overlayfs: Implement splice-read
[linux-block.git] / fs / btrfs / file-item.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5
6 #include <linux/bio.h>
7 #include <linux/slab.h>
8 #include <linux/pagemap.h>
9 #include <linux/highmem.h>
10 #include <linux/sched/mm.h>
11 #include <crypto/hash.h>
12 #include "messages.h"
13 #include "misc.h"
14 #include "ctree.h"
15 #include "disk-io.h"
16 #include "transaction.h"
17 #include "bio.h"
18 #include "print-tree.h"
19 #include "compression.h"
20 #include "fs.h"
21 #include "accessors.h"
22 #include "file-item.h"
23 #include "super.h"
24
25 #define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
26                                    sizeof(struct btrfs_item) * 2) / \
27                                   size) - 1))
28
29 #define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
30                                        PAGE_SIZE))
31
32 /*
33  * Set inode's size according to filesystem options.
34  *
35  * @inode:      inode we want to update the disk_i_size for
36  * @new_i_size: i_size we want to set to, 0 if we use i_size
37  *
38  * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read()
39  * returns as it is perfectly fine with a file that has holes without hole file
40  * extent items.
41  *
42  * However without NO_HOLES we need to only return the area that is contiguous
43  * from the 0 offset of the file.  Otherwise we could end up adjust i_size up
44  * to an extent that has a gap in between.
45  *
46  * Finally new_i_size should only be set in the case of truncate where we're not
47  * ready to use i_size_read() as the limiter yet.
48  */
49 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode *inode, u64 new_i_size)
50 {
51         struct btrfs_fs_info *fs_info = inode->root->fs_info;
52         u64 start, end, i_size;
53         int ret;
54
55         spin_lock(&inode->lock);
56         i_size = new_i_size ?: i_size_read(&inode->vfs_inode);
57         if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
58                 inode->disk_i_size = i_size;
59                 goto out_unlock;
60         }
61
62         ret = find_contiguous_extent_bit(&inode->file_extent_tree, 0, &start,
63                                          &end, EXTENT_DIRTY);
64         if (!ret && start == 0)
65                 i_size = min(i_size, end + 1);
66         else
67                 i_size = 0;
68         inode->disk_i_size = i_size;
69 out_unlock:
70         spin_unlock(&inode->lock);
71 }
72
73 /*
74  * Mark range within a file as having a new extent inserted.
75  *
76  * @inode: inode being modified
77  * @start: start file offset of the file extent we've inserted
78  * @len:   logical length of the file extent item
79  *
80  * Call when we are inserting a new file extent where there was none before.
81  * Does not need to call this in the case where we're replacing an existing file
82  * extent, however if not sure it's fine to call this multiple times.
83  *
84  * The start and len must match the file extent item, so thus must be sectorsize
85  * aligned.
86  */
87 int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
88                                       u64 len)
89 {
90         if (len == 0)
91                 return 0;
92
93         ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize));
94
95         if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
96                 return 0;
97         return set_extent_bits(&inode->file_extent_tree, start, start + len - 1,
98                                EXTENT_DIRTY);
99 }
100
101 /*
102  * Mark an inode range as not having a backing extent.
103  *
104  * @inode: inode being modified
105  * @start: start file offset of the file extent we've inserted
106  * @len:   logical length of the file extent item
107  *
108  * Called when we drop a file extent, for example when we truncate.  Doesn't
109  * need to be called for cases where we're replacing a file extent, like when
110  * we've COWed a file extent.
111  *
112  * The start and len must match the file extent item, so thus must be sectorsize
113  * aligned.
114  */
115 int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
116                                         u64 len)
117 {
118         if (len == 0)
119                 return 0;
120
121         ASSERT(IS_ALIGNED(start + len, inode->root->fs_info->sectorsize) ||
122                len == (u64)-1);
123
124         if (btrfs_fs_incompat(inode->root->fs_info, NO_HOLES))
125                 return 0;
126         return clear_extent_bit(&inode->file_extent_tree, start,
127                                 start + len - 1, EXTENT_DIRTY, NULL);
128 }
129
130 static size_t bytes_to_csum_size(const struct btrfs_fs_info *fs_info, u32 bytes)
131 {
132         ASSERT(IS_ALIGNED(bytes, fs_info->sectorsize));
133
134         return (bytes >> fs_info->sectorsize_bits) * fs_info->csum_size;
135 }
136
137 static size_t csum_size_to_bytes(const struct btrfs_fs_info *fs_info, u32 csum_size)
138 {
139         ASSERT(IS_ALIGNED(csum_size, fs_info->csum_size));
140
141         return (csum_size / fs_info->csum_size) << fs_info->sectorsize_bits;
142 }
143
144 static inline u32 max_ordered_sum_bytes(const struct btrfs_fs_info *fs_info)
145 {
146         u32 max_csum_size = round_down(PAGE_SIZE - sizeof(struct btrfs_ordered_sum),
147                                        fs_info->csum_size);
148
149         return csum_size_to_bytes(fs_info, max_csum_size);
150 }
151
152 /*
153  * Calculate the total size needed to allocate for an ordered sum structure
154  * spanning @bytes in the file.
