079                 if (ret)
6080                         goto err;
6081         }
6082
6083         if (skip_sum)
6084                 goto map;
6085
6086         if (write && async_submit) {
6087                 ret = btrfs_wq_submit_bio(root->fs_info,
6088                                    inode, rw, bio, 0, 0,
6089                                    file_offset,
6090                                    __btrfs_submit_bio_start_direct_io,
6091                                    __btrfs_submit_bio_done);
6092                 goto err;
6093         } else if (write) {
6094                 /*
6095                  * If we aren't doing async submit, calculate the csum of the
6096                  * bio now.
6097                  */
6098                 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
6099                 if (ret)
6100                         goto err;
6101         } else if (!skip_sum) {
6102                 ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
6103                                           file_offset, csums);
6104                 if (ret)
6105                         goto err;
6106         }
6107
6108 map:
6109         ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
6110 err:
6111         bio_put(bio);
6112         return ret;
6113 }
6114
6115 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
6116                                     int skip_sum)
6117 {
6118         struct inode *inode = dip->inode;
6119         struct btrfs_root *root = BTRFS_I(inode)->root;
6120         struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6121         struct bio *bio;
6122         struct bio *orig_bio = dip->orig_bio;
6123         struct bio_vec *bvec = orig_bio->bi_io_vec;
6124         u64 start_sector = orig_bio->bi_sector;
6125         u64 file_offset = dip->logical_offset;
6126         u64 submit_len = 0;
6127         u64 map_length;
6128         int nr_pages = 0;
6129         u32 *csums = dip->csums;
6130         int ret = 0;
6131         int async_submit = 0;
6132         int write = rw & REQ_WRITE;
6133
6134         map_length = orig_bio->bi_size;
6135         ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6136                               &map_length, NULL, 0);
6137         if (ret) {
6138                 bio_put(orig_bio);
6139                 return -EIO;
6140         }
6141
6142         if (map_length >= orig_bio->bi_size) {
6143                 bio = orig_bio;
6144                 goto submit;
6145         }
6146
6147         async_submit = 1;
6148         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
6149         if (!bio)
6150                 return -ENOMEM;
6151         bio->bi_private = dip;
6152         bio->bi_end_io = btrfs_end_dio_bio;
6153         atomic_inc(&dip->pending_bios);
6154
6155         while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6156                 if (unlikely(map_length < submit_len + bvec->bv_len ||
6157                     bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6158                                  bvec->bv_offset) < bvec->bv_len)) {
6159                         /*
6160                          * inc the count before we submit the bio so
6161                          * we know the end IO handler won't happen before
6162                          * we inc the count. Otherwise, the dip might get freed
6163                          * before we're done setting it up
6164                          */
6165                         atomic_inc(&dip->pending_bios);
6166                         ret = __btrfs_submit_dio_bio(bio, inode, rw,
6167                                                      file_offset, skip_sum,
6168                                                      csums, async_submit);
6169                         if (ret) {
6170                                 bio_put(bio);
6171                                 atomic_dec(&dip->pending_bios);
6172                                 goto out_err;
6173                         }
6174
6175                         /* Write's use the ordered csums */
6176                         if (!write && !skip_sum)
6177                                 csums = csums + nr_pages;
6178                         start_sector += submit_len >> 9;
6179                         file_offset += submit_len;
6180
6181                         submit_len = 0;
6182                         nr_pages = 0;
6183
6184                         bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6185                                                   start_sector, GFP_NOFS);
6186                         if (!bio)
6187                                 goto out_err;
6188                         bio->bi_private = dip;
6189                         bio->bi_end_io = btrfs_end_dio_bio;
6190
6191                         map_length = orig_bio->bi_size;
6192                         ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6193                                               &map_length, NULL, 0);
6194                         if (ret) {
6195                                 bio_put(bio);
6196                                 goto out_err;
6197                         }
6198                 } else {
6199                         submit_len += bvec->bv_len;
6200                         nr_pages ++;
6201                         bvec++;
6202                 }
6203         }
6204
6205 submit:
6206         ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6207                                      csums, async_submit);
6208         if (!ret)
6209                 return 0;
6210
6211         bio_put(bio);
6212 out_err:
6213         dip->errors = 1;
6214         /*
6215          * before atomic variable goto zero, we must
6216          * make sure dip->errors is perceived to be set.
6217          */
6218         smp_mb__before_atomic_dec();
6219         if (atomic_dec_and_test(&dip->pending_bios))
6220                 bio_io_error(dip->orig_bio);
6221
6222         /* bio_end_io() will handle error, so we needn't return it */
6223         return 0;
6224 }
6225
6226 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6227                                 loff_t file_offset)
6228 {
6229         struct btrfs_root *root = BTRFS_I(inode)->root;
6230         struct btrfs_dio_private *dip;
6231         struct bio_vec *bvec = bio->bi_io_vec;
6232         int skip_sum;
6233         int write = rw & REQ_WRITE;
6234         int ret = 0;
6235
6236         skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6237
6238         dip = kmalloc(sizeof(*dip), GFP_NOFS);
6239         if (!dip) {
6240                 ret = -ENOMEM;
6241                 goto free_ordered;
6242         }
6243         dip->csums = NULL;
6244
6245         /* Write's use the ordered csum stuff, so we don't need dip->csums */
6246         if (!write && !skip_sum) {
6247                 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6248                 if (!dip->csums) {
6249                         kfree(dip);
6250                         ret = -ENOMEM;
6251                         goto free_ordered;
6252                 }
6253         }
6254
6255         dip->private = bio->bi_private;
6256         dip->inode = inode;
6257         dip->logical_offset = file_offset;
6258
6259         dip->bytes = 0;
6260         do {
6261                 dip->bytes += bvec->bv_len;
6262                 bvec++;
6263         } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6264
6265         dip->disk_bytenr = (u64)bio->bi_sector << 9;
6266         bio->bi_private = dip;
6267         dip->errors = 0;
6268         dip->orig_bio = bio;
6269         atomic_set(&dip->pending_bios, 0);
6270
6271         if (write)
6272                 bio->bi_end_io = btrfs_endio_direct_write;
6273         else
6274                 bio->bi_end_io = btrfs_endio_direct_read;
6275
6276         ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6277         if (!ret)
6278                 return;
6279 free_ordered:
6280         /*
6281          * If this is a write, we need to clean up the reserved space and kill
6282          * the ordered extent.
6283          */
6284         if (write) {
6285                 struct btrfs_ordered_extent *ordered;
6286                 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6287                 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6288                     !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6289                         btrfs_free_reserved_extent(root, ordered->start,
6290                                                    ordered->disk_len);
6291                 btrfs_put_ordered_extent(ordered);
6292                 btrfs_put_ordered_extent(ordered);
6293         }
6294         bio_endio(bio, ret);
6295 }
6296
6297 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6298                         const struct iovec *iov, loff_t offset,
6299                         unsigned long nr_segs)
6300 {
6301         int seg;
6302         int i;
6303         size_t size;
6304         unsigned long addr;
6305         unsigned blocksize_mask = root->sectorsize - 1;
6306         ssize_t retval = -EINVAL;
6307         loff_t end = offset;
6308
6309         if (offset & blocksize_mask)
6310                 goto out;
6311
6312         /* Check the memory alignment.  Blocks cannot straddle pages */
6313         for (seg = 0; seg < nr_segs; seg++) {
6314                 addr = (unsigned long)iov[seg].iov_base;
6315                 size = iov[seg].iov_len;
6316                 end += size;
6317                 if ((addr & blocksize_mask) || (size & blocksize_mask))
6318                         goto out;
6319
6320                 /* If this is a write we don't need to check anymore */
6321                 if (rw & WRITE)
6322                         continue;
6323
6324                 /*
6325                  * Check to make sure we don't have duplicate iov_base's in this
6326                  * iovec, if so return EINVAL, otherwise we'll get csum errors
6327                  * when reading back.
