switch simple generic_file_aio_read() users to ->read_iter()
[linux-2.6-block.git] / fs / btrfs / file.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/aio.h>
28 #include <linux/falloc.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/statfs.h>
32 #include <linux/compat.h>
33 #include <linux/slab.h>
34 #include <linux/btrfs.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "print-tree.h"
40 #include "tree-log.h"
41 #include "locking.h"
42 #include "volumes.h"
43
44 static struct kmem_cache *btrfs_inode_defrag_cachep;
45 /*
46  * when auto defrag is enabled we
47  * queue up these defrag structs to remember which
48  * inodes need defragging passes
49  */
50 struct inode_defrag {
51         struct rb_node rb_node;
52         /* objectid */
53         u64 ino;
54         /*
55          * transid where the defrag was added, we search for
56          * extents newer than this
57          */
58         u64 transid;
59
60         /* root objectid */
61         u64 root;
62
63         /* last offset we were able to defrag */
64         u64 last_offset;
65
66         /* if we've wrapped around back to zero once already */
67         int cycled;
68 };
69
70 static int __compare_inode_defrag(struct inode_defrag *defrag1,
71                                   struct inode_defrag *defrag2)
72 {
73         if (defrag1->root > defrag2->root)
74                 return 1;
75         else if (defrag1->root < defrag2->root)
76                 return -1;
77         else if (defrag1->ino > defrag2->ino)
78                 return 1;
79         else if (defrag1->ino < defrag2->ino)
80                 return -1;
81         else
82                 return 0;
83 }
84
85 /* pop a record for an inode into the defrag tree.  The lock
86  * must be held already
87  *
88  * If you're inserting a record for an older transid than an
89  * existing record, the transid already in the tree is lowered
90  *
91  * If an existing record is found the defrag item you
92  * pass in is freed
93  */
94 static int __btrfs_add_inode_defrag(struct inode *inode,
95                                     struct inode_defrag *defrag)
96 {
97         struct btrfs_root *root = BTRFS_I(inode)->root;
98         struct inode_defrag *entry;
99         struct rb_node **p;
100         struct rb_node *parent = NULL;
101         int ret;
102
103         p = &root->fs_info->defrag_inodes.rb_node;
104         while (*p) {
105                 parent = *p;
106                 entry = rb_entry(parent, struct inode_defrag, rb_node);
107
108                 ret = __compare_inode_defrag(defrag, entry);
109                 if (ret < 0)
110                         p = &parent->rb_left;
111                 else if (ret > 0)
112                         p = &parent->rb_right;
113                 else {
114                         /* if we're reinserting an entry for
115                          * an old defrag run, make sure to
116                          * lower the transid of our existing record
117                          */
118                         if (defrag->transid < entry->transid)
119                                 entry->transid = defrag->transid;
120                         if (defrag->last_offset > entry->last_offset)
121                                 entry->last_offset = defrag->last_offset;
122                         return -EEXIST;
123                 }
124         }
125         set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
126         rb_link_node(&defrag->rb_node, parent, p);
127         rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
128         return 0;
129 }
130
131 static inline int __need_auto_defrag(struct btrfs_root *root)
132 {
133         if (!btrfs_test_opt(root, AUTO_DEFRAG))
134                 return 0;
135
136         if (btrfs_fs_closing(root->fs_info))
137                 return 0;
138
139         return 1;
140 }
141
142 /*
143  * insert a defrag record for this inode if auto defrag is
144  * enabled
145  */
146 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
147                            struct inode *inode)
148 {
149         struct btrfs_root *root = BTRFS_I(inode)->root;
150         struct inode_defrag *defrag;
151         u64 transid;
152         int ret;
153
154         if (!__need_auto_defrag(root))
155                 return 0;
156
157         if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
158                 return 0;
159
160         if (trans)
161                 transid = trans->transid;
162         else
163                 transid = BTRFS_I(inode)->root->last_trans;
164
165         defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
166         if (!defrag)
167                 return -ENOMEM;
168
169         defrag->ino = btrfs_ino(inode);
170         defrag->transid = transid;
171         defrag->root = root->root_key.objectid;
172
173         spin_lock(&root->fs_info->defrag_inodes_lock);
174         if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
175                 /*
176                  * If we set IN_DEFRAG flag and evict the inode from memory,
177                  * and then re-read this inode, this new inode doesn't have
178                  * IN_DEFRAG flag. At the case, we may find the existed defrag.
179                  */
180                 ret = __btrfs_add_inode_defrag(inode, defrag);
181                 if (ret)
182                         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
183         } else {
184                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
185         }
186         spin_unlock(&root->fs_info->defrag_inodes_lock);
187         return 0;
188 }
189
190 /*
191  * Requeue the defrag object. If there is a defrag object that points to
192  * the same inode in the tree, we will merge them together (by
193  * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
194  */
195 static void btrfs_requeue_inode_defrag(struct inode *inode,
196                                        struct inode_defrag *defrag)
197 {
198         struct btrfs_root *root = BTRFS_I(inode)->root;
199         int ret;
200
201         if (!__need_auto_defrag(root))
202                 goto out;
203
204         /*
205          * Here we don't check the IN_DEFRAG flag, because we need merge
206          * them together.
207          */
208         spin_lock(&root->fs_info->defrag_inodes_lock);
209         ret = __btrfs_add_inode_defrag(inode, defrag);
210         spin_unlock(&root->fs_info->defrag_inodes_lock);
211         if (ret)
212                 goto out;
213         return;
214 out:
215         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
216 }
217
218 /*
219  * pick the defragable inode that we want, if it doesn't exist, we will get
220  * the next one.
221  */
222 static struct inode_defrag *
223 btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
224 {
225         struct inode_defrag *entry = NULL;
226         struct inode_defrag tmp;
227         struct rb_node *p;
228         struct rb_node *parent = NULL;
229         int ret;
230
231         tmp.ino = ino;
232         tmp.root = root;
233
234         spin_lock(&fs_info->defrag_inodes_lock);
235         p = fs_info->defrag_inodes.rb_node;
236         while (p) {
237                 parent = p;
238                 entry = rb_entry(parent, struct inode_defrag, rb_node);
239
240                 ret = __compare_inode_defrag(&tmp, entry);
241                 if (ret < 0)
242                         p = parent->rb_left;
243                 else if (ret > 0)
244                         p = parent->rb_right;
245                 else
246                         goto out;
247         }
248
249         if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
250                 parent = rb_next(parent);
251                 if (parent)
252                         entry = rb_entry(parent, struct inode_defrag, rb_node);
253                 else
254                         entry = NULL;
255         }
256 out:
257         if (entry)
258                 rb_erase(parent, &fs_info->defrag_inodes);
259         spin_unlock(&fs_info->defrag_inodes_lock);
260         return entry;
261 }
262
263 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
264 {
265         struct inode_defrag *defrag;
266         struct rb_node *node;
267
268         spin_lock(&fs_info->defrag_inodes_lock);
269         node = rb_first(&fs_info->defrag_inodes);
270         while (node) {
271                 rb_erase(node, &fs_info->defrag_inodes);
272                 defrag = rb_entry(node, struct inode_defrag, rb_node);
273                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
274
275                 if (need_resched()) {
276                         spin_unlock(&fs_info->defrag_inodes_lock);
277                         cond_resched();
278                         spin_lock(&fs_info->defrag_inodes_lock);
279                 }
280
281                 node = rb_first(&fs_info->defrag_inodes);
282         }
283         spin_unlock(&fs_info->defrag_inodes_lock);
284 }
285
286 #define BTRFS_DEFRAG_BATCH      1024
287
288 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
289                                     struct inode_defrag *defrag)
290 {
291         struct btrfs_root *inode_root;
292         struct inode *inode;
293         struct btrfs_key key;
294         struct btrfs_ioctl_defrag_range_args range;
295         int num_defrag;
296         int index;
297         int ret;
298
299         /* get the inode */
300         key.objectid = defrag->root;
301         btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
302         key.offset = (u64)-1;
303
304         index = srcu_read_lock(&fs_info->subvol_srcu);
305
306         inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
307         if (IS_ERR(inode_root)) {
308                 ret = PTR_ERR(inode_root);
309                 goto cleanup;
310         }
311
312         key.objectid = defrag->ino;
313         btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
314         key.offset = 0;
315         inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
316         if (IS_ERR(inode)) {
317                 ret = PTR_ERR(inode);
318                 goto cleanup;
319         }
320         srcu_read_unlock(&fs_info->subvol_srcu, index);
321
322         /* do a chunk of defrag */
323         clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
324         memset(&range, 0, sizeof(range));
325         range.len = (u64)-1;
326         range.start = defrag->last_offset;
327
328         sb_start_write(fs_info->sb);
329         num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
330                                        BTRFS_DEFRAG_BATCH);
331         sb_end_write(fs_info->sb);
332         /*
333          * if we filled the whole defrag batch, there
334          * must be more work to do.  Queue this defrag
335          * again
336          */
337         if (num_defrag == BTRFS_DEFRAG_BATCH) {
338                 defrag->last_offset = range.start;
339                 btrfs_requeue_inode_defrag(inode, defrag);
340         } else if (defrag->last_offset && !defrag->cycled) {
341                 /*
342                  * we didn't fill our defrag batch, but
343                  * we didn't start at zero.  Make sure we loop
344                  * around to the start of the file.
345                  */
346                 defrag->last_offset = 0;
347                 defrag->cycled = 1;
348                 btrfs_requeue_inode_defrag(inode, defrag);
349         } else {
350                 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
351         }
352
353         iput(inode);
354         return 0;
355 cleanup:
356         srcu_read_unlock(&fs_info->subvol_srcu, index);
357         kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
358         return ret;
359 }
360
361 /*
362  * run through the list of inodes in the FS that need
363  * defragging
364  */
365 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
366 {
367         struct inode_defrag *defrag;
368         u64 first_ino = 0;
369         u64 root_objectid = 0;
370
371         atomic_inc(&fs_info->defrag_running);
372         while (1) {
373                 /* Pause the auto defragger. */
374                 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
375                              &fs_info->fs_state))
376                         break;
377
378                 if (!__need_auto_defrag(fs_info->tree_root))
379                         break;
380
381                 /* find an inode to defrag */
382                 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
383                                                  first_ino);
384                 if (!defrag) {
385                         if (root_objectid || first_ino) {
386                                 root_objectid = 0;
387                                 first_ino = 0;
388                                 continue;
389                         } else {
390                                 break;
391                         }
392                 }
393
394                 first_ino = defrag->ino + 1;
395                 root_objectid = defrag->root;
396
397                 __btrfs_run_defrag_inode(fs_info, defrag);
398         }
399         atomic_dec(&fs_info->defrag_running);
400
401         /*
402          * during unmount, we use the transaction_wait queue to
403          * wait for the defragger to stop
404          */
405         wake_up(&fs_info->transaction_wait);
406         return 0;
407 }
408
409 /* simple helper to fault in pages and copy.  This should go away
410  * and be replaced with calls into generic code.
