media: staging: media: use relevant lock
[linux-2.6-block.git] / fs / btrfs / inode-map.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/delay.h>
7 #include <linux/kthread.h>
8 #include <linux/pagemap.h>
9
10 #include "ctree.h"
11 #include "disk-io.h"
12 #include "free-space-cache.h"
13 #include "inode-map.h"
14 #include "transaction.h"
15
16 static int caching_kthread(void *data)
17 {
18         struct btrfs_root *root = data;
19         struct btrfs_fs_info *fs_info = root->fs_info;
20         struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
21         struct btrfs_key key;
22         struct btrfs_path *path;
23         struct extent_buffer *leaf;
24         u64 last = (u64)-1;
25         int slot;
26         int ret;
27
28         if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
29                 return 0;
30
31         path = btrfs_alloc_path();
32         if (!path)
33                 return -ENOMEM;
34
35         /* Since the commit root is read-only, we can safely skip locking. */
36         path->skip_locking = 1;
37         path->search_commit_root = 1;
38         path->reada = READA_FORWARD;
39
40         key.objectid = BTRFS_FIRST_FREE_OBJECTID;
41         key.offset = 0;
42         key.type = BTRFS_INODE_ITEM_KEY;
43 again:
44         /* need to make sure the commit_root doesn't disappear */
45         down_read(&fs_info->commit_root_sem);
46
47         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
48         if (ret < 0)
49                 goto out;
50
51         while (1) {
52                 if (btrfs_fs_closing(fs_info))
53                         goto out;
54
55                 leaf = path->nodes[0];
56                 slot = path->slots[0];
57                 if (slot >= btrfs_header_nritems(leaf)) {
58                         ret = btrfs_next_leaf(root, path);
59                         if (ret < 0)
60                                 goto out;
61                         else if (ret > 0)
62                                 break;
63
64                         if (need_resched() ||
65                             btrfs_transaction_in_commit(fs_info)) {
66                                 leaf = path->nodes[0];
67
68                                 if (WARN_ON(btrfs_header_nritems(leaf) == 0))
69                                         break;
70
71                                 /*
72                                  * Save the key so we can advances forward
73                                  * in the next search.
74                                  */
75                                 btrfs_item_key_to_cpu(leaf, &key, 0);
76                                 btrfs_release_path(path);
77                                 root->ino_cache_progress = last;
78                                 up_read(&fs_info->commit_root_sem);
79                                 schedule_timeout(1);
80                                 goto again;
81                         } else
82                                 continue;
83                 }
84
85                 btrfs_item_key_to_cpu(leaf, &key, slot);
86
87                 if (key.type != BTRFS_INODE_ITEM_KEY)
88                         goto next;
89
90                 if (key.objectid >= root->highest_objectid)
91                         break;
92
93                 if (last != (u64)-1 && last + 1 != key.objectid) {
94                         __btrfs_add_free_space(fs_info, ctl, last + 1,
95                                                key.objectid - last - 1);
96                         wake_up(&root->ino_cache_wait);
97                 }
98
99                 last = key.objectid;
100 next:
101                 path->slots[0]++;
102         }
103
104         if (last < root->highest_objectid - 1) {
105                 __btrfs_add_free_space(fs_info, ctl, last + 1,
106                                        root->highest_objectid - last - 1);
107         }
108
109         spin_lock(&root->ino_cache_lock);
110         root->ino_cache_state = BTRFS_CACHE_FINISHED;
111         spin_unlock(&root->ino_cache_lock);
112
113         root->ino_cache_progress = (u64)-1;
114         btrfs_unpin_free_ino(root);
115 out:
116         wake_up(&root->ino_cache_wait);
117         up_read(&fs_info->commit_root_sem);
118
119         btrfs_free_path(path);
120
121         return ret;
122 }
123
124 static void start_caching(struct btrfs_root *root)
125 {
126         struct btrfs_fs_info *fs_info = root->fs_info;
127         struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
128         struct task_struct *tsk;
129         int ret;
130         u64 objectid;
131
132         if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
133                 return;
134
135         spin_lock(&root->ino_cache_lock);
136         if (root->ino_cache_state != BTRFS_CACHE_NO) {
137                 spin_unlock(&root->ino_cache_lock);
138                 return;
139         }
140
141         root->ino_cache_state = BTRFS_CACHE_STARTED;
142         spin_unlock(&root->ino_cache_lock);
143
144         ret = load_free_ino_cache(fs_info, root);
145         if (ret == 1) {
146                 spin_lock(&root->ino_cache_lock);
147                 root->ino_cache_state = BTRFS_CACHE_FINISHED;
148                 spin_unlock(&root->ino_cache_lock);
149                 return;
150         }
151
152         /*
153          * It can be quite time-consuming to fill the cache by searching
154          * through the extent tree, and this can keep ino allocation path
155          * waiting. Therefore at start we quickly find out the highest
156          * inode number and we know we can use inode numbers which fall in
157          * [highest_ino + 1, BTRFS_LAST_FREE_OBJECTID].