6328                  */
6329                 for (i = seg + 1; i < nr_segs; i++) {
6330                         if (iov[seg].iov_base == iov[i].iov_base)
6331                                 goto out;
6332                 }
6333         }
6334         retval = 0;
6335 out:
6336         return retval;
6337 }
6338 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6339                         const struct iovec *iov, loff_t offset,
6340                         unsigned long nr_segs)
6341 {
6342         struct file *file = iocb->ki_filp;
6343         struct inode *inode = file->f_mapping->host;
6344         struct btrfs_ordered_extent *ordered;
6345         struct extent_state *cached_state = NULL;
6346         u64 lockstart, lockend;
6347         ssize_t ret;
6348         int writing = rw & WRITE;
6349         int write_bits = 0;
6350         size_t count = iov_length(iov, nr_segs);
6351
6352         if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6353                             offset, nr_segs)) {
6354                 return 0;
6355         }
6356
6357         lockstart = offset;
6358         lockend = offset + count - 1;
6359
6360         if (writing) {
6361                 ret = btrfs_delalloc_reserve_space(inode, count);
6362                 if (ret)
6363                         goto out;
6364         }
6365
6366         while (1) {
6367                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6368                                  0, &cached_state);
6369                 /*
6370                  * We're concerned with the entire range that we're going to be
6371                  * doing DIO to, so we need to make sure theres no ordered
6372                  * extents in this range.
6373                  */
6374                 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6375                                                      lockend - lockstart + 1);
6376
6377                 /*
6378                  * We need to make sure there are no buffered pages in this
6379                  * range either, we could have raced between the invalidate in
6380                  * generic_file_direct_write and locking the extent.  The
6381                  * invalidate needs to happen so that reads after a write do not
6382                  * get stale data.
6383                  */
6384                 if (!ordered && (!writing ||
6385                     !test_range_bit(&BTRFS_I(inode)->io_tree,
6386                                     lockstart, lockend, EXTENT_UPTODATE, 0,
6387                                     cached_state)))
6388                         break;
6389
6390                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6391                                      &cached_state, GFP_NOFS);
6392
6393                 if (ordered) {
6394                         btrfs_start_ordered_extent(inode, ordered, 1);
6395                         btrfs_put_ordered_extent(ordered);
6396                 } else {
6397                         /* Screw you mmap */
6398                         ret = filemap_write_and_wait_range(file->f_mapping,
6399                                                            lockstart,
6400                                                            lockend);
6401                         if (ret)
6402                                 goto out;
6403
6404                         /*
6405                          * If we found a page that couldn't be invalidated just
6406                          * fall back to buffered.
6407                          */
6408                         ret = invalidate_inode_pages2_range(file->f_mapping,
6409                                         lockstart >> PAGE_CACHE_SHIFT,
6410                                         lockend >> PAGE_CACHE_SHIFT);
6411                         if (ret) {
6412                                 if (ret == -EBUSY)
6413                                         ret = 0;
6414                                 goto out;
6415                         }
6416                 }
6417
6418                 cond_resched();
6419         }
6420
6421         /*
6422          * we don't use btrfs_set_extent_delalloc because we don't want
6423          * the dirty or uptodate bits
6424          */
6425         if (writing) {
6426                 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6427                 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6428                                      EXTENT_DELALLOC, NULL, &cached_state,
6429                                      GFP_NOFS);
6430                 if (ret) {
6431                         clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6432                                          lockend, EXTENT_LOCKED | write_bits,
6433                                          1, 0, &cached_state, GFP_NOFS);
6434                         goto out;
6435                 }
6436         }
6437
6438         free_extent_state(cached_state);
6439         cached_state = NULL;
6440
6441         ret = __blockdev_direct_IO(rw, iocb, inode,
6442                    BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6443                    iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6444                    btrfs_submit_direct, 0);
6445
6446         if (ret < 0 && ret != -EIOCBQUEUED) {
6447                 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6448                               offset + iov_length(iov, nr_segs) - 1,
6449                               EXTENT_LOCKED | write_bits, 1, 0,
6450                               &cached_state, GFP_NOFS);
6451         } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6452                 /*
6453                  * We're falling back to buffered, unlock the section we didn't
6454                  * do IO on.
6455                  */
6456                 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6457                               offset + iov_length(iov, nr_segs) - 1,
6458                               EXTENT_LOCKED | write_bits, 1, 0,
6459                               &cached_state, GFP_NOFS);
6460         }
6461 out:
6462         free_extent_state(cached_state);
6463         return ret;
6464 }
6465
6466 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6467                 __u64 start, __u64 len)
6468 {
6469         return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6470 }
6471
6472 int btrfs_readpage(struct file *file, struct page *page)
6473 {
6474         struct extent_io_tree *tree;
6475         tree = &BTRFS_I(page->mapping->host)->io_tree;
6476         return extent_read_full_page(tree, page, btrfs_get_extent, 0);
6477 }
6478
6479 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6480 {
6481         struct extent_io_tree *tree;
6482
6483
6484         if (current->flags & PF_MEMALLOC) {
6485                 redirty_page_for_writepage(wbc, page);
6486                 unlock_page(page);
6487                 return 0;
6488         }
6489         tree = &BTRFS_I(page->mapping->host)->io_tree;
6490         return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6491 }
6492
6493 int btrfs_writepages(struct address_space *mapping,
6494                      struct writeback_control *wbc)
6495 {
6496         struct extent_io_tree *tree;
6497
6498         tree = &BTRFS_I(mapping->host)->io_tree;
6499         return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6500 }
6501
6502 static int
6503 btrfs_readpages(struct file *file, struct address_space *mapping,
6504                 struct list_head *pages, unsigned nr_pages)
6505 {
6506         struct extent_io_tree *tree;
6507         tree = &BTRFS_I(mapping->host)->io_tree;
6508         return extent_readpages(tree, mapping, pages, nr_pages,
6509                                 btrfs_get_extent);
6510 }
6511 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6512 {
6513         struct extent_io_tree *tree;
6514         struct extent_map_tree *map;
6515         int ret;
6516
6517         tree = &BTRFS_I(page->mapping->host)->io_tree;
6518         map = &BTRFS_I(page->mapping->host)->extent_tree;
6519         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6520         if (ret == 1) {
6521                 ClearPagePrivate(page);
6522                 set_page_private(page, 0);
6523                 page_cache_release(page);
6524         }
6525         return ret;
6526 }
6527
6528 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6529 {
6530         if (PageWriteback(page) || PageDirty(page))
6531                 return 0;
6532         return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6533 }
6534
6535 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6536 {
6537         struct inode *inode = page->mapping->host;
6538         struct extent_io_tree *tree;
6539         struct btrfs_ordered_extent *ordered;
6540         struct extent_state *cached_state = NULL;
6541         u64 page_start = page_offset(page);
6542         u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6543
6544         /*
6545          * we have the page locked, so new writeback can't start,
6546          * and the dirty bit won't be cleared while we are here.