411  */
412 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
413                                          size_t write_bytes,
414                                          struct page **prepared_pages,
415                                          struct iov_iter *i)
416 {
417         size_t copied = 0;
418         size_t total_copied = 0;
419         int pg = 0;
420         int offset = pos & (PAGE_CACHE_SIZE - 1);
421
422         while (write_bytes > 0) {
423                 size_t count = min_t(size_t,
424                                      PAGE_CACHE_SIZE - offset, write_bytes);
425                 struct page *page = prepared_pages[pg];
426                 /*
427                  * Copy data from userspace to the current page
428                  */
429                 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
430
431                 /* Flush processor's dcache for this page */
432                 flush_dcache_page(page);
433
434                 /*
435                  * if we get a partial write, we can end up with
436                  * partially up to date pages.  These add
437                  * a lot of complexity, so make sure they don't
438                  * happen by forcing this copy to be retried.
439                  *
440                  * The rest of the btrfs_file_write code will fall
441                  * back to page at a time copies after we return 0.
442                  */
443                 if (!PageUptodate(page) && copied < count)
444                         copied = 0;
445
446                 iov_iter_advance(i, copied);
447                 write_bytes -= copied;
448                 total_copied += copied;
449
450                 /* Return to btrfs_file_aio_write to fault page */
451                 if (unlikely(copied == 0))
452                         break;
453
454                 if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
455                         offset += copied;
456                 } else {
457                         pg++;
458                         offset = 0;
459                 }
460         }
461         return total_copied;
462 }
463
464 /*
465  * unlocks pages after btrfs_file_write is done with them
466  */
467 static void btrfs_drop_pages(struct page **pages, size_t num_pages)
468 {
469         size_t i;
470         for (i = 0; i < num_pages; i++) {
471                 /* page checked is some magic around finding pages that
472                  * have been modified without going through btrfs_set_page_dirty
473                  * clear it here
474                  */
475                 ClearPageChecked(pages[i]);
476                 unlock_page(pages[i]);
477                 mark_page_accessed(pages[i]);
478                 page_cache_release(pages[i]);
479         }
480 }
481
482 /*
483  * after copy_from_user, pages need to be dirtied and we need to make
484  * sure holes are created between the current EOF and the start of
485  * any next extents (if required).
486  *
487  * this also makes the decision about creating an inline extent vs
488  * doing real data extents, marking pages dirty and delalloc as required.
489  */
490 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
491                              struct page **pages, size_t num_pages,
492                              loff_t pos, size_t write_bytes,
493                              struct extent_state **cached)
494 {
495         int err = 0;
496         int i;
497         u64 num_bytes;
498         u64 start_pos;
499         u64 end_of_last_block;
500         u64 end_pos = pos + write_bytes;
501         loff_t isize = i_size_read(inode);
502
503         start_pos = pos & ~((u64)root->sectorsize - 1);
504         num_bytes = ALIGN(write_bytes + pos - start_pos, root->sectorsize);
505
506         end_of_last_block = start_pos + num_bytes - 1;
507         err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
508                                         cached);
509         if (err)
510                 return err;
511
512         for (i = 0; i < num_pages; i++) {
513                 struct page *p = pages[i];
514                 SetPageUptodate(p);
515                 ClearPageChecked(p);
516                 set_page_dirty(p);
517         }
518
519         /*
520          * we've only changed i_size in ram, and we haven't updated
521          * the disk i_size.  There is no need to log the inode
522          * at this time.
523          */
524         if (end_pos > isize)
525                 i_size_write(inode, end_pos);
526         return 0;
527 }
528
529 /*
530  * this drops all the extents in the cache that intersect the range
531  * [start, end].  Existing extents are split as required.
532  */
533 void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
534                              int skip_pinned)
535 {
536         struct extent_map *em;
537         struct extent_map *split = NULL;
538         struct extent_map *split2 = NULL;
539         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
540         u64 len = end - start + 1;
541         u64 gen;
542         int ret;
543         int testend = 1;
544         unsigned long flags;
545         int compressed = 0;
546         bool modified;
547
548         WARN_ON(end < start);
549         if (end == (u64)-1) {
550                 len = (u64)-1;
551                 testend = 0;
552         }
553         while (1) {
554                 int no_splits = 0;
555
556                 modified = false;
557                 if (!split)
558                         split = alloc_extent_map();
559                 if (!split2)
560                         split2 = alloc_extent_map();
561                 if (!split || !split2)
562                         no_splits = 1;
563
564                 write_lock(&em_tree->lock);
565                 em = lookup_extent_mapping(em_tree, start, len);
566                 if (!em) {
567                         write_unlock(&em_tree->lock);
568                         break;
569                 }
570                 flags = em->flags;
571                 gen = em->generation;
572                 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
573                         if (testend && em->start + em->len >= start + len) {
574                                 free_extent_map(em);
575                                 write_unlock(&em_tree->lock);
576                                 break;
577                         }
578                         start = em->start + em->len;
579                         if (testend)
580                                 len = start + len - (em->start + em->len);
581                         free_extent_map(em);
582                         write_unlock(&em_tree->lock);
583                         continue;
584                 }
585                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
586                 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
587                 clear_bit(EXTENT_FLAG_LOGGING, &flags);
588                 modified = !list_empty(&em->list);
589                 if (no_splits)
590                         goto next;
591
592                 if (em->start < start) {
593                         split->start = em->start;
594                         split->len = start - em->start;
595
596                         if (em->block_start < EXTENT_MAP_LAST_BYTE) {
597                                 split->orig_start = em->orig_start;
598                                 split->block_start = em->block_start;
599
600                                 if (compressed)
601                                         split->block_len = em->block_len;
602                                 else
603                                         split->block_len = split->len;
604                                 split->orig_block_len = max(split->block_len,
605                                                 em->orig_block_len);
606                                 split->ram_bytes = em->ram_bytes;
607                         } else {
608                                 split->orig_start = split->start;
609                                 split->block_len = 0;
610                                 split->block_start = em->block_start;
611                                 split->orig_block_len = 0;
612                                 split->ram_bytes = split->len;
613                         }
614
615                         split->generation = gen;
616                         split->bdev = em->bdev;
617                         split->flags = flags;
618                         split->compress_type = em->compress_type;
619                         replace_extent_mapping(em_tree, em, split, modified);
620                         free_extent_map(split);
621                         split = split2;
622                         split2 = NULL;
623                 }
624                 if (testend && em->start + em->len > start + len) {
625                         u64 diff = start + len - em->start;
626
627                         split->start = start + len;
628                         split->len = em->start + em->len - (start + len);
629                         split->bdev = em->bdev;
630                         split->flags = flags;
631                         split->compress_type = em->compress_type;
632                         split->generation = gen;
633
634                         if (em->block_start < EXTENT_MAP_LAST_BYTE) {
635                                 split->orig_block_len = max(em->block_len,
636                                                     em->orig_block_len);
637
638                                 split->ram_bytes = em->ram_bytes;
639                                 if (compressed) {
640                                         split->block_len = em->block_len;
641                                         split->block_start = em->block_start;
642                                         split->orig_start = em->orig_start;
643                                 } else {
644                                         split->block_len = split->len;
645                                         split->block_start = em->block_start
646                                                 + diff;
647                                         split->orig_start = em->orig_start;
648                                 }
649                         } else {
650                                 split->ram_bytes = split->len;
651                                 split->orig_start = split->start;
652                                 split->block_len = 0;
653                                 split->block_start = em->block_start;
654                                 split->orig_block_len = 0;
655                         }
656
657                         if (extent_map_in_tree(em)) {
658                                 replace_extent_mapping(em_tree, em, split,
659                                                        modified);
660                         } else {
661                                 ret = add_extent_mapping(em_tree, split,
662                                                          modified);
663                                 ASSERT(ret == 0); /* Logic error */
664                         }
665                         free_extent_map(split);
666                         split = NULL;
667                 }
668 next:
669                 if (extent_map_in_tree(em))
670                         remove_extent_mapping(em_tree, em);
671                 write_unlock(&em_tree->lock);
672
673                 /* once for us */
674                 free_extent_map(em);
675                 /* once for the tree*/
676                 free_extent_map(em);
677         }
678         if (split)
679                 free_extent_map(split);
680         if (split2)
681                 free_extent_map(split2);
682 }
683
684 /*
685  * this is very complex, but the basic idea is to drop all extents
686  * in the range start - end.  hint_block is filled in with a block number
687  * that would be a good hint to the block allocator for this file.
688  *
689  * If an extent intersects the range but is not entirely inside the range
690  * it is either truncated or split.  Anything entirely inside the range
691  * is deleted from the tree.
