btrfs: Remove btrfs_fs_info::open_ioctl_trans
[linux-2.6-block.git] / fs / btrfs / extent-tree.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/sched/signal.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/sort.h>
24 #include <linux/rcupdate.h>
25 #include <linux/kthread.h>
26 #include <linux/slab.h>
27 #include <linux/ratelimit.h>
28 #include <linux/percpu_counter.h>
29 #include <linux/lockdep.h>
30 #include <linux/crc32c.h>
31 #include "tree-log.h"
32 #include "disk-io.h"
33 #include "print-tree.h"
34 #include "volumes.h"
35 #include "raid56.h"
36 #include "locking.h"
37 #include "free-space-cache.h"
38 #include "free-space-tree.h"
39 #include "math.h"
40 #include "sysfs.h"
41 #include "qgroup.h"
42 #include "ref-verify.h"
43
44 #undef SCRAMBLE_DELAYED_REFS
45
46 /*
47  * control flags for do_chunk_alloc's force field
48  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
49  * if we really need one.
50  *
51  * CHUNK_ALLOC_LIMITED means to only try and allocate one
52  * if we have very few chunks already allocated.  This is
53  * used as part of the clustering code to help make sure
54  * we have a good pool of storage to cluster in, without
55  * filling the FS with empty chunks
56  *
57  * CHUNK_ALLOC_FORCE means it must try to allocate one
58  *
59  */
60 enum {
61         CHUNK_ALLOC_NO_FORCE = 0,
62         CHUNK_ALLOC_LIMITED = 1,
63         CHUNK_ALLOC_FORCE = 2,
64 };
65
66 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
67                                struct btrfs_fs_info *fs_info,
68                                 struct btrfs_delayed_ref_node *node, u64 parent,
69                                 u64 root_objectid, u64 owner_objectid,
70                                 u64 owner_offset, int refs_to_drop,
71                                 struct btrfs_delayed_extent_op *extra_op);
72 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
73                                     struct extent_buffer *leaf,
74                                     struct btrfs_extent_item *ei);
75 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
76                                       struct btrfs_fs_info *fs_info,
77                                       u64 parent, u64 root_objectid,
78                                       u64 flags, u64 owner, u64 offset,
79                                       struct btrfs_key *ins, int ref_mod);
80 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
81                                      struct btrfs_fs_info *fs_info,
82                                      u64 parent, u64 root_objectid,
83                                      u64 flags, struct btrfs_disk_key *key,
84                                      int level, struct btrfs_key *ins);
85 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
86                           struct btrfs_fs_info *fs_info, u64 flags,
87                           int force);
88 static int find_next_key(struct btrfs_path *path, int level,
89                          struct btrfs_key *key);
90 static void dump_space_info(struct btrfs_fs_info *fs_info,
91                             struct btrfs_space_info *info, u64 bytes,
92                             int dump_block_groups);
93 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
94                                u64 num_bytes);
95 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
96                                      struct btrfs_space_info *space_info,
97                                      u64 num_bytes);
98 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
99                                      struct btrfs_space_info *space_info,
100                                      u64 num_bytes);
101
102 static noinline int
103 block_group_cache_done(struct btrfs_block_group_cache *cache)
104 {
105         smp_mb();
106         return cache->cached == BTRFS_CACHE_FINISHED ||
107                 cache->cached == BTRFS_CACHE_ERROR;
108 }
109
110 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
111 {
112         return (cache->flags & bits) == bits;
113 }
114
115 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
116 {
117         atomic_inc(&cache->count);
118 }
119
120 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
121 {
122         if (atomic_dec_and_test(&cache->count)) {
123                 WARN_ON(cache->pinned > 0);
124                 WARN_ON(cache->reserved > 0);
125
126                 /*
127                  * If not empty, someone is still holding mutex of
128                  * full_stripe_lock, which can only be released by caller.
129                  * And it will definitely cause use-after-free when caller
130                  * tries to release full stripe lock.
131                  *
132                  * No better way to resolve, but only to warn.
133                  */
134                 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
135                 kfree(cache->free_space_ctl);
136                 kfree(cache);
137         }
138 }
139
140 /*
141  * this adds the block group to the fs_info rb tree for the block group
142  * cache
143  */
144 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
145                                 struct btrfs_block_group_cache *block_group)
146 {
147         struct rb_node **p;
148         struct rb_node *parent = NULL;
149         struct btrfs_block_group_cache *cache;
150
151         spin_lock(&info->block_group_cache_lock);
152         p = &info->block_group_cache_tree.rb_node;
153
154         while (*p) {
155                 parent = *p;
156                 cache = rb_entry(parent, struct btrfs_block_group_cache,
157                                  cache_node);
158                 if (block_group->key.objectid < cache->key.objectid) {
159                         p = &(*p)->rb_left;
160                 } else if (block_group->key.objectid > cache->key.objectid) {
161                         p = &(*p)->rb_right;
162                 } else {
163                         spin_unlock(&info->block_group_cache_lock);
164                         return -EEXIST;
165                 }
166         }
167
168         rb_link_node(&block_group->cache_node, parent, p);
169         rb_insert_color(&block_group->cache_node,
170                         &info->block_group_cache_tree);
171
172         if (info->first_logical_byte > block_group->key.objectid)
173                 info->first_logical_byte = block_group->key.objectid;
174
175         spin_unlock(&info->block_group_cache_lock);
176
177         return 0;
178 }
179
180 /*
181  * This will return the block group at or after bytenr if contains is 0, else
182  * it will return the block group that contains the bytenr
183  */
184 static struct btrfs_block_group_cache *
185 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
186                               int contains)
187 {
188         struct btrfs_block_group_cache *cache, *ret = NULL;
189         struct rb_node *n;
190         u64 end, start;
191
192         spin_lock(&info->block_group_cache_lock);
193         n = info->block_group_cache_tree.rb_node;
194
195         while (n) {
196                 cache = rb_entry(n, struct btrfs_block_group_cache,
197                                  cache_node);
198                 end = cache->key.objectid + cache->key.offset - 1;
199                 start = cache->key.objectid;
200
201                 if (bytenr < start) {
202                         if (!contains && (!ret || start < ret->key.objectid))
203                                 ret = cache;
204                         n = n->rb_left;
205                 } else if (bytenr > start) {
206                         if (contains && bytenr <= end) {
207                                 ret = cache;
208                                 break;
209                         }
210                         n = n->rb_right;
211                 } else {
212                         ret = cache;
213                         break;
214                 }
215         }
216         if (ret) {
217                 btrfs_get_block_group(ret);
218                 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
219                         info->first_logical_byte = ret->key.objectid;
220         }
221         spin_unlock(&info->block_group_cache_lock);
222
223         return ret;
224 }
225
226 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
227                                u64 start, u64 num_bytes)
228 {
229         u64 end = start + num_bytes - 1;
230         set_extent_bits(&fs_info->freed_extents[0],
231                         start, end, EXTENT_UPTODATE);
232         set_extent_bits(&fs_info->freed_extents[1],
233                         start, end, EXTENT_UPTODATE);
234         return 0;
235 }
236
237 static void free_excluded_extents(struct btrfs_fs_info *fs_info,
238                                   struct btrfs_block_group_cache *cache)
239 {
240         u64 start, end;
241
242         start = cache->key.objectid;
243         end = start + cache->key.offset - 1;
244
245         clear_extent_bits(&fs_info->freed_extents[0],
246                           start, end, EXTENT_UPTODATE);
247         clear_extent_bits(&fs_info->freed_extents[1],
248                           start, end, EXTENT_UPTODATE);
249 }
250
251 static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
252                                  struct btrfs_block_group_cache *cache)
253 {
254         u64 bytenr;
255         u64 *logical;
256         int stripe_len;
257         int i, nr, ret;
258
259         if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
260                 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
261                 cache->bytes_super += stripe_len;
262                 ret = add_excluded_extent(fs_info, cache->key.objectid,
263                                           stripe_len);
264                 if (ret)
265                         return ret;
266         }
267
268         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
269                 bytenr = btrfs_sb_offset(i);
270                 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
271                                        bytenr, 0, &logical, &nr, &stripe_len);
272                 if (ret)
273                         return ret;
274
275                 while (nr--) {
276                         u64 start, len;
277
278                         if (logical[nr] > cache->key.objectid +
279                             cache->key.offset)
280                                 continue;
281
282                         if (logical[nr] + stripe_len <= cache->key.objectid)
283                                 continue;
284
285                         start = logical[nr];
286                         if (start < cache->key.objectid) {
287                                 start = cache->key.objectid;
288                                 len = (logical[nr] + stripe_len) - start;
289                         } else {
290                                 len = min_t(u64, stripe_len,
291                                             cache->key.objectid +
292                                             cache->key.offset - start);
293                         }
294
295                         cache->bytes_super += len;
296                         ret = add_excluded_extent(fs_info, start, len);
297                         if (ret) {
298                                 kfree(logical);
299                                 return ret;
300                         }
301                 }
302
303                 kfree(logical);
304         }
305         return 0;
306 }
307
308 static struct btrfs_caching_control *
309 get_caching_control(struct btrfs_block_group_cache *cache)
310 {
311         struct btrfs_caching_control *ctl;
312
313         spin_lock(&cache->lock);
314         if (!cache->caching_ctl) {
315                 spin_unlock(&cache->lock);
316                 return NULL;
317         }
318
319         ctl = cache->caching_ctl;
320         refcount_inc(&ctl->count);
321         spin_unlock(&cache->lock);
322         return ctl;
323 }
324
325 static void put_caching_control(struct btrfs_caching_control *ctl)
326 {
327         if (refcount_dec_and_test(&ctl->count))
328                 kfree(ctl);
329 }
330
331 #ifdef CONFIG_BTRFS_DEBUG
332 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
333 {
334         struct btrfs_fs_info *fs_info = block_group->fs_info;
335         u64 start = block_group->key.objectid;
336         u64 len = block_group->key.offset;
337         u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
338                 fs_info->nodesize : fs_info->sectorsize;
339         u64 step = chunk << 1;
340
341         while (len > chunk) {
342                 btrfs_remove_free_space(block_group, start, chunk);
343                 start += step;
344                 if (len < step)
345                         len = 0;
346                 else
347                         len -= step;
348         }
349 }
350 #endif
351
352 /*
353  * this is only called by cache_block_group, since we could have freed extents
354  * we need to check the pinned_extents for any extents that can't be used yet
355  * since their free space will be released as soon as the transaction commits.
356  */
357 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
358                        struct btrfs_fs_info *info, u64 start, u64 end)
359 {
360         u64 extent_start, extent_end, size, total_added = 0;
361         int ret;
362
363         while (start < end) {
364                 ret = find_first_extent_bit(info->pinned_extents, start,
365                                             &extent_start, &extent_end,
366                                             EXTENT_DIRTY | EXTENT_UPTODATE,
367                                             NULL);
368                 if (ret)
369                         break;
370
371                 if (extent_start <= start) {
372                         start = extent_end + 1;
373                 } else if (extent_start > start && extent_start < end) {
374                         size = extent_start - start;
375                         total_added += size;
376                         ret = btrfs_add_free_space(block_group, start,
377                                                    size);
378                         BUG_ON(ret); /* -ENOMEM or logic error */
379                         start = extent_end + 1;
380                 } else {
381                         break;
382                 }
383         }
384
385         if (start < end) {
386                 size = end - start;
387                 total_added += size;
388                 ret = btrfs_add_free_space(block_group, start, size);
389                 BUG_ON(ret); /* -ENOMEM or logic error */
390         }
391
392         return total_added;
393 }
394
395 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
396 {
397         struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
398         struct btrfs_fs_info *fs_info = block_group->fs_info;
399         struct btrfs_root *extent_root = fs_info->extent_root;
400         struct btrfs_path *path;
401         struct extent_buffer *leaf;
402         struct btrfs_key key;
403         u64 total_found = 0;
404         u64 last = 0;
405         u32 nritems;
406         int ret;
407         bool wakeup = true;
408
409         path = btrfs_alloc_path();
410         if (!path)
411                 return -ENOMEM;
412
413         last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
414
415 #ifdef CONFIG_BTRFS_DEBUG
416         /*
417          * If we're fragmenting we don't want to make anybody think we can
418          * allocate from this block group until we've had a chance to fragment
419          * the free space.
420          */
421         if (btrfs_should_fragment_free_space(block_group))
422                 wakeup = false;
423 #endif
424         /*
425          * We don't want to deadlock with somebody trying to allocate a new
426          * extent for the extent root while also trying to search the extent
427          * root to add free space.  So we skip locking and search the commit
428          * root, since its read-only
429          */
430         path->skip_locking = 1;
431         path->search_commit_root = 1;
432         path->reada = READA_FORWARD;
433
434         key.objectid = last;
435         key.offset = 0;
436         key.type = BTRFS_EXTENT_ITEM_KEY;
437
438 next:
439         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
440         if (ret < 0)
441                 goto out;
442
443         leaf = path->nodes[0];
444         nritems = btrfs_header_nritems(leaf);
445
446         while (1) {
447                 if (btrfs_fs_closing(fs_info) > 1) {
448                         last = (u64)-1;
449                         break;
450                 }
451
452                 if (path->slots[0] < nritems) {
453                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
454                 } else {
455                         ret = find_next_key(path, 0, &key);
456                         if (ret)
457                                 break;
458
459                         if (need_resched() ||
460                             rwsem_is_contended(&fs_info->commit_root_sem)) {
461                                 if (wakeup)
462                                         caching_ctl->progress = last;
463                                 btrfs_release_path(path);
464                                 up_read(&fs_info->commit_root_sem);
465                                 mutex_unlock(&caching_ctl->mutex);
466                                 cond_resched();
467                                 mutex_lock(&caching_ctl->mutex);
468                                 down_read(&fs_info->commit_root_sem);
469                                 goto next;
470                         }
471
472                         ret = btrfs_next_leaf(extent_root, path);
473                         if (ret < 0)
474                                 goto out;
475                         if (ret)
476                                 break;
477                         leaf = path->nodes[0];
478                         nritems = btrfs_header_nritems(leaf);
479                         continue;
480                 }
481
482                 if (key.objectid < last) {
483                         key.objectid = last;
484                         key.offset = 0;
485                         key.type = BTRFS_EXTENT_ITEM_KEY;
486
487                         if (wakeup)
488                                 caching_ctl->progress = last;
489                         btrfs_release_path(path);
490                         goto next;
491                 }
492
493                 if (key.objectid < block_group->key.objectid) {
494                         path->slots[0]++;
495                         continue;
496                 }
497
498                 if (key.objectid >= block_group->key.objectid +
499                     block_group->key.offset)
500                         break;
501
502                 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
503                     key.type == BTRFS_METADATA_ITEM_KEY) {
504                         total_found += add_new_free_space(block_group,
505                                                           fs_info, last,
506                                                           key.objectid);
507                         if (key.type == BTRFS_METADATA_ITEM_KEY)
508                                 last = key.objectid +
509                                         fs_info->nodesize;
510                         else
511                                 last = key.objectid + key.offset;
512
513                         if (total_found > CACHING_CTL_WAKE_UP) {
514                                 total_found = 0;
515                                 if (wakeup)
516                                         wake_up(&caching_ctl->wait);
517                         }
518                 }
519                 path->slots[0]++;
520         }
521         ret = 0;
522
523         total_found += add_new_free_space(block_group, fs_info, last,
524                                           block_group->key.objectid +
525                                           block_group->key.offset);
526         caching_ctl->progress = (u64)-1;
527
528 out:
529         btrfs_free_path(path);
530         return ret;
531 }
532
533 static noinline void caching_thread(struct btrfs_work *work)
534 {
535         struct btrfs_block_group_cache *block_group;
536         struct btrfs_fs_info *fs_info;
537         struct btrfs_caching_control *caching_ctl;
538         struct btrfs_root *extent_root;
539         int ret;
540
541         caching_ctl = container_of(work, struct btrfs_caching_control, work);
542         block_group = caching_ctl->block_group;
543         fs_info = block_group->fs_info;
544         extent_root = fs_info->extent_root;
545
546         mutex_lock(&caching_ctl->mutex);
547         down_read(&fs_info->commit_root_sem);
548
549         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
550                 ret = load_free_space_tree(caching_ctl);
551         else
552                 ret = load_extent_tree_free(caching_ctl);
553
554         spin_lock(&block_group->lock);
555         block_group->caching_ctl = NULL;
556         block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
557         spin_unlock(&block_group->lock);
558
559 #ifdef CONFIG_BTRFS_DEBUG
560         if (btrfs_should_fragment_free_space(block_group)) {
561                 u64 bytes_used;
562
563                 spin_lock(&block_group->space_info->lock);
564                 spin_lock(&block_group->lock);
565                 bytes_used = block_group->key.offset -
566                         btrfs_block_group_used(&block_group->item);
567                 block_group->space_info->bytes_used += bytes_used >> 1;
568                 spin_unlock(&block_group->lock);
569                 spin_unlock(&block_group->space_info->lock);
570                 fragment_free_space(block_group);
571         }
572 #endif
573
574         caching_ctl->progress = (u64)-1;
575
576         up_read(&fs_info->commit_root_sem);
577         free_excluded_extents(fs_info, block_group);
578         mutex_unlock(&caching_ctl->mutex);
579
580         wake_up(&caching_ctl->wait);
581
582         put_caching_control(caching_ctl);
583         btrfs_put_block_group(block_group);
584 }
585
586 static int cache_block_group(struct btrfs_block_group_cache *cache,
587                              int load_cache_only)
588 {
589         DEFINE_WAIT(wait);
590         struct btrfs_fs_info *fs_info = cache->fs_info;
591         struct btrfs_caching_control *caching_ctl;
592         int ret = 0;
593
594         caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
595         if (!caching_ctl)
596                 return -ENOMEM;
597
598         INIT_LIST_HEAD(&caching_ctl->list);
599         mutex_init(&caching_ctl->mutex);
600         init_waitqueue_head(&caching_ctl->wait);
601         caching_ctl->block_group = cache;
602         caching_ctl->progress = cache->key.objectid;
603         refcount_set(&caching_ctl->count, 1);
604         btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
605                         caching_thread, NULL, NULL);
606
607         spin_lock(&cache->lock);
608         /*
609          * This should be a rare occasion, but this could happen I think in the
610          * case where one thread starts to load the space cache info, and then
611          * some other thread starts a transaction commit which tries to do an
612          * allocation while the other thread is still loading the space cache
613          * info.  The previous loop should have kept us from choosing this block
614          * group, but if we've moved to the state where we will wait on caching
615          * block groups we need to first check if we're doing a fast load here,
616          * so we can wait for it to finish, otherwise we could end up allocating
617          * from a block group who's cache gets evicted for one reason or
618          * another.
619          */
620         while (cache->cached == BTRFS_CACHE_FAST) {
621                 struct btrfs_caching_control *ctl;
622
623                 ctl = cache->caching_ctl;
624                 refcount_inc(&ctl->count);
625                 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
626                 spin_unlock(&cache->lock);
627
628                 schedule();
629
630                 finish_wait(&ctl->wait, &wait);
631                 put_caching_control(ctl);
632                 spin_lock(&cache->lock);
633         }
634
635         if (cache->cached != BTRFS_CACHE_NO) {
636                 spin_unlock(&cache->lock);
637                 kfree(caching_ctl);
638                 return 0;
639         }
640         WARN_ON(cache->caching_ctl);
641         cache->caching_ctl = caching_ctl;
642         cache->cached = BTRFS_CACHE_FAST;
643         spin_unlock(&cache->lock);
644
645         if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
646                 mutex_lock(&caching_ctl->mutex);
647                 ret = load_free_space_cache(fs_info, cache);
648
649                 spin_lock(&cache->lock);
650                 if (ret == 1) {
651                         cache->caching_ctl = NULL;
652                         cache->cached = BTRFS_CACHE_FINISHED;
653                         cache->last_byte_to_unpin = (u64)-1;
654                         caching_ctl->progress = (u64)-1;
655                 } else {
656                         if (load_cache_only) {
657                                 cache->caching_ctl = NULL;
658                                 cache->cached = BTRFS_CACHE_NO;
659                         } else {
660                                 cache->cached = BTRFS_CACHE_STARTED;
661                                 cache->has_caching_ctl = 1;
662                         }
663                 }
664                 spin_unlock(&cache->lock);
665 #ifdef CONFIG_BTRFS_DEBUG
666                 if (ret == 1 &&
667                     btrfs_should_fragment_free_space(cache)) {
668                         u64 bytes_used;
669
670                         spin_lock(&cache->space_info->lock);
671                         spin_lock(&cache->lock);
672                         bytes_used = cache->key.offset -
673                                 btrfs_block_group_used(&cache->item);
674                         cache->space_info->bytes_used += bytes_used >> 1;
675                         spin_unlock(&cache->lock);
676                         spin_unlock(&cache->space_info->lock);
677                         fragment_free_space(cache);
678                 }
679 #endif
680                 mutex_unlock(&caching_ctl->mutex);
681
682                 wake_up(&caching_ctl->wait);
683                 if (ret == 1) {
684                         put_caching_control(caching_ctl);
685                         free_excluded_extents(fs_info, cache);
686                         return 0;
687                 }
688         } else {
689                 /*
690                  * We're either using the free space tree or no caching at all.
691                  * Set cached to the appropriate value and wakeup any waiters.
692                  */
693                 spin_lock(&cache->lock);
694                 if (load_cache_only) {
695                         cache->caching_ctl = NULL;
696                         cache->cached = BTRFS_CACHE_NO;
697                 } else {
698                         cache->cached = BTRFS_CACHE_STARTED;
699                         cache->has_caching_ctl = 1;
700                 }
701                 spin_unlock(&cache->lock);
702                 wake_up(&caching_ctl->wait);
703         }
704
705         if (load_cache_only) {
706                 put_caching_control(caching_ctl);
707                 return 0;
708         }
709
710         down_write(&fs_info->commit_root_sem);
711         refcount_inc(&caching_ctl->count);
712         list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
713         up_write(&fs_info->commit_root_sem);
714
715         btrfs_get_block_group(cache);
716
717         btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
718
719         return ret;
720 }
721
722 /*
723  * return the block group that starts at or after bytenr
724  */
725 static struct btrfs_block_group_cache *
726 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
727 {
728         return block_group_cache_tree_search(info, bytenr, 0);
729 }
730
731 /*
732  * return the block group that contains the given bytenr
733  */
734 struct btrfs_block_group_cache *btrfs_lookup_block_group(
735                                                  struct btrfs_fs_info *info,
736                                                  u64 bytenr)
737 {
738         return block_group_cache_tree_search(info, bytenr, 1);
739 }
740
741 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
742                                                   u64 flags)
743 {
744         struct list_head *head = &info->space_info;
745         struct btrfs_space_info *found;
746
747         flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
748
749         rcu_read_lock();
750         list_for_each_entry_rcu(found, head, list) {
751                 if (found->flags & flags) {
752                         rcu_read_unlock();
753                         return found;
754                 }
755         }
756         rcu_read_unlock();
757         return NULL;
758 }
759
760 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
761                              u64 owner, u64 root_objectid)
762 {
763         struct btrfs_space_info *space_info;
764         u64 flags;
765
766         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
767                 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
768                         flags = BTRFS_BLOCK_GROUP_SYSTEM;
769                 else
770                         flags = BTRFS_BLOCK_GROUP_METADATA;
771         } else {
772                 flags = BTRFS_BLOCK_GROUP_DATA;
773         }
774
775         space_info = __find_space_info(fs_info, flags);
776         ASSERT(space_info);
777         percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
778 }
779
780 /*
781  * after adding space to the filesystem, we need to clear the full flags
782  * on all the space infos.
783  */
784 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
785 {
786         struct list_head *head = &info->space_info;
787         struct btrfs_space_info *found;
788
789         rcu_read_lock();
790         list_for_each_entry_rcu(found, head, list)
791                 found->full = 0;
792         rcu_read_unlock();
793 }
794
795 /* simple helper to search for an existing data extent at a given offset */
796 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
797 {
798         int ret;
799         struct btrfs_key key;
800         struct btrfs_path *path;
801
802         path = btrfs_alloc_path();
803         if (!path)
804                 return -ENOMEM;
805
806         key.objectid = start;
807         key.offset = len;
808         key.type = BTRFS_EXTENT_ITEM_KEY;
809         ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
810         btrfs_free_path(path);
811         return ret;
812 }
813
814 /*
815  * helper function to lookup reference count and flags of a tree block.
816  *
817  * the head node for delayed ref is used to store the sum of all the
818  * reference count modifications queued up in the rbtree. the head
819  * node may also store the extent flags to set. This way you can check
820  * to see what the reference count and extent flags would be if all of
821  * the delayed refs are not processed.
822  */
823 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
824                              struct btrfs_fs_info *fs_info, u64 bytenr,
825                              u64 offset, int metadata, u64 *refs, u64 *flags)
826 {
827         struct btrfs_delayed_ref_head *head;
828         struct btrfs_delayed_ref_root *delayed_refs;
829         struct btrfs_path *path;
830         struct btrfs_extent_item *ei;
831         struct extent_buffer *leaf;
832         struct btrfs_key key;
833         u32 item_size;
834         u64 num_refs;
835         u64 extent_flags;
836         int ret;
837
838         /*
839          * If we don't have skinny metadata, don't bother doing anything
840          * different
841          */
842         if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
843                 offset = fs_info->nodesize;
844                 metadata = 0;
845         }
846
847         path = btrfs_alloc_path();
848         if (!path)
849                 return -ENOMEM;
850
851         if (!trans) {
852                 path->skip_locking = 1;
853                 path->search_commit_root = 1;
854         }
855
856 search_again:
857         key.objectid = bytenr;
858         key.offset = offset;
859         if (metadata)
860                 key.type = BTRFS_METADATA_ITEM_KEY;
861         else
862                 key.type = BTRFS_EXTENT_ITEM_KEY;
863
864         ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
865         if (ret < 0)
866                 goto out_free;
867
868         if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
869                 if (path->slots[0]) {
870                         path->slots[0]--;
871                         btrfs_item_key_to_cpu(path->nodes[0], &key,
872                                               path->slots[0]);
873                         if (key.objectid == bytenr &&
874                             key.type == BTRFS_EXTENT_ITEM_KEY &&
875                             key.offset == fs_info->nodesize)
876                                 ret = 0;
877                 }
878         }
879
880         if (ret == 0) {
881                 leaf = path->nodes[0];
882                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
883                 if (item_size >= sizeof(*ei)) {
884                         ei = btrfs_item_ptr(leaf, path->slots[0],
885                                             struct btrfs_extent_item);
886                         num_refs = btrfs_extent_refs(leaf, ei);
887                         extent_flags = btrfs_extent_flags(leaf, ei);
888                 } else {
889 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
890                         struct btrfs_extent_item_v0 *ei0;
891                         BUG_ON(item_size != sizeof(*ei0));
892                         ei0 = btrfs_item_ptr(leaf, path->slots[0],
893                                              struct btrfs_extent_item_v0);
894                         num_refs = btrfs_extent_refs_v0(leaf, ei0);
895                         /* FIXME: this isn't correct for data */
896                         extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
897 #else
898                         BUG();
899 #endif
900                 }
901                 BUG_ON(num_refs == 0);
902         } else {
903                 num_refs = 0;
904                 extent_flags = 0;
905                 ret = 0;
906         }
907
908         if (!trans)
909                 goto out;
910
911         delayed_refs = &trans->transaction->delayed_refs;
912         spin_lock(&delayed_refs->lock);
913         head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
914         if (head) {
915                 if (!mutex_trylock(&head->mutex)) {
916                         refcount_inc(&head->refs);
917                         spin_unlock(&delayed_refs->lock);
918
919                         btrfs_release_path(path);
920
921                         /*
922                          * Mutex was contended, block until it's released and try
923                          * again
924                          */
925                         mutex_lock(&head->mutex);
926                         mutex_unlock(&head->mutex);
927                         btrfs_put_delayed_ref_head(head);
928                         goto search_again;
929                 }
930                 spin_lock(&head->lock);
931                 if (head->extent_op && head->extent_op->update_flags)
932                         extent_flags |= head->extent_op->flags_to_set;
933                 else
934                         BUG_ON(num_refs == 0);
935
936                 num_refs += head->ref_mod;
937                 spin_unlock(&head->lock);
938                 mutex_unlock(&head->mutex);
939         }
940         spin_unlock(&delayed_refs->lock);
941 out:
942         WARN_ON(num_refs == 0);
943         if (refs)
944                 *refs = num_refs;
945         if (flags)
946                 *flags = extent_flags;
947 out_free:
948         btrfs_free_path(path);
949         return ret;
950 }
951
952 /*
953  * Back reference rules.  Back refs have three main goals:
954  *
955  * 1) differentiate between all holders of references to an extent so that
956  *    when a reference is dropped we can make sure it was a valid reference
957  *    before freeing the extent.
958  *
959  * 2) Provide enough information to quickly find the holders of an extent
960  *    if we notice a given block is corrupted or bad.
961  *
962  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
963  *    maintenance.  This is actually the same as #2, but with a slightly
964  *    different use case.
965  *
966  * There are two kinds of back refs. The implicit back refs is optimized
967  * for pointers in non-shared tree blocks. For a given pointer in a block,
968  * back refs of this kind provide information about the block's owner tree
969  * and the pointer's key. These information allow us to find the block by
970  * b-tree searching. The full back refs is for pointers in tree blocks not
971  * referenced by their owner trees. The location of tree block is recorded
972  * in the back refs. Actually the full back refs is generic, and can be
973  * used in all cases the implicit back refs is used. The major shortcoming
974  * of the full back refs is its overhead. Every time a tree block gets
975  * COWed, we have to update back refs entry for all pointers in it.
976  *
977  * For a newly allocated tree block, we use implicit back refs for
978  * pointers in it. This means most tree related operations only involve
979  * implicit back refs. For a tree block created in old transaction, the
980  * only way to drop a reference to it is COW it. So we can detect the
981  * event that tree block loses its owner tree's reference and do the
982  * back refs conversion.
983  *
984  * When a tree block is COWed through a tree, there are four cases:
985  *
986  * The reference count of the block is one and the tree is the block's
987  * owner tree. Nothing to do in this case.
988  *
989  * The reference count of the block is one and the tree is not the
990  * block's owner tree. In this case, full back refs is used for pointers
991  * in the block. Remove these full back refs, add implicit back refs for
992  * every pointers in the new block.
993  *
994  * The reference count of the block is greater than one and the tree is
995  * the block's owner tree. In this case, implicit back refs is used for
996  * pointers in the block. Add full back refs for every pointers in the
997  * block, increase lower level extents' reference counts. The original
998  * implicit back refs are entailed to the new block.
999  *
1000  * The reference count of the block is greater than one and the tree is
1001  * not the block's owner tree. Add implicit back refs for every pointer in
1002  * the new block, increase lower level extents' reference count.
1003  *
1004  * Back Reference Key composing:
1005  *
1006  * The key objectid corresponds to the first byte in the extent,
1007  * The key type is used to differentiate between types of back refs.
1008  * There are different meanings of the key offset for different types
1009  * of back refs.
1010  *
1011  * File extents can be referenced by:
1012  *
1013  * - multiple snapshots, subvolumes, or different generations in one subvol
1014  * - different files inside a single subvolume
1015  * - different offsets inside a file (bookend extents in file.c)
1016  *
1017  * The extent ref structure for the implicit back refs has fields for:
1018  *
1019  * - Objectid of the subvolume root
1020  * - objectid of the file holding the reference
1021  * - original offset in the file
1022  * - how many bookend extents
1023  *
1024  * The key offset for the implicit back refs is hash of the first
1025  * three fields.
1026  *
1027  * The extent ref structure for the full back refs has field for:
1028  *
1029  * - number of pointers in the tree leaf
1030  *
1031  * The key offset for the implicit back refs is the first byte of
1032  * the tree leaf
1033  *
1034  * When a file extent is allocated, The implicit back refs is used.
1035  * the fields are filled in:
1036  *
1037  *     (root_key.objectid, inode objectid, offset in file, 1)
1038  *
1039  * When a file extent is removed file truncation, we find the
1040  * corresponding implicit back refs and check the following fields:
1041  *
1042  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
1043  *
1044  * Btree extents can be referenced by:
1045  *
1046  * - Different subvolumes
1047  *
1048  * Both the implicit back refs and the full back refs for tree blocks
1049  * only consist of key. The key offset for the implicit back refs is
1050  * objectid of block's owner tree. The key offset for the full back refs
1051  * is the first byte of parent block.
1052  *
1053  * When implicit back refs is used, information about the lowest key and
1054  * level of the tree block are required. These information are stored in
1055  * tree block info structure.
1056  */
1057
1058 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1059 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1060                                   struct btrfs_fs_info *fs_info,
1061                                   struct btrfs_path *path,
1062                                   u64 owner, u32 extra_size)
1063 {
1064         struct btrfs_root *root = fs_info->extent_root;
1065         struct btrfs_extent_item *item;
1066         struct btrfs_extent_item_v0 *ei0;
1067         struct btrfs_extent_ref_v0 *ref0;
1068         struct btrfs_tree_block_info *bi;
1069         struct extent_buffer *leaf;
1070         struct btrfs_key key;
1071         struct btrfs_key found_key;
1072         u32 new_size = sizeof(*item);
1073         u64 refs;
1074         int ret;
1075
1076         leaf = path->nodes[0];
1077         BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1078
1079         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1080         ei0 = btrfs_item_ptr(leaf, path->slots[0],
1081                              struct btrfs_extent_item_v0);
1082         refs = btrfs_extent_refs_v0(leaf, ei0);
1083
1084         if (owner == (u64)-1) {
1085                 while (1) {
1086                         if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1087                                 ret = btrfs_next_leaf(root, path);
1088                                 if (ret < 0)
1089                                         return ret;
1090                                 BUG_ON(ret > 0); /* Corruption */
1091                                 leaf = path->nodes[0];
1092                         }
1093                         btrfs_item_key_to_cpu(leaf, &found_key,
1094                                               path->slots[0]);
1095                         BUG_ON(key.objectid != found_key.objectid);
1096                         if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1097                                 path->slots[0]++;
1098                                 continue;
1099                         }
1100                         ref0 = btrfs_item_ptr(leaf, path->slots[0],
1101                                               struct btrfs_extent_ref_v0);
1102                         owner = btrfs_ref_objectid_v0(leaf, ref0);
1103                         break;
1104                 }
1105         }
1106         btrfs_release_path(path);
1107
1108         if (owner < BTRFS_FIRST_FREE_OBJECTID)
1109                 new_size += sizeof(*bi);
1110
1111         new_size -= sizeof(*ei0);
1112         ret = btrfs_search_slot(trans, root, &key, path,
1113                                 new_size + extra_size, 1);
1114         if (ret < 0)
1115                 return ret;
1116         BUG_ON(ret); /* Corruption */
1117
1118         btrfs_extend_item(fs_info, path, new_size);
1119
1120         leaf = path->nodes[0];
1121         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1122         btrfs_set_extent_refs(leaf, item, refs);
1123         /* FIXME: get real generation */
1124         btrfs_set_extent_generation(leaf, item, 0);
1125         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1126                 btrfs_set_extent_flags(leaf, item,
1127                                        BTRFS_EXTENT_FLAG_TREE_BLOCK |
1128                                        BTRFS_BLOCK_FLAG_FULL_BACKREF);
1129                 bi = (struct btrfs_tree_block_info *)(item + 1);
1130                 /* FIXME: get first key of the block */
1131                 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
1132                 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1133         } else {
1134                 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1135         }
1136         btrfs_mark_buffer_dirty(leaf);
1137         return 0;
1138 }
1139 #endif
1140
1141 /*
1142  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1143  * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1144  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1145  */
1146 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1147                                      struct btrfs_extent_inline_ref *iref,
1148                                      enum btrfs_inline_ref_type is_data)
1149 {
1150         int type = btrfs_extent_inline_ref_type(eb, iref);
1151         u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
1152
1153         if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1154             type == BTRFS_SHARED_BLOCK_REF_KEY ||
1155             type == BTRFS_SHARED_DATA_REF_KEY ||
1156             type == BTRFS_EXTENT_DATA_REF_KEY) {
1157                 if (is_data == BTRFS_REF_TYPE_BLOCK) {
1158                         if (type == BTRFS_TREE_BLOCK_REF_KEY)
1159                                 return type;
1160                         if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1161                                 ASSERT(eb->fs_info);
1162                                 /*
1163                                  * Every shared one has parent tree
1164                                  * block, which must be aligned to
1165                                  * nodesize.