6547          *
6548          * Wait for IO on this page so that we can safely clear
6549          * the PagePrivate2 bit and do ordered accounting
6550          */
6551         wait_on_page_writeback(page);
6552
6553         tree = &BTRFS_I(inode)->io_tree;
6554         if (offset) {
6555                 btrfs_releasepage(page, GFP_NOFS);
6556                 return;
6557         }
6558         lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
6559         ordered = btrfs_lookup_ordered_extent(inode,
6560                                            page_offset(page));
6561         if (ordered) {
6562                 /*
6563                  * IO on this page will never be started, so we need
6564                  * to account for any ordered extents now
6565                  */
6566                 clear_extent_bit(tree, page_start, page_end,
6567                                  EXTENT_DIRTY | EXTENT_DELALLOC |
6568                                  EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6569                                  &cached_state, GFP_NOFS);
6570                 /*
6571                  * whoever cleared the private bit is responsible
6572                  * for the finish_ordered_io
6573                  */
6574                 if (TestClearPagePrivate2(page) &&
6575                     btrfs_dec_test_ordered_pending(inode, &ordered, page_start,
6576                                                    PAGE_CACHE_SIZE, 1)) {
6577                         btrfs_finish_ordered_io(ordered);
6578                 }
6579                 btrfs_put_ordered_extent(ordered);
6580                 cached_state = NULL;
6581                 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
6582         }
6583         clear_extent_bit(tree, page_start, page_end,
6584                  EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6585                  EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6586         __btrfs_releasepage(page, GFP_NOFS);
6587
6588         ClearPageChecked(page);
6589         if (PagePrivate(page)) {
6590                 ClearPagePrivate(page);
6591                 set_page_private(page, 0);
6592                 page_cache_release(page);
6593         }
6594 }
6595
6596 /*
6597  * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6598  * called from a page fault handler when a page is first dirtied. Hence we must
6599  * be careful to check for EOF conditions here. We set the page up correctly
6600  * for a written page which means we get ENOSPC checking when writing into
6601  * holes and correct delalloc and unwritten extent mapping on filesystems that
6602  * support these features.
6603  *
6604  * We are not allowed to take the i_mutex here so we have to play games to
6605  * protect against truncate races as the page could now be beyond EOF.  Because
6606  * vmtruncate() writes the inode size before removing pages, once we have the
6607  * page lock we can determine safely if the page is beyond EOF. If it is not
6608  * beyond EOF, then the page is guaranteed safe against truncation until we
6609  * unlock the page.
6610  */
6611 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6612 {
6613         struct page *page = vmf->page;
6614         struct inode *inode = fdentry(vma->vm_file)->d_inode;
6615         struct btrfs_root *root = BTRFS_I(inode)->root;
6616         struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6617         struct btrfs_ordered_extent *ordered;
6618         struct extent_state *cached_state = NULL;
6619         char *kaddr;
6620         unsigned long zero_start;
6621         loff_t size;
6622         int ret;
6623         int reserved = 0;
6624         u64 page_start;
6625         u64 page_end;
6626
6627         ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6628         if (!ret) {
6629                 ret = file_update_time(vma->vm_file);
6630                 reserved = 1;
6631         }
6632         if (ret) {
6633                 if (ret == -ENOMEM)
6634                         ret = VM_FAULT_OOM;
6635                 else /* -ENOSPC, -EIO, etc */
6636                         ret = VM_FAULT_SIGBUS;
6637                 if (reserved)
6638                         goto out;
6639                 goto out_noreserve;
6640         }
6641
6642         ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6643 again:
6644         lock_page(page);
6645         size = i_size_read(inode);
6646         page_start = page_offset(page);
6647         page_end = page_start + PAGE_CACHE_SIZE - 1;
6648
6649         if ((page->mapping != inode->i_mapping) ||
6650             (page_start >= size)) {
6651                 /* page got truncated out from underneath us */
6652                 goto out_unlock;
6653         }
6654         wait_on_page_writeback(page);
6655
6656         lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
6657         set_page_extent_mapped(page);
6658
6659         /*
6660          * we can't set the delalloc bits if there are pending ordered
6661          * extents.  Drop our locks and wait for them to finish
6662          */
6663         ordered = btrfs_lookup_ordered_extent(inode, page_start);
6664         if (ordered) {
6665                 unlock_extent_cached(io_tree, page_start, page_end,
6666                                      &cached_state, GFP_NOFS);
6667                 unlock_page(page);
6668                 btrfs_start_ordered_extent(inode, ordered, 1);
6669                 btrfs_put_ordered_extent(ordered);
6670                 goto again;
6671         }
6672
6673         /*
6674          * XXX - page_mkwrite gets called every time the page is dirtied, even
6675          * if it was already dirty, so for space accounting reasons we need to
6676          * clear any delalloc bits for the range we are fixing to save.  There
6677          * is probably a better way to do this, but for now keep consistent with
6678          * prepare_pages in the normal write path.
6679          */
6680         clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6681                           EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6682                           0, 0, &cached_state, GFP_NOFS);
6683
6684         ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6685                                         &cached_state);
6686         if (ret) {
6687                 unlock_extent_cached(io_tree, page_start, page_end,
6688                                      &cached_state, GFP_NOFS);
6689                 ret = VM_FAULT_SIGBUS;
6690                 goto out_unlock;
6691         }
6692         ret = 0;
6693
6694         /* page is wholly or partially inside EOF */
6695         if (page_start + PAGE_CACHE_SIZE > size)
6696                 zero_start = size & ~PAGE_CACHE_MASK;
6697         else
6698                 zero_start = PAGE_CACHE_SIZE;
6699
6700         if (zero_start != PAGE_CACHE_SIZE) {
6701                 kaddr = kmap(page);
6702                 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6703                 flush_dcache_page(page);
6704                 kunmap(page);
6705         }
6706         ClearPageChecked(page);
6707         set_page_dirty(page);
6708         SetPageUptodate(page);
6709
6710         BTRFS_I(inode)->last_trans = root->fs_info->generation;
6711         BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6712
6713         unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6714
6715 out_unlock:
6716         if (!ret)
6717                 return VM_FAULT_LOCKED;
6718         unlock_page(page);
6719 out:
6720         btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6721 out_noreserve:
6722         return ret;
6723 }
6724
6725 static int btrfs_truncate(struct inode *inode)
6726 {
6727         struct btrfs_root *root = BTRFS_I(inode)->root;
6728         struct btrfs_block_rsv *rsv;
6729         int ret;
6730         int err = 0;
6731         struct btrfs_trans_handle *trans;
6732         unsigned long nr;
6733         u64 mask = root->sectorsize - 1;
6734         u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
6735
6736         ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6737         if (ret)
6738                 return ret;
6739
6740         btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6741         btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6742
6743         /*
6744          * Yes ladies and gentelment, this is indeed ugly.  The fact is we have
6745          * 3 things going on here
6746          *
6747          * 1) We need to reserve space for our orphan item and the space to
6748          * delete our orphan item.  Lord knows we don't want to have a dangling
6749          * orphan item because we didn't reserve space to remove it.
6750          *
6751          * 2) We need to reserve space to update our inode.