692  */
693 int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
694                          struct btrfs_root *root, struct inode *inode,
695                          struct btrfs_path *path, u64 start, u64 end,
696                          u64 *drop_end, int drop_cache,
697                          int replace_extent,
698                          u32 extent_item_size,
699                          int *key_inserted)
700 {
701         struct extent_buffer *leaf;
702         struct btrfs_file_extent_item *fi;
703         struct btrfs_key key;
704         struct btrfs_key new_key;
705         u64 ino = btrfs_ino(inode);
706         u64 search_start = start;
707         u64 disk_bytenr = 0;
708         u64 num_bytes = 0;
709         u64 extent_offset = 0;
710         u64 extent_end = 0;
711         int del_nr = 0;
712         int del_slot = 0;
713         int extent_type;
714         int recow;
715         int ret;
716         int modify_tree = -1;
717         int update_refs = (root->ref_cows || root == root->fs_info->tree_root);
718         int found = 0;
719         int leafs_visited = 0;
720
721         if (drop_cache)
722                 btrfs_drop_extent_cache(inode, start, end - 1, 0);
723
724         if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
725                 modify_tree = 0;
726
727         while (1) {
728                 recow = 0;
729                 ret = btrfs_lookup_file_extent(trans, root, path, ino,
730                                                search_start, modify_tree);
731                 if (ret < 0)
732                         break;
733                 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
734                         leaf = path->nodes[0];
735                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
736                         if (key.objectid == ino &&
737                             key.type == BTRFS_EXTENT_DATA_KEY)
738                                 path->slots[0]--;
739                 }
740                 ret = 0;
741                 leafs_visited++;
742 next_slot:
743                 leaf = path->nodes[0];
744                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
745                         BUG_ON(del_nr > 0);
746                         ret = btrfs_next_leaf(root, path);
747                         if (ret < 0)
748                                 break;
749                         if (ret > 0) {
750                                 ret = 0;
751                                 break;
752                         }
753                         leafs_visited++;
754                         leaf = path->nodes[0];
755                         recow = 1;
756                 }
757
758                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
759                 if (key.objectid > ino ||
760                     key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
761                         break;
762
763                 fi = btrfs_item_ptr(leaf, path->slots[0],
764                                     struct btrfs_file_extent_item);
765                 extent_type = btrfs_file_extent_type(leaf, fi);
766
767                 if (extent_type == BTRFS_FILE_EXTENT_REG ||
768                     extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
769                         disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
770                         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
771                         extent_offset = btrfs_file_extent_offset(leaf, fi);
772                         extent_end = key.offset +
773                                 btrfs_file_extent_num_bytes(leaf, fi);
774                 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
775                         extent_end = key.offset +
776                                 btrfs_file_extent_inline_len(leaf,
777                                                      path->slots[0], fi);
778                 } else {
779                         WARN_ON(1);
780                         extent_end = search_start;
781                 }
782
783                 if (extent_end <= search_start) {
784                         path->slots[0]++;
785                         goto next_slot;
786                 }
787
788                 found = 1;
789                 search_start = max(key.offset, start);
790                 if (recow || !modify_tree) {
791                         modify_tree = -1;
792                         btrfs_release_path(path);
793                         continue;
794                 }
795
796                 /*
797                  *     | - range to drop - |
798                  *  | -------- extent -------- |
799                  */
800                 if (start > key.offset && end < extent_end) {
801                         BUG_ON(del_nr > 0);
802                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
803                                 ret = -EOPNOTSUPP;
804                                 break;
805                         }
806
807                         memcpy(&new_key, &key, sizeof(new_key));
808                         new_key.offset = start;
809                         ret = btrfs_duplicate_item(trans, root, path,
810                                                    &new_key);
811                         if (ret == -EAGAIN) {
812                                 btrfs_release_path(path);
813                                 continue;
814                         }
815                         if (ret < 0)
816                                 break;
817
818                         leaf = path->nodes[0];
819                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
820                                             struct btrfs_file_extent_item);
821                         btrfs_set_file_extent_num_bytes(leaf, fi,
822                                                         start - key.offset);
823
824                         fi = btrfs_item_ptr(leaf, path->slots[0],
825                                             struct btrfs_file_extent_item);
826
827                         extent_offset += start - key.offset;
828                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
829                         btrfs_set_file_extent_num_bytes(leaf, fi,
830                                                         extent_end - start);
831                         btrfs_mark_buffer_dirty(leaf);
832
833                         if (update_refs && disk_bytenr > 0) {
834                                 ret = btrfs_inc_extent_ref(trans, root,
835                                                 disk_bytenr, num_bytes, 0,
836                                                 root->root_key.objectid,
837                                                 new_key.objectid,
838                                                 start - extent_offset, 0);
839                                 BUG_ON(ret); /* -ENOMEM */
840                         }
841                         key.offset = start;
842                 }
843                 /*
844                  *  | ---- range to drop ----- |
845                  *      | -------- extent -------- |
846                  */
847                 if (start <= key.offset && end < extent_end) {
848                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
849                                 ret = -EOPNOTSUPP;
850                                 break;
851                         }
852
853                         memcpy(&new_key, &key, sizeof(new_key));
854                         new_key.offset = end;
855                         btrfs_set_item_key_safe(root, path, &new_key);
856
857                         extent_offset += end - key.offset;
858                         btrfs_set_file_extent_offset(leaf, fi, extent_offset);
859                         btrfs_set_file_extent_num_bytes(leaf, fi,
860                                                         extent_end - end);
861                         btrfs_mark_buffer_dirty(leaf);
862                         if (update_refs && disk_bytenr > 0)
863                                 inode_sub_bytes(inode, end - key.offset);
864                         break;
865                 }
866
867                 search_start = extent_end;
868                 /*
869                  *       | ---- range to drop ----- |
870                  *  | -------- extent -------- |
871                  */
872                 if (start > key.offset && end >= extent_end) {
873                         BUG_ON(del_nr > 0);
874                         if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
875                                 ret = -EOPNOTSUPP;
876                                 break;
877                         }
878
879                         btrfs_set_file_extent_num_bytes(leaf, fi,
880                                                         start - key.offset);
881                         btrfs_mark_buffer_dirty(leaf);
882                         if (update_refs && disk_bytenr > 0)
883                                 inode_sub_bytes(inode, extent_end - start);
884                         if (end == extent_end)
885                                 break;
886
887                         path->slots[0]++;
888                         goto next_slot;
889                 }
890
891                 /*
892                  *  | ---- range to drop ----- |
893                  *    | ------ extent ------ |
894                  */
895                 if (start <= key.offset && end >= extent_end) {
896                         if (del_nr == 0) {
897                                 del_slot = path->slots[0];
898                                 del_nr = 1;
899                         } else {
900                                 BUG_ON(del_slot + del_nr != path->slots[0]);
901                                 del_nr++;
902                         }
903
904                         if (update_refs &&
905                             extent_type == BTRFS_FILE_EXTENT_INLINE) {
906                                 inode_sub_bytes(inode,
907                                                 extent_end - key.offset);
908                                 extent_end = ALIGN(extent_end,
909                                                    root->sectorsize);
910                         } else if (update_refs && disk_bytenr > 0) {
911                                 ret = btrfs_free_extent(trans, root,
912                                                 disk_bytenr, num_bytes, 0,
913                                                 root->root_key.objectid,
914                                                 key.objectid, key.offset -
915                                                 extent_offset, 0);
916                                 BUG_ON(ret); /* -ENOMEM */
917                                 inode_sub_bytes(inode,
918                                                 extent_end - key.offset);
919                         }
920
921                         if (end == extent_end)
922                                 break;
923
924                         if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
925                                 path->slots[0]++;
926                                 goto next_slot;
927                         }
928
929                         ret = btrfs_del_items(trans, root, path, del_slot,
930                                               del_nr);
931                         if (ret) {
932                                 btrfs_abort_transaction(trans, root, ret);
933                                 break;
934                         }
935
936                         del_nr = 0;
937                         del_slot = 0;
938
939                         btrfs_release_path(path);
940                         continue;
941                 }
942
943                 BUG_ON(1);
944         }
945
946         if (!ret && del_nr > 0) {
947                 /*
948                  * Set path->slots[0] to first slot, so that after the delete
949                  * if items are move off from our leaf to its immediate left or
950                  * right neighbor leafs, we end up with a correct and adjusted
951                  * path->slots[0] for our insertion (if replace_extent != 0).
952                  */
953                 path->slots[0] = del_slot;
954                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
955                 if (ret)
956                         btrfs_abort_transaction(trans, root, ret);
957         }
958
959         leaf = path->nodes[0];
960         /*
961          * If btrfs_del_items() was called, it might have deleted a leaf, in
962          * which case it unlocked our path, so check path->locks[0] matches a
963          * write lock.
964          */
965         if (!ret && replace_extent && leafs_visited == 1 &&
966             (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
967              path->locks[0] == BTRFS_WRITE_LOCK) &&
968             btrfs_leaf_free_space(root, leaf) >=
969             sizeof(struct btrfs_item) + extent_item_size) {
970
971                 key.objectid = ino;
972                 key.type = BTRFS_EXTENT_DATA_KEY;
973                 key.offset = start;
974                 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
975                         struct btrfs_key slot_key;
976
977                         btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
978                         if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
979                                 path->slots[0]++;
980                 }
981                 setup_items_for_insert(root, path, &key,
982                                        &extent_item_size,
983                                        extent_item_size,
984                                        sizeof(struct btrfs_item) +
985                                        extent_item_size, 1);
986                 *key_inserted = 1;
987         }
988
989         if (!replace_extent || !(*key_inserted))
990                 btrfs_release_path(path);
991         if (drop_end)
992                 *drop_end = found ? min(end, extent_end) : end;
993         return ret;
994 }
995
996 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
997                        struct btrfs_root *root, struct inode *inode, u64 start,
998                        u64 end, int drop_cache)
999 {
1000         struct btrfs_path *path;
1001         int ret;
1002
1003         path = btrfs_alloc_path();
1004         if (!path)
1005                 return -ENOMEM;
1006         ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1007                                    drop_cache, 0, 0, NULL);
1008         btrfs_free_path(path);
1009         return ret;
1010 }
1011
1012 static int extent_mergeable(struct extent_buffer *leaf, int slot,
1013                             u64 objectid, u64 bytenr, u64 orig_offset,
1014                             u64 *start, u64 *end)
1015 {
1016         struct btrfs_file_extent_item *fi;
1017         struct btrfs_key key;
1018         u64 extent_end;
1019
1020         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1021                 return 0;
1022
1023         btrfs_item_key_to_cpu(leaf, &key, slot);
1024         if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1025                 return 0;
1026
1027         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1028         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1029             btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
1030             btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
1031             btrfs_file_extent_compression(leaf, fi) ||
1032             btrfs_file_extent_encryption(leaf, fi) ||
1033             btrfs_file_extent_other_encoding(leaf, fi))
1034                 return 0;
1035
1036         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1037         if ((*start && *start != key.offset) || (*end && *end != extent_end))
1038                 return 0;
1039
1040         *start = key.offset;
1041         *end = extent_end;
1042         return 1;
1043 }
1044
1045 /*
1046  * Mark extent in the range start - end as written.
1047  *
1048  * This changes extent type from 'pre-allocated' to 'regular'. If only
1049  * part of extent is marked as written, the extent will be split into
1050  * two or three.
