Btrfs: don't cache the csum value into the extent state tree
[linux-2.6-block.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "compat.h"
17 #include "ctree.h"
18 #include "btrfs_inode.h"
19 #include "volumes.h"
20 #include "check-integrity.h"
21 #include "locking.h"
22 #include "rcu-string.h"
23
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27
28 #ifdef CONFIG_BTRFS_DEBUG
29 static LIST_HEAD(buffers);
30 static LIST_HEAD(states);
31
32 static DEFINE_SPINLOCK(leak_lock);
33
34 static inline
35 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
36 {
37         unsigned long flags;
38
39         spin_lock_irqsave(&leak_lock, flags);
40         list_add(new, head);
41         spin_unlock_irqrestore(&leak_lock, flags);
42 }
43
44 static inline
45 void btrfs_leak_debug_del(struct list_head *entry)
46 {
47         unsigned long flags;
48
49         spin_lock_irqsave(&leak_lock, flags);
50         list_del(entry);
51         spin_unlock_irqrestore(&leak_lock, flags);
52 }
53
54 static inline
55 void btrfs_leak_debug_check(void)
56 {
57         struct extent_state *state;
58         struct extent_buffer *eb;
59
60         while (!list_empty(&states)) {
61                 state = list_entry(states.next, struct extent_state, leak_list);
62                 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
63                        "state %lu in tree %p refs %d\n",
64                        (unsigned long long)state->start,
65                        (unsigned long long)state->end,
66                        state->state, state->tree, atomic_read(&state->refs));
67                 list_del(&state->leak_list);
68                 kmem_cache_free(extent_state_cache, state);
69         }
70
71         while (!list_empty(&buffers)) {
72                 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
73                 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
74                        "refs %d\n", (unsigned long long)eb->start,
75                        eb->len, atomic_read(&eb->refs));
76                 list_del(&eb->leak_list);
77                 kmem_cache_free(extent_buffer_cache, eb);
78         }
79 }
80
81 #define btrfs_debug_check_extent_io_range(inode, start, end)            \
82         __btrfs_debug_check_extent_io_range(__func__, (inode), (start), (end))
83 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
84                 struct inode *inode, u64 start, u64 end)
85 {
86         u64 isize = i_size_read(inode);
87
88         if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
89                 printk_ratelimited(KERN_DEBUG
90                     "btrfs: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
91                                 caller,
92                                 (unsigned long long)btrfs_ino(inode),
93                                 (unsigned long long)isize,
94                                 (unsigned long long)start,
95                                 (unsigned long long)end);
96         }
97 }
98 #else
99 #define btrfs_leak_debug_add(new, head) do {} while (0)
100 #define btrfs_leak_debug_del(entry)     do {} while (0)
101 #define btrfs_leak_debug_check()        do {} while (0)
102 #define btrfs_debug_check_extent_io_range(c, s, e)      do {} while (0)
103 #endif
104
105 #define BUFFER_LRU_MAX 64
106
107 struct tree_entry {
108         u64 start;
109         u64 end;
110         struct rb_node rb_node;
111 };
112
113 struct extent_page_data {
114         struct bio *bio;
115         struct extent_io_tree *tree;
116         get_extent_t *get_extent;
117         unsigned long bio_flags;
118
119         /* tells writepage not to lock the state bits for this range
120          * it still does the unlocking
121          */
122         unsigned int extent_locked:1;
123
124         /* tells the submit_bio code to use a WRITE_SYNC */
125         unsigned int sync_io:1;
126 };
127
128 static noinline void flush_write_bio(void *data);
129 static inline struct btrfs_fs_info *
130 tree_fs_info(struct extent_io_tree *tree)
131 {
132         return btrfs_sb(tree->mapping->host->i_sb);
133 }
134
135 int __init extent_io_init(void)
136 {
137         extent_state_cache = kmem_cache_create("btrfs_extent_state",
138                         sizeof(struct extent_state), 0,
139                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
140         if (!extent_state_cache)
141                 return -ENOMEM;
142
143         extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
144                         sizeof(struct extent_buffer), 0,
145                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
146         if (!extent_buffer_cache)
147                 goto free_state_cache;
148
149         btrfs_bioset = bioset_create(BIO_POOL_SIZE,
150                                      offsetof(struct btrfs_io_bio, bio));
151         if (!btrfs_bioset)
152                 goto free_buffer_cache;
153         return 0;
154
155 free_buffer_cache:
156         kmem_cache_destroy(extent_buffer_cache);
157         extent_buffer_cache = NULL;
158
159 free_state_cache:
160         kmem_cache_destroy(extent_state_cache);
161         extent_state_cache = NULL;
162         return -ENOMEM;
163 }
164
165 void extent_io_exit(void)
166 {
167         btrfs_leak_debug_check();
168
169         /*
170          * Make sure all delayed rcu free are flushed before we
171          * destroy caches.
172          */
173         rcu_barrier();
174         if (extent_state_cache)
175                 kmem_cache_destroy(extent_state_cache);
176         if (extent_buffer_cache)
177                 kmem_cache_destroy(extent_buffer_cache);
178         if (btrfs_bioset)
179                 bioset_free(btrfs_bioset);
180 }
181
182 void extent_io_tree_init(struct extent_io_tree *tree,
183                          struct address_space *mapping)
184 {
185         tree->state = RB_ROOT;
186         INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
187         tree->ops = NULL;
188         tree->dirty_bytes = 0;
189         spin_lock_init(&tree->lock);
190         spin_lock_init(&tree->buffer_lock);
191         tree->mapping = mapping;
192 }
193
194 static struct extent_state *alloc_extent_state(gfp_t mask)
195 {
196         struct extent_state *state;
197
198         state = kmem_cache_alloc(extent_state_cache, mask);
199         if (!state)
200                 return state;
201         state->state = 0;
202         state->private = 0;
203         state->tree = NULL;
204         btrfs_leak_debug_add(&state->leak_list, &states);
205         atomic_set(&state->refs, 1);
206         init_waitqueue_head(&state->wq);
207         trace_alloc_extent_state(state, mask, _RET_IP_);
208         return state;
209 }
210
211 void free_extent_state(struct extent_state *state)
212 {
213         if (!state)
214                 return;
215         if (atomic_dec_and_test(&state->refs)) {
216                 WARN_ON(state->tree);
217                 btrfs_leak_debug_del(&state->leak_list);
218                 trace_free_extent_state(state, _RET_IP_);
219                 kmem_cache_free(extent_state_cache, state);
220         }
221 }
222
223 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
224                                    struct rb_node *node)
225 {
226         struct rb_node **p = &root->rb_node;
227         struct rb_node *parent = NULL;
228         struct tree_entry *entry;
229
230         while (*p) {
231                 parent = *p;
232                 entry = rb_entry(parent, struct tree_entry, rb_node);
233
234                 if (offset < entry->start)
235                         p = &(*p)->rb_left;
236                 else if (offset > entry->end)
237                         p = &(*p)->rb_right;
238                 else
239                         return parent;
240         }
241
242         rb_link_node(node, parent, p);
243         rb_insert_color(node, root);
244         return NULL;
245 }
246
247 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
248                                      struct rb_node **prev_ret,
249                                      struct rb_node **next_ret)
250 {
251         struct rb_root *root = &tree->state;
252         struct rb_node *n = root->rb_node;
253         struct rb_node *prev = NULL;
254         struct rb_node *orig_prev = NULL;
255         struct tree_entry *entry;
256         struct tree_entry *prev_entry = NULL;
257
258         while (n) {
259                 entry = rb_entry(n, struct tree_entry, rb_node);
260                 prev = n;
261                 prev_entry = entry;
262
263                 if (offset < entry->start)
264                         n = n->rb_left;
265                 else if (offset > entry->end)
266                         n = n->rb_right;
267                 else
268                         return n;
269         }
270
271         if (prev_ret) {
272                 orig_prev = prev;
273                 while (prev && offset > prev_entry->end) {
274                         prev = rb_next(prev);
275                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
276                 }
277                 *prev_ret = prev;
278                 prev = orig_prev;
279         }
280
281         if (next_ret) {
282                 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
283                 while (prev && offset < prev_entry->start) {
284                         prev = rb_prev(prev);
285                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
286                 }
287                 *next_ret = prev;
288         }
289         return NULL;
290 }
291
292 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
293                                           u64 offset)
294 {
295         struct rb_node *prev = NULL;
296         struct rb_node *ret;
297
298         ret = __etree_search(tree, offset, &prev, NULL);
299         if (!ret)
300                 return prev;
301         return ret;
302 }
303
304 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
305                      struct extent_state *other)
306 {
307         if (tree->ops && tree->ops->merge_extent_hook)
308                 tree->ops->merge_extent_hook(tree->mapping->host, new,
309                                              other);
310 }
311
312 /*
313  * utility function to look for merge candidates inside a given range.
314  * Any extents with matching state are merged together into a single
315  * extent in the tree.  Extents with EXTENT_IO in their state field
316  * are not merged because the end_io handlers need to be able to do
317  * operations on them without sleeping (or doing allocations/splits).
318  *
319  * This should be called with the tree lock held.
320  */
321 static void merge_state(struct extent_io_tree *tree,
322                         struct extent_state *state)
323 {
324         struct extent_state *other;
325         struct rb_node *other_node;
326
327         if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
328                 return;
329
330         other_node = rb_prev(&state->rb_node);
331         if (other_node) {
332                 other = rb_entry(other_node, struct extent_state, rb_node);
333                 if (other->end == state->start - 1 &&
334                     other->state == state->state) {
335                         merge_cb(tree, state, other);
336                         state->start = other->start;
337                         other->tree = NULL;
338                         rb_erase(&other->rb_node, &tree->state);
339                         free_extent_state(other);
340                 }
341         }
342         other_node = rb_next(&state->rb_node);
343         if (other_node) {
344                 other = rb_entry(other_node, struct extent_state, rb_node);
345                 if (other->start == state->end + 1 &&
346                     other->state == state->state) {
347                         merge_cb(tree, state, other);
348                         state->end = other->end;
349                         other->tree = NULL;
350                         rb_erase(&other->rb_node, &tree->state);
351                         free_extent_state(other);
352                 }
353         }
354 }
355
356 static void set_state_cb(struct extent_io_tree *tree,
357                          struct extent_state *state, unsigned long *bits)
358 {
359         if (tree->ops && tree->ops->set_bit_hook)
360                 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
361 }
362
363 static void clear_state_cb(struct extent_io_tree *tree,
364                            struct extent_state *state, unsigned long *bits)
365 {
366         if (tree->ops && tree->ops->clear_bit_hook)
367                 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
368 }
369
370 static void set_state_bits(struct extent_io_tree *tree,
371                            struct extent_state *state, unsigned long *bits);
372
373 /*
374  * insert an extent_state struct into the tree.  'bits' are set on the
375  * struct before it is inserted.
376  *
377  * This may return -EEXIST if the extent is already there, in which case the
378  * state struct is freed.
379  *
380  * The tree lock is not taken internally.  This is a utility function and
381  * probably isn't what you want to call (see set/clear_extent_bit).
382  */
383 static int insert_state(struct extent_io_tree *tree,
384                         struct extent_state *state, u64 start, u64 end,
385                         unsigned long *bits)
386 {
387         struct rb_node *node;
388
389         if (end < start)
390                 WARN(1, KERN_ERR "btrfs end < start %llu %llu\n",
391                        (unsigned long long)end,
392                        (unsigned long long)start);
393         state->start = start;
394         state->end = end;
395
396         set_state_bits(tree, state, bits);
397
398         node = tree_insert(&tree->state, end, &state->rb_node);
399         if (node) {
400                 struct extent_state *found;
401                 found = rb_entry(node, struct extent_state, rb_node);
402                 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
403                        "%llu %llu\n", (unsigned long long)found->start,
404                        (unsigned long long)found->end,
405                        (unsigned long long)start, (unsigned long long)end);
406                 return -EEXIST;
407         }
408         state->tree = tree;
409         merge_state(tree, state);
410         return 0;
411 }
412
413 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
414                      u64 split)
415 {
416         if (tree->ops && tree->ops->split_extent_hook)
417                 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
418 }
419
420 /*
421  * split a given extent state struct in two, inserting the preallocated
422  * struct 'prealloc' as the newly created second half.  'split' indicates an
423  * offset inside 'orig' where it should be split.
424  *
425  * Before calling,
426  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
427  * are two extent state structs in the tree:
428  * prealloc: [orig->start, split - 1]
429  * orig: [ split, orig->end ]
430  *
431  * The tree locks are not taken by this function. They need to be held
432  * by the caller.
433  */
434 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
435                        struct extent_state *prealloc, u64 split)
436 {
437         struct rb_node *node;
438
439         split_cb(tree, orig, split);
440
441         prealloc->start = orig->start;
442         prealloc->end = split - 1;
443         prealloc->state = orig->state;
444         orig->start = split;
445
446         node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
447         if (node) {
448                 free_extent_state(prealloc);
449                 return -EEXIST;
450         }
451         prealloc->tree = tree;
452         return 0;
453 }
454
455 static struct extent_state *next_state(struct extent_state *state)
456 {
457         struct rb_node *next = rb_next(&state->rb_node);
458         if (next)
459                 return rb_entry(next, struct extent_state, rb_node);
460         else
461                 return NULL;
462 }
463
464 /*
465  * utility function to clear some bits in an extent state struct.
466  * it will optionally wake up any one waiting on this state (wake == 1).
467  *
468  * If no bits are set on the state struct after clearing things, the
469  * struct is freed and removed from the tree
470  */
471 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
472                                             struct extent_state *state,
473                                             unsigned long *bits, int wake)
474 {
475         struct extent_state *next;
476         unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
477
478         if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
479                 u64 range = state->end - state->start + 1;
480                 WARN_ON(range > tree->dirty_bytes);
481                 tree->dirty_bytes -= range;
482         }
483         clear_state_cb(tree, state, bits);
484         state->state &= ~bits_to_clear;
485         if (wake)
486                 wake_up(&state->wq);
487         if (state->state == 0) {
488                 next = next_state(state);
489                 if (state->tree) {
490                         rb_erase(&state->rb_node, &tree->state);
491                         state->tree = NULL;
492                         free_extent_state(state);
493                 } else {
494                         WARN_ON(1);
495                 }
496         } else {
497                 merge_state(tree, state);
498                 next = next_state(state);
499         }
500         return next;
501 }
502
503 static struct extent_state *
504 alloc_extent_state_atomic(struct extent_state *prealloc)
505 {
506         if (!prealloc)
507                 prealloc = alloc_extent_state(GFP_ATOMIC);
508
509         return prealloc;
510 }
511
512 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
513 {
514         btrfs_panic(tree_fs_info(tree), err, "Locking error: "
515                     "Extent tree was modified by another "
516                     "thread while locked.");
517 }
518
519 /*
520  * clear some bits on a range in the tree.  This may require splitting
521  * or inserting elements in the tree, so the gfp mask is used to
522  * indicate which allocations or sleeping are allowed.
523  *
524  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
525  * the given range from the tree regardless of state (ie for truncate).
526  *
527  * the range [start, end] is inclusive.
528  *
529  * This takes the tree lock, and returns 0 on success and < 0 on error.
530  */
531 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
532                      unsigned long bits, int wake, int delete,
533                      struct extent_state **cached_state,
534                      gfp_t mask)
535 {
536         struct extent_state *state;
537         struct extent_state *cached;
538         struct extent_state *prealloc = NULL;
539         struct rb_node *node;
540         u64 last_end;
541         int err;
542         int clear = 0;
543
544         btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
545
546         if (bits & EXTENT_DELALLOC)
547                 bits |= EXTENT_NORESERVE;
548
549         if (delete)
550                 bits |= ~EXTENT_CTLBITS;
551         bits |= EXTENT_FIRST_DELALLOC;
552
553         if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
554                 clear = 1;
555 again:
556         if (!prealloc && (mask & __GFP_WAIT)) {
557                 prealloc = alloc_extent_state(mask);
558                 if (!prealloc)
559                         return -ENOMEM;
560         }
561
562         spin_lock(&tree->lock);
563         if (cached_state) {
564                 cached = *cached_state;
565
566                 if (clear) {
567                         *cached_state = NULL;
568                         cached_state = NULL;
569                 }
570
571                 if (cached && cached->tree && cached->start <= start &&
572                     cached->end > start) {
573                         if (clear)
574                                 atomic_dec(&cached->refs);
575                         state = cached;
576                         goto hit_next;
577                 }
578                 if (clear)
579                         free_extent_state(cached);
580         }
581         /*
582          * this search will find the extents that end after
583          * our range starts
584          */
585         node = tree_search(tree, start);
586         if (!node)
587                 goto out;
588         state = rb_entry(node, struct extent_state, rb_node);
589 hit_next:
590         if (state->start > end)
591                 goto out;
592         WARN_ON(state->end < start);
593         last_end = state->end;
594
595         /* the state doesn't have the wanted bits, go ahead */
596         if (!(state->state & bits)) {
597                 state = next_state(state);
598                 goto next;
599         }
600
601         /*
602          *     | ---- desired range ---- |
603          *  | state | or
604          *  | ------------- state -------------- |
605          *
606          * We need to split the extent we found, and may flip
607          * bits on second half.
608          *
609          * If the extent we found extends past our range, we
610          * just split and search again.  It'll get split again
611          * the next time though.
612          *
613          * If the extent we found is inside our range, we clear
614          * the desired bit on it.
615          */
616
617         if (state->start < start) {
618                 prealloc = alloc_extent_state_atomic(prealloc);
619                 BUG_ON(!prealloc);
620                 err = split_state(tree, state, prealloc, start);
621                 if (err)
622                         extent_io_tree_panic(tree, err);
623
624                 prealloc = NULL;
625                 if (err)
626                         goto out;
627                 if (state->end <= end) {
628                         state = clear_state_bit(tree, state, &bits, wake);
629                         goto next;
630                 }
631                 goto search_again;
632         }
633         /*
634          * | ---- desired range ---- |
635          *                        | state |
636          * We need to split the extent, and clear the bit
637          * on the first half
638          */
639         if (state->start <= end && state->end > end) {
640                 prealloc = alloc_extent_state_atomic(prealloc);
641                 BUG_ON(!prealloc);
642                 err = split_state(tree, state, prealloc, end + 1);
643                 if (err)
644                         extent_io_tree_panic(tree, err);
645
646                 if (wake)
647                         wake_up(&state->wq);
648
649                 clear_state_bit(tree, prealloc, &bits, wake);
650
651                 prealloc = NULL;
652                 goto out;
653         }
654
655         state = clear_state_bit(tree, state, &bits, wake);
656 next:
657         if (last_end == (u64)-1)
658                 goto out;
659         start = last_end + 1;
660         if (start <= end && state && !need_resched())
661                 goto hit_next;
662         goto search_again;
663
664 out:
665         spin_unlock(&tree->lock);
666         if (prealloc)
667                 free_extent_state(prealloc);
668
669         return 0;
670
671 search_again:
672         if (start > end)
673                 goto out;
674         spin_unlock(&tree->lock);
675         if (mask & __GFP_WAIT)
676                 cond_resched();
677         goto again;
678 }
679
680 static void wait_on_state(struct extent_io_tree *tree,
681                           struct extent_state *state)
682                 __releases(tree->lock)
683                 __acquires(tree->lock)
684 {
685         DEFINE_WAIT(wait);
686         prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
687         spin_unlock(&tree->lock);
688         schedule();
689         spin_lock(&tree->lock);
690         finish_wait(&state->wq, &wait);
691 }
692
693 /*
694  * waits for one or more bits to clear on a range in the state tree.