1166                                  */
1167                                 if (offset &&
1168                                     IS_ALIGNED(offset, eb->fs_info->nodesize))
1169                                         return type;
1170                         }
1171                 } else if (is_data == BTRFS_REF_TYPE_DATA) {
1172                         if (type == BTRFS_EXTENT_DATA_REF_KEY)
1173                                 return type;
1174                         if (type == BTRFS_SHARED_DATA_REF_KEY) {
1175                                 ASSERT(eb->fs_info);
1176                                 /*
1177                                  * Every shared one has parent tree
1178                                  * block, which must be aligned to
1179                                  * nodesize.
1180                                  */
1181                                 if (offset &&
1182                                     IS_ALIGNED(offset, eb->fs_info->nodesize))
1183                                         return type;
1184                         }
1185                 } else {
1186                         ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1187                         return type;
1188                 }
1189         }
1190
1191         btrfs_print_leaf((struct extent_buffer *)eb);
1192         btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1193                   eb->start, type);
1194         WARN_ON(1);
1195
1196         return BTRFS_REF_TYPE_INVALID;
1197 }
1198
1199 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1200 {
1201         u32 high_crc = ~(u32)0;
1202         u32 low_crc = ~(u32)0;
1203         __le64 lenum;
1204
1205         lenum = cpu_to_le64(root_objectid);
1206         high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1207         lenum = cpu_to_le64(owner);
1208         low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1209         lenum = cpu_to_le64(offset);
1210         low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1211
1212         return ((u64)high_crc << 31) ^ (u64)low_crc;
1213 }
1214
1215 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1216                                      struct btrfs_extent_data_ref *ref)
1217 {
1218         return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1219                                     btrfs_extent_data_ref_objectid(leaf, ref),
1220                                     btrfs_extent_data_ref_offset(leaf, ref));
1221 }
1222
1223 static int match_extent_data_ref(struct extent_buffer *leaf,
1224                                  struct btrfs_extent_data_ref *ref,
1225                                  u64 root_objectid, u64 owner, u64 offset)
1226 {
1227         if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1228             btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1229             btrfs_extent_data_ref_offset(leaf, ref) != offset)
1230                 return 0;
1231         return 1;
1232 }
1233
1234 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1235                                            struct btrfs_fs_info *fs_info,
1236                                            struct btrfs_path *path,
1237                                            u64 bytenr, u64 parent,
1238                                            u64 root_objectid,
1239                                            u64 owner, u64 offset)
1240 {
1241         struct btrfs_root *root = fs_info->extent_root;
1242         struct btrfs_key key;
1243         struct btrfs_extent_data_ref *ref;
1244         struct extent_buffer *leaf;
1245         u32 nritems;
1246         int ret;
1247         int recow;
1248         int err = -ENOENT;
1249
1250         key.objectid = bytenr;
1251         if (parent) {
1252                 key.type = BTRFS_SHARED_DATA_REF_KEY;
1253                 key.offset = parent;
1254         } else {
1255                 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1256                 key.offset = hash_extent_data_ref(root_objectid,
1257                                                   owner, offset);
1258         }
1259 again:
1260         recow = 0;
1261         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1262         if (ret < 0) {
1263                 err = ret;
1264                 goto fail;
1265         }
1266
1267         if (parent) {
1268                 if (!ret)
1269                         return 0;
1270 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1271                 key.type = BTRFS_EXTENT_REF_V0_KEY;
1272                 btrfs_release_path(path);
1273                 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1274                 if (ret < 0) {
1275                         err = ret;
1276                         goto fail;
1277                 }
1278                 if (!ret)
1279                         return 0;
1280 #endif
1281                 goto fail;
1282         }
1283
1284         leaf = path->nodes[0];
1285         nritems = btrfs_header_nritems(leaf);
1286         while (1) {
1287                 if (path->slots[0] >= nritems) {
1288                         ret = btrfs_next_leaf(root, path);
1289                         if (ret < 0)
1290                                 err = ret;
1291                         if (ret)
1292                                 goto fail;
1293
1294                         leaf = path->nodes[0];
1295                         nritems = btrfs_header_nritems(leaf);
1296                         recow = 1;
1297                 }
1298
1299                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1300                 if (key.objectid != bytenr ||
1301                     key.type != BTRFS_EXTENT_DATA_REF_KEY)
1302                         goto fail;
1303
1304                 ref = btrfs_item_ptr(leaf, path->slots[0],
1305                                      struct btrfs_extent_data_ref);
1306
1307                 if (match_extent_data_ref(leaf, ref, root_objectid,
1308                                           owner, offset)) {
1309                         if (recow) {
1310                                 btrfs_release_path(path);
1311                                 goto again;
1312                         }
1313                         err = 0;
1314                         break;
1315                 }
1316                 path->slots[0]++;
1317         }
1318 fail:
1319         return err;
1320 }
1321
1322 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1323                                            struct btrfs_fs_info *fs_info,
1324                                            struct btrfs_path *path,
1325                                            u64 bytenr, u64 parent,
1326                                            u64 root_objectid, u64 owner,
1327                                            u64 offset, int refs_to_add)
1328 {
1329         struct btrfs_root *root = fs_info->extent_root;
1330         struct btrfs_key key;
1331         struct extent_buffer *leaf;
1332         u32 size;
1333         u32 num_refs;
1334         int ret;
1335
1336         key.objectid = bytenr;
1337         if (parent) {
1338                 key.type = BTRFS_SHARED_DATA_REF_KEY;
1339                 key.offset = parent;
1340                 size = sizeof(struct btrfs_shared_data_ref);
1341         } else {
1342                 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1343                 key.offset = hash_extent_data_ref(root_objectid,
1344                                                   owner, offset);
1345                 size = sizeof(struct btrfs_extent_data_ref);
1346         }
1347
1348         ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1349         if (ret && ret != -EEXIST)
1350                 goto fail;
1351
1352         leaf = path->nodes[0];
1353         if (parent) {
1354                 struct btrfs_shared_data_ref *ref;
1355                 ref = btrfs_item_ptr(leaf, path->slots[0],
1356                                      struct btrfs_shared_data_ref);
1357                 if (ret == 0) {
1358                         btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1359                 } else {
1360                         num_refs = btrfs_shared_data_ref_count(leaf, ref);
1361                         num_refs += refs_to_add;
1362                         btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1363                 }
1364         } else {
1365                 struct btrfs_extent_data_ref *ref;
1366                 while (ret == -EEXIST) {
1367                         ref = btrfs_item_ptr(leaf, path->slots[0],
1368                                              struct btrfs_extent_data_ref);
1369                         if (match_extent_data_ref(leaf, ref, root_objectid,
1370                                                   owner, offset))
1371                                 break;
1372                         btrfs_release_path(path);
1373                         key.offset++;
1374                         ret = btrfs_insert_empty_item(trans, root, path, &key,
1375                                                       size);
1376                         if (ret && ret != -EEXIST)
1377                                 goto fail;
1378
1379                         leaf = path->nodes[0];
1380                 }
1381                 ref = btrfs_item_ptr(leaf, path->slots[0],
1382                                      struct btrfs_extent_data_ref);
1383                 if (ret == 0) {
1384                         btrfs_set_extent_data_ref_root(leaf, ref,
1385                                                        root_objectid);
1386                         btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1387                         btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1388                         btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1389                 } else {
1390                         num_refs = btrfs_extent_data_ref_count(leaf, ref);
1391                         num_refs += refs_to_add;
1392                         btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1393                 }
1394         }
1395         btrfs_mark_buffer_dirty(leaf);
1396         ret = 0;
1397 fail:
1398         btrfs_release_path(path);
1399         return ret;
1400 }
1401
1402 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1403                                            struct btrfs_fs_info *fs_info,
1404                                            struct btrfs_path *path,
1405                                            int refs_to_drop, int *last_ref)
1406 {
1407         struct btrfs_key key;
1408         struct btrfs_extent_data_ref *ref1 = NULL;
1409         struct btrfs_shared_data_ref *ref2 = NULL;
1410         struct extent_buffer *leaf;
1411         u32 num_refs = 0;
1412         int ret = 0;
1413
1414         leaf = path->nodes[0];
1415         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1416
1417         if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1418                 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1419                                       struct btrfs_extent_data_ref);
1420                 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1421         } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1422                 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1423                                       struct btrfs_shared_data_ref);
1424                 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1425 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1426         } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1427                 struct btrfs_extent_ref_v0 *ref0;
1428                 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1429                                       struct btrfs_extent_ref_v0);
1430                 num_refs = btrfs_ref_count_v0(leaf, ref0);
1431 #endif
1432         } else {
1433                 BUG();
1434         }
1435
1436         BUG_ON(num_refs < refs_to_drop);
1437         num_refs -= refs_to_drop;
1438
1439         if (num_refs == 0) {
1440                 ret = btrfs_del_item(trans, fs_info->extent_root, path);
1441                 *last_ref = 1;
1442         } else {
1443                 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1444                         btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1445                 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1446                         btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1447 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1448                 else {
1449                         struct btrfs_extent_ref_v0 *ref0;
1450                         ref0 = btrfs_item_ptr(leaf, path->slots[0],
1451                                         struct btrfs_extent_ref_v0);
1452                         btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1453                 }
1454 #endif
1455                 btrfs_mark_buffer_dirty(leaf);
1456         }
1457         return ret;
1458 }
1459
1460 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1461                                           struct btrfs_extent_inline_ref *iref)
1462 {
1463         struct btrfs_key key;
1464         struct extent_buffer *leaf;
1465         struct btrfs_extent_data_ref *ref1;
1466         struct btrfs_shared_data_ref *ref2;
1467         u32 num_refs = 0;
1468         int type;
1469
1470         leaf = path->nodes[0];
1471         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1472         if (iref) {
1473                 /*
1474                  * If type is invalid, we should have bailed out earlier than
1475                  * this call.
1476                  */
1477                 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1478                 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1479                 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1480                         ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1481                         num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1482                 } else {
1483                         ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1484                         num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1485                 }
1486         } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1487                 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1488                                       struct btrfs_extent_data_ref);
1489                 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1490         } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1491                 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1492                                       struct btrfs_shared_data_ref);
1493                 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1494 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1495         } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1496                 struct btrfs_extent_ref_v0 *ref0;
1497                 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1498                                       struct btrfs_extent_ref_v0);
1499                 num_refs = btrfs_ref_count_v0(leaf, ref0);
1500 #endif
1501         } else {
1502                 WARN_ON(1);
1503         }
1504         return num_refs;
1505 }
1506
1507 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1508                                           struct btrfs_fs_info *fs_info,
1509                                           struct btrfs_path *path,
1510                                           u64 bytenr, u64 parent,
1511                                           u64 root_objectid)
1512 {
1513         struct btrfs_root *root = fs_info->extent_root;
1514         struct btrfs_key key;
1515         int ret;
1516
1517         key.objectid = bytenr;
1518         if (parent) {
1519                 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1520                 key.offset = parent;
1521         } else {
1522                 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1523                 key.offset = root_objectid;
1524         }
1525
1526         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1527         if (ret > 0)
1528                 ret = -ENOENT;
1529 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1530         if (ret == -ENOENT && parent) {
1531                 btrfs_release_path(path);
1532                 key.type = BTRFS_EXTENT_REF_V0_KEY;
1533                 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1534                 if (ret > 0)
1535                         ret = -ENOENT;
1536         }
1537 #endif
1538         return ret;
1539 }
1540
1541 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1542                                           struct btrfs_fs_info *fs_info,
1543                                           struct btrfs_path *path,
1544                                           u64 bytenr, u64 parent,
1545                                           u64 root_objectid)
1546 {
1547         struct btrfs_key key;
1548         int ret;
1549
1550         key.objectid = bytenr;
1551         if (parent) {
1552                 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1553                 key.offset = parent;
1554         } else {
1555                 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1556                 key.offset = root_objectid;
1557         }
1558
1559         ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1560                                       path, &key, 0);
1561         btrfs_release_path(path);
1562         return ret;
1563 }
1564
1565 static inline int extent_ref_type(u64 parent, u64 owner)
1566 {
1567         int type;
1568         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1569                 if (parent > 0)
1570                         type = BTRFS_SHARED_BLOCK_REF_KEY;
1571                 else
1572                         type = BTRFS_TREE_BLOCK_REF_KEY;
1573         } else {
1574                 if (parent > 0)
1575                         type = BTRFS_SHARED_DATA_REF_KEY;
1576                 else
1577                         type = BTRFS_EXTENT_DATA_REF_KEY;
1578         }
1579         return type;
1580 }
1581
1582 static int find_next_key(struct btrfs_path *path, int level,
1583                          struct btrfs_key *key)
1584
1585 {
1586         for (; level < BTRFS_MAX_LEVEL; level++) {
1587                 if (!path->nodes[level])
1588                         break;
1589                 if (path->slots[level] + 1 >=
1590                     btrfs_header_nritems(path->nodes[level]))
1591                         continue;
1592                 if (level == 0)
1593                         btrfs_item_key_to_cpu(path->nodes[level], key,
1594                                               path->slots[level] + 1);
1595                 else
1596                         btrfs_node_key_to_cpu(path->nodes[level], key,
1597                                               path->slots[level] + 1);
1598                 return 0;
1599         }
1600         return 1;
1601 }
1602
1603 /*
1604  * look for inline back ref. if back ref is found, *ref_ret is set
1605  * to the address of inline back ref, and 0 is returned.
1606  *
1607  * if back ref isn't found, *ref_ret is set to the address where it
1608  * should be inserted, and -ENOENT is returned.
1609  *
1610  * if insert is true and there are too many inline back refs, the path
1611  * points to the extent item, and -EAGAIN is returned.
1612  *
1613  * NOTE: inline back refs are ordered in the same way that back ref
1614  *       items in the tree are ordered.
1615  */
1616 static noinline_for_stack
1617 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1618                                  struct btrfs_fs_info *fs_info,
1619                                  struct btrfs_path *path,
1620                                  struct btrfs_extent_inline_ref **ref_ret,
1621                                  u64 bytenr, u64 num_bytes,
1622                                  u64 parent, u64 root_objectid,
1623                                  u64 owner, u64 offset, int insert)
1624 {
1625         struct btrfs_root *root = fs_info->extent_root;
1626         struct btrfs_key key;
1627         struct extent_buffer *leaf;
1628         struct btrfs_extent_item *ei;
1629         struct btrfs_extent_inline_ref *iref;
1630         u64 flags;
1631         u64 item_size;
1632         unsigned long ptr;
1633         unsigned long end;
1634         int extra_size;
1635         int type;
1636         int want;
1637         int ret;
1638         int err = 0;
1639         bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1640         int needed;
1641
1642         key.objectid = bytenr;
1643         key.type = BTRFS_EXTENT_ITEM_KEY;
1644         key.offset = num_bytes;
1645
1646         want = extent_ref_type(parent, owner);
1647         if (insert) {
1648                 extra_size = btrfs_extent_inline_ref_size(want);
1649                 path->keep_locks = 1;
1650         } else
1651                 extra_size = -1;
1652
1653         /*
1654          * Owner is our parent level, so we can just add one to get the level
1655          * for the block we are interested in.
1656          */
1657         if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1658                 key.type = BTRFS_METADATA_ITEM_KEY;
1659                 key.offset = owner;
1660         }
1661
1662 again:
1663         ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1664         if (ret < 0) {
1665                 err = ret;
1666                 goto out;
1667         }
1668
1669         /*
1670          * We may be a newly converted file system which still has the old fat
1671          * extent entries for metadata, so try and see if we have one of those.
1672          */
1673         if (ret > 0 && skinny_metadata) {
1674                 skinny_metadata = false;
1675                 if (path->slots[0]) {
1676                         path->slots[0]--;
1677                         btrfs_item_key_to_cpu(path->nodes[0], &key,
1678                                               path->slots[0]);
1679                         if (key.objectid == bytenr &&
1680                             key.type == BTRFS_EXTENT_ITEM_KEY &&
1681                             key.offset == num_bytes)
1682                                 ret = 0;
1683                 }
1684                 if (ret) {
1685                         key.objectid = bytenr;
1686                         key.type = BTRFS_EXTENT_ITEM_KEY;
1687                         key.offset = num_bytes;
1688                         btrfs_release_path(path);
1689                         goto again;
1690                 }
1691         }
1692
1693         if (ret && !insert) {
1694                 err = -ENOENT;
1695                 goto out;
1696         } else if (WARN_ON(ret)) {
1697                 err = -EIO;
1698                 goto out;
1699         }
1700
1701         leaf = path->nodes[0];
1702         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1703 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1704         if (item_size < sizeof(*ei)) {
1705                 if (!insert) {
1706                         err = -ENOENT;
1707                         goto out;
1708                 }
1709                 ret = convert_extent_item_v0(trans, fs_info, path, owner,
1710                                              extra_size);
1711                 if (ret < 0) {
1712                         err = ret;
1713                         goto out;
1714                 }
1715                 leaf = path->nodes[0];
1716                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1717         }
1718 #endif
1719         BUG_ON(item_size < sizeof(*ei));
1720
1721         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1722         flags = btrfs_extent_flags(leaf, ei);
1723
1724         ptr = (unsigned long)(ei + 1);
1725         end = (unsigned long)ei + item_size;
1726
1727         if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1728                 ptr += sizeof(struct btrfs_tree_block_info);
1729                 BUG_ON(ptr > end);
1730         }
1731
1732         if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1733                 needed = BTRFS_REF_TYPE_DATA;
1734         else
1735                 needed = BTRFS_REF_TYPE_BLOCK;
1736
1737         err = -ENOENT;
1738         while (1) {
1739                 if (ptr >= end) {
1740                         WARN_ON(ptr > end);
1741                         break;
1742                 }
1743                 iref = (struct btrfs_extent_inline_ref *)ptr;
1744                 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1745                 if (type == BTRFS_REF_TYPE_INVALID) {
1746                         err = -EINVAL;
1747                         goto out;
1748                 }
1749
1750                 if (want < type)
1751                         break;
1752                 if (want > type) {
1753                         ptr += btrfs_extent_inline_ref_size(type);
1754                         continue;
1755                 }
1756
1757                 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1758                         struct btrfs_extent_data_ref *dref;
1759                         dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1760                         if (match_extent_data_ref(leaf, dref, root_objectid,
1761                                                   owner, offset)) {
1762                                 err = 0;
1763                                 break;
1764                         }
1765                         if (hash_extent_data_ref_item(leaf, dref) <
1766                             hash_extent_data_ref(root_objectid, owner, offset))
1767                                 break;
1768                 } else {
1769                         u64 ref_offset;
1770                         ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1771                         if (parent > 0) {
1772                                 if (parent == ref_offset) {
1773                                         err = 0;
1774                                         break;
1775                                 }
1776                                 if (ref_offset < parent)
1777                                         break;
1778                         } else {
1779                                 if (root_objectid == ref_offset) {
1780                                         err = 0;
1781                                         break;
1782                                 }
1783                                 if (ref_offset < root_objectid)
1784                                         break;
1785                         }
1786                 }
1787                 ptr += btrfs_extent_inline_ref_size(type);
1788         }
1789         if (err == -ENOENT && insert) {
1790                 if (item_size + extra_size >=
1791                     BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1792                         err = -EAGAIN;
1793                         goto out;
1794                 }
1795                 /*
1796                  * To add new inline back ref, we have to make sure
1797                  * there is no corresponding back ref item.
1798                  * For simplicity, we just do not add new inline back
1799                  * ref if there is any kind of item for this block
1800                  */
1801                 if (find_next_key(path, 0, &key) == 0 &&
1802                     key.objectid == bytenr &&
1803                     key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1804                         err = -EAGAIN;
1805                         goto out;
1806                 }
1807         }
1808         *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1809 out:
1810         if (insert) {
1811                 path->keep_locks = 0;
1812                 btrfs_unlock_up_safe(path, 1);
1813         }
1814         return err;
1815 }
1816
1817 /*
1818  * helper to add new inline back ref
1819  */
1820 static noinline_for_stack
1821 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1822                                  struct btrfs_path *path,
1823                                  struct btrfs_extent_inline_ref *iref,
1824                                  u64 parent, u64 root_objectid,
1825                                  u64 owner, u64 offset, int refs_to_add,
1826                                  struct btrfs_delayed_extent_op *extent_op)
1827 {
1828         struct extent_buffer *leaf;
1829         struct btrfs_extent_item *ei;
1830         unsigned long ptr;
1831         unsigned long end;
1832         unsigned long item_offset;
1833         u64 refs;
1834         int size;
1835         int type;
1836
1837         leaf = path->nodes[0];
1838         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1839         item_offset = (unsigned long)iref - (unsigned long)ei;
1840
1841         type = extent_ref_type(parent, owner);
1842         size = btrfs_extent_inline_ref_size(type);
1843
1844         btrfs_extend_item(fs_info, path, size);
1845
1846         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1847         refs = btrfs_extent_refs(leaf, ei);
1848         refs += refs_to_add;
1849         btrfs_set_extent_refs(leaf, ei, refs);
1850         if (extent_op)
1851                 __run_delayed_extent_op(extent_op, leaf, ei);
1852
1853         ptr = (unsigned long)ei + item_offset;
1854         end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1855         if (ptr < end - size)
1856                 memmove_extent_buffer(leaf, ptr + size, ptr,
1857                                       end - size - ptr);
1858
1859         iref = (struct btrfs_extent_inline_ref *)ptr;
1860         btrfs_set_extent_inline_ref_type(leaf, iref, type);
1861         if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1862                 struct btrfs_extent_data_ref *dref;
1863                 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1864                 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1865                 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1866                 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1867                 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1868         } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1869                 struct btrfs_shared_data_ref *sref;
1870                 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1871                 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1872                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1873         } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1874                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1875         } else {
1876                 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1877         }
1878         btrfs_mark_buffer_dirty(leaf);
1879 }
1880
1881 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1882                                  struct btrfs_fs_info *fs_info,
1883                                  struct btrfs_path *path,
1884                                  struct btrfs_extent_inline_ref **ref_ret,
1885                                  u64 bytenr, u64 num_bytes, u64 parent,
1886                                  u64 root_objectid, u64 owner, u64 offset)
1887 {
1888         int ret;
1889
1890         ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
1891                                            bytenr, num_bytes, parent,
1892                                            root_objectid, owner, offset, 0);
1893         if (ret != -ENOENT)
1894                 return ret;
1895
1896         btrfs_release_path(path);
1897         *ref_ret = NULL;
1898
1899         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1900                 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1901                                             parent, root_objectid);
1902         } else {
1903                 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1904                                              parent, root_objectid, owner,
1905                                              offset);
1906         }
1907         return ret;
1908 }
1909
1910 /*
1911  * helper to update/remove inline back ref
1912  */
1913 static noinline_for_stack
1914 void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
1915                                   struct btrfs_path *path,
1916                                   struct btrfs_extent_inline_ref *iref,
1917                                   int refs_to_mod,
1918                                   struct btrfs_delayed_extent_op *extent_op,
1919                                   int *last_ref)
1920 {
1921         struct extent_buffer *leaf;
1922         struct btrfs_extent_item *ei;
1923         struct btrfs_extent_data_ref *dref = NULL;
1924         struct btrfs_shared_data_ref *sref = NULL;
1925         unsigned long ptr;
1926         unsigned long end;
1927         u32 item_size;
1928         int size;
1929         int type;
1930         u64 refs;
1931
1932         leaf = path->nodes[0];
1933         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1934         refs = btrfs_extent_refs(leaf, ei);
1935         WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1936         refs += refs_to_mod;
1937         btrfs_set_extent_refs(leaf, ei, refs);
1938         if (extent_op)
1939                 __run_delayed_extent_op(extent_op, leaf, ei);
1940
1941         /*
1942          * If type is invalid, we should have bailed out after
1943          * lookup_inline_extent_backref().
1944          */
1945         type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1946         ASSERT(type != BTRFS_REF_TYPE_INVALID);
1947
1948         if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1949                 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1950                 refs = btrfs_extent_data_ref_count(leaf, dref);
1951         } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1952                 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1953                 refs = btrfs_shared_data_ref_count(leaf, sref);
1954         } else {
1955                 refs = 1;
1956                 BUG_ON(refs_to_mod != -1);
1957         }
1958
1959         BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1960         refs += refs_to_mod;
1961
1962         if (refs > 0) {
1963                 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1964                         btrfs_set_extent_data_ref_count(leaf, dref, refs);
1965                 else
1966                         btrfs_set_shared_data_ref_count(leaf, sref, refs);
1967         } else {
1968                 *last_ref = 1;
1969                 size =  btrfs_extent_inline_ref_size(type);
1970                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1971                 ptr = (unsigned long)iref;
1972                 end = (unsigned long)ei + item_size;
1973                 if (ptr + size < end)
1974                         memmove_extent_buffer(leaf, ptr, ptr + size,
1975                                               end - ptr - size);
1976                 item_size -= size;
1977                 btrfs_truncate_item(fs_info, path, item_size, 1);
1978         }
1979         btrfs_mark_buffer_dirty(leaf);
1980 }
1981
1982 static noinline_for_stack
1983 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1984                                  struct btrfs_fs_info *fs_info,
1985                                  struct btrfs_path *path,
1986                                  u64 bytenr, u64 num_bytes, u64 parent,
1987                                  u64 root_objectid, u64 owner,
1988                                  u64 offset, int refs_to_add,
1989                                  struct btrfs_delayed_extent_op *extent_op)
1990 {
1991         struct btrfs_extent_inline_ref *iref;
1992         int ret;
1993
1994         ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
1995                                            bytenr, num_bytes, parent,
1996                                            root_objectid, owner, offset, 1);
1997         if (ret == 0) {
1998                 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1999                 update_inline_extent_backref(fs_info, path, iref,
2000                                              refs_to_add, extent_op, NULL);
2001         } else if (ret == -ENOENT) {
2002                 setup_inline_extent_backref(fs_info, path, iref, parent,
2003                                             root_objectid, owner, offset,
2004                                             refs_to_add, extent_op);
2005                 ret = 0;
2006         }
2007         return ret;
2008 }
2009
2010 static int insert_extent_backref(struct btrfs_trans_handle *trans,
2011                                  struct btrfs_fs_info *fs_info,
2012                                  struct btrfs_path *path,
2013                                  u64 bytenr, u64 parent, u64 root_objectid,
2014                                  u64 owner, u64 offset, int refs_to_add)
2015 {
2016         int ret;
2017         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2018                 BUG_ON(refs_to_add != 1);
2019                 ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
2020                                             parent, root_objectid);
2021         } else {
2022                 ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
2023                                              parent, root_objectid,
2024                                              owner, offset, refs_to_add);
2025         }
2026         return ret;
2027 }
2028
2029 static int remove_extent_backref(struct btrfs_trans_handle *trans,
2030                                  struct btrfs_fs_info *fs_info,
2031                                  struct btrfs_path *path,
2032                                  struct btrfs_extent_inline_ref *iref,
2033                                  int refs_to_drop, int is_data, int *last_ref)
2034 {
2035         int ret = 0;
2036
2037         BUG_ON(!is_data && refs_to_drop != 1);
2038         if (iref) {
2039                 update_inline_extent_backref(fs_info, path, iref,
2040                                              -refs_to_drop, NULL, last_ref);
2041         } else if (is_data) {
2042                 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
2043                                              last_ref);
2044         } else {
2045                 *last_ref = 1;
2046                 ret = btrfs_del_item(trans, fs_info->extent_root, path);
2047         }
2048         return ret;
2049 }
2050
2051 #define in_range(b, first, len)        ((b) >= (first) && (b) < (first) + (len))
2052 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
2053                                u64 *discarded_bytes)
2054 {
2055         int j, ret = 0;
2056         u64 bytes_left, end;
2057         u64 aligned_start = ALIGN(start, 1 << 9);
2058
2059         if (WARN_ON(start != aligned_start)) {
2060                 len -= aligned_start - start;
2061                 len = round_down(len, 1 << 9);
2062                 start = aligned_start;
2063         }
2064
2065         *discarded_bytes = 0;
2066
2067         if (!len)
2068                 return 0;
2069
2070         end = start + len;
2071         bytes_left = len;
2072
2073         /* Skip any superblocks on this device. */
2074         for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
2075                 u64 sb_start = btrfs_sb_offset(j);
2076                 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2077                 u64 size = sb_start - start;
2078
2079                 if (!in_range(sb_start, start, bytes_left) &&
2080                     !in_range(sb_end, start, bytes_left) &&
2081                     !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2082                         continue;
2083
2084                 /*
2085                  * Superblock spans beginning of range.  Adjust start and
2086                  * try again.
2087                  */
2088                 if (sb_start <= start) {
2089                         start += sb_end - start;
2090                         if (start > end) {
2091                                 bytes_left = 0;
2092                                 break;
2093                         }
2094                         bytes_left = end - start;
2095                         continue;
2096                 }
2097
2098                 if (size) {
2099                         ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2100                                                    GFP_NOFS, 0);
2101                         if (!ret)
2102                                 *discarded_bytes += size;
2103                         else if (ret != -EOPNOTSUPP)
2104                                 return ret;
2105                 }
2106
2107                 start = sb_end;
2108                 if (start > end) {
2109                         bytes_left = 0;
2110                         break;
2111                 }
2112                 bytes_left = end - start;
2113         }
2114
2115         if (bytes_left) {
2116                 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2117                                            GFP_NOFS, 0);
2118                 if (!ret)
2119                         *discarded_bytes += bytes_left;
2120         }
2121         return ret;
2122 }
2123
2124 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2125                          u64 num_bytes, u64 *actual_bytes)
2126 {
2127         int ret;
2128         u64 discarded_bytes = 0;
2129         struct btrfs_bio *bbio = NULL;
2130
2131
2132         /*
2133          * Avoid races with device replace and make sure our bbio has devices
2134          * associated to its stripes that don't go away while we are discarding.
2135          */
2136         btrfs_bio_counter_inc_blocked(fs_info);
2137         /* Tell the block device(s) that the sectors can be discarded */
2138         ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2139                               &bbio, 0);
2140         /* Error condition is -ENOMEM */
2141         if (!ret) {
2142                 struct btrfs_bio_stripe *stripe = bbio->stripes;
2143                 int i;
2144
2145
2146                 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2147                         u64 bytes;
2148                         struct request_queue *req_q;
2149
2150                         if (!stripe->dev->bdev) {
2151                                 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
2152                                 continue;
2153                         }
2154                         req_q = bdev_get_queue(stripe->dev->bdev);
2155                         if (!blk_queue_discard(req_q))
2156                                 continue;
2157
2158                         ret = btrfs_issue_discard(stripe->dev->bdev,
2159                                                   stripe->physical,
2160                                                   stripe->length,
2161                                                   &bytes);
2162                         if (!ret)
2163                                 discarded_bytes += bytes;
2164                         else if (ret != -EOPNOTSUPP)
2165                                 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2166
2167                         /*
2168                          * Just in case we get back EOPNOTSUPP for some reason,
2169                          * just ignore the return value so we don't screw up
2170                          * people calling discard_extent.
2171                          */
2172                         ret = 0;
2173                 }
2174                 btrfs_put_bbio(bbio);
2175         }
2176         btrfs_bio_counter_dec(fs_info);
2177
2178         if (actual_bytes)
2179                 *actual_bytes = discarded_bytes;
2180
2181
2182         if (ret == -EOPNOTSUPP)
2183                 ret = 0;
2184         return ret;
2185 }
2186
2187 /* Can return -ENOMEM */
2188 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2189                          struct btrfs_root *root,
2190                          u64 bytenr, u64 num_bytes, u64 parent,
2191                          u64 root_objectid, u64 owner, u64 offset)
2192 {
2193         struct btrfs_fs_info *fs_info = root->fs_info;
2194         int old_ref_mod, new_ref_mod;
2195         int ret;
2196
2197         BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2198                root_objectid == BTRFS_TREE_LOG_OBJECTID);
2199
2200         btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2201                            owner, offset, BTRFS_ADD_DELAYED_REF);
2202
2203         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2204                 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2205                                                  num_bytes, parent,
2206                                                  root_objectid, (int)owner,
2207                                                  BTRFS_ADD_DELAYED_REF, NULL,
2208                                                  &old_ref_mod, &new_ref_mod);
2209         } else {
2210                 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2211                                                  num_bytes, parent,
2212                                                  root_objectid, owner, offset,
2213                                                  0, BTRFS_ADD_DELAYED_REF,
2214                                                  &old_ref_mod, &new_ref_mod);
2215         }
2216
2217         if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
2218                 add_pinned_bytes(fs_info, -num_bytes, owner, root_objectid);
2219
2220         return ret;
2221 }
2222
2223 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2224                                   struct btrfs_fs_info *fs_info,
2225                                   struct btrfs_delayed_ref_node *node,
2226                                   u64 parent, u64 root_objectid,
2227                                   u64 owner, u64 offset, int refs_to_add,
2228                                   struct btrfs_delayed_extent_op *extent_op)
2229 {
2230         struct btrfs_path *path;
2231         struct extent_buffer *leaf;
2232         struct btrfs_extent_item *item;
2233         struct btrfs_key key;
2234         u64 bytenr = node->bytenr;
2235         u64 num_bytes = node->num_bytes;
2236         u64 refs;
2237         int ret;
2238
2239         path = btrfs_alloc_path();
2240         if (!path)
2241                 return -ENOMEM;
2242
2243         path->reada = READA_FORWARD;
2244         path->leave_spinning = 1;
2245         /* this will setup the path even if it fails to insert the back ref */
2246         ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2247                                            num_bytes, parent, root_objectid,
2248                                            owner, offset,
2249                                            refs_to_add, extent_op);
2250         if ((ret < 0 && ret != -EAGAIN) || !ret)
2251                 goto out;
2252
2253         /*
2254          * Ok we had -EAGAIN which means we didn't have space to insert and
2255          * inline extent ref, so just update the reference count and add a
2256          * normal backref.