1051  */
1052 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
1053                               struct inode *inode, u64 start, u64 end)
1054 {
1055         struct btrfs_root *root = BTRFS_I(inode)->root;
1056         struct extent_buffer *leaf;
1057         struct btrfs_path *path;
1058         struct btrfs_file_extent_item *fi;
1059         struct btrfs_key key;
1060         struct btrfs_key new_key;
1061         u64 bytenr;
1062         u64 num_bytes;
1063         u64 extent_end;
1064         u64 orig_offset;
1065         u64 other_start;
1066         u64 other_end;
1067         u64 split;
1068         int del_nr = 0;
1069         int del_slot = 0;
1070         int recow;
1071         int ret;
1072         u64 ino = btrfs_ino(inode);
1073
1074         path = btrfs_alloc_path();
1075         if (!path)
1076                 return -ENOMEM;
1077 again:
1078         recow = 0;
1079         split = start;
1080         key.objectid = ino;
1081         key.type = BTRFS_EXTENT_DATA_KEY;
1082         key.offset = split;
1083
1084         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1085         if (ret < 0)
1086                 goto out;
1087         if (ret > 0 && path->slots[0] > 0)
1088                 path->slots[0]--;
1089
1090         leaf = path->nodes[0];
1091         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1092         BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
1093         fi = btrfs_item_ptr(leaf, path->slots[0],
1094                             struct btrfs_file_extent_item);
1095         BUG_ON(btrfs_file_extent_type(leaf, fi) !=
1096                BTRFS_FILE_EXTENT_PREALLOC);
1097         extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1098         BUG_ON(key.offset > start || extent_end < end);
1099
1100         bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1101         num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1102         orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
1103         memcpy(&new_key, &key, sizeof(new_key));
1104
1105         if (start == key.offset && end < extent_end) {
1106                 other_start = 0;
1107                 other_end = start;
1108                 if (extent_mergeable(leaf, path->slots[0] - 1,
1109                                      ino, bytenr, orig_offset,
1110                                      &other_start, &other_end)) {
1111                         new_key.offset = end;
1112                         btrfs_set_item_key_safe(root, path, &new_key);
1113                         fi = btrfs_item_ptr(leaf, path->slots[0],
1114                                             struct btrfs_file_extent_item);
1115                         btrfs_set_file_extent_generation(leaf, fi,
1116                                                          trans->transid);
1117                         btrfs_set_file_extent_num_bytes(leaf, fi,
1118                                                         extent_end - end);
1119                         btrfs_set_file_extent_offset(leaf, fi,
1120                                                      end - orig_offset);
1121                         fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1122                                             struct btrfs_file_extent_item);
1123                         btrfs_set_file_extent_generation(leaf, fi,
1124                                                          trans->transid);
1125                         btrfs_set_file_extent_num_bytes(leaf, fi,
1126                                                         end - other_start);
1127                         btrfs_mark_buffer_dirty(leaf);
1128                         goto out;
1129                 }
1130         }
1131
1132         if (start > key.offset && end == extent_end) {
1133                 other_start = end;
1134                 other_end = 0;
1135                 if (extent_mergeable(leaf, path->slots[0] + 1,
1136                                      ino, bytenr, orig_offset,
1137                                      &other_start, &other_end)) {
1138                         fi = btrfs_item_ptr(leaf, path->slots[0],
1139                                             struct btrfs_file_extent_item);
1140                         btrfs_set_file_extent_num_bytes(leaf, fi,
1141                                                         start - key.offset);
1142                         btrfs_set_file_extent_generation(leaf, fi,
1143                                                          trans->transid);
1144                         path->slots[0]++;
1145                         new_key.offset = start;
1146                         btrfs_set_item_key_safe(root, path, &new_key);
1147
1148                         fi = btrfs_item_ptr(leaf, path->slots[0],
1149                                             struct btrfs_file_extent_item);
1150                         btrfs_set_file_extent_generation(leaf, fi,
1151                                                          trans->transid);
1152                         btrfs_set_file_extent_num_bytes(leaf, fi,
1153                                                         other_end - start);
1154                         btrfs_set_file_extent_offset(leaf, fi,
1155                                                      start - orig_offset);
1156                         btrfs_mark_buffer_dirty(leaf);
1157                         goto out;
1158                 }
1159         }
1160
1161         while (start > key.offset || end < extent_end) {
1162                 if (key.offset == start)
1163                         split = end;
1164
1165                 new_key.offset = split;
1166                 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1167                 if (ret == -EAGAIN) {
1168                         btrfs_release_path(path);
1169                         goto again;
1170                 }
1171                 if (ret < 0) {
1172                         btrfs_abort_transaction(trans, root, ret);
1173                         goto out;
1174                 }
1175
1176                 leaf = path->nodes[0];
1177                 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1178                                     struct btrfs_file_extent_item);
1179                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1180                 btrfs_set_file_extent_num_bytes(leaf, fi,
1181                                                 split - key.offset);
1182
1183                 fi = btrfs_item_ptr(leaf, path->slots[0],
1184                                     struct btrfs_file_extent_item);
1185
1186                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1187                 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1188                 btrfs_set_file_extent_num_bytes(leaf, fi,
1189                                                 extent_end - split);
1190                 btrfs_mark_buffer_dirty(leaf);
1191
1192                 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1193                                            root->root_key.objectid,
1194                                            ino, orig_offset, 0);
1195                 BUG_ON(ret); /* -ENOMEM */
1196
1197                 if (split == start) {
1198                         key.offset = start;
1199                 } else {
1200                         BUG_ON(start != key.offset);
1201                         path->slots[0]--;
1202                         extent_end = end;
1203                 }
1204                 recow = 1;
1205         }
1206
1207         other_start = end;
1208         other_end = 0;
1209         if (extent_mergeable(leaf, path->slots[0] + 1,
1210                              ino, bytenr, orig_offset,
1211                              &other_start, &other_end)) {
1212                 if (recow) {
1213                         btrfs_release_path(path);
1214                         goto again;
1215                 }
1216                 extent_end = other_end;
1217                 del_slot = path->slots[0] + 1;
1218                 del_nr++;
1219                 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1220                                         0, root->root_key.objectid,
1221                                         ino, orig_offset, 0);
1222                 BUG_ON(ret); /* -ENOMEM */
1223         }
1224         other_start = 0;
1225         other_end = start;
1226         if (extent_mergeable(leaf, path->slots[0] - 1,
1227                              ino, bytenr, orig_offset,
1228                              &other_start, &other_end)) {
1229                 if (recow) {
1230                         btrfs_release_path(path);
1231                         goto again;
1232                 }
1233                 key.offset = other_start;
1234                 del_slot = path->slots[0];
1235                 del_nr++;
1236                 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1237                                         0, root->root_key.objectid,
1238                                         ino, orig_offset, 0);
1239                 BUG_ON(ret); /* -ENOMEM */
1240         }
1241         if (del_nr == 0) {
1242                 fi = btrfs_item_ptr(leaf, path->slots[0],
1243                            struct btrfs_file_extent_item);
1244                 btrfs_set_file_extent_type(leaf, fi,
1245                                            BTRFS_FILE_EXTENT_REG);
1246                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1247                 btrfs_mark_buffer_dirty(leaf);
1248         } else {
1249                 fi = btrfs_item_ptr(leaf, del_slot - 1,
1250                            struct btrfs_file_extent_item);
1251                 btrfs_set_file_extent_type(leaf, fi,
1252                                            BTRFS_FILE_EXTENT_REG);
1253                 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1254                 btrfs_set_file_extent_num_bytes(leaf, fi,
1255                                                 extent_end - key.offset);
1256                 btrfs_mark_buffer_dirty(leaf);
1257
1258                 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1259                 if (ret < 0) {
1260                         btrfs_abort_transaction(trans, root, ret);
1261                         goto out;
1262                 }
1263         }
1264 out:
1265         btrfs_free_path(path);
1266         return 0;
1267 }
1268
1269 /*
1270  * on error we return an unlocked page and the error value
1271  * on success we return a locked page and 0
1272  */
1273 static int prepare_uptodate_page(struct page *page, u64 pos,
1274                                  bool force_uptodate)
1275 {
1276         int ret = 0;
1277
1278         if (((pos & (PAGE_CACHE_SIZE - 1)) || force_uptodate) &&
1279             !PageUptodate(page)) {
1280                 ret = btrfs_readpage(NULL, page);
1281                 if (ret)
1282                         return ret;
1283                 lock_page(page);
1284                 if (!PageUptodate(page)) {
1285                         unlock_page(page);
1286                         return -EIO;
1287                 }
1288         }
1289         return 0;
1290 }
1291
1292 /*
1293  * this just gets pages into the page cache and locks them down.
1294  */
1295 static noinline int prepare_pages(struct inode *inode, struct page **pages,
1296                                   size_t num_pages, loff_t pos,
1297                                   size_t write_bytes, bool force_uptodate)
1298 {
1299         int i;
1300         unsigned long index = pos >> PAGE_CACHE_SHIFT;
1301         gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1302         int err = 0;
1303         int faili;
1304
1305         for (i = 0; i < num_pages; i++) {
1306                 pages[i] = find_or_create_page(inode->i_mapping, index + i,
1307                                                mask | __GFP_WRITE);
1308                 if (!pages[i]) {
1309                         faili = i - 1;
1310                         err = -ENOMEM;
1311                         goto fail;
1312                 }
1313
1314                 if (i == 0)
1315                         err = prepare_uptodate_page(pages[i], pos,
1316                                                     force_uptodate);
1317                 if (i == num_pages - 1)
1318                         err = prepare_uptodate_page(pages[i],
1319                                                     pos + write_bytes, false);
1320                 if (err) {
1321                         page_cache_release(pages[i]);
1322                         faili = i - 1;
1323                         goto fail;
1324                 }
1325                 wait_on_page_writeback(pages[i]);
1326         }
1327
1328         return 0;
1329 fail:
1330         while (faili >= 0) {
1331                 unlock_page(pages[faili]);
1332                 page_cache_release(pages[faili]);
1333                 faili--;
1334         }
1335         return err;
1336
1337 }
1338
1339 /*
1340  * This function locks the extent and properly waits for data=ordered extents
1341  * to finish before allowing the pages to be modified if need.
