Btrfs: check UUID tree during mount if required
[linux-2.6-block.git] / fs / btrfs / extent_io.c
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "compat.h"
17 #include "ctree.h"
18 #include "btrfs_inode.h"
19 #include "volumes.h"
20 #include "check-integrity.h"
21 #include "locking.h"
22 #include "rcu-string.h"
23
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27
28 #ifdef CONFIG_BTRFS_DEBUG
29 static LIST_HEAD(buffers);
30 static LIST_HEAD(states);
31
32 static DEFINE_SPINLOCK(leak_lock);
33
34 static inline
35 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
36 {
37         unsigned long flags;
38
39         spin_lock_irqsave(&leak_lock, flags);
40         list_add(new, head);
41         spin_unlock_irqrestore(&leak_lock, flags);
42 }
43
44 static inline
45 void btrfs_leak_debug_del(struct list_head *entry)
46 {
47         unsigned long flags;
48
49         spin_lock_irqsave(&leak_lock, flags);
50         list_del(entry);
51         spin_unlock_irqrestore(&leak_lock, flags);
52 }
53
54 static inline
55 void btrfs_leak_debug_check(void)
56 {
57         struct extent_state *state;
58         struct extent_buffer *eb;
59
60         while (!list_empty(&states)) {
61                 state = list_entry(states.next, struct extent_state, leak_list);
62                 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
63                        "state %lu in tree %p refs %d\n",
64                        (unsigned long long)state->start,
65                        (unsigned long long)state->end,
66                        state->state, state->tree, atomic_read(&state->refs));
67                 list_del(&state->leak_list);
68                 kmem_cache_free(extent_state_cache, state);
69         }
70
71         while (!list_empty(&buffers)) {
72                 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
73                 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
74                        "refs %d\n", (unsigned long long)eb->start,
75                        eb->len, atomic_read(&eb->refs));
76                 list_del(&eb->leak_list);
77                 kmem_cache_free(extent_buffer_cache, eb);
78         }
79 }
80
81 #define btrfs_debug_check_extent_io_range(inode, start, end)            \
82         __btrfs_debug_check_extent_io_range(__func__, (inode), (start), (end))
83 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
84                 struct inode *inode, u64 start, u64 end)
85 {
86         u64 isize = i_size_read(inode);
87
88         if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
89                 printk_ratelimited(KERN_DEBUG
90                     "btrfs: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
91                                 caller,
92                                 (unsigned long long)btrfs_ino(inode),
93                                 (unsigned long long)isize,
94                                 (unsigned long long)start,
95                                 (unsigned long long)end);
96         }
97 }
98 #else
99 #define btrfs_leak_debug_add(new, head) do {} while (0)
100 #define btrfs_leak_debug_del(entry)     do {} while (0)
101 #define btrfs_leak_debug_check()        do {} while (0)
102 #define btrfs_debug_check_extent_io_range(c, s, e)      do {} while (0)
103 #endif
104
105 #define BUFFER_LRU_MAX 64
106
107 struct tree_entry {
108         u64 start;
109         u64 end;
110         struct rb_node rb_node;
111 };
112
113 struct extent_page_data {
114         struct bio *bio;
115         struct extent_io_tree *tree;
116         get_extent_t *get_extent;
117         unsigned long bio_flags;
118
119         /* tells writepage not to lock the state bits for this range
120          * it still does the unlocking
121          */
122         unsigned int extent_locked:1;
123
124         /* tells the submit_bio code to use a WRITE_SYNC */
125         unsigned int sync_io:1;
126 };
127
128 static noinline void flush_write_bio(void *data);
129 static inline struct btrfs_fs_info *
130 tree_fs_info(struct extent_io_tree *tree)
131 {
132         return btrfs_sb(tree->mapping->host->i_sb);
133 }
134
135 int __init extent_io_init(void)
136 {
137         extent_state_cache = kmem_cache_create("btrfs_extent_state",
138                         sizeof(struct extent_state), 0,
139                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
140         if (!extent_state_cache)
141                 return -ENOMEM;
142
143         extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
144                         sizeof(struct extent_buffer), 0,
145                         SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
146         if (!extent_buffer_cache)
147                 goto free_state_cache;
148
149         btrfs_bioset = bioset_create(BIO_POOL_SIZE,
150                                      offsetof(struct btrfs_io_bio, bio));
151         if (!btrfs_bioset)
152                 goto free_buffer_cache;
153         return 0;
154
155 free_buffer_cache:
156         kmem_cache_destroy(extent_buffer_cache);
157         extent_buffer_cache = NULL;
158
159 free_state_cache:
160         kmem_cache_destroy(extent_state_cache);
161         extent_state_cache = NULL;
162         return -ENOMEM;
163 }
164
165 void extent_io_exit(void)
166 {
167         btrfs_leak_debug_check();
168
169         /*
170          * Make sure all delayed rcu free are flushed before we
171          * destroy caches.
172          */
173         rcu_barrier();
174         if (extent_state_cache)
175                 kmem_cache_destroy(extent_state_cache);
176         if (extent_buffer_cache)
177                 kmem_cache_destroy(extent_buffer_cache);
178         if (btrfs_bioset)
179                 bioset_free(btrfs_bioset);
180 }
181
182 void extent_io_tree_init(struct extent_io_tree *tree,
183                          struct address_space *mapping)
184 {
185         tree->state = RB_ROOT;
186         INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
187         tree->ops = NULL;
188         tree->dirty_bytes = 0;
189         spin_lock_init(&tree->lock);
190         spin_lock_init(&tree->buffer_lock);
191         tree->mapping = mapping;
192 }
193
194 static struct extent_state *alloc_extent_state(gfp_t mask)
195 {
196         struct extent_state *state;
197
198         state = kmem_cache_alloc(extent_state_cache, mask);
199         if (!state)
200                 return state;
201         state->state = 0;
202         state->private = 0;
203         state->tree = NULL;
204         btrfs_leak_debug_add(&state->leak_list, &states);
205         atomic_set(&state->refs, 1);
206         init_waitqueue_head(&state->wq);
207         trace_alloc_extent_state(state, mask, _RET_IP_);
208         return state;
209 }
210
211 void free_extent_state(struct extent_state *state)
212 {
213         if (!state)
214                 return;
215         if (atomic_dec_and_test(&state->refs)) {
216                 WARN_ON(state->tree);
217                 btrfs_leak_debug_del(&state->leak_list);
218                 trace_free_extent_state(state, _RET_IP_);
219                 kmem_cache_free(extent_state_cache, state);
220         }
221 }
222
223 static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
224                                    struct rb_node *node)
225 {
226         struct rb_node **p = &root->rb_node;
227         struct rb_node *parent = NULL;
228         struct tree_entry *entry;
229
230         while (*p) {
231                 parent = *p;
232                 entry = rb_entry(parent, struct tree_entry, rb_node);
233
234                 if (offset < entry->start)
235                         p = &(*p)->rb_left;
236                 else if (offset > entry->end)
237                         p = &(*p)->rb_right;
238                 else
239                         return parent;
240         }
241
242         rb_link_node(node, parent, p);
243         rb_insert_color(node, root);
244         return NULL;
245 }
246
247 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
248                                      struct rb_node **prev_ret,
249                                      struct rb_node **next_ret)
250 {
251         struct rb_root *root = &tree->state;
252         struct rb_node *n = root->rb_node;
253         struct rb_node *prev = NULL;
254         struct rb_node *orig_prev = NULL;
255         struct tree_entry *entry;
256         struct tree_entry *prev_entry = NULL;
257
258         while (n) {
259                 entry = rb_entry(n, struct tree_entry, rb_node);
260                 prev = n;
261                 prev_entry = entry;
262
263                 if (offset < entry->start)
264                         n = n->rb_left;
265                 else if (offset > entry->end)
266                         n = n->rb_right;
267                 else
268                         return n;
269         }
270
271         if (prev_ret) {
272                 orig_prev = prev;
273                 while (prev && offset > prev_entry->end) {
274                         prev = rb_next(prev);
275                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
276                 }
277                 *prev_ret = prev;
278                 prev = orig_prev;
279         }
280
281         if (next_ret) {
282                 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
283                 while (prev && offset < prev_entry->start) {
284                         prev = rb_prev(prev);
285                         prev_entry = rb_entry(prev, struct tree_entry, rb_node);
286                 }
287                 *next_ret = prev;
288         }
289         return NULL;
290 }
291
292 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
293                                           u64 offset)
294 {
295         struct rb_node *prev = NULL;
296         struct rb_node *ret;
297
298         ret = __etree_search(tree, offset, &prev, NULL);
299         if (!ret)
300                 return prev;
301         return ret;
302 }
303
304 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
305                      struct extent_state *other)
306 {
307         if (tree->ops && tree->ops->merge_extent_hook)
308                 tree->ops->merge_extent_hook(tree->mapping->host, new,
309                                              other);
310 }
311
312 /*
313  * utility function to look for merge candidates inside a given range.
314  * Any extents with matching state are merged together into a single
315  * extent in the tree.  Extents with EXTENT_IO in their state field
316  * are not merged because the end_io handlers need to be able to do
317  * operations on them without sleeping (or doing allocations/splits).
318  *
319  * This should be called with the tree lock held.
320  */
321 static void merge_state(struct extent_io_tree *tree,
322                         struct extent_state *state)
323 {
324         struct extent_state *other;
325         struct rb_node *other_node;
326
327         if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
328                 return;
329
330         other_node = rb_prev(&state->rb_node);
331         if (other_node) {
332                 other = rb_entry(other_node, struct extent_state, rb_node);
333                 if (other->end == state->start - 1 &&
334                     other->state == state->state) {
335                         merge_cb(tree, state, other);
336                         state->start = other->start;
337                         other->tree = NULL;
338                         rb_erase(&other->rb_node, &tree->state);
339                         free_extent_state(other);
340                 }
341         }
342         other_node = rb_next(&state->rb_node);
343         if (other_node) {
344                 other = rb_entry(other_node, struct extent_state, rb_node);
345                 if (other->start == state->end + 1 &&
346                     other->state == state->state) {
347                         merge_cb(tree, state, other);
348                         state->end = other->end;
349                         other->tree = NULL;
350                         rb_erase(&other->rb_node, &tree->state);
351                         free_extent_state(other);
352                 }
353         }
354 }
355
356 static void set_state_cb(struct extent_io_tree *tree,
357                          struct extent_state *state, unsigned long *bits)
358 {
359         if (tree->ops && tree->ops->set_bit_hook)
360                 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
361 }
362
363 static void clear_state_cb(struct extent_io_tree *tree,
364                            struct extent_state *state, unsigned long *bits)
365 {
366         if (tree->ops && tree->ops->clear_bit_hook)
367                 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
368 }
369
370 static void set_state_bits(struct extent_io_tree *tree,
371                            struct extent_state *state, unsigned long *bits);
372
373 /*
374  * insert an extent_state struct into the tree.  'bits' are set on the
375  * struct before it is inserted.
376  *
377  * This may return -EEXIST if the extent is already there, in which case the
378  * state struct is freed.
379  *
380  * The tree lock is not taken internally.  This is a utility function and
381  * probably isn't what you want to call (see set/clear_extent_bit).
382  */
383 static int insert_state(struct extent_io_tree *tree,
384                         struct extent_state *state, u64 start, u64 end,
385                         unsigned long *bits)
386 {
387         struct rb_node *node;
388
389         if (end < start)
390                 WARN(1, KERN_ERR "btrfs end < start %llu %llu\n",
391                        (unsigned long long)end,
392                        (unsigned long long)start);
393         state->start = start;
394         state->end = end;
395
396         set_state_bits(tree, state, bits);
397
398         node = tree_insert(&tree->state, end, &state->rb_node);
399         if (node) {
400                 struct extent_state *found;
401                 found = rb_entry(node, struct extent_state, rb_node);
402                 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
403                        "%llu %llu\n", (unsigned long long)found->start,
404                        (unsigned long long)found->end,
405                        (unsigned long long)start, (unsigned long long)end);
406                 return -EEXIST;
407         }
408         state->tree = tree;
409         merge_state(tree, state);
410         return 0;
411 }
412
413 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
414                      u64 split)
415 {
416         if (tree->ops && tree->ops->split_extent_hook)
417                 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
418 }
419
420 /*
421  * split a given extent state struct in two, inserting the preallocated
422  * struct 'prealloc' as the newly created second half.  'split' indicates an
423  * offset inside 'orig' where it should be split.
424  *
425  * Before calling,
426  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
427  * are two extent state structs in the tree:
428  * prealloc: [orig->start, split - 1]
429  * orig: [ split, orig->end ]
430  *
431  * The tree locks are not taken by this function. They need to be held
432  * by the caller.
433  */
434 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
435                        struct extent_state *prealloc, u64 split)
436 {
437         struct rb_node *node;
438
439         split_cb(tree, orig, split);
440
441         prealloc->start = orig->start;
442         prealloc->end = split - 1;
443         prealloc->state = orig->state;
444         orig->start = split;
445
446         node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
447         if (node) {
448                 free_extent_state(prealloc);
449                 return -EEXIST;
450         }
451         prealloc->tree = tree;
452         return 0;
453 }
454
455 static struct extent_state *next_state(struct extent_state *state)
456 {
457         struct rb_node *next = rb_next(&state->rb_node);
458         if (next)
459                 return rb_entry(next, struct extent_state, rb_node);
460         else
461                 return NULL;
462 }
463
464 /*
465  * utility function to clear some bits in an extent state struct.
466  * it will optionally wake up any one waiting on this state (wake == 1).
467  *
468  * If no bits are set on the state struct after clearing things, the
469  * struct is freed and removed from the tree
470  */
471 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
472                                             struct extent_state *state,
473                                             unsigned long *bits, int wake)
474 {
475         struct extent_state *next;
476         unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
477
478         if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
479                 u64 range = state->end - state->start + 1;
480                 WARN_ON(range > tree->dirty_bytes);
481                 tree->dirty_bytes -= range;
482         }
483         clear_state_cb(tree, state, bits);
484         state->state &= ~bits_to_clear;
485         if (wake)
486                 wake_up(&state->wq);
487         if (state->state == 0) {
488                 next = next_state(state);
489                 if (state->tree) {
490                         rb_erase(&state->rb_node, &tree->state);
491                         state->tree = NULL;
492                         free_extent_state(state);
493                 } else {
494                         WARN_ON(1);
495                 }
496         } else {
497                 merge_state(tree, state);
498                 next = next_state(state);
499         }
500         return next;
501 }
502
503 static struct extent_state *
504 alloc_extent_state_atomic(struct extent_state *prealloc)
505 {
506         if (!prealloc)
507                 prealloc = alloc_extent_state(GFP_ATOMIC);
508
509         return prealloc;
510 }
511
512 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
513 {
514         btrfs_panic(tree_fs_info(tree), err, "Locking error: "
515                     "Extent tree was modified by another "
516                     "thread while locked.");
517 }
518
519 /*
520  * clear some bits on a range in the tree.  This may require splitting
521  * or inserting elements in the tree, so the gfp mask is used to
522  * indicate which allocations or sleeping are allowed.
523  *
524  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
525  * the given range from the tree regardless of state (ie for truncate).
526  *
527  * the range [start, end] is inclusive.
528  *
529  * This takes the tree lock, and returns 0 on success and < 0 on error.
530  */
531 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
532                      unsigned long bits, int wake, int delete,
533                      struct extent_state **cached_state,
534                      gfp_t mask)
535 {
536         struct extent_state *state;
537         struct extent_state *cached;
538         struct extent_state *prealloc = NULL;
539         struct rb_node *node;
540         u64 last_end;
541         int err;
542         int clear = 0;
543
544         btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
545
546         if (bits & EXTENT_DELALLOC)
547                 bits |= EXTENT_NORESERVE;
548
549         if (delete)
550                 bits |= ~EXTENT_CTLBITS;
551         bits |= EXTENT_FIRST_DELALLOC;
552
553         if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
554                 clear = 1;
555 again:
556         if (!prealloc && (mask & __GFP_WAIT)) {
557                 prealloc = alloc_extent_state(mask);
558                 if (!prealloc)
559                         return -ENOMEM;
560         }
561
562         spin_lock(&tree->lock);
563         if (cached_state) {
564                 cached = *cached_state;
565
566                 if (clear) {
567                         *cached_state = NULL;
568                         cached_state = NULL;
569                 }
570
571                 if (cached && cached->tree && cached->start <= start &&
572                     cached->end > start) {
573                         if (clear)
574                                 atomic_dec(&cached->refs);
575                         state = cached;
576                         goto hit_next;
577                 }
578                 if (clear)
579                         free_extent_state(cached);
580         }
581         /*
582          * this search will find the extents that end after
583          * our range starts
584          */
585         node = tree_search(tree, start);
586         if (!node)
587                 goto out;
588         state = rb_entry(node, struct extent_state, rb_node);
589 hit_next:
590         if (state->start > end)
591                 goto out;
592         WARN_ON(state->end < start);
593         last_end = state->end;
594
595         /* the state doesn't have the wanted bits, go ahead */
596         if (!(state->state & bits)) {
597                 state = next_state(state);
598                 goto next;
599         }
600
601         /*
602          *     | ---- desired range ---- |
603          *  | state | or
604          *  | ------------- state -------------- |
605          *
606          * We need to split the extent we found, and may flip
607          * bits on second half.
608          *
609          * If the extent we found extends past our range, we
610          * just split and search again.  It'll get split again
611          * the next time though.
612          *
613          * If the extent we found is inside our range, we clear
614          * the desired bit on it.
615          */
616
617         if (state->start < start) {
618                 prealloc = alloc_extent_state_atomic(prealloc);
619                 BUG_ON(!prealloc);
620                 err = split_state(tree, state, prealloc, start);
621                 if (err)
622                         extent_io_tree_panic(tree, err);
623
624                 prealloc = NULL;
625                 if (err)
626                         goto out;
627                 if (state->end <= end) {
628                         state = clear_state_bit(tree, state, &bits, wake);
629                         goto next;
630                 }
631                 goto search_again;
632         }
633         /*
634          * | ---- desired range ---- |
635          *                        | state |
636          * We need to split the extent, and clear the bit
637          * on the first half
638          */
639         if (state->start <= end && state->end > end) {
640                 prealloc = alloc_extent_state_atomic(prealloc);
641                 BUG_ON(!prealloc);
642                 err = split_state(tree, state, prealloc, end + 1);
643                 if (err)
644                         extent_io_tree_panic(tree, err);
645
646                 if (wake)
647                         wake_up(&state->wq);
648
649                 clear_state_bit(tree, prealloc, &bits, wake);
650
651                 prealloc = NULL;
652                 goto out;
653         }
654
655         state = clear_state_bit(tree, state, &bits, wake);
656 next:
657         if (last_end == (u64)-1)
658                 goto out;
659         start = last_end + 1;
660         if (start <= end && state && !need_resched())
661                 goto hit_next;
662         goto search_again;
663
664 out:
665         spin_unlock(&tree->lock);
666         if (prealloc)
667                 free_extent_state(prealloc);
668
669         return 0;
670
671 search_again:
672         if (start > end)
673                 goto out;
674         spin_unlock(&tree->lock);
675         if (mask & __GFP_WAIT)
676                 cond_resched();
677         goto again;
678 }
679
680 static void wait_on_state(struct extent_io_tree *tree,
681                           struct extent_state *state)
682                 __releases(tree->lock)
683                 __acquires(tree->lock)
684 {
685         DEFINE_WAIT(wait);
686         prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
687         spin_unlock(&tree->lock);
688         schedule();
689         spin_lock(&tree->lock);
690         finish_wait(&state->wq, &wait);
691 }
692
693 /*
694  * waits for one or more bits to clear on a range in the state tree.
695  * The range [start, end] is inclusive.