155  */
156 static int btrfs_ordered_sum_size(struct btrfs_fs_info *fs_info, unsigned long bytes)
157 {
158         return sizeof(struct btrfs_ordered_sum) + bytes_to_csum_size(fs_info, bytes);
159 }
160
161 int btrfs_insert_hole_extent(struct btrfs_trans_handle *trans,
162                              struct btrfs_root *root,
163                              u64 objectid, u64 pos, u64 num_bytes)
164 {
165         int ret = 0;
166         struct btrfs_file_extent_item *item;
167         struct btrfs_key file_key;
168         struct btrfs_path *path;
169         struct extent_buffer *leaf;
170
171         path = btrfs_alloc_path();
172         if (!path)
173                 return -ENOMEM;
174         file_key.objectid = objectid;
175         file_key.offset = pos;
176         file_key.type = BTRFS_EXTENT_DATA_KEY;
177
178         ret = btrfs_insert_empty_item(trans, root, path, &file_key,
179                                       sizeof(*item));
180         if (ret < 0)
181                 goto out;
182         BUG_ON(ret); /* Can't happen */
183         leaf = path->nodes[0];
184         item = btrfs_item_ptr(leaf, path->slots[0],
185                               struct btrfs_file_extent_item);
186         btrfs_set_file_extent_disk_bytenr(leaf, item, 0);
187         btrfs_set_file_extent_disk_num_bytes(leaf, item, 0);
188         btrfs_set_file_extent_offset(leaf, item, 0);
189         btrfs_set_file_extent_num_bytes(leaf, item, num_bytes);
190         btrfs_set_file_extent_ram_bytes(leaf, item, num_bytes);
191         btrfs_set_file_extent_generation(leaf, item, trans->transid);
192         btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
193         btrfs_set_file_extent_compression(leaf, item, 0);
194         btrfs_set_file_extent_encryption(leaf, item, 0);
195         btrfs_set_file_extent_other_encoding(leaf, item, 0);
196
197         btrfs_mark_buffer_dirty(leaf);
198 out:
199         btrfs_free_path(path);
200         return ret;
201 }
202
203 static struct btrfs_csum_item *
204 btrfs_lookup_csum(struct btrfs_trans_handle *trans,
205                   struct btrfs_root *root,
206                   struct btrfs_path *path,
207                   u64 bytenr, int cow)
208 {
209         struct btrfs_fs_info *fs_info = root->fs_info;
210         int ret;
211         struct btrfs_key file_key;
212         struct btrfs_key found_key;
213         struct btrfs_csum_item *item;
214         struct extent_buffer *leaf;
215         u64 csum_offset = 0;
216         const u32 csum_size = fs_info->csum_size;
217         int csums_in_item;
218
219         file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
220         file_key.offset = bytenr;
221         file_key.type = BTRFS_EXTENT_CSUM_KEY;
222         ret = btrfs_search_slot(trans, root, &file_key, path, 0, cow);
223         if (ret < 0)
224                 goto fail;
225         leaf = path->nodes[0];
226         if (ret > 0) {
227                 ret = 1;
228                 if (path->slots[0] == 0)
229                         goto fail;
230                 path->slots[0]--;
231                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
232                 if (found_key.type != BTRFS_EXTENT_CSUM_KEY)
233                         goto fail;
234
235                 csum_offset = (bytenr - found_key.offset) >>
236                                 fs_info->sectorsize_bits;
237                 csums_in_item = btrfs_item_size(leaf, path->slots[0]);
238                 csums_in_item /= csum_size;
239
240                 if (csum_offset == csums_in_item) {
241                         ret = -EFBIG;
242                         goto fail;
243                 } else if (csum_offset > csums_in_item) {
244                         goto fail;
245                 }
246         }
247         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
248         item = (struct btrfs_csum_item *)((unsigned char *)item +
249                                           csum_offset * csum_size);
250         return item;
251 fail:
252         if (ret > 0)
253                 ret = -ENOENT;
254         return ERR_PTR(ret);
255 }
256
257 int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
258                              struct btrfs_root *root,
259                              struct btrfs_path *path, u64 objectid,
260                              u64 offset, int mod)
261 {
262         struct btrfs_key file_key;
263         int ins_len = mod < 0 ? -1 : 0;
264         int cow = mod != 0;
265
266         file_key.objectid = objectid;
267         file_key.offset = offset;
268         file_key.type = BTRFS_EXTENT_DATA_KEY;
269
270         return btrfs_search_slot(trans, root, &file_key, path, ins_len, cow);
271 }
272
273 /*
274  * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and
275  * store the result to @dst.
276  *
277  * Return >0 for the number of sectors we found.
278  * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum
279  * for it. Caller may want to try next sector until one range is hit.
280  * Return <0 for fatal error.
281  */
282 static int search_csum_tree(struct btrfs_fs_info *fs_info,
283                             struct btrfs_path *path, u64 disk_bytenr,
284                             u64 len, u8 *dst)
285 {
286         struct btrfs_root *csum_root;
287         struct btrfs_csum_item *item = NULL;
288         struct btrfs_key key;
289         const u32 sectorsize = fs_info->sectorsize;
290         const u32 csum_size = fs_info->csum_size;
291         u32 itemsize;
292         int ret;
293         u64 csum_start;
294         u64 csum_len;
295
296         ASSERT(IS_ALIGNED(disk_bytenr, sectorsize) &&
297                IS_ALIGNED(len, sectorsize));
298
299         /* Check if the current csum item covers disk_bytenr */
300         if (path->nodes[0]) {
301                 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
302                                       struct btrfs_csum_item);
303                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
304                 itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
305
306                 csum_start = key.offset;
307                 csum_len = (itemsize / csum_size) * sectorsize;
308
309                 if (in_range(disk_bytenr, csum_start, csum_len))
310                         goto found;
311         }
312
313         /* Current item doesn't contain the desired range, search again */
314         btrfs_release_path(path);
315         csum_root = btrfs_csum_root(fs_info, disk_bytenr);
316         item = btrfs_lookup_csum(NULL, csum_root, path, disk_bytenr, 0);
317         if (IS_ERR(item)) {
318                 ret = PTR_ERR(item);
319                 goto out;
320         }
321         btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
322         itemsize = btrfs_item_size(path->nodes[0], path->slots[0]);
323
324         csum_start = key.offset;
325         csum_len = (itemsize / csum_size) * sectorsize;
326         ASSERT(in_range(disk_bytenr, csum_start, csum_len));
327
328 found:
329         ret = (min(csum_start + csum_len, disk_bytenr + len) -
330                    disk_bytenr) >> fs_info->sectorsize_bits;
331         read_extent_buffer(path->nodes[0], dst, (unsigned long)item,
332                         ret * csum_size);
333 out:
334         if (ret == -ENOENT || ret == -EFBIG)
335                 ret = 0;
336         return ret;
337 }
338
339 /*
340  * Lookup the checksum for the read bio in csum tree.
341  *
342  * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise.