1342  *
1343  * The return value:
1344  * 1 - the extent is locked
1345  * 0 - the extent is not locked, and everything is OK
1346  * -EAGAIN - need re-prepare the pages
1347  * the other < 0 number - Something wrong happens
1348  */
1349 static noinline int
1350 lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
1351                                 size_t num_pages, loff_t pos,
1352                                 u64 *lockstart, u64 *lockend,
1353                                 struct extent_state **cached_state)
1354 {
1355         u64 start_pos;
1356         u64 last_pos;
1357         int i;
1358         int ret = 0;
1359
1360         start_pos = pos & ~((u64)PAGE_CACHE_SIZE - 1);
1361         last_pos = start_pos + ((u64)num_pages << PAGE_CACHE_SHIFT) - 1;
1362
1363         if (start_pos < inode->i_size) {
1364                 struct btrfs_ordered_extent *ordered;
1365                 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1366                                  start_pos, last_pos, 0, cached_state);
1367                 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1368                                                      last_pos - start_pos + 1);
1369                 if (ordered &&
1370                     ordered->file_offset + ordered->len > start_pos &&
1371                     ordered->file_offset <= last_pos) {
1372                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1373                                              start_pos, last_pos,
1374                                              cached_state, GFP_NOFS);
1375                         for (i = 0; i < num_pages; i++) {
1376                                 unlock_page(pages[i]);
1377                                 page_cache_release(pages[i]);
1378                         }
1379                         btrfs_start_ordered_extent(inode, ordered, 1);
1380                         btrfs_put_ordered_extent(ordered);
1381                         return -EAGAIN;
1382                 }
1383                 if (ordered)
1384                         btrfs_put_ordered_extent(ordered);
1385
1386                 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1387                                   last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
1388                                   EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
1389                                   0, 0, cached_state, GFP_NOFS);
1390                 *lockstart = start_pos;
1391                 *lockend = last_pos;
1392                 ret = 1;
1393         }
1394
1395         for (i = 0; i < num_pages; i++) {
1396                 if (clear_page_dirty_for_io(pages[i]))
1397                         account_page_redirty(pages[i]);
1398                 set_page_extent_mapped(pages[i]);
1399                 WARN_ON(!PageLocked(pages[i]));
1400         }
1401
1402         return ret;
1403 }
1404
1405 static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1406                                     size_t *write_bytes)
1407 {
1408         struct btrfs_root *root = BTRFS_I(inode)->root;
1409         struct btrfs_ordered_extent *ordered;
1410         u64 lockstart, lockend;
1411         u64 num_bytes;
1412         int ret;
1413
1414         ret = btrfs_start_nocow_write(root);
1415         if (!ret)
1416                 return -ENOSPC;
1417
1418         lockstart = round_down(pos, root->sectorsize);
1419         lockend = round_up(pos + *write_bytes, root->sectorsize) - 1;
1420
1421         while (1) {
1422                 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1423                 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1424                                                      lockend - lockstart + 1);
1425                 if (!ordered) {
1426                         break;
1427                 }
1428                 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1429                 btrfs_start_ordered_extent(inode, ordered, 1);
1430                 btrfs_put_ordered_extent(ordered);
1431         }
1432
1433         num_bytes = lockend - lockstart + 1;
1434         ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
1435         if (ret <= 0) {
1436                 ret = 0;
1437                 btrfs_end_nocow_write(root);
1438         } else {
1439                 *write_bytes = min_t(size_t, *write_bytes ,
1440                                      num_bytes - pos + lockstart);
1441         }
1442
1443         unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1444
1445         return ret;
1446 }
1447
1448 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1449                                                struct iov_iter *i,
1450                                                loff_t pos)
1451 {
1452         struct inode *inode = file_inode(file);
1453         struct btrfs_root *root = BTRFS_I(inode)->root;
1454         struct page **pages = NULL;
1455         struct extent_state *cached_state = NULL;
1456         u64 release_bytes = 0;
1457         u64 lockstart;
1458         u64 lockend;
1459         unsigned long first_index;
1460         size_t num_written = 0;
1461         int nrptrs;
1462         int ret = 0;
1463         bool only_release_metadata = false;
1464         bool force_page_uptodate = false;
1465         bool need_unlock;
1466
1467         nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
1468                      PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
1469                      (sizeof(struct page *)));
1470         nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1471         nrptrs = max(nrptrs, 8);
1472         pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
1473         if (!pages)
1474                 return -ENOMEM;
1475
1476         first_index = pos >> PAGE_CACHE_SHIFT;
1477
1478         while (iov_iter_count(i) > 0) {
1479                 size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1480                 size_t write_bytes = min(iov_iter_count(i),
1481                                          nrptrs * (size_t)PAGE_CACHE_SIZE -
1482                                          offset);
1483                 size_t num_pages = (write_bytes + offset +
1484                                     PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1485                 size_t reserve_bytes;
1486                 size_t dirty_pages;
1487                 size_t copied;
1488
1489                 WARN_ON(num_pages > nrptrs);
1490
1491                 /*
1492                  * Fault pages before locking them in prepare_pages
1493                  * to avoid recursive lock
1494                  */
1495                 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1496                         ret = -EFAULT;
1497                         break;
1498                 }
1499
1500                 reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1501                 ret = btrfs_check_data_free_space(inode, reserve_bytes);
1502                 if (ret == -ENOSPC &&
1503                     (BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1504                                               BTRFS_INODE_PREALLOC))) {
1505                         ret = check_can_nocow(inode, pos, &write_bytes);
1506                         if (ret > 0) {
1507                                 only_release_metadata = true;
1508                                 /*
1509                                  * our prealloc extent may be smaller than
1510                                  * write_bytes, so scale down.
1511                                  */
1512                                 num_pages = (write_bytes + offset +
1513                                              PAGE_CACHE_SIZE - 1) >>
1514                                         PAGE_CACHE_SHIFT;
1515                                 reserve_bytes = num_pages << PAGE_CACHE_SHIFT;
1516                                 ret = 0;
1517                         } else {
1518                                 ret = -ENOSPC;
1519                         }
1520                 }
1521
1522                 if (ret)
1523                         break;
1524
1525                 ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1526                 if (ret) {
1527                         if (!only_release_metadata)
1528                                 btrfs_free_reserved_data_space(inode,
1529                                                                reserve_bytes);
1530                         else
1531                                 btrfs_end_nocow_write(root);
1532                         break;
1533                 }
1534
1535                 release_bytes = reserve_bytes;
1536                 need_unlock = false;
1537 again:
1538                 /*
1539                  * This is going to setup the pages array with the number of
1540                  * pages we want, so we don't really need to worry about the
1541                  * contents of pages from loop to loop
1542                  */
1543                 ret = prepare_pages(inode, pages, num_pages,
1544                                     pos, write_bytes,
1545                                     force_page_uptodate);
1546                 if (ret)
1547                         break;
1548
1549                 ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
1550                                                       pos, &lockstart, &lockend,
1551                                                       &cached_state);
1552                 if (ret < 0) {
1553                         if (ret == -EAGAIN)
1554                                 goto again;
1555                         break;
1556                 } else if (ret > 0) {
1557                         need_unlock = true;
1558                         ret = 0;
1559                 }
1560
1561                 copied = btrfs_copy_from_user(pos, num_pages,
1562                                            write_bytes, pages, i);
1563
1564                 /*
1565                  * if we have trouble faulting in the pages, fall
1566                  * back to one page at a time
1567                  */
1568                 if (copied < write_bytes)
1569                         nrptrs = 1;
1570
1571                 if (copied == 0) {
1572                         force_page_uptodate = true;
1573                         dirty_pages = 0;
1574                 } else {
1575                         force_page_uptodate = false;
1576                         dirty_pages = (copied + offset +
1577                                        PAGE_CACHE_SIZE - 1) >>
1578                                        PAGE_CACHE_SHIFT;
1579                 }
1580
1581                 /*
1582                  * If we had a short copy we need to release the excess delaloc
1583                  * bytes we reserved.  We need to increment outstanding_extents
1584                  * because btrfs_delalloc_release_space will decrement it, but
1585                  * we still have an outstanding extent for the chunk we actually
1586                  * managed to copy.
1587                  */
1588                 if (num_pages > dirty_pages) {
1589                         release_bytes = (num_pages - dirty_pages) <<
1590                                 PAGE_CACHE_SHIFT;
1591                         if (copied > 0) {
1592                                 spin_lock(&BTRFS_I(inode)->lock);
1593                                 BTRFS_I(inode)->outstanding_extents++;
1594                                 spin_unlock(&BTRFS_I(inode)->lock);
1595                         }
1596                         if (only_release_metadata)
1597                                 btrfs_delalloc_release_metadata(inode,
1598                                                                 release_bytes);
1599                         else
1600                                 btrfs_delalloc_release_space(inode,
1601                                                              release_bytes);
1602                 }
1603
1604                 release_bytes = dirty_pages << PAGE_CACHE_SHIFT;
1605
1606                 if (copied > 0)
1607                         ret = btrfs_dirty_pages(root, inode, pages,
1608                                                 dirty_pages, pos, copied,
1609                                                 NULL);
1610                 if (need_unlock)
1611                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1612                                              lockstart, lockend, &cached_state,
1613                                              GFP_NOFS);
1614                 if (ret) {
1615                         btrfs_drop_pages(pages, num_pages);
1616                         break;
1617                 }
1618
1619                 release_bytes = 0;
1620                 if (only_release_metadata)
1621                         btrfs_end_nocow_write(root);
1622
1623                 if (only_release_metadata && copied > 0) {
1624                         u64 lockstart = round_down(pos, root->sectorsize);
1625                         u64 lockend = lockstart +
1626                                 (dirty_pages << PAGE_CACHE_SHIFT) - 1;
1627
1628                         set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1629                                        lockend, EXTENT_NORESERVE, NULL,
1630                                        NULL, GFP_NOFS);
1631                         only_release_metadata = false;
1632                 }
1633
1634                 btrfs_drop_pages(pages, num_pages);
1635
1636                 cond_resched();
1637
1638                 balance_dirty_pages_ratelimited(inode->i_mapping);
1639                 if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
1640                         btrfs_btree_balance_dirty(root);
1641
1642                 pos += copied;
1643                 num_written += copied;
1644         }
1645
1646         kfree(pages);
1647
1648         if (release_bytes) {
1649                 if (only_release_metadata) {
1650                         btrfs_end_nocow_write(root);
1651                         btrfs_delalloc_release_metadata(inode, release_bytes);
1652                 } else {
1653                         btrfs_delalloc_release_space(inode, release_bytes);
1654                 }
1655         }
1656
1657         return num_written ? num_written : ret;
1658 }
1659
1660 static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1661                                     struct iov_iter *from,
1662                                     loff_t pos)
1663 {
1664         struct file *file = iocb->ki_filp;
1665         ssize_t written;
1666         ssize_t written_buffered;
1667         loff_t endbyte;
1668         int err;
1669
1670         written = generic_file_direct_write(iocb, from, pos);
1671
1672         if (written < 0 || !iov_iter_count(from))
1673                 return written;
1674
1675         pos += written;
1676         written_buffered = __btrfs_buffered_write(file, from, pos);
1677         if (written_buffered < 0) {
1678                 err = written_buffered;
1679                 goto out;
1680         }
1681         endbyte = pos + written_buffered - 1;
1682         err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
1683         if (err)
1684                 goto out;
1685         written += written_buffered;
1686         iocb->ki_pos = pos + written_buffered;
1687         invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1688                                  endbyte >> PAGE_CACHE_SHIFT);
1689 out:
1690         return written ? written : err;
1691 }
1692
1693 static void update_time_for_write(struct inode *inode)
1694 {
1695         struct timespec now;
1696
1697         if (IS_NOCMTIME(inode))
1698                 return;
1699
1700         now = current_fs_time(inode->i_sb);
1701         if (!timespec_equal(&inode->i_mtime, &now))
1702                 inode->i_mtime = now;
1703
1704         if (!timespec_equal(&inode->i_ctime, &now))
1705                 inode->i_ctime = now;
1706
1707         if (IS_I_VERSION(inode))
1708                 inode_inc_iversion(inode);
1709 }
1710
1711 static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
1712                                     const struct iovec *iov,
1713                                     unsigned long nr_segs, loff_t pos)
1714 {
1715         struct file *file = iocb->ki_filp;
1716         struct inode *inode = file_inode(file);
1717         struct btrfs_root *root = BTRFS_I(inode)->root;
1718         u64 start_pos;
1719         u64 end_pos;
1720         ssize_t num_written = 0;
1721         ssize_t err = 0;
1722         size_t count;
1723         bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
1724         struct iov_iter i;
1725
1726         mutex_lock(&inode->i_mutex);
1727
1728         count = iov_length(iov, nr_segs);
1729         iov_iter_init(&i, WRITE, iov, nr_segs, count);
1730
1731         current->backing_dev_info = inode->i_mapping->backing_dev_info;
1732         err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1733         if (err) {
1734                 mutex_unlock(&inode->i_mutex);
1735                 goto out;
1736         }
1737
1738         if (count == 0) {
1739                 mutex_unlock(&inode->i_mutex);
1740                 goto out;
1741         }
1742
1743         iov_iter_truncate(&i, count);
1744
1745         err = file_remove_suid(file);
1746         if (err) {
1747                 mutex_unlock(&inode->i_mutex);
1748                 goto out;
1749         }
1750
1751         /*
1752          * If BTRFS flips readonly due to some impossible error
1753          * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1754          * although we have opened a file as writable, we have
1755          * to stop this write operation to ensure FS consistency.