2257          */
2258         leaf = path->nodes[0];
2259         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2260         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2261         refs = btrfs_extent_refs(leaf, item);
2262         btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2263         if (extent_op)
2264                 __run_delayed_extent_op(extent_op, leaf, item);
2265
2266         btrfs_mark_buffer_dirty(leaf);
2267         btrfs_release_path(path);
2268
2269         path->reada = READA_FORWARD;
2270         path->leave_spinning = 1;
2271         /* now insert the actual backref */
2272         ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2273                                     root_objectid, owner, offset, refs_to_add);
2274         if (ret)
2275                 btrfs_abort_transaction(trans, ret);
2276 out:
2277         btrfs_free_path(path);
2278         return ret;
2279 }
2280
2281 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2282                                 struct btrfs_fs_info *fs_info,
2283                                 struct btrfs_delayed_ref_node *node,
2284                                 struct btrfs_delayed_extent_op *extent_op,
2285                                 int insert_reserved)
2286 {
2287         int ret = 0;
2288         struct btrfs_delayed_data_ref *ref;
2289         struct btrfs_key ins;
2290         u64 parent = 0;
2291         u64 ref_root = 0;
2292         u64 flags = 0;
2293
2294         ins.objectid = node->bytenr;
2295         ins.offset = node->num_bytes;
2296         ins.type = BTRFS_EXTENT_ITEM_KEY;
2297
2298         ref = btrfs_delayed_node_to_data_ref(node);
2299         trace_run_delayed_data_ref(fs_info, node, ref, node->action);
2300
2301         if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2302                 parent = ref->parent;
2303         ref_root = ref->root;
2304
2305         if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2306                 if (extent_op)
2307                         flags |= extent_op->flags_to_set;
2308                 ret = alloc_reserved_file_extent(trans, fs_info,
2309                                                  parent, ref_root, flags,
2310                                                  ref->objectid, ref->offset,
2311                                                  &ins, node->ref_mod);
2312         } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2313                 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
2314                                              ref_root, ref->objectid,
2315                                              ref->offset, node->ref_mod,
2316                                              extent_op);
2317         } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2318                 ret = __btrfs_free_extent(trans, fs_info, node, parent,
2319                                           ref_root, ref->objectid,
2320                                           ref->offset, node->ref_mod,
2321                                           extent_op);
2322         } else {
2323                 BUG();
2324         }
2325         return ret;
2326 }
2327
2328 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2329                                     struct extent_buffer *leaf,
2330                                     struct btrfs_extent_item *ei)
2331 {
2332         u64 flags = btrfs_extent_flags(leaf, ei);
2333         if (extent_op->update_flags) {
2334                 flags |= extent_op->flags_to_set;
2335                 btrfs_set_extent_flags(leaf, ei, flags);
2336         }
2337
2338         if (extent_op->update_key) {
2339                 struct btrfs_tree_block_info *bi;
2340                 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2341                 bi = (struct btrfs_tree_block_info *)(ei + 1);
2342                 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2343         }
2344 }
2345
2346 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2347                                  struct btrfs_fs_info *fs_info,
2348                                  struct btrfs_delayed_ref_head *head,
2349                                  struct btrfs_delayed_extent_op *extent_op)
2350 {
2351         struct btrfs_key key;
2352         struct btrfs_path *path;
2353         struct btrfs_extent_item *ei;
2354         struct extent_buffer *leaf;
2355         u32 item_size;
2356         int ret;
2357         int err = 0;
2358         int metadata = !extent_op->is_data;
2359
2360         if (trans->aborted)
2361                 return 0;
2362
2363         if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2364                 metadata = 0;
2365
2366         path = btrfs_alloc_path();
2367         if (!path)
2368                 return -ENOMEM;
2369
2370         key.objectid = head->bytenr;
2371
2372         if (metadata) {
2373                 key.type = BTRFS_METADATA_ITEM_KEY;
2374                 key.offset = extent_op->level;
2375         } else {
2376                 key.type = BTRFS_EXTENT_ITEM_KEY;
2377                 key.offset = head->num_bytes;
2378         }
2379
2380 again:
2381         path->reada = READA_FORWARD;
2382         path->leave_spinning = 1;
2383         ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2384         if (ret < 0) {
2385                 err = ret;
2386                 goto out;
2387         }
2388         if (ret > 0) {
2389                 if (metadata) {
2390                         if (path->slots[0] > 0) {
2391                                 path->slots[0]--;
2392                                 btrfs_item_key_to_cpu(path->nodes[0], &key,
2393                                                       path->slots[0]);
2394                                 if (key.objectid == head->bytenr &&
2395                                     key.type == BTRFS_EXTENT_ITEM_KEY &&
2396                                     key.offset == head->num_bytes)
2397                                         ret = 0;
2398                         }
2399                         if (ret > 0) {
2400                                 btrfs_release_path(path);
2401                                 metadata = 0;
2402
2403                                 key.objectid = head->bytenr;
2404                                 key.offset = head->num_bytes;
2405                                 key.type = BTRFS_EXTENT_ITEM_KEY;
2406                                 goto again;
2407                         }
2408                 } else {
2409                         err = -EIO;
2410                         goto out;
2411                 }
2412         }
2413
2414         leaf = path->nodes[0];
2415         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2416 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2417         if (item_size < sizeof(*ei)) {
2418                 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
2419                 if (ret < 0) {
2420                         err = ret;
2421                         goto out;
2422                 }
2423                 leaf = path->nodes[0];
2424                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2425         }
2426 #endif
2427         BUG_ON(item_size < sizeof(*ei));
2428         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2429         __run_delayed_extent_op(extent_op, leaf, ei);
2430
2431         btrfs_mark_buffer_dirty(leaf);
2432 out:
2433         btrfs_free_path(path);
2434         return err;
2435 }
2436
2437 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2438                                 struct btrfs_fs_info *fs_info,
2439                                 struct btrfs_delayed_ref_node *node,
2440                                 struct btrfs_delayed_extent_op *extent_op,
2441                                 int insert_reserved)
2442 {
2443         int ret = 0;
2444         struct btrfs_delayed_tree_ref *ref;
2445         struct btrfs_key ins;
2446         u64 parent = 0;
2447         u64 ref_root = 0;
2448         bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2449
2450         ref = btrfs_delayed_node_to_tree_ref(node);
2451         trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
2452
2453         if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2454                 parent = ref->parent;
2455         ref_root = ref->root;
2456
2457         ins.objectid = node->bytenr;
2458         if (skinny_metadata) {
2459                 ins.offset = ref->level;
2460                 ins.type = BTRFS_METADATA_ITEM_KEY;
2461         } else {
2462                 ins.offset = node->num_bytes;
2463                 ins.type = BTRFS_EXTENT_ITEM_KEY;
2464         }
2465
2466         if (node->ref_mod != 1) {
2467                 btrfs_err(fs_info,
2468         "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2469                           node->bytenr, node->ref_mod, node->action, ref_root,
2470                           parent);
2471                 return -EIO;
2472         }
2473         if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2474                 BUG_ON(!extent_op || !extent_op->update_flags);
2475                 ret = alloc_reserved_tree_block(trans, fs_info,
2476                                                 parent, ref_root,
2477                                                 extent_op->flags_to_set,
2478                                                 &extent_op->key,
2479                                                 ref->level, &ins);
2480         } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2481                 ret = __btrfs_inc_extent_ref(trans, fs_info, node,
2482                                              parent, ref_root,
2483                                              ref->level, 0, 1,
2484                                              extent_op);
2485         } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2486                 ret = __btrfs_free_extent(trans, fs_info, node,
2487                                           parent, ref_root,
2488                                           ref->level, 0, 1, extent_op);
2489         } else {
2490                 BUG();
2491         }
2492         return ret;
2493 }
2494
2495 /* helper function to actually process a single delayed ref entry */
2496 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2497                                struct btrfs_fs_info *fs_info,
2498                                struct btrfs_delayed_ref_node *node,
2499                                struct btrfs_delayed_extent_op *extent_op,
2500                                int insert_reserved)
2501 {
2502         int ret = 0;
2503
2504         if (trans->aborted) {
2505                 if (insert_reserved)
2506                         btrfs_pin_extent(fs_info, node->bytenr,
2507                                          node->num_bytes, 1);
2508                 return 0;
2509         }
2510
2511         if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2512             node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2513                 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
2514                                            insert_reserved);
2515         else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2516                  node->type == BTRFS_SHARED_DATA_REF_KEY)
2517                 ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
2518                                            insert_reserved);
2519         else
2520                 BUG();
2521         return ret;
2522 }
2523
2524 static inline struct btrfs_delayed_ref_node *
2525 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2526 {
2527         struct btrfs_delayed_ref_node *ref;
2528
2529         if (RB_EMPTY_ROOT(&head->ref_tree))
2530                 return NULL;
2531
2532         /*
2533          * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2534          * This is to prevent a ref count from going down to zero, which deletes
2535          * the extent item from the extent tree, when there still are references
2536          * to add, which would fail because they would not find the extent item.
2537          */
2538         if (!list_empty(&head->ref_add_list))
2539                 return list_first_entry(&head->ref_add_list,
2540                                 struct btrfs_delayed_ref_node, add_list);
2541
2542         ref = rb_entry(rb_first(&head->ref_tree),
2543                        struct btrfs_delayed_ref_node, ref_node);
2544         ASSERT(list_empty(&ref->add_list));
2545         return ref;
2546 }
2547
2548 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2549                                       struct btrfs_delayed_ref_head *head)
2550 {
2551         spin_lock(&delayed_refs->lock);
2552         head->processing = 0;
2553         delayed_refs->num_heads_ready++;
2554         spin_unlock(&delayed_refs->lock);
2555         btrfs_delayed_ref_unlock(head);
2556 }
2557
2558 static int cleanup_extent_op(struct btrfs_trans_handle *trans,
2559                              struct btrfs_fs_info *fs_info,
2560                              struct btrfs_delayed_ref_head *head)
2561 {
2562         struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2563         int ret;
2564
2565         if (!extent_op)
2566                 return 0;
2567         head->extent_op = NULL;
2568         if (head->must_insert_reserved) {
2569                 btrfs_free_delayed_extent_op(extent_op);
2570                 return 0;
2571         }
2572         spin_unlock(&head->lock);
2573         ret = run_delayed_extent_op(trans, fs_info, head, extent_op);
2574         btrfs_free_delayed_extent_op(extent_op);
2575         return ret ? ret : 1;
2576 }
2577
2578 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2579                             struct btrfs_fs_info *fs_info,
2580                             struct btrfs_delayed_ref_head *head)
2581 {
2582         struct btrfs_delayed_ref_root *delayed_refs;
2583         int ret;
2584
2585         delayed_refs = &trans->transaction->delayed_refs;
2586
2587         ret = cleanup_extent_op(trans, fs_info, head);
2588         if (ret < 0) {
2589                 unselect_delayed_ref_head(delayed_refs, head);
2590                 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2591                 return ret;
2592         } else if (ret) {
2593                 return ret;
2594         }
2595
2596         /*
2597          * Need to drop our head ref lock and re-acquire the delayed ref lock
2598          * and then re-check to make sure nobody got added.
2599          */
2600         spin_unlock(&head->lock);
2601         spin_lock(&delayed_refs->lock);
2602         spin_lock(&head->lock);
2603         if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) {
2604                 spin_unlock(&head->lock);
2605                 spin_unlock(&delayed_refs->lock);
2606                 return 1;
2607         }
2608         delayed_refs->num_heads--;
2609         rb_erase(&head->href_node, &delayed_refs->href_root);
2610         RB_CLEAR_NODE(&head->href_node);
2611         spin_unlock(&delayed_refs->lock);
2612         spin_unlock(&head->lock);
2613         atomic_dec(&delayed_refs->num_entries);
2614
2615         trace_run_delayed_ref_head(fs_info, head, 0);
2616
2617         if (head->total_ref_mod < 0) {
2618                 struct btrfs_block_group_cache *cache;
2619
2620                 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
2621                 ASSERT(cache);
2622                 percpu_counter_add(&cache->space_info->total_bytes_pinned,
2623                                    -head->num_bytes);
2624                 btrfs_put_block_group(cache);
2625
2626                 if (head->is_data) {
2627                         spin_lock(&delayed_refs->lock);
2628                         delayed_refs->pending_csums -= head->num_bytes;
2629                         spin_unlock(&delayed_refs->lock);
2630                 }
2631         }
2632
2633         if (head->must_insert_reserved) {
2634                 btrfs_pin_extent(fs_info, head->bytenr,
2635                                  head->num_bytes, 1);
2636                 if (head->is_data) {
2637                         ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2638                                               head->num_bytes);
2639                 }
2640         }
2641
2642         /* Also free its reserved qgroup space */
2643         btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2644                                       head->qgroup_reserved);
2645         btrfs_delayed_ref_unlock(head);
2646         btrfs_put_delayed_ref_head(head);
2647         return 0;
2648 }
2649
2650 /*
2651  * Returns 0 on success or if called with an already aborted transaction.
2652  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2653  */
2654 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2655                                              struct btrfs_fs_info *fs_info,
2656                                              unsigned long nr)
2657 {
2658         struct btrfs_delayed_ref_root *delayed_refs;
2659         struct btrfs_delayed_ref_node *ref;
2660         struct btrfs_delayed_ref_head *locked_ref = NULL;
2661         struct btrfs_delayed_extent_op *extent_op;
2662         ktime_t start = ktime_get();
2663         int ret;
2664         unsigned long count = 0;
2665         unsigned long actual_count = 0;
2666         int must_insert_reserved = 0;
2667
2668         delayed_refs = &trans->transaction->delayed_refs;
2669         while (1) {
2670                 if (!locked_ref) {
2671                         if (count >= nr)
2672                                 break;
2673
2674                         spin_lock(&delayed_refs->lock);
2675                         locked_ref = btrfs_select_ref_head(trans);
2676                         if (!locked_ref) {
2677                                 spin_unlock(&delayed_refs->lock);
2678                                 break;
2679                         }
2680
2681                         /* grab the lock that says we are going to process
2682                          * all the refs for this head */
2683                         ret = btrfs_delayed_ref_lock(trans, locked_ref);
2684                         spin_unlock(&delayed_refs->lock);
2685                         /*
2686                          * we may have dropped the spin lock to get the head
2687                          * mutex lock, and that might have given someone else
2688                          * time to free the head.  If that's true, it has been
2689                          * removed from our list and we can move on.
2690                          */
2691                         if (ret == -EAGAIN) {
2692                                 locked_ref = NULL;
2693                                 count++;
2694                                 continue;
2695                         }
2696                 }
2697
2698                 /*
2699                  * We need to try and merge add/drops of the same ref since we
2700                  * can run into issues with relocate dropping the implicit ref
2701                  * and then it being added back again before the drop can
2702                  * finish.  If we merged anything we need to re-loop so we can
2703                  * get a good ref.
2704                  * Or we can get node references of the same type that weren't
2705                  * merged when created due to bumps in the tree mod seq, and
2706                  * we need to merge them to prevent adding an inline extent
2707                  * backref before dropping it (triggering a BUG_ON at
2708                  * insert_inline_extent_backref()).
2709                  */
2710                 spin_lock(&locked_ref->lock);
2711                 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2712                                          locked_ref);
2713
2714                 /*
2715                  * locked_ref is the head node, so we have to go one
2716                  * node back for any delayed ref updates
2717                  */
2718                 ref = select_delayed_ref(locked_ref);
2719
2720                 if (ref && ref->seq &&
2721                     btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2722                         spin_unlock(&locked_ref->lock);
2723                         unselect_delayed_ref_head(delayed_refs, locked_ref);
2724                         locked_ref = NULL;
2725                         cond_resched();
2726                         count++;
2727                         continue;
2728                 }
2729
2730                 /*
2731                  * We're done processing refs in this ref_head, clean everything
2732                  * up and move on to the next ref_head.
2733                  */
2734                 if (!ref) {
2735                         ret = cleanup_ref_head(trans, fs_info, locked_ref);
2736                         if (ret > 0 ) {
2737                                 /* We dropped our lock, we need to loop. */
2738                                 ret = 0;
2739                                 continue;
2740                         } else if (ret) {
2741                                 return ret;
2742                         }
2743                         locked_ref = NULL;
2744                         count++;
2745                         continue;
2746                 }
2747
2748                 actual_count++;
2749                 ref->in_tree = 0;
2750                 rb_erase(&ref->ref_node, &locked_ref->ref_tree);
2751                 RB_CLEAR_NODE(&ref->ref_node);
2752                 if (!list_empty(&ref->add_list))
2753                         list_del(&ref->add_list);
2754                 /*
2755                  * When we play the delayed ref, also correct the ref_mod on
2756                  * head
2757                  */
2758                 switch (ref->action) {
2759                 case BTRFS_ADD_DELAYED_REF:
2760                 case BTRFS_ADD_DELAYED_EXTENT:
2761                         locked_ref->ref_mod -= ref->ref_mod;
2762                         break;
2763                 case BTRFS_DROP_DELAYED_REF:
2764                         locked_ref->ref_mod += ref->ref_mod;
2765                         break;
2766                 default:
2767                         WARN_ON(1);
2768                 }
2769                 atomic_dec(&delayed_refs->num_entries);
2770
2771                 /*
2772                  * Record the must-insert_reserved flag before we drop the spin
2773                  * lock.
2774                  */
2775                 must_insert_reserved = locked_ref->must_insert_reserved;
2776                 locked_ref->must_insert_reserved = 0;
2777
2778                 extent_op = locked_ref->extent_op;
2779                 locked_ref->extent_op = NULL;
2780                 spin_unlock(&locked_ref->lock);
2781
2782                 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
2783                                           must_insert_reserved);
2784
2785                 btrfs_free_delayed_extent_op(extent_op);
2786                 if (ret) {
2787                         unselect_delayed_ref_head(delayed_refs, locked_ref);
2788                         btrfs_put_delayed_ref(ref);
2789                         btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2790                                     ret);
2791                         return ret;
2792                 }
2793
2794                 btrfs_put_delayed_ref(ref);
2795                 count++;
2796                 cond_resched();
2797         }
2798
2799         /*
2800          * We don't want to include ref heads since we can have empty ref heads
2801          * and those will drastically skew our runtime down since we just do
2802          * accounting, no actual extent tree updates.
2803          */
2804         if (actual_count > 0) {
2805                 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2806                 u64 avg;
2807
2808                 /*
2809                  * We weigh the current average higher than our current runtime
2810                  * to avoid large swings in the average.
2811                  */
2812                 spin_lock(&delayed_refs->lock);
2813                 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2814                 fs_info->avg_delayed_ref_runtime = avg >> 2;    /* div by 4 */
2815                 spin_unlock(&delayed_refs->lock);
2816         }
2817         return 0;
2818 }
2819
2820 #ifdef SCRAMBLE_DELAYED_REFS
2821 /*
2822  * Normally delayed refs get processed in ascending bytenr order. This
2823  * correlates in most cases to the order added. To expose dependencies on this
2824  * order, we start to process the tree in the middle instead of the beginning
2825  */
2826 static u64 find_middle(struct rb_root *root)
2827 {
2828         struct rb_node *n = root->rb_node;
2829         struct btrfs_delayed_ref_node *entry;
2830         int alt = 1;
2831         u64 middle;
2832         u64 first = 0, last = 0;
2833
2834         n = rb_first(root);
2835         if (n) {
2836                 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2837                 first = entry->bytenr;
2838         }
2839         n = rb_last(root);
2840         if (n) {
2841                 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2842                 last = entry->bytenr;
2843         }
2844         n = root->rb_node;
2845
2846         while (n) {
2847                 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2848                 WARN_ON(!entry->in_tree);
2849
2850                 middle = entry->bytenr;
2851
2852                 if (alt)
2853                         n = n->rb_left;
2854                 else
2855                         n = n->rb_right;
2856
2857                 alt = 1 - alt;
2858         }
2859         return middle;
2860 }
2861 #endif
2862
2863 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2864 {
2865         u64 num_bytes;
2866
2867         num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2868                              sizeof(struct btrfs_extent_inline_ref));
2869         if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2870                 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2871
2872         /*
2873          * We don't ever fill up leaves all the way so multiply by 2 just to be
2874          * closer to what we're really going to want to use.
2875          */
2876         return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2877 }
2878
2879 /*
2880  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2881  * would require to store the csums for that many bytes.
2882  */
2883 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2884 {
2885         u64 csum_size;
2886         u64 num_csums_per_leaf;
2887         u64 num_csums;
2888
2889         csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2890         num_csums_per_leaf = div64_u64(csum_size,
2891                         (u64)btrfs_super_csum_size(fs_info->super_copy));
2892         num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2893         num_csums += num_csums_per_leaf - 1;
2894         num_csums = div64_u64(num_csums, num_csums_per_leaf);
2895         return num_csums;
2896 }
2897
2898 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2899                                        struct btrfs_fs_info *fs_info)
2900 {
2901         struct btrfs_block_rsv *global_rsv;
2902         u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2903         u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2904         unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs;
2905         u64 num_bytes, num_dirty_bgs_bytes;
2906         int ret = 0;
2907
2908         num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2909         num_heads = heads_to_leaves(fs_info, num_heads);
2910         if (num_heads > 1)
2911                 num_bytes += (num_heads - 1) * fs_info->nodesize;
2912         num_bytes <<= 1;
2913         num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2914                                                         fs_info->nodesize;
2915         num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2916                                                              num_dirty_bgs);
2917         global_rsv = &fs_info->global_block_rsv;
2918
2919         /*
2920          * If we can't allocate any more chunks lets make sure we have _lots_ of
2921          * wiggle room since running delayed refs can create more delayed refs.
2922          */
2923         if (global_rsv->space_info->full) {
2924                 num_dirty_bgs_bytes <<= 1;
2925                 num_bytes <<= 1;
2926         }
2927
2928         spin_lock(&global_rsv->lock);
2929         if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2930                 ret = 1;
2931         spin_unlock(&global_rsv->lock);
2932         return ret;
2933 }
2934
2935 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2936                                        struct btrfs_fs_info *fs_info)
2937 {
2938         u64 num_entries =
2939                 atomic_read(&trans->transaction->delayed_refs.num_entries);
2940         u64 avg_runtime;
2941         u64 val;
2942
2943         smp_mb();
2944         avg_runtime = fs_info->avg_delayed_ref_runtime;
2945         val = num_entries * avg_runtime;
2946         if (val >= NSEC_PER_SEC)
2947                 return 1;
2948         if (val >= NSEC_PER_SEC / 2)
2949                 return 2;
2950
2951         return btrfs_check_space_for_delayed_refs(trans, fs_info);
2952 }
2953
2954 struct async_delayed_refs {
2955         struct btrfs_root *root;
2956         u64 transid;
2957         int count;
2958         int error;
2959         int sync;
2960         struct completion wait;
2961         struct btrfs_work work;
2962 };
2963
2964 static inline struct async_delayed_refs *
2965 to_async_delayed_refs(struct btrfs_work *work)
2966 {
2967         return container_of(work, struct async_delayed_refs, work);
2968 }
2969
2970 static void delayed_ref_async_start(struct btrfs_work *work)
2971 {
2972         struct async_delayed_refs *async = to_async_delayed_refs(work);
2973         struct btrfs_trans_handle *trans;
2974         struct btrfs_fs_info *fs_info = async->root->fs_info;
2975         int ret;
2976
2977         /* if the commit is already started, we don't need to wait here */
2978         if (btrfs_transaction_blocked(fs_info))
2979                 goto done;
2980
2981         trans = btrfs_join_transaction(async->root);
2982         if (IS_ERR(trans)) {
2983                 async->error = PTR_ERR(trans);
2984                 goto done;
2985         }
2986
2987         /*
2988          * trans->sync means that when we call end_transaction, we won't
2989          * wait on delayed refs
2990          */
2991         trans->sync = true;
2992
2993         /* Don't bother flushing if we got into a different transaction */
2994         if (trans->transid > async->transid)
2995                 goto end;
2996
2997         ret = btrfs_run_delayed_refs(trans, fs_info, async->count);
2998         if (ret)
2999                 async->error = ret;
3000 end:
3001         ret = btrfs_end_transaction(trans);
3002         if (ret && !async->error)
3003                 async->error = ret;
3004 done:
3005         if (async->sync)
3006                 complete(&async->wait);
3007         else
3008                 kfree(async);
3009 }
3010
3011 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
3012                                  unsigned long count, u64 transid, int wait)
3013 {
3014         struct async_delayed_refs *async;
3015         int ret;
3016
3017         async = kmalloc(sizeof(*async), GFP_NOFS);
3018         if (!async)
3019                 return -ENOMEM;
3020
3021         async->root = fs_info->tree_root;
3022         async->count = count;
3023         async->error = 0;
3024         async->transid = transid;
3025         if (wait)
3026                 async->sync = 1;
3027         else
3028                 async->sync = 0;
3029         init_completion(&async->wait);
3030
3031         btrfs_init_work(&async->work, btrfs_extent_refs_helper,
3032                         delayed_ref_async_start, NULL, NULL);
3033
3034         btrfs_queue_work(fs_info->extent_workers, &async->work);
3035
3036         if (wait) {
3037                 wait_for_completion(&async->wait);
3038                 ret = async->error;
3039                 kfree(async);
3040                 return ret;
3041         }
3042         return 0;
3043 }
3044
3045 /*
3046  * this starts processing the delayed reference count updates and
3047  * extent insertions we have queued up so far.  count can be
3048  * 0, which means to process everything in the tree at the start
3049  * of the run (but not newly added entries), or it can be some target
3050  * number you'd like to process.
3051  *
3052  * Returns 0 on success or if called with an aborted transaction
3053  * Returns <0 on error and aborts the transaction
3054  */
3055 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
3056                            struct btrfs_fs_info *fs_info, unsigned long count)
3057 {
3058         struct rb_node *node;
3059         struct btrfs_delayed_ref_root *delayed_refs;
3060         struct btrfs_delayed_ref_head *head;
3061         int ret;
3062         int run_all = count == (unsigned long)-1;
3063         bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
3064
3065         /* We'll clean this up in btrfs_cleanup_transaction */
3066         if (trans->aborted)
3067                 return 0;
3068
3069         if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
3070                 return 0;
3071
3072         delayed_refs = &trans->transaction->delayed_refs;
3073         if (count == 0)
3074                 count = atomic_read(&delayed_refs->num_entries) * 2;
3075
3076 again:
3077 #ifdef SCRAMBLE_DELAYED_REFS
3078         delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
3079 #endif
3080         trans->can_flush_pending_bgs = false;
3081         ret = __btrfs_run_delayed_refs(trans, fs_info, count);
3082         if (ret < 0) {
3083                 btrfs_abort_transaction(trans, ret);
3084                 return ret;
3085         }
3086
3087         if (run_all) {
3088                 if (!list_empty(&trans->new_bgs))
3089                         btrfs_create_pending_block_groups(trans);
3090
3091                 spin_lock(&delayed_refs->lock);
3092                 node = rb_first(&delayed_refs->href_root);
3093                 if (!node) {
3094                         spin_unlock(&delayed_refs->lock);
3095                         goto out;
3096                 }
3097                 head = rb_entry(node, struct btrfs_delayed_ref_head,
3098                                 href_node);
3099                 refcount_inc(&head->refs);
3100                 spin_unlock(&delayed_refs->lock);
3101
3102                 /* Mutex was contended, block until it's released and retry. */
3103                 mutex_lock(&head->mutex);
3104                 mutex_unlock(&head->mutex);
3105
3106                 btrfs_put_delayed_ref_head(head);
3107                 cond_resched();
3108                 goto again;
3109         }
3110 out:
3111         trans->can_flush_pending_bgs = can_flush_pending_bgs;
3112         return 0;
3113 }
3114
3115 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3116                                 struct btrfs_fs_info *fs_info,
3117                                 u64 bytenr, u64 num_bytes, u64 flags,
3118                                 int level, int is_data)
3119 {
3120         struct btrfs_delayed_extent_op *extent_op;
3121         int ret;
3122
3123         extent_op = btrfs_alloc_delayed_extent_op();
3124         if (!extent_op)
3125                 return -ENOMEM;
3126
3127         extent_op->flags_to_set = flags;
3128         extent_op->update_flags = true;
3129         extent_op->update_key = false;
3130         extent_op->is_data = is_data ? true : false;
3131         extent_op->level = level;
3132
3133         ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
3134                                           num_bytes, extent_op);
3135         if (ret)
3136                 btrfs_free_delayed_extent_op(extent_op);
3137         return ret;
3138 }
3139
3140 static noinline int check_delayed_ref(struct btrfs_root *root,
3141                                       struct btrfs_path *path,
3142                                       u64 objectid, u64 offset, u64 bytenr)
3143 {
3144         struct btrfs_delayed_ref_head *head;
3145         struct btrfs_delayed_ref_node *ref;
3146         struct btrfs_delayed_data_ref *data_ref;
3147         struct btrfs_delayed_ref_root *delayed_refs;
3148         struct btrfs_transaction *cur_trans;
3149         struct rb_node *node;
3150         int ret = 0;
3151
3152         cur_trans = root->fs_info->running_transaction;
3153         if (!cur_trans)
3154                 return 0;
3155
3156         delayed_refs = &cur_trans->delayed_refs;
3157         spin_lock(&delayed_refs->lock);
3158         head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3159         if (!head) {
3160                 spin_unlock(&delayed_refs->lock);
3161                 return 0;
3162         }
3163
3164         if (!mutex_trylock(&head->mutex)) {
3165                 refcount_inc(&head->refs);
3166                 spin_unlock(&delayed_refs->lock);
3167
3168                 btrfs_release_path(path);
3169
3170                 /*
3171                  * Mutex was contended, block until it's released and let
3172                  * caller try again
3173                  */
3174                 mutex_lock(&head->mutex);
3175                 mutex_unlock(&head->mutex);
3176                 btrfs_put_delayed_ref_head(head);
3177                 return -EAGAIN;
3178         }
3179         spin_unlock(&delayed_refs->lock);
3180
3181         spin_lock(&head->lock);
3182         /*
3183          * XXX: We should replace this with a proper search function in the
3184          * future.
3185          */
3186         for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) {
3187                 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
3188                 /* If it's a shared ref we know a cross reference exists */
3189                 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3190                         ret = 1;
3191                         break;
3192                 }
3193
3194                 data_ref = btrfs_delayed_node_to_data_ref(ref);
3195
3196                 /*
3197                  * If our ref doesn't match the one we're currently looking at
3198                  * then we have a cross reference.