6752          *
6753          * 3) We need to have something to cache all the space that is going to
6754          * be free'd up by the truncate operation, but also have some slack
6755          * space reserved in case it uses space during the truncate (thank you
6756          * very much snapshotting).
6757          *
6758          * And we need these to all be seperate.  The fact is we can use alot of
6759          * space doing the truncate, and we have no earthly idea how much space
6760          * we will use, so we need the truncate reservation to be seperate so it
6761          * doesn't end up using space reserved for updating the inode or
6762          * removing the orphan item.  We also need to be able to stop the
6763          * transaction and start a new one, which means we need to be able to
6764          * update the inode several times, and we have no idea of knowing how
6765          * many times that will be, so we can't just reserve 1 item for the
6766          * entirety of the opration, so that has to be done seperately as well.
6767          * Then there is the orphan item, which does indeed need to be held on
6768          * to for the whole operation, and we need nobody to touch this reserved
6769          * space except the orphan code.
6770          *
6771          * So that leaves us with
6772          *
6773          * 1) root->orphan_block_rsv - for the orphan deletion.
6774          * 2) rsv - for the truncate reservation, which we will steal from the
6775          * transaction reservation.
6776          * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6777          * updating the inode.
6778          */
6779         rsv = btrfs_alloc_block_rsv(root);
6780         if (!rsv)
6781                 return -ENOMEM;
6782         rsv->size = min_size;
6783
6784         /*
6785          * 1 for the truncate slack space
6786          * 1 for the orphan item we're going to add
6787          * 1 for the orphan item deletion
6788          * 1 for updating the inode.
6789          */
6790         trans = btrfs_start_transaction(root, 4);
6791         if (IS_ERR(trans)) {
6792                 err = PTR_ERR(trans);
6793                 goto out;
6794         }
6795
6796         /* Migrate the slack space for the truncate to our reserve */
6797         ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
6798                                       min_size);
6799         BUG_ON(ret);
6800
6801         ret = btrfs_orphan_add(trans, inode);
6802         if (ret) {
6803                 btrfs_end_transaction(trans, root);
6804                 goto out;
6805         }
6806
6807         /*
6808          * setattr is responsible for setting the ordered_data_close flag,
6809          * but that is only tested during the last file release.  That
6810          * could happen well after the next commit, leaving a great big
6811          * window where new writes may get lost if someone chooses to write
6812          * to this file after truncating to zero
6813          *
6814          * The inode doesn't have any dirty data here, and so if we commit
6815          * this is a noop.  If someone immediately starts writing to the inode
6816          * it is very likely we'll catch some of their writes in this
6817          * transaction, and the commit will find this file on the ordered
6818          * data list with good things to send down.
6819          *
6820          * This is a best effort solution, there is still a window where
6821          * using truncate to replace the contents of the file will
6822          * end up with a zero length file after a crash.
6823          */
6824         if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
6825                                            &BTRFS_I(inode)->runtime_flags))
6826                 btrfs_add_ordered_operation(trans, root, inode);
6827
6828         while (1) {
6829                 ret = btrfs_block_rsv_refill(root, rsv, min_size);
6830                 if (ret) {
6831                         /*
6832                          * This can only happen with the original transaction we
6833                          * started above, every other time we shouldn't have a
6834                          * transaction started yet.
6835                          */
6836                         if (ret == -EAGAIN)
6837                                 goto end_trans;
6838                         err = ret;
6839                         break;
6840                 }
6841
6842                 if (!trans) {
6843                         /* Just need the 1 for updating the inode */
6844                         trans = btrfs_start_transaction(root, 1);
6845                         if (IS_ERR(trans)) {
6846                                 ret = err = PTR_ERR(trans);
6847                                 trans = NULL;
6848                                 break;
6849                         }
6850                 }
6851
6852                 trans->block_rsv = rsv;
6853
6854                 ret = btrfs_truncate_inode_items(trans, root, inode,
6855                                                  inode->i_size,
6856                                                  BTRFS_EXTENT_DATA_KEY);
6857                 if (ret != -EAGAIN) {
6858                         err = ret;
6859                         break;
6860                 }
6861
6862                 trans->block_rsv = &root->fs_info->trans_block_rsv;
6863                 ret = btrfs_update_inode(trans, root, inode);
6864                 if (ret) {
6865                         err = ret;
6866                         break;
6867                 }
6868 end_trans:
6869                 nr = trans->blocks_used;
6870                 btrfs_end_transaction(trans, root);
6871                 trans = NULL;
6872                 btrfs_btree_balance_dirty(root, nr);
6873         }
6874
6875         if (ret == 0 && inode->i_nlink > 0) {
6876                 trans->block_rsv = root->orphan_block_rsv;
6877                 ret = btrfs_orphan_del(trans, inode);
6878                 if (ret)
6879                         err = ret;
6880         } else if (ret && inode->i_nlink > 0) {
6881                 /*
6882                  * Failed to do the truncate, remove us from the in memory
6883                  * orphan list.
6884                  */
6885                 ret = btrfs_orphan_del(NULL, inode);
6886         }
6887
6888         if (trans) {
6889                 trans->block_rsv = &root->fs_info->trans_block_rsv;
6890                 ret = btrfs_update_inode(trans, root, inode);
6891                 if (ret && !err)
6892                         err = ret;
6893
6894                 nr = trans->blocks_used;
6895                 ret = btrfs_end_transaction(trans, root);
6896                 btrfs_btree_balance_dirty(root, nr);
6897         }
6898
6899 out:
6900         btrfs_free_block_rsv(root, rsv);
6901
6902         if (ret && !err)
6903                 err = ret;
6904
6905         return err;
6906 }
6907
6908 /*
6909  * create a new subvolume directory/inode (helper for the ioctl).