696  * The tree lock is taken by this function
697  */
698 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
699                             unsigned long bits)
700 {
701         struct extent_state *state;
702         struct rb_node *node;
703
704         btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
705
706         spin_lock(&tree->lock);
707 again:
708         while (1) {
709                 /*
710                  * this search will find all the extents that end after
711                  * our range starts
712                  */
713                 node = tree_search(tree, start);
714                 if (!node)
715                         break;
716
717                 state = rb_entry(node, struct extent_state, rb_node);
718
719                 if (state->start > end)
720                         goto out;
721
722                 if (state->state & bits) {
723                         start = state->start;
724                         atomic_inc(&state->refs);
725                         wait_on_state(tree, state);
726                         free_extent_state(state);
727                         goto again;
728                 }
729                 start = state->end + 1;
730
731                 if (start > end)
732                         break;
733
734                 cond_resched_lock(&tree->lock);
735         }
736 out:
737         spin_unlock(&tree->lock);
738 }
739
740 static void set_state_bits(struct extent_io_tree *tree,
741                            struct extent_state *state,
742                            unsigned long *bits)
743 {
744         unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
745
746         set_state_cb(tree, state, bits);
747         if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
748                 u64 range = state->end - state->start + 1;
749                 tree->dirty_bytes += range;
750         }
751         state->state |= bits_to_set;
752 }
753
754 static void cache_state(struct extent_state *state,
755                         struct extent_state **cached_ptr)
756 {
757         if (cached_ptr && !(*cached_ptr)) {
758                 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
759                         *cached_ptr = state;
760                         atomic_inc(&state->refs);
761                 }
762         }
763 }
764
765 /*
766  * set some bits on a range in the tree.  This may require allocations or
767  * sleeping, so the gfp mask is used to indicate what is allowed.
768  *
769  * If any of the exclusive bits are set, this will fail with -EEXIST if some
770  * part of the range already has the desired bits set.  The start of the
771  * existing range is returned in failed_start in this case.
772  *
773  * [start, end] is inclusive This takes the tree lock.
774  */
775
776 static int __must_check
777 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
778                  unsigned long bits, unsigned long exclusive_bits,
779                  u64 *failed_start, struct extent_state **cached_state,
780                  gfp_t mask)
781 {
782         struct extent_state *state;
783         struct extent_state *prealloc = NULL;
784         struct rb_node *node;
785         int err = 0;
786         u64 last_start;
787         u64 last_end;
788
789         btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
790
791         bits |= EXTENT_FIRST_DELALLOC;
792 again:
793         if (!prealloc && (mask & __GFP_WAIT)) {
794                 prealloc = alloc_extent_state(mask);
795                 BUG_ON(!prealloc);
796         }
797
798         spin_lock(&tree->lock);
799         if (cached_state && *cached_state) {
800                 state = *cached_state;
801                 if (state->start <= start && state->end > start &&
802                     state->tree) {
803                         node = &state->rb_node;
804                         goto hit_next;
805                 }
806         }
807         /*
808          * this search will find all the extents that end after
809          * our range starts.
810          */
811         node = tree_search(tree, start);
812         if (!node) {
813                 prealloc = alloc_extent_state_atomic(prealloc);
814                 BUG_ON(!prealloc);
815                 err = insert_state(tree, prealloc, start, end, &bits);
816                 if (err)
817                         extent_io_tree_panic(tree, err);
818
819                 prealloc = NULL;
820                 goto out;
821         }
822         state = rb_entry(node, struct extent_state, rb_node);
823 hit_next:
824         last_start = state->start;
825         last_end = state->end;
826
827         /*
828          * | ---- desired range ---- |
829          * | state |
830          *
831          * Just lock what we found and keep going
832          */
833         if (state->start == start && state->end <= end) {
834                 if (state->state & exclusive_bits) {
835                         *failed_start = state->start;
836                         err = -EEXIST;
837                         goto out;
838                 }
839
840                 set_state_bits(tree, state, &bits);
841                 cache_state(state, cached_state);
842                 merge_state(tree, state);
843                 if (last_end == (u64)-1)
844                         goto out;
845                 start = last_end + 1;
846                 state = next_state(state);
847                 if (start < end && state && state->start == start &&
848                     !need_resched())
849                         goto hit_next;
850                 goto search_again;
851         }
852
853         /*
854          *     | ---- desired range ---- |
855          * | state |
856          *   or
857          * | ------------- state -------------- |
858          *
859          * We need to split the extent we found, and may flip bits on
860          * second half.
861          *
862          * If the extent we found extends past our
863          * range, we just split and search again.  It'll get split
864          * again the next time though.
865          *
866          * If the extent we found is inside our range, we set the
867          * desired bit on it.
868          */
869         if (state->start < start) {
870                 if (state->state & exclusive_bits) {
871                         *failed_start = start;
872                         err = -EEXIST;
873                         goto out;
874                 }
875
876                 prealloc = alloc_extent_state_atomic(prealloc);
877                 BUG_ON(!prealloc);
878                 err = split_state(tree, state, prealloc, start);
879                 if (err)
880                         extent_io_tree_panic(tree, err);
881
882                 prealloc = NULL;
883                 if (err)
884                         goto out;
885                 if (state->end <= end) {
886                         set_state_bits(tree, state, &bits);
887                         cache_state(state, cached_state);
888                         merge_state(tree, state);
889                         if (last_end == (u64)-1)
890                                 goto out;
891                         start = last_end + 1;
892                         state = next_state(state);
893                         if (start < end && state && state->start == start &&
894                             !need_resched())
895                                 goto hit_next;
896                 }
897                 goto search_again;
898         }
899         /*
900          * | ---- desired range ---- |
901          *     | state | or               | state |
902          *
903          * There's a hole, we need to insert something in it and
904          * ignore the extent we found.
905          */
906         if (state->start > start) {
907                 u64 this_end;
908                 if (end < last_start)
909                         this_end = end;
910                 else
911                         this_end = last_start - 1;
912
913                 prealloc = alloc_extent_state_atomic(prealloc);
914                 BUG_ON(!prealloc);
915
916                 /*
917                  * Avoid to free 'prealloc' if it can be merged with
918                  * the later extent.
919                  */
920                 err = insert_state(tree, prealloc, start, this_end,
921                                    &bits);
922                 if (err)
923                         extent_io_tree_panic(tree, err);
924
925                 cache_state(prealloc, cached_state);
926                 prealloc = NULL;
927                 start = this_end + 1;
928                 goto search_again;
929         }
930         /*
931          * | ---- desired range ---- |
932          *                        | state |
933          * We need to split the extent, and set the bit
934          * on the first half
935          */
936         if (state->start <= end && state->end > end) {
937                 if (state->state & exclusive_bits) {
938                         *failed_start = start;
939                         err = -EEXIST;
940                         goto out;
941                 }
942
943                 prealloc = alloc_extent_state_atomic(prealloc);
944                 BUG_ON(!prealloc);
945                 err = split_state(tree, state, prealloc, end + 1);
946                 if (err)
947                         extent_io_tree_panic(tree, err);
948
949                 set_state_bits(tree, prealloc, &bits);
950                 cache_state(prealloc, cached_state);
951                 merge_state(tree, prealloc);
952                 prealloc = NULL;
953                 goto out;
954         }
955
956         goto search_again;
957
958 out:
959         spin_unlock(&tree->lock);
960         if (prealloc)
961                 free_extent_state(prealloc);
962
963         return err;
964
965 search_again:
966         if (start > end)
967                 goto out;
968         spin_unlock(&tree->lock);
969         if (mask & __GFP_WAIT)
970                 cond_resched();
971         goto again;
972 }
973
974 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
975                    unsigned long bits, u64 * failed_start,
976                    struct extent_state **cached_state, gfp_t mask)
977 {
978         return __set_extent_bit(tree, start, end, bits, 0, failed_start,
979                                 cached_state, mask);
980 }
981
982
983 /**
984  * convert_extent_bit - convert all bits in a given range from one bit to
985  *                      another
986  * @tree:       the io tree to search
987  * @start:      the start offset in bytes
988  * @end:        the end offset in bytes (inclusive)
989  * @bits:       the bits to set in this range
990  * @clear_bits: the bits to clear in this range
991  * @cached_state:       state that we're going to cache
992  * @mask:       the allocation mask
993  *
994  * This will go through and set bits for the given range.  If any states exist
995  * already in this range they are set with the given bit and cleared of the
996  * clear_bits.  This is only meant to be used by things that are mergeable, ie
997  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
998  * boundary bits like LOCK.
999  */
1000 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1001                        unsigned long bits, unsigned long clear_bits,
1002                        struct extent_state **cached_state, gfp_t mask)
1003 {
1004         struct extent_state *state;
1005         struct extent_state *prealloc = NULL;
1006         struct rb_node *node;
1007         int err = 0;
1008         u64 last_start;
1009         u64 last_end;
1010
1011         btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
1012
1013 again:
1014         if (!prealloc && (mask & __GFP_WAIT)) {
1015                 prealloc = alloc_extent_state(mask);
1016                 if (!prealloc)
1017                         return -ENOMEM;
1018         }
1019
1020         spin_lock(&tree->lock);
1021         if (cached_state && *cached_state) {
1022                 state = *cached_state;
1023                 if (state->start <= start && state->end > start &&
1024                     state->tree) {
1025                         node = &state->rb_node;
1026                         goto hit_next;
1027                 }
1028         }
1029
1030         /*
1031          * this search will find all the extents that end after
1032          * our range starts.
1033          */
1034         node = tree_search(tree, start);
1035         if (!node) {
1036                 prealloc = alloc_extent_state_atomic(prealloc);
1037                 if (!prealloc) {
1038                         err = -ENOMEM;
1039                         goto out;
1040                 }
1041                 err = insert_state(tree, prealloc, start, end, &bits);
1042                 prealloc = NULL;
1043                 if (err)
1044                         extent_io_tree_panic(tree, err);
1045                 goto out;
1046         }
1047         state = rb_entry(node, struct extent_state, rb_node);
1048 hit_next:
1049         last_start = state->start;
1050         last_end = state->end;
1051
1052         /*
1053          * | ---- desired range ---- |
1054          * | state |
1055          *
1056          * Just lock what we found and keep going
1057          */
1058         if (state->start == start && state->end <= end) {
1059                 set_state_bits(tree, state, &bits);
1060                 cache_state(state, cached_state);
1061                 state = clear_state_bit(tree, state, &clear_bits, 0);
1062                 if (last_end == (u64)-1)
1063                         goto out;
1064                 start = last_end + 1;
1065                 if (start < end && state && state->start == start &&
1066                     !need_resched())
1067                         goto hit_next;
1068                 goto search_again;
1069         }
1070
1071         /*
1072          *     | ---- desired range ---- |
1073          * | state |
1074          *   or
1075          * | ------------- state -------------- |
1076          *
1077          * We need to split the extent we found, and may flip bits on
1078          * second half.
1079          *
1080          * If the extent we found extends past our
1081          * range, we just split and search again.  It'll get split
1082          * again the next time though.
1083          *
1084          * If the extent we found is inside our range, we set the
1085          * desired bit on it.
1086          */
1087         if (state->start < start) {
1088                 prealloc = alloc_extent_state_atomic(prealloc);
1089                 if (!prealloc) {
1090                         err = -ENOMEM;
1091                         goto out;
1092                 }
1093                 err = split_state(tree, state, prealloc, start);
1094                 if (err)
1095                         extent_io_tree_panic(tree, err);
1096                 prealloc = NULL;
1097                 if (err)
1098                         goto out;
1099                 if (state->end <= end) {
1100                         set_state_bits(tree, state, &bits);
1101                         cache_state(state, cached_state);
1102                         state = clear_state_bit(tree, state, &clear_bits, 0);
1103                         if (last_end == (u64)-1)
1104                                 goto out;
1105                         start = last_end + 1;
1106                         if (start < end && state && state->start == start &&
1107                             !need_resched())
1108                                 goto hit_next;
1109                 }
1110                 goto search_again;
1111         }
1112         /*
1113          * | ---- desired range ---- |
1114          *     | state | or               | state |
1115          *
1116          * There's a hole, we need to insert something in it and
1117          * ignore the extent we found.
1118          */
1119         if (state->start > start) {
1120                 u64 this_end;
1121                 if (end < last_start)
1122                         this_end = end;
1123                 else
1124                         this_end = last_start - 1;
1125
1126                 prealloc = alloc_extent_state_atomic(prealloc);
1127                 if (!prealloc) {
1128                         err = -ENOMEM;
1129                         goto out;
1130                 }
1131
1132                 /*
1133                  * Avoid to free 'prealloc' if it can be merged with
1134                  * the later extent.
1135                  */
1136                 err = insert_state(tree, prealloc, start, this_end,
1137                                    &bits);
1138                 if (err)
1139                         extent_io_tree_panic(tree, err);
1140                 cache_state(prealloc, cached_state);
1141                 prealloc = NULL;
1142                 start = this_end + 1;
1143                 goto search_again;
1144         }
1145         /*
1146          * | ---- desired range ---- |
1147          *                        | state |
1148          * We need to split the extent, and set the bit
1149          * on the first half
1150          */
1151         if (state->start <= end && state->end > end) {
1152                 prealloc = alloc_extent_state_atomic(prealloc);
1153                 if (!prealloc) {
1154                         err = -ENOMEM;
1155                         goto out;
1156                 }
1157
1158                 err = split_state(tree, state, prealloc, end + 1);
1159                 if (err)
1160                         extent_io_tree_panic(tree, err);
1161
1162                 set_state_bits(tree, prealloc, &bits);
1163                 cache_state(prealloc, cached_state);
1164                 clear_state_bit(tree, prealloc, &clear_bits, 0);
1165                 prealloc = NULL;
1166                 goto out;
1167         }
1168
1169         goto search_again;
1170
1171 out:
1172         spin_unlock(&tree->lock);
1173         if (prealloc)
1174                 free_extent_state(prealloc);
1175
1176         return err;
1177
1178 search_again:
1179         if (start > end)
1180                 goto out;
1181         spin_unlock(&tree->lock);
1182         if (mask & __GFP_WAIT)
1183                 cond_resched();
1184         goto again;
1185 }
1186
1187 /* wrappers around set/clear extent bit */
1188 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1189                      gfp_t mask)
1190 {
1191         return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1192                               NULL, mask);
1193 }
1194
1195 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1196                     unsigned long bits, gfp_t mask)
1197 {
1198         return set_extent_bit(tree, start, end, bits, NULL,
1199                               NULL, mask);
1200 }
1201
1202 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1203                       unsigned long bits, gfp_t mask)
1204 {
1205         return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1206 }
1207
1208 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1209                         struct extent_state **cached_state, gfp_t mask)
1210 {
1211         return set_extent_bit(tree, start, end,
1212                               EXTENT_DELALLOC | EXTENT_UPTODATE,
1213                               NULL, cached_state, mask);
1214 }
1215
1216 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1217                       struct extent_state **cached_state, gfp_t mask)
1218 {
1219         return set_extent_bit(tree, start, end,
1220                               EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1221                               NULL, cached_state, mask);
1222 }
1223
1224 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1225                        gfp_t mask)
1226 {
1227         return clear_extent_bit(tree, start, end,
1228                                 EXTENT_DIRTY | EXTENT_DELALLOC |
1229                                 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1230 }
1231
1232 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1233                      gfp_t mask)
1234 {
1235         return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1236                               NULL, mask);
1237 }
1238
1239 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1240                         struct extent_state **cached_state, gfp_t mask)
1241 {
1242         return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1243                               cached_state, mask);
1244 }
1245
1246 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1247                           struct extent_state **cached_state, gfp_t mask)
1248 {
1249         return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1250                                 cached_state, mask);
1251 }
1252
1253 /*
1254  * either insert or lock state struct between start and end use mask to tell
1255  * us if waiting is desired.
1256  */
1257 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1258                      unsigned long bits, struct extent_state **cached_state)
1259 {
1260         int err;
1261         u64 failed_start;
1262         while (1) {
1263                 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1264                                        EXTENT_LOCKED, &failed_start,
1265                                        cached_state, GFP_NOFS);
1266                 if (err == -EEXIST) {
1267                         wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1268                         start = failed_start;
1269                 } else
1270                         break;
1271                 WARN_ON(start > end);
1272         }
1273         return err;
1274 }
1275
1276 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1277 {
1278         return lock_extent_bits(tree, start, end, 0, NULL);
1279 }
1280
1281 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1282 {
1283         int err;
1284         u64 failed_start;
1285
1286         err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1287                                &failed_start, NULL, GFP_NOFS);
1288         if (err == -EEXIST) {
1289                 if (failed_start > start)
1290                         clear_extent_bit(tree, start, failed_start - 1,
1291                                          EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1292                 return 0;
1293         }
1294         return 1;
1295 }
1296
1297 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1298                          struct extent_state **cached, gfp_t mask)
1299 {
1300         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1301                                 mask);
1302 }
1303
1304 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1305 {
1306         return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1307                                 GFP_NOFS);
1308 }
1309
1310 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1311 {
1312         unsigned long index = start >> PAGE_CACHE_SHIFT;
1313         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1314         struct page *page;
1315
1316         while (index <= end_index) {
1317                 page = find_get_page(inode->i_mapping, index);
1318                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1319                 clear_page_dirty_for_io(page);
1320                 page_cache_release(page);
1321                 index++;
1322         }
1323         return 0;
1324 }
1325
1326 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1327 {
1328         unsigned long index = start >> PAGE_CACHE_SHIFT;
1329         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1330         struct page *page;
1331
1332         while (index <= end_index) {
1333                 page = find_get_page(inode->i_mapping, index);
1334                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1335                 account_page_redirty(page);
1336                 __set_page_dirty_nobuffers(page);
1337                 page_cache_release(page);
1338                 index++;
1339         }
1340         return 0;
1341 }
1342
1343 /*
1344  * helper function to set both pages and extents in the tree writeback
1345  */
1346 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1347 {
1348         unsigned long index = start >> PAGE_CACHE_SHIFT;
1349         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1350         struct page *page;
1351
1352         while (index <= end_index) {
1353                 page = find_get_page(tree->mapping, index);
1354                 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1355                 set_page_writeback(page);
1356                 page_cache_release(page);
1357                 index++;
1358         }
1359         return 0;
1360 }
1361
1362 /* find the first state struct with 'bits' set after 'start', and
1363  * return it.  tree->lock must be held.  NULL will returned if
1364  * nothing was found after 'start'
1365  */
1366 static struct extent_state *
1367 find_first_extent_bit_state(struct extent_io_tree *tree,
1368                             u64 start, unsigned long bits)
1369 {
1370         struct rb_node *node;
1371         struct extent_state *state;
1372
1373         /*
1374          * this search will find all the extents that end after
1375          * our range starts.
1376          */
1377         node = tree_search(tree, start);
1378         if (!node)
1379                 goto out;
1380
1381         while (1) {
1382                 state = rb_entry(node, struct extent_state, rb_node);
1383                 if (state->end >= start && (state->state & bits))
1384                         return state;
1385
1386                 node = rb_next(node);
1387                 if (!node)
1388                         break;
1389         }
1390 out:
1391         return NULL;
1392 }
1393
1394 /*
1395  * find the first offset in the io tree with 'bits' set. zero is
1396  * returned if we find something, and *start_ret and *end_ret are
1397  * set to reflect the state struct that was found.
1398  *
1399  * If nothing was found, 1 is returned. If found something, return 0.
1400  */
1401 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1402                           u64 *start_ret, u64 *end_ret, unsigned long bits,
1403                           struct extent_state **cached_state)
1404 {
1405         struct extent_state *state;
1406         struct rb_node *n;
1407         int ret = 1;
1408
1409         spin_lock(&tree->lock);
1410         if (cached_state && *cached_state) {
1411                 state = *cached_state;
1412                 if (state->end == start - 1 && state->tree) {
1413                         n = rb_next(&state->rb_node);
1414                         while (n) {
1415                                 state = rb_entry(n, struct extent_state,
1416                                                  rb_node);
1417                                 if (state->state & bits)
1418                                         goto got_it;
1419                                 n = rb_next(n);
1420                         }
1421                         free_extent_state(*cached_state);
1422                         *cached_state = NULL;
1423                         goto out;
1424                 }
1425                 free_extent_state(*cached_state);
1426                 *cached_state = NULL;
1427         }
1428
1429         state = find_first_extent_bit_state(tree, start, bits);
1430 got_it:
1431         if (state) {
1432                 cache_state(state, cached_state);
1433                 *start_ret = state->start;
1434                 *end_ret = state->end;
1435                 ret = 0;
1436         }
1437 out:
1438         spin_unlock(&tree->lock);
1439         return ret;
1440 }
1441
1442 /*
1443  * find a contiguous range of bytes in the file marked as delalloc, not
1444  * more than 'max_bytes'.  start and end are used to return the range,
1445  *
1446  * 1 is returned if we find something, 0 if nothing was in the tree
1447  */
1448 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1449                                         u64 *start, u64 *end, u64 max_bytes,
1450                                         struct extent_state **cached_state)
1451 {
1452         struct rb_node *node;
1453         struct extent_state *state;
1454         u64 cur_start = *start;
1455         u64 found = 0;
1456         u64 total_bytes = 0;
1457
1458         spin_lock(&tree->lock);
1459
1460         /*
1461          * this search will find all the extents that end after
1462          * our range starts.