3199                  */
3200                 if (data_ref->root != root->root_key.objectid ||
3201                     data_ref->objectid != objectid ||
3202                     data_ref->offset != offset) {
3203                         ret = 1;
3204                         break;
3205                 }
3206         }
3207         spin_unlock(&head->lock);
3208         mutex_unlock(&head->mutex);
3209         return ret;
3210 }
3211
3212 static noinline int check_committed_ref(struct btrfs_root *root,
3213                                         struct btrfs_path *path,
3214                                         u64 objectid, u64 offset, u64 bytenr)
3215 {
3216         struct btrfs_fs_info *fs_info = root->fs_info;
3217         struct btrfs_root *extent_root = fs_info->extent_root;
3218         struct extent_buffer *leaf;
3219         struct btrfs_extent_data_ref *ref;
3220         struct btrfs_extent_inline_ref *iref;
3221         struct btrfs_extent_item *ei;
3222         struct btrfs_key key;
3223         u32 item_size;
3224         int type;
3225         int ret;
3226
3227         key.objectid = bytenr;
3228         key.offset = (u64)-1;
3229         key.type = BTRFS_EXTENT_ITEM_KEY;
3230
3231         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3232         if (ret < 0)
3233                 goto out;
3234         BUG_ON(ret == 0); /* Corruption */
3235
3236         ret = -ENOENT;
3237         if (path->slots[0] == 0)
3238                 goto out;
3239
3240         path->slots[0]--;
3241         leaf = path->nodes[0];
3242         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3243
3244         if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3245                 goto out;
3246
3247         ret = 1;
3248         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3249 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3250         if (item_size < sizeof(*ei)) {
3251                 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3252                 goto out;
3253         }
3254 #endif
3255         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3256
3257         if (item_size != sizeof(*ei) +
3258             btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3259                 goto out;
3260
3261         if (btrfs_extent_generation(leaf, ei) <=
3262             btrfs_root_last_snapshot(&root->root_item))
3263                 goto out;
3264
3265         iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3266
3267         type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3268         if (type != BTRFS_EXTENT_DATA_REF_KEY)
3269                 goto out;
3270
3271         ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3272         if (btrfs_extent_refs(leaf, ei) !=
3273             btrfs_extent_data_ref_count(leaf, ref) ||
3274             btrfs_extent_data_ref_root(leaf, ref) !=
3275             root->root_key.objectid ||
3276             btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3277             btrfs_extent_data_ref_offset(leaf, ref) != offset)
3278                 goto out;
3279
3280         ret = 0;
3281 out:
3282         return ret;
3283 }
3284
3285 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3286                           u64 bytenr)
3287 {
3288         struct btrfs_path *path;
3289         int ret;
3290         int ret2;
3291
3292         path = btrfs_alloc_path();
3293         if (!path)
3294                 return -ENOENT;
3295
3296         do {
3297                 ret = check_committed_ref(root, path, objectid,
3298                                           offset, bytenr);
3299                 if (ret && ret != -ENOENT)
3300                         goto out;
3301
3302                 ret2 = check_delayed_ref(root, path, objectid,
3303                                          offset, bytenr);
3304         } while (ret2 == -EAGAIN);
3305
3306         if (ret2 && ret2 != -ENOENT) {
3307                 ret = ret2;
3308                 goto out;
3309         }
3310
3311         if (ret != -ENOENT || ret2 != -ENOENT)
3312                 ret = 0;
3313 out:
3314         btrfs_free_path(path);
3315         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3316                 WARN_ON(ret > 0);
3317         return ret;
3318 }
3319
3320 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3321                            struct btrfs_root *root,
3322                            struct extent_buffer *buf,
3323                            int full_backref, int inc)
3324 {
3325         struct btrfs_fs_info *fs_info = root->fs_info;
3326         u64 bytenr;
3327         u64 num_bytes;
3328         u64 parent;
3329         u64 ref_root;
3330         u32 nritems;
3331         struct btrfs_key key;
3332         struct btrfs_file_extent_item *fi;
3333         int i;
3334         int level;
3335         int ret = 0;
3336         int (*process_func)(struct btrfs_trans_handle *,
3337                             struct btrfs_root *,
3338                             u64, u64, u64, u64, u64, u64);
3339
3340
3341         if (btrfs_is_testing(fs_info))
3342                 return 0;
3343
3344         ref_root = btrfs_header_owner(buf);
3345         nritems = btrfs_header_nritems(buf);
3346         level = btrfs_header_level(buf);
3347
3348         if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3349                 return 0;
3350
3351         if (inc)
3352                 process_func = btrfs_inc_extent_ref;
3353         else
3354                 process_func = btrfs_free_extent;
3355
3356         if (full_backref)
3357                 parent = buf->start;
3358         else
3359                 parent = 0;
3360
3361         for (i = 0; i < nritems; i++) {
3362                 if (level == 0) {
3363                         btrfs_item_key_to_cpu(buf, &key, i);
3364                         if (key.type != BTRFS_EXTENT_DATA_KEY)
3365                                 continue;
3366                         fi = btrfs_item_ptr(buf, i,
3367                                             struct btrfs_file_extent_item);
3368                         if (btrfs_file_extent_type(buf, fi) ==
3369                             BTRFS_FILE_EXTENT_INLINE)
3370                                 continue;
3371                         bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3372                         if (bytenr == 0)
3373                                 continue;
3374
3375                         num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3376                         key.offset -= btrfs_file_extent_offset(buf, fi);
3377                         ret = process_func(trans, root, bytenr, num_bytes,
3378                                            parent, ref_root, key.objectid,
3379                                            key.offset);
3380                         if (ret)
3381                                 goto fail;
3382                 } else {
3383                         bytenr = btrfs_node_blockptr(buf, i);
3384                         num_bytes = fs_info->nodesize;
3385                         ret = process_func(trans, root, bytenr, num_bytes,
3386                                            parent, ref_root, level - 1, 0);
3387                         if (ret)
3388                                 goto fail;
3389                 }
3390         }
3391         return 0;
3392 fail:
3393         return ret;
3394 }
3395
3396 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3397                   struct extent_buffer *buf, int full_backref)
3398 {
3399         return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3400 }
3401
3402 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3403                   struct extent_buffer *buf, int full_backref)
3404 {
3405         return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3406 }
3407
3408 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3409                                  struct btrfs_fs_info *fs_info,
3410                                  struct btrfs_path *path,
3411                                  struct btrfs_block_group_cache *cache)
3412 {
3413         int ret;
3414         struct btrfs_root *extent_root = fs_info->extent_root;
3415         unsigned long bi;
3416         struct extent_buffer *leaf;
3417
3418         ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3419         if (ret) {
3420                 if (ret > 0)
3421                         ret = -ENOENT;
3422                 goto fail;
3423         }
3424
3425         leaf = path->nodes[0];
3426         bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3427         write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3428         btrfs_mark_buffer_dirty(leaf);
3429 fail:
3430         btrfs_release_path(path);
3431         return ret;
3432
3433 }
3434
3435 static struct btrfs_block_group_cache *
3436 next_block_group(struct btrfs_fs_info *fs_info,
3437                  struct btrfs_block_group_cache *cache)
3438 {
3439         struct rb_node *node;
3440
3441         spin_lock(&fs_info->block_group_cache_lock);
3442
3443         /* If our block group was removed, we need a full search. */
3444         if (RB_EMPTY_NODE(&cache->cache_node)) {
3445                 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3446
3447                 spin_unlock(&fs_info->block_group_cache_lock);
3448                 btrfs_put_block_group(cache);
3449                 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3450         }
3451         node = rb_next(&cache->cache_node);
3452         btrfs_put_block_group(cache);
3453         if (node) {
3454                 cache = rb_entry(node, struct btrfs_block_group_cache,
3455                                  cache_node);
3456                 btrfs_get_block_group(cache);
3457         } else
3458                 cache = NULL;
3459         spin_unlock(&fs_info->block_group_cache_lock);
3460         return cache;
3461 }
3462
3463 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3464                             struct btrfs_trans_handle *trans,
3465                             struct btrfs_path *path)
3466 {
3467         struct btrfs_fs_info *fs_info = block_group->fs_info;
3468         struct btrfs_root *root = fs_info->tree_root;
3469         struct inode *inode = NULL;
3470         struct extent_changeset *data_reserved = NULL;
3471         u64 alloc_hint = 0;
3472         int dcs = BTRFS_DC_ERROR;
3473         u64 num_pages = 0;
3474         int retries = 0;
3475         int ret = 0;
3476
3477         /*
3478          * If this block group is smaller than 100 megs don't bother caching the
3479          * block group.
3480          */
3481         if (block_group->key.offset < (100 * SZ_1M)) {
3482                 spin_lock(&block_group->lock);
3483                 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3484                 spin_unlock(&block_group->lock);
3485                 return 0;
3486         }
3487
3488         if (trans->aborted)
3489                 return 0;
3490 again:
3491         inode = lookup_free_space_inode(fs_info, block_group, path);
3492         if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3493                 ret = PTR_ERR(inode);
3494                 btrfs_release_path(path);
3495                 goto out;
3496         }
3497
3498         if (IS_ERR(inode)) {
3499                 BUG_ON(retries);
3500                 retries++;
3501
3502                 if (block_group->ro)
3503                         goto out_free;
3504
3505                 ret = create_free_space_inode(fs_info, trans, block_group,
3506                                               path);
3507                 if (ret)
3508                         goto out_free;
3509                 goto again;
3510         }
3511
3512         /*
3513          * We want to set the generation to 0, that way if anything goes wrong
3514          * from here on out we know not to trust this cache when we load up next
3515          * time.
3516          */
3517         BTRFS_I(inode)->generation = 0;
3518         ret = btrfs_update_inode(trans, root, inode);
3519         if (ret) {
3520                 /*
3521                  * So theoretically we could recover from this, simply set the
3522                  * super cache generation to 0 so we know to invalidate the
3523                  * cache, but then we'd have to keep track of the block groups
3524                  * that fail this way so we know we _have_ to reset this cache
3525                  * before the next commit or risk reading stale cache.  So to
3526                  * limit our exposure to horrible edge cases lets just abort the
3527                  * transaction, this only happens in really bad situations
3528                  * anyway.
3529                  */
3530                 btrfs_abort_transaction(trans, ret);
3531                 goto out_put;
3532         }
3533         WARN_ON(ret);
3534
3535         /* We've already setup this transaction, go ahead and exit */
3536         if (block_group->cache_generation == trans->transid &&
3537             i_size_read(inode)) {
3538                 dcs = BTRFS_DC_SETUP;
3539                 goto out_put;
3540         }
3541
3542         if (i_size_read(inode) > 0) {
3543                 ret = btrfs_check_trunc_cache_free_space(fs_info,
3544                                         &fs_info->global_block_rsv);
3545                 if (ret)
3546                         goto out_put;
3547
3548                 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3549                 if (ret)
3550                         goto out_put;
3551         }
3552
3553         spin_lock(&block_group->lock);
3554         if (block_group->cached != BTRFS_CACHE_FINISHED ||
3555             !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3556                 /*
3557                  * don't bother trying to write stuff out _if_
3558                  * a) we're not cached,
3559                  * b) we're with nospace_cache mount option,
3560                  * c) we're with v2 space_cache (FREE_SPACE_TREE).
3561                  */
3562                 dcs = BTRFS_DC_WRITTEN;
3563                 spin_unlock(&block_group->lock);
3564                 goto out_put;
3565         }
3566         spin_unlock(&block_group->lock);
3567
3568         /*
3569          * We hit an ENOSPC when setting up the cache in this transaction, just
3570          * skip doing the setup, we've already cleared the cache so we're safe.
3571          */
3572         if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3573                 ret = -ENOSPC;
3574                 goto out_put;
3575         }
3576
3577         /*
3578          * Try to preallocate enough space based on how big the block group is.
3579          * Keep in mind this has to include any pinned space which could end up
3580          * taking up quite a bit since it's not folded into the other space
3581          * cache.
3582          */
3583         num_pages = div_u64(block_group->key.offset, SZ_256M);
3584         if (!num_pages)
3585                 num_pages = 1;
3586
3587         num_pages *= 16;
3588         num_pages *= PAGE_SIZE;
3589
3590         ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
3591         if (ret)
3592                 goto out_put;
3593
3594         ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3595                                               num_pages, num_pages,
3596                                               &alloc_hint);
3597         /*
3598          * Our cache requires contiguous chunks so that we don't modify a bunch
3599          * of metadata or split extents when writing the cache out, which means
3600          * we can enospc if we are heavily fragmented in addition to just normal
3601          * out of space conditions.  So if we hit this just skip setting up any
3602          * other block groups for this transaction, maybe we'll unpin enough
3603          * space the next time around.
3604          */
3605         if (!ret)
3606                 dcs = BTRFS_DC_SETUP;
3607         else if (ret == -ENOSPC)
3608                 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3609
3610 out_put:
3611         iput(inode);
3612 out_free:
3613         btrfs_release_path(path);
3614 out:
3615         spin_lock(&block_group->lock);
3616         if (!ret && dcs == BTRFS_DC_SETUP)
3617                 block_group->cache_generation = trans->transid;
3618         block_group->disk_cache_state = dcs;
3619         spin_unlock(&block_group->lock);
3620
3621         extent_changeset_free(data_reserved);
3622         return ret;
3623 }
3624
3625 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3626                             struct btrfs_fs_info *fs_info)
3627 {
3628         struct btrfs_block_group_cache *cache, *tmp;
3629         struct btrfs_transaction *cur_trans = trans->transaction;
3630         struct btrfs_path *path;
3631
3632         if (list_empty(&cur_trans->dirty_bgs) ||
3633             !btrfs_test_opt(fs_info, SPACE_CACHE))
3634                 return 0;
3635
3636         path = btrfs_alloc_path();
3637         if (!path)
3638                 return -ENOMEM;
3639
3640         /* Could add new block groups, use _safe just in case */
3641         list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3642                                  dirty_list) {
3643                 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3644                         cache_save_setup(cache, trans, path);
3645         }
3646
3647         btrfs_free_path(path);
3648         return 0;
3649 }
3650
3651 /*
3652  * transaction commit does final block group cache writeback during a
3653  * critical section where nothing is allowed to change the FS.  This is
3654  * required in order for the cache to actually match the block group,
3655  * but can introduce a lot of latency into the commit.
3656  *
3657  * So, btrfs_start_dirty_block_groups is here to kick off block group
3658  * cache IO.  There's a chance we'll have to redo some of it if the
3659  * block group changes again during the commit, but it greatly reduces
3660  * the commit latency by getting rid of the easy block groups while
3661  * we're still allowing others to join the commit.
3662  */
3663 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3664 {
3665         struct btrfs_fs_info *fs_info = trans->fs_info;
3666         struct btrfs_block_group_cache *cache;
3667         struct btrfs_transaction *cur_trans = trans->transaction;
3668         int ret = 0;
3669         int should_put;
3670         struct btrfs_path *path = NULL;
3671         LIST_HEAD(dirty);
3672         struct list_head *io = &cur_trans->io_bgs;
3673         int num_started = 0;
3674         int loops = 0;
3675
3676         spin_lock(&cur_trans->dirty_bgs_lock);
3677         if (list_empty(&cur_trans->dirty_bgs)) {
3678                 spin_unlock(&cur_trans->dirty_bgs_lock);
3679                 return 0;
3680         }
3681         list_splice_init(&cur_trans->dirty_bgs, &dirty);
3682         spin_unlock(&cur_trans->dirty_bgs_lock);
3683
3684 again:
3685         /*
3686          * make sure all the block groups on our dirty list actually
3687          * exist
3688          */
3689         btrfs_create_pending_block_groups(trans);
3690
3691         if (!path) {
3692                 path = btrfs_alloc_path();
3693                 if (!path)
3694                         return -ENOMEM;
3695         }
3696
3697         /*
3698          * cache_write_mutex is here only to save us from balance or automatic
3699          * removal of empty block groups deleting this block group while we are
3700          * writing out the cache
3701          */
3702         mutex_lock(&trans->transaction->cache_write_mutex);
3703         while (!list_empty(&dirty)) {
3704                 cache = list_first_entry(&dirty,
3705                                          struct btrfs_block_group_cache,
3706                                          dirty_list);
3707                 /*
3708                  * this can happen if something re-dirties a block
3709                  * group that is already under IO.  Just wait for it to
3710                  * finish and then do it all again
3711                  */
3712                 if (!list_empty(&cache->io_list)) {
3713                         list_del_init(&cache->io_list);
3714                         btrfs_wait_cache_io(trans, cache, path);
3715                         btrfs_put_block_group(cache);
3716                 }
3717
3718
3719                 /*
3720                  * btrfs_wait_cache_io uses the cache->dirty_list to decide
3721                  * if it should update the cache_state.  Don't delete
3722                  * until after we wait.
3723                  *
3724                  * Since we're not running in the commit critical section
3725                  * we need the dirty_bgs_lock to protect from update_block_group
3726                  */
3727                 spin_lock(&cur_trans->dirty_bgs_lock);
3728                 list_del_init(&cache->dirty_list);
3729                 spin_unlock(&cur_trans->dirty_bgs_lock);
3730
3731                 should_put = 1;
3732
3733                 cache_save_setup(cache, trans, path);
3734
3735                 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3736                         cache->io_ctl.inode = NULL;
3737                         ret = btrfs_write_out_cache(fs_info, trans,
3738                                                     cache, path);
3739                         if (ret == 0 && cache->io_ctl.inode) {
3740                                 num_started++;
3741                                 should_put = 0;
3742
3743                                 /*
3744                                  * The cache_write_mutex is protecting the
3745                                  * io_list, also refer to the definition of
3746                                  * btrfs_transaction::io_bgs for more details
3747                                  */
3748                                 list_add_tail(&cache->io_list, io);
3749                         } else {
3750                                 /*
3751                                  * if we failed to write the cache, the
3752                                  * generation will be bad and life goes on
3753                                  */
3754                                 ret = 0;
3755                         }
3756                 }
3757                 if (!ret) {
3758                         ret = write_one_cache_group(trans, fs_info,
3759                                                     path, cache);
3760                         /*
3761                          * Our block group might still be attached to the list
3762                          * of new block groups in the transaction handle of some
3763                          * other task (struct btrfs_trans_handle->new_bgs). This
3764                          * means its block group item isn't yet in the extent
3765                          * tree. If this happens ignore the error, as we will
3766                          * try again later in the critical section of the
3767                          * transaction commit.
3768                          */
3769                         if (ret == -ENOENT) {
3770                                 ret = 0;
3771                                 spin_lock(&cur_trans->dirty_bgs_lock);
3772                                 if (list_empty(&cache->dirty_list)) {
3773                                         list_add_tail(&cache->dirty_list,
3774                                                       &cur_trans->dirty_bgs);
3775                                         btrfs_get_block_group(cache);
3776                                 }
3777                                 spin_unlock(&cur_trans->dirty_bgs_lock);
3778                         } else if (ret) {
3779                                 btrfs_abort_transaction(trans, ret);
3780                         }
3781                 }
3782
3783                 /* if its not on the io list, we need to put the block group */
3784                 if (should_put)
3785                         btrfs_put_block_group(cache);
3786
3787                 if (ret)
3788                         break;
3789
3790                 /*
3791                  * Avoid blocking other tasks for too long. It might even save
3792                  * us from writing caches for block groups that are going to be
3793                  * removed.
3794                  */
3795                 mutex_unlock(&trans->transaction->cache_write_mutex);
3796                 mutex_lock(&trans->transaction->cache_write_mutex);
3797         }
3798         mutex_unlock(&trans->transaction->cache_write_mutex);
3799
3800         /*
3801          * go through delayed refs for all the stuff we've just kicked off
3802          * and then loop back (just once)
3803          */
3804         ret = btrfs_run_delayed_refs(trans, fs_info, 0);
3805         if (!ret && loops == 0) {
3806                 loops++;
3807                 spin_lock(&cur_trans->dirty_bgs_lock);
3808                 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3809                 /*
3810                  * dirty_bgs_lock protects us from concurrent block group
3811                  * deletes too (not just cache_write_mutex).
3812                  */
3813                 if (!list_empty(&dirty)) {
3814                         spin_unlock(&cur_trans->dirty_bgs_lock);
3815                         goto again;
3816                 }
3817                 spin_unlock(&cur_trans->dirty_bgs_lock);
3818         } else if (ret < 0) {
3819                 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3820         }
3821
3822         btrfs_free_path(path);
3823         return ret;
3824 }
3825
3826 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3827                                    struct btrfs_fs_info *fs_info)
3828 {
3829         struct btrfs_block_group_cache *cache;
3830         struct btrfs_transaction *cur_trans = trans->transaction;
3831         int ret = 0;
3832         int should_put;
3833         struct btrfs_path *path;
3834         struct list_head *io = &cur_trans->io_bgs;
3835         int num_started = 0;
3836
3837         path = btrfs_alloc_path();
3838         if (!path)
3839                 return -ENOMEM;
3840
3841         /*
3842          * Even though we are in the critical section of the transaction commit,
3843          * we can still have concurrent tasks adding elements to this
3844          * transaction's list of dirty block groups. These tasks correspond to
3845          * endio free space workers started when writeback finishes for a
3846          * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3847          * allocate new block groups as a result of COWing nodes of the root
3848          * tree when updating the free space inode. The writeback for the space
3849          * caches is triggered by an earlier call to
3850          * btrfs_start_dirty_block_groups() and iterations of the following
3851          * loop.
3852          * Also we want to do the cache_save_setup first and then run the
3853          * delayed refs to make sure we have the best chance at doing this all
3854          * in one shot.
3855          */
3856         spin_lock(&cur_trans->dirty_bgs_lock);
3857         while (!list_empty(&cur_trans->dirty_bgs)) {
3858                 cache = list_first_entry(&cur_trans->dirty_bgs,
3859                                          struct btrfs_block_group_cache,
3860                                          dirty_list);
3861
3862                 /*
3863                  * this can happen if cache_save_setup re-dirties a block
3864                  * group that is already under IO.  Just wait for it to
3865                  * finish and then do it all again
3866                  */
3867                 if (!list_empty(&cache->io_list)) {
3868                         spin_unlock(&cur_trans->dirty_bgs_lock);
3869                         list_del_init(&cache->io_list);
3870                         btrfs_wait_cache_io(trans, cache, path);
3871                         btrfs_put_block_group(cache);
3872                         spin_lock(&cur_trans->dirty_bgs_lock);
3873                 }
3874
3875                 /*
3876                  * don't remove from the dirty list until after we've waited
3877                  * on any pending IO
3878                  */
3879                 list_del_init(&cache->dirty_list);
3880                 spin_unlock(&cur_trans->dirty_bgs_lock);
3881                 should_put = 1;
3882
3883                 cache_save_setup(cache, trans, path);
3884
3885                 if (!ret)
3886                         ret = btrfs_run_delayed_refs(trans, fs_info,
3887                                                      (unsigned long) -1);
3888
3889                 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3890                         cache->io_ctl.inode = NULL;
3891                         ret = btrfs_write_out_cache(fs_info, trans,
3892                                                     cache, path);
3893                         if (ret == 0 && cache->io_ctl.inode) {
3894                                 num_started++;
3895                                 should_put = 0;
3896                                 list_add_tail(&cache->io_list, io);
3897                         } else {
3898                                 /*
3899                                  * if we failed to write the cache, the
3900                                  * generation will be bad and life goes on
3901                                  */
3902                                 ret = 0;
3903                         }
3904                 }
3905                 if (!ret) {
3906                         ret = write_one_cache_group(trans, fs_info,
3907                                                     path, cache);
3908                         /*
3909                          * One of the free space endio workers might have
3910                          * created a new block group while updating a free space
3911                          * cache's inode (at inode.c:btrfs_finish_ordered_io())
3912                          * and hasn't released its transaction handle yet, in
3913                          * which case the new block group is still attached to
3914                          * its transaction handle and its creation has not
3915                          * finished yet (no block group item in the extent tree
3916                          * yet, etc). If this is the case, wait for all free
3917                          * space endio workers to finish and retry. This is a
3918                          * a very rare case so no need for a more efficient and
3919                          * complex approach.
3920                          */
3921                         if (ret == -ENOENT) {
3922                                 wait_event(cur_trans->writer_wait,
3923                                    atomic_read(&cur_trans->num_writers) == 1);
3924                                 ret = write_one_cache_group(trans, fs_info,
3925                                                             path, cache);
3926                         }
3927                         if (ret)
3928                                 btrfs_abort_transaction(trans, ret);
3929                 }
3930
3931                 /* if its not on the io list, we need to put the block group */
3932                 if (should_put)
3933                         btrfs_put_block_group(cache);
3934                 spin_lock(&cur_trans->dirty_bgs_lock);
3935         }
3936         spin_unlock(&cur_trans->dirty_bgs_lock);
3937
3938         /*
3939          * Refer to the definition of io_bgs member for details why it's safe
3940          * to use it without any locking
3941          */
3942         while (!list_empty(io)) {
3943                 cache = list_first_entry(io, struct btrfs_block_group_cache,
3944                                          io_list);
3945                 list_del_init(&cache->io_list);
3946                 btrfs_wait_cache_io(trans, cache, path);
3947                 btrfs_put_block_group(cache);
3948         }
3949
3950         btrfs_free_path(path);
3951         return ret;
3952 }
3953
3954 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3955 {
3956         struct btrfs_block_group_cache *block_group;
3957         int readonly = 0;
3958
3959         block_group = btrfs_lookup_block_group(fs_info, bytenr);
3960         if (!block_group || block_group->ro)
3961                 readonly = 1;
3962         if (block_group)
3963                 btrfs_put_block_group(block_group);
3964         return readonly;
3965 }
3966
3967 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3968 {
3969         struct btrfs_block_group_cache *bg;
3970         bool ret = true;
3971
3972         bg = btrfs_lookup_block_group(fs_info, bytenr);
3973         if (!bg)
3974                 return false;
3975
3976         spin_lock(&bg->lock);
3977         if (bg->ro)
3978                 ret = false;
3979         else
3980                 atomic_inc(&bg->nocow_writers);
3981         spin_unlock(&bg->lock);
3982
3983         /* no put on block group, done by btrfs_dec_nocow_writers */
3984         if (!ret)
3985                 btrfs_put_block_group(bg);
3986
3987         return ret;
3988
3989 }
3990
3991 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3992 {
3993         struct btrfs_block_group_cache *bg;
3994
3995         bg = btrfs_lookup_block_group(fs_info, bytenr);
3996         ASSERT(bg);
3997         if (atomic_dec_and_test(&bg->nocow_writers))
3998                 wake_up_atomic_t(&bg->nocow_writers);
3999         /*
4000          * Once for our lookup and once for the lookup done by a previous call
4001          * to btrfs_inc_nocow_writers()
4002          */
4003         btrfs_put_block_group(bg);
4004         btrfs_put_block_group(bg);
4005 }
4006
4007 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
4008 {
4009         wait_on_atomic_t(&bg->nocow_writers, atomic_t_wait,
4010                          TASK_UNINTERRUPTIBLE);
4011 }
4012
4013 static const char *alloc_name(u64 flags)
4014 {
4015         switch (flags) {
4016         case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
4017                 return "mixed";
4018         case BTRFS_BLOCK_GROUP_METADATA:
4019                 return "metadata";
4020         case BTRFS_BLOCK_GROUP_DATA:
4021                 return "data";
4022         case BTRFS_BLOCK_GROUP_SYSTEM:
4023                 return "system";
4024         default:
4025                 WARN_ON(1);
4026                 return "invalid-combination";
4027         };
4028 }
4029
4030 static int create_space_info(struct btrfs_fs_info *info, u64 flags,
4031                              struct btrfs_space_info **new)
4032 {
4033
4034         struct btrfs_space_info *space_info;
4035         int i;
4036         int ret;
4037
4038         space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
4039         if (!space_info)
4040                 return -ENOMEM;
4041
4042         ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
4043                                  GFP_KERNEL);
4044         if (ret) {
4045                 kfree(space_info);
4046                 return ret;
4047         }
4048
4049         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
4050                 INIT_LIST_HEAD(&space_info->block_groups[i]);
4051         init_rwsem(&space_info->groups_sem);
4052         spin_lock_init(&space_info->lock);
4053         space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
4054         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4055         init_waitqueue_head(&space_info->wait);
4056         INIT_LIST_HEAD(&space_info->ro_bgs);
4057         INIT_LIST_HEAD(&space_info->tickets);
4058         INIT_LIST_HEAD(&space_info->priority_tickets);
4059
4060         ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
4061                                     info->space_info_kobj, "%s",
4062                                     alloc_name(space_info->flags));
4063         if (ret) {
4064                 percpu_counter_destroy(&space_info->total_bytes_pinned);
4065                 kfree(space_info);
4066                 return ret;
4067         }
4068
4069         *new = space_info;
4070         list_add_rcu(&space_info->list, &info->space_info);
4071         if (flags & BTRFS_BLOCK_GROUP_DATA)
4072                 info->data_sinfo = space_info;
4073
4074         return ret;
4075 }
4076
4077 static void update_space_info(struct btrfs_fs_info *info, u64 flags,
4078                              u64 total_bytes, u64 bytes_used,
4079                              u64 bytes_readonly,
4080                              struct btrfs_space_info **space_info)
4081 {
4082         struct btrfs_space_info *found;
4083         int factor;
4084
4085         if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
4086                      BTRFS_BLOCK_GROUP_RAID10))
4087                 factor = 2;
4088         else
4089                 factor = 1;
4090
4091         found = __find_space_info(info, flags);
4092         ASSERT(found);
4093         spin_lock(&found->lock);
4094         found->total_bytes += total_bytes;
4095         found->disk_total += total_bytes * factor;
4096         found->bytes_used += bytes_used;
4097         found->disk_used += bytes_used * factor;
4098         found->bytes_readonly += bytes_readonly;
4099         if (total_bytes > 0)
4100                 found->full = 0;
4101         space_info_add_new_bytes(info, found, total_bytes -
4102                                  bytes_used - bytes_readonly);
4103         spin_unlock(&found->lock);
4104         *space_info = found;
4105 }
4106
4107 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4108 {
4109         u64 extra_flags = chunk_to_extended(flags) &
4110                                 BTRFS_EXTENDED_PROFILE_MASK;
4111
4112         write_seqlock(&fs_info->profiles_lock);
4113         if (flags & BTRFS_BLOCK_GROUP_DATA)
4114                 fs_info->avail_data_alloc_bits |= extra_flags;
4115         if (flags & BTRFS_BLOCK_GROUP_METADATA)
4116                 fs_info->avail_metadata_alloc_bits |= extra_flags;
4117         if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4118                 fs_info->avail_system_alloc_bits |= extra_flags;
4119         write_sequnlock(&fs_info->profiles_lock);
4120 }
4121
4122 /*
4123  * returns target flags in extended format or 0 if restripe for this
4124  * chunk_type is not in progress
4125  *
4126  * should be called with either volume_mutex or balance_lock held
4127  */
4128 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4129 {
4130         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4131         u64 target = 0;
4132
4133         if (!bctl)
4134                 return 0;
4135
4136         if (flags & BTRFS_BLOCK_GROUP_DATA &&
4137             bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4138                 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4139         } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4140                    bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4141                 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4142         } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4143                    bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4144                 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4145         }
4146
4147         return target;
4148 }
4149
4150 /*
4151  * @flags: available profiles in extended format (see ctree.h)
4152  *
4153  * Returns reduced profile in chunk format.  If profile changing is in
4154  * progress (either running or paused) picks the target profile (if it's
4155  * already available), otherwise falls back to plain reducing.
4156  */
4157 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
4158 {
4159         u64 num_devices = fs_info->fs_devices->rw_devices;
4160         u64 target;
4161         u64 raid_type;
4162         u64 allowed = 0;
4163
4164         /*
4165          * see if restripe for this chunk_type is in progress, if so
4166          * try to reduce to the target profile
4167          */
4168         spin_lock(&fs_info->balance_lock);
4169         target = get_restripe_target(fs_info, flags);
4170         if (target) {
4171                 /* pick target profile only if it's already available */
4172                 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4173                         spin_unlock(&fs_info->balance_lock);
4174                         return extended_to_chunk(target);
4175                 }
4176         }
4177         spin_unlock(&fs_info->balance_lock);
4178
4179         /* First, mask out the RAID levels which aren't possible */
4180         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4181                 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4182                         allowed |= btrfs_raid_group[raid_type];
4183         }
4184         allowed &= flags;
4185
4186         if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4187                 allowed = BTRFS_BLOCK_GROUP_RAID6;
4188         else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4189                 allowed = BTRFS_BLOCK_GROUP_RAID5;
4190         else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4191                 allowed = BTRFS_BLOCK_GROUP_RAID10;
4192         else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4193                 allowed = BTRFS_BLOCK_GROUP_RAID1;
4194         else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4195                 allowed = BTRFS_BLOCK_GROUP_RAID0;
4196
4197         flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4198
4199         return extended_to_chunk(flags | allowed);
4200 }
4201
4202 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4203 {
4204         unsigned seq;
4205         u64 flags;
4206
4207         do {
4208                 flags = orig_flags;
4209                 seq = read_seqbegin(&fs_info->profiles_lock);
4210
4211                 if (flags & BTRFS_BLOCK_GROUP_DATA)
4212                         flags |= fs_info->avail_data_alloc_bits;
4213                 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4214                         flags |= fs_info->avail_system_alloc_bits;
4215                 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4216                         flags |= fs_info->avail_metadata_alloc_bits;
4217         } while (read_seqretry(&fs_info->profiles_lock, seq));
4218
4219         return btrfs_reduce_alloc_profile(fs_info, flags);
4220 }
4221
4222 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
4223 {
4224         struct btrfs_fs_info *fs_info = root->fs_info;
4225         u64 flags;
4226         u64 ret;
4227
4228         if (data)
4229                 flags = BTRFS_BLOCK_GROUP_DATA;
4230         else if (root == fs_info->chunk_root)
4231                 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4232         else
4233                 flags = BTRFS_BLOCK_GROUP_METADATA;
4234
4235         ret = get_alloc_profile(fs_info, flags);
4236         return ret;
4237 }
4238
4239 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4240 {
4241         return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4242 }
4243
4244 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4245 {
4246         return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4247 }
4248
4249 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4250 {
4251         return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4252 }
4253
4254 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4255                                  bool may_use_included)
4256 {
4257         ASSERT(s_info);
4258         return s_info->bytes_used + s_info->bytes_reserved +
4259                 s_info->bytes_pinned + s_info->bytes_readonly +
4260                 (may_use_included ? s_info->bytes_may_use : 0);
4261 }
4262
4263 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4264 {
4265         struct btrfs_root *root = inode->root;
4266         struct btrfs_fs_info *fs_info = root->fs_info;
4267         struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
4268         u64 used;
4269         int ret = 0;
4270         int need_commit = 2;
4271         int have_pinned_space;
4272
4273         /* make sure bytes are sectorsize aligned */
4274         bytes = ALIGN(bytes, fs_info->sectorsize);
4275
4276         if (btrfs_is_free_space_inode(inode)) {
4277                 need_commit = 0;
4278                 ASSERT(current->journal_info);
4279         }
4280
4281 again:
4282         /* make sure we have enough space to handle the data first */
4283         spin_lock(&data_sinfo->lock);
4284         used = btrfs_space_info_used(data_sinfo, true);
4285
4286         if (used + bytes > data_sinfo->total_bytes) {
4287                 struct btrfs_trans_handle *trans;
4288
4289                 /*
4290                  * if we don't have enough free bytes in this space then we need
4291                  * to alloc a new chunk.
4292                  */
4293                 if (!data_sinfo->full) {
4294                         u64 alloc_target;
4295
4296                         data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4297                         spin_unlock(&data_sinfo->lock);
4298
4299                         alloc_target = btrfs_data_alloc_profile(fs_info);
4300                         /*
4301                          * It is ugly that we don't call nolock join
4302                          * transaction for the free space inode case here.
4303                          * But it is safe because we only do the data space
4304                          * reservation for the free space cache in the
4305                          * transaction context, the common join transaction
4306                          * just increase the counter of the current transaction
4307                          * handler, doesn't try to acquire the trans_lock of
4308                          * the fs.
4309                          */
4310                         trans = btrfs_join_transaction(root);
4311                         if (IS_ERR(trans))
4312                                 return PTR_ERR(trans);
4313
4314                         ret = do_chunk_alloc(trans, fs_info, alloc_target,
4315                                              CHUNK_ALLOC_NO_FORCE);
4316                         btrfs_end_transaction(trans);
4317                         if (ret < 0) {
4318                                 if (ret != -ENOSPC)
4319                                         return ret;
4320                                 else {
4321                                         have_pinned_space = 1;
4322                                         goto commit_trans;
4323                                 }
4324                         }
4325
4326                         goto again;
4327                 }
4328
4329                 /*
4330                  * If we don't have enough pinned space to deal with this
4331                  * allocation, and no removed chunk in current transaction,
4332                  * don't bother committing the transaction.
4333                  */
4334                 have_pinned_space = percpu_counter_compare(
4335                         &data_sinfo->total_bytes_pinned,
4336                         used + bytes - data_sinfo->total_bytes);
4337                 spin_unlock(&data_sinfo->lock);
4338
4339                 /* commit the current transaction and try again */
4340 commit_trans:
4341                 if (need_commit) {
4342                         need_commit--;
4343
4344                         if (need_commit > 0) {
4345                                 btrfs_start_delalloc_roots(fs_info, 0, -1);
4346                                 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
4347                                                          (u64)-1);
4348                         }
4349
4350                         trans = btrfs_join_transaction(root);
4351                         if (IS_ERR(trans))
4352                                 return PTR_ERR(trans);
4353                         if (have_pinned_space >= 0 ||
4354                             test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4355                                      &trans->transaction->flags) ||
4356                             need_commit > 0) {
4357                                 ret = btrfs_commit_transaction(trans);
4358                                 if (ret)
4359                                         return ret;
4360                                 /*
4361                                  * The cleaner kthread might still be doing iput
4362                                  * operations. Wait for it to finish so that
4363                                  * more space is released.