158          */
159         ret = btrfs_find_free_objectid(root, &objectid);
160         if (!ret && objectid <= BTRFS_LAST_FREE_OBJECTID) {
161                 __btrfs_add_free_space(fs_info, ctl, objectid,
162                                        BTRFS_LAST_FREE_OBJECTID - objectid + 1);
163         }
164
165         tsk = kthread_run(caching_kthread, root, "btrfs-ino-cache-%llu",
166                           root->root_key.objectid);
167         if (IS_ERR(tsk)) {
168                 btrfs_warn(fs_info, "failed to start inode caching task");
169                 btrfs_clear_pending_and_info(fs_info, INODE_MAP_CACHE,
170                                              "disabling inode map caching");
171         }
172 }
173
174 int btrfs_find_free_ino(struct btrfs_root *root, u64 *objectid)
175 {
176         if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE))
177                 return btrfs_find_free_objectid(root, objectid);
178
179 again:
180         *objectid = btrfs_find_ino_for_alloc(root);
181
182         if (*objectid != 0)
183                 return 0;
184
185         start_caching(root);
186
187         wait_event(root->ino_cache_wait,
188                    root->ino_cache_state == BTRFS_CACHE_FINISHED ||
189                    root->free_ino_ctl->free_space > 0);
190
191         if (root->ino_cache_state == BTRFS_CACHE_FINISHED &&
192             root->free_ino_ctl->free_space == 0)
193                 return -ENOSPC;
194         else
195                 goto again;
196 }
197
198 void btrfs_return_ino(struct btrfs_root *root, u64 objectid)
199 {
200         struct btrfs_fs_info *fs_info = root->fs_info;
201         struct btrfs_free_space_ctl *pinned = root->free_ino_pinned;
202
203         if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
204                 return;
205 again:
206         if (root->ino_cache_state == BTRFS_CACHE_FINISHED) {
207                 __btrfs_add_free_space(fs_info, pinned, objectid, 1);
208         } else {
209                 down_write(&fs_info->commit_root_sem);
210                 spin_lock(&root->ino_cache_lock);
211                 if (root->ino_cache_state == BTRFS_CACHE_FINISHED) {
212                         spin_unlock(&root->ino_cache_lock);
213                         up_write(&fs_info->commit_root_sem);
214                         goto again;
215                 }
216                 spin_unlock(&root->ino_cache_lock);
217
218                 start_caching(root);
219
220                 __btrfs_add_free_space(fs_info, pinned, objectid, 1);
221
222                 up_write(&fs_info->commit_root_sem);
223         }
224 }
225
226 /*
227  * When a transaction is committed, we'll move those inode numbers which are
228  * smaller than root->ino_cache_progress from pinned tree to free_ino tree, and
229  * others will just be dropped, because the commit root we were searching has
230  * changed.