343  */
344 blk_status_t btrfs_lookup_bio_sums(struct btrfs_bio *bbio)
345 {
346         struct btrfs_inode *inode = bbio->inode;
347         struct btrfs_fs_info *fs_info = inode->root->fs_info;
348         struct bio *bio = &bbio->bio;
349         struct btrfs_path *path;
350         const u32 sectorsize = fs_info->sectorsize;
351         const u32 csum_size = fs_info->csum_size;
352         u32 orig_len = bio->bi_iter.bi_size;
353         u64 orig_disk_bytenr = bio->bi_iter.bi_sector << SECTOR_SHIFT;
354         const unsigned int nblocks = orig_len >> fs_info->sectorsize_bits;
355         blk_status_t ret = BLK_STS_OK;
356         u32 bio_offset = 0;
357
358         if ((inode->flags & BTRFS_INODE_NODATASUM) ||
359             test_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state))
360                 return BLK_STS_OK;
361
362         /*
363          * This function is only called for read bio.
364          *
365          * This means two things:
366          * - All our csums should only be in csum tree
367          *   No ordered extents csums, as ordered extents are only for write
368          *   path.
369          * - No need to bother any other info from bvec
370          *   Since we're looking up csums, the only important info is the
371          *   disk_bytenr and the length, which can be extracted from bi_iter
372          *   directly.
373          */
374         ASSERT(bio_op(bio) == REQ_OP_READ);
375         path = btrfs_alloc_path();
376         if (!path)
377                 return BLK_STS_RESOURCE;
378
379         if (nblocks * csum_size > BTRFS_BIO_INLINE_CSUM_SIZE) {
380                 bbio->csum = kmalloc_array(nblocks, csum_size, GFP_NOFS);
381                 if (!bbio->csum) {
382                         btrfs_free_path(path);
383                         return BLK_STS_RESOURCE;
384                 }
385         } else {
386                 bbio->csum = bbio->csum_inline;
387         }
388
389         /*
390          * If requested number of sectors is larger than one leaf can contain,
391          * kick the readahead for csum tree.
392          */
393         if (nblocks > fs_info->csums_per_leaf)
394                 path->reada = READA_FORWARD;
395
396         /*
397          * the free space stuff is only read when it hasn't been
398          * updated in the current transaction.  So, we can safely
399          * read from the commit root and sidestep a nasty deadlock
400          * between reading the free space cache and updating the csum tree.
401          */
402         if (btrfs_is_free_space_inode(inode)) {
403                 path->search_commit_root = 1;
404                 path->skip_locking = 1;
405         }
406
407         while (bio_offset < orig_len) {
408                 int count;
409                 u64 cur_disk_bytenr = orig_disk_bytenr + bio_offset;
410                 u8 *csum_dst = bbio->csum +
411                         (bio_offset >> fs_info->sectorsize_bits) * csum_size;
412
413                 count = search_csum_tree(fs_info, path, cur_disk_bytenr,
414                                          orig_len - bio_offset, csum_dst);
415                 if (count < 0) {
416                         ret = errno_to_blk_status(count);
417                         if (bbio->csum != bbio->csum_inline)
418                                 kfree(bbio->csum);
419                         bbio->csum = NULL;
420                         break;
421                 }
422
423                 /*
424                  * We didn't find a csum for this range.  We need to make sure
425                  * we complain loudly about this, because we are not NODATASUM.
426                  *
427                  * However for the DATA_RELOC inode we could potentially be
428                  * relocating data extents for a NODATASUM inode, so the inode
429                  * itself won't be marked with NODATASUM, but the extent we're
430                  * copying is in fact NODATASUM.  If we don't find a csum we
431                  * assume this is the case.
432                  */
433                 if (count == 0) {
434                         memset(csum_dst, 0, csum_size);
435                         count = 1;
436
437                         if (inode->root->root_key.objectid ==
438                             BTRFS_DATA_RELOC_TREE_OBJECTID) {
439                                 u64 file_offset = bbio->file_offset + bio_offset;
440
441                                 set_extent_bits(&inode->io_tree, file_offset,
442                                                 file_offset + sectorsize - 1,
443                                                 EXTENT_NODATASUM);
444                         } else {
445                                 btrfs_warn_rl(fs_info,
446                         "csum hole found for disk bytenr range [%llu, %llu)",
447                                 cur_disk_bytenr, cur_disk_bytenr + sectorsize);
448                         }
449                 }
450                 bio_offset += count * sectorsize;
451         }
452
453         btrfs_free_path(path);
454         return ret;
455 }
456
457 int btrfs_lookup_csums_list(struct btrfs_root *root, u64 start, u64 end,
458                             struct list_head *list, int search_commit,
459                             bool nowait)
460 {
461         struct btrfs_fs_info *fs_info = root->fs_info;
462         struct btrfs_key key;
463         struct btrfs_path *path;
464         struct extent_buffer *leaf;
465         struct btrfs_ordered_sum *sums;
466         struct btrfs_csum_item *item;
467         LIST_HEAD(tmplist);
468         int ret;
469
470         ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
471                IS_ALIGNED(end + 1, fs_info->sectorsize));
472
473         path = btrfs_alloc_path();
474         if (!path)
475                 return -ENOMEM;
476
477         path->nowait = nowait;
478         if (search_commit) {
479                 path->skip_locking = 1;
480                 path->reada = READA_FORWARD;
481                 path->search_commit_root = 1;
482         }
483
484         key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
485         key.offset = start;
486         key.type = BTRFS_EXTENT_CSUM_KEY;
487
488         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
489         if (ret < 0)
490                 goto fail;
491         if (ret > 0 && path->slots[0] > 0) {
492                 leaf = path->nodes[0];
493                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
494
495                 /*
496                  * There are two cases we can hit here for the previous csum
497                  * item:
498                  *
499                  *              |<- search range ->|
500                  *      |<- csum item ->|
501                  *
502                  * Or
503                  *                              |<- search range ->|
504                  *      |<- csum item ->|
505                  *
506                  * Check if the previous csum item covers the leading part of
507                  * the search range.  If so we have to start from previous csum
508                  * item.