1463          */
1464         node = tree_search(tree, cur_start);
1465         if (!node) {
1466                 if (!found)
1467                         *end = (u64)-1;
1468                 goto out;
1469         }
1470
1471         while (1) {
1472                 state = rb_entry(node, struct extent_state, rb_node);
1473                 if (found && (state->start != cur_start ||
1474                               (state->state & EXTENT_BOUNDARY))) {
1475                         goto out;
1476                 }
1477                 if (!(state->state & EXTENT_DELALLOC)) {
1478                         if (!found)
1479                                 *end = state->end;
1480                         goto out;
1481                 }
1482                 if (!found) {
1483                         *start = state->start;
1484                         *cached_state = state;
1485                         atomic_inc(&state->refs);
1486                 }
1487                 found++;
1488                 *end = state->end;
1489                 cur_start = state->end + 1;
1490                 node = rb_next(node);
1491                 if (!node)
1492                         break;
1493                 total_bytes += state->end - state->start + 1;
1494                 if (total_bytes >= max_bytes)
1495                         break;
1496         }
1497 out:
1498         spin_unlock(&tree->lock);
1499         return found;
1500 }
1501
1502 static noinline void __unlock_for_delalloc(struct inode *inode,
1503                                            struct page *locked_page,
1504                                            u64 start, u64 end)
1505 {
1506         int ret;
1507         struct page *pages[16];
1508         unsigned long index = start >> PAGE_CACHE_SHIFT;
1509         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1510         unsigned long nr_pages = end_index - index + 1;
1511         int i;
1512
1513         if (index == locked_page->index && end_index == index)
1514                 return;
1515
1516         while (nr_pages > 0) {
1517                 ret = find_get_pages_contig(inode->i_mapping, index,
1518                                      min_t(unsigned long, nr_pages,
1519                                      ARRAY_SIZE(pages)), pages);
1520                 for (i = 0; i < ret; i++) {
1521                         if (pages[i] != locked_page)
1522                                 unlock_page(pages[i]);
1523                         page_cache_release(pages[i]);
1524                 }
1525                 nr_pages -= ret;
1526                 index += ret;
1527                 cond_resched();
1528         }
1529 }
1530
1531 static noinline int lock_delalloc_pages(struct inode *inode,
1532                                         struct page *locked_page,
1533                                         u64 delalloc_start,
1534                                         u64 delalloc_end)
1535 {
1536         unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1537         unsigned long start_index = index;
1538         unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1539         unsigned long pages_locked = 0;
1540         struct page *pages[16];
1541         unsigned long nrpages;
1542         int ret;
1543         int i;
1544
1545         /* the caller is responsible for locking the start index */
1546         if (index == locked_page->index && index == end_index)
1547                 return 0;
1548
1549         /* skip the page at the start index */
1550         nrpages = end_index - index + 1;
1551         while (nrpages > 0) {
1552                 ret = find_get_pages_contig(inode->i_mapping, index,
1553                                      min_t(unsigned long,
1554                                      nrpages, ARRAY_SIZE(pages)), pages);
1555                 if (ret == 0) {
1556                         ret = -EAGAIN;
1557                         goto done;
1558                 }
1559                 /* now we have an array of pages, lock them all */
1560                 for (i = 0; i < ret; i++) {
1561                         /*
1562                          * the caller is taking responsibility for
1563                          * locked_page
1564                          */
1565                         if (pages[i] != locked_page) {
1566                                 lock_page(pages[i]);
1567                                 if (!PageDirty(pages[i]) ||
1568                                     pages[i]->mapping != inode->i_mapping) {
1569                                         ret = -EAGAIN;
1570                                         unlock_page(pages[i]);
1571                                         page_cache_release(pages[i]);
1572                                         goto done;
1573                                 }
1574                         }
1575                         page_cache_release(pages[i]);
1576                         pages_locked++;
1577                 }
1578                 nrpages -= ret;
1579                 index += ret;
1580                 cond_resched();
1581         }
1582         ret = 0;
1583 done:
1584         if (ret && pages_locked) {
1585                 __unlock_for_delalloc(inode, locked_page,
1586                               delalloc_start,
1587                               ((u64)(start_index + pages_locked - 1)) <<
1588                               PAGE_CACHE_SHIFT);
1589         }
1590         return ret;
1591 }
1592
1593 /*
1594  * find a contiguous range of bytes in the file marked as delalloc, not
1595  * more than 'max_bytes'.  start and end are used to return the range,
1596  *
1597  * 1 is returned if we find something, 0 if nothing was in the tree
1598  */
1599 static noinline u64 find_lock_delalloc_range(struct inode *inode,
1600                                              struct extent_io_tree *tree,
1601                                              struct page *locked_page,
1602                                              u64 *start, u64 *end,
1603                                              u64 max_bytes)
1604 {
1605         u64 delalloc_start;
1606         u64 delalloc_end;
1607         u64 found;
1608         struct extent_state *cached_state = NULL;
1609         int ret;
1610         int loops = 0;
1611
1612 again:
1613         /* step one, find a bunch of delalloc bytes starting at start */
1614         delalloc_start = *start;
1615         delalloc_end = 0;
1616         found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1617                                     max_bytes, &cached_state);
1618         if (!found || delalloc_end <= *start) {
1619                 *start = delalloc_start;
1620                 *end = delalloc_end;
1621                 free_extent_state(cached_state);
1622                 return found;
1623         }
1624
1625         /*
1626          * start comes from the offset of locked_page.  We have to lock
1627          * pages in order, so we can't process delalloc bytes before
1628          * locked_page
1629          */
1630         if (delalloc_start < *start)
1631                 delalloc_start = *start;
1632
1633         /*
1634          * make sure to limit the number of pages we try to lock down
1635          * if we're looping.
1636          */
1637         if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1638                 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1639
1640         /* step two, lock all the pages after the page that has start */
1641         ret = lock_delalloc_pages(inode, locked_page,
1642                                   delalloc_start, delalloc_end);
1643         if (ret == -EAGAIN) {
1644                 /* some of the pages are gone, lets avoid looping by
1645                  * shortening the size of the delalloc range we're searching
1646                  */
1647                 free_extent_state(cached_state);
1648                 if (!loops) {
1649                         unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1650                         max_bytes = PAGE_CACHE_SIZE - offset;
1651                         loops = 1;
1652                         goto again;
1653                 } else {
1654                         found = 0;
1655                         goto out_failed;
1656                 }
1657         }
1658         BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1659
1660         /* step three, lock the state bits for the whole range */
1661         lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1662
1663         /* then test to make sure it is all still delalloc */
1664         ret = test_range_bit(tree, delalloc_start, delalloc_end,
1665                              EXTENT_DELALLOC, 1, cached_state);
1666         if (!ret) {
1667                 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1668                                      &cached_state, GFP_NOFS);
1669                 __unlock_for_delalloc(inode, locked_page,
1670                               delalloc_start, delalloc_end);
1671                 cond_resched();
1672                 goto again;
1673         }
1674         free_extent_state(cached_state);
1675         *start = delalloc_start;
1676         *end = delalloc_end;
1677 out_failed:
1678         return found;
1679 }
1680
1681 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1682                                  struct page *locked_page,
1683                                  unsigned long clear_bits,
1684                                  unsigned long page_ops)
1685 {
1686         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1687         int ret;
1688         struct page *pages[16];
1689         unsigned long index = start >> PAGE_CACHE_SHIFT;
1690         unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1691         unsigned long nr_pages = end_index - index + 1;
1692         int i;
1693
1694         clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1695         if (page_ops == 0)
1696                 return 0;
1697
1698         while (nr_pages > 0) {
1699                 ret = find_get_pages_contig(inode->i_mapping, index,
1700                                      min_t(unsigned long,
1701                                      nr_pages, ARRAY_SIZE(pages)), pages);
1702                 for (i = 0; i < ret; i++) {
1703
1704                         if (page_ops & PAGE_SET_PRIVATE2)
1705                                 SetPagePrivate2(pages[i]);
1706
1707                         if (pages[i] == locked_page) {
1708                                 page_cache_release(pages[i]);
1709                                 continue;
1710                         }
1711                         if (page_ops & PAGE_CLEAR_DIRTY)
1712                                 clear_page_dirty_for_io(pages[i]);
1713                         if (page_ops & PAGE_SET_WRITEBACK)
1714                                 set_page_writeback(pages[i]);
1715                         if (page_ops & PAGE_END_WRITEBACK)
1716                                 end_page_writeback(pages[i]);
1717                         if (page_ops & PAGE_UNLOCK)
1718                                 unlock_page(pages[i]);
1719                         page_cache_release(pages[i]);
1720                 }
1721                 nr_pages -= ret;
1722                 index += ret;
1723                 cond_resched();
1724         }
1725         return 0;
1726 }
1727
1728 /*
1729  * count the number of bytes in the tree that have a given bit(s)
1730  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1731  * cached.  The total number found is returned.
1732  */
1733 u64 count_range_bits(struct extent_io_tree *tree,
1734                      u64 *start, u64 search_end, u64 max_bytes,
1735                      unsigned long bits, int contig)
1736 {
1737         struct rb_node *node;
1738         struct extent_state *state;
1739         u64 cur_start = *start;
1740         u64 total_bytes = 0;
1741         u64 last = 0;
1742         int found = 0;
1743
1744         if (search_end <= cur_start) {
1745                 WARN_ON(1);
1746                 return 0;
1747         }
1748
1749         spin_lock(&tree->lock);
1750         if (cur_start == 0 && bits == EXTENT_DIRTY) {
1751                 total_bytes = tree->dirty_bytes;
1752                 goto out;
1753         }
1754         /*
1755          * this search will find all the extents that end after
1756          * our range starts.
1757          */
1758         node = tree_search(tree, cur_start);
1759         if (!node)
1760                 goto out;
1761
1762         while (1) {
1763                 state = rb_entry(node, struct extent_state, rb_node);
1764                 if (state->start > search_end)
1765                         break;
1766                 if (contig && found && state->start > last + 1)
1767                         break;
1768                 if (state->end >= cur_start && (state->state & bits) == bits) {
1769                         total_bytes += min(search_end, state->end) + 1 -
1770                                        max(cur_start, state->start);
1771                         if (total_bytes >= max_bytes)
1772                                 break;
1773                         if (!found) {
1774                                 *start = max(cur_start, state->start);
1775                                 found = 1;
1776                         }
1777                         last = state->end;
1778                 } else if (contig && found) {
1779                         break;
1780                 }
1781                 node = rb_next(node);
1782                 if (!node)
1783                         break;
1784         }
1785 out:
1786         spin_unlock(&tree->lock);
1787         return total_bytes;
1788 }
1789
1790 /*
1791  * set the private field for a given byte offset in the tree.  If there isn't
1792  * an extent_state there already, this does nothing.
1793  */
1794 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1795 {
1796         struct rb_node *node;
1797         struct extent_state *state;
1798         int ret = 0;
1799
1800         spin_lock(&tree->lock);
1801         /*
1802          * this search will find all the extents that end after
1803          * our range starts.
1804          */
1805         node = tree_search(tree, start);
1806         if (!node) {
1807                 ret = -ENOENT;
1808                 goto out;
1809         }
1810         state = rb_entry(node, struct extent_state, rb_node);
1811         if (state->start != start) {
1812                 ret = -ENOENT;
1813                 goto out;
1814         }
1815         state->private = private;
1816 out:
1817         spin_unlock(&tree->lock);
1818         return ret;
1819 }
1820
1821 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1822 {
1823         struct rb_node *node;
1824         struct extent_state *state;
1825         int ret = 0;
1826
1827         spin_lock(&tree->lock);
1828         /*
1829          * this search will find all the extents that end after
1830          * our range starts.
1831          */
1832         node = tree_search(tree, start);
1833         if (!node) {
1834                 ret = -ENOENT;
1835                 goto out;
1836         }
1837         state = rb_entry(node, struct extent_state, rb_node);
1838         if (state->start != start) {
1839                 ret = -ENOENT;
1840                 goto out;
1841         }
1842         *private = state->private;
1843 out:
1844         spin_unlock(&tree->lock);
1845         return ret;
1846 }
1847
1848 /*
1849  * searches a range in the state tree for a given mask.
1850  * If 'filled' == 1, this returns 1 only if every extent in the tree
1851  * has the bits set.  Otherwise, 1 is returned if any bit in the
1852  * range is found set.
1853  */
1854 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1855                    unsigned long bits, int filled, struct extent_state *cached)
1856 {
1857         struct extent_state *state = NULL;
1858         struct rb_node *node;
1859         int bitset = 0;
1860
1861         spin_lock(&tree->lock);
1862         if (cached && cached->tree && cached->start <= start &&
1863             cached->end > start)
1864                 node = &cached->rb_node;
1865         else
1866                 node = tree_search(tree, start);
1867         while (node && start <= end) {
1868                 state = rb_entry(node, struct extent_state, rb_node);
1869
1870                 if (filled && state->start > start) {
1871                         bitset = 0;
1872                         break;
1873                 }
1874
1875                 if (state->start > end)
1876                         break;
1877
1878                 if (state->state & bits) {
1879                         bitset = 1;
1880                         if (!filled)
1881                                 break;
1882                 } else if (filled) {
1883                         bitset = 0;
1884                         break;
1885                 }
1886
1887                 if (state->end == (u64)-1)
1888                         break;
1889
1890                 start = state->end + 1;
1891                 if (start > end)
1892                         break;
1893                 node = rb_next(node);
1894                 if (!node) {
1895                         if (filled)
1896                                 bitset = 0;
1897                         break;
1898                 }
1899         }
1900         spin_unlock(&tree->lock);
1901         return bitset;
1902 }
1903
1904 /*
1905  * helper function to set a given page up to date if all the
1906  * extents in the tree for that page are up to date
1907  */
1908 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1909 {
1910         u64 start = page_offset(page);
1911         u64 end = start + PAGE_CACHE_SIZE - 1;
1912         if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1913                 SetPageUptodate(page);
1914 }
1915
1916 /*
1917  * When IO fails, either with EIO or csum verification fails, we
1918  * try other mirrors that might have a good copy of the data.  This
1919  * io_failure_record is used to record state as we go through all the
1920  * mirrors.  If another mirror has good data, the page is set up to date
1921  * and things continue.  If a good mirror can't be found, the original
1922  * bio end_io callback is called to indicate things have failed.
1923  */
1924 struct io_failure_record {
1925         struct page *page;
1926         u64 start;
1927         u64 len;
1928         u64 logical;
1929         unsigned long bio_flags;
1930         int this_mirror;
1931         int failed_mirror;
1932         int in_validation;
1933 };
1934
1935 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1936                                 int did_repair)
1937 {
1938         int ret;
1939         int err = 0;
1940         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1941
1942         set_state_private(failure_tree, rec->start, 0);
1943         ret = clear_extent_bits(failure_tree, rec->start,
1944                                 rec->start + rec->len - 1,
1945                                 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1946         if (ret)
1947                 err = ret;
1948
1949         ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1950                                 rec->start + rec->len - 1,
1951                                 EXTENT_DAMAGED, GFP_NOFS);
1952         if (ret && !err)
1953                 err = ret;
1954
1955         kfree(rec);
1956         return err;
1957 }
1958
1959 static void repair_io_failure_callback(struct bio *bio, int err)
1960 {
1961         complete(bio->bi_private);
1962 }
1963
1964 /*
1965  * this bypasses the standard btrfs submit functions deliberately, as
1966  * the standard behavior is to write all copies in a raid setup. here we only
1967  * want to write the one bad copy. so we do the mapping for ourselves and issue
1968  * submit_bio directly.
1969  * to avoid any synchronization issues, wait for the data after writing, which
1970  * actually prevents the read that triggered the error from finishing.
1971  * currently, there can be no more than two copies of every data bit. thus,
1972  * exactly one rewrite is required.