6910  */
6911 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6912                              struct btrfs_root *new_root, u64 new_dirid)
6913 {
6914         struct inode *inode;
6915         int err;
6916         u64 index = 0;
6917
6918         inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
6919                                 new_dirid, new_dirid,
6920                                 S_IFDIR | (~current_umask() & S_IRWXUGO),
6921                                 &index);
6922         if (IS_ERR(inode))
6923                 return PTR_ERR(inode);
6924         inode->i_op = &btrfs_dir_inode_operations;
6925         inode->i_fop = &btrfs_dir_file_operations;
6926
6927         set_nlink(inode, 1);
6928         btrfs_i_size_write(inode, 0);
6929
6930         err = btrfs_update_inode(trans, new_root, inode);
6931
6932         iput(inode);
6933         return err;
6934 }
6935
6936 struct inode *btrfs_alloc_inode(struct super_block *sb)
6937 {
6938         struct btrfs_inode *ei;
6939         struct inode *inode;
6940
6941         ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6942         if (!ei)
6943                 return NULL;
6944
6945         ei->root = NULL;
6946         ei->space_info = NULL;
6947         ei->generation = 0;
6948         ei->last_trans = 0;
6949         ei->last_sub_trans = 0;
6950         ei->logged_trans = 0;
6951         ei->delalloc_bytes = 0;
6952         ei->disk_i_size = 0;
6953         ei->flags = 0;
6954         ei->csum_bytes = 0;
6955         ei->index_cnt = (u64)-1;
6956         ei->last_unlink_trans = 0;
6957
6958         spin_lock_init(&ei->lock);
6959         ei->outstanding_extents = 0;
6960         ei->reserved_extents = 0;
6961
6962         ei->runtime_flags = 0;
6963         ei->force_compress = BTRFS_COMPRESS_NONE;
6964
6965         ei->delayed_node = NULL;
6966
6967         inode = &ei->vfs_inode;
6968         extent_map_tree_init(&ei->extent_tree);
6969         extent_io_tree_init(&ei->io_tree, &inode->i_data);
6970         extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
6971         ei->io_tree.track_uptodate = 1;
6972         ei->io_failure_tree.track_uptodate = 1;
6973         mutex_init(&ei->log_mutex);
6974         mutex_init(&ei->delalloc_mutex);
6975         btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6976         INIT_LIST_HEAD(&ei->delalloc_inodes);
6977         INIT_LIST_HEAD(&ei->ordered_operations);
6978         RB_CLEAR_NODE(&ei->rb_node);
6979
6980         return inode;
6981 }
6982
6983 static void btrfs_i_callback(struct rcu_head *head)
6984 {
6985         struct inode *inode = container_of(head, struct inode, i_rcu);
6986         kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6987 }
6988
6989 void btrfs_destroy_inode(struct inode *inode)
6990 {
6991         struct btrfs_ordered_extent *ordered;
6992         struct btrfs_root *root = BTRFS_I(inode)->root;
6993
6994         WARN_ON(!list_empty(&inode->i_dentry));
6995         WARN_ON(inode->i_data.nrpages);
6996         WARN_ON(BTRFS_I(inode)->outstanding_extents);
6997         WARN_ON(BTRFS_I(inode)->reserved_extents);
6998         WARN_ON(BTRFS_I(inode)->delalloc_bytes);
6999         WARN_ON(BTRFS_I(inode)->csum_bytes);
7000
7001         /*
7002          * This can happen where we create an inode, but somebody else also
7003          * created the same inode and we need to destroy the one we already
7004          * created.
7005          */
7006         if (!root)
7007                 goto free;
7008
7009         /*
7010          * Make sure we're properly removed from the ordered operation
7011          * lists.
7012          */
7013         smp_mb();
7014         if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
7015                 spin_lock(&root->fs_info->ordered_extent_lock);
7016                 list_del_init(&BTRFS_I(inode)->ordered_operations);
7017                 spin_unlock(&root->fs_info->ordered_extent_lock);
7018         }
7019
7020         if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
7021                      &BTRFS_I(inode)->runtime_flags)) {
7022                 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
7023                        (unsigned long long)btrfs_ino(inode));
7024                 atomic_dec(&root->orphan_inodes);
7025         }
7026
7027         while (1) {
7028                 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7029                 if (!ordered)
7030                         break;
7031                 else {
7032                         printk(KERN_ERR "btrfs found ordered "
7033                                "extent %llu %llu on inode cleanup\n",
7034                                (unsigned long long)ordered->file_offset,
7035                                (unsigned long long)ordered->len);
7036                         btrfs_remove_ordered_extent(inode, ordered);
7037                         btrfs_put_ordered_extent(ordered);
7038                         btrfs_put_ordered_extent(ordered);
7039                 }
7040         }
7041         inode_tree_del(inode);
7042         btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
7043 free:
7044         btrfs_remove_delayed_node(inode);
7045         call_rcu(&inode->i_rcu, btrfs_i_callback);
7046 }
7047
7048 int btrfs_drop_inode(struct inode *inode)
7049 {
7050         struct btrfs_root *root = BTRFS_I(inode)->root;
7051
7052         if (btrfs_root_refs(&root->root_item) == 0 &&
7053             !btrfs_is_free_space_inode(root, inode))
7054                 return 1;
7055         else
7056                 return generic_drop_inode(inode);
7057 }
7058
7059 static void init_once(void *foo)
7060 {
7061         struct btrfs_inode *ei = (struct btrfs_inode *) foo;
7062
7063         inode_init_once(&ei->vfs_inode);
7064 }
7065
7066 void btrfs_destroy_cachep(void)
7067 {
7068         if (btrfs_inode_cachep)
7069                 kmem_cache_destroy(btrfs_inode_cachep);
7070         if (btrfs_trans_handle_cachep)
7071                 kmem_cache_destroy(btrfs_trans_handle_cachep);
7072         if (btrfs_transaction_cachep)
7073                 kmem_cache_destroy(btrfs_transaction_cachep);
7074         if (btrfs_path_cachep)
7075                 kmem_cache_destroy(btrfs_path_cachep);
7076         if (btrfs_free_space_cachep)
7077                 kmem_cache_destroy(btrfs_free_space_cachep);
7078 }
7079
7080 int btrfs_init_cachep(void)
7081 {
7082         btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
7083                         sizeof(struct btrfs_inode), 0,
7084                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
7085         if (!btrfs_inode_cachep)
7086                 goto fail;
7087
7088         btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
7089                         sizeof(struct btrfs_trans_handle), 0,
7090                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7091         if (!btrfs_trans_handle_cachep)
7092                 goto fail;
7093
7094         btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
7095                         sizeof(struct btrfs_transaction), 0,
7096                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7097         if (!btrfs_transaction_cachep)
7098                 goto fail;
7099
7100         btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
7101                         sizeof(struct btrfs_path), 0,
7102                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7103         if (!btrfs_path_cachep)
7104                 goto fail;
7105
7106         btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
7107                         sizeof(struct btrfs_free_space), 0,
7108                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7109         if (!btrfs_free_space_cachep)
7110                 goto fail;
7111
7112         return 0;
7113 fail:
7114         btrfs_destroy_cachep();
7115         return -ENOMEM;
7116 }
7117
7118 static int btrfs_getattr(struct vfsmount *mnt,
7119                          struct dentry *dentry, struct kstat *stat)
7120 {
7121         struct inode *inode = dentry->d_inode;
7122         u32 blocksize = inode->i_sb->s_blocksize;
7123
7124         generic_fillattr(inode, stat);
7125         stat->dev = BTRFS_I(inode)->root->anon_dev;
7126         stat->blksize = PAGE_CACHE_SIZE;
7127         stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
7128                 ALIGN(BTRFS_I(inode)->delalloc_bytes, blocksize)) >> 9;
7129         return 0;
7130 }
7131
7132 /*
7133  * If a file is moved, it will inherit the cow and compression flags of the new
7134  * directory.