509                  */
510                 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
511                     key.type == BTRFS_EXTENT_CSUM_KEY) {
512                         if (bytes_to_csum_size(fs_info, start - key.offset) <
513                             btrfs_item_size(leaf, path->slots[0] - 1))
514                                 path->slots[0]--;
515                 }
516         }
517
518         while (start <= end) {
519                 u64 csum_end;
520
521                 leaf = path->nodes[0];
522                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
523                         ret = btrfs_next_leaf(root, path);
524                         if (ret < 0)
525                                 goto fail;
526                         if (ret > 0)
527                                 break;
528                         leaf = path->nodes[0];
529                 }
530
531                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
532                 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
533                     key.type != BTRFS_EXTENT_CSUM_KEY ||
534                     key.offset > end)
535                         break;
536
537                 if (key.offset > start)
538                         start = key.offset;
539
540                 csum_end = key.offset + csum_size_to_bytes(fs_info,
541                                         btrfs_item_size(leaf, path->slots[0]));
542                 if (csum_end <= start) {
543                         path->slots[0]++;
544                         continue;
545                 }
546
547                 csum_end = min(csum_end, end + 1);
548                 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
549                                       struct btrfs_csum_item);
550                 while (start < csum_end) {
551                         unsigned long offset;
552                         size_t size;
553
554                         size = min_t(size_t, csum_end - start,
555                                      max_ordered_sum_bytes(fs_info));
556                         sums = kzalloc(btrfs_ordered_sum_size(fs_info, size),
557                                        GFP_NOFS);
558                         if (!sums) {
559                                 ret = -ENOMEM;
560                                 goto fail;
561                         }
562
563                         sums->bytenr = start;
564                         sums->len = (int)size;
565
566                         offset = bytes_to_csum_size(fs_info, start - key.offset);
567
568                         read_extent_buffer(path->nodes[0],
569                                            sums->sums,
570                                            ((unsigned long)item) + offset,
571                                            bytes_to_csum_size(fs_info, size));
572
573                         start += size;
574                         list_add_tail(&sums->list, &tmplist);
575                 }
576                 path->slots[0]++;
577         }
578         ret = 0;
579 fail:
580         while (ret < 0 && !list_empty(&tmplist)) {
581                 sums = list_entry(tmplist.next, struct btrfs_ordered_sum, list);
582                 list_del(&sums->list);
583                 kfree(sums);
584         }
585         list_splice_tail(&tmplist, list);
586
587         btrfs_free_path(path);
588         return ret;
589 }
590
591 /*
592  * Do the same work as btrfs_lookup_csums_list(), the difference is in how
593  * we return the result.
594  *
595  * This version will set the corresponding bits in @csum_bitmap to represent
596  * that there is a csum found.
597  * Each bit represents a sector. Thus caller should ensure @csum_buf passed
598  * in is large enough to contain all csums.
599  */
600 int btrfs_lookup_csums_bitmap(struct btrfs_root *root, u64 start, u64 end,
601                               u8 *csum_buf, unsigned long *csum_bitmap,
602                               bool search_commit)
603 {
604         struct btrfs_fs_info *fs_info = root->fs_info;
605         struct btrfs_key key;
606         struct btrfs_path *path;
607         struct extent_buffer *leaf;
608         struct btrfs_csum_item *item;
609         const u64 orig_start = start;
610         int ret;
611
612         ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
613                IS_ALIGNED(end + 1, fs_info->sectorsize));
614
615         path = btrfs_alloc_path();
616         if (!path)
617                 return -ENOMEM;
618
619         if (search_commit) {
620                 path->skip_locking = 1;
621                 path->reada = READA_FORWARD;
622                 path->search_commit_root = 1;
623         }
624
625         key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
626         key.type = BTRFS_EXTENT_CSUM_KEY;
627         key.offset = start;
628
629         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
630         if (ret < 0)
631                 goto fail;
632         if (ret > 0 && path->slots[0] > 0) {
633                 leaf = path->nodes[0];
634                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
635
636                 /*
637                  * There are two cases we can hit here for the previous csum
638                  * item:
639                  *
640                  *              |<- search range ->|
641                  *      |<- csum item ->|
642                  *
643                  * Or
644                  *                              |<- search range ->|
645                  *      |<- csum item ->|
646                  *
647                  * Check if the previous csum item covers the leading part of
648                  * the search range.  If so we have to start from previous csum
649                  * item.
650                  */
651                 if (key.objectid == BTRFS_EXTENT_CSUM_OBJECTID &&
652                     key.type == BTRFS_EXTENT_CSUM_KEY) {
653                         if (bytes_to_csum_size(fs_info, start - key.offset) <
654                             btrfs_item_size(leaf, path->slots[0] - 1))
655                                 path->slots[0]--;
656                 }
657         }
658
659         while (start <= end) {
660                 u64 csum_end;
661
662                 leaf = path->nodes[0];
663                 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
664                         ret = btrfs_next_leaf(root, path);
665                         if (ret < 0)
666                                 goto fail;
667                         if (ret > 0)
668                                 break;
669                         leaf = path->nodes[0];
670                 }
671
672                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
673                 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
674                     key.type != BTRFS_EXTENT_CSUM_KEY ||
675                     key.offset > end)
676                         break;
677
678                 if (key.offset > start)
679                         start = key.offset;
680
681                 csum_end = key.offset + csum_size_to_bytes(fs_info,
682                                         btrfs_item_size(leaf, path->slots[0]));
683                 if (csum_end <= start) {
684                         path->slots[0]++;
685                         continue;
686                 }
687
688                 csum_end = min(csum_end, end + 1);
689                 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
690                                       struct btrfs_csum_item);
691                 while (start < csum_end) {
692                         unsigned long offset;
693                         size_t size;
694                         u8 *csum_dest = csum_buf + bytes_to_csum_size(fs_info,
695                                                 start - orig_start);
696
697                         size = min_t(size_t, csum_end - start, end + 1 - start);
698
699                         offset = bytes_to_csum_size(fs_info, start - key.offset);
700
701                         read_extent_buffer(path->nodes[0], csum_dest,
702                                            ((unsigned long)item) + offset,
703                                            bytes_to_csum_size(fs_info, size));
704
705                         bitmap_set(csum_bitmap,
706                                 (start - orig_start) >> fs_info->sectorsize_bits,
707                                 size >> fs_info->sectorsize_bits);
708
709                         start += size;
710                 }
711                 path->slots[0]++;
712         }
713         ret = 0;
714 fail:
715         btrfs_free_path(path);
716         return ret;
717 }
718
719 /*
720  * Calculate checksums of the data contained inside a bio.