1973  */
1974 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
1975                         u64 length, u64 logical, struct page *page,
1976                         int mirror_num)
1977 {
1978         struct bio *bio;
1979         struct btrfs_device *dev;
1980         DECLARE_COMPLETION_ONSTACK(compl);
1981         u64 map_length = 0;
1982         u64 sector;
1983         struct btrfs_bio *bbio = NULL;
1984         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
1985         int ret;
1986
1987         BUG_ON(!mirror_num);
1988
1989         /* we can't repair anything in raid56 yet */
1990         if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
1991                 return 0;
1992
1993         bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1994         if (!bio)
1995                 return -EIO;
1996         bio->bi_private = &compl;
1997         bio->bi_end_io = repair_io_failure_callback;
1998         bio->bi_size = 0;
1999         map_length = length;
2000
2001         ret = btrfs_map_block(fs_info, WRITE, logical,
2002                               &map_length, &bbio, mirror_num);
2003         if (ret) {
2004                 bio_put(bio);
2005                 return -EIO;
2006         }
2007         BUG_ON(mirror_num != bbio->mirror_num);
2008         sector = bbio->stripes[mirror_num-1].physical >> 9;
2009         bio->bi_sector = sector;
2010         dev = bbio->stripes[mirror_num-1].dev;
2011         kfree(bbio);
2012         if (!dev || !dev->bdev || !dev->writeable) {
2013                 bio_put(bio);
2014                 return -EIO;
2015         }
2016         bio->bi_bdev = dev->bdev;
2017         bio_add_page(bio, page, length, start - page_offset(page));
2018         btrfsic_submit_bio(WRITE_SYNC, bio);
2019         wait_for_completion(&compl);
2020
2021         if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2022                 /* try to remap that extent elsewhere? */
2023                 bio_put(bio);
2024                 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2025                 return -EIO;
2026         }
2027
2028         printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
2029                       "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2030                       start, rcu_str_deref(dev->name), sector);
2031
2032         bio_put(bio);
2033         return 0;
2034 }
2035
2036 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2037                          int mirror_num)
2038 {
2039         u64 start = eb->start;
2040         unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2041         int ret = 0;
2042
2043         for (i = 0; i < num_pages; i++) {
2044                 struct page *p = extent_buffer_page(eb, i);
2045                 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
2046                                         start, p, mirror_num);
2047                 if (ret)
2048                         break;
2049                 start += PAGE_CACHE_SIZE;
2050         }
2051
2052         return ret;
2053 }
2054
2055 /*
2056  * each time an IO finishes, we do a fast check in the IO failure tree
2057  * to see if we need to process or clean up an io_failure_record
2058  */
2059 static int clean_io_failure(u64 start, struct page *page)
2060 {
2061         u64 private;
2062         u64 private_failure;
2063         struct io_failure_record *failrec;
2064         struct btrfs_fs_info *fs_info;
2065         struct extent_state *state;
2066         int num_copies;
2067         int did_repair = 0;
2068         int ret;
2069         struct inode *inode = page->mapping->host;
2070
2071         private = 0;
2072         ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2073                                 (u64)-1, 1, EXTENT_DIRTY, 0);
2074         if (!ret)
2075                 return 0;
2076
2077         ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2078                                 &private_failure);
2079         if (ret)
2080                 return 0;
2081
2082         failrec = (struct io_failure_record *)(unsigned long) private_failure;
2083         BUG_ON(!failrec->this_mirror);
2084
2085         if (failrec->in_validation) {
2086                 /* there was no real error, just free the record */
2087                 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2088                          failrec->start);
2089                 did_repair = 1;
2090                 goto out;
2091         }
2092
2093         spin_lock(&BTRFS_I(inode)->io_tree.lock);
2094         state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2095                                             failrec->start,
2096                                             EXTENT_LOCKED);
2097         spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2098
2099         if (state && state->start <= failrec->start &&
2100             state->end >= failrec->start + failrec->len - 1) {
2101                 fs_info = BTRFS_I(inode)->root->fs_info;
2102                 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2103                                               failrec->len);
2104                 if (num_copies > 1)  {
2105                         ret = repair_io_failure(fs_info, start, failrec->len,
2106                                                 failrec->logical, page,
2107                                                 failrec->failed_mirror);
2108                         did_repair = !ret;
2109                 }
2110                 ret = 0;
2111         }
2112
2113 out:
2114         if (!ret)
2115                 ret = free_io_failure(inode, failrec, did_repair);
2116
2117         return ret;
2118 }
2119
2120 /*
2121  * this is a generic handler for readpage errors (default
2122  * readpage_io_failed_hook). if other copies exist, read those and write back
2123  * good data to the failed position. does not investigate in remapping the
2124  * failed extent elsewhere, hoping the device will be smart enough to do this as
2125  * needed
2126  */
2127
2128 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2129                               struct page *page, u64 start, u64 end,
2130                               int failed_mirror)
2131 {
2132         struct io_failure_record *failrec = NULL;
2133         u64 private;
2134         struct extent_map *em;
2135         struct inode *inode = page->mapping->host;
2136         struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2137         struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2138         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2139         struct bio *bio;
2140         struct btrfs_io_bio *btrfs_failed_bio;
2141         struct btrfs_io_bio *btrfs_bio;
2142         int num_copies;
2143         int ret;
2144         int read_mode;
2145         u64 logical;
2146
2147         BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2148
2149         ret = get_state_private(failure_tree, start, &private);
2150         if (ret) {
2151                 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2152                 if (!failrec)
2153                         return -ENOMEM;
2154                 failrec->start = start;
2155                 failrec->len = end - start + 1;
2156                 failrec->this_mirror = 0;
2157                 failrec->bio_flags = 0;
2158                 failrec->in_validation = 0;
2159
2160                 read_lock(&em_tree->lock);
2161                 em = lookup_extent_mapping(em_tree, start, failrec->len);
2162                 if (!em) {
2163                         read_unlock(&em_tree->lock);
2164                         kfree(failrec);
2165                         return -EIO;
2166                 }
2167
2168                 if (em->start > start || em->start + em->len < start) {
2169                         free_extent_map(em);
2170                         em = NULL;
2171                 }
2172                 read_unlock(&em_tree->lock);
2173
2174                 if (!em) {
2175                         kfree(failrec);
2176                         return -EIO;
2177                 }
2178                 logical = start - em->start;
2179                 logical = em->block_start + logical;
2180                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2181                         logical = em->block_start;
2182                         failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2183                         extent_set_compress_type(&failrec->bio_flags,
2184                                                  em->compress_type);
2185                 }
2186                 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2187                          "len=%llu\n", logical, start, failrec->len);
2188                 failrec->logical = logical;
2189                 free_extent_map(em);
2190
2191                 /* set the bits in the private failure tree */
2192                 ret = set_extent_bits(failure_tree, start, end,
2193                                         EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2194                 if (ret >= 0)
2195                         ret = set_state_private(failure_tree, start,
2196                                                 (u64)(unsigned long)failrec);
2197                 /* set the bits in the inode's tree */
2198                 if (ret >= 0)
2199                         ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2200                                                 GFP_NOFS);
2201                 if (ret < 0) {
2202                         kfree(failrec);
2203                         return ret;
2204                 }
2205         } else {
2206                 failrec = (struct io_failure_record *)(unsigned long)private;
2207                 pr_debug("bio_readpage_error: (found) logical=%llu, "
2208                          "start=%llu, len=%llu, validation=%d\n",
2209                          failrec->logical, failrec->start, failrec->len,
2210                          failrec->in_validation);
2211                 /*
2212                  * when data can be on disk more than twice, add to failrec here
2213                  * (e.g. with a list for failed_mirror) to make
2214                  * clean_io_failure() clean all those errors at once.
2215                  */
2216         }
2217         num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2218                                       failrec->logical, failrec->len);
2219         if (num_copies == 1) {
2220                 /*
2221                  * we only have a single copy of the data, so don't bother with
2222                  * all the retry and error correction code that follows. no
2223                  * matter what the error is, it is very likely to persist.
2224                  */
2225                 pr_debug("bio_readpage_error: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2226                          num_copies, failrec->this_mirror, failed_mirror);
2227                 free_io_failure(inode, failrec, 0);
2228                 return -EIO;
2229         }
2230
2231         /*
2232          * there are two premises:
2233          *      a) deliver good data to the caller
2234          *      b) correct the bad sectors on disk
2235          */
2236         if (failed_bio->bi_vcnt > 1) {
2237                 /*
2238                  * to fulfill b), we need to know the exact failing sectors, as
2239                  * we don't want to rewrite any more than the failed ones. thus,
2240                  * we need separate read requests for the failed bio
2241                  *
2242                  * if the following BUG_ON triggers, our validation request got
2243                  * merged. we need separate requests for our algorithm to work.
2244                  */
2245                 BUG_ON(failrec->in_validation);
2246                 failrec->in_validation = 1;
2247                 failrec->this_mirror = failed_mirror;
2248                 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2249         } else {
2250                 /*
2251                  * we're ready to fulfill a) and b) alongside. get a good copy
2252                  * of the failed sector and if we succeed, we have setup
2253                  * everything for repair_io_failure to do the rest for us.
2254                  */
2255                 if (failrec->in_validation) {
2256                         BUG_ON(failrec->this_mirror != failed_mirror);
2257                         failrec->in_validation = 0;
2258                         failrec->this_mirror = 0;
2259                 }
2260                 failrec->failed_mirror = failed_mirror;
2261                 failrec->this_mirror++;
2262                 if (failrec->this_mirror == failed_mirror)
2263                         failrec->this_mirror++;
2264                 read_mode = READ_SYNC;
2265         }
2266
2267         if (failrec->this_mirror > num_copies) {
2268                 pr_debug("bio_readpage_error: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2269                          num_copies, failrec->this_mirror, failed_mirror);
2270                 free_io_failure(inode, failrec, 0);
2271                 return -EIO;
2272         }
2273
2274         bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2275         if (!bio) {
2276                 free_io_failure(inode, failrec, 0);
2277                 return -EIO;
2278         }
2279         bio->bi_end_io = failed_bio->bi_end_io;
2280         bio->bi_sector = failrec->logical >> 9;
2281         bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2282         bio->bi_size = 0;
2283
2284         btrfs_failed_bio = btrfs_io_bio(failed_bio);
2285         if (btrfs_failed_bio->csum) {
2286                 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2287                 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2288
2289                 btrfs_bio = btrfs_io_bio(bio);
2290                 btrfs_bio->csum = btrfs_bio->csum_inline;
2291                 phy_offset >>= inode->i_sb->s_blocksize_bits;
2292                 phy_offset *= csum_size;
2293                 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + phy_offset,
2294                        csum_size);
2295         }
2296
2297         bio_add_page(bio, page, failrec->len, start - page_offset(page));
2298
2299         pr_debug("bio_readpage_error: submitting new read[%#x] to "
2300                  "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2301                  failrec->this_mirror, num_copies, failrec->in_validation);
2302
2303         ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2304                                          failrec->this_mirror,
2305                                          failrec->bio_flags, 0);
2306         return ret;
2307 }
2308
2309 /* lots and lots of room for performance fixes in the end_bio funcs */
2310
2311 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2312 {
2313         int uptodate = (err == 0);
2314         struct extent_io_tree *tree;
2315         int ret;
2316
2317         tree = &BTRFS_I(page->mapping->host)->io_tree;
2318
2319         if (tree->ops && tree->ops->writepage_end_io_hook) {
2320                 ret = tree->ops->writepage_end_io_hook(page, start,
2321                                                end, NULL, uptodate);
2322                 if (ret)
2323                         uptodate = 0;
2324         }
2325
2326         if (!uptodate) {
2327                 ClearPageUptodate(page);
2328                 SetPageError(page);
2329         }
2330         return 0;
2331 }
2332
2333 /*
2334  * after a writepage IO is done, we need to:
2335  * clear the uptodate bits on error
2336  * clear the writeback bits in the extent tree for this IO
2337  * end_page_writeback if the page has no more pending IO
2338  *
2339  * Scheduling is not allowed, so the extent state tree is expected
2340  * to have one and only one object corresponding to this IO.
2341  */
2342 static void end_bio_extent_writepage(struct bio *bio, int err)
2343 {
2344         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2345         struct extent_io_tree *tree;
2346         u64 start;
2347         u64 end;
2348
2349         do {
2350                 struct page *page = bvec->bv_page;
2351                 tree = &BTRFS_I(page->mapping->host)->io_tree;
2352
2353                 /* We always issue full-page reads, but if some block
2354                  * in a page fails to read, blk_update_request() will
2355                  * advance bv_offset and adjust bv_len to compensate.
2356                  * Print a warning for nonzero offsets, and an error
2357                  * if they don't add up to a full page.  */
2358                 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2359                         printk("%s page write in btrfs with offset %u and length %u\n",
2360                                bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2361                                ? KERN_ERR "partial" : KERN_INFO "incomplete",
2362                                bvec->bv_offset, bvec->bv_len);
2363
2364                 start = page_offset(page);
2365                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2366
2367                 if (--bvec >= bio->bi_io_vec)
2368                         prefetchw(&bvec->bv_page->flags);
2369
2370                 if (end_extent_writepage(page, err, start, end))
2371                         continue;
2372
2373                 end_page_writeback(page);
2374         } while (bvec >= bio->bi_io_vec);
2375
2376         bio_put(bio);
2377 }
2378
2379 static void
2380 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2381                               int uptodate)
2382 {
2383         struct extent_state *cached = NULL;
2384         u64 end = start + len - 1;
2385
2386         if (uptodate && tree->track_uptodate)
2387                 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2388         unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2389 }
2390
2391 /*
2392  * after a readpage IO is done, we need to:
2393  * clear the uptodate bits on error
2394  * set the uptodate bits if things worked
2395  * set the page up to date if all extents in the tree are uptodate
2396  * clear the lock bit in the extent tree
2397  * unlock the page if there are no other extents locked for it
2398  *
2399  * Scheduling is not allowed, so the extent state tree is expected
2400  * to have one and only one object corresponding to this IO.
2401  */
2402 static void end_bio_extent_readpage(struct bio *bio, int err)
2403 {
2404         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2405         struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2406         struct bio_vec *bvec = bio->bi_io_vec;
2407         struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2408         struct extent_io_tree *tree;
2409         u64 offset = 0;
2410         u64 start;
2411         u64 end;
2412         u64 len;
2413         u64 extent_start = 0;
2414         u64 extent_len = 0;
2415         int mirror;
2416         int ret;
2417
2418         if (err)
2419                 uptodate = 0;
2420
2421         do {
2422                 struct page *page = bvec->bv_page;
2423                 struct inode *inode = page->mapping->host;
2424
2425                 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2426                          "mirror=%lu\n", (u64)bio->bi_sector, err,
2427                          io_bio->mirror_num);
2428                 tree = &BTRFS_I(inode)->io_tree;
2429
2430                 /* We always issue full-page reads, but if some block
2431                  * in a page fails to read, blk_update_request() will
2432                  * advance bv_offset and adjust bv_len to compensate.
2433                  * Print a warning for nonzero offsets, and an error
2434                  * if they don't add up to a full page.  */
2435                 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2436                         printk("%s page read in btrfs with offset %u and length %u\n",
2437                                bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2438                                ? KERN_ERR "partial" : KERN_INFO "incomplete",
2439                                bvec->bv_offset, bvec->bv_len);
2440
2441                 start = page_offset(page);
2442                 end = start + bvec->bv_offset + bvec->bv_len - 1;
2443                 len = bvec->bv_len;
2444
2445                 if (++bvec <= bvec_end)
2446                         prefetchw(&bvec->bv_page->flags);
2447
2448                 mirror = io_bio->mirror_num;
2449                 if (likely(uptodate && tree->ops &&
2450                            tree->ops->readpage_end_io_hook)) {
2451                         ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2452                                                               page, start, end,
2453                                                               mirror);
2454                         if (ret)
2455                                 uptodate = 0;
2456                         else
2457                                 clean_io_failure(start, page);
2458                 }
2459
2460                 if (likely(uptodate))
2461                         goto readpage_ok;
2462
2463                 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2464                         ret = tree->ops->readpage_io_failed_hook(page, mirror);
2465                         if (!ret && !err &&
2466                             test_bit(BIO_UPTODATE, &bio->bi_flags))
2467                                 uptodate = 1;
2468                 } else {
2469                         /*
2470                          * The generic bio_readpage_error handles errors the
2471                          * following way: If possible, new read requests are
2472                          * created and submitted and will end up in
2473                          * end_bio_extent_readpage as well (if we're lucky, not
2474                          * in the !uptodate case). In that case it returns 0 and
2475                          * we just go on with the next page in our bio. If it
2476                          * can't handle the error it will return -EIO and we
2477                          * remain responsible for that page.
2478                          */
2479                         ret = bio_readpage_error(bio, offset, page, start, end,
2480                                                  mirror);
2481                         if (ret == 0) {
2482                                 uptodate =
2483                                         test_bit(BIO_UPTODATE, &bio->bi_flags);
2484                                 if (err)
2485                                         uptodate = 0;
2486                                 continue;
2487                         }
2488                 }
2489 readpage_ok:
2490                 if (likely(uptodate)) {
2491                         loff_t i_size = i_size_read(inode);
2492                         pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2493                         unsigned offset;
2494
2495                         /* Zero out the end if this page straddles i_size */
2496                         offset = i_size & (PAGE_CACHE_SIZE-1);
2497                         if (page->index == end_index && offset)
2498                                 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2499                         SetPageUptodate(page);
2500                 } else {
2501                         ClearPageUptodate(page);
2502                         SetPageError(page);
2503                 }
2504                 unlock_page(page);
2505                 offset += len;
2506
2507                 if (unlikely(!uptodate)) {
2508                         if (extent_len) {
2509                                 endio_readpage_release_extent(tree,
2510                                                               extent_start,
2511                                                               extent_len, 1);
2512                                 extent_start = 0;
2513                                 extent_len = 0;
2514                         }
2515                         endio_readpage_release_extent(tree, start,
2516                                                       end - start + 1, 0);
2517                 } else if (!extent_len) {
2518                         extent_start = start;
2519                         extent_len = end + 1 - start;
2520                 } else if (extent_start + extent_len == start) {
2521                         extent_len += end + 1 - start;
2522                 } else {
2523                         endio_readpage_release_extent(tree, extent_start,
2524                                                       extent_len, uptodate);
2525                         extent_start = start;
2526                         extent_len = end + 1 - start;
2527                 }
2528         } while (bvec <= bvec_end);
2529
2530         if (extent_len)
2531                 endio_readpage_release_extent(tree, extent_start, extent_len,
2532                                               uptodate);
2533         if (io_bio->end_io)
2534                 io_bio->end_io(io_bio, err);
2535         bio_put(bio);
2536 }
2537
2538 /*
2539  * this allocates from the btrfs_bioset.  We're returning a bio right now
2540  * but you can call btrfs_io_bio for the appropriate container_of magic
2541  */
2542 struct bio *
2543 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2544                 gfp_t gfp_flags)
2545 {
2546         struct btrfs_io_bio *btrfs_bio;
2547         struct bio *bio;
2548
2549         bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2550
2551         if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2552                 while (!bio && (nr_vecs /= 2)) {
2553                         bio = bio_alloc_bioset(gfp_flags,
2554                                                nr_vecs, btrfs_bioset);
2555                 }
2556         }
2557
2558         if (bio) {
2559                 bio->bi_size = 0;
2560                 bio->bi_bdev = bdev;
2561                 bio->bi_sector = first_sector;
2562                 btrfs_bio = btrfs_io_bio(bio);
2563                 btrfs_bio->csum = NULL;
2564                 btrfs_bio->csum_allocated = NULL;
2565                 btrfs_bio->end_io = NULL;
2566         }
2567         return bio;
2568 }
2569
2570 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2571 {
2572         return bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2573 }
2574
2575
2576 /* this also allocates from the btrfs_bioset */
2577 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2578 {
2579         struct btrfs_io_bio *btrfs_bio;
2580         struct bio *bio;
2581
2582         bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2583         if (bio) {
2584                 btrfs_bio = btrfs_io_bio(bio);
2585                 btrfs_bio->csum = NULL;
2586                 btrfs_bio->csum_allocated = NULL;
2587                 btrfs_bio->end_io = NULL;
2588         }
2589         return bio;
2590 }
2591
2592
2593 static int __must_check submit_one_bio(int rw, struct bio *bio,
2594                                        int mirror_num, unsigned long bio_flags)
2595 {
2596         int ret = 0;
2597         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2598         struct page *page = bvec->bv_page;
2599         struct extent_io_tree *tree = bio->bi_private;
2600         u64 start;
2601
2602         start = page_offset(page) + bvec->bv_offset;
2603
2604         bio->bi_private = NULL;
2605
2606         bio_get(bio);
2607
2608         if (tree->ops && tree->ops->submit_bio_hook)
2609                 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2610                                            mirror_num, bio_flags, start);
2611         else
2612                 btrfsic_submit_bio(rw, bio);
2613
2614         if (bio_flagged(bio, BIO_EOPNOTSUPP))
2615                 ret = -EOPNOTSUPP;
2616         bio_put(bio);
2617         return ret;
2618 }
2619
2620 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2621                      unsigned long offset, size_t size, struct bio *bio,
2622                      unsigned long bio_flags)
2623 {
2624         int ret = 0;
2625         if (tree->ops && tree->ops->merge_bio_hook)
2626                 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2627                                                 bio_flags);
2628         BUG_ON(ret < 0);
2629         return ret;
2630
2631 }
2632
2633 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2634                               struct page *page, sector_t sector,
2635                               size_t size, unsigned long offset,
2636                               struct block_device *bdev,
2637                               struct bio **bio_ret,
2638                               unsigned long max_pages,
2639                               bio_end_io_t end_io_func,
2640                               int mirror_num,
2641                               unsigned long prev_bio_flags,
2642                               unsigned long bio_flags)
2643 {
2644         int ret = 0;
2645         struct bio *bio;
2646         int nr;
2647         int contig = 0;
2648         int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2649         int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2650         size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2651
2652         if (bio_ret && *bio_ret) {
2653                 bio = *bio_ret;
2654                 if (old_compressed)
2655                         contig = bio->bi_sector == sector;
2656                 else
2657                         contig = bio_end_sector(bio) == sector;
2658
2659                 if (prev_bio_flags != bio_flags || !contig ||
2660                     merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2661                     bio_add_page(bio, page, page_size, offset) < page_size) {
2662                         ret = submit_one_bio(rw, bio, mirror_num,
2663                                              prev_bio_flags);
2664                         if (ret < 0)
2665                                 return ret;
2666                         bio = NULL;
2667                 } else {
2668                         return 0;
2669                 }
2670         }
2671         if (this_compressed)
2672                 nr = BIO_MAX_PAGES;
2673         else
2674                 nr = bio_get_nr_vecs(bdev);
2675