695  * The range [start, end] is inclusive.
696  * The tree lock is taken by this function
697  */
698 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
699                             unsigned long bits)
700 {
701         struct extent_state *state;
702         struct rb_node *node;
703
704         btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
705
706         spin_lock(&tree->lock);
707 again:
708         while (1) {
709                 /*
710                  * this search will find all the extents that end after
711                  * our range starts
712                  */
713                 node = tree_search(tree, start);
714                 if (!node)
715                         break;
716
717                 state = rb_entry(node, struct extent_state, rb_node);
718
719                 if (state->start > end)
720                         goto out;
721
722                 if (state->state & bits) {
723                         start = state->start;
724                         atomic_inc(&state->refs);
725                         wait_on_state(tree, state);
726                         free_extent_state(state);
727                         goto again;
728                 }
729                 start = state->end + 1;
730
731                 if (start > end)
732                         break;
733
734                 cond_resched_lock(&tree->lock);
735         }
736 out:
737         spin_unlock(&tree->lock);
738 }
739
740 static void set_state_bits(struct extent_io_tree *tree,
741                            struct extent_state *state,
742                            unsigned long *bits)
743 {
744         unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
745
746         set_state_cb(tree, state, bits);
747         if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
748                 u64 range = state->end - state->start + 1;
749                 tree->dirty_bytes += range;
750         }
751         state->state |= bits_to_set;
752 }
753
754 static void cache_state(struct extent_state *state,
755                         struct extent_state **cached_ptr)
756 {
757         if (cached_ptr && !(*cached_ptr)) {
758                 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
759                         *cached_ptr = state;
760                         atomic_inc(&state->refs);
761                 }
762         }
763 }
764
765 static void uncache_state(struct extent_state **cached_ptr)
766 {
767         if (cached_ptr && (*cached_ptr)) {
768                 struct extent_state *state = *cached_ptr;
769                 *cached_ptr = NULL;
770                 free_extent_state(state);
771         }
772 }
773
774 /*
775  * set some bits on a range in the tree.  This may require allocations or
776  * sleeping, so the gfp mask is used to indicate what is allowed.
777  *
778  * If any of the exclusive bits are set, this will fail with -EEXIST if some
779  * part of the range already has the desired bits set.  The start of the
780  * existing range is returned in failed_start in this case.
781  *
782  * [start, end] is inclusive This takes the tree lock.
783  */
784
785 static int __must_check
786 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
787                  unsigned long bits, unsigned long exclusive_bits,
788                  u64 *failed_start, struct extent_state **cached_state,
789                  gfp_t mask)
790 {
791         struct extent_state *state;
792         struct extent_state *prealloc = NULL;
793         struct rb_node *node;
794         int err = 0;
795         u64 last_start;
796         u64 last_end;
797
798         btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
799
800         bits |= EXTENT_FIRST_DELALLOC;
801 again:
802         if (!prealloc && (mask & __GFP_WAIT)) {
803                 prealloc = alloc_extent_state(mask);
804                 BUG_ON(!prealloc);
805         }
806
807         spin_lock(&tree->lock);
808         if (cached_state && *cached_state) {
809                 state = *cached_state;
810                 if (state->start <= start && state->end > start &&
811                     state->tree) {
812                         node = &state->rb_node;
813                         goto hit_next;
814                 }
815         }
816         /*
817          * this search will find all the extents that end after
818          * our range starts.
819          */
820         node = tree_search(tree, start);
821         if (!node) {
822                 prealloc = alloc_extent_state_atomic(prealloc);
823                 BUG_ON(!prealloc);
824                 err = insert_state(tree, prealloc, start, end, &bits);
825                 if (err)
826                         extent_io_tree_panic(tree, err);
827
828                 prealloc = NULL;
829                 goto out;
830         }
831         state = rb_entry(node, struct extent_state, rb_node);
832 hit_next:
833         last_start = state->start;
834         last_end = state->end;
835
836         /*
837          * | ---- desired range ---- |
838          * | state |
839          *
840          * Just lock what we found and keep going
841          */
842         if (state->start == start && state->end <= end) {
843                 if (state->state & exclusive_bits) {
844                         *failed_start = state->start;
845                         err = -EEXIST;
846                         goto out;
847                 }
848
849                 set_state_bits(tree, state, &bits);
850                 cache_state(state, cached_state);
851                 merge_state(tree, state);
852                 if (last_end == (u64)-1)
853                         goto out;
854                 start = last_end + 1;
855                 state = next_state(state);
856                 if (start < end && state && state->start == start &&
857                     !need_resched())
858                         goto hit_next;
859                 goto search_again;
860         }
861
862         /*
863          *     | ---- desired range ---- |
864          * | state |
865          *   or
866          * | ------------- state -------------- |
867          *
868          * We need to split the extent we found, and may flip bits on
869          * second half.
870          *
871          * If the extent we found extends past our
872          * range, we just split and search again.  It'll get split
873          * again the next time though.
874          *
875          * If the extent we found is inside our range, we set the
876          * desired bit on it.
877          */
878         if (state->start < start) {
879                 if (state->state & exclusive_bits) {
880                         *failed_start = start;
881                         err = -EEXIST;
882                         goto out;
883                 }
884
885                 prealloc = alloc_extent_state_atomic(prealloc);
886                 BUG_ON(!prealloc);
887                 err = split_state(tree, state, prealloc, start);
888                 if (err)
889                         extent_io_tree_panic(tree, err);
890
891                 prealloc = NULL;
892                 if (err)
893                         goto out;
894                 if (state->end <= end) {
895                         set_state_bits(tree, state, &bits);
896                         cache_state(state, cached_state);
897                         merge_state(tree, state);
898                         if (last_end == (u64)-1)
899                                 goto out;
900                         start = last_end + 1;
901                         state = next_state(state);
902                         if (start < end && state && state->start == start &&
903                             !need_resched())
904                                 goto hit_next;
905                 }
906                 goto search_again;
907         }
908         /*
909          * | ---- desired range ---- |
910          *     | state | or               | state |
911          *
912          * There's a hole, we need to insert something in it and
913          * ignore the extent we found.
914          */
915         if (state->start > start) {
916                 u64 this_end;
917                 if (end < last_start)
918                         this_end = end;
919                 else
920                         this_end = last_start - 1;
921
922                 prealloc = alloc_extent_state_atomic(prealloc);
923                 BUG_ON(!prealloc);
924
925                 /*
926                  * Avoid to free 'prealloc' if it can be merged with
927                  * the later extent.
928                  */
929                 err = insert_state(tree, prealloc, start, this_end,
930                                    &bits);
931                 if (err)
932                         extent_io_tree_panic(tree, err);
933
934                 cache_state(prealloc, cached_state);
935                 prealloc = NULL;
936                 start = this_end + 1;
937                 goto search_again;
938         }
939         /*
940          * | ---- desired range ---- |
941          *                        | state |
942          * We need to split the extent, and set the bit
943          * on the first half
944          */
945         if (state->start <= end && state->end > end) {
946                 if (state->state & exclusive_bits) {
947                         *failed_start = start;
948                         err = -EEXIST;
949                         goto out;
950                 }
951
952                 prealloc = alloc_extent_state_atomic(prealloc);
953                 BUG_ON(!prealloc);
954                 err = split_state(tree, state, prealloc, end + 1);
955                 if (err)
956                         extent_io_tree_panic(tree, err);
957
958                 set_state_bits(tree, prealloc, &bits);
959                 cache_state(prealloc, cached_state);
960                 merge_state(tree, prealloc);
961                 prealloc = NULL;
962                 goto out;
963         }
964
965         goto search_again;
966
967 out:
968         spin_unlock(&tree->lock);
969         if (prealloc)
970                 free_extent_state(prealloc);
971
972         return err;
973
974 search_again:
975         if (start > end)
976                 goto out;
977         spin_unlock(&tree->lock);
978         if (mask & __GFP_WAIT)
979                 cond_resched();
980         goto again;
981 }
982
983 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
984                    unsigned long bits, u64 * failed_start,
985                    struct extent_state **cached_state, gfp_t mask)
986 {
987         return __set_extent_bit(tree, start, end, bits, 0, failed_start,
988                                 cached_state, mask);
989 }
990
991
992 /**
993  * convert_extent_bit - convert all bits in a given range from one bit to
994  *                      another
995  * @tree:       the io tree to search
996  * @start:      the start offset in bytes
997  * @end:        the end offset in bytes (inclusive)
998  * @bits:       the bits to set in this range
999  * @clear_bits: the bits to clear in this range
1000  * @cached_state:       state that we're going to cache
1001  * @mask:       the allocation mask
1002  *
1003  * This will go through and set bits for the given range.  If any states exist
1004  * already in this range they are set with the given bit and cleared of the
1005  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1006  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1007  * boundary bits like LOCK.
1008  */
1009 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1010                        unsigned long bits, unsigned long clear_bits,
1011                        struct extent_state **cached_state, gfp_t mask)
1012 {
1013         struct extent_state *state;
1014         struct extent_state *prealloc = NULL;
1015         struct rb_node *node;
1016         int err = 0;
1017         u64 last_start;
1018         u64 last_end;
1019
1020         btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
1021
1022 again:
1023         if (!prealloc && (mask & __GFP_WAIT)) {
1024                 prealloc = alloc_extent_state(mask);
1025                 if (!prealloc)
1026                         return -ENOMEM;
1027         }
1028
1029         spin_lock(&tree->lock);
1030         if (cached_state && *cached_state) {
1031                 state = *cached_state;
1032                 if (state->start <= start && state->end > start &&
1033                     state->tree) {
1034                         node = &state->rb_node;
1035                         goto hit_next;
1036                 }
1037         }
1038
1039         /*
1040          * this search will find all the extents that end after
1041          * our range starts.
1042          */
1043         node = tree_search(tree, start);
1044         if (!node) {
1045                 prealloc = alloc_extent_state_atomic(prealloc);
1046                 if (!prealloc) {
1047                         err = -ENOMEM;
1048                         goto out;
1049                 }
1050                 err = insert_state(tree, prealloc, start, end, &bits);
1051                 prealloc = NULL;
1052                 if (err)
1053                         extent_io_tree_panic(tree, err);
1054                 goto out;
1055         }
1056         state = rb_entry(node, struct extent_state, rb_node);
1057 hit_next:
1058         last_start = state->start;
1059         last_end = state->end;
1060
1061         /*
1062          * | ---- desired range ---- |
1063          * | state |
1064          *
1065          * Just lock what we found and keep going
1066          */
1067         if (state->start == start && state->end <= end) {
1068                 set_state_bits(tree, state, &bits);
1069                 cache_state(state, cached_state);
1070                 state = clear_state_bit(tree, state, &clear_bits, 0);
1071                 if (last_end == (u64)-1)
1072                         goto out;
1073                 start = last_end + 1;
1074                 if (start < end && state && state->start == start &&
1075                     !need_resched())
1076                         goto hit_next;
1077                 goto search_again;
1078         }
1079
1080         /*
1081          *     | ---- desired range ---- |
1082          * | state |
1083          *   or
1084          * | ------------- state -------------- |
1085          *
1086          * We need to split the extent we found, and may flip bits on
1087          * second half.
1088          *
1089          * If the extent we found extends past our
1090          * range, we just split and search again.  It'll get split
1091          * again the next time though.
1092          *
1093          * If the extent we found is inside our range, we set the
1094          * desired bit on it.
1095          */
1096         if (state->start < start) {
1097                 prealloc = alloc_extent_state_atomic(prealloc);
1098                 if (!prealloc) {
1099                         err = -ENOMEM;
1100                         goto out;
1101                 }
1102                 err = split_state(tree, state, prealloc, start);
1103                 if (err)
1104                         extent_io_tree_panic(tree, err);
1105                 prealloc = NULL;
1106                 if (err)
1107                         goto out;
1108                 if (state->end <= end) {
1109                         set_state_bits(tree, state, &bits);
1110                         cache_state(state, cached_state);
1111                         state = clear_state_bit(tree, state, &clear_bits, 0);
1112                         if (last_end == (u64)-1)
1113                                 goto out;
1114                         start = last_end + 1;
1115                         if (start < end && state && state->start == start &&
1116                             !need_resched())
1117                                 goto hit_next;
1118                 }
1119                 goto search_again;
1120         }
1121         /*
1122          * | ---- desired range ---- |
1123          *     | state | or               | state |
1124          *
1125          * There's a hole, we need to insert something in it and
1126          * ignore the extent we found.
1127          */
1128         if (state->start > start) {
1129                 u64 this_end;
1130                 if (end < last_start)
1131                         this_end = end;
1132                 else
1133                         this_end = last_start - 1;
1134
1135                 prealloc = alloc_extent_state_atomic(prealloc);
1136                 if (!prealloc) {
1137                         err = -ENOMEM;
1138                         goto out;
1139                 }
1140
1141                 /*
1142                  * Avoid to free 'prealloc' if it can be merged with
1143                  * the later extent.
1144                  */
1145                 err = insert_state(tree, prealloc, start, this_end,
1146                                    &bits);
1147                 if (err)
1148                         extent_io_tree_panic(tree, err);
1149                 cache_state(prealloc, cached_state);
1150                 prealloc = NULL;
1151                 start = this_end + 1;
1152                 goto search_again;
1153         }
1154         /*
1155          * | ---- desired range ---- |
1156          *                        | state |
1157          * We need to split the extent, and set the bit
1158          * on the first half
1159          */
1160         if (state->start <= end && state->end > end) {
1161                 prealloc = alloc_extent_state_atomic(prealloc);
1162                 if (!prealloc) {
1163                         err = -ENOMEM;
1164                         goto out;
1165                 }
1166
1167                 err = split_state(tree, state, prealloc, end + 1);
1168                 if (err)
1169                         extent_io_tree_panic(tree, err);
1170
1171                 set_state_bits(tree, prealloc, &bits);
1172                 cache_state(prealloc, cached_state);
1173                 clear_state_bit(tree, prealloc, &clear_bits, 0);
1174                 prealloc = NULL;
1175                 goto out;
1176         }
1177
1178         goto search_again;
1179
1180 out:
1181         spin_unlock(&tree->lock);
1182         if (prealloc)
1183                 free_extent_state(prealloc);
1184
1185         return err;
1186
1187 search_again:
1188         if (start > end)
1189                 goto out;
1190         spin_unlock(&tree->lock);
1191         if (mask & __GFP_WAIT)
1192                 cond_resched();
1193         goto again;
1194 }
1195
1196 /* wrappers around set/clear extent bit */
1197 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1198                      gfp_t mask)
1199 {
1200         return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1201                               NULL, mask);
1202 }
1203
1204 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1205                     unsigned long bits, gfp_t mask)
1206 {
1207         return set_extent_bit(tree, start, end, bits, NULL,
1208                               NULL, mask);
1209 }
1210
1211 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1212                       unsigned long bits, gfp_t mask)
1213 {
1214         return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1215 }
1216
1217 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1218                         struct extent_state **cached_state, gfp_t mask)
1219 {
1220         return set_extent_bit(tree, start, end,
1221                               EXTENT_DELALLOC | EXTENT_UPTODATE,
1222                               NULL, cached_state, mask);
1223 }
1224
1225 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1226                       struct extent_state **cached_state, gfp_t mask)
1227 {
1228         return set_extent_bit(tree, start, end,
1229                               EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1230                               NULL, cached_state, mask);
1231 }
1232
1233 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1234                        gfp_t mask)
1235 {
1236         return clear_extent_bit(tree, start, end,
1237                                 EXTENT_DIRTY | EXTENT_DELALLOC |
1238                                 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1239 }
1240
1241 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1242                      gfp_t mask)
1243 {
1244         return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1245                               NULL, mask);
1246 }
1247
1248 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1249                         struct extent_state **cached_state, gfp_t mask)
1250 {
1251         return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1252                               cached_state, mask);
1253 }
1254
1255 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1256                           struct extent_state **cached_state, gfp_t mask)
1257 {
1258         return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1259                                 cached_state, mask);
1260 }
1261
1262 /*
1263  * either insert or lock state struct between start and end use mask to tell
1264  * us if waiting is desired.
1265  */
1266 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1267                      unsigned long bits, struct extent_state **cached_state)
1268 {
1269         int err;
1270         u64 failed_start;
1271         while (1) {
1272                 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1273                                        EXTENT_LOCKED, &failed_start,
1274                                        cached_state, GFP_NOFS);
1275                 if (err == -EEXIST) {
1276                         wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1277                         start = failed_start;
1278                 } else
1279                         break;
1280                 WARN_ON(start > end);
1281         }
1282         return err;
1283 }
1284
1285 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1286 {
1287         return lock_extent_bits(tree, start, end, 0, NULL);
1288 }
1289
1290 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1291 {
1292         int err;
1293         u64 failed_start;
1294
1295         err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1296                                &failed_start, NULL, GFP_NOFS);
1297         if (err == -EEXIST) {
1298                 if (failed_start > start)
1299                         clear_extent_bit(tree, start, failed_start - 1,
1300                                          EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1301                 return 0;
1302         }
1303         return 1;
1304 }
1305
1306 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1307                          struct extent_state **cached, gfp_t mask)
1308 {
1309         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1310                                 mask);
1311 }
1312
1313 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1314 {
1315         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1316                                 GFP_NOFS);
1317 }
1318
1319 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1320 {
1321         unsigned long index = start >> PAGE_CACHE_SHIFT;
1322         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1323         struct page *page;
1324
1325         while (index <= end_index) {
1326                 page = find_get_page(inode->i_mapping, index);
1327                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1328                 clear_page_dirty_for_io(page);
1329                 page_cache_release(page);
1330                 index++;
1331         }
1332         return 0;
1333 }
1334
1335 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1336 {
1337         unsigned long index = start >> PAGE_CACHE_SHIFT;
1338         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1339         struct page *page;
1340
1341         while (index <= end_index) {
1342                 page = find_get_page(inode->i_mapping, index);
1343                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1344                 account_page_redirty(page);
1345                 __set_page_dirty_nobuffers(page);
1346                 page_cache_release(page);
1347                 index++;
1348         }
1349         return 0;
1350 }
1351
1352 /*
1353  * helper function to set both pages and extents in the tree writeback
1354  */
1355 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1356 {
1357         unsigned long index = start >> PAGE_CACHE_SHIFT;
1358         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1359         struct page *page;
1360
1361         while (index <= end_index) {
1362                 page = find_get_page(tree->mapping, index);
1363                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1364                 set_page_writeback(page);
1365                 page_cache_release(page);
1366                 index++;
1367         }
1368         return 0;
1369 }
1370
1371 /* find the first state struct with 'bits' set after 'start', and
1372  * return it.  tree->lock must be held.  NULL will returned if
1373  * nothing was found after 'start'
1374  */
1375 static struct extent_state *
1376 find_first_extent_bit_state(struct extent_io_tree *tree,
1377                             u64 start, unsigned long bits)
1378 {
1379         struct rb_node *node;
1380         struct extent_state *state;
1381
1382         /*
1383          * this search will find all the extents that end after
1384          * our range starts.
1385          */
1386         node = tree_search(tree, start);
1387         if (!node)
1388                 goto out;
1389
1390         while (1) {
1391                 state = rb_entry(node, struct extent_state, rb_node);
1392                 if (state->end >= start && (state->state & bits))
1393                         return state;
1394
1395                 node = rb_next(node);
1396                 if (!node)
1397                         break;
1398         }
1399 out:
1400         return NULL;
1401 }
1402
1403 /*
1404  * find the first offset in the io tree with 'bits' set. zero is
1405  * returned if we find something, and *start_ret and *end_ret are
1406  * set to reflect the state struct that was found.