1756          */
1757         if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
1758                 mutex_unlock(&inode->i_mutex);
1759                 err = -EROFS;
1760                 goto out;
1761         }
1762
1763         /*
1764          * We reserve space for updating the inode when we reserve space for the
1765          * extent we are going to write, so we will enospc out there.  We don't
1766          * need to start yet another transaction to update the inode as we will
1767          * update the inode when we finish writing whatever data we write.
1768          */
1769         update_time_for_write(inode);
1770
1771         start_pos = round_down(pos, root->sectorsize);
1772         if (start_pos > i_size_read(inode)) {
1773                 /* Expand hole size to cover write data, preventing empty gap */
1774                 end_pos = round_up(pos + count, root->sectorsize);
1775                 err = btrfs_cont_expand(inode, i_size_read(inode), end_pos);
1776                 if (err) {
1777                         mutex_unlock(&inode->i_mutex);
1778                         goto out;
1779                 }
1780         }
1781
1782         if (sync)
1783                 atomic_inc(&BTRFS_I(inode)->sync_writers);
1784
1785         if (unlikely(file->f_flags & O_DIRECT)) {
1786                 num_written = __btrfs_direct_write(iocb, &i, pos);
1787         } else {
1788                 num_written = __btrfs_buffered_write(file, &i, pos);
1789                 if (num_written > 0)
1790                         iocb->ki_pos = pos + num_written;
1791         }
1792
1793         mutex_unlock(&inode->i_mutex);
1794
1795         /*
1796          * we want to make sure fsync finds this change
1797          * but we haven't joined a transaction running right now.
1798          *
1799          * Later on, someone is sure to update the inode and get the
1800          * real transid recorded.
1801          *
1802          * We set last_trans now to the fs_info generation + 1,
1803          * this will either be one more than the running transaction
1804          * or the generation used for the next transaction if there isn't
1805          * one running right now.
1806          *
1807          * We also have to set last_sub_trans to the current log transid,
1808          * otherwise subsequent syncs to a file that's been synced in this
1809          * transaction will appear to have already occured.
1810          */
1811         BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
1812         BTRFS_I(inode)->last_sub_trans = root->log_transid;
1813         if (num_written > 0) {
1814                 err = generic_write_sync(file, pos, num_written);
1815                 if (err < 0)
1816                         num_written = err;
1817         }
1818
1819         if (sync)
1820                 atomic_dec(&BTRFS_I(inode)->sync_writers);
1821 out:
1822         current->backing_dev_info = NULL;
1823         return num_written ? num_written : err;
1824 }
1825
1826 int btrfs_release_file(struct inode *inode, struct file *filp)
1827 {
1828         /*
1829          * ordered_data_close is set by settattr when we are about to truncate
1830          * a file from a non-zero size to a zero size.  This tries to
1831          * flush down new bytes that may have been written if the
1832          * application were using truncate to replace a file in place.
1833          */
1834         if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1835                                &BTRFS_I(inode)->runtime_flags)) {
1836                 struct btrfs_trans_handle *trans;
1837                 struct btrfs_root *root = BTRFS_I(inode)->root;
1838
1839                 /*
1840                  * We need to block on a committing transaction to keep us from
1841                  * throwing a ordered operation on to the list and causing
1842                  * something like sync to deadlock trying to flush out this
1843                  * inode.
1844                  */
1845                 trans = btrfs_start_transaction(root, 0);
1846                 if (IS_ERR(trans))
1847                         return PTR_ERR(trans);
1848                 btrfs_add_ordered_operation(trans, BTRFS_I(inode)->root, inode);
1849                 btrfs_end_transaction(trans, root);
1850                 if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1851                         filemap_flush(inode->i_mapping);
1852         }
1853         if (filp->private_data)
1854                 btrfs_ioctl_trans_end(filp);
1855         return 0;
1856 }
1857
1858 /*
1859  * fsync call for both files and directories.  This logs the inode into
1860  * the tree log instead of forcing full commits whenever possible.
1861  *
1862  * It needs to call filemap_fdatawait so that all ordered extent updates are
1863  * in the metadata btree are up to date for copying to the log.
1864  *
1865  * It drops the inode mutex before doing the tree log commit.  This is an
1866  * important optimization for directories because holding the mutex prevents
1867  * new operations on the dir while we write to disk.
1868  */
1869 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1870 {
1871         struct dentry *dentry = file->f_path.dentry;
1872         struct inode *inode = dentry->d_inode;
1873         struct btrfs_root *root = BTRFS_I(inode)->root;
1874         struct btrfs_trans_handle *trans;
1875         struct btrfs_log_ctx ctx;
1876         int ret = 0;
1877         bool full_sync = 0;
1878
1879         trace_btrfs_sync_file(file, datasync);
1880
1881         /*
1882          * We write the dirty pages in the range and wait until they complete
1883          * out of the ->i_mutex. If so, we can flush the dirty pages by
1884          * multi-task, and make the performance up.  See
1885          * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1886          */
1887         atomic_inc(&BTRFS_I(inode)->sync_writers);
1888         ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1889         if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1890                              &BTRFS_I(inode)->runtime_flags))
1891                 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
1892         atomic_dec(&BTRFS_I(inode)->sync_writers);
1893         if (ret)
1894                 return ret;
1895
1896         mutex_lock(&inode->i_mutex);
1897
1898         /*
1899          * We flush the dirty pages again to avoid some dirty pages in the
1900          * range being left.
1901          */
1902         atomic_inc(&root->log_batch);
1903         full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1904                              &BTRFS_I(inode)->runtime_flags);
1905         if (full_sync) {
1906                 ret = btrfs_wait_ordered_range(inode, start, end - start + 1);
1907                 if (ret) {
1908                         mutex_unlock(&inode->i_mutex);
1909                         goto out;
1910                 }
1911         }
1912         atomic_inc(&root->log_batch);
1913
1914         /*
1915          * check the transaction that last modified this inode
1916          * and see if its already been committed
1917          */
1918         if (!BTRFS_I(inode)->last_trans) {
1919                 mutex_unlock(&inode->i_mutex);
1920                 goto out;
1921         }
1922
1923         /*
1924          * if the last transaction that changed this file was before
1925          * the current transaction, we can bail out now without any
1926          * syncing
1927          */
1928         smp_mb();
1929         if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
1930             BTRFS_I(inode)->last_trans <=
1931             root->fs_info->last_trans_committed) {
1932                 BTRFS_I(inode)->last_trans = 0;
1933
1934                 /*
1935                  * We'v had everything committed since the last time we were
1936                  * modified so clear this flag in case it was set for whatever
1937                  * reason, it's no longer relevant.
1938                  */
1939                 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1940                           &BTRFS_I(inode)->runtime_flags);
1941                 mutex_unlock(&inode->i_mutex);
1942                 goto out;
1943         }
1944
1945         /*
1946          * ok we haven't committed the transaction yet, lets do a commit
1947          */
1948         if (file->private_data)
1949                 btrfs_ioctl_trans_end(file);
1950
1951         /*
1952          * We use start here because we will need to wait on the IO to complete
1953          * in btrfs_sync_log, which could require joining a transaction (for
1954          * example checking cross references in the nocow path).  If we use join
1955          * here we could get into a situation where we're waiting on IO to
1956          * happen that is blocked on a transaction trying to commit.  With start
1957          * we inc the extwriter counter, so we wait for all extwriters to exit
1958          * before we start blocking join'ers.  This comment is to keep somebody
1959          * from thinking they are super smart and changing this to
1960          * btrfs_join_transaction *cough*Josef*cough*.
1961          */
1962         trans = btrfs_start_transaction(root, 0);
1963         if (IS_ERR(trans)) {
1964                 ret = PTR_ERR(trans);
1965                 mutex_unlock(&inode->i_mutex);
1966                 goto out;
1967         }
1968         trans->sync = true;
1969
1970         btrfs_init_log_ctx(&ctx);
1971
1972         ret = btrfs_log_dentry_safe(trans, root, dentry, &ctx);
1973         if (ret < 0) {
1974                 /* Fallthrough and commit/free transaction. */
1975                 ret = 1;
1976         }
1977
1978         /* we've logged all the items and now have a consistent
1979          * version of the file in the log.  It is possible that
1980          * someone will come in and modify the file, but that's
1981          * fine because the log is consistent on disk, and we
1982          * have references to all of the file's extents
1983          *
1984          * It is possible that someone will come in and log the
1985          * file again, but that will end up using the synchronization
1986          * inside btrfs_sync_log to keep things safe.