2676         bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2677         if (!bio)
2678                 return -ENOMEM;
2679
2680         bio_add_page(bio, page, page_size, offset);
2681         bio->bi_end_io = end_io_func;
2682         bio->bi_private = tree;
2683
2684         if (bio_ret)
2685                 *bio_ret = bio;
2686         else
2687                 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2688
2689         return ret;
2690 }
2691
2692 static void attach_extent_buffer_page(struct extent_buffer *eb,
2693                                       struct page *page)
2694 {
2695         if (!PagePrivate(page)) {
2696                 SetPagePrivate(page);
2697                 page_cache_get(page);
2698                 set_page_private(page, (unsigned long)eb);
2699         } else {
2700                 WARN_ON(page->private != (unsigned long)eb);
2701         }
2702 }
2703
2704 void set_page_extent_mapped(struct page *page)
2705 {
2706         if (!PagePrivate(page)) {
2707                 SetPagePrivate(page);
2708                 page_cache_get(page);
2709                 set_page_private(page, EXTENT_PAGE_PRIVATE);
2710         }
2711 }
2712
2713 static struct extent_map *
2714 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2715                  u64 start, u64 len, get_extent_t *get_extent,
2716                  struct extent_map **em_cached)
2717 {
2718         struct extent_map *em;
2719
2720         if (em_cached && *em_cached) {
2721                 em = *em_cached;
2722                 if (em->in_tree && start >= em->start &&
2723                     start < extent_map_end(em)) {
2724                         atomic_inc(&em->refs);
2725                         return em;
2726                 }
2727
2728                 free_extent_map(em);
2729                 *em_cached = NULL;
2730         }
2731
2732         em = get_extent(inode, page, pg_offset, start, len, 0);
2733         if (em_cached && !IS_ERR_OR_NULL(em)) {
2734                 BUG_ON(*em_cached);
2735                 atomic_inc(&em->refs);
2736                 *em_cached = em;
2737         }
2738         return em;
2739 }
2740 /*
2741  * basic readpage implementation.  Locked extent state structs are inserted
2742  * into the tree that are removed when the IO is done (by the end_io
2743  * handlers)
2744  * XXX JDM: This needs looking at to ensure proper page locking
2745  */
2746 static int __do_readpage(struct extent_io_tree *tree,
2747                          struct page *page,
2748                          get_extent_t *get_extent,
2749                          struct extent_map **em_cached,
2750                          struct bio **bio, int mirror_num,
2751                          unsigned long *bio_flags, int rw)
2752 {
2753         struct inode *inode = page->mapping->host;
2754         u64 start = page_offset(page);
2755         u64 page_end = start + PAGE_CACHE_SIZE - 1;
2756         u64 end;
2757         u64 cur = start;
2758         u64 extent_offset;
2759         u64 last_byte = i_size_read(inode);
2760         u64 block_start;
2761         u64 cur_end;
2762         sector_t sector;
2763         struct extent_map *em;
2764         struct block_device *bdev;
2765         int ret;
2766         int nr = 0;
2767         int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2768         size_t pg_offset = 0;
2769         size_t iosize;
2770         size_t disk_io_size;
2771         size_t blocksize = inode->i_sb->s_blocksize;
2772         unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2773
2774         set_page_extent_mapped(page);
2775
2776         end = page_end;
2777         if (!PageUptodate(page)) {
2778                 if (cleancache_get_page(page) == 0) {
2779                         BUG_ON(blocksize != PAGE_SIZE);
2780                         unlock_extent(tree, start, end);
2781                         goto out;
2782                 }
2783         }
2784
2785         if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2786                 char *userpage;
2787                 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2788
2789                 if (zero_offset) {
2790                         iosize = PAGE_CACHE_SIZE - zero_offset;
2791                         userpage = kmap_atomic(page);
2792                         memset(userpage + zero_offset, 0, iosize);
2793                         flush_dcache_page(page);
2794                         kunmap_atomic(userpage);
2795                 }
2796         }
2797         while (cur <= end) {
2798                 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2799
2800                 if (cur >= last_byte) {
2801                         char *userpage;
2802                         struct extent_state *cached = NULL;
2803
2804                         iosize = PAGE_CACHE_SIZE - pg_offset;
2805                         userpage = kmap_atomic(page);
2806                         memset(userpage + pg_offset, 0, iosize);
2807                         flush_dcache_page(page);
2808                         kunmap_atomic(userpage);
2809                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2810                                             &cached, GFP_NOFS);
2811                         if (!parent_locked)
2812                                 unlock_extent_cached(tree, cur,
2813                                                      cur + iosize - 1,
2814                                                      &cached, GFP_NOFS);
2815                         break;
2816                 }
2817                 em = __get_extent_map(inode, page, pg_offset, cur,
2818                                       end - cur + 1, get_extent, em_cached);
2819                 if (IS_ERR_OR_NULL(em)) {
2820                         SetPageError(page);
2821                         if (!parent_locked)
2822                                 unlock_extent(tree, cur, end);
2823                         break;
2824                 }
2825                 extent_offset = cur - em->start;
2826                 BUG_ON(extent_map_end(em) <= cur);
2827                 BUG_ON(end < cur);
2828
2829                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2830                         this_bio_flag |= EXTENT_BIO_COMPRESSED;
2831                         extent_set_compress_type(&this_bio_flag,
2832                                                  em->compress_type);
2833                 }
2834
2835                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2836                 cur_end = min(extent_map_end(em) - 1, end);
2837                 iosize = ALIGN(iosize, blocksize);
2838                 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2839                         disk_io_size = em->block_len;
2840                         sector = em->block_start >> 9;
2841                 } else {
2842                         sector = (em->block_start + extent_offset) >> 9;
2843                         disk_io_size = iosize;
2844                 }
2845                 bdev = em->bdev;
2846                 block_start = em->block_start;
2847                 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2848                         block_start = EXTENT_MAP_HOLE;
2849                 free_extent_map(em);
2850                 em = NULL;
2851
2852                 /* we've found a hole, just zero and go on */
2853                 if (block_start == EXTENT_MAP_HOLE) {
2854                         char *userpage;
2855                         struct extent_state *cached = NULL;
2856
2857                         userpage = kmap_atomic(page);
2858                         memset(userpage + pg_offset, 0, iosize);
2859                         flush_dcache_page(page);
2860                         kunmap_atomic(userpage);
2861
2862                         set_extent_uptodate(tree, cur, cur + iosize - 1,
2863                                             &cached, GFP_NOFS);
2864                         unlock_extent_cached(tree, cur, cur + iosize - 1,
2865                                              &cached, GFP_NOFS);
2866                         cur = cur + iosize;
2867                         pg_offset += iosize;
2868                         continue;
2869                 }
2870                 /* the get_extent function already copied into the page */
2871                 if (test_range_bit(tree, cur, cur_end,
2872                                    EXTENT_UPTODATE, 1, NULL)) {
2873                         check_page_uptodate(tree, page);
2874                         if (!parent_locked)
2875                                 unlock_extent(tree, cur, cur + iosize - 1);
2876                         cur = cur + iosize;
2877                         pg_offset += iosize;
2878                         continue;
2879                 }
2880                 /* we have an inline extent but it didn't get marked up
2881                  * to date.  Error out
2882                  */
2883                 if (block_start == EXTENT_MAP_INLINE) {
2884                         SetPageError(page);
2885                         if (!parent_locked)
2886                                 unlock_extent(tree, cur, cur + iosize - 1);
2887                         cur = cur + iosize;
2888                         pg_offset += iosize;
2889                         continue;
2890                 }
2891
2892                 pnr -= page->index;
2893                 ret = submit_extent_page(rw, tree, page,
2894                                          sector, disk_io_size, pg_offset,
2895                                          bdev, bio, pnr,
2896                                          end_bio_extent_readpage, mirror_num,
2897                                          *bio_flags,
2898                                          this_bio_flag);
2899                 if (!ret) {
2900                         nr++;
2901                         *bio_flags = this_bio_flag;
2902                 } else {
2903                         SetPageError(page);
2904                         if (!parent_locked)
2905                                 unlock_extent(tree, cur, cur + iosize - 1);
2906                 }
2907                 cur = cur + iosize;
2908                 pg_offset += iosize;
2909         }
2910 out:
2911         if (!nr) {
2912                 if (!PageError(page))
2913                         SetPageUptodate(page);
2914                 unlock_page(page);
2915         }
2916         return 0;
2917 }
2918
2919 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
2920                                              struct page *pages[], int nr_pages,
2921                                              u64 start, u64 end,
2922                                              get_extent_t *get_extent,
2923                                              struct extent_map **em_cached,
2924                                              struct bio **bio, int mirror_num,
2925                                              unsigned long *bio_flags, int rw)
2926 {
2927         struct inode *inode;
2928         struct btrfs_ordered_extent *ordered;
2929         int index;
2930
2931         inode = pages[0]->mapping->host;
2932         while (1) {
2933                 lock_extent(tree, start, end);
2934                 ordered = btrfs_lookup_ordered_range(inode, start,
2935                                                      end - start + 1);
2936                 if (!ordered)
2937                         break;
2938                 unlock_extent(tree, start, end);
2939                 btrfs_start_ordered_extent(inode, ordered, 1);
2940                 btrfs_put_ordered_extent(ordered);
2941         }
2942
2943         for (index = 0; index < nr_pages; index++) {
2944                 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
2945                               mirror_num, bio_flags, rw);
2946                 page_cache_release(pages[index]);
2947         }
2948 }
2949
2950 static void __extent_readpages(struct extent_io_tree *tree,
2951                                struct page *pages[],
2952                                int nr_pages, get_extent_t *get_extent,
2953                                struct extent_map **em_cached,
2954                                struct bio **bio, int mirror_num,
2955                                unsigned long *bio_flags, int rw)
2956 {
2957         u64 start = 0;
2958         u64 end = 0;
2959         u64 page_start;
2960         int index;
2961         int first_index = 0;
2962
2963         for (index = 0; index < nr_pages; index++) {
2964                 page_start = page_offset(pages[index]);
2965                 if (!end) {
2966                         start = page_start;
2967                         end = start + PAGE_CACHE_SIZE - 1;
2968                         first_index = index;
2969                 } else if (end + 1 == page_start) {
2970                         end += PAGE_CACHE_SIZE;
2971                 } else {
2972                         __do_contiguous_readpages(tree, &pages[first_index],
2973                                                   index - first_index, start,
2974                                                   end, get_extent, em_cached,
2975                                                   bio, mirror_num, bio_flags,
2976                                                   rw);
2977                         start = page_start;
2978                         end = start + PAGE_CACHE_SIZE - 1;
2979                         first_index = index;
2980                 }
2981         }
2982
2983         if (end)
2984                 __do_contiguous_readpages(tree, &pages[first_index],
2985                                           index - first_index, start,
2986                                           end, get_extent, em_cached, bio,
2987                                           mirror_num, bio_flags, rw);
2988 }
2989
2990 static int __extent_read_full_page(struct extent_io_tree *tree,
2991                                    struct page *page,
2992                                    get_extent_t *get_extent,
2993                                    struct bio **bio, int mirror_num,
2994                                    unsigned long *bio_flags, int rw)
2995 {
2996         struct inode *inode = page->mapping->host;
2997         struct btrfs_ordered_extent *ordered;
2998         u64 start = page_offset(page);
2999         u64 end = start + PAGE_CACHE_SIZE - 1;
3000         int ret;
3001
3002         while (1) {
3003                 lock_extent(tree, start, end);
3004                 ordered = btrfs_lookup_ordered_extent(inode, start);
3005                 if (!ordered)
3006                         break;
3007                 unlock_extent(tree, start, end);
3008                 btrfs_start_ordered_extent(inode, ordered, 1);
3009                 btrfs_put_ordered_extent(ordered);
3010         }
3011
3012         ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3013                             bio_flags, rw);
3014         return ret;
3015 }
3016
3017 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3018                             get_extent_t *get_extent, int mirror_num)
3019 {
3020         struct bio *bio = NULL;
3021         unsigned long bio_flags = 0;
3022         int ret;
3023
3024         ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3025                                       &bio_flags, READ);
3026         if (bio)
3027                 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3028         return ret;
3029 }
3030
3031 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3032                                  get_extent_t *get_extent, int mirror_num)
3033 {
3034         struct bio *bio = NULL;
3035         unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3036         int ret;
3037
3038         ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3039                                       &bio_flags, READ);
3040         if (bio)
3041                 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3042         return ret;
3043 }
3044
3045 static noinline void update_nr_written(struct page *page,
3046                                       struct writeback_control *wbc,
3047                                       unsigned long nr_written)
3048 {
3049         wbc->nr_to_write -= nr_written;
3050         if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3051             wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3052                 page->mapping->writeback_index = page->index + nr_written;
3053 }
3054
3055 /*
3056  * the writepage semantics are similar to regular writepage.  extent
3057  * records are inserted to lock ranges in the tree, and as dirty areas
3058  * are found, they are marked writeback.  Then the lock bits are removed
3059  * and the end_io handler clears the writeback ranges
3060  */
3061 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3062                               void *data)
3063 {
3064         struct inode *inode = page->mapping->host;
3065         struct extent_page_data *epd = data;
3066         struct extent_io_tree *tree = epd->tree;
3067         u64 start = page_offset(page);
3068         u64 delalloc_start;
3069         u64 page_end = start + PAGE_CACHE_SIZE - 1;
3070         u64 end;
3071         u64 cur = start;
3072         u64 extent_offset;
3073         u64 last_byte = i_size_read(inode);
3074         u64 block_start;
3075         u64 iosize;
3076         sector_t sector;
3077         struct extent_state *cached_state = NULL;
3078         struct extent_map *em;
3079         struct block_device *bdev;
3080         int ret;
3081         int nr = 0;
3082         size_t pg_offset = 0;
3083         size_t blocksize;
3084         loff_t i_size = i_size_read(inode);
3085         unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3086         u64 nr_delalloc;
3087         u64 delalloc_end;
3088         int page_started;
3089         int compressed;
3090         int write_flags;
3091         unsigned long nr_written = 0;
3092         bool fill_delalloc = true;
3093
3094         if (wbc->sync_mode == WB_SYNC_ALL)
3095                 write_flags = WRITE_SYNC;
3096         else
3097                 write_flags = WRITE;
3098
3099         trace___extent_writepage(page, inode, wbc);
3100
3101         WARN_ON(!PageLocked(page));
3102
3103         ClearPageError(page);
3104
3105         pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3106         if (page->index > end_index ||
3107            (page->index == end_index && !pg_offset)) {
3108                 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3109                 unlock_page(page);
3110                 return 0;
3111         }
3112
3113         if (page->index == end_index) {
3114                 char *userpage;
3115
3116                 userpage = kmap_atomic(page);
3117                 memset(userpage + pg_offset, 0,
3118                        PAGE_CACHE_SIZE - pg_offset);
3119                 kunmap_atomic(userpage);
3120                 flush_dcache_page(page);
3121         }
3122         pg_offset = 0;
3123
3124         set_page_extent_mapped(page);
3125
3126         if (!tree->ops || !tree->ops->fill_delalloc)
3127                 fill_delalloc = false;
3128
3129         delalloc_start = start;
3130         delalloc_end = 0;
3131         page_started = 0;
3132         if (!epd->extent_locked && fill_delalloc) {
3133                 u64 delalloc_to_write = 0;
3134                 /*
3135                  * make sure the wbc mapping index is at least updated
3136                  * to this page.
3137                  */
3138                 update_nr_written(page, wbc, 0);
3139
3140                 while (delalloc_end < page_end) {
3141                         nr_delalloc = find_lock_delalloc_range(inode, tree,
3142                                                        page,
3143                                                        &delalloc_start,
3144                                                        &delalloc_end,
3145                                                        128 * 1024 * 1024);
3146                         if (nr_delalloc == 0) {
3147                                 delalloc_start = delalloc_end + 1;
3148                                 continue;
3149                         }
3150                         ret = tree->ops->fill_delalloc(inode, page,
3151                                                        delalloc_start,
3152                                                        delalloc_end,
3153                                                        &page_started,
3154                                                        &nr_written);
3155                         /* File system has been set read-only */
3156                         if (ret) {
3157                                 SetPageError(page);
3158                                 goto done;
3159                         }
3160                         /*
3161                          * delalloc_end is already one less than the total
3162                          * length, so we don't subtract one from
3163                          * PAGE_CACHE_SIZE
3164                          */
3165                         delalloc_to_write += (delalloc_end - delalloc_start +
3166                                               PAGE_CACHE_SIZE) >>
3167                                               PAGE_CACHE_SHIFT;
3168                         delalloc_start = delalloc_end + 1;
3169                 }
3170                 if (wbc->nr_to_write < delalloc_to_write) {
3171                         int thresh = 8192;
3172
3173                         if (delalloc_to_write < thresh * 2)
3174                                 thresh = delalloc_to_write;
3175                         wbc->nr_to_write = min_t(u64, delalloc_to_write,
3176                                                  thresh);
3177                 }
3178
3179                 /* did the fill delalloc function already unlock and start
3180                  * the IO?
3181                  */
3182                 if (page_started) {
3183                         ret = 0;
3184                         /*
3185                          * we've unlocked the page, so we can't update
3186                          * the mapping's writeback index, just update
3187                          * nr_to_write.
3188                          */
3189                         wbc->nr_to_write -= nr_written;
3190                         goto done_unlocked;
3191                 }
3192         }
3193         if (tree->ops && tree->ops->writepage_start_hook) {
3194                 ret = tree->ops->writepage_start_hook(page, start,
3195                                                       page_end);
3196                 if (ret) {
3197                         /* Fixup worker will requeue */
3198                         if (ret == -EBUSY)
3199                                 wbc->pages_skipped++;
3200                         else
3201                                 redirty_page_for_writepage(wbc, page);
3202                         update_nr_written(page, wbc, nr_written);
3203                         unlock_page(page);
3204                         ret = 0;
3205                         goto done_unlocked;
3206                 }
3207         }
3208
3209         /*
3210          * we don't want to touch the inode after unlocking the page,
3211          * so we update the mapping writeback index now
3212          */
3213         update_nr_written(page, wbc, nr_written + 1);
3214
3215         end = page_end;
3216         if (last_byte <= start) {
3217                 if (tree->ops && tree->ops->writepage_end_io_hook)
3218                         tree->ops->writepage_end_io_hook(page, start,
3219                                                          page_end, NULL, 1);
3220                 goto done;
3221         }
3222
3223         blocksize = inode->i_sb->s_blocksize;
3224
3225         while (cur <= end) {
3226                 if (cur >= last_byte) {
3227                         if (tree->ops && tree->ops->writepage_end_io_hook)
3228                                 tree->ops->writepage_end_io_hook(page, cur,
3229                                                          page_end, NULL, 1);
3230                         break;
3231                 }
3232                 em = epd->get_extent(inode, page, pg_offset, cur,
3233                                      end - cur + 1, 1);
3234                 if (IS_ERR_OR_NULL(em)) {
3235                         SetPageError(page);
3236                         break;
3237                 }
3238
3239                 extent_offset = cur - em->start;
3240                 BUG_ON(extent_map_end(em) <= cur);
3241                 BUG_ON(end < cur);
3242                 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3243                 iosize = ALIGN(iosize, blocksize);
3244                 sector = (em->block_start + extent_offset) >> 9;
3245                 bdev = em->bdev;
3246                 block_start = em->block_start;
3247                 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3248                 free_extent_map(em);
3249                 em = NULL;
3250
3251                 /*
3252                  * compressed and inline extents are written through other
3253                  * paths in the FS
3254                  */
3255                 if (compressed || block_start == EXTENT_MAP_HOLE ||
3256                     block_start == EXTENT_MAP_INLINE) {
3257                         /*
3258                          * end_io notification does not happen here for
3259                          * compressed extents
3260                          */
3261                         if (!compressed && tree->ops &&
3262                             tree->ops->writepage_end_io_hook)
3263                                 tree->ops->writepage_end_io_hook(page, cur,
3264                                                          cur + iosize - 1,
3265                                                          NULL, 1);
3266                         else if (compressed) {
3267                                 /* we don't want to end_page_writeback on
3268                                  * a compressed extent.  this happens
3269                                  * elsewhere
3270                                  */
3271                                 nr++;
3272                         }
3273
3274                         cur += iosize;
3275                         pg_offset += iosize;
3276                         continue;
3277                 }
3278                 /* leave this out until we have a page_mkwrite call */
3279                 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
3280                                    EXTENT_DIRTY, 0, NULL)) {
3281                         cur = cur + iosize;
3282                         pg_offset += iosize;
3283                         continue;
3284                 }
3285
3286                 if (tree->ops && tree->ops->writepage_io_hook) {
3287                         ret = tree->ops->writepage_io_hook(page, cur,
3288                                                 cur + iosize - 1);
3289                 } else {
3290                         ret = 0;
3291                 }
3292                 if (ret) {
3293                         SetPageError(page);
3294                 } else {
3295                         unsigned long max_nr = end_index + 1;
3296
3297                         set_range_writeback(tree, cur, cur + iosize - 1);
3298                         if (!PageWriteback(page)) {
3299                                 printk(KERN_ERR "btrfs warning page %lu not "
3300                                        "writeback, cur %llu end %llu\n",
3301                                        page->index, (unsigned long long)cur,
3302                                        (unsigned long long)end);
3303                         }
3304
3305                         ret = submit_extent_page(write_flags, tree, page,
3306                                                  sector, iosize, pg_offset,
3307                                                  bdev, &epd->bio, max_nr,
3308                                                  end_bio_extent_writepage,
3309                                                  0, 0, 0);
3310                         if (ret)
3311                                 SetPageError(page);
3312                 }
3313                 cur = cur + iosize;
3314                 pg_offset += iosize;
3315                 nr++;
3316         }
3317 done:
3318         if (nr == 0) {
3319                 /* make sure the mapping tag for page dirty gets cleared */
3320                 set_page_writeback(page);
3321                 end_page_writeback(page);
3322         }
3323         unlock_page(page);
3324
3325 done_unlocked:
3326
3327         /* drop our reference on any cached states */
3328         free_extent_state(cached_state);
3329         return 0;
3330 }
3331
3332 static int eb_wait(void *word)
3333 {
3334         io_schedule();
3335         return 0;
3336 }
3337
3338 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3339 {
3340         wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3341                     TASK_UNINTERRUPTIBLE);
3342 }
3343
3344 static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3345                                      struct btrfs_fs_info *fs_info,
3346                                      struct extent_page_data *epd)
3347 {
3348         unsigned long i, num_pages;
3349         int flush = 0;
3350         int ret = 0;
3351
3352         if (!btrfs_try_tree_write_lock(eb)) {
3353                 flush = 1;
3354                 flush_write_bio(epd);
3355                 btrfs_tree_lock(eb);
3356         }
3357
3358         if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3359                 btrfs_tree_unlock(eb);
3360                 if (!epd->sync_io)
3361                         return 0;
3362                 if (!flush) {
3363                         flush_write_bio(epd);
3364                         flush = 1;
3365                 }
3366                 while (1) {
3367                         wait_on_extent_buffer_writeback(eb);
3368                         btrfs_tree_lock(eb);
3369                         if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3370                                 break;
3371                         btrfs_tree_unlock(eb);
3372                 }
3373         }
3374
3375         /*
3376          * We need to do this to prevent races in people who check if the eb is
3377          * under IO since we can end up having no IO bits set for a short period
3378          * of time.