7135  */
7136 static void fixup_inode_flags(struct inode *dir, struct inode *inode)
7137 {
7138         struct btrfs_inode *b_dir = BTRFS_I(dir);
7139         struct btrfs_inode *b_inode = BTRFS_I(inode);
7140
7141         if (b_dir->flags & BTRFS_INODE_NODATACOW)
7142                 b_inode->flags |= BTRFS_INODE_NODATACOW;
7143         else
7144                 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
7145
7146         if (b_dir->flags & BTRFS_INODE_COMPRESS) {
7147                 b_inode->flags |= BTRFS_INODE_COMPRESS;
7148                 b_inode->flags &= ~BTRFS_INODE_NOCOMPRESS;
7149         } else {
7150                 b_inode->flags &= ~(BTRFS_INODE_COMPRESS |
7151                                     BTRFS_INODE_NOCOMPRESS);
7152         }
7153 }
7154
7155 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
7156                            struct inode *new_dir, struct dentry *new_dentry)
7157 {
7158         struct btrfs_trans_handle *trans;
7159         struct btrfs_root *root = BTRFS_I(old_dir)->root;
7160         struct btrfs_root *dest = BTRFS_I(new_dir)->root;
7161         struct inode *new_inode = new_dentry->d_inode;
7162         struct inode *old_inode = old_dentry->d_inode;
7163         struct timespec ctime = CURRENT_TIME;
7164         u64 index = 0;
7165         u64 root_objectid;
7166         int ret;
7167         u64 old_ino = btrfs_ino(old_inode);
7168
7169         if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
7170                 return -EPERM;
7171
7172         /* we only allow rename subvolume link between subvolumes */
7173         if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
7174                 return -EXDEV;
7175
7176         if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
7177             (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
7178                 return -ENOTEMPTY;
7179
7180         if (S_ISDIR(old_inode->i_mode) && new_inode &&
7181             new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
7182                 return -ENOTEMPTY;
7183         /*
7184          * we're using rename to replace one file with another.
7185          * and the replacement file is large.  Start IO on it now so
7186          * we don't add too much work to the end of the transaction
7187          */
7188         if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
7189             old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
7190                 filemap_flush(old_inode->i_mapping);
7191
7192         /* close the racy window with snapshot create/destroy ioctl */
7193         if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
7194                 down_read(&root->fs_info->subvol_sem);
7195         /*
7196          * We want to reserve the absolute worst case amount of items.  So if
7197          * both inodes are subvols and we need to unlink them then that would
7198          * require 4 item modifications, but if they are both normal inodes it
7199          * would require 5 item modifications, so we'll assume their normal
7200          * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
7201          * should cover the worst case number of items we'll modify.
7202          */
7203         trans = btrfs_start_transaction(root, 20);
7204         if (IS_ERR(trans)) {
7205                 ret = PTR_ERR(trans);
7206                 goto out_notrans;
7207         }
7208
7209         if (dest != root)
7210                 btrfs_record_root_in_trans(trans, dest);
7211
7212         ret = btrfs_set_inode_index(new_dir, &index);
7213         if (ret)
7214                 goto out_fail;
7215
7216         if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7217                 /* force full log commit if subvolume involved. */
7218                 root->fs_info->last_trans_log_full_commit = trans->transid;
7219         } else {
7220                 ret = btrfs_insert_inode_ref(trans, dest,
7221                                              new_dentry->d_name.name,
7222                                              new_dentry->d_name.len,
7223                                              old_ino,
7224                                              btrfs_ino(new_dir), index);
7225                 if (ret)
7226                         goto out_fail;
7227                 /*
7228                  * this is an ugly little race, but the rename is required
7229                  * to make sure that if we crash, the inode is either at the
7230                  * old name or the new one.  pinning the log transaction lets
7231                  * us make sure we don't allow a log commit to come in after
7232                  * we unlink the name but before we add the new name back in.
7233                  */
7234                 btrfs_pin_log_trans(root);
7235         }
7236         /*
7237          * make sure the inode gets flushed if it is replacing
7238          * something.
7239          */
7240         if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
7241                 btrfs_add_ordered_operation(trans, root, old_inode);
7242
7243         inode_inc_iversion(old_dir);
7244         inode_inc_iversion(new_dir);
7245         inode_inc_iversion(old_inode);
7246         old_dir->i_ctime = old_dir->i_mtime = ctime;
7247         new_dir->i_ctime = new_dir->i_mtime = ctime;
7248         old_inode->i_ctime = ctime;
7249
7250         if (old_dentry->d_parent != new_dentry->d_parent)
7251                 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7252
7253         if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7254                 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7255                 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7256                                         old_dentry->d_name.name,
7257                                         old_dentry->d_name.len);
7258         } else {
7259                 ret = __btrfs_unlink_inode(trans, root, old_dir,
7260                                         old_dentry->d_inode,
7261                                         old_dentry->d_name.name,
7262                                         old_dentry->d_name.len);
7263                 if (!ret)
7264                         ret = btrfs_update_inode(trans, root, old_inode);
7265         }
7266         if (ret) {
7267                 btrfs_abort_transaction(trans, root, ret);
7268                 goto out_fail;
7269         }
7270
7271         if (new_inode) {
7272                 inode_inc_iversion(new_inode);
7273                 new_inode->i_ctime = CURRENT_TIME;
7274                 if (unlikely(btrfs_ino(new_inode) ==
7275                              BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7276                         root_objectid = BTRFS_I(new_inode)->location.objectid;
7277                         ret = btrfs_unlink_subvol(trans, dest, new_dir,
7278                                                 root_objectid,
7279                                                 new_dentry->d_name.name,
7280                                                 new_dentry->d_name.len);
7281                         BUG_ON(new_inode->i_nlink == 0);
7282                 } else {
7283                         ret = btrfs_unlink_inode(trans, dest, new_dir,
7284                                                  new_dentry->d_inode,
7285                                                  new_dentry->d_name.name,
7286                                                  new_dentry->d_name.len);
7287                 }
7288                 if (!ret && new_inode->i_nlink == 0) {
7289                         ret = btrfs_orphan_add(trans, new_dentry->d_inode);
7290                         BUG_ON(ret);
7291                 }
7292                 if (ret) {
7293                         btrfs_abort_transaction(trans, root, ret);
7294                         goto out_fail;
7295                 }
7296         }
7297
7298         fixup_inode_flags(new_dir, old_inode);
7299
7300         ret = btrfs_add_link(trans, new_dir, old_inode,
7301                              new_dentry->d_name.name,
7302                              new_dentry->d_name.len, 0, index);
7303         if (ret) {
7304                 btrfs_abort_transaction(trans, root, ret);
7305                 goto out_fail;
7306         }
7307
7308         if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
7309                 struct dentry *parent = new_dentry->d_parent;
7310                 btrfs_log_new_name(trans, old_inode, old_dir, parent);
7311                 btrfs_end_log_trans(root);
7312         }
7313 out_fail:
7314         btrfs_end_transaction(trans, root);
7315 out_notrans:
7316         if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
7317                 up_read(&root->fs_info->subvol_sem);
7318
7319         return ret;
7320 }
7321
7322 /*
7323  * some fairly slow code that needs optimization. This walks the list
7324  * of all the inodes with pending delalloc and forces them to disk.