231  *
232  * Must be called with root->fs_info->commit_root_sem held
233  */
234 void btrfs_unpin_free_ino(struct btrfs_root *root)
235 {
236         struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
237         struct rb_root *rbroot = &root->free_ino_pinned->free_space_offset;
238         spinlock_t *rbroot_lock = &root->free_ino_pinned->tree_lock;
239         struct btrfs_free_space *info;
240         struct rb_node *n;
241         u64 count;
242
243         if (!btrfs_test_opt(root->fs_info, INODE_MAP_CACHE))
244                 return;
245
246         while (1) {
247                 bool add_to_ctl = true;
248
249                 spin_lock(rbroot_lock);
250                 n = rb_first(rbroot);
251                 if (!n) {
252                         spin_unlock(rbroot_lock);
253                         break;
254                 }
255
256                 info = rb_entry(n, struct btrfs_free_space, offset_index);
257                 BUG_ON(info->bitmap); /* Logic error */
258
259                 if (info->offset > root->ino_cache_progress)
260                         add_to_ctl = false;
261                 else if (info->offset + info->bytes > root->ino_cache_progress)
262                         count = root->ino_cache_progress - info->offset + 1;
263                 else
264                         count = info->bytes;
265
266                 rb_erase(&info->offset_index, rbroot);
267                 spin_unlock(rbroot_lock);
268                 if (add_to_ctl)
269                         __btrfs_add_free_space(root->fs_info, ctl,
270                                                info->offset, count);
271                 kmem_cache_free(btrfs_free_space_cachep, info);
272         }
273 }
274
275 #define INIT_THRESHOLD  ((SZ_32K / 2) / sizeof(struct btrfs_free_space))
276 #define INODES_PER_BITMAP (PAGE_SIZE * 8)
277
278 /*
279  * The goal is to keep the memory used by the free_ino tree won't
280  * exceed the memory if we use bitmaps only.
281  */
282 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
283 {
284         struct btrfs_free_space *info;
285         struct rb_node *n;
286         int max_ino;
287         int max_bitmaps;
288
289         n = rb_last(&ctl->free_space_offset);
290         if (!n) {
291                 ctl->extents_thresh = INIT_THRESHOLD;
292                 return;
293         }
294         info = rb_entry(n, struct btrfs_free_space, offset_index);
295
296         /*
297          * Find the maximum inode number in the filesystem. Note we
298          * ignore the fact that this can be a bitmap, because we are
299          * not doing precise calculation.
300          */
301         max_ino = info->bytes - 1;
302
303         max_bitmaps = ALIGN(max_ino, INODES_PER_BITMAP) / INODES_PER_BITMAP;
304         if (max_bitmaps <= ctl->total_bitmaps) {
305                 ctl->extents_thresh = 0;
306                 return;
307         }
308
309         ctl->extents_thresh = (max_bitmaps - ctl->total_bitmaps) *
310                                 PAGE_SIZE / sizeof(*info);
311 }
312
313 /*
314  * We don't fall back to bitmap, if we are below the extents threshold
315  * or this chunk of inode numbers is a big one.
316  */
317 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
318                        struct btrfs_free_space *info)
319 {
320         if (ctl->free_extents < ctl->extents_thresh ||
321             info->bytes > INODES_PER_BITMAP / 10)
322                 return false;
323
324         return true;
325 }
326
327 static const struct btrfs_free_space_op free_ino_op = {
328         .recalc_thresholds      = recalculate_thresholds,
329         .use_bitmap             = use_bitmap,
330 };
331
332 static void pinned_recalc_thresholds(struct btrfs_free_space_ctl *ctl)
333 {
334 }
335
336 static bool pinned_use_bitmap(struct btrfs_free_space_ctl *ctl,
337                               struct btrfs_free_space *info)
338 {
339         /*
340          * We always use extents for two reasons:
341          *
342          * - The pinned tree is only used during the process of caching
343          *   work.
344          * - Make code simpler. See btrfs_unpin_free_ino().