3379          */
3380         spin_lock(&eb->refs_lock);
3381         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3382                 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3383                 spin_unlock(&eb->refs_lock);
3384                 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3385                 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3386                                      -eb->len,
3387                                      fs_info->dirty_metadata_batch);
3388                 ret = 1;
3389         } else {
3390                 spin_unlock(&eb->refs_lock);
3391         }
3392
3393         btrfs_tree_unlock(eb);
3394
3395         if (!ret)
3396                 return ret;
3397
3398         num_pages = num_extent_pages(eb->start, eb->len);
3399         for (i = 0; i < num_pages; i++) {
3400                 struct page *p = extent_buffer_page(eb, i);
3401
3402                 if (!trylock_page(p)) {
3403                         if (!flush) {
3404                                 flush_write_bio(epd);
3405                                 flush = 1;
3406                         }
3407                         lock_page(p);
3408                 }
3409         }
3410
3411         return ret;
3412 }
3413
3414 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3415 {
3416         clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3417         smp_mb__after_clear_bit();
3418         wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3419 }
3420
3421 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3422 {
3423         int uptodate = err == 0;
3424         struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3425         struct extent_buffer *eb;
3426         int done;
3427
3428         do {
3429                 struct page *page = bvec->bv_page;
3430
3431                 bvec--;
3432                 eb = (struct extent_buffer *)page->private;
3433                 BUG_ON(!eb);
3434                 done = atomic_dec_and_test(&eb->io_pages);
3435
3436                 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3437                         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3438                         ClearPageUptodate(page);
3439                         SetPageError(page);
3440                 }
3441
3442                 end_page_writeback(page);
3443
3444                 if (!done)
3445                         continue;
3446
3447                 end_extent_buffer_writeback(eb);
3448         } while (bvec >= bio->bi_io_vec);
3449
3450         bio_put(bio);
3451
3452 }
3453
3454 static int write_one_eb(struct extent_buffer *eb,
3455                         struct btrfs_fs_info *fs_info,
3456                         struct writeback_control *wbc,
3457                         struct extent_page_data *epd)
3458 {
3459         struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3460         u64 offset = eb->start;
3461         unsigned long i, num_pages;
3462         unsigned long bio_flags = 0;
3463         int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3464         int ret = 0;
3465
3466         clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3467         num_pages = num_extent_pages(eb->start, eb->len);
3468         atomic_set(&eb->io_pages, num_pages);
3469         if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3470                 bio_flags = EXTENT_BIO_TREE_LOG;
3471
3472         for (i = 0; i < num_pages; i++) {
3473                 struct page *p = extent_buffer_page(eb, i);
3474
3475                 clear_page_dirty_for_io(p);
3476                 set_page_writeback(p);
3477                 ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3478                                          PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3479                                          -1, end_bio_extent_buffer_writepage,
3480                                          0, epd->bio_flags, bio_flags);
3481                 epd->bio_flags = bio_flags;
3482                 if (ret) {
3483                         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3484                         SetPageError(p);
3485                         if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3486                                 end_extent_buffer_writeback(eb);
3487                         ret = -EIO;
3488                         break;
3489                 }
3490                 offset += PAGE_CACHE_SIZE;
3491                 update_nr_written(p, wbc, 1);
3492                 unlock_page(p);
3493         }
3494
3495         if (unlikely(ret)) {
3496                 for (; i < num_pages; i++) {
3497                         struct page *p = extent_buffer_page(eb, i);
3498                         unlock_page(p);
3499                 }
3500         }
3501
3502         return ret;
3503 }
3504
3505 int btree_write_cache_pages(struct address_space *mapping,
3506                                    struct writeback_control *wbc)
3507 {
3508         struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3509         struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3510         struct extent_buffer *eb, *prev_eb = NULL;
3511         struct extent_page_data epd = {
3512                 .bio = NULL,
3513                 .tree = tree,
3514                 .extent_locked = 0,
3515                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3516                 .bio_flags = 0,
3517         };
3518         int ret = 0;
3519         int done = 0;
3520         int nr_to_write_done = 0;
3521         struct pagevec pvec;
3522         int nr_pages;
3523         pgoff_t index;
3524         pgoff_t end;            /* Inclusive */
3525         int scanned = 0;
3526         int tag;
3527
3528         pagevec_init(&pvec, 0);
3529         if (wbc->range_cyclic) {
3530                 index = mapping->writeback_index; /* Start from prev offset */
3531                 end = -1;
3532         } else {
3533                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3534                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3535                 scanned = 1;
3536         }
3537         if (wbc->sync_mode == WB_SYNC_ALL)
3538                 tag = PAGECACHE_TAG_TOWRITE;
3539         else
3540                 tag = PAGECACHE_TAG_DIRTY;
3541 retry:
3542         if (wbc->sync_mode == WB_SYNC_ALL)
3543                 tag_pages_for_writeback(mapping, index, end);
3544         while (!done && !nr_to_write_done && (index <= end) &&
3545                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3546                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3547                 unsigned i;
3548
3549                 scanned = 1;
3550                 for (i = 0; i < nr_pages; i++) {
3551                         struct page *page = pvec.pages[i];
3552
3553                         if (!PagePrivate(page))
3554                                 continue;
3555
3556                         if (!wbc->range_cyclic && page->index > end) {
3557                                 done = 1;
3558                                 break;
3559                         }
3560
3561                         spin_lock(&mapping->private_lock);
3562                         if (!PagePrivate(page)) {
3563                                 spin_unlock(&mapping->private_lock);
3564                                 continue;
3565                         }
3566
3567                         eb = (struct extent_buffer *)page->private;
3568
3569                         /*
3570                          * Shouldn't happen and normally this would be a BUG_ON
3571                          * but no sense in crashing the users box for something
3572                          * we can survive anyway.
3573                          */
3574                         if (!eb) {
3575                                 spin_unlock(&mapping->private_lock);
3576                                 WARN_ON(1);
3577                                 continue;
3578                         }
3579
3580                         if (eb == prev_eb) {
3581                                 spin_unlock(&mapping->private_lock);
3582                                 continue;
3583                         }
3584
3585                         ret = atomic_inc_not_zero(&eb->refs);
3586                         spin_unlock(&mapping->private_lock);
3587                         if (!ret)
3588                                 continue;
3589
3590                         prev_eb = eb;
3591                         ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3592                         if (!ret) {
3593                                 free_extent_buffer(eb);
3594                                 continue;
3595                         }
3596
3597                         ret = write_one_eb(eb, fs_info, wbc, &epd);
3598                         if (ret) {
3599                                 done = 1;
3600                                 free_extent_buffer(eb);
3601                                 break;
3602                         }
3603                         free_extent_buffer(eb);
3604
3605                         /*
3606                          * the filesystem may choose to bump up nr_to_write.
3607                          * We have to make sure to honor the new nr_to_write
3608                          * at any time
3609                          */
3610                         nr_to_write_done = wbc->nr_to_write <= 0;
3611                 }
3612                 pagevec_release(&pvec);
3613                 cond_resched();
3614         }
3615         if (!scanned && !done) {
3616                 /*
3617                  * We hit the last page and there is more work to be done: wrap
3618                  * back to the start of the file
3619                  */
3620                 scanned = 1;
3621                 index = 0;
3622                 goto retry;
3623         }
3624         flush_write_bio(&epd);
3625         return ret;
3626 }
3627
3628 /**
3629  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3630  * @mapping: address space structure to write
3631  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3632  * @writepage: function called for each page
3633  * @data: data passed to writepage function
3634  *
3635  * If a page is already under I/O, write_cache_pages() skips it, even
3636  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3637  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3638  * and msync() need to guarantee that all the data which was dirty at the time
3639  * the call was made get new I/O started against them.  If wbc->sync_mode is
3640  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3641  * existing IO to complete.
3642  */
3643 static int extent_write_cache_pages(struct extent_io_tree *tree,
3644                              struct address_space *mapping,
3645                              struct writeback_control *wbc,
3646                              writepage_t writepage, void *data,
3647                              void (*flush_fn)(void *))
3648 {
3649         struct inode *inode = mapping->host;
3650         int ret = 0;
3651         int done = 0;
3652         int nr_to_write_done = 0;
3653         struct pagevec pvec;
3654         int nr_pages;
3655         pgoff_t index;
3656         pgoff_t end;            /* Inclusive */
3657         int scanned = 0;
3658         int tag;
3659
3660         /*
3661          * We have to hold onto the inode so that ordered extents can do their
3662          * work when the IO finishes.  The alternative to this is failing to add
3663          * an ordered extent if the igrab() fails there and that is a huge pain
3664          * to deal with, so instead just hold onto the inode throughout the
3665          * writepages operation.  If it fails here we are freeing up the inode
3666          * anyway and we'd rather not waste our time writing out stuff that is
3667          * going to be truncated anyway.
3668          */
3669         if (!igrab(inode))
3670                 return 0;
3671
3672         pagevec_init(&pvec, 0);
3673         if (wbc->range_cyclic) {
3674                 index = mapping->writeback_index; /* Start from prev offset */
3675                 end = -1;
3676         } else {
3677                 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3678                 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3679                 scanned = 1;
3680         }
3681         if (wbc->sync_mode == WB_SYNC_ALL)
3682                 tag = PAGECACHE_TAG_TOWRITE;
3683         else
3684                 tag = PAGECACHE_TAG_DIRTY;
3685 retry:
3686         if (wbc->sync_mode == WB_SYNC_ALL)
3687                 tag_pages_for_writeback(mapping, index, end);
3688         while (!done && !nr_to_write_done && (index <= end) &&
3689                (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3690                         min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3691                 unsigned i;
3692
3693                 scanned = 1;
3694                 for (i = 0; i < nr_pages; i++) {
3695                         struct page *page = pvec.pages[i];
3696
3697                         /*
3698                          * At this point we hold neither mapping->tree_lock nor
3699                          * lock on the page itself: the page may be truncated or
3700                          * invalidated (changing page->mapping to NULL), or even
3701                          * swizzled back from swapper_space to tmpfs file
3702                          * mapping
3703                          */
3704                         if (!trylock_page(page)) {
3705                                 flush_fn(data);
3706                                 lock_page(page);
3707                         }
3708
3709                         if (unlikely(page->mapping != mapping)) {
3710                                 unlock_page(page);
3711                                 continue;
3712                         }
3713
3714                         if (!wbc->range_cyclic && page->index > end) {
3715                                 done = 1;
3716                                 unlock_page(page);
3717                                 continue;
3718                         }
3719
3720                         if (wbc->sync_mode != WB_SYNC_NONE) {
3721                                 if (PageWriteback(page))
3722                                         flush_fn(data);
3723                                 wait_on_page_writeback(page);
3724                         }
3725
3726                         if (PageWriteback(page) ||
3727                             !clear_page_dirty_for_io(page)) {
3728                                 unlock_page(page);
3729                                 continue;
3730                         }
3731
3732                         ret = (*writepage)(page, wbc, data);
3733
3734                         if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3735                                 unlock_page(page);
3736                                 ret = 0;
3737                         }
3738                         if (ret)
3739                                 done = 1;
3740
3741                         /*
3742                          * the filesystem may choose to bump up nr_to_write.
3743                          * We have to make sure to honor the new nr_to_write
3744                          * at any time
3745                          */
3746                         nr_to_write_done = wbc->nr_to_write <= 0;
3747                 }
3748                 pagevec_release(&pvec);
3749                 cond_resched();
3750         }
3751         if (!scanned && !done) {
3752                 /*
3753                  * We hit the last page and there is more work to be done: wrap
3754                  * back to the start of the file
3755                  */
3756                 scanned = 1;
3757                 index = 0;
3758                 goto retry;
3759         }
3760         btrfs_add_delayed_iput(inode);
3761         return ret;
3762 }
3763
3764 static void flush_epd_write_bio(struct extent_page_data *epd)
3765 {
3766         if (epd->bio) {
3767                 int rw = WRITE;
3768                 int ret;
3769
3770                 if (epd->sync_io)
3771                         rw = WRITE_SYNC;
3772
3773                 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
3774                 BUG_ON(ret < 0); /* -ENOMEM */
3775                 epd->bio = NULL;
3776         }
3777 }
3778
3779 static noinline void flush_write_bio(void *data)
3780 {
3781         struct extent_page_data *epd = data;
3782         flush_epd_write_bio(epd);
3783 }
3784
3785 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3786                           get_extent_t *get_extent,
3787                           struct writeback_control *wbc)
3788 {
3789         int ret;
3790         struct extent_page_data epd = {
3791                 .bio = NULL,
3792                 .tree = tree,
3793                 .get_extent = get_extent,
3794                 .extent_locked = 0,
3795                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3796                 .bio_flags = 0,
3797         };
3798
3799         ret = __extent_writepage(page, wbc, &epd);
3800
3801         flush_epd_write_bio(&epd);
3802         return ret;
3803 }
3804
3805 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3806                               u64 start, u64 end, get_extent_t *get_extent,
3807                               int mode)
3808 {
3809         int ret = 0;
3810         struct address_space *mapping = inode->i_mapping;
3811         struct page *page;
3812         unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3813                 PAGE_CACHE_SHIFT;
3814
3815         struct extent_page_data epd = {
3816                 .bio = NULL,
3817                 .tree = tree,
3818                 .get_extent = get_extent,
3819                 .extent_locked = 1,
3820                 .sync_io = mode == WB_SYNC_ALL,
3821                 .bio_flags = 0,
3822         };
3823         struct writeback_control wbc_writepages = {
3824                 .sync_mode      = mode,
3825                 .nr_to_write    = nr_pages * 2,
3826                 .range_start    = start,
3827                 .range_end      = end + 1,
3828         };
3829
3830         while (start <= end) {
3831                 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3832                 if (clear_page_dirty_for_io(page))
3833                         ret = __extent_writepage(page, &wbc_writepages, &epd);
3834                 else {
3835                         if (tree->ops && tree->ops->writepage_end_io_hook)
3836                                 tree->ops->writepage_end_io_hook(page, start,
3837                                                  start + PAGE_CACHE_SIZE - 1,
3838                                                  NULL, 1);
3839                         unlock_page(page);
3840                 }
3841                 page_cache_release(page);
3842                 start += PAGE_CACHE_SIZE;
3843         }
3844
3845         flush_epd_write_bio(&epd);
3846         return ret;
3847 }
3848
3849 int extent_writepages(struct extent_io_tree *tree,
3850                       struct address_space *mapping,
3851                       get_extent_t *get_extent,
3852                       struct writeback_control *wbc)
3853 {
3854         int ret = 0;
3855         struct extent_page_data epd = {
3856                 .bio = NULL,
3857                 .tree = tree,
3858                 .get_extent = get_extent,
3859                 .extent_locked = 0,
3860                 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3861                 .bio_flags = 0,
3862         };
3863
3864         ret = extent_write_cache_pages(tree, mapping, wbc,
3865                                        __extent_writepage, &epd,
3866                                        flush_write_bio);
3867         flush_epd_write_bio(&epd);
3868         return ret;
3869 }
3870
3871 int extent_readpages(struct extent_io_tree *tree,
3872                      struct address_space *mapping,
3873                      struct list_head *pages, unsigned nr_pages,
3874                      get_extent_t get_extent)
3875 {
3876         struct bio *bio = NULL;
3877         unsigned page_idx;
3878         unsigned long bio_flags = 0;
3879         struct page *pagepool[16];
3880         struct page *page;
3881         struct extent_map *em_cached = NULL;
3882         int nr = 0;
3883
3884         for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3885                 page = list_entry(pages->prev, struct page, lru);
3886
3887                 prefetchw(&page->flags);
3888                 list_del(&page->lru);
3889                 if (add_to_page_cache_lru(page, mapping,
3890                                         page->index, GFP_NOFS)) {
3891                         page_cache_release(page);
3892                         continue;
3893                 }
3894
3895                 pagepool[nr++] = page;
3896                 if (nr < ARRAY_SIZE(pagepool))
3897                         continue;
3898                 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
3899                                    &bio, 0, &bio_flags, READ);
3900                 nr = 0;
3901         }
3902         if (nr)
3903                 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
3904                                    &bio, 0, &bio_flags, READ);
3905
3906         if (em_cached)
3907                 free_extent_map(em_cached);
3908
3909         BUG_ON(!list_empty(pages));
3910         if (bio)
3911                 return submit_one_bio(READ, bio, 0, bio_flags);
3912         return 0;
3913 }
3914
3915 /*
3916  * basic invalidatepage code, this waits on any locked or writeback
3917  * ranges corresponding to the page, and then deletes any extent state
3918  * records from the tree
3919  */
3920 int extent_invalidatepage(struct extent_io_tree *tree,
3921                           struct page *page, unsigned long offset)
3922 {
3923         struct extent_state *cached_state = NULL;
3924         u64 start = page_offset(page);
3925         u64 end = start + PAGE_CACHE_SIZE - 1;
3926         size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3927
3928         start += ALIGN(offset, blocksize);
3929         if (start > end)
3930                 return 0;
3931
3932         lock_extent_bits(tree, start, end, 0, &cached_state);
3933         wait_on_page_writeback(page);
3934         clear_extent_bit(tree, start, end,
3935                          EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3936                          EXTENT_DO_ACCOUNTING,
3937                          1, 1, &cached_state, GFP_NOFS);
3938         return 0;
3939 }
3940
3941 /*
3942  * a helper for releasepage, this tests for areas of the page that
3943  * are locked or under IO and drops the related state bits if it is safe
3944  * to drop the page.