1407  *
1408  * If nothing was found, 1 is returned. If found something, return 0.
1409  */
1410 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1411                           u64 *start_ret, u64 *end_ret, unsigned long bits,
1412                           struct extent_state **cached_state)
1413 {
1414         struct extent_state *state;
1415         struct rb_node *n;
1416         int ret = 1;
1417
1418         spin_lock(&tree->lock);
1419         if (cached_state && *cached_state) {
1420                 state = *cached_state;
1421                 if (state->end == start - 1 && state->tree) {
1422                         n = rb_next(&state->rb_node);
1423                         while (n) {
1424                                 state = rb_entry(n, struct extent_state,
1425                                                  rb_node);
1426                                 if (state->state & bits)
1427                                         goto got_it;
1428                                 n = rb_next(n);
1429                         }
1430                         free_extent_state(*cached_state);
1431                         *cached_state = NULL;
1432                         goto out;
1433                 }
1434                 free_extent_state(*cached_state);
1435                 *cached_state = NULL;
1436         }
1437
1438         state = find_first_extent_bit_state(tree, start, bits);
1439 got_it:
1440         if (state) {
1441                 cache_state(state, cached_state);
1442                 *start_ret = state->start;
1443                 *end_ret = state->end;
1444                 ret = 0;
1445         }
1446 out:
1447         spin_unlock(&tree->lock);
1448         return ret;
1449 }
1450
1451 /*
1452  * find a contiguous range of bytes in the file marked as delalloc, not
1453  * more than 'max_bytes'.  start and end are used to return the range,
1454  *
1455  * 1 is returned if we find something, 0 if nothing was in the tree
1456  */
1457 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1458                                         u64 *start, u64 *end, u64 max_bytes,
1459                                         struct extent_state **cached_state)
1460 {
1461         struct rb_node *node;
1462         struct extent_state *state;
1463         u64 cur_start = *start;
1464         u64 found = 0;
1465         u64 total_bytes = 0;
1466
1467         spin_lock(&tree->lock);
1468
1469         /*
1470          * this search will find all the extents that end after
1471          * our range starts.
1472          */
1473         node = tree_search(tree, cur_start);
1474         if (!node) {
1475                 if (!found)
1476                         *end = (u64)-1;
1477                 goto out;
1478         }
1479
1480         while (1) {
1481                 state = rb_entry(node, struct extent_state, rb_node);
1482                 if (found && (state->start != cur_start ||
1483                               (state->state & EXTENT_BOUNDARY))) {
1484                         goto out;
1485                 }
1486                 if (!(state->state & EXTENT_DELALLOC)) {
1487                         if (!found)
1488                                 *end = state->end;
1489                         goto out;
1490                 }
1491                 if (!found) {
1492                         *start = state->start;
1493                         *cached_state = state;
1494                         atomic_inc(&state->refs);
1495                 }
1496                 found++;
1497                 *end = state->end;
1498                 cur_start = state->end + 1;
1499                 node = rb_next(node);
1500                 if (!node)
1501                         break;
1502                 total_bytes += state->end - state->start + 1;
1503                 if (total_bytes >= max_bytes)
1504                         break;
1505         }
1506 out:
1507         spin_unlock(&tree->lock);
1508         return found;
1509 }
1510
1511 static noinline void __unlock_for_delalloc(struct inode *inode,
1512                                            struct page *locked_page,
1513                                            u64 start, u64 end)
1514 {
1515         int ret;
1516         struct page *pages[16];
1517         unsigned long index = start >> PAGE_CACHE_SHIFT;
1518         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1519         unsigned long nr_pages = end_index - index + 1;
1520         int i;
1521
1522         if (index == locked_page->index && end_index == index)
1523                 return;
1524
1525         while (nr_pages > 0) {
1526                 ret = find_get_pages_contig(inode->i_mapping, index,
1527                                      min_t(unsigned long, nr_pages,
1528                                      ARRAY_SIZE(pages)), pages);
1529                 for (i = 0; i < ret; i++) {
1530                         if (pages[i] != locked_page)
1531                                 unlock_page(pages[i]);
1532                         page_cache_release(pages[i]);
1533                 }
1534                 nr_pages -= ret;
1535                 index += ret;
1536                 cond_resched();
1537         }
1538 }
1539
1540 static noinline int lock_delalloc_pages(struct inode *inode,
1541                                         struct page *locked_page,
1542                                         u64 delalloc_start,
1543                                         u64 delalloc_end)
1544 {
1545         unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1546         unsigned long start_index = index;
1547         unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1548         unsigned long pages_locked = 0;
1549         struct page *pages[16];
1550         unsigned long nrpages;
1551         int ret;
1552         int i;
1553
1554         /* the caller is responsible for locking the start index */
1555         if (index == locked_page->index && index == end_index)
1556                 return 0;
1557
1558         /* skip the page at the start index */
1559         nrpages = end_index - index + 1;
1560         while (nrpages > 0) {
1561                 ret = find_get_pages_contig(inode->i_mapping, index,
1562                                      min_t(unsigned long,
1563                                      nrpages, ARRAY_SIZE(pages)), pages);
1564                 if (ret == 0) {
1565                         ret = -EAGAIN;
1566                         goto done;
1567                 }
1568                 /* now we have an array of pages, lock them all */
1569                 for (i = 0; i < ret; i++) {
1570                         /*
1571                          * the caller is taking responsibility for
1572                          * locked_page
1573                          */
1574                         if (pages[i] != locked_page) {
1575                                 lock_page(pages[i]);
1576                                 if (!PageDirty(pages[i]) ||
1577                                     pages[i]->mapping != inode->i_mapping) {
1578                                         ret = -EAGAIN;
1579                                         unlock_page(pages[i]);
1580                                         page_cache_release(pages[i]);
1581                                         goto done;
1582                                 }
1583                         }
1584                         page_cache_release(pages[i]);
1585                         pages_locked++;
1586                 }
1587                 nrpages -= ret;
1588                 index += ret;
1589                 cond_resched();
1590         }
1591         ret = 0;
1592 done:
1593         if (ret && pages_locked) {
1594                 __unlock_for_delalloc(inode, locked_page,
1595                               delalloc_start,
1596                               ((u64)(start_index + pages_locked - 1)) <<
1597                               PAGE_CACHE_SHIFT);
1598         }
1599         return ret;
1600 }
1601
1602 /*
1603  * find a contiguous range of bytes in the file marked as delalloc, not
1604  * more than 'max_bytes'.  start and end are used to return the range,
1605  *
1606  * 1 is returned if we find something, 0 if nothing was in the tree
1607  */
1608 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1609                                              struct extent_io_tree *tree,
1610                                              struct page *locked_page,
1611                                              u64 *start, u64 *end,
1612                                              u64 max_bytes)
1613 {
1614         u64 delalloc_start;
1615         u64 delalloc_end;
1616         u64 found;
1617         struct extent_state *cached_state = NULL;
1618         int ret;
1619         int loops = 0;
1620
1621 again:
1622         /* step one, find a bunch of delalloc bytes starting at start */
1623         delalloc_start = *start;
1624         delalloc_end = 0;
1625         found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1626                                     max_bytes, &cached_state);
1627         if (!found || delalloc_end <= *start) {
1628                 *start = delalloc_start;
1629                 *end = delalloc_end;
1630                 free_extent_state(cached_state);
1631                 return found;
1632         }
1633
1634         /*
1635          * start comes from the offset of locked_page.  We have to lock
1636          * pages in order, so we can't process delalloc bytes before
1637          * locked_page
1638          */
1639         if (delalloc_start < *start)
1640                 delalloc_start = *start;
1641
1642         /*
1643          * make sure to limit the number of pages we try to lock down
1644          * if we're looping.
1645          */
1646         if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1647                 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1648
1649         /* step two, lock all the pages after the page that has start */
1650         ret = lock_delalloc_pages(inode, locked_page,
1651                                   delalloc_start, delalloc_end);
1652         if (ret == -EAGAIN) {
1653                 /* some of the pages are gone, lets avoid looping by
1654                  * shortening the size of the delalloc range we're searching
1655                  */
1656                 free_extent_state(cached_state);
1657                 if (!loops) {
1658                         unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1659                         max_bytes = PAGE_CACHE_SIZE - offset;
1660                         loops = 1;
1661                         goto again;
1662                 } else {
1663                         found = 0;
1664                         goto out_failed;
1665                 }
1666         }
1667         BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1668
1669         /* step three, lock the state bits for the whole range */
1670         lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1671
1672         /* then test to make sure it is all still delalloc */
1673         ret = test_range_bit(tree, delalloc_start, delalloc_end,
1674                              EXTENT_DELALLOC, 1, cached_state);
1675         if (!ret) {
1676                 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1677                                      &cached_state, GFP_NOFS);
1678                 __unlock_for_delalloc(inode, locked_page,
1679                               delalloc_start, delalloc_end);
1680                 cond_resched();
1681                 goto again;
1682         }
1683         free_extent_state(cached_state);
1684         *start = delalloc_start;
1685         *end = delalloc_end;
1686 out_failed:
1687         return found;
1688 }
1689
1690 int extent_clear_unlock_delalloc(struct inode *inode,
1691                                 struct extent_io_tree *tree,
1692                                 u64 start, u64 end, struct page *locked_page,
1693                                 unsigned long op)
1694 {
1695         int ret;
1696         struct page *pages[16];
1697         unsigned long index = start >> PAGE_CACHE_SHIFT;
1698         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1699         unsigned long nr_pages = end_index - index + 1;
1700         int i;
1701         unsigned long clear_bits = 0;
1702
1703         if (op & EXTENT_CLEAR_UNLOCK)
1704                 clear_bits |= EXTENT_LOCKED;
1705         if (op & EXTENT_CLEAR_DIRTY)
1706                 clear_bits |= EXTENT_DIRTY;
1707
1708         if (op & EXTENT_CLEAR_DELALLOC)
1709                 clear_bits |= EXTENT_DELALLOC;
1710
1711         clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1712         if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1713                     EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1714                     EXTENT_SET_PRIVATE2)))
1715                 return 0;
1716
1717         while (nr_pages > 0) {
1718                 ret = find_get_pages_contig(inode->i_mapping, index,
1719                                      min_t(unsigned long,
1720                                      nr_pages, ARRAY_SIZE(pages)), pages);
1721                 for (i = 0; i < ret; i++) {
1722
1723                         if (op & EXTENT_SET_PRIVATE2)
1724                                 SetPagePrivate2(pages[i]);
1725
1726                         if (pages[i] == locked_page) {
1727                                 page_cache_release(pages[i]);
1728                                 continue;
1729                         }
1730                         if (op & EXTENT_CLEAR_DIRTY)
1731                                 clear_page_dirty_for_io(pages[i]);
1732                         if (op & EXTENT_SET_WRITEBACK)
1733                                 set_page_writeback(pages[i]);
1734                         if (op & EXTENT_END_WRITEBACK)
1735                                 end_page_writeback(pages[i]);
1736                         if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1737                                 unlock_page(pages[i]);
1738                         page_cache_release(pages[i]);
1739                 }
1740                 nr_pages -= ret;
1741                 index += ret;
1742                 cond_resched();
1743         }
1744         return 0;
1745 }
1746
1747 /*
1748  * count the number of bytes in the tree that have a given bit(s)
1749  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1750  * cached.  The total number found is returned.
1751  */
1752 u64 count_range_bits(struct extent_io_tree *tree,
1753                      u64 *start, u64 search_end, u64 max_bytes,
1754                      unsigned long bits, int contig)
1755 {
1756         struct rb_node *node;
1757         struct extent_state *state;
1758         u64 cur_start = *start;
1759         u64 total_bytes = 0;
1760         u64 last = 0;
1761         int found = 0;
1762
1763         if (search_end <= cur_start) {
1764                 WARN_ON(1);
1765                 return 0;
1766         }
1767
1768         spin_lock(&tree->lock);
1769         if (cur_start == 0 && bits == EXTENT_DIRTY) {
1770                 total_bytes = tree->dirty_bytes;
1771                 goto out;
1772         }
1773         /*
1774          * this search will find all the extents that end after
1775          * our range starts.
1776          */
1777         node = tree_search(tree, cur_start);
1778         if (!node)
1779                 goto out;
1780
1781         while (1) {
1782                 state = rb_entry(node, struct extent_state, rb_node);
1783                 if (state->start > search_end)
1784                         break;
1785                 if (contig && found && state->start > last + 1)
1786                         break;
1787                 if (state->end >= cur_start && (state->state & bits) == bits) {
1788                         total_bytes += min(search_end, state->end) + 1 -
1789                                        max(cur_start, state->start);
1790                         if (total_bytes >= max_bytes)
1791                                 break;
1792                         if (!found) {
1793                                 *start = max(cur_start, state->start);
1794                                 found = 1;
1795                         }
1796                         last = state->end;
1797                 } else if (contig && found) {
1798                         break;
1799                 }
1800                 node = rb_next(node);
1801                 if (!node)
1802                         break;
1803         }
1804 out:
1805         spin_unlock(&tree->lock);
1806         return total_bytes;
1807 }
1808
1809 /*
1810  * set the private field for a given byte offset in the tree.  If there isn't
1811  * an extent_state there already, this does nothing.
1812  */
1813 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1814 {
1815         struct rb_node *node;
1816         struct extent_state *state;
1817         int ret = 0;
1818
1819         spin_lock(&tree->lock);
1820         /*
1821          * this search will find all the extents that end after
1822          * our range starts.
1823          */
1824         node = tree_search(tree, start);
1825         if (!node) {
1826                 ret = -ENOENT;
1827                 goto out;
1828         }
1829         state = rb_entry(node, struct extent_state, rb_node);
1830         if (state->start != start) {
1831                 ret = -ENOENT;
1832                 goto out;
1833         }
1834         state->private = private;
1835 out:
1836         spin_unlock(&tree->lock);
1837         return ret;
1838 }
1839
1840 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1841 {
1842         struct rb_node *node;
1843         struct extent_state *state;
1844         int ret = 0;
1845
1846         spin_lock(&tree->lock);
1847         /*
1848          * this search will find all the extents that end after
1849          * our range starts.
1850          */
1851         node = tree_search(tree, start);
1852         if (!node) {
1853                 ret = -ENOENT;
1854                 goto out;
1855         }
1856         state = rb_entry(node, struct extent_state, rb_node);
1857         if (state->start != start) {
1858                 ret = -ENOENT;
1859                 goto out;
1860         }
1861         *private = state->private;
1862 out:
1863         spin_unlock(&tree->lock);
1864         return ret;
1865 }
1866
1867 /*
1868  * searches a range in the state tree for a given mask.
1869  * If 'filled' == 1, this returns 1 only if every extent in the tree
1870  * has the bits set.  Otherwise, 1 is returned if any bit in the
1871  * range is found set.
1872  */
1873 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1874                    unsigned long bits, int filled, struct extent_state *cached)
1875 {
1876         struct extent_state *state = NULL;
1877         struct rb_node *node;
1878         int bitset = 0;
1879
1880         spin_lock(&tree->lock);
1881         if (cached && cached->tree && cached->start <= start &&
1882             cached->end > start)
1883                 node = &cached->rb_node;
1884         else
1885                 node = tree_search(tree, start);
1886         while (node && start <= end) {
1887                 state = rb_entry(node, struct extent_state, rb_node);
1888
1889                 if (filled && state->start > start) {
1890                         bitset = 0;
1891                         break;
1892                 }
1893
1894                 if (state->start > end)
1895                         break;
1896
1897                 if (state->state & bits) {
1898                         bitset = 1;
1899                         if (!filled)
1900                                 break;
1901                 } else if (filled) {
1902                         bitset = 0;
1903                         break;
1904                 }
1905
1906                 if (state->end == (u64)-1)
1907                         break;
1908
1909                 start = state->end + 1;
1910                 if (start > end)
1911                         break;
1912                 node = rb_next(node);
1913                 if (!node) {
1914                         if (filled)
1915                                 bitset = 0;
1916                         break;
1917                 }
1918         }
1919         spin_unlock(&tree->lock);
1920         return bitset;
1921 }
1922
1923 /*
1924  * helper function to set a given page up to date if all the
1925  * extents in the tree for that page are up to date
1926  */
1927 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1928 {
1929         u64 start = page_offset(page);
1930         u64 end = start + PAGE_CACHE_SIZE - 1;
1931         if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1932                 SetPageUptodate(page);
1933 }
1934
1935 /*
1936  * When IO fails, either with EIO or csum verification fails, we
1937  * try other mirrors that might have a good copy of the data.  This
1938  * io_failure_record is used to record state as we go through all the
1939  * mirrors.  If another mirror has good data, the page is set up to date
1940  * and things continue.  If a good mirror can't be found, the original
1941  * bio end_io callback is called to indicate things have failed.
1942  */
1943 struct io_failure_record {
1944         struct page *page;
1945         u64 start;
1946         u64 len;
1947         u64 logical;
1948         unsigned long bio_flags;
1949         int this_mirror;
1950         int failed_mirror;
1951         int in_validation;
1952 };
1953
1954 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1955                                 int did_repair)
1956 {
1957         int ret;
1958         int err = 0;
1959         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1960
1961         set_state_private(failure_tree, rec->start, 0);
1962         ret = clear_extent_bits(failure_tree, rec->start,
1963                                 rec->start + rec->len - 1,
1964                                 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1965         if (ret)
1966                 err = ret;
1967
1968         ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1969                                 rec->start + rec->len - 1,
1970                                 EXTENT_DAMAGED, GFP_NOFS);
1971         if (ret && !err)
1972                 err = ret;
1973
1974         kfree(rec);
1975         return err;
1976 }
1977
1978 static void repair_io_failure_callback(struct bio *bio, int err)
1979 {
1980         complete(bio->bi_private);
1981 }
1982
1983 /*
1984  * this bypasses the standard btrfs submit functions deliberately, as
1985  * the standard behavior is to write all copies in a raid setup. here we only
1986  * want to write the one bad copy. so we do the mapping for ourselves and issue
1987  * submit_bio directly.
1988  * to avoid any synchronization issues, wait for the data after writing, which
1989  * actually prevents the read that triggered the error from finishing.
1990  * currently, there can be no more than two copies of every data bit. thus,
1991  * exactly one rewrite is required.