721  */
722 blk_status_t btrfs_csum_one_bio(struct btrfs_bio *bbio)
723 {
724         struct btrfs_inode *inode = bbio->inode;
725         struct btrfs_fs_info *fs_info = inode->root->fs_info;
726         SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
727         struct bio *bio = &bbio->bio;
728         u64 offset = bbio->file_offset;
729         struct btrfs_ordered_sum *sums;
730         struct btrfs_ordered_extent *ordered = NULL;
731         char *data;
732         struct bvec_iter iter;
733         struct bio_vec bvec;
734         int index;
735         unsigned int blockcount;
736         unsigned long total_bytes = 0;
737         unsigned long this_sum_bytes = 0;
738         int i;
739         unsigned nofs_flag;
740
741         nofs_flag = memalloc_nofs_save();
742         sums = kvzalloc(btrfs_ordered_sum_size(fs_info, bio->bi_iter.bi_size),
743                        GFP_KERNEL);
744         memalloc_nofs_restore(nofs_flag);
745
746         if (!sums)
747                 return BLK_STS_RESOURCE;
748
749         sums->len = bio->bi_iter.bi_size;
750         INIT_LIST_HEAD(&sums->list);
751
752         sums->bytenr = bio->bi_iter.bi_sector << 9;
753         index = 0;
754
755         shash->tfm = fs_info->csum_shash;
756
757         bio_for_each_segment(bvec, bio, iter) {
758                 if (!ordered) {
759                         ordered = btrfs_lookup_ordered_extent(inode, offset);
760                         /*
761                          * The bio range is not covered by any ordered extent,
762                          * must be a code logic error.
763                          */
764                         if (unlikely(!ordered)) {
765                                 WARN(1, KERN_WARNING
766                         "no ordered extent for root %llu ino %llu offset %llu\n",
767                                      inode->root->root_key.objectid,
768                                      btrfs_ino(inode), offset);
769                                 kvfree(sums);
770                                 return BLK_STS_IOERR;
771                         }
772                 }
773
774                 blockcount = BTRFS_BYTES_TO_BLKS(fs_info,
775                                                  bvec.bv_len + fs_info->sectorsize
776                                                  - 1);
777
778                 for (i = 0; i < blockcount; i++) {
779                         if (!(bio->bi_opf & REQ_BTRFS_ONE_ORDERED) &&
780                             !in_range(offset, ordered->file_offset,
781                                       ordered->num_bytes)) {
782                                 unsigned long bytes_left;
783
784                                 sums->len = this_sum_bytes;
785                                 this_sum_bytes = 0;
786                                 btrfs_add_ordered_sum(ordered, sums);
787                                 btrfs_put_ordered_extent(ordered);
788
789                                 bytes_left = bio->bi_iter.bi_size - total_bytes;
790
791                                 nofs_flag = memalloc_nofs_save();
792                                 sums = kvzalloc(btrfs_ordered_sum_size(fs_info,
793                                                       bytes_left), GFP_KERNEL);
794                                 memalloc_nofs_restore(nofs_flag);
795                                 BUG_ON(!sums); /* -ENOMEM */
796                                 sums->len = bytes_left;
797                                 ordered = btrfs_lookup_ordered_extent(inode,
798                                                                 offset);
799                                 ASSERT(ordered); /* Logic error */
800                                 sums->bytenr = (bio->bi_iter.bi_sector << 9)
801                                         + total_bytes;
802                                 index = 0;
803                         }
804
805                         data = bvec_kmap_local(&bvec);
806                         crypto_shash_digest(shash,
807                                             data + (i * fs_info->sectorsize),
808                                             fs_info->sectorsize,
809                                             sums->sums + index);
810                         kunmap_local(data);
811                         index += fs_info->csum_size;
812                         offset += fs_info->sectorsize;
813                         this_sum_bytes += fs_info->sectorsize;
814                         total_bytes += fs_info->sectorsize;
815                 }
816
817         }
818         this_sum_bytes = 0;
819         btrfs_add_ordered_sum(ordered, sums);
820         btrfs_put_ordered_extent(ordered);
821         return 0;
822 }
823
824 /*
825  * Remove one checksum overlapping a range.
826  *
827  * This expects the key to describe the csum pointed to by the path, and it
828  * expects the csum to overlap the range [bytenr, len]
829  *
830  * The csum should not be entirely contained in the range and the range should
831  * not be entirely contained in the csum.
832  *
833  * This calls btrfs_truncate_item with the correct args based on the overlap,
834  * and fixes up the key as required.
835  */
836 static noinline void truncate_one_csum(struct btrfs_fs_info *fs_info,
837                                        struct btrfs_path *path,
838                                        struct btrfs_key *key,
839                                        u64 bytenr, u64 len)
840 {
841         struct extent_buffer *leaf;
842         const u32 csum_size = fs_info->csum_size;
843         u64 csum_end;
844         u64 end_byte = bytenr + len;
845         u32 blocksize_bits = fs_info->sectorsize_bits;
846
847         leaf = path->nodes[0];
848         csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
849         csum_end <<= blocksize_bits;
850         csum_end += key->offset;
851
852         if (key->offset < bytenr && csum_end <= end_byte) {
853                 /*
854                  *         [ bytenr - len ]
855                  *         [   ]
856                  *   [csum     ]
857                  *   A simple truncate off the end of the item
858                  */
859                 u32 new_size = (bytenr - key->offset) >> blocksize_bits;
860                 new_size *= csum_size;
861                 btrfs_truncate_item(path, new_size, 1);
862         } else if (key->offset >= bytenr && csum_end > end_byte &&
863                    end_byte > key->offset) {
864                 /*
865                  *         [ bytenr - len ]
866                  *                 [ ]
867                  *                 [csum     ]
868                  * we need to truncate from the beginning of the csum
869                  */
870                 u32 new_size = (csum_end - end_byte) >> blocksize_bits;
871                 new_size *= csum_size;
872
873                 btrfs_truncate_item(path, new_size, 0);
874
875                 key->offset = end_byte;
876                 btrfs_set_item_key_safe(fs_info, path, key);
877         } else {
878                 BUG();
879         }
880 }
881
882 /*
883  * Delete the csum items from the csum tree for a given range of bytes.