3945  */
3946 static int try_release_extent_state(struct extent_map_tree *map,
3947                                     struct extent_io_tree *tree,
3948                                     struct page *page, gfp_t mask)
3949 {
3950         u64 start = page_offset(page);
3951         u64 end = start + PAGE_CACHE_SIZE - 1;
3952         int ret = 1;
3953
3954         if (test_range_bit(tree, start, end,
3955                            EXTENT_IOBITS, 0, NULL))
3956                 ret = 0;
3957         else {
3958                 if ((mask & GFP_NOFS) == GFP_NOFS)
3959                         mask = GFP_NOFS;
3960                 /*
3961                  * at this point we can safely clear everything except the
3962                  * locked bit and the nodatasum bit
3963                  */
3964                 ret = clear_extent_bit(tree, start, end,
3965                                  ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3966                                  0, 0, NULL, mask);
3967
3968                 /* if clear_extent_bit failed for enomem reasons,
3969                  * we can't allow the release to continue.
3970                  */
3971                 if (ret < 0)
3972                         ret = 0;
3973                 else
3974                         ret = 1;
3975         }
3976         return ret;
3977 }
3978
3979 /*
3980  * a helper for releasepage.  As long as there are no locked extents
3981  * in the range corresponding to the page, both state records and extent
3982  * map records are removed
3983  */
3984 int try_release_extent_mapping(struct extent_map_tree *map,
3985                                struct extent_io_tree *tree, struct page *page,
3986                                gfp_t mask)
3987 {
3988         struct extent_map *em;
3989         u64 start = page_offset(page);
3990         u64 end = start + PAGE_CACHE_SIZE - 1;
3991
3992         if ((mask & __GFP_WAIT) &&
3993             page->mapping->host->i_size > 16 * 1024 * 1024) {
3994                 u64 len;
3995                 while (start <= end) {
3996                         len = end - start + 1;
3997                         write_lock(&map->lock);
3998                         em = lookup_extent_mapping(map, start, len);
3999                         if (!em) {
4000                                 write_unlock(&map->lock);
4001                                 break;
4002                         }
4003                         if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4004                             em->start != start) {
4005                                 write_unlock(&map->lock);
4006                                 free_extent_map(em);
4007                                 break;
4008                         }
4009                         if (!test_range_bit(tree, em->start,
4010                                             extent_map_end(em) - 1,
4011                                             EXTENT_LOCKED | EXTENT_WRITEBACK,
4012                                             0, NULL)) {
4013                                 remove_extent_mapping(map, em);
4014                                 /* once for the rb tree */
4015                                 free_extent_map(em);
4016                         }
4017                         start = extent_map_end(em);
4018                         write_unlock(&map->lock);
4019
4020                         /* once for us */
4021                         free_extent_map(em);
4022                 }
4023         }
4024         return try_release_extent_state(map, tree, page, mask);
4025 }
4026
4027 /*
4028  * helper function for fiemap, which doesn't want to see any holes.
4029  * This maps until we find something past 'last'
4030  */
4031 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4032                                                 u64 offset,
4033                                                 u64 last,
4034                                                 get_extent_t *get_extent)
4035 {
4036         u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4037         struct extent_map *em;
4038         u64 len;
4039
4040         if (offset >= last)
4041                 return NULL;
4042
4043         while(1) {
4044                 len = last - offset;
4045                 if (len == 0)
4046                         break;
4047                 len = ALIGN(len, sectorsize);
4048                 em = get_extent(inode, NULL, 0, offset, len, 0);
4049                 if (IS_ERR_OR_NULL(em))
4050                         return em;
4051
4052                 /* if this isn't a hole return it */
4053                 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4054                     em->block_start != EXTENT_MAP_HOLE) {
4055                         return em;
4056                 }
4057
4058                 /* this is a hole, advance to the next extent */
4059                 offset = extent_map_end(em);
4060                 free_extent_map(em);
4061                 if (offset >= last)
4062                         break;
4063         }
4064         return NULL;
4065 }
4066
4067 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4068                 __u64 start, __u64 len, get_extent_t *get_extent)
4069 {
4070         int ret = 0;
4071         u64 off = start;
4072         u64 max = start + len;
4073         u32 flags = 0;
4074         u32 found_type;
4075         u64 last;
4076         u64 last_for_get_extent = 0;
4077         u64 disko = 0;
4078         u64 isize = i_size_read(inode);
4079         struct btrfs_key found_key;
4080         struct extent_map *em = NULL;
4081         struct extent_state *cached_state = NULL;
4082         struct btrfs_path *path;
4083         struct btrfs_file_extent_item *item;
4084         int end = 0;
4085         u64 em_start = 0;
4086         u64 em_len = 0;
4087         u64 em_end = 0;
4088         unsigned long emflags;
4089
4090         if (len == 0)
4091                 return -EINVAL;
4092
4093         path = btrfs_alloc_path();
4094         if (!path)
4095                 return -ENOMEM;
4096         path->leave_spinning = 1;
4097
4098         start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
4099         len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
4100
4101         /*
4102          * lookup the last file extent.  We're not using i_size here
4103          * because there might be preallocation past i_size
4104          */
4105         ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
4106                                        path, btrfs_ino(inode), -1, 0);
4107         if (ret < 0) {
4108                 btrfs_free_path(path);
4109                 return ret;
4110         }
4111         WARN_ON(!ret);
4112         path->slots[0]--;
4113         item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4114                               struct btrfs_file_extent_item);
4115         btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4116         found_type = btrfs_key_type(&found_key);
4117
4118         /* No extents, but there might be delalloc bits */
4119         if (found_key.objectid != btrfs_ino(inode) ||
4120             found_type != BTRFS_EXTENT_DATA_KEY) {
4121                 /* have to trust i_size as the end */
4122                 last = (u64)-1;
4123                 last_for_get_extent = isize;
4124         } else {
4125                 /*
4126                  * remember the start of the last extent.  There are a
4127                  * bunch of different factors that go into the length of the
4128                  * extent, so its much less complex to remember where it started
4129                  */
4130                 last = found_key.offset;
4131                 last_for_get_extent = last + 1;
4132         }
4133         btrfs_free_path(path);
4134
4135         /*
4136          * we might have some extents allocated but more delalloc past those
4137          * extents.  so, we trust isize unless the start of the last extent is
4138          * beyond isize
4139          */
4140         if (last < isize) {
4141                 last = (u64)-1;
4142                 last_for_get_extent = isize;
4143         }
4144
4145         lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4146                          &cached_state);
4147
4148         em = get_extent_skip_holes(inode, start, last_for_get_extent,
4149                                    get_extent);
4150         if (!em)
4151                 goto out;
4152         if (IS_ERR(em)) {
4153                 ret = PTR_ERR(em);
4154                 goto out;
4155         }
4156
4157         while (!end) {
4158                 u64 offset_in_extent = 0;
4159
4160                 /* break if the extent we found is outside the range */
4161                 if (em->start >= max || extent_map_end(em) < off)
4162                         break;
4163
4164                 /*
4165                  * get_extent may return an extent that starts before our
4166                  * requested range.  We have to make sure the ranges
4167                  * we return to fiemap always move forward and don't
4168                  * overlap, so adjust the offsets here
4169                  */
4170                 em_start = max(em->start, off);
4171
4172                 /*
4173                  * record the offset from the start of the extent
4174                  * for adjusting the disk offset below.  Only do this if the
4175                  * extent isn't compressed since our in ram offset may be past
4176                  * what we have actually allocated on disk.
4177                  */
4178                 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4179                         offset_in_extent = em_start - em->start;
4180                 em_end = extent_map_end(em);
4181                 em_len = em_end - em_start;
4182                 emflags = em->flags;
4183                 disko = 0;
4184                 flags = 0;
4185
4186                 /*
4187                  * bump off for our next call to get_extent
4188                  */
4189                 off = extent_map_end(em);
4190                 if (off >= max)
4191                         end = 1;
4192
4193                 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4194                         end = 1;
4195                         flags |= FIEMAP_EXTENT_LAST;
4196                 } else if (em->block_start == EXTENT_MAP_INLINE) {
4197                         flags |= (FIEMAP_EXTENT_DATA_INLINE |
4198                                   FIEMAP_EXTENT_NOT_ALIGNED);
4199                 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4200                         flags |= (FIEMAP_EXTENT_DELALLOC |
4201                                   FIEMAP_EXTENT_UNKNOWN);
4202                 } else {
4203                         disko = em->block_start + offset_in_extent;
4204                 }
4205                 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4206                         flags |= FIEMAP_EXTENT_ENCODED;
4207
4208                 free_extent_map(em);
4209                 em = NULL;
4210                 if ((em_start >= last) || em_len == (u64)-1 ||
4211                    (last == (u64)-1 && isize <= em_end)) {
4212                         flags |= FIEMAP_EXTENT_LAST;
4213                         end = 1;
4214                 }
4215
4216                 /* now scan forward to see if this is really the last extent. */
4217                 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4218                                            get_extent);
4219                 if (IS_ERR(em)) {
4220                         ret = PTR_ERR(em);
4221                         goto out;
4222                 }
4223                 if (!em) {
4224                         flags |= FIEMAP_EXTENT_LAST;
4225                         end = 1;
4226                 }
4227                 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4228                                               em_len, flags);
4229                 if (ret)
4230                         goto out_free;
4231         }
4232 out_free:
4233         free_extent_map(em);
4234 out:
4235         unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4236                              &cached_state, GFP_NOFS);
4237         return ret;
4238 }
4239
4240 static void __free_extent_buffer(struct extent_buffer *eb)
4241 {
4242         btrfs_leak_debug_del(&eb->leak_list);
4243         kmem_cache_free(extent_buffer_cache, eb);
4244 }
4245
4246 static int extent_buffer_under_io(struct extent_buffer *eb)
4247 {
4248         return (atomic_read(&eb->io_pages) ||
4249                 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4250                 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4251 }
4252
4253 /*
4254  * Helper for releasing extent buffer page.
4255  */
4256 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4257                                                 unsigned long start_idx)
4258 {
4259         unsigned long index;
4260         unsigned long num_pages;
4261         struct page *page;
4262         int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4263
4264         BUG_ON(extent_buffer_under_io(eb));
4265
4266         num_pages = num_extent_pages(eb->start, eb->len);
4267         index = start_idx + num_pages;
4268         if (start_idx >= index)
4269                 return;
4270
4271         do {
4272                 index--;
4273                 page = extent_buffer_page(eb, index);
4274                 if (page && mapped) {
4275                         spin_lock(&page->mapping->private_lock);
4276                         /*
4277                          * We do this since we'll remove the pages after we've
4278                          * removed the eb from the radix tree, so we could race
4279                          * and have this page now attached to the new eb.  So
4280                          * only clear page_private if it's still connected to
4281                          * this eb.
4282                          */
4283                         if (PagePrivate(page) &&
4284                             page->private == (unsigned long)eb) {
4285                                 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4286                                 BUG_ON(PageDirty(page));
4287                                 BUG_ON(PageWriteback(page));
4288                                 /*
4289                                  * We need to make sure we haven't be attached
4290                                  * to a new eb.
4291                                  */
4292                                 ClearPagePrivate(page);
4293                                 set_page_private(page, 0);
4294                                 /* One for the page private */
4295                                 page_cache_release(page);
4296                         }
4297                         spin_unlock(&page->mapping->private_lock);
4298
4299                 }
4300                 if (page) {
4301                         /* One for when we alloced the page */
4302                         page_cache_release(page);
4303                 }
4304         } while (index != start_idx);
4305 }
4306
4307 /*
4308  * Helper for releasing the extent buffer.
4309  */
4310 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4311 {
4312         btrfs_release_extent_buffer_page(eb, 0);
4313         __free_extent_buffer(eb);
4314 }
4315
4316 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
4317                                                    u64 start,
4318                                                    unsigned long len,
4319                                                    gfp_t mask)
4320 {
4321         struct extent_buffer *eb = NULL;
4322
4323         eb = kmem_cache_zalloc(extent_buffer_cache, mask);
4324         if (eb == NULL)
4325                 return NULL;
4326         eb->start = start;
4327         eb->len = len;
4328         eb->tree = tree;
4329         eb->bflags = 0;
4330         rwlock_init(&eb->lock);
4331         atomic_set(&eb->write_locks, 0);
4332         atomic_set(&eb->read_locks, 0);
4333         atomic_set(&eb->blocking_readers, 0);
4334         atomic_set(&eb->blocking_writers, 0);
4335         atomic_set(&eb->spinning_readers, 0);
4336         atomic_set(&eb->spinning_writers, 0);
4337         eb->lock_nested = 0;
4338         init_waitqueue_head(&eb->write_lock_wq);
4339         init_waitqueue_head(&eb->read_lock_wq);
4340
4341         btrfs_leak_debug_add(&eb->leak_list, &buffers);
4342
4343         spin_lock_init(&eb->refs_lock);
4344         atomic_set(&eb->refs, 1);
4345         atomic_set(&eb->io_pages, 0);
4346
4347         /*
4348          * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4349          */
4350         BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4351                 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4352         BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4353
4354         return eb;
4355 }
4356
4357 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4358 {
4359         unsigned long i;
4360         struct page *p;
4361         struct extent_buffer *new;
4362         unsigned long num_pages = num_extent_pages(src->start, src->len);
4363
4364         new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_NOFS);
4365         if (new == NULL)
4366                 return NULL;
4367
4368         for (i = 0; i < num_pages; i++) {
4369                 p = alloc_page(GFP_NOFS);
4370                 if (!p) {
4371                         btrfs_release_extent_buffer(new);
4372                         return NULL;
4373                 }
4374                 attach_extent_buffer_page(new, p);
4375                 WARN_ON(PageDirty(p));
4376                 SetPageUptodate(p);
4377                 new->pages[i] = p;
4378         }
4379
4380         copy_extent_buffer(new, src, 0, 0, src->len);
4381         set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4382         set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4383
4384         return new;
4385 }
4386
4387 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4388 {
4389         struct extent_buffer *eb;
4390         unsigned long num_pages = num_extent_pages(0, len);
4391         unsigned long i;
4392
4393         eb = __alloc_extent_buffer(NULL, start, len, GFP_NOFS);
4394         if (!eb)
4395                 return NULL;
4396
4397         for (i = 0; i < num_pages; i++) {
4398                 eb->pages[i] = alloc_page(GFP_NOFS);
4399                 if (!eb->pages[i])
4400                         goto err;
4401         }
4402         set_extent_buffer_uptodate(eb);
4403         btrfs_set_header_nritems(eb, 0);
4404         set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4405
4406         return eb;
4407 err:
4408         for (; i > 0; i--)
4409                 __free_page(eb->pages[i - 1]);
4410         __free_extent_buffer(eb);
4411         return NULL;
4412 }
4413
4414 static void check_buffer_tree_ref(struct extent_buffer *eb)
4415 {
4416         int refs;
4417         /* the ref bit is tricky.  We have to make sure it is set
4418          * if we have the buffer dirty.   Otherwise the
4419          * code to free a buffer can end up dropping a dirty
4420          * page
4421          *
4422          * Once the ref bit is set, it won't go away while the
4423          * buffer is dirty or in writeback, and it also won't
4424          * go away while we have the reference count on the
4425          * eb bumped.
4426          *
4427          * We can't just set the ref bit without bumping the
4428          * ref on the eb because free_extent_buffer might
4429          * see the ref bit and try to clear it.  If this happens
4430          * free_extent_buffer might end up dropping our original
4431          * ref by mistake and freeing the page before we are able
4432          * to add one more ref.
4433          *
4434          * So bump the ref count first, then set the bit.  If someone
4435          * beat us to it, drop the ref we added.
4436          */
4437         refs = atomic_read(&eb->refs);
4438         if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4439                 return;
4440
4441         spin_lock(&eb->refs_lock);
4442         if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4443                 atomic_inc(&eb->refs);
4444         spin_unlock(&eb->refs_lock);
4445 }
4446
4447 static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4448 {
4449         unsigned long num_pages, i;
4450
4451         check_buffer_tree_ref(eb);
4452
4453         num_pages = num_extent_pages(eb->start, eb->len);
4454         for (i = 0; i < num_pages; i++) {
4455                 struct page *p = extent_buffer_page(eb, i);
4456                 mark_page_accessed(p);
4457         }
4458 }
4459
4460 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
4461                                           u64 start, unsigned long len)
4462 {
4463         unsigned long num_pages = num_extent_pages(start, len);
4464         unsigned long i;
4465         unsigned long index = start >> PAGE_CACHE_SHIFT;
4466         struct extent_buffer *eb;
4467         struct extent_buffer *exists = NULL;
4468         struct page *p;
4469         struct address_space *mapping = tree->mapping;
4470         int uptodate = 1;
4471         int ret;
4472
4473         rcu_read_lock();
4474         eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4475         if (eb && atomic_inc_not_zero(&eb->refs)) {
4476                 rcu_read_unlock();
4477                 mark_extent_buffer_accessed(eb);
4478                 return eb;
4479         }
4480         rcu_read_unlock();
4481
4482         eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
4483         if (!eb)
4484                 return NULL;
4485
4486         for (i = 0; i < num_pages; i++, index++) {
4487                 p = find_or_create_page(mapping, index, GFP_NOFS);
4488                 if (!p)
4489                         goto free_eb;
4490
4491                 spin_lock(&mapping->private_lock);
4492                 if (PagePrivate(p)) {
4493                         /*
4494                          * We could have already allocated an eb for this page
4495                          * and attached one so lets see if we can get a ref on
4496                          * the existing eb, and if we can we know it's good and
4497                          * we can just return that one, else we know we can just
4498                          * overwrite page->private.
4499                          */
4500                         exists = (struct extent_buffer *)p->private;
4501                         if (atomic_inc_not_zero(&exists->refs)) {
4502                                 spin_unlock(&mapping->private_lock);
4503                                 unlock_page(p);
4504                                 page_cache_release(p);
4505                                 mark_extent_buffer_accessed(exists);
4506                                 goto free_eb;
4507                         }
4508
4509                         /*
4510                          * Do this so attach doesn't complain and we need to
4511                          * drop the ref the old guy had.
4512                          */
4513                         ClearPagePrivate(p);
4514                         WARN_ON(PageDirty(p));
4515                         page_cache_release(p);
4516                 }
4517                 attach_extent_buffer_page(eb, p);
4518                 spin_unlock(&mapping->private_lock);
4519                 WARN_ON(PageDirty(p));
4520                 mark_page_accessed(p);
4521                 eb->pages[i] = p;
4522                 if (!PageUptodate(p))
4523                         uptodate = 0;
4524
4525                 /*
4526                  * see below about how we avoid a nasty race with release page
4527                  * and why we unlock later
4528                  */
4529         }
4530         if (uptodate)
4531                 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4532 again:
4533         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4534         if (ret)
4535                 goto free_eb;
4536
4537         spin_lock(&tree->buffer_lock);
4538         ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4539         if (ret == -EEXIST) {
4540                 exists = radix_tree_lookup(&tree->buffer,
4541                                                 start >> PAGE_CACHE_SHIFT);
4542                 if (!atomic_inc_not_zero(&exists->refs)) {
4543                         spin_unlock(&tree->buffer_lock);
4544                         radix_tree_preload_end();
4545                         exists = NULL;
4546                         goto again;
4547                 }
4548                 spin_unlock(&tree->buffer_lock);
4549                 radix_tree_preload_end();
4550                 mark_extent_buffer_accessed(exists);
4551                 goto free_eb;
4552         }
4553         /* add one reference for the tree */
4554         check_buffer_tree_ref(eb);
4555         spin_unlock(&tree->buffer_lock);
4556         radix_tree_preload_end();
4557
4558         /*
4559          * there is a race where release page may have
4560          * tried to find this extent buffer in the radix
4561          * but failed.  It will tell the VM it is safe to
4562          * reclaim the, and it will clear the page private bit.