4364                                  */
4365                                 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4366                                 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4367                                 goto again;
4368                         } else {
4369                                 btrfs_end_transaction(trans);
4370                         }
4371                 }
4372
4373                 trace_btrfs_space_reservation(fs_info,
4374                                               "space_info:enospc",
4375                                               data_sinfo->flags, bytes, 1);
4376                 return -ENOSPC;
4377         }
4378         data_sinfo->bytes_may_use += bytes;
4379         trace_btrfs_space_reservation(fs_info, "space_info",
4380                                       data_sinfo->flags, bytes, 1);
4381         spin_unlock(&data_sinfo->lock);
4382
4383         return ret;
4384 }
4385
4386 int btrfs_check_data_free_space(struct inode *inode,
4387                         struct extent_changeset **reserved, u64 start, u64 len)
4388 {
4389         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4390         int ret;
4391
4392         /* align the range */
4393         len = round_up(start + len, fs_info->sectorsize) -
4394               round_down(start, fs_info->sectorsize);
4395         start = round_down(start, fs_info->sectorsize);
4396
4397         ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4398         if (ret < 0)
4399                 return ret;
4400
4401         /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4402         ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
4403         if (ret < 0)
4404                 btrfs_free_reserved_data_space_noquota(inode, start, len);
4405         else
4406                 ret = 0;
4407         return ret;
4408 }
4409
4410 /*
4411  * Called if we need to clear a data reservation for this inode
4412  * Normally in a error case.
4413  *
4414  * This one will *NOT* use accurate qgroup reserved space API, just for case
4415  * which we can't sleep and is sure it won't affect qgroup reserved space.
4416  * Like clear_bit_hook().
4417  */
4418 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4419                                             u64 len)
4420 {
4421         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4422         struct btrfs_space_info *data_sinfo;
4423
4424         /* Make sure the range is aligned to sectorsize */
4425         len = round_up(start + len, fs_info->sectorsize) -
4426               round_down(start, fs_info->sectorsize);
4427         start = round_down(start, fs_info->sectorsize);
4428
4429         data_sinfo = fs_info->data_sinfo;
4430         spin_lock(&data_sinfo->lock);
4431         if (WARN_ON(data_sinfo->bytes_may_use < len))
4432                 data_sinfo->bytes_may_use = 0;
4433         else
4434                 data_sinfo->bytes_may_use -= len;
4435         trace_btrfs_space_reservation(fs_info, "space_info",
4436                                       data_sinfo->flags, len, 0);
4437         spin_unlock(&data_sinfo->lock);
4438 }
4439
4440 /*
4441  * Called if we need to clear a data reservation for this inode
4442  * Normally in a error case.
4443  *
4444  * This one will handle the per-inode data rsv map for accurate reserved
4445  * space framework.
4446  */
4447 void btrfs_free_reserved_data_space(struct inode *inode,
4448                         struct extent_changeset *reserved, u64 start, u64 len)
4449 {
4450         struct btrfs_root *root = BTRFS_I(inode)->root;
4451
4452         /* Make sure the range is aligned to sectorsize */
4453         len = round_up(start + len, root->fs_info->sectorsize) -
4454               round_down(start, root->fs_info->sectorsize);
4455         start = round_down(start, root->fs_info->sectorsize);
4456
4457         btrfs_free_reserved_data_space_noquota(inode, start, len);
4458         btrfs_qgroup_free_data(inode, reserved, start, len);
4459 }
4460
4461 static void force_metadata_allocation(struct btrfs_fs_info *info)
4462 {
4463         struct list_head *head = &info->space_info;
4464         struct btrfs_space_info *found;
4465
4466         rcu_read_lock();
4467         list_for_each_entry_rcu(found, head, list) {
4468                 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4469                         found->force_alloc = CHUNK_ALLOC_FORCE;
4470         }
4471         rcu_read_unlock();
4472 }
4473
4474 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4475 {
4476         return (global->size << 1);
4477 }
4478
4479 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4480                               struct btrfs_space_info *sinfo, int force)
4481 {
4482         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4483         u64 bytes_used = btrfs_space_info_used(sinfo, false);
4484         u64 thresh;
4485
4486         if (force == CHUNK_ALLOC_FORCE)
4487                 return 1;
4488
4489         /*
4490          * We need to take into account the global rsv because for all intents
4491          * and purposes it's used space.  Don't worry about locking the
4492          * global_rsv, it doesn't change except when the transaction commits.
4493          */
4494         if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4495                 bytes_used += calc_global_rsv_need_space(global_rsv);
4496
4497         /*
4498          * in limited mode, we want to have some free space up to
4499          * about 1% of the FS size.
4500          */
4501         if (force == CHUNK_ALLOC_LIMITED) {
4502                 thresh = btrfs_super_total_bytes(fs_info->super_copy);
4503                 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4504
4505                 if (sinfo->total_bytes - bytes_used < thresh)
4506                         return 1;
4507         }
4508
4509         if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
4510                 return 0;
4511         return 1;
4512 }
4513
4514 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4515 {
4516         u64 num_dev;
4517
4518         if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4519                     BTRFS_BLOCK_GROUP_RAID0 |
4520                     BTRFS_BLOCK_GROUP_RAID5 |
4521                     BTRFS_BLOCK_GROUP_RAID6))
4522                 num_dev = fs_info->fs_devices->rw_devices;
4523         else if (type & BTRFS_BLOCK_GROUP_RAID1)
4524                 num_dev = 2;
4525         else
4526                 num_dev = 1;    /* DUP or single */
4527
4528         return num_dev;
4529 }
4530
4531 /*
4532  * If @is_allocation is true, reserve space in the system space info necessary
4533  * for allocating a chunk, otherwise if it's false, reserve space necessary for
4534  * removing a chunk.
4535  */
4536 void check_system_chunk(struct btrfs_trans_handle *trans,
4537                         struct btrfs_fs_info *fs_info, u64 type)
4538 {
4539         struct btrfs_space_info *info;
4540         u64 left;
4541         u64 thresh;
4542         int ret = 0;
4543         u64 num_devs;
4544
4545         /*
4546          * Needed because we can end up allocating a system chunk and for an
4547          * atomic and race free space reservation in the chunk block reserve.
4548          */
4549         ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
4550
4551         info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4552         spin_lock(&info->lock);
4553         left = info->total_bytes - btrfs_space_info_used(info, true);
4554         spin_unlock(&info->lock);
4555
4556         num_devs = get_profile_num_devs(fs_info, type);
4557
4558         /* num_devs device items to update and 1 chunk item to add or remove */
4559         thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4560                 btrfs_calc_trans_metadata_size(fs_info, 1);
4561
4562         if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4563                 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4564                            left, thresh, type);
4565                 dump_space_info(fs_info, info, 0, 0);
4566         }
4567
4568         if (left < thresh) {
4569                 u64 flags = btrfs_system_alloc_profile(fs_info);
4570
4571                 /*
4572                  * Ignore failure to create system chunk. We might end up not
4573                  * needing it, as we might not need to COW all nodes/leafs from
4574                  * the paths we visit in the chunk tree (they were already COWed
4575                  * or created in the current transaction for example).
4576                  */
4577                 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4578         }
4579
4580         if (!ret) {
4581                 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4582                                           &fs_info->chunk_block_rsv,
4583                                           thresh, BTRFS_RESERVE_NO_FLUSH);
4584                 if (!ret)
4585                         trans->chunk_bytes_reserved += thresh;
4586         }
4587 }
4588
4589 /*
4590  * If force is CHUNK_ALLOC_FORCE:
4591  *    - return 1 if it successfully allocates a chunk,
4592  *    - return errors including -ENOSPC otherwise.
4593  * If force is NOT CHUNK_ALLOC_FORCE:
4594  *    - return 0 if it doesn't need to allocate a new chunk,
4595  *    - return 1 if it successfully allocates a chunk,
4596  *    - return errors including -ENOSPC otherwise.
4597  */
4598 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4599                           struct btrfs_fs_info *fs_info, u64 flags, int force)
4600 {
4601         struct btrfs_space_info *space_info;
4602         int wait_for_alloc = 0;
4603         int ret = 0;
4604
4605         /* Don't re-enter if we're already allocating a chunk */
4606         if (trans->allocating_chunk)
4607                 return -ENOSPC;
4608
4609         space_info = __find_space_info(fs_info, flags);
4610         if (!space_info) {
4611                 ret = create_space_info(fs_info, flags, &space_info);
4612                 if (ret)
4613                         return ret;
4614         }
4615
4616 again:
4617         spin_lock(&space_info->lock);
4618         if (force < space_info->force_alloc)
4619                 force = space_info->force_alloc;
4620         if (space_info->full) {
4621                 if (should_alloc_chunk(fs_info, space_info, force))
4622                         ret = -ENOSPC;
4623                 else
4624                         ret = 0;
4625                 spin_unlock(&space_info->lock);
4626                 return ret;
4627         }
4628
4629         if (!should_alloc_chunk(fs_info, space_info, force)) {
4630                 spin_unlock(&space_info->lock);
4631                 return 0;
4632         } else if (space_info->chunk_alloc) {
4633                 wait_for_alloc = 1;
4634         } else {
4635                 space_info->chunk_alloc = 1;
4636         }
4637
4638         spin_unlock(&space_info->lock);
4639
4640         mutex_lock(&fs_info->chunk_mutex);
4641
4642         /*
4643          * The chunk_mutex is held throughout the entirety of a chunk
4644          * allocation, so once we've acquired the chunk_mutex we know that the
4645          * other guy is done and we need to recheck and see if we should
4646          * allocate.
4647          */
4648         if (wait_for_alloc) {
4649                 mutex_unlock(&fs_info->chunk_mutex);
4650                 wait_for_alloc = 0;
4651                 goto again;
4652         }
4653
4654         trans->allocating_chunk = true;
4655
4656         /*
4657          * If we have mixed data/metadata chunks we want to make sure we keep
4658          * allocating mixed chunks instead of individual chunks.
4659          */
4660         if (btrfs_mixed_space_info(space_info))
4661                 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4662
4663         /*
4664          * if we're doing a data chunk, go ahead and make sure that
4665          * we keep a reasonable number of metadata chunks allocated in the
4666          * FS as well.
4667          */
4668         if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4669                 fs_info->data_chunk_allocations++;
4670                 if (!(fs_info->data_chunk_allocations %
4671                       fs_info->metadata_ratio))
4672                         force_metadata_allocation(fs_info);
4673         }
4674
4675         /*
4676          * Check if we have enough space in SYSTEM chunk because we may need
4677          * to update devices.
4678          */
4679         check_system_chunk(trans, fs_info, flags);
4680
4681         ret = btrfs_alloc_chunk(trans, fs_info, flags);
4682         trans->allocating_chunk = false;
4683
4684         spin_lock(&space_info->lock);
4685         if (ret < 0 && ret != -ENOSPC)
4686                 goto out;
4687         if (ret)
4688                 space_info->full = 1;
4689         else
4690                 ret = 1;
4691
4692         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4693 out:
4694         space_info->chunk_alloc = 0;
4695         spin_unlock(&space_info->lock);
4696         mutex_unlock(&fs_info->chunk_mutex);
4697         /*
4698          * When we allocate a new chunk we reserve space in the chunk block
4699          * reserve to make sure we can COW nodes/leafs in the chunk tree or
4700          * add new nodes/leafs to it if we end up needing to do it when
4701          * inserting the chunk item and updating device items as part of the
4702          * second phase of chunk allocation, performed by
4703          * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4704          * large number of new block groups to create in our transaction
4705          * handle's new_bgs list to avoid exhausting the chunk block reserve
4706          * in extreme cases - like having a single transaction create many new
4707          * block groups when starting to write out the free space caches of all
4708          * the block groups that were made dirty during the lifetime of the
4709          * transaction.
4710          */
4711         if (trans->can_flush_pending_bgs &&
4712             trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4713                 btrfs_create_pending_block_groups(trans);
4714                 btrfs_trans_release_chunk_metadata(trans);
4715         }
4716         return ret;
4717 }
4718
4719 static int can_overcommit(struct btrfs_fs_info *fs_info,
4720                           struct btrfs_space_info *space_info, u64 bytes,
4721                           enum btrfs_reserve_flush_enum flush,
4722                           bool system_chunk)
4723 {
4724         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4725         u64 profile;
4726         u64 space_size;
4727         u64 avail;
4728         u64 used;
4729
4730         /* Don't overcommit when in mixed mode. */
4731         if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4732                 return 0;
4733
4734         if (system_chunk)
4735                 profile = btrfs_system_alloc_profile(fs_info);
4736         else
4737                 profile = btrfs_metadata_alloc_profile(fs_info);
4738
4739         used = btrfs_space_info_used(space_info, false);
4740
4741         /*
4742          * We only want to allow over committing if we have lots of actual space
4743          * free, but if we don't have enough space to handle the global reserve
4744          * space then we could end up having a real enospc problem when trying
4745          * to allocate a chunk or some other such important allocation.
4746          */
4747         spin_lock(&global_rsv->lock);
4748         space_size = calc_global_rsv_need_space(global_rsv);
4749         spin_unlock(&global_rsv->lock);
4750         if (used + space_size >= space_info->total_bytes)
4751                 return 0;
4752
4753         used += space_info->bytes_may_use;
4754
4755         avail = atomic64_read(&fs_info->free_chunk_space);
4756
4757         /*
4758          * If we have dup, raid1 or raid10 then only half of the free
4759          * space is actually useable.  For raid56, the space info used
4760          * doesn't include the parity drive, so we don't have to
4761          * change the math
4762          */
4763         if (profile & (BTRFS_BLOCK_GROUP_DUP |
4764                        BTRFS_BLOCK_GROUP_RAID1 |
4765                        BTRFS_BLOCK_GROUP_RAID10))
4766                 avail >>= 1;
4767
4768         /*
4769          * If we aren't flushing all things, let us overcommit up to
4770          * 1/2th of the space. If we can flush, don't let us overcommit
4771          * too much, let it overcommit up to 1/8 of the space.
4772          */
4773         if (flush == BTRFS_RESERVE_FLUSH_ALL)
4774                 avail >>= 3;
4775         else
4776                 avail >>= 1;
4777
4778         if (used + bytes < space_info->total_bytes + avail)
4779                 return 1;
4780         return 0;
4781 }
4782
4783 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4784                                          unsigned long nr_pages, int nr_items)
4785 {
4786         struct super_block *sb = fs_info->sb;
4787
4788         if (down_read_trylock(&sb->s_umount)) {
4789                 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4790                 up_read(&sb->s_umount);
4791         } else {
4792                 /*
4793                  * We needn't worry the filesystem going from r/w to r/o though
4794                  * we don't acquire ->s_umount mutex, because the filesystem
4795                  * should guarantee the delalloc inodes list be empty after
4796                  * the filesystem is readonly(all dirty pages are written to
4797                  * the disk).
4798                  */
4799                 btrfs_start_delalloc_roots(fs_info, 0, nr_items);
4800                 if (!current->journal_info)
4801                         btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4802         }
4803 }
4804
4805 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4806                                         u64 to_reclaim)
4807 {
4808         u64 bytes;
4809         u64 nr;
4810
4811         bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4812         nr = div64_u64(to_reclaim, bytes);
4813         if (!nr)
4814                 nr = 1;
4815         return nr;
4816 }
4817
4818 #define EXTENT_SIZE_PER_ITEM    SZ_256K
4819
4820 /*
4821  * shrink metadata reservation for delalloc
4822  */
4823 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4824                             u64 orig, bool wait_ordered)
4825 {
4826         struct btrfs_space_info *space_info;
4827         struct btrfs_trans_handle *trans;
4828         u64 delalloc_bytes;
4829         u64 max_reclaim;
4830         u64 items;
4831         long time_left;
4832         unsigned long nr_pages;
4833         int loops;
4834         enum btrfs_reserve_flush_enum flush;
4835
4836         /* Calc the number of the pages we need flush for space reservation */
4837         items = calc_reclaim_items_nr(fs_info, to_reclaim);
4838         to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4839
4840         trans = (struct btrfs_trans_handle *)current->journal_info;
4841         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4842
4843         delalloc_bytes = percpu_counter_sum_positive(
4844                                                 &fs_info->delalloc_bytes);
4845         if (delalloc_bytes == 0) {
4846                 if (trans)
4847                         return;
4848                 if (wait_ordered)
4849                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4850                 return;
4851         }
4852
4853         loops = 0;
4854         while (delalloc_bytes && loops < 3) {
4855                 max_reclaim = min(delalloc_bytes, to_reclaim);
4856                 nr_pages = max_reclaim >> PAGE_SHIFT;
4857                 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4858                 /*
4859                  * We need to wait for the async pages to actually start before
4860                  * we do anything.
4861                  */
4862                 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
4863                 if (!max_reclaim)
4864                         goto skip_async;
4865
4866                 if (max_reclaim <= nr_pages)
4867                         max_reclaim = 0;
4868                 else
4869                         max_reclaim -= nr_pages;
4870
4871                 wait_event(fs_info->async_submit_wait,
4872                            atomic_read(&fs_info->async_delalloc_pages) <=
4873                            (int)max_reclaim);
4874 skip_async:
4875                 if (!trans)
4876                         flush = BTRFS_RESERVE_FLUSH_ALL;
4877                 else
4878                         flush = BTRFS_RESERVE_NO_FLUSH;
4879                 spin_lock(&space_info->lock);
4880                 if (list_empty(&space_info->tickets) &&
4881                     list_empty(&space_info->priority_tickets)) {
4882                         spin_unlock(&space_info->lock);
4883                         break;
4884                 }
4885                 spin_unlock(&space_info->lock);
4886
4887                 loops++;
4888                 if (wait_ordered && !trans) {
4889                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4890                 } else {
4891                         time_left = schedule_timeout_killable(1);
4892                         if (time_left)
4893                                 break;
4894                 }
4895                 delalloc_bytes = percpu_counter_sum_positive(
4896                                                 &fs_info->delalloc_bytes);
4897         }
4898 }
4899
4900 struct reserve_ticket {
4901         u64 bytes;
4902         int error;
4903         struct list_head list;
4904         wait_queue_head_t wait;
4905 };
4906
4907 /**
4908  * maybe_commit_transaction - possibly commit the transaction if its ok to
4909  * @root - the root we're allocating for
4910  * @bytes - the number of bytes we want to reserve
4911  * @force - force the commit
4912  *
4913  * This will check to make sure that committing the transaction will actually
4914  * get us somewhere and then commit the transaction if it does.  Otherwise it
4915  * will return -ENOSPC.
4916  */
4917 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4918                                   struct btrfs_space_info *space_info)
4919 {
4920         struct reserve_ticket *ticket = NULL;
4921         struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4922         struct btrfs_trans_handle *trans;
4923         u64 bytes;
4924
4925         trans = (struct btrfs_trans_handle *)current->journal_info;
4926         if (trans)
4927                 return -EAGAIN;
4928
4929         spin_lock(&space_info->lock);
4930         if (!list_empty(&space_info->priority_tickets))
4931                 ticket = list_first_entry(&space_info->priority_tickets,
4932                                           struct reserve_ticket, list);
4933         else if (!list_empty(&space_info->tickets))
4934                 ticket = list_first_entry(&space_info->tickets,
4935                                           struct reserve_ticket, list);
4936         bytes = (ticket) ? ticket->bytes : 0;
4937         spin_unlock(&space_info->lock);
4938
4939         if (!bytes)
4940                 return 0;
4941
4942         /* See if there is enough pinned space to make this reservation */
4943         if (percpu_counter_compare(&space_info->total_bytes_pinned,
4944                                    bytes) >= 0)
4945                 goto commit;
4946
4947         /*
4948          * See if there is some space in the delayed insertion reservation for
4949          * this reservation.
4950          */
4951         if (space_info != delayed_rsv->space_info)
4952                 return -ENOSPC;
4953
4954         spin_lock(&delayed_rsv->lock);
4955         if (delayed_rsv->size > bytes)
4956                 bytes = 0;
4957         else
4958                 bytes -= delayed_rsv->size;
4959         spin_unlock(&delayed_rsv->lock);
4960
4961         if (percpu_counter_compare(&space_info->total_bytes_pinned,
4962                                    bytes) < 0) {
4963                 return -ENOSPC;
4964         }
4965
4966 commit:
4967         trans = btrfs_join_transaction(fs_info->extent_root);
4968         if (IS_ERR(trans))
4969                 return -ENOSPC;
4970
4971         return btrfs_commit_transaction(trans);
4972 }
4973
4974 /*
4975  * Try to flush some data based on policy set by @state. This is only advisory
4976  * and may fail for various reasons. The caller is supposed to examine the
4977  * state of @space_info to detect the outcome.
4978  */
4979 static void flush_space(struct btrfs_fs_info *fs_info,
4980                        struct btrfs_space_info *space_info, u64 num_bytes,
4981                        int state)
4982 {
4983         struct btrfs_root *root = fs_info->extent_root;
4984         struct btrfs_trans_handle *trans;
4985         int nr;
4986         int ret = 0;
4987
4988         switch (state) {
4989         case FLUSH_DELAYED_ITEMS_NR:
4990         case FLUSH_DELAYED_ITEMS:
4991                 if (state == FLUSH_DELAYED_ITEMS_NR)
4992                         nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4993                 else
4994                         nr = -1;
4995
4996                 trans = btrfs_join_transaction(root);
4997                 if (IS_ERR(trans)) {
4998                         ret = PTR_ERR(trans);
4999                         break;
5000                 }
5001                 ret = btrfs_run_delayed_items_nr(trans, nr);
5002                 btrfs_end_transaction(trans);
5003                 break;
5004         case FLUSH_DELALLOC:
5005         case FLUSH_DELALLOC_WAIT:
5006                 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
5007                                 state == FLUSH_DELALLOC_WAIT);
5008                 break;
5009         case ALLOC_CHUNK:
5010                 trans = btrfs_join_transaction(root);
5011                 if (IS_ERR(trans)) {
5012                         ret = PTR_ERR(trans);
5013                         break;
5014                 }
5015                 ret = do_chunk_alloc(trans, fs_info,
5016                                      btrfs_metadata_alloc_profile(fs_info),
5017                                      CHUNK_ALLOC_NO_FORCE);
5018                 btrfs_end_transaction(trans);
5019                 if (ret > 0 || ret == -ENOSPC)
5020                         ret = 0;
5021                 break;
5022         case COMMIT_TRANS:
5023                 ret = may_commit_transaction(fs_info, space_info);
5024                 break;
5025         default:
5026                 ret = -ENOSPC;
5027                 break;
5028         }
5029
5030         trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
5031                                 ret);
5032         return;
5033 }
5034
5035 static inline u64
5036 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
5037                                  struct btrfs_space_info *space_info,
5038                                  bool system_chunk)
5039 {
5040         struct reserve_ticket *ticket;
5041         u64 used;
5042         u64 expected;
5043         u64 to_reclaim = 0;
5044
5045         list_for_each_entry(ticket, &space_info->tickets, list)
5046                 to_reclaim += ticket->bytes;
5047         list_for_each_entry(ticket, &space_info->priority_tickets, list)
5048                 to_reclaim += ticket->bytes;
5049         if (to_reclaim)
5050                 return to_reclaim;
5051
5052         to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
5053         if (can_overcommit(fs_info, space_info, to_reclaim,
5054                            BTRFS_RESERVE_FLUSH_ALL, system_chunk))
5055                 return 0;
5056
5057         used = btrfs_space_info_used(space_info, true);
5058
5059         if (can_overcommit(fs_info, space_info, SZ_1M,
5060                            BTRFS_RESERVE_FLUSH_ALL, system_chunk))
5061                 expected = div_factor_fine(space_info->total_bytes, 95);
5062         else
5063                 expected = div_factor_fine(space_info->total_bytes, 90);
5064
5065         if (used > expected)
5066                 to_reclaim = used - expected;
5067         else
5068                 to_reclaim = 0;
5069         to_reclaim = min(to_reclaim, space_info->bytes_may_use +
5070                                      space_info->bytes_reserved);
5071         return to_reclaim;
5072 }
5073
5074 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
5075                                         struct btrfs_space_info *space_info,
5076                                         u64 used, bool system_chunk)
5077 {
5078         u64 thresh = div_factor_fine(space_info->total_bytes, 98);
5079
5080         /* If we're just plain full then async reclaim just slows us down. */
5081         if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
5082                 return 0;
5083
5084         if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5085                                               system_chunk))
5086                 return 0;
5087
5088         return (used >= thresh && !btrfs_fs_closing(fs_info) &&
5089                 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
5090 }
5091
5092 static void wake_all_tickets(struct list_head *head)
5093 {
5094         struct reserve_ticket *ticket;
5095
5096         while (!list_empty(head)) {
5097                 ticket = list_first_entry(head, struct reserve_ticket, list);
5098                 list_del_init(&ticket->list);
5099                 ticket->error = -ENOSPC;
5100                 wake_up(&ticket->wait);
5101         }
5102 }
5103
5104 /*
5105  * This is for normal flushers, we can wait all goddamned day if we want to.  We
5106  * will loop and continuously try to flush as long as we are making progress.
5107  * We count progress as clearing off tickets each time we have to loop.
5108  */
5109 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5110 {
5111         struct btrfs_fs_info *fs_info;
5112         struct btrfs_space_info *space_info;
5113         u64 to_reclaim;
5114         int flush_state;
5115         int commit_cycles = 0;
5116         u64 last_tickets_id;
5117
5118         fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5119         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5120
5121         spin_lock(&space_info->lock);
5122         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5123                                                       false);
5124         if (!to_reclaim) {
5125                 space_info->flush = 0;
5126                 spin_unlock(&space_info->lock);
5127                 return;
5128         }
5129         last_tickets_id = space_info->tickets_id;
5130         spin_unlock(&space_info->lock);
5131
5132         flush_state = FLUSH_DELAYED_ITEMS_NR;
5133         do {
5134                 flush_space(fs_info, space_info, to_reclaim, flush_state);
5135                 spin_lock(&space_info->lock);
5136                 if (list_empty(&space_info->tickets)) {
5137                         space_info->flush = 0;
5138                         spin_unlock(&space_info->lock);
5139                         return;
5140                 }
5141                 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5142                                                               space_info,
5143                                                               false);
5144                 if (last_tickets_id == space_info->tickets_id) {
5145                         flush_state++;
5146                 } else {
5147                         last_tickets_id = space_info->tickets_id;
5148                         flush_state = FLUSH_DELAYED_ITEMS_NR;
5149                         if (commit_cycles)
5150                                 commit_cycles--;
5151                 }
5152
5153                 if (flush_state > COMMIT_TRANS) {
5154                         commit_cycles++;
5155                         if (commit_cycles > 2) {
5156                                 wake_all_tickets(&space_info->tickets);
5157                                 space_info->flush = 0;
5158                         } else {
5159                                 flush_state = FLUSH_DELAYED_ITEMS_NR;
5160                         }
5161                 }
5162                 spin_unlock(&space_info->lock);
5163         } while (flush_state <= COMMIT_TRANS);
5164 }
5165
5166 void btrfs_init_async_reclaim_work(struct work_struct *work)
5167 {
5168         INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5169 }
5170
5171 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5172                                             struct btrfs_space_info *space_info,
5173                                             struct reserve_ticket *ticket)
5174 {
5175         u64 to_reclaim;
5176         int flush_state = FLUSH_DELAYED_ITEMS_NR;
5177
5178         spin_lock(&space_info->lock);
5179         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5180                                                       false);
5181         if (!to_reclaim) {
5182                 spin_unlock(&space_info->lock);
5183                 return;
5184         }
5185         spin_unlock(&space_info->lock);
5186
5187         do {
5188                 flush_space(fs_info, space_info, to_reclaim, flush_state);
5189                 flush_state++;
5190                 spin_lock(&space_info->lock);
5191                 if (ticket->bytes == 0) {
5192                         spin_unlock(&space_info->lock);
5193                         return;
5194                 }
5195                 spin_unlock(&space_info->lock);
5196
5197                 /*
5198                  * Priority flushers can't wait on delalloc without
5199                  * deadlocking.
5200                  */
5201                 if (flush_state == FLUSH_DELALLOC ||
5202                     flush_state == FLUSH_DELALLOC_WAIT)
5203                         flush_state = ALLOC_CHUNK;
5204         } while (flush_state < COMMIT_TRANS);
5205 }
5206
5207 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5208                                struct btrfs_space_info *space_info,
5209                                struct reserve_ticket *ticket, u64 orig_bytes)
5210
5211 {
5212         DEFINE_WAIT(wait);
5213         int ret = 0;
5214
5215         spin_lock(&space_info->lock);
5216         while (ticket->bytes > 0 && ticket->error == 0) {
5217                 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5218                 if (ret) {
5219                         ret = -EINTR;
5220                         break;
5221                 }
5222                 spin_unlock(&space_info->lock);
5223
5224                 schedule();
5225
5226                 finish_wait(&ticket->wait, &wait);
5227                 spin_lock(&space_info->lock);
5228         }
5229         if (!ret)
5230                 ret = ticket->error;
5231         if (!list_empty(&ticket->list))
5232                 list_del_init(&ticket->list);
5233         if (ticket->bytes && ticket->bytes < orig_bytes) {
5234                 u64 num_bytes = orig_bytes - ticket->bytes;
5235                 space_info->bytes_may_use -= num_bytes;
5236                 trace_btrfs_space_reservation(fs_info, "space_info",
5237                                               space_info->flags, num_bytes, 0);
5238         }
5239         spin_unlock(&space_info->lock);
5240
5241         return ret;
5242 }
5243
5244 /**
5245  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5246  * @root - the root we're allocating for
5247  * @space_info - the space info we want to allocate from
5248  * @orig_bytes - the number of bytes we want
5249  * @flush - whether or not we can flush to make our reservation
5250  *
5251  * This will reserve orig_bytes number of bytes from the space info associated
5252  * with the block_rsv.  If there is not enough space it will make an attempt to
5253  * flush out space to make room.  It will do this by flushing delalloc if
5254  * possible or committing the transaction.  If flush is 0 then no attempts to
5255  * regain reservations will be made and this will fail if there is not enough
5256  * space already.
5257  */
5258 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
5259                                     struct btrfs_space_info *space_info,
5260                                     u64 orig_bytes,
5261                                     enum btrfs_reserve_flush_enum flush,
5262                                     bool system_chunk)
5263 {
5264         struct reserve_ticket ticket;
5265         u64 used;
5266         int ret = 0;
5267
5268         ASSERT(orig_bytes);
5269         ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5270
5271         spin_lock(&space_info->lock);
5272         ret = -ENOSPC;
5273         used = btrfs_space_info_used(space_info, true);
5274
5275         /*
5276          * If we have enough space then hooray, make our reservation and carry
5277          * on.  If not see if we can overcommit, and if we can, hooray carry on.
5278          * If not things get more complicated.
5279          */
5280         if (used + orig_bytes <= space_info->total_bytes) {
5281                 space_info->bytes_may_use += orig_bytes;
5282                 trace_btrfs_space_reservation(fs_info, "space_info",
5283                                               space_info->flags, orig_bytes, 1);
5284                 ret = 0;
5285         } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5286                                   system_chunk)) {
5287                 space_info->bytes_may_use += orig_bytes;
5288                 trace_btrfs_space_reservation(fs_info, "space_info",
5289                                               space_info->flags, orig_bytes, 1);
5290                 ret = 0;
5291         }
5292
5293         /*
5294          * If we couldn't make a reservation then setup our reservation ticket
5295          * and kick the async worker if it's not already running.
5296          *
5297          * If we are a priority flusher then we just need to add our ticket to
5298          * the list and we will do our own flushing further down.
5299          */
5300         if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5301                 ticket.bytes = orig_bytes;
5302                 ticket.error = 0;
5303                 init_waitqueue_head(&ticket.wait);
5304                 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5305                         list_add_tail(&ticket.list, &space_info->tickets);
5306                         if (!space_info->flush) {
5307                                 space_info->flush = 1;
5308                                 trace_btrfs_trigger_flush(fs_info,
5309                                                           space_info->flags,
5310                                                           orig_bytes, flush,
5311                                                           "enospc");
5312                                 queue_work(system_unbound_wq,
5313                                            &fs_info->async_reclaim_work);
5314                         }
5315                 } else {
5316                         list_add_tail(&ticket.list,
5317                                       &space_info->priority_tickets);
5318                 }
5319         } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5320                 used += orig_bytes;
5321                 /*
5322                  * We will do the space reservation dance during log replay,
5323                  * which means we won't have fs_info->fs_root set, so don't do
5324                  * the async reclaim as we will panic.
5325                  */
5326                 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5327                     need_do_async_reclaim(fs_info, space_info,
5328                                           used, system_chunk) &&
5329                     !work_busy(&fs_info->async_reclaim_work)) {
5330                         trace_btrfs_trigger_flush(fs_info, space_info->flags,
5331                                                   orig_bytes, flush, "preempt");
5332                         queue_work(system_unbound_wq,
5333                                    &fs_info->async_reclaim_work);
5334                 }
5335         }
5336         spin_unlock(&space_info->lock);
5337         if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5338                 return ret;
5339
5340         if (flush == BTRFS_RESERVE_FLUSH_ALL)
5341                 return wait_reserve_ticket(fs_info, space_info, &ticket,
5342                                            orig_bytes);
5343
5344         ret = 0;
5345         priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5346         spin_lock(&space_info->lock);
5347         if (ticket.bytes) {
5348                 if (ticket.bytes < orig_bytes) {
5349                         u64 num_bytes = orig_bytes - ticket.bytes;
5350                         space_info->bytes_may_use -= num_bytes;
5351                         trace_btrfs_space_reservation(fs_info, "space_info",
5352                                                       space_info->flags,
5353                                                       num_bytes, 0);
5354
5355                 }
5356                 list_del_init(&ticket.list);
5357                 ret = -ENOSPC;
5358         }
5359         spin_unlock(&space_info->lock);
5360         ASSERT(list_empty(&ticket.list));
5361         return ret;
5362 }
5363
5364 /**
5365  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5366  * @root - the root we're allocating for
5367  * @block_rsv - the block_rsv we're allocating for
5368  * @orig_bytes - the number of bytes we want
5369  * @flush - whether or not we can flush to make our reservation
5370  *
5371  * This will reserve orgi_bytes number of bytes from the space info associated
5372  * with the block_rsv.  If there is not enough space it will make an attempt to
5373  * flush out space to make room.  It will do this by flushing delalloc if
5374  * possible or committing the transaction.  If flush is 0 then no attempts to
5375  * regain reservations will be made and this will fail if there is not enough
5376  * space already.