1987          */
1988         mutex_unlock(&inode->i_mutex);
1989
1990         if (ret != BTRFS_NO_LOG_SYNC) {
1991                 if (!ret) {
1992                         ret = btrfs_sync_log(trans, root, &ctx);
1993                         if (!ret) {
1994                                 ret = btrfs_end_transaction(trans, root);
1995                                 goto out;
1996                         }
1997                 }
1998                 if (!full_sync) {
1999                         ret = btrfs_wait_ordered_range(inode, start,
2000                                                        end - start + 1);
2001                         if (ret)
2002                                 goto out;
2003                 }
2004                 ret = btrfs_commit_transaction(trans, root);
2005         } else {
2006                 ret = btrfs_end_transaction(trans, root);
2007         }
2008 out:
2009         return ret > 0 ? -EIO : ret;
2010 }
2011
2012 static const struct vm_operations_struct btrfs_file_vm_ops = {
2013         .fault          = filemap_fault,
2014         .map_pages      = filemap_map_pages,
2015         .page_mkwrite   = btrfs_page_mkwrite,
2016         .remap_pages    = generic_file_remap_pages,
2017 };
2018
2019 static int btrfs_file_mmap(struct file  *filp, struct vm_area_struct *vma)
2020 {
2021         struct address_space *mapping = filp->f_mapping;
2022
2023         if (!mapping->a_ops->readpage)
2024                 return -ENOEXEC;
2025
2026         file_accessed(filp);
2027         vma->vm_ops = &btrfs_file_vm_ops;
2028
2029         return 0;
2030 }
2031
2032 static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
2033                           int slot, u64 start, u64 end)
2034 {
2035         struct btrfs_file_extent_item *fi;
2036         struct btrfs_key key;
2037
2038         if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2039                 return 0;
2040
2041         btrfs_item_key_to_cpu(leaf, &key, slot);
2042         if (key.objectid != btrfs_ino(inode) ||
2043             key.type != BTRFS_EXTENT_DATA_KEY)
2044                 return 0;
2045
2046         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2047
2048         if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2049                 return 0;
2050
2051         if (btrfs_file_extent_disk_bytenr(leaf, fi))
2052                 return 0;
2053
2054         if (key.offset == end)
2055                 return 1;
2056         if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2057                 return 1;
2058         return 0;
2059 }
2060
2061 static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
2062                       struct btrfs_path *path, u64 offset, u64 end)
2063 {
2064         struct btrfs_root *root = BTRFS_I(inode)->root;
2065         struct extent_buffer *leaf;
2066         struct btrfs_file_extent_item *fi;
2067         struct extent_map *hole_em;
2068         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2069         struct btrfs_key key;
2070         int ret;
2071
2072         if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
2073                 goto out;
2074
2075         key.objectid = btrfs_ino(inode);
2076         key.type = BTRFS_EXTENT_DATA_KEY;
2077         key.offset = offset;
2078
2079         ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2080         if (ret < 0)
2081                 return ret;
2082         BUG_ON(!ret);
2083
2084         leaf = path->nodes[0];
2085         if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
2086                 u64 num_bytes;
2087
2088                 path->slots[0]--;
2089                 fi = btrfs_item_ptr(leaf, path->slots[0],
2090                                     struct btrfs_file_extent_item);
2091                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2092                         end - offset;
2093                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2094                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2095                 btrfs_set_file_extent_offset(leaf, fi, 0);
2096                 btrfs_mark_buffer_dirty(leaf);
2097                 goto out;
2098         }
2099
2100         if (hole_mergeable(inode, leaf, path->slots[0]+1, offset, end)) {
2101                 u64 num_bytes;
2102
2103                 path->slots[0]++;
2104                 key.offset = offset;
2105                 btrfs_set_item_key_safe(root, path, &key);
2106                 fi = btrfs_item_ptr(leaf, path->slots[0],
2107                                     struct btrfs_file_extent_item);
2108                 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2109                         offset;
2110                 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2111                 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2112                 btrfs_set_file_extent_offset(leaf, fi, 0);
2113                 btrfs_mark_buffer_dirty(leaf);
2114                 goto out;
2115         }
2116         btrfs_release_path(path);
2117
2118         ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2119                                        0, 0, end - offset, 0, end - offset,
2120                                        0, 0, 0);
2121         if (ret)
2122                 return ret;
2123
2124 out:
2125         btrfs_release_path(path);
2126
2127         hole_em = alloc_extent_map();
2128         if (!hole_em) {
2129                 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2130                 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2131                         &BTRFS_I(inode)->runtime_flags);
2132         } else {
2133                 hole_em->start = offset;
2134                 hole_em->len = end - offset;
2135                 hole_em->ram_bytes = hole_em->len;
2136                 hole_em->orig_start = offset;
2137
2138                 hole_em->block_start = EXTENT_MAP_HOLE;
2139                 hole_em->block_len = 0;
2140                 hole_em->orig_block_len = 0;
2141                 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2142                 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2143                 hole_em->generation = trans->transid;
2144
2145                 do {
2146                         btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2147                         write_lock(&em_tree->lock);
2148                         ret = add_extent_mapping(em_tree, hole_em, 1);
2149                         write_unlock(&em_tree->lock);
2150                 } while (ret == -EEXIST);
2151                 free_extent_map(hole_em);
2152                 if (ret)
2153                         set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2154                                 &BTRFS_I(inode)->runtime_flags);
2155         }
2156
2157         return 0;
2158 }
2159
2160 static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2161 {
2162         struct btrfs_root *root = BTRFS_I(inode)->root;
2163         struct extent_state *cached_state = NULL;
2164         struct btrfs_path *path;
2165         struct btrfs_block_rsv *rsv;
2166         struct btrfs_trans_handle *trans;
2167         u64 lockstart = round_up(offset, BTRFS_I(inode)->root->sectorsize);
2168         u64 lockend = round_down(offset + len,
2169                                  BTRFS_I(inode)->root->sectorsize) - 1;
2170         u64 cur_offset = lockstart;
2171         u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2172         u64 drop_end;
2173         int ret = 0;
2174         int err = 0;
2175         int rsv_count;
2176         bool same_page = ((offset >> PAGE_CACHE_SHIFT) ==
2177                           ((offset + len - 1) >> PAGE_CACHE_SHIFT));
2178         bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES);
2179         u64 ino_size = round_up(inode->i_size, PAGE_CACHE_SIZE);
2180
2181         ret = btrfs_wait_ordered_range(inode, offset, len);
2182         if (ret)
2183                 return ret;
2184
2185         mutex_lock(&inode->i_mutex);
2186         /*
2187          * We needn't truncate any page which is beyond the end of the file
2188          * because we are sure there is no data there.
2189          */
2190         /*
2191          * Only do this if we are in the same page and we aren't doing the
2192          * entire page.
2193          */
2194         if (same_page && len < PAGE_CACHE_SIZE) {
2195                 if (offset < ino_size)
2196                         ret = btrfs_truncate_page(inode, offset, len, 0);
2197                 mutex_unlock(&inode->i_mutex);
2198                 return ret;
2199         }
2200
2201         /* zero back part of the first page */
2202         if (offset < ino_size) {
2203                 ret = btrfs_truncate_page(inode, offset, 0, 0);
2204                 if (ret) {
2205                         mutex_unlock(&inode->i_mutex);
2206                         return ret;
2207                 }
2208         }
2209
2210         /* zero the front end of the last page */
2211         if (offset + len < ino_size) {
2212                 ret = btrfs_truncate_page(inode, offset + len, 0, 1);
2213                 if (ret) {
2214                         mutex_unlock(&inode->i_mutex);
2215                         return ret;
2216                 }
2217         }
2218
2219         if (lockend < lockstart) {
2220                 mutex_unlock(&inode->i_mutex);
2221                 return 0;
2222         }
2223
2224         while (1) {
2225                 struct btrfs_ordered_extent *ordered;
2226
2227                 truncate_pagecache_range(inode, lockstart, lockend);
2228
2229                 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2230                                  0, &cached_state);
2231                 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2232
2233                 /*
2234                  * We need to make sure we have no ordered extents in this range
2235                  * and nobody raced in and read a page in this range, if we did
2236                  * we need to try again.
2237                  */
2238                 if ((!ordered ||
2239                     (ordered->file_offset + ordered->len <= lockstart ||
2240                      ordered->file_offset > lockend)) &&
2241                      !test_range_bit(&BTRFS_I(inode)->io_tree, lockstart,
2242                                      lockend, EXTENT_UPTODATE, 0,
2243                                      cached_state)) {
2244                         if (ordered)
2245                                 btrfs_put_ordered_extent(ordered);
2246                         break;
2247                 }
2248                 if (ordered)
2249                         btrfs_put_ordered_extent(ordered);
2250                 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2251                                      lockend, &cached_state, GFP_NOFS);
2252                 ret = btrfs_wait_ordered_range(inode, lockstart,
2253                                                lockend - lockstart + 1);
2254                 if (ret) {
2255                         mutex_unlock(&inode->i_mutex);
2256                         return ret;
2257                 }
2258         }
2259
2260         path = btrfs_alloc_path();
2261         if (!path) {
2262                 ret = -ENOMEM;
2263                 goto out;
2264         }
2265
2266         rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2267         if (!rsv) {
2268                 ret = -ENOMEM;
2269                 goto out_free;
2270         }
2271         rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2272         rsv->failfast = 1;
2273
2274         /*
2275          * 1 - update the inode
2276          * 1 - removing the extents in the range
2277          * 1 - adding the hole extent if no_holes isn't set
2278          */
2279         rsv_count = no_holes ? 2 : 3;
2280         trans = btrfs_start_transaction(root, rsv_count);
2281         if (IS_ERR(trans)) {
2282                 err = PTR_ERR(trans);
2283                 goto out_free;
2284         }
2285
2286         ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
2287                                       min_size);
2288         BUG_ON(ret);
2289         trans->block_rsv = rsv;
2290
2291         while (cur_offset < lockend) {
2292                 ret = __btrfs_drop_extents(trans, root, inode, path,
2293                                            cur_offset, lockend + 1,
2294                                            &drop_end, 1, 0, 0, NULL);
2295                 if (ret != -ENOSPC)
2296                         break;
2297
2298                 trans->block_rsv = &root->fs_info->trans_block_rsv;
2299
2300                 if (cur_offset < ino_size) {
2301                         ret = fill_holes(trans, inode, path, cur_offset,
2302                                          drop_end);
2303                         if (ret) {
2304                                 err = ret;
2305                                 break;
2306                         }
2307                 }
2308
2309                 cur_offset = drop_end;
2310
2311                 ret = btrfs_update_inode(trans, root, inode);
2312                 if (ret) {
2313                         err = ret;
2314                         break;
2315                 }
2316
2317                 btrfs_end_transaction(trans, root);
2318                 btrfs_btree_balance_dirty(root);
2319
2320                 trans = btrfs_start_transaction(root, rsv_count);
2321                 if (IS_ERR(trans)) {
2322                         ret = PTR_ERR(trans);
2323                         trans = NULL;
2324                         break;
2325                 }
2326
2327                 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
2328                                               rsv, min_size);
2329                 BUG_ON(ret);    /* shouldn't happen */
2330                 trans->block_rsv = rsv;
2331         }
2332
2333         if (ret) {
2334                 err = ret;
2335                 goto out_trans;
2336         }
2337
2338         trans->block_rsv = &root->fs_info->trans_block_rsv;
2339         if (cur_offset < ino_size) {
2340                 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2341                 if (ret) {
2342                         err = ret;
2343                         goto out_trans;
2344                 }
2345         }
2346
2347 out_trans:
2348         if (!trans)
2349                 goto out_free;
2350
2351         inode_inc_iversion(inode);
2352         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2353
2354         trans->block_rsv = &root->fs_info->trans_block_rsv;
2355         ret = btrfs_update_inode(trans, root, inode);
2356         btrfs_end_transaction(trans, root);
2357         btrfs_btree_balance_dirty(root);
2358 out_free:
2359         btrfs_free_path(path);
2360         btrfs_free_block_rsv(root, rsv);
2361 out:
2362         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2363                              &cached_state, GFP_NOFS);
2364         mutex_unlock(&inode->i_mutex);
2365         if (ret && !err)
2366                 err = ret;
2367         return err;
2368 }
2369
2370 static long btrfs_fallocate(struct file *file, int mode,
2371                             loff_t offset, loff_t len)
2372 {
2373         struct inode *inode = file_inode(file);
2374         struct extent_state *cached_state = NULL;
2375         struct btrfs_root *root = BTRFS_I(inode)->root;
2376         u64 cur_offset;
2377         u64 last_byte;
2378         u64 alloc_start;
2379         u64 alloc_end;
2380         u64 alloc_hint = 0;
2381         u64 locked_end;
2382         struct extent_map *em;
2383         int blocksize = BTRFS_I(inode)->root->sectorsize;
2384         int ret;
2385
2386         alloc_start = round_down(offset, blocksize);
2387         alloc_end = round_up(offset + len, blocksize);
2388
2389         /* Make sure we aren't being give some crap mode */
2390         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2391                 return -EOPNOTSUPP;
2392
2393         if (mode & FALLOC_FL_PUNCH_HOLE)
2394                 return btrfs_punch_hole(inode, offset, len);
2395
2396         /*
2397          * Make sure we have enough space before we do the
2398          * allocation.