7325  */
7326 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
7327 {
7328         struct list_head *head = &root->fs_info->delalloc_inodes;
7329         struct btrfs_inode *binode;
7330         struct inode *inode;
7331
7332         if (root->fs_info->sb->s_flags & MS_RDONLY)
7333                 return -EROFS;
7334
7335         spin_lock(&root->fs_info->delalloc_lock);
7336         while (!list_empty(head)) {
7337                 binode = list_entry(head->next, struct btrfs_inode,
7338                                     delalloc_inodes);
7339                 inode = igrab(&binode->vfs_inode);
7340                 if (!inode)
7341                         list_del_init(&binode->delalloc_inodes);
7342                 spin_unlock(&root->fs_info->delalloc_lock);
7343                 if (inode) {
7344                         filemap_flush(inode->i_mapping);
7345                         if (delay_iput)
7346                                 btrfs_add_delayed_iput(inode);
7347                         else
7348                                 iput(inode);
7349                 }
7350                 cond_resched();
7351                 spin_lock(&root->fs_info->delalloc_lock);
7352         }
7353         spin_unlock(&root->fs_info->delalloc_lock);
7354
7355         /* the filemap_flush will queue IO into the worker threads, but
7356          * we have to make sure the IO is actually started and that
7357          * ordered extents get created before we return
7358          */
7359         atomic_inc(&root->fs_info->async_submit_draining);
7360         while (atomic_read(&root->fs_info->nr_async_submits) ||
7361               atomic_read(&root->fs_info->async_delalloc_pages)) {
7362                 wait_event(root->fs_info->async_submit_wait,
7363                    (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7364                     atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7365         }
7366         atomic_dec(&root->fs_info->async_submit_draining);
7367         return 0;
7368 }
7369
7370 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7371                          const char *symname)
7372 {
7373         struct btrfs_trans_handle *trans;
7374         struct btrfs_root *root = BTRFS_I(dir)->root;
7375         struct btrfs_path *path;
7376         struct btrfs_key key;
7377         struct inode *inode = NULL;
7378         int err;
7379         int drop_inode = 0;
7380         u64 objectid;
7381         u64 index = 0 ;
7382         int name_len;
7383         int datasize;
7384         unsigned long ptr;
7385         struct btrfs_file_extent_item *ei;
7386         struct extent_buffer *leaf;
7387         unsigned long nr = 0;
7388
7389         name_len = strlen(symname) + 1;
7390         if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7391                 return -ENAMETOOLONG;
7392
7393         /*
7394          * 2 items for inode item and ref
7395          * 2 items for dir items
7396          * 1 item for xattr if selinux is on
7397          */
7398         trans = btrfs_start_transaction(root, 5);
7399         if (IS_ERR(trans))
7400                 return PTR_ERR(trans);
7401
7402         err = btrfs_find_free_ino(root, &objectid);
7403         if (err)
7404                 goto out_unlock;
7405
7406         inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7407                                 dentry->d_name.len, btrfs_ino(dir), objectid,
7408                                 S_IFLNK|S_IRWXUGO, &index);
7409         if (IS_ERR(inode)) {
7410                 err = PTR_ERR(inode);
7411                 goto out_unlock;
7412         }
7413
7414         err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
7415         if (err) {
7416                 drop_inode = 1;
7417                 goto out_unlock;
7418         }
7419
7420         /*
7421         * If the active LSM wants to access the inode during
7422         * d_instantiate it needs these. Smack checks to see
7423         * if the filesystem supports xattrs by looking at the
7424         * ops vector.
7425         */
7426         inode->i_fop = &btrfs_file_operations;
7427         inode->i_op = &btrfs_file_inode_operations;
7428
7429         err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7430         if (err)
7431                 drop_inode = 1;
7432         else {
7433                 inode->i_mapping->a_ops = &btrfs_aops;
7434                 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7435                 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7436         }
7437         if (drop_inode)
7438                 goto out_unlock;
7439
7440         path = btrfs_alloc_path();
7441         if (!path) {
7442                 err = -ENOMEM;
7443                 drop_inode = 1;
7444                 goto out_unlock;
7445         }
7446         key.objectid = btrfs_ino(inode);
7447         key.offset = 0;
7448         btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7449         datasize = btrfs_file_extent_calc_inline_size(name_len);
7450         err = btrfs_insert_empty_item(trans, root, path, &key,
7451                                       datasize);
7452         if (err) {
7453                 drop_inode = 1;
7454                 btrfs_free_path(path);
7455                 goto out_unlock;
7456         }
7457         leaf = path->nodes[0];
7458         ei = btrfs_item_ptr(leaf, path->slots[0],
7459                             struct btrfs_file_extent_item);
7460         btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7461         btrfs_set_file_extent_type(leaf, ei,
7462                                    BTRFS_FILE_EXTENT_INLINE);
7463         btrfs_set_file_extent_encryption(leaf, ei, 0);
7464         btrfs_set_file_extent_compression(leaf, ei, 0);
7465         btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7466         btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7467
7468         ptr = btrfs_file_extent_inline_start(ei);
7469         write_extent_buffer(leaf, symname, ptr, name_len);
7470         btrfs_mark_buffer_dirty(leaf);
7471         btrfs_free_path(path);
7472
7473         inode->i_op = &btrfs_symlink_inode_operations;
7474         inode->i_mapping->a_ops = &btrfs_symlink_aops;
7475         inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7476         inode_set_bytes(inode, name_len);
7477         btrfs_i_size_write(inode, name_len - 1);
7478         err = btrfs_update_inode(trans, root, inode);
7479         if (err)
7480                 drop_inode = 1;
7481
7482 out_unlock:
7483         if (!err)
7484                 d_instantiate(dentry, inode);
7485         nr = trans->blocks_used;
7486         btrfs_end_transaction(trans, root);
7487         if (drop_inode) {
7488                 inode_dec_link_count(inode);
7489                 iput(inode);
7490         }
7491         btrfs_btree_balance_dirty(root, nr);
7492         return err;
7493 }
7494
7495 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7496                                        u64 start, u64 num_bytes, u64 min_size,
7497                                        loff_t actual_len, u64 *alloc_hint,
7498                                        struct btrfs_trans_handle *trans)
7499 {
7500         struct btrfs_root *root = BTRFS_I(inode)->root;
7501         struct btrfs_key ins;
7502         u64 cur_offset = start;
7503         u64 i_size;
7504         int ret = 0;
7505         bool own_trans = true;
7506
7507         if (trans)
7508                 own_trans = false;
7509         while (num_bytes > 0) {
7510                 if (own_trans) {
7511                         trans = btrfs_start_transaction(root, 3);
7512                         if (IS_ERR(trans)) {
7513                                 ret = PTR_ERR(trans);
7514                                 break;
7515                         }
7516                 }
7517
7518                 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7519                                            0, *alloc_hint, &ins, 1);
7520                 if (ret) {
7521                         if (own_trans)
7522                                 btrfs_end_transaction(trans, root);
7523                         break;
7524                 }
7525
7526                 ret = insert_reserved_file_extent(trans, inode,
7527                                                   cur_offset, ins.objectid,
7528                                                   ins.offset, ins.offset,
7529                                                   ins.offset, 0, 0, 0,
7530                                                   BTRFS_FILE_EXTENT_PREALLOC);
7531                 if (ret) {
7532                         btrfs_abort_transaction(trans, root, ret);
7533                         if (own_trans)