5377  */
5378 static int reserve_metadata_bytes(struct btrfs_root *root,
5379                                   struct btrfs_block_rsv *block_rsv,
5380                                   u64 orig_bytes,
5381                                   enum btrfs_reserve_flush_enum flush)
5382 {
5383         struct btrfs_fs_info *fs_info = root->fs_info;
5384         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5385         int ret;
5386         bool system_chunk = (root == fs_info->chunk_root);
5387
5388         ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5389                                        orig_bytes, flush, system_chunk);
5390         if (ret == -ENOSPC &&
5391             unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5392                 if (block_rsv != global_rsv &&
5393                     !block_rsv_use_bytes(global_rsv, orig_bytes))
5394                         ret = 0;
5395         }
5396         if (ret == -ENOSPC) {
5397                 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5398                                               block_rsv->space_info->flags,
5399                                               orig_bytes, 1);
5400
5401                 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
5402                         dump_space_info(fs_info, block_rsv->space_info,
5403                                         orig_bytes, 0);
5404         }
5405         return ret;
5406 }
5407
5408 static struct btrfs_block_rsv *get_block_rsv(
5409                                         const struct btrfs_trans_handle *trans,
5410                                         const struct btrfs_root *root)
5411 {
5412         struct btrfs_fs_info *fs_info = root->fs_info;
5413         struct btrfs_block_rsv *block_rsv = NULL;
5414
5415         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5416             (root == fs_info->csum_root && trans->adding_csums) ||
5417             (root == fs_info->uuid_root))
5418                 block_rsv = trans->block_rsv;
5419
5420         if (!block_rsv)
5421                 block_rsv = root->block_rsv;
5422
5423         if (!block_rsv)
5424                 block_rsv = &fs_info->empty_block_rsv;
5425
5426         return block_rsv;
5427 }
5428
5429 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5430                                u64 num_bytes)
5431 {
5432         int ret = -ENOSPC;
5433         spin_lock(&block_rsv->lock);
5434         if (block_rsv->reserved >= num_bytes) {
5435                 block_rsv->reserved -= num_bytes;
5436                 if (block_rsv->reserved < block_rsv->size)
5437                         block_rsv->full = 0;
5438                 ret = 0;
5439         }
5440         spin_unlock(&block_rsv->lock);
5441         return ret;
5442 }
5443
5444 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5445                                 u64 num_bytes, int update_size)
5446 {
5447         spin_lock(&block_rsv->lock);
5448         block_rsv->reserved += num_bytes;
5449         if (update_size)
5450                 block_rsv->size += num_bytes;
5451         else if (block_rsv->reserved >= block_rsv->size)
5452                 block_rsv->full = 1;
5453         spin_unlock(&block_rsv->lock);
5454 }
5455
5456 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5457                              struct btrfs_block_rsv *dest, u64 num_bytes,
5458                              int min_factor)
5459 {
5460         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5461         u64 min_bytes;
5462
5463         if (global_rsv->space_info != dest->space_info)
5464                 return -ENOSPC;
5465
5466         spin_lock(&global_rsv->lock);
5467         min_bytes = div_factor(global_rsv->size, min_factor);
5468         if (global_rsv->reserved < min_bytes + num_bytes) {
5469                 spin_unlock(&global_rsv->lock);
5470                 return -ENOSPC;
5471         }
5472         global_rsv->reserved -= num_bytes;
5473         if (global_rsv->reserved < global_rsv->size)
5474                 global_rsv->full = 0;
5475         spin_unlock(&global_rsv->lock);
5476
5477         block_rsv_add_bytes(dest, num_bytes, 1);
5478         return 0;
5479 }
5480
5481 /*
5482  * This is for space we already have accounted in space_info->bytes_may_use, so
5483  * basically when we're returning space from block_rsv's.
5484  */
5485 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5486                                      struct btrfs_space_info *space_info,
5487                                      u64 num_bytes)
5488 {
5489         struct reserve_ticket *ticket;
5490         struct list_head *head;
5491         u64 used;
5492         enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5493         bool check_overcommit = false;
5494
5495         spin_lock(&space_info->lock);
5496         head = &space_info->priority_tickets;
5497
5498         /*
5499          * If we are over our limit then we need to check and see if we can
5500          * overcommit, and if we can't then we just need to free up our space
5501          * and not satisfy any requests.
5502          */
5503         used = btrfs_space_info_used(space_info, true);
5504         if (used - num_bytes >= space_info->total_bytes)
5505                 check_overcommit = true;
5506 again:
5507         while (!list_empty(head) && num_bytes) {
5508                 ticket = list_first_entry(head, struct reserve_ticket,
5509                                           list);
5510                 /*
5511                  * We use 0 bytes because this space is already reserved, so
5512                  * adding the ticket space would be a double count.
5513                  */
5514                 if (check_overcommit &&
5515                     !can_overcommit(fs_info, space_info, 0, flush, false))
5516                         break;
5517                 if (num_bytes >= ticket->bytes) {
5518                         list_del_init(&ticket->list);
5519                         num_bytes -= ticket->bytes;
5520                         ticket->bytes = 0;
5521                         space_info->tickets_id++;
5522                         wake_up(&ticket->wait);
5523                 } else {
5524                         ticket->bytes -= num_bytes;
5525                         num_bytes = 0;
5526                 }
5527         }
5528
5529         if (num_bytes && head == &space_info->priority_tickets) {
5530                 head = &space_info->tickets;
5531                 flush = BTRFS_RESERVE_FLUSH_ALL;
5532                 goto again;
5533         }
5534         space_info->bytes_may_use -= num_bytes;
5535         trace_btrfs_space_reservation(fs_info, "space_info",
5536                                       space_info->flags, num_bytes, 0);
5537         spin_unlock(&space_info->lock);
5538 }
5539
5540 /*
5541  * This is for newly allocated space that isn't accounted in
5542  * space_info->bytes_may_use yet.  So if we allocate a chunk or unpin an extent
5543  * we use this helper.
5544  */
5545 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5546                                      struct btrfs_space_info *space_info,
5547                                      u64 num_bytes)
5548 {
5549         struct reserve_ticket *ticket;
5550         struct list_head *head = &space_info->priority_tickets;
5551
5552 again:
5553         while (!list_empty(head) && num_bytes) {
5554                 ticket = list_first_entry(head, struct reserve_ticket,
5555                                           list);
5556                 if (num_bytes >= ticket->bytes) {
5557                         trace_btrfs_space_reservation(fs_info, "space_info",
5558                                                       space_info->flags,
5559                                                       ticket->bytes, 1);
5560                         list_del_init(&ticket->list);
5561                         num_bytes -= ticket->bytes;
5562                         space_info->bytes_may_use += ticket->bytes;
5563                         ticket->bytes = 0;
5564                         space_info->tickets_id++;
5565                         wake_up(&ticket->wait);
5566                 } else {
5567                         trace_btrfs_space_reservation(fs_info, "space_info",
5568                                                       space_info->flags,
5569                                                       num_bytes, 1);
5570                         space_info->bytes_may_use += num_bytes;
5571                         ticket->bytes -= num_bytes;
5572                         num_bytes = 0;
5573                 }
5574         }
5575
5576         if (num_bytes && head == &space_info->priority_tickets) {
5577                 head = &space_info->tickets;
5578                 goto again;
5579         }
5580 }
5581
5582 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5583                                     struct btrfs_block_rsv *block_rsv,
5584                                     struct btrfs_block_rsv *dest, u64 num_bytes)
5585 {
5586         struct btrfs_space_info *space_info = block_rsv->space_info;
5587         u64 ret;
5588
5589         spin_lock(&block_rsv->lock);
5590         if (num_bytes == (u64)-1)
5591                 num_bytes = block_rsv->size;
5592         block_rsv->size -= num_bytes;
5593         if (block_rsv->reserved >= block_rsv->size) {
5594                 num_bytes = block_rsv->reserved - block_rsv->size;
5595                 block_rsv->reserved = block_rsv->size;
5596                 block_rsv->full = 1;
5597         } else {
5598                 num_bytes = 0;
5599         }
5600         spin_unlock(&block_rsv->lock);
5601
5602         ret = num_bytes;
5603         if (num_bytes > 0) {
5604                 if (dest) {
5605                         spin_lock(&dest->lock);
5606                         if (!dest->full) {
5607                                 u64 bytes_to_add;
5608
5609                                 bytes_to_add = dest->size - dest->reserved;
5610                                 bytes_to_add = min(num_bytes, bytes_to_add);
5611                                 dest->reserved += bytes_to_add;
5612                                 if (dest->reserved >= dest->size)
5613                                         dest->full = 1;
5614                                 num_bytes -= bytes_to_add;
5615                         }
5616                         spin_unlock(&dest->lock);
5617                 }
5618                 if (num_bytes)
5619                         space_info_add_old_bytes(fs_info, space_info,
5620                                                  num_bytes);
5621         }
5622         return ret;
5623 }
5624
5625 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5626                             struct btrfs_block_rsv *dst, u64 num_bytes,
5627                             int update_size)
5628 {
5629         int ret;
5630
5631         ret = block_rsv_use_bytes(src, num_bytes);
5632         if (ret)
5633                 return ret;
5634
5635         block_rsv_add_bytes(dst, num_bytes, update_size);
5636         return 0;
5637 }
5638
5639 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5640 {
5641         memset(rsv, 0, sizeof(*rsv));
5642         spin_lock_init(&rsv->lock);
5643         rsv->type = type;
5644 }
5645
5646 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5647                                    struct btrfs_block_rsv *rsv,
5648                                    unsigned short type)
5649 {
5650         btrfs_init_block_rsv(rsv, type);
5651         rsv->space_info = __find_space_info(fs_info,
5652                                             BTRFS_BLOCK_GROUP_METADATA);
5653 }
5654
5655 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5656                                               unsigned short type)
5657 {
5658         struct btrfs_block_rsv *block_rsv;
5659
5660         block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5661         if (!block_rsv)
5662                 return NULL;
5663
5664         btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
5665         return block_rsv;
5666 }
5667
5668 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5669                           struct btrfs_block_rsv *rsv)
5670 {
5671         if (!rsv)
5672                 return;
5673         btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5674         kfree(rsv);
5675 }
5676
5677 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5678 {
5679         kfree(rsv);
5680 }
5681
5682 int btrfs_block_rsv_add(struct btrfs_root *root,
5683                         struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5684                         enum btrfs_reserve_flush_enum flush)
5685 {
5686         int ret;
5687
5688         if (num_bytes == 0)
5689                 return 0;
5690
5691         ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5692         if (!ret) {
5693                 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5694                 return 0;
5695         }
5696
5697         return ret;
5698 }
5699
5700 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5701 {
5702         u64 num_bytes = 0;
5703         int ret = -ENOSPC;
5704
5705         if (!block_rsv)
5706                 return 0;
5707
5708         spin_lock(&block_rsv->lock);
5709         num_bytes = div_factor(block_rsv->size, min_factor);
5710         if (block_rsv->reserved >= num_bytes)
5711                 ret = 0;
5712         spin_unlock(&block_rsv->lock);
5713
5714         return ret;
5715 }
5716
5717 int btrfs_block_rsv_refill(struct btrfs_root *root,
5718                            struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5719                            enum btrfs_reserve_flush_enum flush)
5720 {
5721         u64 num_bytes = 0;
5722         int ret = -ENOSPC;
5723
5724         if (!block_rsv)
5725                 return 0;
5726
5727         spin_lock(&block_rsv->lock);
5728         num_bytes = min_reserved;
5729         if (block_rsv->reserved >= num_bytes)
5730                 ret = 0;
5731         else
5732                 num_bytes -= block_rsv->reserved;
5733         spin_unlock(&block_rsv->lock);
5734
5735         if (!ret)
5736                 return 0;
5737
5738         ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5739         if (!ret) {
5740                 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5741                 return 0;
5742         }
5743
5744         return ret;
5745 }
5746
5747 /**
5748  * btrfs_inode_rsv_refill - refill the inode block rsv.
5749  * @inode - the inode we are refilling.
5750  * @flush - the flusing restriction.
5751  *
5752  * Essentially the same as btrfs_block_rsv_refill, except it uses the
5753  * block_rsv->size as the minimum size.  We'll either refill the missing amount
5754  * or return if we already have enough space.  This will also handle the resreve
5755  * tracepoint for the reserved amount.
5756  */
5757 static int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5758                                   enum btrfs_reserve_flush_enum flush)
5759 {
5760         struct btrfs_root *root = inode->root;
5761         struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5762         u64 num_bytes = 0;
5763         int ret = -ENOSPC;
5764
5765         spin_lock(&block_rsv->lock);
5766         if (block_rsv->reserved < block_rsv->size)
5767                 num_bytes = block_rsv->size - block_rsv->reserved;
5768         spin_unlock(&block_rsv->lock);
5769
5770         if (num_bytes == 0)
5771                 return 0;
5772
5773         ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5774         if (!ret) {
5775                 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5776                 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5777                                               btrfs_ino(inode), num_bytes, 1);
5778         }
5779         return ret;
5780 }
5781
5782 /**
5783  * btrfs_inode_rsv_release - release any excessive reservation.
5784  * @inode - the inode we need to release from.
5785  *
5786  * This is the same as btrfs_block_rsv_release, except that it handles the
5787  * tracepoint for the reservation.
5788  */
5789 static void btrfs_inode_rsv_release(struct btrfs_inode *inode)
5790 {
5791         struct btrfs_fs_info *fs_info = inode->root->fs_info;
5792         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5793         struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5794         u64 released = 0;
5795
5796         /*
5797          * Since we statically set the block_rsv->size we just want to say we
5798          * are releasing 0 bytes, and then we'll just get the reservation over
5799          * the size free'd.
5800          */
5801         released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0);
5802         if (released > 0)
5803                 trace_btrfs_space_reservation(fs_info, "delalloc",
5804                                               btrfs_ino(inode), released, 0);
5805 }
5806
5807 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5808                              struct btrfs_block_rsv *block_rsv,
5809                              u64 num_bytes)
5810 {
5811         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5812
5813         if (global_rsv == block_rsv ||
5814             block_rsv->space_info != global_rsv->space_info)
5815                 global_rsv = NULL;
5816         block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes);
5817 }
5818
5819 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5820 {
5821         struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5822         struct btrfs_space_info *sinfo = block_rsv->space_info;
5823         u64 num_bytes;
5824
5825         /*
5826          * The global block rsv is based on the size of the extent tree, the
5827          * checksum tree and the root tree.  If the fs is empty we want to set
5828          * it to a minimal amount for safety.
5829          */
5830         num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5831                 btrfs_root_used(&fs_info->csum_root->root_item) +
5832                 btrfs_root_used(&fs_info->tree_root->root_item);
5833         num_bytes = max_t(u64, num_bytes, SZ_16M);
5834
5835         spin_lock(&sinfo->lock);
5836         spin_lock(&block_rsv->lock);
5837
5838         block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5839
5840         if (block_rsv->reserved < block_rsv->size) {
5841                 num_bytes = btrfs_space_info_used(sinfo, true);
5842                 if (sinfo->total_bytes > num_bytes) {
5843                         num_bytes = sinfo->total_bytes - num_bytes;
5844                         num_bytes = min(num_bytes,
5845                                         block_rsv->size - block_rsv->reserved);
5846                         block_rsv->reserved += num_bytes;
5847                         sinfo->bytes_may_use += num_bytes;
5848                         trace_btrfs_space_reservation(fs_info, "space_info",
5849                                                       sinfo->flags, num_bytes,
5850                                                       1);
5851                 }
5852         } else if (block_rsv->reserved > block_rsv->size) {
5853                 num_bytes = block_rsv->reserved - block_rsv->size;
5854                 sinfo->bytes_may_use -= num_bytes;
5855                 trace_btrfs_space_reservation(fs_info, "space_info",
5856                                       sinfo->flags, num_bytes, 0);
5857                 block_rsv->reserved = block_rsv->size;
5858         }
5859
5860         if (block_rsv->reserved == block_rsv->size)
5861                 block_rsv->full = 1;
5862         else
5863                 block_rsv->full = 0;
5864
5865         spin_unlock(&block_rsv->lock);
5866         spin_unlock(&sinfo->lock);
5867 }
5868
5869 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5870 {
5871         struct btrfs_space_info *space_info;
5872
5873         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5874         fs_info->chunk_block_rsv.space_info = space_info;
5875
5876         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5877         fs_info->global_block_rsv.space_info = space_info;
5878         fs_info->trans_block_rsv.space_info = space_info;
5879         fs_info->empty_block_rsv.space_info = space_info;
5880         fs_info->delayed_block_rsv.space_info = space_info;
5881
5882         fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5883         fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5884         fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5885         fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5886         if (fs_info->quota_root)
5887                 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5888         fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5889
5890         update_global_block_rsv(fs_info);
5891 }
5892
5893 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5894 {
5895         block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5896                                 (u64)-1);
5897         WARN_ON(fs_info->trans_block_rsv.size > 0);
5898         WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5899         WARN_ON(fs_info->chunk_block_rsv.size > 0);
5900         WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5901         WARN_ON(fs_info->delayed_block_rsv.size > 0);
5902         WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5903 }
5904
5905
5906 /*
5907  * To be called after all the new block groups attached to the transaction
5908  * handle have been created (btrfs_create_pending_block_groups()).
5909  */
5910 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5911 {
5912         struct btrfs_fs_info *fs_info = trans->fs_info;
5913
5914         if (!trans->chunk_bytes_reserved)
5915                 return;
5916
5917         WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5918
5919         block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5920                                 trans->chunk_bytes_reserved);
5921         trans->chunk_bytes_reserved = 0;
5922 }
5923
5924 /* Can only return 0 or -ENOSPC */
5925 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5926                                   struct btrfs_inode *inode)
5927 {
5928         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5929         struct btrfs_root *root = inode->root;
5930         /*
5931          * We always use trans->block_rsv here as we will have reserved space
5932          * for our orphan when starting the transaction, using get_block_rsv()
5933          * here will sometimes make us choose the wrong block rsv as we could be
5934          * doing a reloc inode for a non refcounted root.
5935          */
5936         struct btrfs_block_rsv *src_rsv = trans->block_rsv;
5937         struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5938
5939         /*
5940          * We need to hold space in order to delete our orphan item once we've
5941          * added it, so this takes the reservation so we can release it later
5942          * when we are truly done with the orphan item.
5943          */
5944         u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5945
5946         trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5947                         num_bytes, 1);
5948         return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
5949 }
5950
5951 void btrfs_orphan_release_metadata(struct btrfs_inode *inode)
5952 {
5953         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5954         struct btrfs_root *root = inode->root;
5955         u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5956
5957         trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5958                         num_bytes, 0);
5959         btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
5960 }
5961
5962 /*
5963  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5964  * root: the root of the parent directory
5965  * rsv: block reservation
5966  * items: the number of items that we need do reservation
5967  * qgroup_reserved: used to return the reserved size in qgroup
5968  *
5969  * This function is used to reserve the space for snapshot/subvolume
5970  * creation and deletion. Those operations are different with the
5971  * common file/directory operations, they change two fs/file trees
5972  * and root tree, the number of items that the qgroup reserves is
5973  * different with the free space reservation. So we can not use
5974  * the space reservation mechanism in start_transaction().
5975  */
5976 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5977                                      struct btrfs_block_rsv *rsv,
5978                                      int items,
5979                                      u64 *qgroup_reserved,
5980                                      bool use_global_rsv)
5981 {
5982         u64 num_bytes;
5983         int ret;
5984         struct btrfs_fs_info *fs_info = root->fs_info;
5985         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5986
5987         if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5988                 /* One for parent inode, two for dir entries */
5989                 num_bytes = 3 * fs_info->nodesize;
5990                 ret = btrfs_qgroup_reserve_meta(root, num_bytes, true);
5991                 if (ret)
5992                         return ret;
5993         } else {
5994                 num_bytes = 0;
5995         }
5996
5997         *qgroup_reserved = num_bytes;
5998
5999         num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
6000         rsv->space_info = __find_space_info(fs_info,
6001                                             BTRFS_BLOCK_GROUP_METADATA);
6002         ret = btrfs_block_rsv_add(root, rsv, num_bytes,
6003                                   BTRFS_RESERVE_FLUSH_ALL);
6004
6005         if (ret == -ENOSPC && use_global_rsv)
6006                 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
6007
6008         if (ret && *qgroup_reserved)
6009                 btrfs_qgroup_free_meta(root, *qgroup_reserved);
6010
6011         return ret;
6012 }
6013
6014 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
6015                                       struct btrfs_block_rsv *rsv)
6016 {
6017         btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
6018 }
6019
6020 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
6021                                                  struct btrfs_inode *inode)
6022 {
6023         struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
6024         u64 reserve_size = 0;
6025         u64 csum_leaves;
6026         unsigned outstanding_extents;
6027
6028         lockdep_assert_held(&inode->lock);
6029         outstanding_extents = inode->outstanding_extents;
6030         if (outstanding_extents)
6031                 reserve_size = btrfs_calc_trans_metadata_size(fs_info,
6032                                                 outstanding_extents + 1);
6033         csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
6034                                                  inode->csum_bytes);
6035         reserve_size += btrfs_calc_trans_metadata_size(fs_info,
6036                                                        csum_leaves);
6037
6038         spin_lock(&block_rsv->lock);
6039         block_rsv->size = reserve_size;
6040         spin_unlock(&block_rsv->lock);
6041 }
6042
6043 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
6044 {
6045         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6046         struct btrfs_root *root = inode->root;
6047         unsigned nr_extents;
6048         enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
6049         int ret = 0;
6050         bool delalloc_lock = true;
6051
6052         /* If we are a free space inode we need to not flush since we will be in
6053          * the middle of a transaction commit.  We also don't need the delalloc
6054          * mutex since we won't race with anybody.  We need this mostly to make
6055          * lockdep shut its filthy mouth.
6056          *
6057          * If we have a transaction open (can happen if we call truncate_block
6058          * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
6059          */
6060         if (btrfs_is_free_space_inode(inode)) {
6061                 flush = BTRFS_RESERVE_NO_FLUSH;
6062                 delalloc_lock = false;
6063         } else {
6064                 if (current->journal_info)
6065                         flush = BTRFS_RESERVE_FLUSH_LIMIT;
6066
6067                 if (btrfs_transaction_in_commit(fs_info))
6068                         schedule_timeout(1);
6069         }
6070
6071         if (delalloc_lock)
6072                 mutex_lock(&inode->delalloc_mutex);
6073
6074         num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6075
6076         /* Add our new extents and calculate the new rsv size. */
6077         spin_lock(&inode->lock);
6078         nr_extents = count_max_extents(num_bytes);
6079         btrfs_mod_outstanding_extents(inode, nr_extents);
6080         inode->csum_bytes += num_bytes;
6081         btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6082         spin_unlock(&inode->lock);
6083
6084         if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
6085                 ret = btrfs_qgroup_reserve_meta(root,
6086                                 nr_extents * fs_info->nodesize, true);
6087                 if (ret)
6088                         goto out_fail;
6089         }
6090
6091         ret = btrfs_inode_rsv_refill(inode, flush);
6092         if (unlikely(ret)) {
6093                 btrfs_qgroup_free_meta(root,
6094                                        nr_extents * fs_info->nodesize);
6095                 goto out_fail;
6096         }
6097
6098         if (delalloc_lock)
6099                 mutex_unlock(&inode->delalloc_mutex);
6100         return 0;
6101
6102 out_fail:
6103         spin_lock(&inode->lock);
6104         nr_extents = count_max_extents(num_bytes);
6105         btrfs_mod_outstanding_extents(inode, -nr_extents);
6106         inode->csum_bytes -= num_bytes;
6107         btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6108         spin_unlock(&inode->lock);
6109
6110         btrfs_inode_rsv_release(inode);
6111         if (delalloc_lock)
6112                 mutex_unlock(&inode->delalloc_mutex);
6113         return ret;
6114 }
6115
6116 /**
6117  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6118  * @inode: the inode to release the reservation for.
6119  * @num_bytes: the number of bytes we are releasing.
6120  *
6121  * This will release the metadata reservation for an inode.  This can be called
6122  * once we complete IO for a given set of bytes to release their metadata
6123  * reservations, or on error for the same reason.
6124  */
6125 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes)
6126 {
6127         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6128
6129         num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6130         spin_lock(&inode->lock);
6131         inode->csum_bytes -= num_bytes;
6132         btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6133         spin_unlock(&inode->lock);
6134
6135         if (btrfs_is_testing(fs_info))
6136                 return;
6137
6138         btrfs_inode_rsv_release(inode);
6139 }
6140
6141 /**
6142  * btrfs_delalloc_release_extents - release our outstanding_extents
6143  * @inode: the inode to balance the reservation for.
6144  * @num_bytes: the number of bytes we originally reserved with
6145  *
6146  * When we reserve space we increase outstanding_extents for the extents we may
6147  * add.  Once we've set the range as delalloc or created our ordered extents we
6148  * have outstanding_extents to track the real usage, so we use this to free our
6149  * temporarily tracked outstanding_extents.  This _must_ be used in conjunction
6150  * with btrfs_delalloc_reserve_metadata.
6151  */
6152 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes)
6153 {
6154         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6155         unsigned num_extents;
6156
6157         spin_lock(&inode->lock);
6158         num_extents = count_max_extents(num_bytes);
6159         btrfs_mod_outstanding_extents(inode, -num_extents);
6160         btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6161         spin_unlock(&inode->lock);
6162
6163         if (btrfs_is_testing(fs_info))
6164                 return;
6165
6166         btrfs_inode_rsv_release(inode);
6167 }
6168
6169 /**
6170  * btrfs_delalloc_reserve_space - reserve data and metadata space for
6171  * delalloc
6172  * @inode: inode we're writing to
6173  * @start: start range we are writing to
6174  * @len: how long the range we are writing to
6175  * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6176  *            current reservation.
6177  *
6178  * This will do the following things
6179  *
6180  * o reserve space in data space info for num bytes
6181  *   and reserve precious corresponding qgroup space
6182  *   (Done in check_data_free_space)
6183  *
6184  * o reserve space for metadata space, based on the number of outstanding
6185  *   extents and how much csums will be needed
6186  *   also reserve metadata space in a per root over-reserve method.
6187  * o add to the inodes->delalloc_bytes
6188  * o add it to the fs_info's delalloc inodes list.
6189  *   (Above 3 all done in delalloc_reserve_metadata)
6190  *
6191  * Return 0 for success
6192  * Return <0 for error(-ENOSPC or -EQUOT)
6193  */
6194 int btrfs_delalloc_reserve_space(struct inode *inode,
6195                         struct extent_changeset **reserved, u64 start, u64 len)
6196 {
6197         int ret;
6198
6199         ret = btrfs_check_data_free_space(inode, reserved, start, len);
6200         if (ret < 0)
6201                 return ret;
6202         ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6203         if (ret < 0)
6204                 btrfs_free_reserved_data_space(inode, *reserved, start, len);
6205         return ret;
6206 }
6207
6208 /**
6209  * btrfs_delalloc_release_space - release data and metadata space for delalloc
6210  * @inode: inode we're releasing space for
6211  * @start: start position of the space already reserved
6212  * @len: the len of the space already reserved
6213  * @release_bytes: the len of the space we consumed or didn't use
6214  *
6215  * This function will release the metadata space that was not used and will
6216  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6217  * list if there are no delalloc bytes left.
6218  * Also it will handle the qgroup reserved space.
6219  */
6220 void btrfs_delalloc_release_space(struct inode *inode,
6221                                   struct extent_changeset *reserved,
6222                                   u64 start, u64 len)
6223 {
6224         btrfs_delalloc_release_metadata(BTRFS_I(inode), len);
6225         btrfs_free_reserved_data_space(inode, reserved, start, len);
6226 }
6227
6228 static int update_block_group(struct btrfs_trans_handle *trans,
6229                               struct btrfs_fs_info *info, u64 bytenr,
6230                               u64 num_bytes, int alloc)
6231 {
6232         struct btrfs_block_group_cache *cache = NULL;
6233         u64 total = num_bytes;
6234         u64 old_val;
6235         u64 byte_in_group;
6236         int factor;
6237
6238         /* block accounting for super block */
6239         spin_lock(&info->delalloc_root_lock);
6240         old_val = btrfs_super_bytes_used(info->super_copy);
6241         if (alloc)
6242                 old_val += num_bytes;
6243         else
6244                 old_val -= num_bytes;
6245         btrfs_set_super_bytes_used(info->super_copy, old_val);
6246         spin_unlock(&info->delalloc_root_lock);
6247
6248         while (total) {
6249                 cache = btrfs_lookup_block_group(info, bytenr);
6250                 if (!cache)
6251                         return -ENOENT;
6252                 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6253                                     BTRFS_BLOCK_GROUP_RAID1 |
6254                                     BTRFS_BLOCK_GROUP_RAID10))
6255                         factor = 2;
6256                 else
6257                         factor = 1;
6258                 /*
6259                  * If this block group has free space cache written out, we
6260                  * need to make sure to load it if we are removing space.  This
6261                  * is because we need the unpinning stage to actually add the
6262                  * space back to the block group, otherwise we will leak space.
6263                  */
6264                 if (!alloc && cache->cached == BTRFS_CACHE_NO)
6265                         cache_block_group(cache, 1);
6266
6267                 byte_in_group = bytenr - cache->key.objectid;
6268                 WARN_ON(byte_in_group > cache->key.offset);
6269
6270                 spin_lock(&cache->space_info->lock);
6271                 spin_lock(&cache->lock);
6272
6273                 if (btrfs_test_opt(info, SPACE_CACHE) &&
6274                     cache->disk_cache_state < BTRFS_DC_CLEAR)
6275                         cache->disk_cache_state = BTRFS_DC_CLEAR;
6276
6277                 old_val = btrfs_block_group_used(&cache->item);
6278                 num_bytes = min(total, cache->key.offset - byte_in_group);
6279                 if (alloc) {
6280                         old_val += num_bytes;
6281                         btrfs_set_block_group_used(&cache->item, old_val);
6282                         cache->reserved -= num_bytes;
6283                         cache->space_info->bytes_reserved -= num_bytes;
6284                         cache->space_info->bytes_used += num_bytes;
6285                         cache->space_info->disk_used += num_bytes * factor;
6286                         spin_unlock(&cache->lock);
6287                         spin_unlock(&cache->space_info->lock);
6288                 } else {
6289                         old_val -= num_bytes;
6290                         btrfs_set_block_group_used(&cache->item, old_val);
6291                         cache->pinned += num_bytes;
6292                         cache->space_info->bytes_pinned += num_bytes;
6293                         cache->space_info->bytes_used -= num_bytes;
6294                         cache->space_info->disk_used -= num_bytes * factor;
6295                         spin_unlock(&cache->lock);
6296                         spin_unlock(&cache->space_info->lock);
6297
6298                         trace_btrfs_space_reservation(info, "pinned",
6299                                                       cache->space_info->flags,
6300                                                       num_bytes, 1);
6301                         percpu_counter_add(&cache->space_info->total_bytes_pinned,
6302                                            num_bytes);
6303                         set_extent_dirty(info->pinned_extents,
6304                                          bytenr, bytenr + num_bytes - 1,
6305                                          GFP_NOFS | __GFP_NOFAIL);
6306                 }
6307
6308                 spin_lock(&trans->transaction->dirty_bgs_lock);
6309                 if (list_empty(&cache->dirty_list)) {
6310                         list_add_tail(&cache->dirty_list,
6311                                       &trans->transaction->dirty_bgs);
6312                                 trans->transaction->num_dirty_bgs++;
6313                         btrfs_get_block_group(cache);
6314                 }
6315                 spin_unlock(&trans->transaction->dirty_bgs_lock);
6316
6317                 /*
6318                  * No longer have used bytes in this block group, queue it for
6319                  * deletion. We do this after adding the block group to the
6320                  * dirty list to avoid races between cleaner kthread and space
6321                  * cache writeout.
6322                  */
6323                 if (!alloc && old_val == 0) {
6324                         spin_lock(&info->unused_bgs_lock);
6325                         if (list_empty(&cache->bg_list)) {
6326                                 btrfs_get_block_group(cache);
6327                                 list_add_tail(&cache->bg_list,
6328                                               &info->unused_bgs);
6329                         }
6330                         spin_unlock(&info->unused_bgs_lock);
6331                 }
6332
6333                 btrfs_put_block_group(cache);
6334                 total -= num_bytes;
6335                 bytenr += num_bytes;
6336         }
6337         return 0;
6338 }
6339
6340 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6341 {
6342         struct btrfs_block_group_cache *cache;
6343         u64 bytenr;
6344
6345         spin_lock(&fs_info->block_group_cache_lock);
6346         bytenr = fs_info->first_logical_byte;
6347         spin_unlock(&fs_info->block_group_cache_lock);
6348
6349         if (bytenr < (u64)-1)
6350                 return bytenr;
6351
6352         cache = btrfs_lookup_first_block_group(fs_info, search_start);
6353         if (!cache)
6354                 return 0;
6355
6356         bytenr = cache->key.objectid;
6357         btrfs_put_block_group(cache);
6358
6359         return bytenr;
6360 }
6361
6362 static int pin_down_extent(struct btrfs_fs_info *fs_info,
6363                            struct btrfs_block_group_cache *cache,
6364                            u64 bytenr, u64 num_bytes, int reserved)
6365 {
6366         spin_lock(&cache->space_info->lock);
6367         spin_lock(&cache->lock);
6368         cache->pinned += num_bytes;
6369         cache->space_info->bytes_pinned += num_bytes;
6370         if (reserved) {
6371                 cache->reserved -= num_bytes;
6372                 cache->space_info->bytes_reserved -= num_bytes;
6373         }
6374         spin_unlock(&cache->lock);
6375         spin_unlock(&cache->space_info->lock);
6376
6377         trace_btrfs_space_reservation(fs_info, "pinned",
6378                                       cache->space_info->flags, num_bytes, 1);
6379         percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes);
6380         set_extent_dirty(fs_info->pinned_extents, bytenr,
6381                          bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6382         return 0;
6383 }
6384
6385 /*
6386  * this function must be called within transaction
6387  */
6388 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6389                      u64 bytenr, u64 num_bytes, int reserved)
6390 {
6391         struct btrfs_block_group_cache *cache;
6392
6393         cache = btrfs_lookup_block_group(fs_info, bytenr);
6394         BUG_ON(!cache); /* Logic error */
6395
6396         pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6397
6398         btrfs_put_block_group(cache);
6399         return 0;
6400 }
6401
6402 /*
6403  * this function must be called within transaction
6404  */
6405 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6406                                     u64 bytenr, u64 num_bytes)
6407 {
6408         struct btrfs_block_group_cache *cache;
6409         int ret;
6410
6411         cache = btrfs_lookup_block_group(fs_info, bytenr);
6412         if (!cache)
6413                 return -EINVAL;
6414
6415         /*
6416          * pull in the free space cache (if any) so that our pin
6417          * removes the free space from the cache.  We have load_only set
6418          * to one because the slow code to read in the free extents does check
6419          * the pinned extents.