884  */
885 int btrfs_del_csums(struct btrfs_trans_handle *trans,
886                     struct btrfs_root *root, u64 bytenr, u64 len)
887 {
888         struct btrfs_fs_info *fs_info = trans->fs_info;
889         struct btrfs_path *path;
890         struct btrfs_key key;
891         u64 end_byte = bytenr + len;
892         u64 csum_end;
893         struct extent_buffer *leaf;
894         int ret = 0;
895         const u32 csum_size = fs_info->csum_size;
896         u32 blocksize_bits = fs_info->sectorsize_bits;
897
898         ASSERT(root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID ||
899                root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
900
901         path = btrfs_alloc_path();
902         if (!path)
903                 return -ENOMEM;
904
905         while (1) {
906                 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
907                 key.offset = end_byte - 1;
908                 key.type = BTRFS_EXTENT_CSUM_KEY;
909
910                 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
911                 if (ret > 0) {
912                         ret = 0;
913                         if (path->slots[0] == 0)
914                                 break;
915                         path->slots[0]--;
916                 } else if (ret < 0) {
917                         break;
918                 }
919
920                 leaf = path->nodes[0];
921                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
922
923                 if (key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
924                     key.type != BTRFS_EXTENT_CSUM_KEY) {
925                         break;
926                 }
927
928                 if (key.offset >= end_byte)
929                         break;
930
931                 csum_end = btrfs_item_size(leaf, path->slots[0]) / csum_size;
932                 csum_end <<= blocksize_bits;
933                 csum_end += key.offset;
934
935                 /* this csum ends before we start, we're done */
936                 if (csum_end <= bytenr)
937                         break;
938
939                 /* delete the entire item, it is inside our range */
940                 if (key.offset >= bytenr && csum_end <= end_byte) {
941                         int del_nr = 1;
942
943                         /*
944                          * Check how many csum items preceding this one in this
945                          * leaf correspond to our range and then delete them all
946                          * at once.
947                          */
948                         if (key.offset > bytenr && path->slots[0] > 0) {
949                                 int slot = path->slots[0] - 1;
950
951                                 while (slot >= 0) {
952                                         struct btrfs_key pk;
953
954                                         btrfs_item_key_to_cpu(leaf, &pk, slot);
955                                         if (pk.offset < bytenr ||
956                                             pk.type != BTRFS_EXTENT_CSUM_KEY ||
957                                             pk.objectid !=
958                                             BTRFS_EXTENT_CSUM_OBJECTID)
959                                                 break;
960                                         path->slots[0] = slot;
961                                         del_nr++;
962                                         key.offset = pk.offset;
963                                         slot--;
964                                 }
965                         }
966                         ret = btrfs_del_items(trans, root, path,
967                                               path->slots[0], del_nr);
968                         if (ret)
969                                 break;
970                         if (key.offset == bytenr)
971                                 break;
972                 } else if (key.offset < bytenr && csum_end > end_byte) {
973                         unsigned long offset;
974                         unsigned long shift_len;
975                         unsigned long item_offset;
976                         /*
977                          *        [ bytenr - len ]
978                          *     [csum                ]
979                          *
980                          * Our bytes are in the middle of the csum,
981                          * we need to split this item and insert a new one.
982                          *
983                          * But we can't drop the path because the
984                          * csum could change, get removed, extended etc.
985                          *
986                          * The trick here is the max size of a csum item leaves
987                          * enough room in the tree block for a single
988                          * item header.  So, we split the item in place,
989                          * adding a new header pointing to the existing
990                          * bytes.  Then we loop around again and we have
991                          * a nicely formed csum item that we can neatly
992                          * truncate.
993                          */
994                         offset = (bytenr - key.offset) >> blocksize_bits;
995                         offset *= csum_size;
996
997                         shift_len = (len >> blocksize_bits) * csum_size;
998
999                         item_offset = btrfs_item_ptr_offset(leaf,
1000                                                             path->slots[0]);
1001
1002                         memzero_extent_buffer(leaf, item_offset + offset,
1003                                              shift_len);
1004                         key.offset = bytenr;
1005
1006                         /*
1007                          * btrfs_split_item returns -EAGAIN when the
1008                          * item changed size or key
1009                          */
1010                         ret = btrfs_split_item(trans, root, path, &key, offset);
1011                         if (ret && ret != -EAGAIN) {
1012                                 btrfs_abort_transaction(trans, ret);
1013                                 break;
1014                         }
1015                         ret = 0;
1016
1017                         key.offset = end_byte - 1;
1018                 } else {
1019                         truncate_one_csum(fs_info, path, &key, bytenr, len);
1020                         if (key.offset < bytenr)
1021                                 break;
1022                 }
1023                 btrfs_release_path(path);
1024         }
1025         btrfs_free_path(path);
1026         return ret;
1027 }
1028
1029 static int find_next_csum_offset(struct btrfs_root *root,
1030                                  struct btrfs_path *path,
1031                                  u64 *next_offset)
1032 {
1033         const u32 nritems = btrfs_header_nritems(path->nodes[0]);
1034         struct btrfs_key found_key;
1035         int slot = path->slots[0] + 1;
1036         int ret;
1037
1038         if (nritems == 0 || slot >= nritems) {