1992  */
1993 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
1994                         u64 length, u64 logical, struct page *page,
1995                         int mirror_num)
1996 {
1997         struct bio *bio;
1998         struct btrfs_device *dev;
1999         DECLARE_COMPLETION_ONSTACK(compl);
2000         u64 map_length = 0;
2001         u64 sector;
2002         struct btrfs_bio *bbio = NULL;
2003         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2004         int ret;
2005
2006         BUG_ON(!mirror_num);
2007
2008         /* we can't repair anything in raid56 yet */
2009         if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2010                 return 0;
2011
2012         bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2013         if (!bio)
2014                 return -EIO;
2015         bio->bi_private = &compl;
2016         bio->bi_end_io = repair_io_failure_callback;
2017         bio->bi_size = 0;
2018         map_length = length;
2019
2020         ret = btrfs_map_block(fs_info, WRITE, logical,
2021                               &map_length, &bbio, mirror_num);
2022         if (ret) {
2023                 bio_put(bio);
2024                 return -EIO;
2025         }
2026         BUG_ON(mirror_num != bbio->mirror_num);
2027         sector = bbio->stripes[mirror_num-1].physical >> 9;
2028         bio->bi_sector = sector;
2029         dev = bbio->stripes[mirror_num-1].dev;
2030         kfree(bbio);
2031         if (!dev || !dev->bdev || !dev->writeable) {
2032                 bio_put(bio);
2033                 return -EIO;
2034         }
2035         bio->bi_bdev = dev->bdev;
2036         bio_add_page(bio, page, length, start - page_offset(page));
2037         btrfsic_submit_bio(WRITE_SYNC, bio);
2038         wait_for_completion(&compl);
2039
2040         if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2041                 /* try to remap that extent elsewhere? */
2042                 bio_put(bio);
2043                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2044                 return -EIO;
2045         }
2046
2047         printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
2048                       "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2049                       start, rcu_str_deref(dev->name), sector);
2050
2051         bio_put(bio);
2052         return 0;
2053 }
2054
2055 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2056                          int mirror_num)
2057 {
2058         u64 start = eb->start;
2059         unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2060         int ret = 0;
2061
2062         for (i = 0; i < num_pages; i++) {
2063                 struct page *p = extent_buffer_page(eb, i);
2064                 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
2065                                         start, p, mirror_num);
2066                 if (ret)
2067                         break;
2068                 start += PAGE_CACHE_SIZE;
2069         }
2070
2071         return ret;
2072 }
2073
2074 /*
2075  * each time an IO finishes, we do a fast check in the IO failure tree
2076  * to see if we need to process or clean up an io_failure_record
2077  */
2078 static int clean_io_failure(u64 start, struct page *page)
2079 {
2080         u64 private;
2081         u64 private_failure;
2082         struct io_failure_record *failrec;
2083         struct btrfs_fs_info *fs_info;
2084         struct extent_state *state;
2085         int num_copies;
2086         int did_repair = 0;
2087         int ret;
2088         struct inode *inode = page->mapping->host;
2089
2090         private = 0;
2091         ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2092                                 (u64)-1, 1, EXTENT_DIRTY, 0);
2093         if (!ret)
2094                 return 0;
2095
2096         ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2097                                 &private_failure);
2098         if (ret)
2099                 return 0;
2100
2101         failrec = (struct io_failure_record *)(unsigned long) private_failure;
2102         BUG_ON(!failrec->this_mirror);
2103
2104         if (failrec->in_validation) {
2105                 /* there was no real error, just free the record */
2106                 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2107                          failrec->start);
2108                 did_repair = 1;
2109                 goto out;
2110         }
2111
2112         spin_lock(&BTRFS_I(inode)->io_tree.lock);
2113         state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2114                                             failrec->start,
2115                                             EXTENT_LOCKED);
2116         spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2117
2118         if (state && state->start == failrec->start) {
2119                 fs_info = BTRFS_I(inode)->root->fs_info;
2120                 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2121                                               failrec->len);
2122                 if (num_copies > 1)  {
2123                         ret = repair_io_failure(fs_info, start, failrec->len,
2124                                                 failrec->logical, page,
2125                                                 failrec->failed_mirror);
2126                         did_repair = !ret;
2127                 }
2128                 ret = 0;
2129         }
2130
2131 out:
2132         if (!ret)
2133                 ret = free_io_failure(inode, failrec, did_repair);
2134
2135         return ret;
2136 }
2137
2138 /*
2139  * this is a generic handler for readpage errors (default
2140  * readpage_io_failed_hook). if other copies exist, read those and write back
2141  * good data to the failed position. does not investigate in remapping the
2142  * failed extent elsewhere, hoping the device will be smart enough to do this as
2143  * needed
2144  */
2145
2146 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2147                               struct page *page, u64 start, u64 end,
2148                               int failed_mirror)
2149 {
2150         struct io_failure_record *failrec = NULL;
2151         u64 private;
2152         struct extent_map *em;
2153         struct inode *inode = page->mapping->host;
2154         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2155         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2156         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2157         struct bio *bio;
2158         struct btrfs_io_bio *btrfs_failed_bio;
2159         struct btrfs_io_bio *btrfs_bio;
2160         int num_copies;
2161         int ret;
2162         int read_mode;
2163         u64 logical;
2164
2165         BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2166
2167         ret = get_state_private(failure_tree, start, &private);
2168         if (ret) {
2169                 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2170                 if (!failrec)
2171                         return -ENOMEM;
2172                 failrec->start = start;
2173                 failrec->len = end - start + 1;
2174                 failrec->this_mirror = 0;
2175                 failrec->bio_flags = 0;
2176                 failrec->in_validation = 0;
2177
2178                 read_lock(&em_tree->lock);
2179                 em = lookup_extent_mapping(em_tree, start, failrec->len);
2180                 if (!em) {
2181                         read_unlock(&em_tree->lock);
2182                         kfree(failrec);
2183                         return -EIO;
2184                 }
2185
2186                 if (em->start > start || em->start + em->len < start) {
2187                         free_extent_map(em);
2188                         em = NULL;
2189                 }
2190                 read_unlock(&em_tree->lock);
2191
2192                 if (!em) {
2193                         kfree(failrec);
2194                         return -EIO;
2195                 }
2196                 logical = start - em->start;
2197                 logical = em->block_start + logical;
2198                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2199                         logical = em->block_start;
2200                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2201                         extent_set_compress_type(&failrec->bio_flags,
2202                                                  em->compress_type);
2203                 }
2204                 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2205                          "len=%llu\n", logical, start, failrec->len);
2206                 failrec->logical = logical;
2207                 free_extent_map(em);
2208
2209                 /* set the bits in the private failure tree */
2210                 ret = set_extent_bits(failure_tree, start, end,
2211                                         EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2212                 if (ret >= 0)
2213                         ret = set_state_private(failure_tree, start,
2214                                                 (u64)(unsigned long)failrec);
2215                 /* set the bits in the inode's tree */
2216                 if (ret >= 0)
2217                         ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2218                                                 GFP_NOFS);
2219                 if (ret < 0) {
2220                         kfree(failrec);
2221                         return ret;
2222                 }
2223         } else {
2224                 failrec = (struct io_failure_record *)(unsigned long)private;
2225                 pr_debug("bio_readpage_error: (found) logical=%llu, "
2226                          "start=%llu, len=%llu, validation=%d\n",
2227                          failrec->logical, failrec->start, failrec->len,
2228                          failrec->in_validation);
2229                 /*
2230                  * when data can be on disk more than twice, add to failrec here
2231                  * (e.g. with a list for failed_mirror) to make
2232                  * clean_io_failure() clean all those errors at once.
2233                  */
2234         }
2235         num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2236                                       failrec->logical, failrec->len);
2237         if (num_copies == 1) {
2238                 /*
2239                  * we only have a single copy of the data, so don't bother with
2240                  * all the retry and error correction code that follows. no
2241                  * matter what the error is, it is very likely to persist.
2242                  */
2243                 pr_debug("bio_readpage_error: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2244                          num_copies, failrec->this_mirror, failed_mirror);
2245                 free_io_failure(inode, failrec, 0);
2246                 return -EIO;
2247         }
2248
2249         /*
2250          * there are two premises:
2251          *      a) deliver good data to the caller
2252          *      b) correct the bad sectors on disk
2253          */
2254         if (failed_bio->bi_vcnt > 1) {
2255                 /*
2256                  * to fulfill b), we need to know the exact failing sectors, as
2257                  * we don't want to rewrite any more than the failed ones. thus,
2258                  * we need separate read requests for the failed bio
2259                  *
2260                  * if the following BUG_ON triggers, our validation request got
2261                  * merged. we need separate requests for our algorithm to work.
2262                  */
2263                 BUG_ON(failrec->in_validation);
2264                 failrec->in_validation = 1;
2265                 failrec->this_mirror = failed_mirror;
2266                 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2267         } else {
2268                 /*
2269                  * we're ready to fulfill a) and b) alongside. get a good copy
2270                  * of the failed sector and if we succeed, we have setup
2271                  * everything for repair_io_failure to do the rest for us.
2272                  */
2273                 if (failrec->in_validation) {
2274                         BUG_ON(failrec->this_mirror != failed_mirror);
2275                         failrec->in_validation = 0;
2276                         failrec->this_mirror = 0;
2277                 }
2278                 failrec->failed_mirror = failed_mirror;
2279                 failrec->this_mirror++;
2280                 if (failrec->this_mirror == failed_mirror)
2281                         failrec->this_mirror++;
2282                 read_mode = READ_SYNC;
2283         }
2284
2285         if (failrec->this_mirror > num_copies) {
2286                 pr_debug("bio_readpage_error: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2287                          num_copies, failrec->this_mirror, failed_mirror);
2288                 free_io_failure(inode, failrec, 0);
2289                 return -EIO;
2290         }
2291
2292         bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2293         if (!bio) {
2294                 free_io_failure(inode, failrec, 0);
2295                 return -EIO;
2296         }
2297         bio->bi_end_io = failed_bio->bi_end_io;
2298         bio->bi_sector = failrec->logical >> 9;
2299         bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2300         bio->bi_size = 0;
2301
2302         btrfs_failed_bio = btrfs_io_bio(failed_bio);
2303         if (btrfs_failed_bio->csum) {
2304                 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2305                 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2306
2307                 btrfs_bio = btrfs_io_bio(bio);
2308                 btrfs_bio->csum = btrfs_bio->csum_inline;
2309                 phy_offset >>= inode->i_sb->s_blocksize_bits;
2310                 phy_offset *= csum_size;
2311                 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + phy_offset,
2312                        csum_size);
2313         }
2314
2315         bio_add_page(bio, page, failrec->len, start - page_offset(page));
2316
2317         pr_debug("bio_readpage_error: submitting new read[%#x] to "
2318                  "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2319                  failrec->this_mirror, num_copies, failrec->in_validation);
2320
2321         ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2322                                          failrec->this_mirror,
2323                                          failrec->bio_flags, 0);
2324         return ret;
2325 }
2326
2327 /* lots and lots of room for performance fixes in the end_bio funcs */
2328
2329 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2330 {
2331         int uptodate = (err == 0);
2332         struct extent_io_tree *tree;
2333         int ret;
2334
2335         tree = &BTRFS_I(page->mapping->host)->io_tree;
2336
2337         if (tree->ops && tree->ops->writepage_end_io_hook) {
2338                 ret = tree->ops->writepage_end_io_hook(page, start,
2339                                                end, NULL, uptodate);
2340                 if (ret)
2341                         uptodate = 0;
2342         }
2343
2344         if (!uptodate) {
2345                 ClearPageUptodate(page);
2346                 SetPageError(page);
2347         }
2348         return 0;
2349 }
2350
2351 /*
2352  * after a writepage IO is done, we need to:
2353  * clear the uptodate bits on error
2354  * clear the writeback bits in the extent tree for this IO
2355  * end_page_writeback if the page has no more pending IO
2356  *
2357  * Scheduling is not allowed, so the extent state tree is expected
2358  * to have one and only one object corresponding to this IO.
2359  */
2360 static void end_bio_extent_writepage(struct bio *bio, int err)
2361 {
2362         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2363         struct extent_io_tree *tree;
2364         u64 start;
2365         u64 end;
2366
2367         do {
2368                 struct page *page = bvec->bv_page;
2369                 tree = &BTRFS_I(page->mapping->host)->io_tree;
2370
2371                 /* We always issue full-page reads, but if some block
2372                  * in a page fails to read, blk_update_request() will
2373                  * advance bv_offset and adjust bv_len to compensate.
2374                  * Print a warning for nonzero offsets, and an error
2375                  * if they don't add up to a full page.  */
2376                 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2377                         printk("%s page write in btrfs with offset %u and length %u\n",
2378                                bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2379                                ? KERN_ERR "partial" : KERN_INFO "incomplete",
2380                                bvec->bv_offset, bvec->bv_len);
2381
2382                 start = page_offset(page);
2383                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2384
2385                 if (--bvec >= bio->bi_io_vec)
2386                         prefetchw(&bvec->bv_page->flags);
2387
2388                 if (end_extent_writepage(page, err, start, end))
2389                         continue;
2390
2391                 end_page_writeback(page);
2392         } while (bvec >= bio->bi_io_vec);
2393
2394         bio_put(bio);
2395 }
2396
2397 /*
2398  * after a readpage IO is done, we need to:
2399  * clear the uptodate bits on error
2400  * set the uptodate bits if things worked
2401  * set the page up to date if all extents in the tree are uptodate
2402  * clear the lock bit in the extent tree
2403  * unlock the page if there are no other extents locked for it
2404  *
2405  * Scheduling is not allowed, so the extent state tree is expected
2406  * to have one and only one object corresponding to this IO.
2407  */
2408 static void end_bio_extent_readpage(struct bio *bio, int err)
2409 {
2410         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2411         struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2412         struct bio_vec *bvec = bio->bi_io_vec;
2413         struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2414         struct extent_io_tree *tree;
2415         u64 offset = 0;
2416         u64 start;
2417         u64 end;
2418         u64 len;
2419         int mirror;
2420         int ret;
2421
2422         if (err)
2423                 uptodate = 0;
2424
2425         do {
2426                 struct page *page = bvec->bv_page;
2427                 struct extent_state *cached = NULL;
2428                 struct extent_state *state;
2429                 struct inode *inode = page->mapping->host;
2430
2431                 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2432                          "mirror=%lu\n", (u64)bio->bi_sector, err,
2433                          io_bio->mirror_num);
2434                 tree = &BTRFS_I(inode)->io_tree;
2435
2436                 /* We always issue full-page reads, but if some block
2437                  * in a page fails to read, blk_update_request() will
2438                  * advance bv_offset and adjust bv_len to compensate.
2439                  * Print a warning for nonzero offsets, and an error
2440                  * if they don't add up to a full page.  */
2441                 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2442                         printk("%s page read in btrfs with offset %u and length %u\n",
2443                                bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2444                                ? KERN_ERR "partial" : KERN_INFO "incomplete",
2445                                bvec->bv_offset, bvec->bv_len);
2446
2447                 start = page_offset(page);
2448                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2449                 len = bvec->bv_len;
2450
2451                 if (++bvec <= bvec_end)
2452                         prefetchw(&bvec->bv_page->flags);
2453
2454                 spin_lock(&tree->lock);
2455                 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
2456                 if (likely(state && state->start == start)) {
2457                         /*
2458                          * take a reference on the state, unlock will drop
2459                          * the ref
2460                          */
2461                         cache_state(state, &cached);
2462                 }
2463                 spin_unlock(&tree->lock);
2464
2465                 mirror = io_bio->mirror_num;
2466                 if (likely(uptodate && tree->ops &&
2467                            tree->ops->readpage_end_io_hook)) {
2468                         ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2469                                                               page, start, end,
2470                                                               mirror);
2471                         if (ret)
2472                                 uptodate = 0;
2473                         else
2474                                 clean_io_failure(start, page);
2475                 }
2476
2477                 if (likely(uptodate))
2478                         goto readpage_ok;
2479
2480                 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2481                         ret = tree->ops->readpage_io_failed_hook(page, mirror);
2482                         if (!ret && !err &&
2483                             test_bit(BIO_UPTODATE, &bio->bi_flags))
2484                                 uptodate = 1;
2485                 } else {
2486                         /*
2487                          * The generic bio_readpage_error handles errors the
2488                          * following way: If possible, new read requests are
2489                          * created and submitted and will end up in
2490                          * end_bio_extent_readpage as well (if we're lucky, not
2491                          * in the !uptodate case). In that case it returns 0 and
2492                          * we just go on with the next page in our bio. If it
2493                          * can't handle the error it will return -EIO and we
2494                          * remain responsible for that page.