7534                                 btrfs_end_transaction(trans, root);
7535                         break;
7536                 }
7537                 btrfs_drop_extent_cache(inode, cur_offset,
7538                                         cur_offset + ins.offset -1, 0);
7539
7540                 num_bytes -= ins.offset;
7541                 cur_offset += ins.offset;
7542                 *alloc_hint = ins.objectid + ins.offset;
7543
7544                 inode_inc_iversion(inode);
7545                 inode->i_ctime = CURRENT_TIME;
7546                 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7547                 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7548                     (actual_len > inode->i_size) &&
7549                     (cur_offset > inode->i_size)) {
7550                         if (cur_offset > actual_len)
7551                                 i_size = actual_len;
7552                         else
7553                                 i_size = cur_offset;
7554                         i_size_write(inode, i_size);
7555                         btrfs_ordered_update_i_size(inode, i_size, NULL);
7556                 }
7557
7558                 ret = btrfs_update_inode(trans, root, inode);
7559
7560                 if (ret) {
7561                         btrfs_abort_transaction(trans, root, ret);
7562                         if (own_trans)
7563                                 btrfs_end_transaction(trans, root);
7564                         break;
7565                 }
7566
7567                 if (own_trans)
7568                         btrfs_end_transaction(trans, root);
7569         }
7570         return ret;
7571 }
7572
7573 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7574                               u64 start, u64 num_bytes, u64 min_size,
7575                               loff_t actual_len, u64 *alloc_hint)
7576 {
7577         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7578                                            min_size, actual_len, alloc_hint,
7579                                            NULL);
7580 }
7581
7582 int btrfs_prealloc_file_range_trans(struct inode *inode,
7583                                     struct btrfs_trans_handle *trans, int mode,
7584                                     u64 start, u64 num_bytes, u64 min_size,
7585                                     loff_t actual_len, u64 *alloc_hint)
7586 {
7587         return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7588                                            min_size, actual_len, alloc_hint, trans);
7589 }
7590
7591 static int btrfs_set_page_dirty(struct page *page)
7592 {
7593         return __set_page_dirty_nobuffers(page);
7594 }
7595
7596 static int btrfs_permission(struct inode *inode, int mask)
7597 {
7598         struct btrfs_root *root = BTRFS_I(inode)->root;
7599         umode_t mode = inode->i_mode;
7600
7601         if (mask & MAY_WRITE &&
7602             (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
7603                 if (btrfs_root_readonly(root))
7604                         return -EROFS;
7605                 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
7606                         return -EACCES;
7607         }
7608         return generic_permission(inode, mask);
7609 }
7610
7611 static const struct inode_operations btrfs_dir_inode_operations = {
7612         .getattr        = btrfs_getattr,
7613         .lookup         = btrfs_lookup,
7614         .create         = btrfs_create,
7615         .unlink         = btrfs_unlink,
7616         .link           = btrfs_link,
7617         .mkdir          = btrfs_mkdir,
7618         .rmdir          = btrfs_rmdir,
7619         .rename         = btrfs_rename,
7620         .symlink        = btrfs_symlink,
7621         .setattr        = btrfs_setattr,
7622         .mknod          = btrfs_mknod,
7623         .setxattr       = btrfs_setxattr,
7624         .getxattr       = btrfs_getxattr,
7625         .listxattr      = btrfs_listxattr,
7626         .removexattr    = btrfs_removexattr,
7627         .permission     = btrfs_permission,
7628         .get_acl        = btrfs_get_acl,
7629 };
7630 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7631         .lookup         = btrfs_lookup,
7632         .permission     = btrfs_permission,
7633         .get_acl        = btrfs_get_acl,
7634 };
7635
7636 static const struct file_operations btrfs_dir_file_operations = {
7637         .llseek         = generic_file_llseek,
7638         .read           = generic_read_dir,
7639         .readdir        = btrfs_real_readdir,
7640         .unlocked_ioctl = btrfs_ioctl,
7641 #ifdef CONFIG_COMPAT
7642         .compat_ioctl   = btrfs_ioctl,
7643 #endif
7644         .release        = btrfs_release_file,
7645         .fsync          = btrfs_sync_file,
7646 };
7647
7648 static struct extent_io_ops btrfs_extent_io_ops = {
7649         .fill_delalloc = run_delalloc_range,
7650         .submit_bio_hook = btrfs_submit_bio_hook,
7651         .merge_bio_hook = btrfs_merge_bio_hook,
7652         .readpage_end_io_hook = btrfs_readpage_end_io_hook,
7653         .writepage_end_io_hook = btrfs_writepage_end_io_hook,
7654         .writepage_start_hook = btrfs_writepage_start_hook,
7655         .set_bit_hook = btrfs_set_bit_hook,
7656         .clear_bit_hook = btrfs_clear_bit_hook,
7657         .merge_extent_hook = btrfs_merge_extent_hook,
7658         .split_extent_hook = btrfs_split_extent_hook,
7659 };
7660
7661 /*
7662  * btrfs doesn't support the bmap operation because swapfiles
7663  * use bmap to make a mapping of extents in the file.  They assume
7664  * these extents won't change over the life of the file and they
7665  * use the bmap result to do IO directly to the drive.
7666  *
7667  * the btrfs bmap call would return logical addresses that aren't
7668  * suitable for IO and they also will change frequently as COW
7669  * operations happen.  So, swapfile + btrfs == corruption.
7670  *
7671  * For now we're avoiding this by dropping bmap.
7672  */
7673 static const struct address_space_operations btrfs_aops = {
7674         .readpage       = btrfs_readpage,
7675         .writepage      = btrfs_writepage,
7676         .writepages     = btrfs_writepages,
7677         .readpages      = btrfs_readpages,
7678         .direct_IO      = btrfs_direct_IO,
7679         .invalidatepage = btrfs_invalidatepage,
7680         .releasepage    = btrfs_releasepage,
7681         .set_page_dirty = btrfs_set_page_dirty,
7682         .error_remove_page = generic_error_remove_page,
7683 };
7684
7685 static const struct address_space_operations btrfs_symlink_aops = {
7686         .readpage       = btrfs_readpage,
7687         .writepage      = btrfs_writepage,
7688         .invalidatepage = btrfs_invalidatepage,
7689         .releasepage    = btrfs_releasepage,
7690 };
7691
7692 static const struct inode_operations btrfs_file_inode_operations = {
7693         .getattr        = btrfs_getattr,
7694         .setattr        = btrfs_setattr,
7695         .setxattr       = btrfs_setxattr,
7696         .getxattr       = btrfs_getxattr,
7697         .listxattr      = btrfs_listxattr,
7698         .removexattr    = btrfs_removexattr,
7699         .permission     = btrfs_permission,
7700         .fiemap         = btrfs_fiemap,
7701         .get_acl        = btrfs_get_acl,
7702         .update_time    = btrfs_update_time,
7703 };
7704 static const struct inode_operations btrfs_special_inode_operations = {
7705         .getattr        = btrfs_getattr,
7706         .setattr        = btrfs_setattr,
7707         .permission     = btrfs_permission,
7708         .setxattr       = btrfs_setxattr,
7709         .getxattr       = btrfs_getxattr,
7710         .listxattr      = btrfs_listxattr,
7711         .removexattr    = btrfs_removexattr,
7712         .get_acl        = btrfs_get_acl,
7713         .update_time    = btrfs_update_time,
7714 };
7715 static const struct inode_operations btrfs_symlink_inode_operations = {
7716         .readlink       = generic_readlink,
7717         .follow_link    = page_follow_link_light,
7718         .put_link       = page_put_link,
7719         .getattr        = btrfs_getattr,
7720         .setattr        = btrfs_setattr,
7721         .permission     = btrfs_permission,
7722         .setxattr       = btrfs_setxattr,
7723         .getxattr       = btrfs_getxattr,
7724         .listxattr      = btrfs_listxattr,
7725         .removexattr    = btrfs_removexattr,
7726         .get_acl        = btrfs_get_acl,
7727         .update_time    = btrfs_update_time,
7728 };
7729
7730 const struct dentry_operations btrfs_dentry_operations = {
7731         .d_delete       = btrfs_dentry_delete,
7732         .d_release      = btrfs_dentry_release,
7733 };