6420          */
6421         cache_block_group(cache, 1);
6422
6423         pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6424
6425         /* remove us from the free space cache (if we're there at all) */
6426         ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6427         btrfs_put_block_group(cache);
6428         return ret;
6429 }
6430
6431 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6432                                    u64 start, u64 num_bytes)
6433 {
6434         int ret;
6435         struct btrfs_block_group_cache *block_group;
6436         struct btrfs_caching_control *caching_ctl;
6437
6438         block_group = btrfs_lookup_block_group(fs_info, start);
6439         if (!block_group)
6440                 return -EINVAL;
6441
6442         cache_block_group(block_group, 0);
6443         caching_ctl = get_caching_control(block_group);
6444
6445         if (!caching_ctl) {
6446                 /* Logic error */
6447                 BUG_ON(!block_group_cache_done(block_group));
6448                 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6449         } else {
6450                 mutex_lock(&caching_ctl->mutex);
6451
6452                 if (start >= caching_ctl->progress) {
6453                         ret = add_excluded_extent(fs_info, start, num_bytes);
6454                 } else if (start + num_bytes <= caching_ctl->progress) {
6455                         ret = btrfs_remove_free_space(block_group,
6456                                                       start, num_bytes);
6457                 } else {
6458                         num_bytes = caching_ctl->progress - start;
6459                         ret = btrfs_remove_free_space(block_group,
6460                                                       start, num_bytes);
6461                         if (ret)
6462                                 goto out_lock;
6463
6464                         num_bytes = (start + num_bytes) -
6465                                 caching_ctl->progress;
6466                         start = caching_ctl->progress;
6467                         ret = add_excluded_extent(fs_info, start, num_bytes);
6468                 }
6469 out_lock:
6470                 mutex_unlock(&caching_ctl->mutex);
6471                 put_caching_control(caching_ctl);
6472         }
6473         btrfs_put_block_group(block_group);
6474         return ret;
6475 }
6476
6477 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6478                                  struct extent_buffer *eb)
6479 {
6480         struct btrfs_file_extent_item *item;
6481         struct btrfs_key key;
6482         int found_type;
6483         int i;
6484
6485         if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6486                 return 0;
6487
6488         for (i = 0; i < btrfs_header_nritems(eb); i++) {
6489                 btrfs_item_key_to_cpu(eb, &key, i);
6490                 if (key.type != BTRFS_EXTENT_DATA_KEY)
6491                         continue;
6492                 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6493                 found_type = btrfs_file_extent_type(eb, item);
6494                 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6495                         continue;
6496                 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6497                         continue;
6498                 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6499                 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6500                 __exclude_logged_extent(fs_info, key.objectid, key.offset);
6501         }
6502
6503         return 0;
6504 }
6505
6506 static void
6507 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6508 {
6509         atomic_inc(&bg->reservations);
6510 }
6511
6512 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6513                                         const u64 start)
6514 {
6515         struct btrfs_block_group_cache *bg;
6516
6517         bg = btrfs_lookup_block_group(fs_info, start);
6518         ASSERT(bg);
6519         if (atomic_dec_and_test(&bg->reservations))
6520                 wake_up_atomic_t(&bg->reservations);
6521         btrfs_put_block_group(bg);
6522 }
6523
6524 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6525 {
6526         struct btrfs_space_info *space_info = bg->space_info;
6527
6528         ASSERT(bg->ro);
6529
6530         if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6531                 return;
6532
6533         /*
6534          * Our block group is read only but before we set it to read only,
6535          * some task might have had allocated an extent from it already, but it
6536          * has not yet created a respective ordered extent (and added it to a
6537          * root's list of ordered extents).
6538          * Therefore wait for any task currently allocating extents, since the
6539          * block group's reservations counter is incremented while a read lock
6540          * on the groups' semaphore is held and decremented after releasing
6541          * the read access on that semaphore and creating the ordered extent.
6542          */
6543         down_write(&space_info->groups_sem);
6544         up_write(&space_info->groups_sem);
6545
6546         wait_on_atomic_t(&bg->reservations, atomic_t_wait,
6547                          TASK_UNINTERRUPTIBLE);
6548 }
6549
6550 /**
6551  * btrfs_add_reserved_bytes - update the block_group and space info counters
6552  * @cache:      The cache we are manipulating
6553  * @ram_bytes:  The number of bytes of file content, and will be same to
6554  *              @num_bytes except for the compress path.
6555  * @num_bytes:  The number of bytes in question
6556  * @delalloc:   The blocks are allocated for the delalloc write
6557  *
6558  * This is called by the allocator when it reserves space. If this is a
6559  * reservation and the block group has become read only we cannot make the
6560  * reservation and return -EAGAIN, otherwise this function always succeeds.
6561  */
6562 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6563                                     u64 ram_bytes, u64 num_bytes, int delalloc)
6564 {
6565         struct btrfs_space_info *space_info = cache->space_info;
6566         int ret = 0;
6567
6568         spin_lock(&space_info->lock);
6569         spin_lock(&cache->lock);
6570         if (cache->ro) {
6571                 ret = -EAGAIN;
6572         } else {
6573                 cache->reserved += num_bytes;
6574                 space_info->bytes_reserved += num_bytes;
6575
6576                 trace_btrfs_space_reservation(cache->fs_info,
6577                                 "space_info", space_info->flags,
6578                                 ram_bytes, 0);
6579                 space_info->bytes_may_use -= ram_bytes;
6580                 if (delalloc)
6581                         cache->delalloc_bytes += num_bytes;
6582         }
6583         spin_unlock(&cache->lock);
6584         spin_unlock(&space_info->lock);
6585         return ret;
6586 }
6587
6588 /**
6589  * btrfs_free_reserved_bytes - update the block_group and space info counters
6590  * @cache:      The cache we are manipulating
6591  * @num_bytes:  The number of bytes in question
6592  * @delalloc:   The blocks are allocated for the delalloc write
6593  *
6594  * This is called by somebody who is freeing space that was never actually used
6595  * on disk.  For example if you reserve some space for a new leaf in transaction
6596  * A and before transaction A commits you free that leaf, you call this with
6597  * reserve set to 0 in order to clear the reservation.
6598  */
6599
6600 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6601                                      u64 num_bytes, int delalloc)
6602 {
6603         struct btrfs_space_info *space_info = cache->space_info;
6604         int ret = 0;
6605
6606         spin_lock(&space_info->lock);
6607         spin_lock(&cache->lock);
6608         if (cache->ro)
6609                 space_info->bytes_readonly += num_bytes;
6610         cache->reserved -= num_bytes;
6611         space_info->bytes_reserved -= num_bytes;
6612
6613         if (delalloc)
6614                 cache->delalloc_bytes -= num_bytes;
6615         spin_unlock(&cache->lock);
6616         spin_unlock(&space_info->lock);
6617         return ret;
6618 }
6619 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6620 {
6621         struct btrfs_caching_control *next;
6622         struct btrfs_caching_control *caching_ctl;
6623         struct btrfs_block_group_cache *cache;
6624
6625         down_write(&fs_info->commit_root_sem);
6626
6627         list_for_each_entry_safe(caching_ctl, next,
6628                                  &fs_info->caching_block_groups, list) {
6629                 cache = caching_ctl->block_group;
6630                 if (block_group_cache_done(cache)) {
6631                         cache->last_byte_to_unpin = (u64)-1;
6632                         list_del_init(&caching_ctl->list);
6633                         put_caching_control(caching_ctl);
6634                 } else {
6635                         cache->last_byte_to_unpin = caching_ctl->progress;
6636                 }
6637         }
6638
6639         if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6640                 fs_info->pinned_extents = &fs_info->freed_extents[1];
6641         else
6642                 fs_info->pinned_extents = &fs_info->freed_extents[0];
6643
6644         up_write(&fs_info->commit_root_sem);
6645
6646         update_global_block_rsv(fs_info);
6647 }
6648
6649 /*
6650  * Returns the free cluster for the given space info and sets empty_cluster to
6651  * what it should be based on the mount options.
6652  */
6653 static struct btrfs_free_cluster *
6654 fetch_cluster_info(struct btrfs_fs_info *fs_info,
6655                    struct btrfs_space_info *space_info, u64 *empty_cluster)
6656 {
6657         struct btrfs_free_cluster *ret = NULL;
6658
6659         *empty_cluster = 0;
6660         if (btrfs_mixed_space_info(space_info))
6661                 return ret;
6662
6663         if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6664                 ret = &fs_info->meta_alloc_cluster;
6665                 if (btrfs_test_opt(fs_info, SSD))
6666                         *empty_cluster = SZ_2M;
6667                 else
6668                         *empty_cluster = SZ_64K;
6669         } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6670                    btrfs_test_opt(fs_info, SSD_SPREAD)) {
6671                 *empty_cluster = SZ_2M;
6672                 ret = &fs_info->data_alloc_cluster;
6673         }
6674
6675         return ret;
6676 }
6677
6678 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6679                               u64 start, u64 end,
6680                               const bool return_free_space)
6681 {
6682         struct btrfs_block_group_cache *cache = NULL;
6683         struct btrfs_space_info *space_info;
6684         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6685         struct btrfs_free_cluster *cluster = NULL;
6686         u64 len;
6687         u64 total_unpinned = 0;
6688         u64 empty_cluster = 0;
6689         bool readonly;
6690
6691         while (start <= end) {
6692                 readonly = false;
6693                 if (!cache ||
6694                     start >= cache->key.objectid + cache->key.offset) {
6695                         if (cache)
6696                                 btrfs_put_block_group(cache);
6697                         total_unpinned = 0;
6698                         cache = btrfs_lookup_block_group(fs_info, start);
6699                         BUG_ON(!cache); /* Logic error */
6700
6701                         cluster = fetch_cluster_info(fs_info,
6702                                                      cache->space_info,
6703                                                      &empty_cluster);
6704                         empty_cluster <<= 1;
6705                 }
6706
6707                 len = cache->key.objectid + cache->key.offset - start;
6708                 len = min(len, end + 1 - start);
6709
6710                 if (start < cache->last_byte_to_unpin) {
6711                         len = min(len, cache->last_byte_to_unpin - start);
6712                         if (return_free_space)
6713                                 btrfs_add_free_space(cache, start, len);
6714                 }
6715
6716                 start += len;
6717                 total_unpinned += len;
6718                 space_info = cache->space_info;
6719
6720                 /*
6721                  * If this space cluster has been marked as fragmented and we've
6722                  * unpinned enough in this block group to potentially allow a
6723                  * cluster to be created inside of it go ahead and clear the
6724                  * fragmented check.
6725                  */
6726                 if (cluster && cluster->fragmented &&
6727                     total_unpinned > empty_cluster) {
6728                         spin_lock(&cluster->lock);
6729                         cluster->fragmented = 0;
6730                         spin_unlock(&cluster->lock);
6731                 }
6732
6733                 spin_lock(&space_info->lock);
6734                 spin_lock(&cache->lock);
6735                 cache->pinned -= len;
6736                 space_info->bytes_pinned -= len;
6737
6738                 trace_btrfs_space_reservation(fs_info, "pinned",
6739                                               space_info->flags, len, 0);
6740                 space_info->max_extent_size = 0;
6741                 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6742                 if (cache->ro) {
6743                         space_info->bytes_readonly += len;
6744                         readonly = true;
6745                 }
6746                 spin_unlock(&cache->lock);
6747                 if (!readonly && return_free_space &&
6748                     global_rsv->space_info == space_info) {
6749                         u64 to_add = len;
6750
6751                         spin_lock(&global_rsv->lock);
6752                         if (!global_rsv->full) {
6753                                 to_add = min(len, global_rsv->size -
6754                                              global_rsv->reserved);
6755                                 global_rsv->reserved += to_add;
6756                                 space_info->bytes_may_use += to_add;
6757                                 if (global_rsv->reserved >= global_rsv->size)
6758                                         global_rsv->full = 1;
6759                                 trace_btrfs_space_reservation(fs_info,
6760                                                               "space_info",
6761                                                               space_info->flags,
6762                                                               to_add, 1);
6763                                 len -= to_add;
6764                         }
6765                         spin_unlock(&global_rsv->lock);
6766                         /* Add to any tickets we may have */
6767                         if (len)
6768                                 space_info_add_new_bytes(fs_info, space_info,
6769                                                          len);
6770                 }
6771                 spin_unlock(&space_info->lock);
6772         }
6773
6774         if (cache)
6775                 btrfs_put_block_group(cache);
6776         return 0;
6777 }
6778
6779 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6780                                struct btrfs_fs_info *fs_info)
6781 {
6782         struct btrfs_block_group_cache *block_group, *tmp;
6783         struct list_head *deleted_bgs;
6784         struct extent_io_tree *unpin;
6785         u64 start;
6786         u64 end;
6787         int ret;
6788
6789         if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6790                 unpin = &fs_info->freed_extents[1];
6791         else
6792                 unpin = &fs_info->freed_extents[0];
6793
6794         while (!trans->aborted) {
6795                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6796                 ret = find_first_extent_bit(unpin, 0, &start, &end,
6797                                             EXTENT_DIRTY, NULL);
6798                 if (ret) {
6799                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6800                         break;
6801                 }
6802
6803                 if (btrfs_test_opt(fs_info, DISCARD))
6804                         ret = btrfs_discard_extent(fs_info, start,
6805                                                    end + 1 - start, NULL);
6806
6807                 clear_extent_dirty(unpin, start, end);
6808                 unpin_extent_range(fs_info, start, end, true);
6809                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6810                 cond_resched();
6811         }
6812
6813         /*
6814          * Transaction is finished.  We don't need the lock anymore.  We
6815          * do need to clean up the block groups in case of a transaction
6816          * abort.
6817          */
6818         deleted_bgs = &trans->transaction->deleted_bgs;
6819         list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6820                 u64 trimmed = 0;
6821
6822                 ret = -EROFS;
6823                 if (!trans->aborted)
6824                         ret = btrfs_discard_extent(fs_info,
6825                                                    block_group->key.objectid,
6826                                                    block_group->key.offset,
6827                                                    &trimmed);
6828
6829                 list_del_init(&block_group->bg_list);
6830                 btrfs_put_block_group_trimming(block_group);
6831                 btrfs_put_block_group(block_group);
6832
6833                 if (ret) {
6834                         const char *errstr = btrfs_decode_error(ret);
6835                         btrfs_warn(fs_info,
6836                            "discard failed while removing blockgroup: errno=%d %s",
6837                                    ret, errstr);
6838                 }
6839         }
6840
6841         return 0;
6842 }
6843
6844 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6845                                 struct btrfs_fs_info *info,
6846                                 struct btrfs_delayed_ref_node *node, u64 parent,
6847                                 u64 root_objectid, u64 owner_objectid,
6848                                 u64 owner_offset, int refs_to_drop,
6849                                 struct btrfs_delayed_extent_op *extent_op)
6850 {
6851         struct btrfs_key key;
6852         struct btrfs_path *path;
6853         struct btrfs_root *extent_root = info->extent_root;
6854         struct extent_buffer *leaf;
6855         struct btrfs_extent_item *ei;
6856         struct btrfs_extent_inline_ref *iref;
6857         int ret;
6858         int is_data;
6859         int extent_slot = 0;
6860         int found_extent = 0;
6861         int num_to_del = 1;
6862         u32 item_size;
6863         u64 refs;
6864         u64 bytenr = node->bytenr;
6865         u64 num_bytes = node->num_bytes;
6866         int last_ref = 0;
6867         bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6868
6869         path = btrfs_alloc_path();
6870         if (!path)
6871                 return -ENOMEM;
6872
6873         path->reada = READA_FORWARD;
6874         path->leave_spinning = 1;
6875
6876         is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6877         BUG_ON(!is_data && refs_to_drop != 1);
6878
6879         if (is_data)
6880                 skinny_metadata = false;
6881
6882         ret = lookup_extent_backref(trans, info, path, &iref,
6883                                     bytenr, num_bytes, parent,
6884                                     root_objectid, owner_objectid,
6885                                     owner_offset);
6886         if (ret == 0) {
6887                 extent_slot = path->slots[0];
6888                 while (extent_slot >= 0) {
6889                         btrfs_item_key_to_cpu(path->nodes[0], &key,
6890                                               extent_slot);
6891                         if (key.objectid != bytenr)
6892                                 break;
6893                         if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6894                             key.offset == num_bytes) {
6895                                 found_extent = 1;
6896                                 break;
6897                         }
6898                         if (key.type == BTRFS_METADATA_ITEM_KEY &&
6899                             key.offset == owner_objectid) {
6900                                 found_extent = 1;
6901                                 break;
6902                         }
6903                         if (path->slots[0] - extent_slot > 5)
6904                                 break;
6905                         extent_slot--;
6906                 }
6907 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6908                 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6909                 if (found_extent && item_size < sizeof(*ei))
6910                         found_extent = 0;
6911 #endif
6912                 if (!found_extent) {
6913                         BUG_ON(iref);
6914                         ret = remove_extent_backref(trans, info, path, NULL,
6915                                                     refs_to_drop,
6916                                                     is_data, &last_ref);
6917                         if (ret) {
6918                                 btrfs_abort_transaction(trans, ret);
6919                                 goto out;
6920                         }
6921                         btrfs_release_path(path);
6922                         path->leave_spinning = 1;
6923
6924                         key.objectid = bytenr;
6925                         key.type = BTRFS_EXTENT_ITEM_KEY;
6926                         key.offset = num_bytes;
6927
6928                         if (!is_data && skinny_metadata) {
6929                                 key.type = BTRFS_METADATA_ITEM_KEY;
6930                                 key.offset = owner_objectid;
6931                         }
6932
6933                         ret = btrfs_search_slot(trans, extent_root,
6934                                                 &key, path, -1, 1);
6935                         if (ret > 0 && skinny_metadata && path->slots[0]) {
6936                                 /*
6937                                  * Couldn't find our skinny metadata item,
6938                                  * see if we have ye olde extent item.
6939                                  */
6940                                 path->slots[0]--;
6941                                 btrfs_item_key_to_cpu(path->nodes[0], &key,
6942                                                       path->slots[0]);
6943                                 if (key.objectid == bytenr &&
6944                                     key.type == BTRFS_EXTENT_ITEM_KEY &&
6945                                     key.offset == num_bytes)
6946                                         ret = 0;
6947                         }
6948
6949                         if (ret > 0 && skinny_metadata) {
6950                                 skinny_metadata = false;
6951                                 key.objectid = bytenr;
6952                                 key.type = BTRFS_EXTENT_ITEM_KEY;
6953                                 key.offset = num_bytes;
6954                                 btrfs_release_path(path);
6955                                 ret = btrfs_search_slot(trans, extent_root,
6956                                                         &key, path, -1, 1);
6957                         }
6958
6959                         if (ret) {
6960                                 btrfs_err(info,
6961                                           "umm, got %d back from search, was looking for %llu",
6962                                           ret, bytenr);
6963                                 if (ret > 0)
6964                                         btrfs_print_leaf(path->nodes[0]);
6965                         }
6966                         if (ret < 0) {
6967                                 btrfs_abort_transaction(trans, ret);
6968                                 goto out;
6969                         }
6970                         extent_slot = path->slots[0];
6971                 }
6972         } else if (WARN_ON(ret == -ENOENT)) {
6973                 btrfs_print_leaf(path->nodes[0]);
6974                 btrfs_err(info,
6975                         "unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
6976                         bytenr, parent, root_objectid, owner_objectid,
6977                         owner_offset);
6978                 btrfs_abort_transaction(trans, ret);
6979                 goto out;
6980         } else {
6981                 btrfs_abort_transaction(trans, ret);
6982                 goto out;
6983         }
6984
6985         leaf = path->nodes[0];
6986         item_size = btrfs_item_size_nr(leaf, extent_slot);
6987 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6988         if (item_size < sizeof(*ei)) {
6989                 BUG_ON(found_extent || extent_slot != path->slots[0]);
6990                 ret = convert_extent_item_v0(trans, info, path, owner_objectid,
6991                                              0);
6992                 if (ret < 0) {
6993                         btrfs_abort_transaction(trans, ret);
6994                         goto out;
6995                 }
6996
6997                 btrfs_release_path(path);
6998                 path->leave_spinning = 1;
6999
7000                 key.objectid = bytenr;
7001                 key.type = BTRFS_EXTENT_ITEM_KEY;
7002                 key.offset = num_bytes;
7003
7004                 ret = btrfs_search_slot(trans, extent_root, &key, path,
7005                                         -1, 1);
7006                 if (ret) {
7007                         btrfs_err(info,
7008                                   "umm, got %d back from search, was looking for %llu",
7009                                 ret, bytenr);
7010                         btrfs_print_leaf(path->nodes[0]);
7011                 }
7012                 if (ret < 0) {
7013                         btrfs_abort_transaction(trans, ret);
7014                         goto out;
7015                 }
7016
7017                 extent_slot = path->slots[0];
7018                 leaf = path->nodes[0];
7019                 item_size = btrfs_item_size_nr(leaf, extent_slot);
7020         }
7021 #endif
7022         BUG_ON(item_size < sizeof(*ei));
7023         ei = btrfs_item_ptr(leaf, extent_slot,
7024                             struct btrfs_extent_item);
7025         if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7026             key.type == BTRFS_EXTENT_ITEM_KEY) {
7027                 struct btrfs_tree_block_info *bi;
7028                 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7029                 bi = (struct btrfs_tree_block_info *)(ei + 1);
7030                 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7031         }
7032
7033         refs = btrfs_extent_refs(leaf, ei);
7034         if (refs < refs_to_drop) {
7035                 btrfs_err(info,
7036                           "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7037                           refs_to_drop, refs, bytenr);
7038                 ret = -EINVAL;
7039                 btrfs_abort_transaction(trans, ret);
7040                 goto out;
7041         }
7042         refs -= refs_to_drop;
7043
7044         if (refs > 0) {
7045                 if (extent_op)
7046                         __run_delayed_extent_op(extent_op, leaf, ei);
7047                 /*
7048                  * In the case of inline back ref, reference count will
7049                  * be updated by remove_extent_backref
7050                  */
7051                 if (iref) {
7052                         BUG_ON(!found_extent);
7053                 } else {
7054                         btrfs_set_extent_refs(leaf, ei, refs);
7055                         btrfs_mark_buffer_dirty(leaf);
7056                 }
7057                 if (found_extent) {
7058                         ret = remove_extent_backref(trans, info, path,
7059                                                     iref, refs_to_drop,
7060                                                     is_data, &last_ref);
7061                         if (ret) {
7062                                 btrfs_abort_transaction(trans, ret);
7063                                 goto out;
7064                         }
7065                 }
7066         } else {
7067                 if (found_extent) {
7068                         BUG_ON(is_data && refs_to_drop !=
7069                                extent_data_ref_count(path, iref));
7070                         if (iref) {
7071                                 BUG_ON(path->slots[0] != extent_slot);
7072                         } else {
7073                                 BUG_ON(path->slots[0] != extent_slot + 1);
7074                                 path->slots[0] = extent_slot;
7075                                 num_to_del = 2;
7076                         }
7077                 }
7078
7079                 last_ref = 1;
7080                 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7081                                       num_to_del);
7082                 if (ret) {
7083                         btrfs_abort_transaction(trans, ret);
7084                         goto out;
7085                 }
7086                 btrfs_release_path(path);
7087
7088                 if (is_data) {
7089                         ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
7090                         if (ret) {
7091                                 btrfs_abort_transaction(trans, ret);
7092                                 goto out;
7093                         }
7094                 }
7095
7096                 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
7097                 if (ret) {
7098                         btrfs_abort_transaction(trans, ret);
7099                         goto out;
7100                 }
7101
7102                 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
7103                 if (ret) {
7104                         btrfs_abort_transaction(trans, ret);
7105                         goto out;
7106                 }
7107         }
7108         btrfs_release_path(path);
7109
7110 out:
7111         btrfs_free_path(path);
7112         return ret;
7113 }
7114
7115 /*
7116  * when we free an block, it is possible (and likely) that we free the last
7117  * delayed ref for that extent as well.  This searches the delayed ref tree for
7118  * a given extent, and if there are no other delayed refs to be processed, it
7119  * removes it from the tree.
7120  */
7121 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7122                                       u64 bytenr)
7123 {
7124         struct btrfs_delayed_ref_head *head;
7125         struct btrfs_delayed_ref_root *delayed_refs;
7126         int ret = 0;
7127
7128         delayed_refs = &trans->transaction->delayed_refs;
7129         spin_lock(&delayed_refs->lock);
7130         head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7131         if (!head)
7132                 goto out_delayed_unlock;
7133
7134         spin_lock(&head->lock);
7135         if (!RB_EMPTY_ROOT(&head->ref_tree))
7136                 goto out;
7137
7138         if (head->extent_op) {
7139                 if (!head->must_insert_reserved)
7140                         goto out;
7141                 btrfs_free_delayed_extent_op(head->extent_op);
7142                 head->extent_op = NULL;
7143         }
7144
7145         /*
7146          * waiting for the lock here would deadlock.  If someone else has it
7147          * locked they are already in the process of dropping it anyway
7148          */
7149         if (!mutex_trylock(&head->mutex))
7150                 goto out;
7151
7152         /*
7153          * at this point we have a head with no other entries.  Go
7154          * ahead and process it.
7155          */
7156         rb_erase(&head->href_node, &delayed_refs->href_root);
7157         RB_CLEAR_NODE(&head->href_node);
7158         atomic_dec(&delayed_refs->num_entries);
7159
7160         /*
7161          * we don't take a ref on the node because we're removing it from the
7162          * tree, so we just steal the ref the tree was holding.
7163          */
7164         delayed_refs->num_heads--;
7165         if (head->processing == 0)
7166                 delayed_refs->num_heads_ready--;
7167         head->processing = 0;
7168         spin_unlock(&head->lock);
7169         spin_unlock(&delayed_refs->lock);
7170
7171         BUG_ON(head->extent_op);
7172         if (head->must_insert_reserved)
7173                 ret = 1;
7174
7175         mutex_unlock(&head->mutex);
7176         btrfs_put_delayed_ref_head(head);
7177         return ret;
7178 out:
7179         spin_unlock(&head->lock);
7180
7181 out_delayed_unlock:
7182         spin_unlock(&delayed_refs->lock);
7183         return 0;
7184 }
7185
7186 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7187                            struct btrfs_root *root,
7188                            struct extent_buffer *buf,
7189                            u64 parent, int last_ref)
7190 {
7191         struct btrfs_fs_info *fs_info = root->fs_info;
7192         int pin = 1;
7193         int ret;
7194
7195         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7196                 int old_ref_mod, new_ref_mod;
7197
7198                 btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
7199                                    root->root_key.objectid,
7200                                    btrfs_header_level(buf), 0,
7201                                    BTRFS_DROP_DELAYED_REF);
7202                 ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start,
7203                                                  buf->len, parent,
7204                                                  root->root_key.objectid,
7205                                                  btrfs_header_level(buf),
7206                                                  BTRFS_DROP_DELAYED_REF, NULL,
7207                                                  &old_ref_mod, &new_ref_mod);
7208                 BUG_ON(ret); /* -ENOMEM */
7209                 pin = old_ref_mod >= 0 && new_ref_mod < 0;
7210         }
7211
7212         if (last_ref && btrfs_header_generation(buf) == trans->transid) {
7213                 struct btrfs_block_group_cache *cache;
7214
7215                 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7216                         ret = check_ref_cleanup(trans, buf->start);
7217                         if (!ret)
7218                                 goto out;
7219                 }
7220
7221                 pin = 0;
7222                 cache = btrfs_lookup_block_group(fs_info, buf->start);
7223
7224                 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7225                         pin_down_extent(fs_info, cache, buf->start,
7226                                         buf->len, 1);
7227                         btrfs_put_block_group(cache);
7228                         goto out;
7229                 }
7230
7231                 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7232
7233                 btrfs_add_free_space(cache, buf->start, buf->len);
7234                 btrfs_free_reserved_bytes(cache, buf->len, 0);
7235                 btrfs_put_block_group(cache);
7236                 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7237         }
7238 out:
7239         if (pin)
7240                 add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf),
7241                                  root->root_key.objectid);
7242
7243         if (last_ref) {
7244                 /*
7245                  * Deleting the buffer, clear the corrupt flag since it doesn't
7246                  * matter anymore.
7247                  */
7248                 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7249         }
7250 }
7251
7252 /* Can return -ENOMEM */
7253 int btrfs_free_extent(struct btrfs_trans_handle *trans,
7254                       struct btrfs_root *root,
7255                       u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7256                       u64 owner, u64 offset)
7257 {
7258         struct btrfs_fs_info *fs_info = root->fs_info;
7259         int old_ref_mod, new_ref_mod;
7260         int ret;
7261
7262         if (btrfs_is_testing(fs_info))
7263                 return 0;
7264
7265         if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7266                 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7267                                    root_objectid, owner, offset,
7268                                    BTRFS_DROP_DELAYED_REF);
7269
7270         /*
7271          * tree log blocks never actually go into the extent allocation
7272          * tree, just update pinning info and exit early.
7273          */
7274         if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7275                 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7276                 /* unlocks the pinned mutex */
7277                 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7278                 old_ref_mod = new_ref_mod = 0;
7279                 ret = 0;
7280         } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7281                 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7282                                                  num_bytes, parent,
7283                                                  root_objectid, (int)owner,
7284                                                  BTRFS_DROP_DELAYED_REF, NULL,
7285                                                  &old_ref_mod, &new_ref_mod);
7286         } else {
7287                 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7288                                                  num_bytes, parent,
7289                                                  root_objectid, owner, offset,
7290                                                  0, BTRFS_DROP_DELAYED_REF,
7291                                                  &old_ref_mod, &new_ref_mod);
7292         }
7293
7294         if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
7295                 add_pinned_bytes(fs_info, num_bytes, owner, root_objectid);
7296
7297         return ret;
7298 }
7299
7300 /*
7301  * when we wait for progress in the block group caching, its because
7302  * our allocation attempt failed at least once.  So, we must sleep
7303  * and let some progress happen before we try again.
7304  *
7305  * This function will sleep at least once waiting for new free space to
7306  * show up, and then it will check the block group free space numbers
7307  * for our min num_bytes.  Another option is to have it go ahead
7308  * and look in the rbtree for a free extent of a given size, but this
7309  * is a good start.
7310  *
7311  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7312  * any of the information in this block group.
7313  */
7314 static noinline void
7315 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7316                                 u64 num_bytes)
7317 {
7318         struct btrfs_caching_control *caching_ctl;
7319
7320         caching_ctl = get_caching_control(cache);
7321         if (!caching_ctl)
7322                 return;
7323
7324         wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7325                    (cache->free_space_ctl->free_space >= num_bytes));
7326
7327         put_caching_control(caching_ctl);
7328 }
7329
7330 static noinline int
7331 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7332 {
7333         struct btrfs_caching_control *caching_ctl;
7334         int ret = 0;
7335
7336         caching_ctl = get_caching_control(cache);
7337         if (!caching_ctl)
7338                 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7339
7340         wait_event(caching_ctl->wait, block_group_cache_done(cache));
7341         if (cache->cached == BTRFS_CACHE_ERROR)
7342                 ret = -EIO;
7343         put_caching_control(caching_ctl);
7344         return ret;
7345 }
7346
7347 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7348         [BTRFS_RAID_RAID10]     = "raid10",
7349         [BTRFS_RAID_RAID1]      = "raid1",
7350         [BTRFS_RAID_DUP]        = "dup",
7351         [BTRFS_RAID_RAID0]      = "raid0",
7352         [BTRFS_RAID_SINGLE]     = "single",
7353         [BTRFS_RAID_RAID5]      = "raid5",
7354         [BTRFS_RAID_RAID6]      = "raid6",
7355 };
7356
7357 static const char *get_raid_name(enum btrfs_raid_types type)
7358 {
7359         if (type >= BTRFS_NR_RAID_TYPES)
7360                 return NULL;
7361
7362         return btrfs_raid_type_names[type];
7363 }
7364
7365 enum btrfs_loop_type {
7366         LOOP_CACHING_NOWAIT = 0,
7367         LOOP_CACHING_WAIT = 1,
7368         LOOP_ALLOC_CHUNK = 2,
7369         LOOP_NO_EMPTY_SIZE = 3,
7370 };
7371
7372 static inline void
7373 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7374                        int delalloc)
7375 {
7376         if (delalloc)
7377                 down_read(&cache->data_rwsem);
7378 }
7379
7380 static inline void
7381 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7382                        int delalloc)
7383 {
7384         btrfs_get_block_group(cache);
7385         if (delalloc)
7386                 down_read(&cache->data_rwsem);
7387 }
7388
7389 static struct btrfs_block_group_cache *
7390 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7391                    struct btrfs_free_cluster *cluster,
7392                    int delalloc)
7393 {
7394         struct btrfs_block_group_cache *used_bg = NULL;
7395
7396         spin_lock(&cluster->refill_lock);
7397         while (1) {
7398                 used_bg = cluster->block_group;
7399                 if (!used_bg)
7400                         return NULL;
7401
7402                 if (used_bg == block_group)
7403                         return used_bg;
7404
7405                 btrfs_get_block_group(used_bg);
7406
7407                 if (!delalloc)
7408                         return used_bg;
7409
7410                 if (down_read_trylock(&used_bg->data_rwsem))
7411                         return used_bg;
7412
7413                 spin_unlock(&cluster->refill_lock);
7414
7415                 /* We should only have one-level nested. */
7416                 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7417
7418                 spin_lock(&cluster->refill_lock);
7419                 if (used_bg == cluster->block_group)
7420                         return used_bg;
7421
7422                 up_read(&used_bg->data_rwsem);
7423                 btrfs_put_block_group(used_bg);
7424         }
7425 }
7426
7427 static inline void
7428 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7429                          int delalloc)
7430 {
7431         if (delalloc)
7432                 up_read(&cache->data_rwsem);
7433         btrfs_put_block_group(cache);
7434 }
7435
7436 /*
7437  * walks the btree of allocated extents and find a hole of a given size.