2495                          */
2496                         ret = bio_readpage_error(bio, offset, page, start, end,
2497                                                  mirror);
2498                         if (ret == 0) {
2499                                 uptodate =
2500                                         test_bit(BIO_UPTODATE, &bio->bi_flags);
2501                                 if (err)
2502                                         uptodate = 0;
2503                                 uncache_state(&cached);
2504                                 continue;
2505                         }
2506                 }
2507 readpage_ok:
2508                 if (uptodate && tree->track_uptodate) {
2509                         set_extent_uptodate(tree, start, end, &cached,
2510                                             GFP_ATOMIC);
2511                 }
2512                 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2513
2514                 if (uptodate) {
2515                         loff_t i_size = i_size_read(inode);
2516                         pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2517                         unsigned offset;
2518
2519                         /* Zero out the end if this page straddles i_size */
2520                         offset = i_size & (PAGE_CACHE_SIZE-1);
2521                         if (page->index == end_index && offset)
2522                                 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2523                         SetPageUptodate(page);
2524                 } else {
2525                         ClearPageUptodate(page);
2526                         SetPageError(page);
2527                 }
2528                 unlock_page(page);
2529                 offset += len;
2530         } while (bvec <= bvec_end);
2531
2532         if (io_bio->end_io)
2533                 io_bio->end_io(io_bio, err);
2534         bio_put(bio);
2535 }
2536
2537 /*
2538  * this allocates from the btrfs_bioset.  We're returning a bio right now
2539  * but you can call btrfs_io_bio for the appropriate container_of magic
2540  */
2541 struct bio *
2542 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2543                 gfp_t gfp_flags)
2544 {
2545         struct btrfs_io_bio *btrfs_bio;
2546         struct bio *bio;
2547
2548         bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2549
2550         if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2551                 while (!bio && (nr_vecs /= 2)) {
2552                         bio = bio_alloc_bioset(gfp_flags,
2553                                                nr_vecs, btrfs_bioset);
2554                 }
2555         }
2556
2557         if (bio) {
2558                 bio->bi_size = 0;
2559                 bio->bi_bdev = bdev;
2560                 bio->bi_sector = first_sector;
2561                 btrfs_bio = btrfs_io_bio(bio);
2562                 btrfs_bio->csum = NULL;
2563                 btrfs_bio->csum_allocated = NULL;
2564                 btrfs_bio->end_io = NULL;
2565         }
2566         return bio;
2567 }
2568
2569 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2570 {
2571         return bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2572 }
2573
2574
2575 /* this also allocates from the btrfs_bioset */
2576 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2577 {
2578         struct btrfs_io_bio *btrfs_bio;
2579         struct bio *bio;
2580
2581         bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2582         if (bio) {
2583                 btrfs_bio = btrfs_io_bio(bio);
2584                 btrfs_bio->csum = NULL;
2585                 btrfs_bio->csum_allocated = NULL;
2586                 btrfs_bio->end_io = NULL;
2587         }
2588         return bio;
2589 }
2590
2591
2592 static int __must_check submit_one_bio(int rw, struct bio *bio,
2593                                        int mirror_num, unsigned long bio_flags)
2594 {
2595         int ret = 0;
2596         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2597         struct page *page = bvec->bv_page;
2598         struct extent_io_tree *tree = bio->bi_private;
2599         u64 start;
2600
2601         start = page_offset(page) + bvec->bv_offset;
2602
2603         bio->bi_private = NULL;
2604
2605         bio_get(bio);
2606
2607         if (tree->ops && tree->ops->submit_bio_hook)
2608                 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2609                                            mirror_num, bio_flags, start);
2610         else
2611                 btrfsic_submit_bio(rw, bio);
2612
2613         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2614                 ret = -EOPNOTSUPP;
2615         bio_put(bio);
2616         return ret;
2617 }
2618
2619 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2620                      unsigned long offset, size_t size, struct bio *bio,
2621                      unsigned long bio_flags)
2622 {
2623         int ret = 0;
2624         if (tree->ops && tree->ops->merge_bio_hook)
2625                 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2626                                                 bio_flags);
2627         BUG_ON(ret < 0);
2628         return ret;
2629
2630 }
2631
2632 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2633                               struct page *page, sector_t sector,
2634                               size_t size, unsigned long offset,
2635                               struct block_device *bdev,
2636                               struct bio **bio_ret,
2637                               unsigned long max_pages,
2638                               bio_end_io_t end_io_func,
2639                               int mirror_num,
2640                               unsigned long prev_bio_flags,
2641                               unsigned long bio_flags)
2642 {
2643         int ret = 0;
2644         struct bio *bio;
2645         int nr;
2646         int contig = 0;
2647         int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2648         int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2649         size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2650
2651         if (bio_ret && *bio_ret) {
2652                 bio = *bio_ret;
2653                 if (old_compressed)
2654                         contig = bio->bi_sector == sector;
2655                 else
2656                         contig = bio_end_sector(bio) == sector;
2657
2658                 if (prev_bio_flags != bio_flags || !contig ||
2659                     merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2660                     bio_add_page(bio, page, page_size, offset) < page_size) {
2661                         ret = submit_one_bio(rw, bio, mirror_num,
2662                                              prev_bio_flags);
2663                         if (ret < 0)
2664                                 return ret;
2665                         bio = NULL;
2666                 } else {
2667                         return 0;
2668                 }
2669         }
2670         if (this_compressed)
2671                 nr = BIO_MAX_PAGES;
2672         else
2673                 nr = bio_get_nr_vecs(bdev);
2674
2675         bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2676         if (!bio)
2677                 return -ENOMEM;
2678
2679         bio_add_page(bio, page, page_size, offset);
2680         bio->bi_end_io = end_io_func;
2681         bio->bi_private = tree;
2682
2683         if (bio_ret)
2684                 *bio_ret = bio;
2685         else
2686                 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2687
2688         return ret;
2689 }
2690
2691 static void attach_extent_buffer_page(struct extent_buffer *eb,
2692                                       struct page *page)
2693 {
2694         if (!PagePrivate(page)) {
2695                 SetPagePrivate(page);
2696                 page_cache_get(page);
2697                 set_page_private(page, (unsigned long)eb);
2698         } else {
2699                 WARN_ON(page->private != (unsigned long)eb);
2700         }
2701 }
2702
2703 void set_page_extent_mapped(struct page *page)
2704 {
2705         if (!PagePrivate(page)) {
2706                 SetPagePrivate(page);
2707                 page_cache_get(page);
2708                 set_page_private(page, EXTENT_PAGE_PRIVATE);
2709         }
2710 }
2711
2712 /*
2713  * basic readpage implementation.  Locked extent state structs are inserted
2714  * into the tree that are removed when the IO is done (by the end_io
2715  * handlers)
2716  * XXX JDM: This needs looking at to ensure proper page locking
2717  */
2718 static int __extent_read_full_page(struct extent_io_tree *tree,
2719                                    struct page *page,
2720                                    get_extent_t *get_extent,
2721                                    struct bio **bio, int mirror_num,
2722                                    unsigned long *bio_flags, int rw)
2723 {
2724         struct inode *inode = page->mapping->host;
2725         u64 start = page_offset(page);
2726         u64 page_end = start + PAGE_CACHE_SIZE - 1;
2727         u64 end;
2728         u64 cur = start;
2729         u64 extent_offset;
2730         u64 last_byte = i_size_read(inode);
2731         u64 block_start;
2732         u64 cur_end;
2733         sector_t sector;
2734         struct extent_map *em;
2735         struct block_device *bdev;
2736         struct btrfs_ordered_extent *ordered;
2737         int ret;
2738         int nr = 0;
2739         size_t pg_offset = 0;
2740         size_t iosize;
2741         size_t disk_io_size;
2742         size_t blocksize = inode->i_sb->s_blocksize;
2743         unsigned long this_bio_flag = 0;
2744
2745         set_page_extent_mapped(page);
2746
2747         if (!PageUptodate(page)) {
2748                 if (cleancache_get_page(page) == 0) {
2749                         BUG_ON(blocksize != PAGE_SIZE);
2750                         goto out;
2751                 }
2752         }
2753
2754         end = page_end;
2755         while (1) {
2756                 lock_extent(tree, start, end);
2757                 ordered = btrfs_lookup_ordered_extent(inode, start);
2758                 if (!ordered)
2759                         break;
2760                 unlock_extent(tree, start, end);
2761                 btrfs_start_ordered_extent(inode, ordered, 1);
2762                 btrfs_put_ordered_extent(ordered);
2763         }
2764
2765         if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2766                 char *userpage;
2767                 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2768
2769                 if (zero_offset) {
2770                         iosize = PAGE_CACHE_SIZE - zero_offset;
2771                         userpage = kmap_atomic(page);
2772                         memset(userpage + zero_offset, 0, iosize);
2773                         flush_dcache_page(page);
2774                         kunmap_atomic(userpage);
2775                 }
2776         }
2777         while (cur <= end) {
2778                 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2779
2780                 if (cur >= last_byte) {
2781                         char *userpage;
2782                         struct extent_state *cached = NULL;
2783
2784                         iosize = PAGE_CACHE_SIZE - pg_offset;
2785                         userpage = kmap_atomic(page);
2786                         memset(userpage + pg_offset, 0, iosize);
2787                         flush_dcache_page(page);
2788                         kunmap_atomic(userpage);
2789                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2790                                             &cached, GFP_NOFS);
2791                         unlock_extent_cached(tree, cur, cur + iosize - 1,
2792                                              &cached, GFP_NOFS);
2793                         break;
2794                 }
2795                 em = get_extent(inode, page, pg_offset, cur,
2796                                 end - cur + 1, 0);
2797                 if (IS_ERR_OR_NULL(em)) {
2798                         SetPageError(page);
2799                         unlock_extent(tree, cur, end);
2800                         break;
2801                 }
2802                 extent_offset = cur - em->start;
2803                 BUG_ON(extent_map_end(em) <= cur);
2804                 BUG_ON(end < cur);
2805
2806                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2807                         this_bio_flag = EXTENT_BIO_COMPRESSED;
2808                         extent_set_compress_type(&this_bio_flag,
2809                                                  em->compress_type);
2810                 }
2811
2812                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2813                 cur_end = min(extent_map_end(em) - 1, end);
2814                 iosize = ALIGN(iosize, blocksize);
2815                 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2816                         disk_io_size = em->block_len;
2817                         sector = em->block_start >> 9;
2818                 } else {
2819                         sector = (em->block_start + extent_offset) >> 9;
2820                         disk_io_size = iosize;
2821                 }
2822                 bdev = em->bdev;
2823                 block_start = em->block_start;
2824                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2825                         block_start = EXTENT_MAP_HOLE;
2826                 free_extent_map(em);
2827                 em = NULL;
2828
2829                 /* we've found a hole, just zero and go on */
2830                 if (block_start == EXTENT_MAP_HOLE) {
2831                         char *userpage;
2832                         struct extent_state *cached = NULL;
2833
2834                         userpage = kmap_atomic(page);
2835                         memset(userpage + pg_offset, 0, iosize);
2836                         flush_dcache_page(page);
2837                         kunmap_atomic(userpage);
2838
2839                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2840                                             &cached, GFP_NOFS);
2841                         unlock_extent_cached(tree, cur, cur + iosize - 1,
2842                                              &cached, GFP_NOFS);
2843                         cur = cur + iosize;
2844                         pg_offset += iosize;
2845                         continue;
2846                 }
2847                 /* the get_extent function already copied into the page */
2848                 if (test_range_bit(tree, cur, cur_end,
2849                                    EXTENT_UPTODATE, 1, NULL)) {
2850                         check_page_uptodate(tree, page);
2851                         unlock_extent(tree, cur, cur + iosize - 1);
2852                         cur = cur + iosize;
2853                         pg_offset += iosize;
2854                         continue;
2855                 }
2856                 /* we have an inline extent but it didn't get marked up
2857                  * to date.  Error out
2858                  */
2859                 if (block_start == EXTENT_MAP_INLINE) {
2860                         SetPageError(page);
2861                         unlock_extent(tree, cur, cur + iosize - 1);
2862                         cur = cur + iosize;
2863                         pg_offset += iosize;
2864                         continue;
2865                 }
2866
2867                 pnr -= page->index;
2868                 ret = submit_extent_page(rw, tree, page,
2869                                          sector, disk_io_size, pg_offset,
2870                                          bdev, bio, pnr,
2871                                          end_bio_extent_readpage, mirror_num,
2872                                          *bio_flags,
2873                                          this_bio_flag);
2874                 if (!ret) {
2875                         nr++;
2876                         *bio_flags = this_bio_flag;
2877                 } else {
2878                         SetPageError(page);
2879                         unlock_extent(tree, cur, cur + iosize - 1);
2880                 }
2881                 cur = cur + iosize;
2882                 pg_offset += iosize;
2883         }
2884 out:
2885         if (!nr) {
2886                 if (!PageError(page))
2887                         SetPageUptodate(page);
2888                 unlock_page(page);
2889         }
2890         return 0;
2891 }
2892
2893 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2894                             get_extent_t *get_extent, int mirror_num)
2895 {
2896         struct bio *bio = NULL;
2897         unsigned long bio_flags = 0;
2898         int ret;
2899
2900         ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
2901                                       &bio_flags, READ);
2902         if (bio)
2903                 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
2904         return ret;
2905 }
2906
2907 static noinline void update_nr_written(struct page *page,
2908                                       struct writeback_control *wbc,
2909                                       unsigned long nr_written)
2910 {
2911         wbc->nr_to_write -= nr_written;
2912         if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2913             wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2914                 page->mapping->writeback_index = page->index + nr_written;
2915 }
2916
2917 /*
2918  * the writepage semantics are similar to regular writepage.  extent
2919  * records are inserted to lock ranges in the tree, and as dirty areas
2920  * are found, they are marked writeback.  Then the lock bits are removed
2921  * and the end_io handler clears the writeback ranges
2922  */
2923 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2924                               void *data)
2925 {
2926         struct inode *inode = page->mapping->host;
2927         struct extent_page_data *epd = data;
2928         struct extent_io_tree *tree = epd->tree;
2929         u64 start = page_offset(page);
2930         u64 delalloc_start;
2931         u64 page_end = start + PAGE_CACHE_SIZE - 1;
2932         u64 end;
2933         u64 cur = start;
2934         u64 extent_offset;
2935         u64 last_byte = i_size_read(inode);
2936         u64 block_start;
2937         u64 iosize;
2938         sector_t sector;
2939         struct extent_state *cached_state = NULL;
2940         struct extent_map *em;
2941         struct block_device *bdev;
2942         int ret;
2943         int nr = 0;
2944         size_t pg_offset = 0;
2945         size_t blocksize;
2946         loff_t i_size = i_size_read(inode);
2947         unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2948         u64 nr_delalloc;
2949         u64 delalloc_end;
2950         int page_started;
2951         int compressed;
2952         int write_flags;
2953         unsigned long nr_written = 0;
2954         bool fill_delalloc = true;
2955
2956         if (wbc->sync_mode == WB_SYNC_ALL)
2957                 write_flags = WRITE_SYNC;
2958         else
2959                 write_flags = WRITE;
2960
2961         trace___extent_writepage(page, inode, wbc);
2962
2963         WARN_ON(!PageLocked(page));
2964
2965         ClearPageError(page);
2966
2967         pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2968         if (page->index > end_index ||
2969            (page->index == end_index && !pg_offset)) {
2970                 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
2971                 unlock_page(page);
2972                 return 0;
2973         }
2974
2975         if (page->index == end_index) {
2976                 char *userpage;
2977
2978                 userpage = kmap_atomic(page);
2979                 memset(userpage + pg_offset, 0,
2980                        PAGE_CACHE_SIZE - pg_offset);
2981                 kunmap_atomic(userpage);
2982                 flush_dcache_page(page);
2983         }
2984         pg_offset = 0;
2985
2986         set_page_extent_mapped(page);
2987
2988         if (!tree->ops || !tree->ops->fill_delalloc)
2989                 fill_delalloc = false;
2990
2991         delalloc_start = start;
2992         delalloc_end = 0;
2993         page_started = 0;
2994         if (!epd->extent_locked && fill_delalloc) {
2995                 u64 delalloc_to_write = 0;
2996                 /*
2997                  * make sure the wbc mapping index is at least updated
2998                  * to this page.
2999                  */
3000                 update_nr_written(page, wbc, 0);
3001
3002                 while (delalloc_end < page_end) {
3003                         nr_delalloc = find_lock_delalloc_range(inode, tree,
3004                                                        page,
3005                                                        &delalloc_start,
3006                                                        &delalloc_end,
3007                                                        128 * 1024 * 1024);
3008                         if (nr_delalloc == 0) {
3009                                 delalloc_start = delalloc_end + 1;
3010                                 continue;
3011                         }
3012                         ret = tree->ops->fill_delalloc(inode, page,
3013                                                        delalloc_start,
3014                                                        delalloc_end,
3015                                                        &page_started,
3016                                                        &nr_written);
3017                         /* File system has been set read-only */
3018                         if (ret) {
3019                                 SetPageError(page);
3020                                 goto done;
3021                         }
3022                         /*
3023                          * delalloc_end is already one less than the total
3024                          * length, so we don't subtract one from
3025                          * PAGE_CACHE_SIZE
3026                          */
3027                         delalloc_to_write += (delalloc_end - delalloc_start +
3028                                               PAGE_CACHE_SIZE) >>
3029                                               PAGE_CACHE_SHIFT;
3030                         delalloc_start = delalloc_end + 1;
3031                 }
3032                 if (wbc->nr_to_write < delalloc_to_write) {
3033                         int thresh = 8192;
3034
3035                         if (delalloc_to_write < thresh * 2)
3036                                 thresh = delalloc_to_write;
3037                         wbc->nr_to_write = min_t(u64, delalloc_to_write,
3038                                                  thresh);
3039                 }
3040
3041                 /* did the fill delalloc function already unlock and start
3042                  * the IO?
3043                  */
3044                 if (page_started) {
3045                         ret = 0;
3046                         /*
3047                          * we've unlocked the page, so we can't update
3048                          * the mapping's writeback index, just update
3049                          * nr_to_write.
3050                          */
3051                         wbc->nr_to_write -= nr_written;
3052                         goto done_unlocked;
3053                 }
3054         }
3055         if (tree->ops && tree->ops->writepage_start_hook) {
3056                 ret = tree->ops->writepage_start_hook(page, start,
3057                                                       page_end);
3058                 if (ret) {
3059                         /* Fixup worker will requeue */
3060                         if (ret == -EBUSY)
3061                                 wbc->pages_skipped++;
3062                         else
3063                                 redirty_page_for_writepage(wbc, page);
3064                         update_nr_written(page, wbc, nr_written);
3065                         unlock_page(page);
3066                         ret = 0;
3067                         goto done_unlocked;
3068                 }
3069         }
3070
3071         /*
3072          * we don't want to touch the inode after unlocking the page,
3073          * so we update the mapping writeback index now
3074          */
3075         update_nr_written(page, wbc, nr_written + 1);
3076
3077         end = page_end;
3078         if (last_byte <= start) {
3079                 if (tree->ops && tree->ops->writepage_end_io_hook)
3080                         tree->ops->writepage_end_io_hook(page, start,
3081                                                          page_end, NULL, 1);
3082                 goto done;
3083         }
3084
3085         blocksize = inode->i_sb->s_blocksize;
3086
3087         while (cur <= end) {
3088                 if (cur >= last_byte) {
3089                         if (tree->ops && tree->ops->writepage_end_io_hook)
3090                                 tree->ops->writepage_end_io_hook(page, cur,
3091                                                          page_end, NULL, 1);
3092                         break;
3093                 }
3094                 em = epd->get_extent(inode, page, pg_offset, cur,
3095                                      end - cur + 1, 1);
3096                 if (IS_ERR_OR_NULL(em)) {
3097                         SetPageError(page);
3098                         break;
3099                 }
3100
3101                 extent_offset = cur - em->start;
3102                 BUG_ON(extent_map_end(em) <= cur);
3103                 BUG_ON(end < cur);
3104                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3105                 iosize = ALIGN(iosize, blocksize);
3106                 sector = (em->block_start + extent_offset) >> 9;
3107                 bdev = em->bdev;
3108                 block_start = em->block_start;
3109                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3110                 free_extent_map(em);
3111                 em = NULL;
3112
3113                 /*
3114                  * compressed and inline extents are written through other
3115                  * paths in the FS
3116                  */
3117                 if (compressed || block_start == EXTENT_MAP_HOLE ||
3118                     block_start == EXTENT_MAP_INLINE) {
3119                         /*
3120                          * end_io notification does not happen here for
3121                          * compressed extents
3122                          */
3123                         if (!compressed && tree->ops &&
3124                             tree->ops->writepage_end_io_hook)
3125                                 tree->ops->writepage_end_io_hook(page, cur,
3126                                                          cur + iosize - 1,
3127                                                          NULL, 1);
3128                         else if (compressed) {
3129                                 /* we don't want to end_page_writeback on
3130                                  * a compressed extent.  this happens
3131                                  * elsewhere
3132                                  */
3133                                 nr++;
3134                         }
3135
3136                         cur += iosize;
3137                         pg_offset += iosize;
3138                         continue;
3139                 }
3140                 /* leave this out until we have a page_mkwrite call */
3141                 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
3142                                    EXTENT_DIRTY, 0, NULL)) {
3143                         cur = cur + iosize;
3144                         pg_offset += iosize;
3145                         continue;
3146                 }
3147
3148                 if (tree->ops && tree->ops->writepage_io_hook) {
3149                         ret = tree->ops->writepage_io_hook(page, cur,
3150                                                 cur + iosize - 1);
3151                 } else {
3152                         ret = 0;
3153                 }
3154                 if (ret) {
3155                         SetPageError(page);
3156                 } else {
3157                         unsigned long max_nr = end_index + 1;
3158
3159                         set_range_writeback(tree, cur, cur + iosize - 1);
3160                         if (!PageWriteback(page)) {
3161                                 printk(KERN_ERR "btrfs warning page %lu not "
3162                                        "writeback, cur %llu end %llu\n",
3163                                        page->index, (unsigned long long)cur,
3164                                        (unsigned long long)end);
3165                         }
3166
3167                         ret = submit_extent_page(write_flags, tree, page,
3168                                                  sector, iosize, pg_offset,
3169                                                  bdev, &epd->bio, max_nr,
3170                                                  end_bio_extent_writepage,
3171                                                  0, 0, 0);
3172                         if (ret)
3173                                 SetPageError(page);
3174                 }
3175                 cur = cur + iosize;
3176                 pg_offset += iosize;
3177                 nr++;
3178         }
3179 done:
3180         if (nr == 0) {
3181                 /* make sure the mapping tag for page dirty gets cleared */
3182                 set_page_writeback(page);
3183                 end_page_writeback(page);
3184         }
3185         unlock_page(page);
3186
3187 done_unlocked:
3188
3189         /* drop our reference on any cached states */
3190         free_extent_state(cached_state);
3191         return 0;
3192 }
3193
3194 static int eb_wait(void *word)
3195 {
3196         io_schedule();
3197         return 0;
3198 }
3199
3200 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3201 {
3202         wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3203                     TASK_UNINTERRUPTIBLE);
3204 }
3205
3206 static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3207                                      struct btrfs_fs_info *fs_info,
3208                                      struct extent_page_data *epd)
3209 {
3210         unsigned long i, num_pages;
3211         int flush = 0;
3212         int ret = 0;
3213
3214         if (!btrfs_try_tree_write_lock(eb)) {
3215                 flush = 1;
3216                 flush_write_bio(epd);
3217                 btrfs_tree_lock(eb);
3218         }
3219
3220         if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3221                 btrfs_tree_unlock(eb);
3222                 if (!epd->sync_io)
3223                         return 0;
3224                 if (!flush) {
3225                         flush_write_bio(epd);
3226                         flush = 1;
3227                 }
3228                 while (1) {
3229                         wait_on_extent_buffer_writeback(eb);
3230                         btrfs_tree_lock(eb);
3231                         if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3232                                 break;
3233                         btrfs_tree_unlock(eb);
3234                 }
3235         }
3236
3237         /*
3238          * We need to do this to prevent races in people who check if the eb is
3239          * under IO since we can end up having no IO bits set for a short period
3240          * of time.