2399          */
2400         ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
2401         if (ret)
2402                 return ret;
2403         if (root->fs_info->quota_enabled) {
2404                 ret = btrfs_qgroup_reserve(root, alloc_end - alloc_start);
2405                 if (ret)
2406                         goto out_reserve_fail;
2407         }
2408
2409         mutex_lock(&inode->i_mutex);
2410         ret = inode_newsize_ok(inode, alloc_end);
2411         if (ret)
2412                 goto out;
2413
2414         if (alloc_start > inode->i_size) {
2415                 ret = btrfs_cont_expand(inode, i_size_read(inode),
2416                                         alloc_start);
2417                 if (ret)
2418                         goto out;
2419         } else {
2420                 /*
2421                  * If we are fallocating from the end of the file onward we
2422                  * need to zero out the end of the page if i_size lands in the
2423                  * middle of a page.
2424                  */
2425                 ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
2426                 if (ret)
2427                         goto out;
2428         }
2429
2430         /*
2431          * wait for ordered IO before we have any locks.  We'll loop again
2432          * below with the locks held.
2433          */
2434         ret = btrfs_wait_ordered_range(inode, alloc_start,
2435                                        alloc_end - alloc_start);
2436         if (ret)
2437                 goto out;
2438
2439         locked_end = alloc_end - 1;
2440         while (1) {
2441                 struct btrfs_ordered_extent *ordered;
2442
2443                 /* the extent lock is ordered inside the running
2444                  * transaction
2445                  */
2446                 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
2447                                  locked_end, 0, &cached_state);
2448                 ordered = btrfs_lookup_first_ordered_extent(inode,
2449                                                             alloc_end - 1);
2450                 if (ordered &&
2451                     ordered->file_offset + ordered->len > alloc_start &&
2452                     ordered->file_offset < alloc_end) {
2453                         btrfs_put_ordered_extent(ordered);
2454                         unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2455                                              alloc_start, locked_end,
2456                                              &cached_state, GFP_NOFS);
2457                         /*
2458                          * we can't wait on the range with the transaction
2459                          * running or with the extent lock held
2460                          */
2461                         ret = btrfs_wait_ordered_range(inode, alloc_start,
2462                                                        alloc_end - alloc_start);
2463                         if (ret)
2464                                 goto out;
2465                 } else {
2466                         if (ordered)
2467                                 btrfs_put_ordered_extent(ordered);
2468                         break;
2469                 }
2470         }
2471
2472         cur_offset = alloc_start;
2473         while (1) {
2474                 u64 actual_end;
2475
2476                 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2477                                       alloc_end - cur_offset, 0);
2478                 if (IS_ERR_OR_NULL(em)) {
2479                         if (!em)
2480                                 ret = -ENOMEM;
2481                         else
2482                                 ret = PTR_ERR(em);
2483                         break;
2484                 }
2485                 last_byte = min(extent_map_end(em), alloc_end);
2486                 actual_end = min_t(u64, extent_map_end(em), offset + len);
2487                 last_byte = ALIGN(last_byte, blocksize);
2488
2489                 if (em->block_start == EXTENT_MAP_HOLE ||
2490                     (cur_offset >= inode->i_size &&
2491                      !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
2492                         ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
2493                                                         last_byte - cur_offset,
2494                                                         1 << inode->i_blkbits,
2495                                                         offset + len,
2496                                                         &alloc_hint);
2497
2498                         if (ret < 0) {
2499                                 free_extent_map(em);
2500                                 break;
2501                         }
2502                 } else if (actual_end > inode->i_size &&
2503                            !(mode & FALLOC_FL_KEEP_SIZE)) {
2504                         /*
2505                          * We didn't need to allocate any more space, but we
2506                          * still extended the size of the file so we need to
2507                          * update i_size.
2508                          */
2509                         inode->i_ctime = CURRENT_TIME;
2510                         i_size_write(inode, actual_end);
2511                         btrfs_ordered_update_i_size(inode, actual_end, NULL);
2512                 }
2513                 free_extent_map(em);
2514
2515                 cur_offset = last_byte;
2516                 if (cur_offset >= alloc_end) {
2517                         ret = 0;
2518                         break;
2519                 }
2520         }
2521         unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
2522                              &cached_state, GFP_NOFS);
2523 out:
2524         mutex_unlock(&inode->i_mutex);
2525         if (root->fs_info->quota_enabled)
2526                 btrfs_qgroup_free(root, alloc_end - alloc_start);
2527 out_reserve_fail:
2528         /* Let go of our reservation. */
2529         btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
2530         return ret;
2531 }
2532
2533 static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
2534 {
2535         struct btrfs_root *root = BTRFS_I(inode)->root;
2536         struct extent_map *em = NULL;
2537         struct extent_state *cached_state = NULL;
2538         u64 lockstart = *offset;
2539         u64 lockend = i_size_read(inode);
2540         u64 start = *offset;
2541         u64 len = i_size_read(inode);
2542         int ret = 0;
2543
2544         lockend = max_t(u64, root->sectorsize, lockend);
2545         if (lockend <= lockstart)
2546                 lockend = lockstart + root->sectorsize;
2547
2548         lockend--;
2549         len = lockend - lockstart + 1;
2550
2551         len = max_t(u64, len, root->sectorsize);
2552         if (inode->i_size == 0)
2553                 return -ENXIO;
2554
2555         lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, 0,
2556                          &cached_state);
2557
2558         while (start < inode->i_size) {
2559                 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2560                 if (IS_ERR(em)) {
2561                         ret = PTR_ERR(em);
2562                         em = NULL;
2563                         break;
2564                 }
2565
2566                 if (whence == SEEK_HOLE &&
2567                     (em->block_start == EXTENT_MAP_HOLE ||
2568                      test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2569                         break;
2570                 else if (whence == SEEK_DATA &&
2571                            (em->block_start != EXTENT_MAP_HOLE &&
2572                             !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2573                         break;
2574
2575                 start = em->start + em->len;
2576                 free_extent_map(em);
2577                 em = NULL;
2578                 cond_resched();
2579         }
2580         free_extent_map(em);
2581         if (!ret) {
2582                 if (whence == SEEK_DATA && start >= inode->i_size)
2583                         ret = -ENXIO;
2584                 else
2585                         *offset = min_t(loff_t, start, inode->i_size);
2586         }
2587         unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2588                              &cached_state, GFP_NOFS);
2589         return ret;
2590 }
2591
2592 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
2593 {
2594         struct inode *inode = file->f_mapping->host;
2595         int ret;
2596
2597         mutex_lock(&inode->i_mutex);
2598         switch (whence) {
2599         case SEEK_END:
2600         case SEEK_CUR:
2601                 offset = generic_file_llseek(file, offset, whence);
2602                 goto out;
2603         case SEEK_DATA:
2604         case SEEK_HOLE:
2605                 if (offset >= i_size_read(inode)) {
2606                         mutex_unlock(&inode->i_mutex);
2607                         return -ENXIO;
2608                 }
2609
2610                 ret = find_desired_extent(inode, &offset, whence);
2611                 if (ret) {
2612                         mutex_unlock(&inode->i_mutex);
2613                         return ret;
2614                 }
2615         }
2616
2617         offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
2618 out:
2619         mutex_unlock(&inode->i_mutex);
2620         return offset;
2621 }
2622
2623 const struct file_operations btrfs_file_operations = {
2624         .llseek         = btrfs_file_llseek,
2625         .read           = new_sync_read,
2626         .write          = do_sync_write,
2627         .read_iter      = generic_file_read_iter,
2628         .splice_read    = generic_file_splice_read,
2629         .aio_write      = btrfs_file_aio_write,
2630         .mmap           = btrfs_file_mmap,
2631         .open           = generic_file_open,
2632         .release        = btrfs_release_file,
2633         .fsync          = btrfs_sync_file,
2634         .fallocate      = btrfs_fallocate,
2635         .unlocked_ioctl = btrfs_ioctl,
2636 #ifdef CONFIG_COMPAT
2637         .compat_ioctl   = btrfs_ioctl,
2638 #endif
2639 };
2640
2641 void btrfs_auto_defrag_exit(void)
2642 {
2643         if (btrfs_inode_defrag_cachep)
2644                 kmem_cache_destroy(btrfs_inode_defrag_cachep);
2645 }
2646
2647 int btrfs_auto_defrag_init(void)
2648 {
2649         btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
2650                                         sizeof(struct inode_defrag), 0,
2651                                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
2652                                         NULL);
2653         if (!btrfs_inode_defrag_cachep)
2654                 return -ENOMEM;
2655
2656         return 0;
2657 }