4563          * We must make sure to set the page private bit properly
4564          * after the extent buffer is in the radix tree so
4565          * it doesn't get lost
4566          */
4567         SetPageChecked(eb->pages[0]);
4568         for (i = 1; i < num_pages; i++) {
4569                 p = extent_buffer_page(eb, i);
4570                 ClearPageChecked(p);
4571                 unlock_page(p);
4572         }
4573         unlock_page(eb->pages[0]);
4574         return eb;
4575
4576 free_eb:
4577         for (i = 0; i < num_pages; i++) {
4578                 if (eb->pages[i])
4579                         unlock_page(eb->pages[i]);
4580         }
4581
4582         WARN_ON(!atomic_dec_and_test(&eb->refs));
4583         btrfs_release_extent_buffer(eb);
4584         return exists;
4585 }
4586
4587 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
4588                                          u64 start, unsigned long len)
4589 {
4590         struct extent_buffer *eb;
4591
4592         rcu_read_lock();
4593         eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4594         if (eb && atomic_inc_not_zero(&eb->refs)) {
4595                 rcu_read_unlock();
4596                 mark_extent_buffer_accessed(eb);
4597                 return eb;
4598         }
4599         rcu_read_unlock();
4600
4601         return NULL;
4602 }
4603
4604 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4605 {
4606         struct extent_buffer *eb =
4607                         container_of(head, struct extent_buffer, rcu_head);
4608
4609         __free_extent_buffer(eb);
4610 }
4611
4612 /* Expects to have eb->eb_lock already held */
4613 static int release_extent_buffer(struct extent_buffer *eb)
4614 {
4615         WARN_ON(atomic_read(&eb->refs) == 0);
4616         if (atomic_dec_and_test(&eb->refs)) {
4617                 if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4618                         spin_unlock(&eb->refs_lock);
4619                 } else {
4620                         struct extent_io_tree *tree = eb->tree;
4621
4622                         spin_unlock(&eb->refs_lock);
4623
4624                         spin_lock(&tree->buffer_lock);
4625                         radix_tree_delete(&tree->buffer,
4626                                           eb->start >> PAGE_CACHE_SHIFT);
4627                         spin_unlock(&tree->buffer_lock);
4628                 }
4629
4630                 /* Should be safe to release our pages at this point */
4631                 btrfs_release_extent_buffer_page(eb, 0);
4632                 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4633                 return 1;
4634         }
4635         spin_unlock(&eb->refs_lock);
4636
4637         return 0;
4638 }
4639
4640 void free_extent_buffer(struct extent_buffer *eb)
4641 {
4642         int refs;
4643         int old;
4644         if (!eb)
4645                 return;
4646
4647         while (1) {
4648                 refs = atomic_read(&eb->refs);
4649                 if (refs <= 3)
4650                         break;
4651                 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4652                 if (old == refs)
4653                         return;
4654         }
4655
4656         spin_lock(&eb->refs_lock);
4657         if (atomic_read(&eb->refs) == 2 &&
4658             test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4659                 atomic_dec(&eb->refs);
4660
4661         if (atomic_read(&eb->refs) == 2 &&
4662             test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4663             !extent_buffer_under_io(eb) &&
4664             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4665                 atomic_dec(&eb->refs);
4666
4667         /*
4668          * I know this is terrible, but it's temporary until we stop tracking
4669          * the uptodate bits and such for the extent buffers.
4670          */
4671         release_extent_buffer(eb);
4672 }
4673
4674 void free_extent_buffer_stale(struct extent_buffer *eb)
4675 {
4676         if (!eb)
4677                 return;
4678
4679         spin_lock(&eb->refs_lock);
4680         set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4681
4682         if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4683             test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4684                 atomic_dec(&eb->refs);
4685         release_extent_buffer(eb);
4686 }
4687
4688 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4689 {
4690         unsigned long i;
4691         unsigned long num_pages;
4692         struct page *page;
4693
4694         num_pages = num_extent_pages(eb->start, eb->len);
4695
4696         for (i = 0; i < num_pages; i++) {
4697                 page = extent_buffer_page(eb, i);
4698                 if (!PageDirty(page))
4699                         continue;
4700
4701                 lock_page(page);
4702                 WARN_ON(!PagePrivate(page));
4703
4704                 clear_page_dirty_for_io(page);
4705                 spin_lock_irq(&page->mapping->tree_lock);
4706                 if (!PageDirty(page)) {
4707                         radix_tree_tag_clear(&page->mapping->page_tree,
4708                                                 page_index(page),
4709                                                 PAGECACHE_TAG_DIRTY);
4710                 }
4711                 spin_unlock_irq(&page->mapping->tree_lock);
4712                 ClearPageError(page);
4713                 unlock_page(page);
4714         }
4715         WARN_ON(atomic_read(&eb->refs) == 0);
4716 }
4717
4718 int set_extent_buffer_dirty(struct extent_buffer *eb)
4719 {
4720         unsigned long i;
4721         unsigned long num_pages;
4722         int was_dirty = 0;
4723
4724         check_buffer_tree_ref(eb);
4725
4726         was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4727
4728         num_pages = num_extent_pages(eb->start, eb->len);
4729         WARN_ON(atomic_read(&eb->refs) == 0);
4730         WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4731
4732         for (i = 0; i < num_pages; i++)
4733                 set_page_dirty(extent_buffer_page(eb, i));
4734         return was_dirty;
4735 }
4736
4737 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4738 {
4739         unsigned long i;
4740         struct page *page;
4741         unsigned long num_pages;
4742
4743         clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4744         num_pages = num_extent_pages(eb->start, eb->len);
4745         for (i = 0; i < num_pages; i++) {
4746                 page = extent_buffer_page(eb, i);
4747                 if (page)
4748                         ClearPageUptodate(page);
4749         }
4750         return 0;
4751 }
4752
4753 int set_extent_buffer_uptodate(struct extent_buffer *eb)
4754 {
4755         unsigned long i;
4756         struct page *page;
4757         unsigned long num_pages;
4758
4759         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4760         num_pages = num_extent_pages(eb->start, eb->len);
4761         for (i = 0; i < num_pages; i++) {
4762                 page = extent_buffer_page(eb, i);
4763                 SetPageUptodate(page);
4764         }
4765         return 0;
4766 }
4767
4768 int extent_buffer_uptodate(struct extent_buffer *eb)
4769 {
4770         return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4771 }
4772
4773 int read_extent_buffer_pages(struct extent_io_tree *tree,
4774                              struct extent_buffer *eb, u64 start, int wait,
4775                              get_extent_t *get_extent, int mirror_num)
4776 {
4777         unsigned long i;
4778         unsigned long start_i;
4779         struct page *page;
4780         int err;
4781         int ret = 0;
4782         int locked_pages = 0;
4783         int all_uptodate = 1;
4784         unsigned long num_pages;
4785         unsigned long num_reads = 0;
4786         struct bio *bio = NULL;
4787         unsigned long bio_flags = 0;
4788
4789         if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4790                 return 0;
4791
4792         if (start) {
4793                 WARN_ON(start < eb->start);
4794                 start_i = (start >> PAGE_CACHE_SHIFT) -
4795                         (eb->start >> PAGE_CACHE_SHIFT);
4796         } else {
4797                 start_i = 0;
4798         }
4799
4800         num_pages = num_extent_pages(eb->start, eb->len);
4801         for (i = start_i; i < num_pages; i++) {
4802                 page = extent_buffer_page(eb, i);
4803                 if (wait == WAIT_NONE) {
4804                         if (!trylock_page(page))
4805                                 goto unlock_exit;
4806                 } else {
4807                         lock_page(page);
4808                 }
4809                 locked_pages++;
4810                 if (!PageUptodate(page)) {
4811                         num_reads++;
4812                         all_uptodate = 0;
4813                 }
4814         }
4815         if (all_uptodate) {
4816                 if (start_i == 0)
4817                         set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4818                 goto unlock_exit;
4819         }
4820
4821         clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4822         eb->read_mirror = 0;
4823         atomic_set(&eb->io_pages, num_reads);
4824         for (i = start_i; i < num_pages; i++) {
4825                 page = extent_buffer_page(eb, i);
4826                 if (!PageUptodate(page)) {
4827                         ClearPageError(page);
4828                         err = __extent_read_full_page(tree, page,
4829                                                       get_extent, &bio,
4830                                                       mirror_num, &bio_flags,
4831                                                       READ | REQ_META);
4832                         if (err)
4833                                 ret = err;
4834                 } else {
4835                         unlock_page(page);
4836                 }
4837         }
4838
4839         if (bio) {
4840                 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
4841                                      bio_flags);
4842                 if (err)
4843                         return err;
4844         }
4845
4846         if (ret || wait != WAIT_COMPLETE)
4847                 return ret;
4848
4849         for (i = start_i; i < num_pages; i++) {
4850                 page = extent_buffer_page(eb, i);
4851                 wait_on_page_locked(page);
4852                 if (!PageUptodate(page))
4853                         ret = -EIO;
4854         }
4855
4856         return ret;
4857
4858 unlock_exit:
4859         i = start_i;
4860         while (locked_pages > 0) {
4861                 page = extent_buffer_page(eb, i);
4862                 i++;
4863                 unlock_page(page);
4864                 locked_pages--;
4865         }
4866         return ret;
4867 }
4868
4869 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4870                         unsigned long start,
4871                         unsigned long len)
4872 {
4873         size_t cur;
4874         size_t offset;
4875         struct page *page;
4876         char *kaddr;
4877         char *dst = (char *)dstv;
4878         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4879         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4880
4881         WARN_ON(start > eb->len);
4882         WARN_ON(start + len > eb->start + eb->len);
4883
4884         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4885
4886         while (len > 0) {
4887                 page = extent_buffer_page(eb, i);
4888
4889                 cur = min(len, (PAGE_CACHE_SIZE - offset));
4890                 kaddr = page_address(page);
4891                 memcpy(dst, kaddr + offset, cur);
4892
4893                 dst += cur;
4894                 len -= cur;
4895                 offset = 0;
4896                 i++;
4897         }
4898 }
4899
4900 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4901                                unsigned long min_len, char **map,
4902                                unsigned long *map_start,
4903                                unsigned long *map_len)
4904 {
4905         size_t offset = start & (PAGE_CACHE_SIZE - 1);
4906         char *kaddr;
4907         struct page *p;
4908         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4909         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4910         unsigned long end_i = (start_offset + start + min_len - 1) >>
4911                 PAGE_CACHE_SHIFT;
4912
4913         if (i != end_i)
4914                 return -EINVAL;
4915
4916         if (i == 0) {
4917                 offset = start_offset;
4918                 *map_start = 0;
4919         } else {
4920                 offset = 0;
4921                 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4922         }
4923
4924         if (start + min_len > eb->len) {
4925                 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4926                        "wanted %lu %lu\n", (unsigned long long)eb->start,
4927                        eb->len, start, min_len);
4928                 return -EINVAL;
4929         }
4930
4931         p = extent_buffer_page(eb, i);
4932         kaddr = page_address(p);
4933         *map = kaddr + offset;
4934         *map_len = PAGE_CACHE_SIZE - offset;
4935         return 0;
4936 }
4937
4938 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4939                           unsigned long start,
4940                           unsigned long len)
4941 {
4942         size_t cur;
4943         size_t offset;
4944         struct page *page;
4945         char *kaddr;
4946         char *ptr = (char *)ptrv;
4947         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4948         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4949         int ret = 0;
4950
4951         WARN_ON(start > eb->len);
4952         WARN_ON(start + len > eb->start + eb->len);
4953
4954         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4955
4956         while (len > 0) {
4957                 page = extent_buffer_page(eb, i);
4958
4959                 cur = min(len, (PAGE_CACHE_SIZE - offset));
4960
4961                 kaddr = page_address(page);
4962                 ret = memcmp(ptr, kaddr + offset, cur);
4963                 if (ret)
4964                         break;
4965
4966                 ptr += cur;
4967                 len -= cur;
4968                 offset = 0;
4969                 i++;
4970         }
4971         return ret;
4972 }
4973
4974 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4975                          unsigned long start, unsigned long len)
4976 {
4977         size_t cur;
4978         size_t offset;
4979         struct page *page;
4980         char *kaddr;
4981         char *src = (char *)srcv;
4982         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4983         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4984
4985         WARN_ON(start > eb->len);
4986         WARN_ON(start + len > eb->start + eb->len);
4987
4988         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4989
4990         while (len > 0) {
4991                 page = extent_buffer_page(eb, i);
4992                 WARN_ON(!PageUptodate(page));
4993
4994                 cur = min(len, PAGE_CACHE_SIZE - offset);
4995                 kaddr = page_address(page);
4996                 memcpy(kaddr + offset, src, cur);
4997
4998                 src += cur;
4999                 len -= cur;
5000                 offset = 0;
5001                 i++;
5002         }
5003 }
5004
5005 void memset_extent_buffer(struct extent_buffer *eb, char c,
5006                           unsigned long start, unsigned long len)
5007 {
5008         size_t cur;
5009         size_t offset;
5010         struct page *page;
5011         char *kaddr;
5012         size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5013         unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5014
5015         WARN_ON(start > eb->len);
5016         WARN_ON(start + len > eb->start + eb->len);
5017
5018         offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
5019
5020         while (len > 0) {
5021                 page = extent_buffer_page(eb, i);
5022                 WARN_ON(!PageUptodate(page));
5023
5024                 cur = min(len, PAGE_CACHE_SIZE - offset);
5025                 kaddr = page_address(page);
5026                 memset(kaddr + offset, c, cur);
5027
5028                 len -= cur;
5029                 offset = 0;
5030                 i++;
5031         }
5032 }
5033
5034 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5035                         unsigned long dst_offset, unsigned long src_offset,
5036                         unsigned long len)
5037 {
5038         u64 dst_len = dst->len;
5039         size_t cur;
5040         size_t offset;
5041         struct page *page;
5042         char *kaddr;
5043         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5044         unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5045
5046         WARN_ON(src->len != dst_len);
5047
5048         offset = (start_offset + dst_offset) &
5049                 ((unsigned long)PAGE_CACHE_SIZE - 1);
5050
5051         while (len > 0) {
5052                 page = extent_buffer_page(dst, i);
5053                 WARN_ON(!PageUptodate(page));
5054
5055                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5056
5057                 kaddr = page_address(page);
5058                 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5059
5060                 src_offset += cur;
5061                 len -= cur;
5062                 offset = 0;
5063                 i++;
5064         }
5065 }
5066
5067 static void move_pages(struct page *dst_page, struct page *src_page,
5068                        unsigned long dst_off, unsigned long src_off,
5069                        unsigned long len)
5070 {
5071         char *dst_kaddr = page_address(dst_page);
5072         if (dst_page == src_page) {
5073                 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
5074         } else {
5075                 char *src_kaddr = page_address(src_page);
5076                 char *p = dst_kaddr + dst_off + len;
5077                 char *s = src_kaddr + src_off + len;
5078
5079                 while (len--)
5080                         *--p = *--s;
5081         }
5082 }
5083
5084 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5085 {
5086         unsigned long distance = (src > dst) ? src - dst : dst - src;
5087         return distance < len;
5088 }
5089
5090 static void copy_pages(struct page *dst_page, struct page *src_page,
5091                        unsigned long dst_off, unsigned long src_off,
5092                        unsigned long len)
5093 {
5094         char *dst_kaddr = page_address(dst_page);
5095         char *src_kaddr;
5096         int must_memmove = 0;
5097
5098         if (dst_page != src_page) {
5099                 src_kaddr = page_address(src_page);
5100         } else {
5101                 src_kaddr = dst_kaddr;
5102                 if (areas_overlap(src_off, dst_off, len))
5103                         must_memmove = 1;
5104         }
5105
5106         if (must_memmove)
5107                 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5108         else
5109                 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5110 }
5111
5112 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5113                            unsigned long src_offset, unsigned long len)
5114 {
5115         size_t cur;
5116         size_t dst_off_in_page;
5117         size_t src_off_in_page;
5118         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5119         unsigned long dst_i;
5120         unsigned long src_i;
5121
5122         if (src_offset + len > dst->len) {
5123                 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5124                        "len %lu dst len %lu\n", src_offset, len, dst->len);
5125                 BUG_ON(1);
5126         }
5127         if (dst_offset + len > dst->len) {
5128                 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5129                        "len %lu dst len %lu\n", dst_offset, len, dst->len);
5130                 BUG_ON(1);
5131         }
5132
5133         while (len > 0) {
5134                 dst_off_in_page = (start_offset + dst_offset) &
5135                         ((unsigned long)PAGE_CACHE_SIZE - 1);
5136                 src_off_in_page = (start_offset + src_offset) &
5137                         ((unsigned long)PAGE_CACHE_SIZE - 1);
5138
5139                 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5140                 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5141
5142                 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5143                                                src_off_in_page));
5144                 cur = min_t(unsigned long, cur,
5145                         (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5146
5147                 copy_pages(extent_buffer_page(dst, dst_i),
5148                            extent_buffer_page(dst, src_i),
5149                            dst_off_in_page, src_off_in_page, cur);
5150
5151                 src_offset += cur;
5152                 dst_offset += cur;
5153                 len -= cur;
5154         }
5155 }
5156
5157 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5158                            unsigned long src_offset, unsigned long len)
5159 {
5160         size_t cur;
5161         size_t dst_off_in_page;
5162         size_t src_off_in_page;
5163         unsigned long dst_end = dst_offset + len - 1;
5164         unsigned long src_end = src_offset + len - 1;
5165         size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5166         unsigned long dst_i;
5167         unsigned long src_i;
5168
5169         if (src_offset + len > dst->len) {
5170                 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5171                        "len %lu len %lu\n", src_offset, len, dst->len);
5172                 BUG_ON(1);
5173         }
5174         if (dst_offset + len > dst->len) {
5175                 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5176                        "len %lu len %lu\n", dst_offset, len, dst->len);
5177                 BUG_ON(1);
5178         }
5179         if (dst_offset < src_offset) {
5180                 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5181                 return;
5182         }
5183         while (len > 0) {
5184                 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5185                 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5186
5187                 dst_off_in_page = (start_offset + dst_end) &
5188                         ((unsigned long)PAGE_CACHE_SIZE - 1);
5189                 src_off_in_page = (start_offset + src_end) &
5190                         ((unsigned long)PAGE_CACHE_SIZE - 1);
5191
5192                 cur = min_t(unsigned long, len, src_off_in_page + 1);
5193                 cur = min(cur, dst_off_in_page + 1);
5194                 move_pages(extent_buffer_page(dst, dst_i),
5195                            extent_buffer_page(dst, src_i),
5196                            dst_off_in_page - cur + 1,
5197                            src_off_in_page - cur + 1, cur);
5198
5199                 dst_end -= cur;
5200                 src_end -= cur;
5201                 len -= cur;
5202         }
5203 }
5204
5205 int try_release_extent_buffer(struct page *page)
5206 {
5207         struct extent_buffer *eb;
5208
5209         /*
5210          * We need to make sure noboody is attaching this page to an eb right
5211          * now.
5212          */
5213         spin_lock(&page->mapping->private_lock);
5214         if (!PagePrivate(page)) {
5215                 spin_unlock(&page->mapping->private_lock);
5216                 return 1;
5217         }
5218
5219         eb = (struct extent_buffer *)page->private;
5220         BUG_ON(!eb);
5221
5222         /*
5223          * This is a little awful but should be ok, we need to make sure that
5224          * the eb doesn't disappear out from under us while we're looking at
5225          * this page.
5226          */
5227         spin_lock(&eb->refs_lock);
5228         if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5229                 spin_unlock(&eb->refs_lock);
5230                 spin_unlock(&page->mapping->private_lock);
5231                 return 0;
5232         }
5233         spin_unlock(&page->mapping->private_lock);
5234
5235         /*
5236          * If tree ref isn't set then we know the ref on this eb is a real ref,
5237          * so just return, this page will likely be freed soon anyway.
5238          */
5239         if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5240                 spin_unlock(&eb->refs_lock);
5241                 return 0;
5242         }
5243
5244         return release_extent_buffer(eb);
5245 }