3241          */
3242         spin_lock(&eb->refs_lock);
3243         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3244                 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3245                 spin_unlock(&eb->refs_lock);
3246                 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3247                 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3248                                      -eb->len,
3249                                      fs_info->dirty_metadata_batch);
3250                 ret = 1;
3251         } else {
3252                 spin_unlock(&eb->refs_lock);
3253         }
3254
3255         btrfs_tree_unlock(eb);
3256
3257         if (!ret)
3258                 return ret;
3259
3260         num_pages = num_extent_pages(eb->start, eb->len);
3261         for (i = 0; i < num_pages; i++) {
3262                 struct page *p = extent_buffer_page(eb, i);
3263
3264                 if (!trylock_page(p)) {
3265                         if (!flush) {
3266                                 flush_write_bio(epd);
3267                                 flush = 1;
3268                         }
3269                         lock_page(p);
3270                 }
3271         }
3272
3273         return ret;
3274 }
3275
3276 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3277 {
3278         clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3279         smp_mb__after_clear_bit();
3280         wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3281 }
3282
3283 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3284 {
3285         int uptodate = err == 0;
3286         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3287         struct extent_buffer *eb;
3288         int done;
3289
3290         do {
3291                 struct page *page = bvec->bv_page;
3292
3293                 bvec--;
3294                 eb = (struct extent_buffer *)page->private;
3295                 BUG_ON(!eb);
3296                 done = atomic_dec_and_test(&eb->io_pages);
3297
3298                 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3299                         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3300                         ClearPageUptodate(page);
3301                         SetPageError(page);
3302                 }
3303
3304                 end_page_writeback(page);
3305
3306                 if (!done)
3307                         continue;
3308
3309                 end_extent_buffer_writeback(eb);
3310         } while (bvec >= bio->bi_io_vec);
3311
3312         bio_put(bio);
3313
3314 }
3315
3316 static int write_one_eb(struct extent_buffer *eb,
3317                         struct btrfs_fs_info *fs_info,
3318                         struct writeback_control *wbc,
3319                         struct extent_page_data *epd)
3320 {
3321         struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3322         u64 offset = eb->start;
3323         unsigned long i, num_pages;
3324         unsigned long bio_flags = 0;
3325         int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3326         int ret = 0;
3327
3328         clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3329         num_pages = num_extent_pages(eb->start, eb->len);
3330         atomic_set(&eb->io_pages, num_pages);
3331         if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3332                 bio_flags = EXTENT_BIO_TREE_LOG;
3333
3334         for (i = 0; i < num_pages; i++) {
3335                 struct page *p = extent_buffer_page(eb, i);
3336
3337                 clear_page_dirty_for_io(p);
3338                 set_page_writeback(p);
3339                 ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3340                                          PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3341                                          -1, end_bio_extent_buffer_writepage,
3342                                          0, epd->bio_flags, bio_flags);
3343                 epd->bio_flags = bio_flags;
3344                 if (ret) {
3345                         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3346                         SetPageError(p);
3347                         if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3348                                 end_extent_buffer_writeback(eb);
3349                         ret = -EIO;
3350                         break;
3351                 }
3352                 offset += PAGE_CACHE_SIZE;
3353                 update_nr_written(p, wbc, 1);
3354                 unlock_page(p);
3355         }
3356
3357         if (unlikely(ret)) {
3358                 for (; i < num_pages; i++) {
3359                         struct page *p = extent_buffer_page(eb, i);
3360                         unlock_page(p);
3361                 }
3362         }
3363
3364         return ret;
3365 }
3366
3367 int btree_write_cache_pages(struct address_space *mapping,
3368                                    struct writeback_control *wbc)
3369 {
3370         struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3371         struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3372         struct extent_buffer *eb, *prev_eb = NULL;
3373         struct extent_page_data epd = {
3374                 .bio = NULL,
3375                 .tree = tree,
3376                 .extent_locked = 0,
3377                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3378                 .bio_flags = 0,
3379         };
3380         int ret = 0;
3381         int done = 0;
3382         int nr_to_write_done = 0;
3383         struct pagevec pvec;
3384         int nr_pages;
3385         pgoff_t index;
3386         pgoff_t end;            /* Inclusive */
3387         int scanned = 0;
3388         int tag;
3389
3390         pagevec_init(&pvec, 0);
3391         if (wbc->range_cyclic) {
3392                 index = mapping->writeback_index; /* Start from prev offset */
3393                 end = -1;
3394         } else {
3395                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3396                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3397                 scanned = 1;
3398         }
3399         if (wbc->sync_mode == WB_SYNC_ALL)
3400                 tag = PAGECACHE_TAG_TOWRITE;
3401         else
3402                 tag = PAGECACHE_TAG_DIRTY;
3403 retry:
3404         if (wbc->sync_mode == WB_SYNC_ALL)
3405                 tag_pages_for_writeback(mapping, index, end);
3406         while (!done && !nr_to_write_done && (index <= end) &&
3407                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3408                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3409                 unsigned i;
3410
3411                 scanned = 1;
3412                 for (i = 0; i < nr_pages; i++) {
3413                         struct page *page = pvec.pages[i];
3414
3415                         if (!PagePrivate(page))
3416                                 continue;
3417
3418                         if (!wbc->range_cyclic && page->index > end) {
3419                                 done = 1;
3420                                 break;
3421                         }
3422
3423                         spin_lock(&mapping->private_lock);
3424                         if (!PagePrivate(page)) {
3425                                 spin_unlock(&mapping->private_lock);
3426                                 continue;
3427                         }
3428
3429                         eb = (struct extent_buffer *)page->private;
3430
3431                         /*
3432                          * Shouldn't happen and normally this would be a BUG_ON
3433                          * but no sense in crashing the users box for something
3434                          * we can survive anyway.
3435                          */
3436                         if (!eb) {
3437                                 spin_unlock(&mapping->private_lock);
3438                                 WARN_ON(1);
3439                                 continue;
3440                         }
3441
3442                         if (eb == prev_eb) {
3443                                 spin_unlock(&mapping->private_lock);
3444                                 continue;
3445                         }
3446
3447                         ret = atomic_inc_not_zero(&eb->refs);
3448                         spin_unlock(&mapping->private_lock);
3449                         if (!ret)
3450                                 continue;
3451
3452                         prev_eb = eb;
3453                         ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3454                         if (!ret) {
3455                                 free_extent_buffer(eb);
3456                                 continue;
3457                         }
3458
3459                         ret = write_one_eb(eb, fs_info, wbc, &epd);
3460                         if (ret) {
3461                                 done = 1;
3462                                 free_extent_buffer(eb);
3463                                 break;
3464                         }
3465                         free_extent_buffer(eb);
3466
3467                         /*
3468                          * the filesystem may choose to bump up nr_to_write.
3469                          * We have to make sure to honor the new nr_to_write
3470                          * at any time
3471                          */
3472                         nr_to_write_done = wbc->nr_to_write <= 0;
3473                 }
3474                 pagevec_release(&pvec);
3475                 cond_resched();
3476         }
3477         if (!scanned && !done) {
3478                 /*
3479                  * We hit the last page and there is more work to be done: wrap
3480                  * back to the start of the file
3481                  */
3482                 scanned = 1;
3483                 index = 0;
3484                 goto retry;
3485         }
3486         flush_write_bio(&epd);
3487         return ret;
3488 }
3489
3490 /**
3491  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3492  * @mapping: address space structure to write
3493  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3494  * @writepage: function called for each page
3495  * @data: data passed to writepage function
3496  *
3497  * If a page is already under I/O, write_cache_pages() skips it, even
3498  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3499  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3500  * and msync() need to guarantee that all the data which was dirty at the time
3501  * the call was made get new I/O started against them.  If wbc->sync_mode is
3502  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3503  * existing IO to complete.
3504  */
3505 static int extent_write_cache_pages(struct extent_io_tree *tree,
3506                              struct address_space *mapping,
3507                              struct writeback_control *wbc,
3508                              writepage_t writepage, void *data,
3509                              void (*flush_fn)(void *))
3510 {
3511         struct inode *inode = mapping->host;
3512         int ret = 0;
3513         int done = 0;
3514         int nr_to_write_done = 0;
3515         struct pagevec pvec;
3516         int nr_pages;
3517         pgoff_t index;
3518         pgoff_t end;            /* Inclusive */
3519         int scanned = 0;
3520         int tag;
3521
3522         /*
3523          * We have to hold onto the inode so that ordered extents can do their
3524          * work when the IO finishes.  The alternative to this is failing to add
3525          * an ordered extent if the igrab() fails there and that is a huge pain
3526          * to deal with, so instead just hold onto the inode throughout the
3527          * writepages operation.  If it fails here we are freeing up the inode
3528          * anyway and we'd rather not waste our time writing out stuff that is
3529          * going to be truncated anyway.
3530          */
3531         if (!igrab(inode))
3532                 return 0;
3533
3534         pagevec_init(&pvec, 0);
3535         if (wbc->range_cyclic) {
3536                 index = mapping->writeback_index; /* Start from prev offset */
3537                 end = -1;
3538         } else {
3539                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3540                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3541                 scanned = 1;
3542         }
3543         if (wbc->sync_mode == WB_SYNC_ALL)
3544                 tag = PAGECACHE_TAG_TOWRITE;
3545         else
3546                 tag = PAGECACHE_TAG_DIRTY;
3547 retry:
3548         if (wbc->sync_mode == WB_SYNC_ALL)
3549                 tag_pages_for_writeback(mapping, index, end);
3550         while (!done && !nr_to_write_done && (index <= end) &&
3551                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3552                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3553                 unsigned i;
3554
3555                 scanned = 1;
3556                 for (i = 0; i < nr_pages; i++) {
3557                         struct page *page = pvec.pages[i];
3558
3559                         /*
3560                          * At this point we hold neither mapping->tree_lock nor
3561                          * lock on the page itself: the page may be truncated or
3562                          * invalidated (changing page->mapping to NULL), or even
3563                          * swizzled back from swapper_space to tmpfs file
3564                          * mapping
3565                          */
3566                         if (!trylock_page(page)) {
3567                                 flush_fn(data);
3568                                 lock_page(page);
3569                         }
3570
3571                         if (unlikely(page->mapping != mapping)) {
3572                                 unlock_page(page);
3573                                 continue;
3574                         }
3575
3576                         if (!wbc->range_cyclic && page->index > end) {
3577                                 done = 1;
3578                                 unlock_page(page);
3579                                 continue;
3580                         }
3581
3582                         if (wbc->sync_mode != WB_SYNC_NONE) {
3583                                 if (PageWriteback(page))
3584                                         flush_fn(data);
3585                                 wait_on_page_writeback(page);
3586                         }
3587
3588                         if (PageWriteback(page) ||
3589                             !clear_page_dirty_for_io(page)) {
3590                                 unlock_page(page);
3591                                 continue;
3592                         }
3593
3594                         ret = (*writepage)(page, wbc, data);
3595
3596                         if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3597                                 unlock_page(page);
3598                                 ret = 0;
3599                         }
3600                         if (ret)
3601                                 done = 1;
3602
3603                         /*
3604                          * the filesystem may choose to bump up nr_to_write.
3605                          * We have to make sure to honor the new nr_to_write
3606                          * at any time
3607                          */
3608                         nr_to_write_done = wbc->nr_to_write <= 0;
3609                 }
3610                 pagevec_release(&pvec);
3611                 cond_resched();
3612         }
3613         if (!scanned && !done) {
3614                 /*
3615                  * We hit the last page and there is more work to be done: wrap
3616                  * back to the start of the file
3617                  */
3618                 scanned = 1;
3619                 index = 0;
3620                 goto retry;
3621         }
3622         btrfs_add_delayed_iput(inode);
3623         return ret;
3624 }
3625
3626 static void flush_epd_write_bio(struct extent_page_data *epd)
3627 {
3628         if (epd->bio) {
3629                 int rw = WRITE;
3630                 int ret;
3631
3632                 if (epd->sync_io)
3633                         rw = WRITE_SYNC;
3634
3635                 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
3636                 BUG_ON(ret < 0); /* -ENOMEM */
3637                 epd->bio = NULL;
3638         }
3639 }
3640
3641 static noinline void flush_write_bio(void *data)
3642 {
3643         struct extent_page_data *epd = data;
3644         flush_epd_write_bio(epd);
3645 }
3646
3647 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3648                           get_extent_t *get_extent,
3649                           struct writeback_control *wbc)
3650 {
3651         int ret;
3652         struct extent_page_data epd = {
3653                 .bio = NULL,
3654                 .tree = tree,
3655                 .get_extent = get_extent,
3656                 .extent_locked = 0,
3657                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3658                 .bio_flags = 0,
3659         };
3660
3661         ret = __extent_writepage(page, wbc, &epd);
3662
3663         flush_epd_write_bio(&epd);
3664         return ret;
3665 }
3666
3667 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3668                               u64 start, u64 end, get_extent_t *get_extent,
3669                               int mode)
3670 {
3671         int ret = 0;
3672         struct address_space *mapping = inode->i_mapping;
3673         struct page *page;
3674         unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3675                 PAGE_CACHE_SHIFT;
3676
3677         struct extent_page_data epd = {
3678                 .bio = NULL,
3679                 .tree = tree,
3680                 .get_extent = get_extent,
3681                 .extent_locked = 1,
3682                 .sync_io = mode == WB_SYNC_ALL,
3683                 .bio_flags = 0,
3684         };
3685         struct writeback_control wbc_writepages = {
3686                 .sync_mode      = mode,
3687                 .nr_to_write    = nr_pages * 2,
3688                 .range_start    = start,
3689                 .range_end      = end + 1,
3690         };
3691
3692         while (start <= end) {
3693                 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3694                 if (clear_page_dirty_for_io(page))
3695                         ret = __extent_writepage(page, &wbc_writepages, &epd);
3696                 else {
3697                         if (tree->ops && tree->ops->writepage_end_io_hook)
3698                                 tree->ops->writepage_end_io_hook(page, start,
3699                                                  start + PAGE_CACHE_SIZE - 1,
3700                                                  NULL, 1);
3701                         unlock_page(page);
3702                 }
3703                 page_cache_release(page);
3704                 start += PAGE_CACHE_SIZE;
3705         }
3706
3707         flush_epd_write_bio(&epd);
3708         return ret;
3709 }
3710
3711 int extent_writepages(struct extent_io_tree *tree,
3712                       struct address_space *mapping,
3713                       get_extent_t *get_extent,
3714                       struct writeback_control *wbc)
3715 {
3716         int ret = 0;
3717         struct extent_page_data epd = {
3718                 .bio = NULL,
3719                 .tree = tree,
3720                 .get_extent = get_extent,
3721                 .extent_locked = 0,
3722                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3723                 .bio_flags = 0,
3724         };
3725
3726         ret = extent_write_cache_pages(tree, mapping, wbc,
3727                                        __extent_writepage, &epd,
3728                                        flush_write_bio);
3729         flush_epd_write_bio(&epd);
3730         return ret;
3731 }
3732
3733 int extent_readpages(struct extent_io_tree *tree,
3734                      struct address_space *mapping,
3735                      struct list_head *pages, unsigned nr_pages,
3736                      get_extent_t get_extent)
3737 {
3738         struct bio *bio = NULL;
3739         unsigned page_idx;
3740         unsigned long bio_flags = 0;
3741         struct page *pagepool[16];
3742         struct page *page;
3743         int i = 0;
3744         int nr = 0;
3745
3746         for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3747                 page = list_entry(pages->prev, struct page, lru);
3748
3749                 prefetchw(&page->flags);
3750                 list_del(&page->lru);
3751                 if (add_to_page_cache_lru(page, mapping,
3752                                         page->index, GFP_NOFS)) {
3753                         page_cache_release(page);
3754                         continue;
3755                 }
3756
3757                 pagepool[nr++] = page;
3758                 if (nr < ARRAY_SIZE(pagepool))
3759                         continue;
3760                 for (i = 0; i < nr; i++) {
3761                         __extent_read_full_page(tree, pagepool[i], get_extent,
3762                                         &bio, 0, &bio_flags, READ);
3763                         page_cache_release(pagepool[i]);
3764                 }
3765                 nr = 0;
3766         }
3767         for (i = 0; i < nr; i++) {
3768                 __extent_read_full_page(tree, pagepool[i], get_extent,
3769                                         &bio, 0, &bio_flags, READ);
3770                 page_cache_release(pagepool[i]);
3771         }
3772
3773         BUG_ON(!list_empty(pages));
3774         if (bio)
3775                 return submit_one_bio(READ, bio, 0, bio_flags);
3776         return 0;
3777 }
3778
3779 /*
3780  * basic invalidatepage code, this waits on any locked or writeback
3781  * ranges corresponding to the page, and then deletes any extent state
3782  * records from the tree
3783  */
3784 int extent_invalidatepage(struct extent_io_tree *tree,
3785                           struct page *page, unsigned long offset)
3786 {
3787         struct extent_state *cached_state = NULL;
3788         u64 start = page_offset(page);
3789         u64 end = start + PAGE_CACHE_SIZE - 1;
3790         size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3791
3792         start += ALIGN(offset, blocksize);
3793         if (start > end)
3794                 return 0;
3795
3796         lock_extent_bits(tree, start, end, 0, &cached_state);
3797         wait_on_page_writeback(page);
3798         clear_extent_bit(tree, start, end,
3799                          EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3800                          EXTENT_DO_ACCOUNTING,
3801                          1, 1, &cached_state, GFP_NOFS);
3802         return 0;
3803 }
3804
3805 /*
3806  * a helper for releasepage, this tests for areas of the page that
3807  * are locked or under IO and drops the related state bits if it is safe
3808  * to drop the page.
3809  */
3810 static int try_release_extent_state(struct extent_map_tree *map,
3811                                     struct extent_io_tree *tree,
3812                                     struct page *page, gfp_t mask)
3813 {
3814         u64 start = page_offset(page);
3815         u64 end = start + PAGE_CACHE_SIZE - 1;
3816         int ret = 1;
3817
3818         if (test_range_bit(tree, start, end,
3819                            EXTENT_IOBITS, 0, NULL))
3820                 ret = 0;
3821         else {
3822                 if ((mask & GFP_NOFS) == GFP_NOFS)
3823                         mask = GFP_NOFS;
3824                 /*
3825                  * at this point we can safely clear everything except the
3826                  * locked bit and the nodatasum bit
3827                  */
3828                 ret = clear_extent_bit(tree, start, end,
3829                                  ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3830                                  0, 0, NULL, mask);
3831
3832                 /* if clear_extent_bit failed for enomem reasons,
3833                  * we can't allow the release to continue.