345          */
346         return false;
347 }
348
349 static const struct btrfs_free_space_op pinned_free_ino_op = {
350         .recalc_thresholds      = pinned_recalc_thresholds,
351         .use_bitmap             = pinned_use_bitmap,
352 };
353
354 void btrfs_init_free_ino_ctl(struct btrfs_root *root)
355 {
356         struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
357         struct btrfs_free_space_ctl *pinned = root->free_ino_pinned;
358
359         spin_lock_init(&ctl->tree_lock);
360         ctl->unit = 1;
361         ctl->start = 0;
362         ctl->private = NULL;
363         ctl->op = &free_ino_op;
364         INIT_LIST_HEAD(&ctl->trimming_ranges);
365         mutex_init(&ctl->cache_writeout_mutex);
366
367         /*
368          * Initially we allow to use 16K of ram to cache chunks of
369          * inode numbers before we resort to bitmaps. This is somewhat
370          * arbitrary, but it will be adjusted in runtime.
371          */
372         ctl->extents_thresh = INIT_THRESHOLD;
373
374         spin_lock_init(&pinned->tree_lock);
375         pinned->unit = 1;
376         pinned->start = 0;
377         pinned->private = NULL;
378         pinned->extents_thresh = 0;
379         pinned->op = &pinned_free_ino_op;
380 }
381
382 int btrfs_save_ino_cache(struct btrfs_root *root,
383                          struct btrfs_trans_handle *trans)
384 {
385         struct btrfs_fs_info *fs_info = root->fs_info;
386         struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
387         struct btrfs_path *path;
388         struct inode *inode;
389         struct btrfs_block_rsv *rsv;
390         struct extent_changeset *data_reserved = NULL;
391         u64 num_bytes;
392         u64 alloc_hint = 0;
393         int ret;
394         int prealloc;
395         bool retry = false;
396
397         /* only fs tree and subvol/snap needs ino cache */
398         if (root->root_key.objectid != BTRFS_FS_TREE_OBJECTID &&
399             (root->root_key.objectid < BTRFS_FIRST_FREE_OBJECTID ||
400              root->root_key.objectid > BTRFS_LAST_FREE_OBJECTID))
401                 return 0;
402
403         /* Don't save inode cache if we are deleting this root */
404         if (btrfs_root_refs(&root->root_item) == 0)
405                 return 0;
406
407         if (!btrfs_test_opt(fs_info, INODE_MAP_CACHE))
408                 return 0;
409
410         path = btrfs_alloc_path();
411         if (!path)
412                 return -ENOMEM;
413
414         rsv = trans->block_rsv;
415         trans->block_rsv = &fs_info->trans_block_rsv;
416
417         num_bytes = trans->bytes_reserved;
418         /*
419          * 1 item for inode item insertion if need
420          * 4 items for inode item update (in the worst case)
421          * 1 items for slack space if we need do truncation
422          * 1 item for free space object
423          * 3 items for pre-allocation
424          */
425         trans->bytes_reserved = btrfs_calc_trans_metadata_size(fs_info, 10);
426         ret = btrfs_block_rsv_add(root, trans->block_rsv,
427                                   trans->bytes_reserved,
428                                   BTRFS_RESERVE_NO_FLUSH);
429         if (ret)
430                 goto out;
431         trace_btrfs_space_reservation(fs_info, "ino_cache", trans->transid,
432                                       trans->bytes_reserved, 1);
433 again:
434         inode = lookup_free_ino_inode(root, path);
435         if (IS_ERR(inode) && (PTR_ERR(inode) != -ENOENT || retry)) {
436                 ret = PTR_ERR(inode);
437                 goto out_release;
438         }
439
440         if (IS_ERR(inode)) {
441                 BUG_ON(retry); /* Logic error */
442                 retry = true;
443
444                 ret = create_free_ino_inode(root, trans, path);
445                 if (ret)
446                         goto out_release;
447                 goto again;
448         }
449
450         BTRFS_I(inode)->generation = 0;
451         ret = btrfs_update_inode(trans, root, inode);
452         if (ret) {
453                 btrfs_abort_transaction(trans, ret);