1039                 ret = btrfs_next_leaf(root, path);
1040                 if (ret < 0) {
1041                         return ret;
1042                 } else if (ret > 0) {
1043                         *next_offset = (u64)-1;
1044                         return 0;
1045                 }
1046                 slot = path->slots[0];
1047         }
1048
1049         btrfs_item_key_to_cpu(path->nodes[0], &found_key, slot);
1050
1051         if (found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1052             found_key.type != BTRFS_EXTENT_CSUM_KEY)
1053                 *next_offset = (u64)-1;
1054         else
1055                 *next_offset = found_key.offset;
1056
1057         return 0;
1058 }
1059
1060 int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
1061                            struct btrfs_root *root,
1062                            struct btrfs_ordered_sum *sums)
1063 {
1064         struct btrfs_fs_info *fs_info = root->fs_info;
1065         struct btrfs_key file_key;
1066         struct btrfs_key found_key;
1067         struct btrfs_path *path;
1068         struct btrfs_csum_item *item;
1069         struct btrfs_csum_item *item_end;
1070         struct extent_buffer *leaf = NULL;
1071         u64 next_offset;
1072         u64 total_bytes = 0;
1073         u64 csum_offset;
1074         u64 bytenr;
1075         u32 ins_size;
1076         int index = 0;
1077         int found_next;
1078         int ret;
1079         const u32 csum_size = fs_info->csum_size;
1080
1081         path = btrfs_alloc_path();
1082         if (!path)
1083                 return -ENOMEM;
1084 again:
1085         next_offset = (u64)-1;
1086         found_next = 0;
1087         bytenr = sums->bytenr + total_bytes;
1088         file_key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1089         file_key.offset = bytenr;
1090         file_key.type = BTRFS_EXTENT_CSUM_KEY;
1091
1092         item = btrfs_lookup_csum(trans, root, path, bytenr, 1);
1093         if (!IS_ERR(item)) {
1094                 ret = 0;
1095                 leaf = path->nodes[0];
1096                 item_end = btrfs_item_ptr(leaf, path->slots[0],
1097                                           struct btrfs_csum_item);
1098                 item_end = (struct btrfs_csum_item *)((char *)item_end +
1099                            btrfs_item_size(leaf, path->slots[0]));
1100                 goto found;
1101         }
1102         ret = PTR_ERR(item);
1103         if (ret != -EFBIG && ret != -ENOENT)
1104                 goto out;
1105
1106         if (ret == -EFBIG) {
1107                 u32 item_size;
1108                 /* we found one, but it isn't big enough yet */
1109                 leaf = path->nodes[0];
1110                 item_size = btrfs_item_size(leaf, path->slots[0]);
1111                 if ((item_size / csum_size) >=
1112                     MAX_CSUM_ITEMS(fs_info, csum_size)) {
1113                         /* already at max size, make a new one */
1114                         goto insert;
1115                 }
1116         } else {
1117                 /* We didn't find a csum item, insert one. */
1118                 ret = find_next_csum_offset(root, path, &next_offset);
1119                 if (ret < 0)
1120                         goto out;
1121                 found_next = 1;
1122                 goto insert;
1123         }
1124
1125         /*
1126          * At this point, we know the tree has a checksum item that ends at an
1127          * offset matching the start of the checksum range we want to insert.
1128          * We try to extend that item as much as possible and then add as many
1129          * checksums to it as they fit.
1130          *
1131          * First check if the leaf has enough free space for at least one
1132          * checksum. If it has go directly to the item extension code, otherwise
1133          * release the path and do a search for insertion before the extension.
1134          */
1135         if (btrfs_leaf_free_space(leaf) >= csum_size) {
1136                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1137                 csum_offset = (bytenr - found_key.offset) >>
1138                         fs_info->sectorsize_bits;
1139                 goto extend_csum;
1140         }
1141
1142         btrfs_release_path(path);
1143         path->search_for_extension = 1;
1144         ret = btrfs_search_slot(trans, root, &file_key, path,
1145                                 csum_size, 1);
1146         path->search_for_extension = 0;
1147         if (ret < 0)
1148                 goto out;
1149
1150         if (ret > 0) {
1151                 if (path->slots[0] == 0)
1152                         goto insert;
1153                 path->slots[0]--;
1154         }
1155
1156         leaf = path->nodes[0];
1157         btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1158         csum_offset = (bytenr - found_key.offset) >> fs_info->sectorsize_bits;
1159
1160         if (found_key.type != BTRFS_EXTENT_CSUM_KEY ||
1161             found_key.objectid != BTRFS_EXTENT_CSUM_OBJECTID ||
1162             csum_offset >= MAX_CSUM_ITEMS(fs_info, csum_size)) {
1163                 goto insert;
1164         }
1165
1166 extend_csum:
1167         if (csum_offset == btrfs_item_size(leaf, path->slots[0]) /
1168             csum_size) {
1169                 int extend_nr;
1170                 u64 tmp;
1171                 u32 diff;
1172
1173                 tmp = sums->len - total_bytes;
1174                 tmp >>= fs_info->sectorsize_bits;
1175                 WARN_ON(tmp < 1);
1176                 extend_nr = max_t(int, 1, tmp);
1177
1178                 /*
1179                  * A log tree can already have checksum items with a subset of
1180                  * the checksums we are trying to log. This can happen after
1181                  * doing a sequence of partial writes into prealloc extents and
1182                  * fsyncs in between, with a full fsync logging a larger subrange
1183                  * of an extent for which a previous fast fsync logged a smaller
1184                  * subrange. And this happens in particular due to merging file
1185                  * extent items when we complete an ordered extent for a range
1186                  * covered by a prealloc extent - this is done at
1187                  * btrfs_mark_extent_written().
1188                  *
1189                  * So if we try to extend the previous checksum item, which has
1190                  * a range that ends at the start of the range we want to insert,
1191                  * make sure we don't extend beyond the start offset of the next
1192                  * checksum item. If we are at the last item in the leaf, then
1193                  * forget the optimization of extending and add a new checksum
1194                  * item - it is not worth the complexity of releasing the path,
1195                  * getting the first key for the next leaf, repeat the btree
1196                  * search, etc, because log trees are temporary anyway and it
1197                  * would only save a few bytes of leaf space.