3834                  */
3835                 if (ret < 0)
3836                         ret = 0;
3837                 else
3838                         ret = 1;
3839         }
3840         return ret;
3841 }
3842
3843 /*
3844  * a helper for releasepage.  As long as there are no locked extents
3845  * in the range corresponding to the page, both state records and extent
3846  * map records are removed
3847  */
3848 int try_release_extent_mapping(struct extent_map_tree *map,
3849                                struct extent_io_tree *tree, struct page *page,
3850                                gfp_t mask)
3851 {
3852         struct extent_map *em;
3853         u64 start = page_offset(page);
3854         u64 end = start + PAGE_CACHE_SIZE - 1;
3855
3856         if ((mask & __GFP_WAIT) &&
3857             page->mapping->host->i_size > 16 * 1024 * 1024) {
3858                 u64 len;
3859                 while (start <= end) {
3860                         len = end - start + 1;
3861                         write_lock(&map->lock);
3862                         em = lookup_extent_mapping(map, start, len);
3863                         if (!em) {
3864                                 write_unlock(&map->lock);
3865                                 break;
3866                         }
3867                         if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3868                             em->start != start) {
3869                                 write_unlock(&map->lock);
3870                                 free_extent_map(em);
3871                                 break;
3872                         }
3873                         if (!test_range_bit(tree, em->start,
3874                                             extent_map_end(em) - 1,
3875                                             EXTENT_LOCKED | EXTENT_WRITEBACK,
3876                                             0, NULL)) {
3877                                 remove_extent_mapping(map, em);
3878                                 /* once for the rb tree */
3879                                 free_extent_map(em);
3880                         }
3881                         start = extent_map_end(em);
3882                         write_unlock(&map->lock);
3883
3884                         /* once for us */
3885                         free_extent_map(em);
3886                 }
3887         }
3888         return try_release_extent_state(map, tree, page, mask);
3889 }
3890
3891 /*
3892  * helper function for fiemap, which doesn't want to see any holes.
3893  * This maps until we find something past 'last'
3894  */
3895 static struct extent_map *get_extent_skip_holes(struct inode *inode,
3896                                                 u64 offset,
3897                                                 u64 last,
3898                                                 get_extent_t *get_extent)
3899 {
3900         u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3901         struct extent_map *em;
3902         u64 len;
3903
3904         if (offset >= last)
3905                 return NULL;
3906
3907         while(1) {
3908                 len = last - offset;
3909                 if (len == 0)
3910                         break;
3911                 len = ALIGN(len, sectorsize);
3912                 em = get_extent(inode, NULL, 0, offset, len, 0);
3913                 if (IS_ERR_OR_NULL(em))
3914                         return em;
3915
3916                 /* if this isn't a hole return it */
3917                 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3918                     em->block_start != EXTENT_MAP_HOLE) {
3919                         return em;
3920                 }
3921
3922                 /* this is a hole, advance to the next extent */
3923                 offset = extent_map_end(em);
3924                 free_extent_map(em);
3925                 if (offset >= last)
3926                         break;
3927         }
3928         return NULL;
3929 }
3930
3931 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3932                 __u64 start, __u64 len, get_extent_t *get_extent)
3933 {
3934         int ret = 0;
3935         u64 off = start;
3936         u64 max = start + len;
3937         u32 flags = 0;
3938         u32 found_type;
3939         u64 last;
3940         u64 last_for_get_extent = 0;
3941         u64 disko = 0;
3942         u64 isize = i_size_read(inode);
3943         struct btrfs_key found_key;
3944         struct extent_map *em = NULL;
3945         struct extent_state *cached_state = NULL;
3946         struct btrfs_path *path;
3947         struct btrfs_file_extent_item *item;
3948         int end = 0;
3949         u64 em_start = 0;
3950         u64 em_len = 0;
3951         u64 em_end = 0;
3952         unsigned long emflags;
3953
3954         if (len == 0)
3955                 return -EINVAL;
3956
3957         path = btrfs_alloc_path();
3958         if (!path)
3959                 return -ENOMEM;
3960         path->leave_spinning = 1;
3961
3962         start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3963         len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3964
3965         /*
3966          * lookup the last file extent.  We're not using i_size here
3967          * because there might be preallocation past i_size
3968          */
3969         ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
3970                                        path, btrfs_ino(inode), -1, 0);
3971         if (ret < 0) {
3972                 btrfs_free_path(path);
3973                 return ret;
3974         }
3975         WARN_ON(!ret);
3976         path->slots[0]--;
3977         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3978                               struct btrfs_file_extent_item);
3979         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3980         found_type = btrfs_key_type(&found_key);
3981
3982         /* No extents, but there might be delalloc bits */
3983         if (found_key.objectid != btrfs_ino(inode) ||
3984             found_type != BTRFS_EXTENT_DATA_KEY) {
3985                 /* have to trust i_size as the end */
3986                 last = (u64)-1;
3987                 last_for_get_extent = isize;
3988         } else {
3989                 /*
3990                  * remember the start of the last extent.  There are a
3991                  * bunch of different factors that go into the length of the
3992                  * extent, so its much less complex to remember where it started
3993                  */
3994                 last = found_key.offset;
3995                 last_for_get_extent = last + 1;
3996         }
3997         btrfs_free_path(path);
3998
3999         /*
4000          * we might have some extents allocated but more delalloc past those
4001          * extents.  so, we trust isize unless the start of the last extent is
4002          * beyond isize
4003          */
4004         if (last < isize) {
4005                 last = (u64)-1;
4006                 last_for_get_extent = isize;
4007         }
4008
4009         lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4010                          &cached_state);
4011
4012         em = get_extent_skip_holes(inode, start, last_for_get_extent,
4013                                    get_extent);
4014         if (!em)
4015                 goto out;
4016         if (IS_ERR(em)) {
4017                 ret = PTR_ERR(em);
4018                 goto out;
4019         }
4020
4021         while (!end) {
4022                 u64 offset_in_extent = 0;
4023
4024                 /* break if the extent we found is outside the range */
4025                 if (em->start >= max || extent_map_end(em) < off)
4026                         break;
4027
4028                 /*
4029                  * get_extent may return an extent that starts before our
4030                  * requested range.  We have to make sure the ranges
4031                  * we return to fiemap always move forward and don't
4032                  * overlap, so adjust the offsets here
4033                  */
4034                 em_start = max(em->start, off);
4035
4036                 /*
4037                  * record the offset from the start of the extent
4038                  * for adjusting the disk offset below.  Only do this if the
4039                  * extent isn't compressed since our in ram offset may be past
4040                  * what we have actually allocated on disk.
4041                  */
4042                 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4043                         offset_in_extent = em_start - em->start;
4044                 em_end = extent_map_end(em);
4045                 em_len = em_end - em_start;
4046                 emflags = em->flags;
4047                 disko = 0;
4048                 flags = 0;
4049
4050                 /*
4051                  * bump off for our next call to get_extent
4052                  */
4053                 off = extent_map_end(em);
4054                 if (off >= max)
4055                         end = 1;
4056
4057                 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4058                         end = 1;
4059                         flags |= FIEMAP_EXTENT_LAST;
4060                 } else if (em->block_start == EXTENT_MAP_INLINE) {
4061                         flags |= (FIEMAP_EXTENT_DATA_INLINE |
4062                                   FIEMAP_EXTENT_NOT_ALIGNED);
4063                 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4064                         flags |= (FIEMAP_EXTENT_DELALLOC |
4065                                   FIEMAP_EXTENT_UNKNOWN);
4066                 } else {
4067                         disko = em->block_start + offset_in_extent;
4068                 }
4069                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4070                         flags |= FIEMAP_EXTENT_ENCODED;
4071
4072                 free_extent_map(em);
4073                 em = NULL;
4074                 if ((em_start >= last) || em_len == (u64)-1 ||
4075                    (last == (u64)-1 && isize <= em_end)) {
4076                         flags |= FIEMAP_EXTENT_LAST;
4077                         end = 1;
4078                 }
4079
4080                 /* now scan forward to see if this is really the last extent. */
4081                 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4082                                            get_extent);
4083                 if (IS_ERR(em)) {
4084                         ret = PTR_ERR(em);
4085                         goto out;
4086                 }
4087                 if (!em) {
4088                         flags |= FIEMAP_EXTENT_LAST;
4089                         end = 1;
4090                 }
4091                 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4092                                               em_len, flags);
4093                 if (ret)
4094                         goto out_free;
4095         }
4096 out_free:
4097         free_extent_map(em);
4098 out:
4099         unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4100                              &cached_state, GFP_NOFS);
4101         return ret;
4102 }
4103
4104 static void __free_extent_buffer(struct extent_buffer *eb)
4105 {
4106         btrfs_leak_debug_del(&eb->leak_list);
4107         kmem_cache_free(extent_buffer_cache, eb);
4108 }
4109
4110 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
4111                                                    u64 start,
4112                                                    unsigned long len,
4113                                                    gfp_t mask)
4114 {
4115         struct extent_buffer *eb = NULL;
4116
4117         eb = kmem_cache_zalloc(extent_buffer_cache, mask);
4118         if (eb == NULL)
4119                 return NULL;
4120         eb->start = start;
4121         eb->len = len;
4122         eb->tree = tree;
4123         eb->bflags = 0;
4124         rwlock_init(&eb->lock);
4125         atomic_set(&eb->write_locks, 0);
4126         atomic_set(&eb->read_locks, 0);
4127         atomic_set(&eb->blocking_readers, 0);
4128         atomic_set(&eb->blocking_writers, 0);
4129         atomic_set(&eb->spinning_readers, 0);
4130         atomic_set(&eb->spinning_writers, 0);
4131         eb->lock_nested = 0;
4132         init_waitqueue_head(&eb->write_lock_wq);
4133         init_waitqueue_head(&eb->read_lock_wq);
4134
4135         btrfs_leak_debug_add(&eb->leak_list, &buffers);
4136
4137         spin_lock_init(&eb->refs_lock);
4138         atomic_set(&eb->refs, 1);
4139         atomic_set(&eb->io_pages, 0);
4140
4141         /*
4142          * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4143          */
4144         BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4145                 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4146         BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4147
4148         return eb;
4149 }
4150
4151 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4152 {
4153         unsigned long i;
4154         struct page *p;
4155         struct extent_buffer *new;
4156         unsigned long num_pages = num_extent_pages(src->start, src->len);
4157
4158         new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_ATOMIC);
4159         if (new == NULL)
4160                 return NULL;
4161
4162         for (i = 0; i < num_pages; i++) {
4163                 p = alloc_page(GFP_ATOMIC);
4164                 BUG_ON(!p);
4165                 attach_extent_buffer_page(new, p);
4166                 WARN_ON(PageDirty(p));
4167                 SetPageUptodate(p);
4168                 new->pages[i] = p;
4169         }
4170
4171         copy_extent_buffer(new, src, 0, 0, src->len);
4172         set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4173         set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4174
4175         return new;
4176 }
4177
4178 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4179 {
4180         struct extent_buffer *eb;
4181         unsigned long num_pages = num_extent_pages(0, len);
4182         unsigned long i;
4183
4184         eb = __alloc_extent_buffer(NULL, start, len, GFP_ATOMIC);
4185         if (!eb)
4186                 return NULL;
4187
4188         for (i = 0; i < num_pages; i++) {
4189                 eb->pages[i] = alloc_page(GFP_ATOMIC);
4190                 if (!eb->pages[i])
4191                         goto err;
4192         }
4193         set_extent_buffer_uptodate(eb);
4194         btrfs_set_header_nritems(eb, 0);
4195         set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4196
4197         return eb;
4198 err:
4199         for (; i > 0; i--)
4200                 __free_page(eb->pages[i - 1]);
4201         __free_extent_buffer(eb);
4202         return NULL;
4203 }
4204
4205 static int extent_buffer_under_io(struct extent_buffer *eb)
4206 {
4207         return (atomic_read(&eb->io_pages) ||
4208                 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4209                 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4210 }
4211
4212 /*
4213  * Helper for releasing extent buffer page.
4214  */
4215 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4216                                                 unsigned long start_idx)
4217 {
4218         unsigned long index;
4219         unsigned long num_pages;
4220         struct page *page;
4221         int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4222
4223         BUG_ON(extent_buffer_under_io(eb));
4224
4225         num_pages = num_extent_pages(eb->start, eb->len);
4226         index = start_idx + num_pages;
4227         if (start_idx >= index)
4228                 return;
4229
4230         do {
4231                 index--;
4232                 page = extent_buffer_page(eb, index);
4233                 if (page && mapped) {
4234                         spin_lock(&page->mapping->private_lock);
4235                         /*
4236                          * We do this since we'll remove the pages after we've
4237                          * removed the eb from the radix tree, so we could race
4238                          * and have this page now attached to the new eb.  So
4239                          * only clear page_private if it's still connected to
4240                          * this eb.
4241                          */
4242                         if (PagePrivate(page) &&
4243                             page->private == (unsigned long)eb) {
4244                                 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4245                                 BUG_ON(PageDirty(page));
4246                                 BUG_ON(PageWriteback(page));
4247                                 /*
4248                                  * We need to make sure we haven't be attached
4249                                  * to a new eb.
4250                                  */
4251                                 ClearPagePrivate(page);
4252                                 set_page_private(page, 0);
4253                                 /* One for the page private */
4254                                 page_cache_release(page);
4255                         }
4256                         spin_unlock(&page->mapping->private_lock);
4257
4258                 }
4259                 if (page) {
4260                         /* One for when we alloced the page */
4261                         page_cache_release(page);
4262                 }
4263         } while (index != start_idx);
4264 }
4265
4266 /*
4267  * Helper for releasing the extent buffer.
4268  */
4269 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4270 {
4271         btrfs_release_extent_buffer_page(eb, 0);
4272         __free_extent_buffer(eb);
4273 }
4274
4275 static void check_buffer_tree_ref(struct extent_buffer *eb)
4276 {
4277         int refs;
4278         /* the ref bit is tricky.  We have to make sure it is set
4279          * if we have the buffer dirty.   Otherwise the
4280          * code to free a buffer can end up dropping a dirty
4281          * page
4282          *
4283          * Once the ref bit is set, it won't go away while the
4284          * buffer is dirty or in writeback, and it also won't
4285          * go away while we have the reference count on the
4286          * eb bumped.
4287          *
4288          * We can't just set the ref bit without bumping the
4289          * ref on the eb because free_extent_buffer might
4290          * see the ref bit and try to clear it.  If this happens
4291          * free_extent_buffer might end up dropping our original
4292          * ref by mistake and freeing the page before we are able
4293          * to add one more ref.
4294          *
4295          * So bump the ref count first, then set the bit.  If someone
4296          * beat us to it, drop the ref we added.
4297          */
4298         refs = atomic_read(&eb->refs);
4299         if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4300                 return;
4301
4302         spin_lock(&eb->refs_lock);
4303         if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4304                 atomic_inc(&eb->refs);
4305         spin_unlock(&eb->refs_lock);
4306 }
4307
4308 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4309 {
4310         unsigned long num_pages, i;
4311
4312         check_buffer_tree_ref(eb);
4313
4314         num_pages = num_extent_pages(eb->start, eb->len);
4315         for (i = 0; i < num_pages; i++) {
4316                 struct page *p = extent_buffer_page(eb, i);
4317                 mark_page_accessed(p);
4318         }
4319 }
4320
4321 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
4322                                           u64 start, unsigned long len)
4323 {
4324         unsigned long num_pages = num_extent_pages(start, len);
4325         unsigned long i;
4326         unsigned long index = start >> PAGE_CACHE_SHIFT;
4327         struct extent_buffer *eb;
4328         struct extent_buffer *exists = NULL;
4329         struct page *p;
4330         struct address_space *mapping = tree->mapping;
4331         int uptodate = 1;
4332         int ret;
4333
4334         rcu_read_lock();
4335         eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4336         if (eb && atomic_inc_not_zero(&eb->refs)) {
4337                 rcu_read_unlock();
4338                 mark_extent_buffer_accessed(eb);
4339                 return eb;
4340         }
4341         rcu_read_unlock();
4342
4343         eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
4344         if (!eb)
4345                 return NULL;
4346
4347         for (i = 0; i < num_pages; i++, index++) {
4348                 p = find_or_create_page(mapping, index, GFP_NOFS);
4349                 if (!p)
4350                         goto free_eb;
4351
4352                 spin_lock(&mapping->private_lock);
4353                 if (PagePrivate(p)) {
4354                         /*
4355                          * We could have already allocated an eb for this page
4356                          * and attached one so lets see if we can get a ref on
4357                          * the existing eb, and if we can we know it's good and
4358                          * we can just return that one, else we know we can just
4359                          * overwrite page->private.
4360                          */
4361                         exists = (struct extent_buffer *)p->private;
4362                         if (atomic_inc_not_zero(&exists->refs)) {
4363                                 spin_unlock(&mapping->private_lock);
4364                                 unlock_page(p);
4365                                 page_cache_release(p);
4366                                 mark_extent_buffer_accessed(exists);
4367                                 goto free_eb;
4368                         }
4369
4370                         /*
4371                          * Do this so attach doesn't complain and we need to
4372                          * drop the ref the old guy had.
4373                          */
4374                         ClearPagePrivate(p);
4375                         WARN_ON(PageDirty(p));
4376                         page_cache_release(p);
4377                 }
4378                 attach_extent_buffer_page(eb, p);
4379                 spin_unlock(&mapping->private_lock);
4380                 WARN_ON(PageDirty(p));
4381                 mark_page_accessed(p);
4382                 eb->pages[i] = p;
4383                 if (!PageUptodate(p))
4384                         uptodate = 0;
4385
4386                 /*
4387                  * see below about how we avoid a nasty race with release page
4388                  * and why we unlock later
4389                  */
4390         }
4391         if (uptodate)
4392                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4393 again:
4394         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4395         if (ret)
4396                 goto free_eb;
4397
4398         spin_lock(&tree->buffer_lock);
4399         ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4400         if (ret == -EEXIST) {
4401                 exists = radix_tree_lookup(&tree->buffer,
4402                                                 start >> PAGE_CACHE_SHIFT);
4403                 if (!atomic_inc_not_zero(&exists->refs)) {
4404                         spin_unlock(&tree->buffer_lock);
4405                         radix_tree_preload_end();
4406                         exists = NULL;
4407                         goto again;
4408                 }
4409                 spin_unlock(&tree->buffer_lock);
4410                 radix_tree_preload_end();
4411                 mark_extent_buffer_accessed(exists);
4412                 goto free_eb;
4413         }
4414         /* add one reference for the tree */
4415         check_buffer_tree_ref(eb);
4416         spin_unlock(&tree->buffer_lock);
4417         radix_tree_preload_end();
4418
4419         /*
4420          * there is a race where release page may have
4421          * tried to find this extent buffer in the radix
4422          * but failed.  It will tell the VM it is safe to
4423          * reclaim the, and it will clear the page private bit.