454                 goto out_put;
455         }
456
457         if (i_size_read(inode) > 0) {
458                 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
459                 if (ret) {
460                         if (ret != -ENOSPC)
461                                 btrfs_abort_transaction(trans, ret);
462                         goto out_put;
463                 }
464         }
465
466         spin_lock(&root->ino_cache_lock);
467         if (root->ino_cache_state != BTRFS_CACHE_FINISHED) {
468                 ret = -1;
469                 spin_unlock(&root->ino_cache_lock);
470                 goto out_put;
471         }
472         spin_unlock(&root->ino_cache_lock);
473
474         spin_lock(&ctl->tree_lock);
475         prealloc = sizeof(struct btrfs_free_space) * ctl->free_extents;
476         prealloc = ALIGN(prealloc, PAGE_SIZE);
477         prealloc += ctl->total_bitmaps * PAGE_SIZE;
478         spin_unlock(&ctl->tree_lock);
479
480         /* Just to make sure we have enough space */
481         prealloc += 8 * PAGE_SIZE;
482
483         ret = btrfs_delalloc_reserve_space(inode, &data_reserved, 0, prealloc);
484         if (ret)
485                 goto out_put;
486
487         ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, prealloc,
488                                               prealloc, prealloc, &alloc_hint);
489         if (ret) {
490                 btrfs_delalloc_release_extents(BTRFS_I(inode), prealloc, true);
491                 goto out_put;
492         }
493
494         ret = btrfs_write_out_ino_cache(root, trans, path, inode);
495         btrfs_delalloc_release_extents(BTRFS_I(inode), prealloc, false);
496 out_put:
497         iput(inode);
498 out_release:
499         trace_btrfs_space_reservation(fs_info, "ino_cache", trans->transid,
500                                       trans->bytes_reserved, 0);
501         btrfs_block_rsv_release(fs_info, trans->block_rsv,
502                                 trans->bytes_reserved);
503 out:
504         trans->block_rsv = rsv;
505         trans->bytes_reserved = num_bytes;
506
507         btrfs_free_path(path);
508         extent_changeset_free(data_reserved);
509         return ret;
510 }
511
512 int btrfs_find_highest_objectid(struct btrfs_root *root, u64 *objectid)
513 {
514         struct btrfs_path *path;
515         int ret;
516         struct extent_buffer *l;
517         struct btrfs_key search_key;
518         struct btrfs_key found_key;
519         int slot;
520
521         path = btrfs_alloc_path();
522         if (!path)
523                 return -ENOMEM;
524
525         search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
526         search_key.type = -1;
527         search_key.offset = (u64)-1;
528         ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
529         if (ret < 0)
530                 goto error;
531         BUG_ON(ret == 0); /* Corruption */
532         if (path->slots[0] > 0) {
533                 slot = path->slots[0] - 1;
534                 l = path->nodes[0];
535                 btrfs_item_key_to_cpu(l, &found_key, slot);
536                 *objectid = max_t(u64, found_key.objectid,
537                                   BTRFS_FIRST_FREE_OBJECTID - 1);
538         } else {
539                 *objectid = BTRFS_FIRST_FREE_OBJECTID - 1;
540         }
541         ret = 0;
542 error:
543         btrfs_free_path(path);
544         return ret;
545 }
546
547 int btrfs_find_free_objectid(struct btrfs_root *root, u64 *objectid)
548 {
549         int ret;
550         mutex_lock(&root->objectid_mutex);
551
552         if (unlikely(root->highest_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
553                 btrfs_warn(root->fs_info,
554                            "the objectid of root %llu reaches its highest value",
555                            root->root_key.objectid);
556                 ret = -ENOSPC;
557                 goto out;
558         }
559
560         *objectid = ++root->highest_objectid;
561         ret = 0;
562 out:
563         mutex_unlock(&root->objectid_mutex);
564         return ret;
565 }