1198                  */
1199                 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1200                         if (path->slots[0] + 1 >=
1201                             btrfs_header_nritems(path->nodes[0])) {
1202                                 ret = find_next_csum_offset(root, path, &next_offset);
1203                                 if (ret < 0)
1204                                         goto out;
1205                                 found_next = 1;
1206                                 goto insert;
1207                         }
1208
1209                         ret = find_next_csum_offset(root, path, &next_offset);
1210                         if (ret < 0)
1211                                 goto out;
1212
1213                         tmp = (next_offset - bytenr) >> fs_info->sectorsize_bits;
1214                         if (tmp <= INT_MAX)
1215                                 extend_nr = min_t(int, extend_nr, tmp);
1216                 }
1217
1218                 diff = (csum_offset + extend_nr) * csum_size;
1219                 diff = min(diff,
1220                            MAX_CSUM_ITEMS(fs_info, csum_size) * csum_size);
1221
1222                 diff = diff - btrfs_item_size(leaf, path->slots[0]);
1223                 diff = min_t(u32, btrfs_leaf_free_space(leaf), diff);
1224                 diff /= csum_size;
1225                 diff *= csum_size;
1226
1227                 btrfs_extend_item(path, diff);
1228                 ret = 0;
1229                 goto csum;
1230         }
1231
1232 insert:
1233         btrfs_release_path(path);
1234         csum_offset = 0;
1235         if (found_next) {
1236                 u64 tmp;
1237
1238                 tmp = sums->len - total_bytes;
1239                 tmp >>= fs_info->sectorsize_bits;
1240                 tmp = min(tmp, (next_offset - file_key.offset) >>
1241                                          fs_info->sectorsize_bits);
1242
1243                 tmp = max_t(u64, 1, tmp);
1244                 tmp = min_t(u64, tmp, MAX_CSUM_ITEMS(fs_info, csum_size));
1245                 ins_size = csum_size * tmp;
1246         } else {
1247                 ins_size = csum_size;
1248         }
1249         ret = btrfs_insert_empty_item(trans, root, path, &file_key,
1250                                       ins_size);
1251         if (ret < 0)
1252                 goto out;
1253         if (WARN_ON(ret != 0))
1254                 goto out;
1255         leaf = path->nodes[0];
1256 csum:
1257         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_csum_item);
1258         item_end = (struct btrfs_csum_item *)((unsigned char *)item +
1259                                       btrfs_item_size(leaf, path->slots[0]));
1260         item = (struct btrfs_csum_item *)((unsigned char *)item +
1261                                           csum_offset * csum_size);
1262 found:
1263         ins_size = (u32)(sums->len - total_bytes) >> fs_info->sectorsize_bits;
1264         ins_size *= csum_size;
1265         ins_size = min_t(u32, (unsigned long)item_end - (unsigned long)item,
1266                               ins_size);
1267         write_extent_buffer(leaf, sums->sums + index, (unsigned long)item,
1268                             ins_size);
1269
1270         index += ins_size;
1271         ins_size /= csum_size;
1272         total_bytes += ins_size * fs_info->sectorsize;
1273
1274         btrfs_mark_buffer_dirty(path->nodes[0]);
1275         if (total_bytes < sums->len) {
1276                 btrfs_release_path(path);
1277                 cond_resched();
1278                 goto again;
1279         }
1280 out:
1281         btrfs_free_path(path);
1282         return ret;
1283 }
1284
1285 void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
1286                                      const struct btrfs_path *path,
1287                                      struct btrfs_file_extent_item *fi,
1288                                      struct extent_map *em)
1289 {
1290         struct btrfs_fs_info *fs_info = inode->root->fs_info;
1291         struct btrfs_root *root = inode->root;
1292         struct extent_buffer *leaf = path->nodes[0];
1293         const int slot = path->slots[0];
1294         struct btrfs_key key;
1295         u64 extent_start, extent_end;
1296         u64 bytenr;
1297         u8 type = btrfs_file_extent_type(leaf, fi);
1298         int compress_type = btrfs_file_extent_compression(leaf, fi);
1299
1300         btrfs_item_key_to_cpu(leaf, &key, slot);
1301         extent_start = key.offset;
1302         extent_end = btrfs_file_extent_end(path);
1303         em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1304         em->generation = btrfs_file_extent_generation(leaf, fi);
1305         if (type == BTRFS_FILE_EXTENT_REG ||
1306             type == BTRFS_FILE_EXTENT_PREALLOC) {
1307                 em->start = extent_start;
1308                 em->len = extent_end - extent_start;
1309                 em->orig_start = extent_start -
1310                         btrfs_file_extent_offset(leaf, fi);
1311                 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
1312                 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1313                 if (bytenr == 0) {
1314                         em->block_start = EXTENT_MAP_HOLE;
1315                         return;
1316                 }
1317                 if (compress_type != BTRFS_COMPRESS_NONE) {
1318                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1319                         em->compress_type = compress_type;
1320                         em->block_start = bytenr;
1321                         em->block_len = em->orig_block_len;
1322                 } else {
1323                         bytenr += btrfs_file_extent_offset(leaf, fi);
1324                         em->block_start = bytenr;
1325                         em->block_len = em->len;
1326                         if (type == BTRFS_FILE_EXTENT_PREALLOC)
1327                                 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
1328                 }
1329         } else if (type == BTRFS_FILE_EXTENT_INLINE) {
1330                 em->block_start = EXTENT_MAP_INLINE;
1331                 em->start = extent_start;
1332                 em->len = extent_end - extent_start;
1333                 /*
1334                  * Initialize orig_start and block_len with the same values
1335                  * as in inode.c:btrfs_get_extent().
1336                  */
1337                 em->orig_start = EXTENT_MAP_HOLE;
1338                 em->block_len = (u64)-1;
1339                 em->compress_type = compress_type;
1340                 if (compress_type != BTRFS_COMPRESS_NONE)
1341                         set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
1342         } else {
1343                 btrfs_err(fs_info,
1344                           "unknown file extent item type %d, inode %llu, offset %llu, "
1345                           "root %llu", type, btrfs_ino(inode), extent_start,
1346                           root->root_key.objectid);
1347         }
1348 }
1349
1350 /*
1351  * Returns the end offset (non inclusive) of the file extent item the given path
1352  * points to. If it points to an inline extent, the returned offset is rounded
1353  * up to the sector size.
1354  */
1355 u64 btrfs_file_extent_end(const struct btrfs_path *path)
1356 {
1357         const struct extent_buffer *leaf = path->nodes[0];
1358         const int slot = path->slots[0];
1359         struct btrfs_file_extent_item *fi;
1360         struct btrfs_key key;
1361         u64 end;
1362
1363         btrfs_item_key_to_cpu(leaf, &key, slot);
1364         ASSERT(key.type == BTRFS_EXTENT_DATA_KEY);
1365         fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1366
1367         if (btrfs_file_extent_type(leaf, fi) == BTRFS_FILE_EXTENT_INLINE) {
1368                 end = btrfs_file_extent_ram_bytes(leaf, fi);
1369                 end = ALIGN(key.offset + end, leaf->fs_info->sectorsize);
1370         } else {
1371                 end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1372         }
1373
1374         return end;
1375 }