4424          * We must make sure to set the page private bit properly
4425          * after the extent buffer is in the radix tree so
4426          * it doesn't get lost
4427          */
4428         SetPageChecked(eb->pages[0]);
4429         for (i = 1; i < num_pages; i++) {
4430                 p = extent_buffer_page(eb, i);
4431                 ClearPageChecked(p);
4432                 unlock_page(p);
4433         }
4434         unlock_page(eb->pages[0]);
4435         return eb;
4436
4437 free_eb:
4438         for (i = 0; i < num_pages; i++) {
4439                 if (eb->pages[i])
4440                         unlock_page(eb->pages[i]);
4441         }
4442
4443         WARN_ON(!atomic_dec_and_test(&eb->refs));
4444         btrfs_release_extent_buffer(eb);
4445         return exists;
4446 }
4447
4448 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
4449                                          u64 start, unsigned long len)
4450 {
4451         struct extent_buffer *eb;
4452
4453         rcu_read_lock();
4454         eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4455         if (eb && atomic_inc_not_zero(&eb->refs)) {
4456                 rcu_read_unlock();
4457                 mark_extent_buffer_accessed(eb);
4458                 return eb;
4459         }
4460         rcu_read_unlock();
4461
4462         return NULL;
4463 }
4464
4465 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4466 {
4467         struct extent_buffer *eb =
4468                         container_of(head, struct extent_buffer, rcu_head);
4469
4470         __free_extent_buffer(eb);
4471 }
4472
4473 /* Expects to have eb->eb_lock already held */
4474 static int release_extent_buffer(struct extent_buffer *eb)
4475 {
4476         WARN_ON(atomic_read(&eb->refs) == 0);
4477         if (atomic_dec_and_test(&eb->refs)) {
4478                 if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4479                         spin_unlock(&eb->refs_lock);
4480                 } else {
4481                         struct extent_io_tree *tree = eb->tree;
4482
4483                         spin_unlock(&eb->refs_lock);
4484
4485                         spin_lock(&tree->buffer_lock);
4486                         radix_tree_delete(&tree->buffer,
4487                                           eb->start >> PAGE_CACHE_SHIFT);
4488                         spin_unlock(&tree->buffer_lock);
4489                 }
4490
4491                 /* Should be safe to release our pages at this point */
4492                 btrfs_release_extent_buffer_page(eb, 0);
4493                 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4494                 return 1;
4495         }
4496         spin_unlock(&eb->refs_lock);
4497
4498         return 0;
4499 }
4500
4501 void free_extent_buffer(struct extent_buffer *eb)
4502 {
4503         int refs;
4504         int old;
4505         if (!eb)
4506                 return;
4507
4508         while (1) {
4509                 refs = atomic_read(&eb->refs);
4510                 if (refs <= 3)
4511                         break;
4512                 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4513                 if (old == refs)
4514                         return;
4515         }
4516
4517         spin_lock(&eb->refs_lock);
4518         if (atomic_read(&eb->refs) == 2 &&
4519             test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4520                 atomic_dec(&eb->refs);
4521
4522         if (atomic_read(&eb->refs) == 2 &&
4523             test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4524             !extent_buffer_under_io(eb) &&
4525             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4526                 atomic_dec(&eb->refs);
4527
4528         /*
4529          * I know this is terrible, but it's temporary until we stop tracking
4530          * the uptodate bits and such for the extent buffers.
4531          */
4532         release_extent_buffer(eb);
4533 }
4534
4535 void free_extent_buffer_stale(struct extent_buffer *eb)
4536 {
4537         if (!eb)
4538                 return;
4539
4540         spin_lock(&eb->refs_lock);
4541         set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4542
4543         if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4544             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4545                 atomic_dec(&eb->refs);
4546         release_extent_buffer(eb);
4547 }
4548
4549 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4550 {
4551         unsigned long i;
4552         unsigned long num_pages;
4553         struct page *page;
4554
4555         num_pages = num_extent_pages(eb->start, eb->len);
4556
4557         for (i = 0; i < num_pages; i++) {
4558                 page = extent_buffer_page(eb, i);
4559                 if (!PageDirty(page))
4560                         continue;
4561
4562                 lock_page(page);
4563                 WARN_ON(!PagePrivate(page));
4564
4565                 clear_page_dirty_for_io(page);
4566                 spin_lock_irq(&page->mapping->tree_lock);
4567                 if (!PageDirty(page)) {
4568                         radix_tree_tag_clear(&page->mapping->page_tree,
4569                                                 page_index(page),
4570                                                 PAGECACHE_TAG_DIRTY);
4571                 }
4572                 spin_unlock_irq(&page->mapping->tree_lock);
4573                 ClearPageError(page);
4574                 unlock_page(page);
4575         }
4576         WARN_ON(atomic_read(&eb->refs) == 0);
4577 }
4578
4579 int set_extent_buffer_dirty(struct extent_buffer *eb)
4580 {
4581         unsigned long i;
4582         unsigned long num_pages;
4583         int was_dirty = 0;
4584
4585         check_buffer_tree_ref(eb);
4586
4587         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4588
4589         num_pages = num_extent_pages(eb->start, eb->len);
4590         WARN_ON(atomic_read(&eb->refs) == 0);
4591         WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4592
4593         for (i = 0; i < num_pages; i++)
4594                 set_page_dirty(extent_buffer_page(eb, i));
4595         return was_dirty;
4596 }
4597
4598 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4599 {
4600         unsigned long i;
4601         struct page *page;
4602         unsigned long num_pages;
4603
4604         clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4605         num_pages = num_extent_pages(eb->start, eb->len);
4606         for (i = 0; i < num_pages; i++) {
4607                 page = extent_buffer_page(eb, i);
4608                 if (page)
4609                         ClearPageUptodate(page);
4610         }
4611         return 0;
4612 }
4613
4614 int set_extent_buffer_uptodate(struct extent_buffer *eb)
4615 {
4616         unsigned long i;
4617         struct page *page;
4618         unsigned long num_pages;
4619
4620         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4621         num_pages = num_extent_pages(eb->start, eb->len);
4622         for (i = 0; i < num_pages; i++) {
4623                 page = extent_buffer_page(eb, i);
4624                 SetPageUptodate(page);
4625         }
4626         return 0;
4627 }
4628
4629 int extent_buffer_uptodate(struct extent_buffer *eb)
4630 {
4631         return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4632 }
4633
4634 int read_extent_buffer_pages(struct extent_io_tree *tree,
4635                              struct extent_buffer *eb, u64 start, int wait,
4636                              get_extent_t *get_extent, int mirror_num)
4637 {
4638         unsigned long i;
4639         unsigned long start_i;
4640         struct page *page;
4641         int err;
4642         int ret = 0;
4643         int locked_pages = 0;
4644         int all_uptodate = 1;
4645         unsigned long num_pages;
4646         unsigned long num_reads = 0;
4647         struct bio *bio = NULL;
4648         unsigned long bio_flags = 0;
4649
4650         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4651                 return 0;
4652
4653         if (start) {
4654                 WARN_ON(start < eb->start);
4655                 start_i = (start >> PAGE_CACHE_SHIFT) -
4656                         (eb->start >> PAGE_CACHE_SHIFT);
4657         } else {
4658                 start_i = 0;
4659         }
4660
4661         num_pages = num_extent_pages(eb->start, eb->len);
4662         for (i = start_i; i < num_pages; i++) {
4663                 page = extent_buffer_page(eb, i);
4664                 if (wait == WAIT_NONE) {
4665                         if (!trylock_page(page))
4666                                 goto unlock_exit;
4667                 } else {
4668                         lock_page(page);
4669                 }
4670                 locked_pages++;
4671                 if (!PageUptodate(page)) {
4672                         num_reads++;
4673                         all_uptodate = 0;
4674                 }
4675         }
4676         if (all_uptodate) {
4677                 if (start_i == 0)
4678                         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4679                 goto unlock_exit;
4680         }
4681
4682         clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4683         eb->read_mirror = 0;
4684         atomic_set(&eb->io_pages, num_reads);
4685         for (i = start_i; i < num_pages; i++) {
4686                 page = extent_buffer_page(eb, i);
4687                 if (!PageUptodate(page)) {
4688                         ClearPageError(page);
4689                         err = __extent_read_full_page(tree, page,
4690                                                       get_extent, &bio,
4691                                                       mirror_num, &bio_flags,
4692                                                       READ | REQ_META);
4693                         if (err)
4694                                 ret = err;
4695                 } else {
4696                         unlock_page(page);
4697                 }
4698         }
4699
4700         if (bio) {
4701                 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
4702                                      bio_flags);
4703                 if (err)
4704                         return err;
4705         }
4706
4707         if (ret || wait != WAIT_COMPLETE)
4708                 return ret;
4709
4710         for (i = start_i; i < num_pages; i++) {
4711                 page = extent_buffer_page(eb, i);
4712                 wait_on_page_locked(page);
4713                 if (!PageUptodate(page))
4714                         ret = -EIO;
4715         }
4716
4717         return ret;
4718
4719 unlock_exit:
4720         i = start_i;
4721         while (locked_pages > 0) {
4722                 page = extent_buffer_page(eb, i);
4723                 i++;
4724                 unlock_page(page);
4725                 locked_pages--;
4726         }
4727         return ret;
4728 }
4729
4730 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4731                         unsigned long start,
4732                         unsigned long len)
4733 {
4734         size_t cur;
4735         size_t offset;
4736         struct page *page;
4737         char *kaddr;
4738         char *dst = (char *)dstv;
4739         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4740         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4741
4742         WARN_ON(start > eb->len);
4743         WARN_ON(start + len > eb->start + eb->len);
4744
4745         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4746
4747         while (len > 0) {
4748                 page = extent_buffer_page(eb, i);
4749
4750                 cur = min(len, (PAGE_CACHE_SIZE - offset));
4751                 kaddr = page_address(page);
4752                 memcpy(dst, kaddr + offset, cur);
4753
4754                 dst += cur;
4755                 len -= cur;
4756                 offset = 0;
4757                 i++;
4758         }
4759 }
4760
4761 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4762                                unsigned long min_len, char **map,
4763                                unsigned long *map_start,
4764                                unsigned long *map_len)
4765 {
4766         size_t offset = start & (PAGE_CACHE_SIZE - 1);
4767         char *kaddr;
4768         struct page *p;
4769         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4770         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4771         unsigned long end_i = (start_offset + start + min_len - 1) >>
4772                 PAGE_CACHE_SHIFT;
4773
4774         if (i != end_i)
4775                 return -EINVAL;
4776
4777         if (i == 0) {
4778                 offset = start_offset;
4779                 *map_start = 0;
4780         } else {
4781                 offset = 0;
4782                 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4783         }
4784
4785         if (start + min_len > eb->len) {
4786                 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4787                        "wanted %lu %lu\n", (unsigned long long)eb->start,
4788                        eb->len, start, min_len);
4789                 return -EINVAL;
4790         }
4791
4792         p = extent_buffer_page(eb, i);
4793         kaddr = page_address(p);
4794         *map = kaddr + offset;
4795         *map_len = PAGE_CACHE_SIZE - offset;
4796         return 0;
4797 }
4798
4799 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4800                           unsigned long start,
4801                           unsigned long len)
4802 {
4803         size_t cur;
4804         size_t offset;
4805         struct page *page;
4806         char *kaddr;
4807         char *ptr = (char *)ptrv;
4808         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4809         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4810         int ret = 0;
4811
4812         WARN_ON(start > eb->len);
4813         WARN_ON(start + len > eb->start + eb->len);
4814
4815         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4816
4817         while (len > 0) {
4818                 page = extent_buffer_page(eb, i);
4819
4820                 cur = min(len, (PAGE_CACHE_SIZE - offset));
4821
4822                 kaddr = page_address(page);
4823                 ret = memcmp(ptr, kaddr + offset, cur);
4824                 if (ret)
4825                         break;
4826
4827                 ptr += cur;
4828                 len -= cur;
4829                 offset = 0;
4830                 i++;
4831         }
4832         return ret;
4833 }
4834
4835 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4836                          unsigned long start, unsigned long len)
4837 {
4838         size_t cur;
4839         size_t offset;
4840         struct page *page;
4841         char *kaddr;
4842         char *src = (char *)srcv;
4843         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4844         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4845
4846         WARN_ON(start > eb->len);
4847         WARN_ON(start + len > eb->start + eb->len);
4848
4849         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4850
4851         while (len > 0) {
4852                 page = extent_buffer_page(eb, i);
4853                 WARN_ON(!PageUptodate(page));
4854
4855                 cur = min(len, PAGE_CACHE_SIZE - offset);
4856                 kaddr = page_address(page);
4857                 memcpy(kaddr + offset, src, cur);
4858
4859                 src += cur;
4860                 len -= cur;
4861                 offset = 0;
4862                 i++;
4863         }
4864 }
4865
4866 void memset_extent_buffer(struct extent_buffer *eb, char c,
4867                           unsigned long start, unsigned long len)
4868 {
4869         size_t cur;
4870         size_t offset;
4871         struct page *page;
4872         char *kaddr;
4873         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4874         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4875
4876         WARN_ON(start > eb->len);
4877         WARN_ON(start + len > eb->start + eb->len);
4878
4879         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4880
4881         while (len > 0) {
4882                 page = extent_buffer_page(eb, i);
4883                 WARN_ON(!PageUptodate(page));
4884
4885                 cur = min(len, PAGE_CACHE_SIZE - offset);
4886                 kaddr = page_address(page);
4887                 memset(kaddr + offset, c, cur);
4888
4889                 len -= cur;
4890                 offset = 0;
4891                 i++;
4892         }
4893 }
4894
4895 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4896                         unsigned long dst_offset, unsigned long src_offset,
4897                         unsigned long len)
4898 {
4899         u64 dst_len = dst->len;
4900         size_t cur;
4901         size_t offset;
4902         struct page *page;
4903         char *kaddr;
4904         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4905         unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4906
4907         WARN_ON(src->len != dst_len);
4908
4909         offset = (start_offset + dst_offset) &
4910                 ((unsigned long)PAGE_CACHE_SIZE - 1);
4911
4912         while (len > 0) {
4913                 page = extent_buffer_page(dst, i);
4914                 WARN_ON(!PageUptodate(page));
4915
4916                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4917
4918                 kaddr = page_address(page);
4919                 read_extent_buffer(src, kaddr + offset, src_offset, cur);
4920
4921                 src_offset += cur;
4922                 len -= cur;
4923                 offset = 0;
4924                 i++;
4925         }
4926 }
4927
4928 static void move_pages(struct page *dst_page, struct page *src_page,
4929                        unsigned long dst_off, unsigned long src_off,
4930                        unsigned long len)
4931 {
4932         char *dst_kaddr = page_address(dst_page);
4933         if (dst_page == src_page) {
4934                 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4935         } else {
4936                 char *src_kaddr = page_address(src_page);
4937                 char *p = dst_kaddr + dst_off + len;
4938                 char *s = src_kaddr + src_off + len;
4939
4940                 while (len--)
4941                         *--p = *--s;
4942         }
4943 }
4944
4945 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4946 {
4947         unsigned long distance = (src > dst) ? src - dst : dst - src;
4948         return distance < len;
4949 }
4950
4951 static void copy_pages(struct page *dst_page, struct page *src_page,
4952                        unsigned long dst_off, unsigned long src_off,
4953                        unsigned long len)
4954 {
4955         char *dst_kaddr = page_address(dst_page);
4956         char *src_kaddr;
4957         int must_memmove = 0;
4958
4959         if (dst_page != src_page) {
4960                 src_kaddr = page_address(src_page);
4961         } else {
4962                 src_kaddr = dst_kaddr;
4963                 if (areas_overlap(src_off, dst_off, len))
4964                         must_memmove = 1;
4965         }
4966
4967         if (must_memmove)
4968                 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
4969         else
4970                 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
4971 }
4972
4973 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4974                            unsigned long src_offset, unsigned long len)
4975 {
4976         size_t cur;
4977         size_t dst_off_in_page;
4978         size_t src_off_in_page;
4979         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4980         unsigned long dst_i;
4981         unsigned long src_i;
4982
4983         if (src_offset + len > dst->len) {
4984                 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4985                        "len %lu dst len %lu\n", src_offset, len, dst->len);
4986                 BUG_ON(1);
4987         }
4988         if (dst_offset + len > dst->len) {
4989                 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4990                        "len %lu dst len %lu\n", dst_offset, len, dst->len);
4991                 BUG_ON(1);
4992         }
4993
4994         while (len > 0) {
4995                 dst_off_in_page = (start_offset + dst_offset) &
4996                         ((unsigned long)PAGE_CACHE_SIZE - 1);
4997                 src_off_in_page = (start_offset + src_offset) &
4998                         ((unsigned long)PAGE_CACHE_SIZE - 1);
4999
5000                 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5001                 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5002
5003                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5004                                                src_off_in_page));
5005                 cur = min_t(unsigned long, cur,
5006                         (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5007
5008                 copy_pages(extent_buffer_page(dst, dst_i),
5009                            extent_buffer_page(dst, src_i),
5010                            dst_off_in_page, src_off_in_page, cur);
5011
5012                 src_offset += cur;
5013                 dst_offset += cur;
5014                 len -= cur;
5015         }
5016 }
5017
5018 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5019                            unsigned long src_offset, unsigned long len)
5020 {
5021         size_t cur;
5022         size_t dst_off_in_page;
5023         size_t src_off_in_page;
5024         unsigned long dst_end = dst_offset + len - 1;
5025         unsigned long src_end = src_offset + len - 1;
5026         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5027         unsigned long dst_i;
5028         unsigned long src_i;
5029
5030         if (src_offset + len > dst->len) {
5031                 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5032                        "len %lu len %lu\n", src_offset, len, dst->len);
5033                 BUG_ON(1);
5034         }
5035         if (dst_offset + len > dst->len) {
5036                 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5037                        "len %lu len %lu\n", dst_offset, len, dst->len);
5038                 BUG_ON(1);
5039         }
5040         if (dst_offset < src_offset) {
5041                 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5042                 return;
5043         }
5044         while (len > 0) {
5045                 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5046                 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5047
5048                 dst_off_in_page = (start_offset + dst_end) &
5049                         ((unsigned long)PAGE_CACHE_SIZE - 1);
5050                 src_off_in_page = (start_offset + src_end) &
5051                         ((unsigned long)PAGE_CACHE_SIZE - 1);
5052
5053                 cur = min_t(unsigned long, len, src_off_in_page + 1);
5054                 cur = min(cur, dst_off_in_page + 1);
5055                 move_pages(extent_buffer_page(dst, dst_i),
5056                            extent_buffer_page(dst, src_i),
5057                            dst_off_in_page - cur + 1,
5058                            src_off_in_page - cur + 1, cur);
5059
5060                 dst_end -= cur;
5061                 src_end -= cur;
5062                 len -= cur;
5063         }
5064 }
5065
5066 int try_release_extent_buffer(struct page *page)
5067 {
5068         struct extent_buffer *eb;
5069
5070         /*
5071          * We need to make sure noboody is attaching this page to an eb right
5072          * now.
5073          */
5074         spin_lock(&page->mapping->private_lock);
5075         if (!PagePrivate(page)) {
5076                 spin_unlock(&page->mapping->private_lock);
5077                 return 1;
5078         }
5079
5080         eb = (struct extent_buffer *)page->private;
5081         BUG_ON(!eb);
5082
5083         /*
5084          * This is a little awful but should be ok, we need to make sure that
5085          * the eb doesn't disappear out from under us while we're looking at
5086          * this page.
5087          */
5088         spin_lock(&eb->refs_lock);
5089         if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5090                 spin_unlock(&eb->refs_lock);
5091                 spin_unlock(&page->mapping->private_lock);
5092                 return 0;
5093         }
5094         spin_unlock(&page->mapping->private_lock);
5095
5096         /*
5097          * If tree ref isn't set then we know the ref on this eb is a real ref,
5098          * so just return, this page will likely be freed soon anyway.
5099          */
5100         if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5101                 spin_unlock(&eb->refs_lock);
5102                 return 0;
5103         }
5104
5105         return release_extent_buffer(eb);
5106 }