7438  * The key ins is changed to record the hole:
7439  * ins->objectid == start position
7440  * ins->flags = BTRFS_EXTENT_ITEM_KEY
7441  * ins->offset == the size of the hole.
7442  * Any available blocks before search_start are skipped.
7443  *
7444  * If there is no suitable free space, we will record the max size of
7445  * the free space extent currently.
7446  */
7447 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7448                                 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7449                                 u64 hint_byte, struct btrfs_key *ins,
7450                                 u64 flags, int delalloc)
7451 {
7452         int ret = 0;
7453         struct btrfs_root *root = fs_info->extent_root;
7454         struct btrfs_free_cluster *last_ptr = NULL;
7455         struct btrfs_block_group_cache *block_group = NULL;
7456         u64 search_start = 0;
7457         u64 max_extent_size = 0;
7458         u64 empty_cluster = 0;
7459         struct btrfs_space_info *space_info;
7460         int loop = 0;
7461         int index = btrfs_bg_flags_to_raid_index(flags);
7462         bool failed_cluster_refill = false;
7463         bool failed_alloc = false;
7464         bool use_cluster = true;
7465         bool have_caching_bg = false;
7466         bool orig_have_caching_bg = false;
7467         bool full_search = false;
7468
7469         WARN_ON(num_bytes < fs_info->sectorsize);
7470         ins->type = BTRFS_EXTENT_ITEM_KEY;
7471         ins->objectid = 0;
7472         ins->offset = 0;
7473
7474         trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7475
7476         space_info = __find_space_info(fs_info, flags);
7477         if (!space_info) {
7478                 btrfs_err(fs_info, "No space info for %llu", flags);
7479                 return -ENOSPC;
7480         }
7481
7482         /*
7483          * If our free space is heavily fragmented we may not be able to make
7484          * big contiguous allocations, so instead of doing the expensive search
7485          * for free space, simply return ENOSPC with our max_extent_size so we
7486          * can go ahead and search for a more manageable chunk.
7487          *
7488          * If our max_extent_size is large enough for our allocation simply
7489          * disable clustering since we will likely not be able to find enough
7490          * space to create a cluster and induce latency trying.
7491          */
7492         if (unlikely(space_info->max_extent_size)) {
7493                 spin_lock(&space_info->lock);
7494                 if (space_info->max_extent_size &&
7495                     num_bytes > space_info->max_extent_size) {
7496                         ins->offset = space_info->max_extent_size;
7497                         spin_unlock(&space_info->lock);
7498                         return -ENOSPC;
7499                 } else if (space_info->max_extent_size) {
7500                         use_cluster = false;
7501                 }
7502                 spin_unlock(&space_info->lock);
7503         }
7504
7505         last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
7506         if (last_ptr) {
7507                 spin_lock(&last_ptr->lock);
7508                 if (last_ptr->block_group)
7509                         hint_byte = last_ptr->window_start;
7510                 if (last_ptr->fragmented) {
7511                         /*
7512                          * We still set window_start so we can keep track of the
7513                          * last place we found an allocation to try and save
7514                          * some time.
7515                          */
7516                         hint_byte = last_ptr->window_start;
7517                         use_cluster = false;
7518                 }
7519                 spin_unlock(&last_ptr->lock);
7520         }
7521
7522         search_start = max(search_start, first_logical_byte(fs_info, 0));
7523         search_start = max(search_start, hint_byte);
7524         if (search_start == hint_byte) {
7525                 block_group = btrfs_lookup_block_group(fs_info, search_start);
7526                 /*
7527                  * we don't want to use the block group if it doesn't match our
7528                  * allocation bits, or if its not cached.
7529                  *
7530                  * However if we are re-searching with an ideal block group
7531                  * picked out then we don't care that the block group is cached.
7532                  */
7533                 if (block_group && block_group_bits(block_group, flags) &&
7534                     block_group->cached != BTRFS_CACHE_NO) {
7535                         down_read(&space_info->groups_sem);
7536                         if (list_empty(&block_group->list) ||
7537                             block_group->ro) {
7538                                 /*
7539                                  * someone is removing this block group,
7540                                  * we can't jump into the have_block_group
7541                                  * target because our list pointers are not
7542                                  * valid
7543                                  */
7544                                 btrfs_put_block_group(block_group);
7545                                 up_read(&space_info->groups_sem);
7546                         } else {
7547                                 index = btrfs_bg_flags_to_raid_index(
7548                                                 block_group->flags);
7549                                 btrfs_lock_block_group(block_group, delalloc);
7550                                 goto have_block_group;
7551                         }
7552                 } else if (block_group) {
7553                         btrfs_put_block_group(block_group);
7554                 }
7555         }
7556 search:
7557         have_caching_bg = false;
7558         if (index == 0 || index == btrfs_bg_flags_to_raid_index(flags))
7559                 full_search = true;
7560         down_read(&space_info->groups_sem);
7561         list_for_each_entry(block_group, &space_info->block_groups[index],
7562                             list) {
7563                 u64 offset;
7564                 int cached;
7565
7566                 /* If the block group is read-only, we can skip it entirely. */
7567                 if (unlikely(block_group->ro))
7568                         continue;
7569
7570                 btrfs_grab_block_group(block_group, delalloc);
7571                 search_start = block_group->key.objectid;
7572
7573                 /*
7574                  * this can happen if we end up cycling through all the
7575                  * raid types, but we want to make sure we only allocate
7576                  * for the proper type.
7577                  */
7578                 if (!block_group_bits(block_group, flags)) {
7579                     u64 extra = BTRFS_BLOCK_GROUP_DUP |
7580                                 BTRFS_BLOCK_GROUP_RAID1 |
7581                                 BTRFS_BLOCK_GROUP_RAID5 |
7582                                 BTRFS_BLOCK_GROUP_RAID6 |
7583                                 BTRFS_BLOCK_GROUP_RAID10;
7584
7585                         /*
7586                          * if they asked for extra copies and this block group
7587                          * doesn't provide them, bail.  This does allow us to
7588                          * fill raid0 from raid1.
7589                          */
7590                         if ((flags & extra) && !(block_group->flags & extra))
7591                                 goto loop;
7592                 }
7593
7594 have_block_group:
7595                 cached = block_group_cache_done(block_group);
7596                 if (unlikely(!cached)) {
7597                         have_caching_bg = true;
7598                         ret = cache_block_group(block_group, 0);
7599                         BUG_ON(ret < 0);
7600                         ret = 0;
7601                 }
7602
7603                 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7604                         goto loop;
7605
7606                 /*
7607                  * Ok we want to try and use the cluster allocator, so
7608                  * lets look there
7609                  */
7610                 if (last_ptr && use_cluster) {
7611                         struct btrfs_block_group_cache *used_block_group;
7612                         unsigned long aligned_cluster;
7613                         /*
7614                          * the refill lock keeps out other
7615                          * people trying to start a new cluster
7616                          */
7617                         used_block_group = btrfs_lock_cluster(block_group,
7618                                                               last_ptr,
7619                                                               delalloc);
7620                         if (!used_block_group)
7621                                 goto refill_cluster;
7622
7623                         if (used_block_group != block_group &&
7624                             (used_block_group->ro ||
7625                              !block_group_bits(used_block_group, flags)))
7626                                 goto release_cluster;
7627
7628                         offset = btrfs_alloc_from_cluster(used_block_group,
7629                                                 last_ptr,
7630                                                 num_bytes,
7631                                                 used_block_group->key.objectid,
7632                                                 &max_extent_size);
7633                         if (offset) {
7634                                 /* we have a block, we're done */
7635                                 spin_unlock(&last_ptr->refill_lock);
7636                                 trace_btrfs_reserve_extent_cluster(fs_info,
7637                                                 used_block_group,
7638                                                 search_start, num_bytes);
7639                                 if (used_block_group != block_group) {
7640                                         btrfs_release_block_group(block_group,
7641                                                                   delalloc);
7642                                         block_group = used_block_group;
7643                                 }
7644                                 goto checks;
7645                         }
7646
7647                         WARN_ON(last_ptr->block_group != used_block_group);
7648 release_cluster:
7649                         /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7650                          * set up a new clusters, so lets just skip it
7651                          * and let the allocator find whatever block
7652                          * it can find.  If we reach this point, we
7653                          * will have tried the cluster allocator
7654                          * plenty of times and not have found
7655                          * anything, so we are likely way too
7656                          * fragmented for the clustering stuff to find
7657                          * anything.
7658                          *
7659                          * However, if the cluster is taken from the
7660                          * current block group, release the cluster
7661                          * first, so that we stand a better chance of
7662                          * succeeding in the unclustered
7663                          * allocation.  */
7664                         if (loop >= LOOP_NO_EMPTY_SIZE &&
7665                             used_block_group != block_group) {
7666                                 spin_unlock(&last_ptr->refill_lock);
7667                                 btrfs_release_block_group(used_block_group,
7668                                                           delalloc);
7669                                 goto unclustered_alloc;
7670                         }
7671
7672                         /*
7673                          * this cluster didn't work out, free it and
7674                          * start over
7675                          */
7676                         btrfs_return_cluster_to_free_space(NULL, last_ptr);
7677
7678                         if (used_block_group != block_group)
7679                                 btrfs_release_block_group(used_block_group,
7680                                                           delalloc);
7681 refill_cluster:
7682                         if (loop >= LOOP_NO_EMPTY_SIZE) {
7683                                 spin_unlock(&last_ptr->refill_lock);
7684                                 goto unclustered_alloc;
7685                         }
7686
7687                         aligned_cluster = max_t(unsigned long,
7688                                                 empty_cluster + empty_size,
7689                                               block_group->full_stripe_len);
7690
7691                         /* allocate a cluster in this block group */
7692                         ret = btrfs_find_space_cluster(fs_info, block_group,
7693                                                        last_ptr, search_start,
7694                                                        num_bytes,
7695                                                        aligned_cluster);
7696                         if (ret == 0) {
7697                                 /*
7698                                  * now pull our allocation out of this
7699                                  * cluster
7700                                  */
7701                                 offset = btrfs_alloc_from_cluster(block_group,
7702                                                         last_ptr,
7703                                                         num_bytes,
7704                                                         search_start,
7705                                                         &max_extent_size);
7706                                 if (offset) {
7707                                         /* we found one, proceed */
7708                                         spin_unlock(&last_ptr->refill_lock);
7709                                         trace_btrfs_reserve_extent_cluster(fs_info,
7710                                                 block_group, search_start,
7711                                                 num_bytes);
7712                                         goto checks;
7713                                 }
7714                         } else if (!cached && loop > LOOP_CACHING_NOWAIT
7715                                    && !failed_cluster_refill) {
7716                                 spin_unlock(&last_ptr->refill_lock);
7717
7718                                 failed_cluster_refill = true;
7719                                 wait_block_group_cache_progress(block_group,
7720                                        num_bytes + empty_cluster + empty_size);
7721                                 goto have_block_group;
7722                         }
7723
7724                         /*
7725                          * at this point we either didn't find a cluster
7726                          * or we weren't able to allocate a block from our
7727                          * cluster.  Free the cluster we've been trying
7728                          * to use, and go to the next block group
7729                          */
7730                         btrfs_return_cluster_to_free_space(NULL, last_ptr);
7731                         spin_unlock(&last_ptr->refill_lock);
7732                         goto loop;
7733                 }
7734
7735 unclustered_alloc:
7736                 /*
7737                  * We are doing an unclustered alloc, set the fragmented flag so
7738                  * we don't bother trying to setup a cluster again until we get
7739                  * more space.
7740                  */
7741                 if (unlikely(last_ptr)) {
7742                         spin_lock(&last_ptr->lock);
7743                         last_ptr->fragmented = 1;
7744                         spin_unlock(&last_ptr->lock);
7745                 }
7746                 if (cached) {
7747                         struct btrfs_free_space_ctl *ctl =
7748                                 block_group->free_space_ctl;
7749
7750                         spin_lock(&ctl->tree_lock);
7751                         if (ctl->free_space <
7752                             num_bytes + empty_cluster + empty_size) {
7753                                 if (ctl->free_space > max_extent_size)
7754                                         max_extent_size = ctl->free_space;
7755                                 spin_unlock(&ctl->tree_lock);
7756                                 goto loop;
7757                         }
7758                         spin_unlock(&ctl->tree_lock);
7759                 }
7760
7761                 offset = btrfs_find_space_for_alloc(block_group, search_start,
7762                                                     num_bytes, empty_size,
7763                                                     &max_extent_size);
7764                 /*
7765                  * If we didn't find a chunk, and we haven't failed on this
7766                  * block group before, and this block group is in the middle of
7767                  * caching and we are ok with waiting, then go ahead and wait
7768                  * for progress to be made, and set failed_alloc to true.
7769                  *
7770                  * If failed_alloc is true then we've already waited on this
7771                  * block group once and should move on to the next block group.
7772                  */
7773                 if (!offset && !failed_alloc && !cached &&
7774                     loop > LOOP_CACHING_NOWAIT) {
7775                         wait_block_group_cache_progress(block_group,
7776                                                 num_bytes + empty_size);
7777                         failed_alloc = true;
7778                         goto have_block_group;
7779                 } else if (!offset) {
7780                         goto loop;
7781                 }
7782 checks:
7783                 search_start = ALIGN(offset, fs_info->stripesize);
7784
7785                 /* move on to the next group */
7786                 if (search_start + num_bytes >
7787                     block_group->key.objectid + block_group->key.offset) {
7788                         btrfs_add_free_space(block_group, offset, num_bytes);
7789                         goto loop;
7790                 }
7791
7792                 if (offset < search_start)
7793                         btrfs_add_free_space(block_group, offset,
7794                                              search_start - offset);
7795                 BUG_ON(offset > search_start);
7796
7797                 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7798                                 num_bytes, delalloc);
7799                 if (ret == -EAGAIN) {
7800                         btrfs_add_free_space(block_group, offset, num_bytes);
7801                         goto loop;
7802                 }
7803                 btrfs_inc_block_group_reservations(block_group);
7804
7805                 /* we are all good, lets return */
7806                 ins->objectid = search_start;
7807                 ins->offset = num_bytes;
7808
7809                 trace_btrfs_reserve_extent(fs_info, block_group,
7810                                            search_start, num_bytes);
7811                 btrfs_release_block_group(block_group, delalloc);
7812                 break;
7813 loop:
7814                 failed_cluster_refill = false;
7815                 failed_alloc = false;
7816                 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
7817                        index);
7818                 btrfs_release_block_group(block_group, delalloc);
7819                 cond_resched();
7820         }
7821         up_read(&space_info->groups_sem);
7822
7823         if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7824                 && !orig_have_caching_bg)
7825                 orig_have_caching_bg = true;
7826
7827         if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7828                 goto search;
7829
7830         if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7831                 goto search;
7832
7833         /*
7834          * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7835          *                      caching kthreads as we move along
7836          * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7837          * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7838          * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7839          *                      again
7840          */
7841         if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7842                 index = 0;
7843                 if (loop == LOOP_CACHING_NOWAIT) {
7844                         /*
7845                          * We want to skip the LOOP_CACHING_WAIT step if we
7846                          * don't have any uncached bgs and we've already done a
7847                          * full search through.
7848                          */
7849                         if (orig_have_caching_bg || !full_search)
7850                                 loop = LOOP_CACHING_WAIT;
7851                         else
7852                                 loop = LOOP_ALLOC_CHUNK;
7853                 } else {
7854                         loop++;
7855                 }
7856
7857                 if (loop == LOOP_ALLOC_CHUNK) {
7858                         struct btrfs_trans_handle *trans;
7859                         int exist = 0;
7860
7861                         trans = current->journal_info;
7862                         if (trans)
7863                                 exist = 1;
7864                         else
7865                                 trans = btrfs_join_transaction(root);
7866
7867                         if (IS_ERR(trans)) {
7868                                 ret = PTR_ERR(trans);
7869                                 goto out;
7870                         }
7871
7872                         ret = do_chunk_alloc(trans, fs_info, flags,
7873                                              CHUNK_ALLOC_FORCE);
7874
7875                         /*
7876                          * If we can't allocate a new chunk we've already looped
7877                          * through at least once, move on to the NO_EMPTY_SIZE
7878                          * case.
7879                          */
7880                         if (ret == -ENOSPC)
7881                                 loop = LOOP_NO_EMPTY_SIZE;
7882
7883                         /*
7884                          * Do not bail out on ENOSPC since we
7885                          * can do more things.
7886                          */
7887                         if (ret < 0 && ret != -ENOSPC)
7888                                 btrfs_abort_transaction(trans, ret);
7889                         else
7890                                 ret = 0;
7891                         if (!exist)
7892                                 btrfs_end_transaction(trans);
7893                         if (ret)
7894                                 goto out;
7895                 }
7896
7897                 if (loop == LOOP_NO_EMPTY_SIZE) {
7898                         /*
7899                          * Don't loop again if we already have no empty_size and
7900                          * no empty_cluster.
7901                          */
7902                         if (empty_size == 0 &&
7903                             empty_cluster == 0) {
7904                                 ret = -ENOSPC;
7905                                 goto out;
7906                         }
7907                         empty_size = 0;
7908                         empty_cluster = 0;
7909                 }
7910
7911                 goto search;
7912         } else if (!ins->objectid) {
7913                 ret = -ENOSPC;
7914         } else if (ins->objectid) {
7915                 if (!use_cluster && last_ptr) {
7916                         spin_lock(&last_ptr->lock);
7917                         last_ptr->window_start = ins->objectid;
7918                         spin_unlock(&last_ptr->lock);
7919                 }
7920                 ret = 0;
7921         }
7922 out:
7923         if (ret == -ENOSPC) {
7924                 spin_lock(&space_info->lock);
7925                 space_info->max_extent_size = max_extent_size;
7926                 spin_unlock(&space_info->lock);
7927                 ins->offset = max_extent_size;
7928         }
7929         return ret;
7930 }
7931
7932 static void dump_space_info(struct btrfs_fs_info *fs_info,
7933                             struct btrfs_space_info *info, u64 bytes,
7934                             int dump_block_groups)
7935 {
7936         struct btrfs_block_group_cache *cache;
7937         int index = 0;
7938
7939         spin_lock(&info->lock);
7940         btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7941                    info->flags,
7942                    info->total_bytes - btrfs_space_info_used(info, true),
7943                    info->full ? "" : "not ");
7944         btrfs_info(fs_info,
7945                 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7946                 info->total_bytes, info->bytes_used, info->bytes_pinned,
7947                 info->bytes_reserved, info->bytes_may_use,
7948                 info->bytes_readonly);
7949         spin_unlock(&info->lock);
7950
7951         if (!dump_block_groups)
7952                 return;
7953
7954         down_read(&info->groups_sem);
7955 again:
7956         list_for_each_entry(cache, &info->block_groups[index], list) {
7957                 spin_lock(&cache->lock);
7958                 btrfs_info(fs_info,
7959                         "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7960                         cache->key.objectid, cache->key.offset,
7961                         btrfs_block_group_used(&cache->item), cache->pinned,
7962                         cache->reserved, cache->ro ? "[readonly]" : "");
7963                 btrfs_dump_free_space(cache, bytes);
7964                 spin_unlock(&cache->lock);
7965         }
7966         if (++index < BTRFS_NR_RAID_TYPES)
7967                 goto again;
7968         up_read(&info->groups_sem);
7969 }
7970
7971 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
7972                          u64 num_bytes, u64 min_alloc_size,
7973                          u64 empty_size, u64 hint_byte,
7974                          struct btrfs_key *ins, int is_data, int delalloc)
7975 {
7976         struct btrfs_fs_info *fs_info = root->fs_info;
7977         bool final_tried = num_bytes == min_alloc_size;
7978         u64 flags;
7979         int ret;
7980
7981         flags = get_alloc_profile_by_root(root, is_data);
7982 again:
7983         WARN_ON(num_bytes < fs_info->sectorsize);
7984         ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
7985                                hint_byte, ins, flags, delalloc);
7986         if (!ret && !is_data) {
7987                 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
7988         } else if (ret == -ENOSPC) {
7989                 if (!final_tried && ins->offset) {
7990                         num_bytes = min(num_bytes >> 1, ins->offset);
7991                         num_bytes = round_down(num_bytes,
7992                                                fs_info->sectorsize);
7993                         num_bytes = max(num_bytes, min_alloc_size);
7994                         ram_bytes = num_bytes;
7995                         if (num_bytes == min_alloc_size)
7996                                 final_tried = true;
7997                         goto again;
7998                 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
7999                         struct btrfs_space_info *sinfo;
8000
8001                         sinfo = __find_space_info(fs_info, flags);
8002                         btrfs_err(fs_info,
8003                                   "allocation failed flags %llu, wanted %llu",
8004                                   flags, num_bytes);
8005                         if (sinfo)
8006                                 dump_space_info(fs_info, sinfo, num_bytes, 1);
8007                 }
8008         }
8009
8010         return ret;
8011 }
8012
8013 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8014                                         u64 start, u64 len,
8015                                         int pin, int delalloc)
8016 {
8017         struct btrfs_block_group_cache *cache;
8018         int ret = 0;
8019
8020         cache = btrfs_lookup_block_group(fs_info, start);
8021         if (!cache) {
8022                 btrfs_err(fs_info, "Unable to find block group for %llu",
8023                           start);
8024                 return -ENOSPC;
8025         }
8026
8027         if (pin)
8028                 pin_down_extent(fs_info, cache, start, len, 1);
8029         else {
8030                 if (btrfs_test_opt(fs_info, DISCARD))
8031                         ret = btrfs_discard_extent(fs_info, start, len, NULL);
8032                 btrfs_add_free_space(cache, start, len);
8033                 btrfs_free_reserved_bytes(cache, len, delalloc);
8034                 trace_btrfs_reserved_extent_free(fs_info, start, len);
8035         }
8036
8037         btrfs_put_block_group(cache);
8038         return ret;
8039 }
8040
8041 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8042                                u64 start, u64 len, int delalloc)
8043 {
8044         return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
8045 }
8046
8047 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
8048                                        u64 start, u64 len)
8049 {
8050         return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
8051 }
8052
8053 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8054                                       struct btrfs_fs_info *fs_info,
8055                                       u64 parent, u64 root_objectid,
8056                                       u64 flags, u64 owner, u64 offset,
8057                                       struct btrfs_key *ins, int ref_mod)
8058 {
8059         int ret;
8060         struct btrfs_extent_item *extent_item;
8061         struct btrfs_extent_inline_ref *iref;
8062         struct btrfs_path *path;
8063         struct extent_buffer *leaf;
8064         int type;
8065         u32 size;
8066
8067         if (parent > 0)
8068                 type = BTRFS_SHARED_DATA_REF_KEY;
8069         else
8070                 type = BTRFS_EXTENT_DATA_REF_KEY;
8071
8072         size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8073
8074         path = btrfs_alloc_path();
8075         if (!path)
8076                 return -ENOMEM;
8077
8078         path->leave_spinning = 1;
8079         ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8080                                       ins, size);
8081         if (ret) {
8082                 btrfs_free_path(path);
8083                 return ret;
8084         }
8085
8086         leaf = path->nodes[0];
8087         extent_item = btrfs_item_ptr(leaf, path->slots[0],
8088                                      struct btrfs_extent_item);
8089         btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8090         btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8091         btrfs_set_extent_flags(leaf, extent_item,
8092                                flags | BTRFS_EXTENT_FLAG_DATA);
8093
8094         iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8095         btrfs_set_extent_inline_ref_type(leaf, iref, type);
8096         if (parent > 0) {
8097                 struct btrfs_shared_data_ref *ref;
8098                 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8099                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8100                 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8101         } else {
8102                 struct btrfs_extent_data_ref *ref;
8103                 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8104                 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8105                 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8106                 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8107                 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8108         }
8109
8110         btrfs_mark_buffer_dirty(path->nodes[0]);
8111         btrfs_free_path(path);
8112
8113         ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8114                                           ins->offset);
8115         if (ret)
8116                 return ret;
8117
8118         ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
8119         if (ret) { /* -ENOENT, logic error */
8120                 btrfs_err(fs_info, "update block group failed for %llu %llu",
8121                         ins->objectid, ins->offset);
8122                 BUG();
8123         }
8124         trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
8125         return ret;
8126 }
8127
8128 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8129                                      struct btrfs_fs_info *fs_info,
8130                                      u64 parent, u64 root_objectid,
8131                                      u64 flags, struct btrfs_disk_key *key,
8132                                      int level, struct btrfs_key *ins)
8133 {
8134         int ret;
8135         struct btrfs_extent_item *extent_item;
8136         struct btrfs_tree_block_info *block_info;
8137         struct btrfs_extent_inline_ref *iref;
8138         struct btrfs_path *path;
8139         struct extent_buffer *leaf;
8140         u32 size = sizeof(*extent_item) + sizeof(*iref);
8141         u64 num_bytes = ins->offset;
8142         bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8143
8144         if (!skinny_metadata)
8145                 size += sizeof(*block_info);
8146
8147         path = btrfs_alloc_path();
8148         if (!path) {
8149                 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8150                                                    fs_info->nodesize);
8151                 return -ENOMEM;
8152         }
8153
8154         path->leave_spinning = 1;
8155         ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8156                                       ins, size);
8157         if (ret) {
8158                 btrfs_free_path(path);
8159                 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8160                                                    fs_info->nodesize);
8161                 return ret;
8162         }
8163
8164         leaf = path->nodes[0];
8165         extent_item = btrfs_item_ptr(leaf, path->slots[0],
8166                                      struct btrfs_extent_item);
8167         btrfs_set_extent_refs(leaf, extent_item, 1);
8168         btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8169         btrfs_set_extent_flags(leaf, extent_item,
8170                                flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8171
8172         if (skinny_metadata) {
8173                 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8174                 num_bytes = fs_info->nodesize;
8175         } else {
8176                 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8177                 btrfs_set_tree_block_key(leaf, block_info, key);
8178                 btrfs_set_tree_block_level(leaf, block_info, level);
8179                 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8180         }
8181
8182         if (parent > 0) {
8183                 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8184                 btrfs_set_extent_inline_ref_type(leaf, iref,
8185                                                  BTRFS_SHARED_BLOCK_REF_KEY);
8186                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8187         } else {
8188                 btrfs_set_extent_inline_ref_type(leaf, iref,
8189                                                  BTRFS_TREE_BLOCK_REF_KEY);
8190                 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8191         }
8192
8193         btrfs_mark_buffer_dirty(leaf);
8194         btrfs_free_path(path);
8195
8196         ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8197                                           num_bytes);
8198         if (ret)
8199                 return ret;
8200
8201         ret = update_block_group(trans, fs_info, ins->objectid,
8202                                  fs_info->nodesize, 1);
8203         if (ret) { /* -ENOENT, logic error */
8204                 btrfs_err(fs_info, "update block group failed for %llu %llu",
8205                         ins->objectid, ins->offset);
8206                 BUG();
8207         }
8208
8209         trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
8210                                           fs_info->nodesize);
8211         return ret;
8212 }
8213
8214 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8215                                      struct btrfs_root *root, u64 owner,
8216                                      u64 offset, u64 ram_bytes,
8217                                      struct btrfs_key *ins)
8218 {
8219         struct btrfs_fs_info *fs_info = root->fs_info;
8220         int ret;
8221
8222         BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
8223
8224         btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8225                            root->root_key.objectid, owner, offset,
8226                            BTRFS_ADD_DELAYED_EXTENT);
8227
8228         ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
8229                                          ins->offset, 0,
8230                                          root->root_key.objectid, owner,
8231                                          offset, ram_bytes,
8232                                          BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
8233         return ret;
8234 }
8235
8236 /*
8237  * this is used by the tree logging recovery code.  It records that
8238  * an extent has been allocated and makes sure to clear the free
8239  * space cache bits as well
8240  */
8241 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8242                                    struct btrfs_fs_info *fs_info,
8243                                    u64 root_objectid, u64 owner, u64 offset,
8244                                    struct btrfs_key *ins)
8245 {
8246         int ret;
8247         struct btrfs_block_group_cache *block_group;
8248         struct btrfs_space_info *space_info;
8249
8250         /*
8251          * Mixed block groups will exclude before processing the log so we only
8252          * need to do the exclude dance if this fs isn't mixed.
8253          */
8254         if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8255                 ret = __exclude_logged_extent(fs_info, ins->objectid,
8256                                               ins->offset);
8257                 if (ret)
8258                         return ret;
8259         }
8260
8261         block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8262         if (!block_group)
8263                 return -EINVAL;
8264
8265         space_info = block_group->space_info;
8266         spin_lock(&space_info->lock);
8267         spin_lock(&block_group->lock);
8268         space_info->bytes_reserved += ins->offset;
8269         block_group->reserved += ins->offset;
8270         spin_unlock(&block_group->lock);
8271         spin_unlock(&space_info->lock);
8272
8273         ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
8274                                          0, owner, offset, ins, 1);
8275         btrfs_put_block_group(block_group);
8276         return ret;
8277 }
8278
8279 static struct extent_buffer *
8280 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8281                       u64 bytenr, int level)
8282 {
8283         struct btrfs_fs_info *fs_info = root->fs_info;
8284         struct extent_buffer *buf;
8285
8286         buf = btrfs_find_create_tree_block(fs_info, bytenr);
8287         if (IS_ERR(buf))
8288                 return buf;
8289
8290         btrfs_set_header_generation(buf, trans->transid);
8291         btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8292         btrfs_tree_lock(buf);
8293         clean_tree_block(fs_info, buf);
8294         clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8295
8296         btrfs_set_lock_blocking(buf);
8297         set_extent_buffer_uptodate(buf);
8298
8299         if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8300                 buf->log_index = root->log_transid % 2;
8301                 /*
8302                  * we allow two log transactions at a time, use different
8303                  * EXENT bit to differentiate dirty pages.
8304                  */
8305                 if (buf->log_index == 0)
8306                         set_extent_dirty(&root->dirty_log_pages, buf->start,
8307                                         buf->start + buf->len - 1, GFP_NOFS);
8308                 else
8309                         set_extent_new(&root->dirty_log_pages, buf->start,
8310                                         buf->start + buf->len - 1);
8311         } else {
8312                 buf->log_index = -1;
8313                 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8314                          buf->start + buf->len - 1, GFP_NOFS);
8315         }
8316         trans->dirty = true;
8317         /* this returns a buffer locked for blocking */
8318         return buf;
8319 }
8320
8321 static struct btrfs_block_rsv *
8322 use_block_rsv(struct btrfs_trans_handle *trans,
8323               struct btrfs_root *root, u32 blocksize)
8324 {
8325         struct btrfs_fs_info *fs_info = root->fs_info;
8326         struct btrfs_block_rsv *block_rsv;
8327         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8328         int ret;
8329         bool global_updated = false;
8330
8331         block_rsv = get_block_rsv(trans, root);
8332
8333         if (unlikely(block_rsv->size == 0))
8334                 goto try_reserve;
8335 again:
8336         ret = block_rsv_use_bytes(block_rsv, blocksize);
8337         if (!ret)
8338                 return block_rsv;
8339
8340         if (block_rsv->failfast)
8341                 return ERR_PTR(ret);
8342
8343         if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8344                 global_updated = true;
8345                 update_global_block_rsv(fs_info);
8346                 goto again;
8347         }
8348
8349         if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8350                 static DEFINE_RATELIMIT_STATE(_rs,
8351                                 DEFAULT_RATELIMIT_INTERVAL * 10,
8352                                 /*DEFAULT_RATELIMIT_BURST*/ 1);
8353                 if (__ratelimit(&_rs))
8354                         WARN(1, KERN_DEBUG
8355                                 "BTRFS: block rsv returned %d\n", ret);
8356         }
8357 try_reserve:
8358         ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8359                                      BTRFS_RESERVE_NO_FLUSH);
8360         if (!ret)
8361                 return block_rsv;
8362         /*
8363          * If we couldn't reserve metadata bytes try and use some from
8364          * the global reserve if its space type is the same as the global
8365          * reservation.
8366          */
8367         if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8368             block_rsv->space_info == global_rsv->space_info) {
8369                 ret = block_rsv_use_bytes(global_rsv, blocksize);
8370                 if (!ret)
8371                         return global_rsv;
8372         }
8373         return ERR_PTR(ret);
8374 }
8375
8376 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8377                             struct btrfs_block_rsv *block_rsv, u32 blocksize)
8378 {
8379         block_rsv_add_bytes(block_rsv, blocksize, 0);
8380         block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
8381 }
8382
8383 /*
8384  * finds a free extent and does all the dirty work required for allocation
8385  * returns the tree buffer or an ERR_PTR on error.
8386  */
8387 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8388                                              struct btrfs_root *root,
8389                                              u64 parent, u64 root_objectid,
8390                                              const struct btrfs_disk_key *key,
8391                                              int level, u64 hint,
8392                                              u64 empty_size)
8393 {
8394         struct btrfs_fs_info *fs_info = root->fs_info;
8395         struct btrfs_key ins;
8396         struct btrfs_block_rsv *block_rsv;
8397         struct extent_buffer *buf;
8398         struct btrfs_delayed_extent_op *extent_op;
8399         u64 flags = 0;
8400         int ret;
8401         u32 blocksize = fs_info->nodesize;
8402         bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8403
8404 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8405         if (btrfs_is_testing(fs_info)) {
8406                 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8407                                             level);
8408                 if (!IS_ERR(buf))
8409                         root->alloc_bytenr += blocksize;
8410                 return buf;
8411         }
8412 #endif
8413
8414         block_rsv = use_block_rsv(trans, root, blocksize);
8415         if (IS_ERR(block_rsv))
8416                 return ERR_CAST(block_rsv);
8417
8418         ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8419                                    empty_size, hint, &ins, 0, 0);
8420         if (ret)
8421                 goto out_unuse;
8422
8423         buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8424         if (IS_ERR(buf)) {
8425                 ret = PTR_ERR(buf);
8426                 goto out_free_reserved;
8427         }
8428
8429         if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8430                 if (parent == 0)
8431                         parent = ins.objectid;
8432                 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8433         } else
8434                 BUG_ON(parent > 0);
8435
8436         if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8437                 extent_op = btrfs_alloc_delayed_extent_op();
8438                 if (!extent_op) {
8439                         ret = -ENOMEM;
8440                         goto out_free_buf;
8441                 }
8442                 if (key)
8443                         memcpy(&extent_op->key, key, sizeof(extent_op->key));
8444                 else
8445                         memset(&extent_op->key, 0, sizeof(extent_op->key));
8446                 extent_op->flags_to_set = flags;
8447                 extent_op->update_key = skinny_metadata ? false : true;
8448                 extent_op->update_flags = true;
8449                 extent_op->is_data = false;
8450                 extent_op->level = level;
8451
8452                 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8453                                    root_objectid, level, 0,
8454                                    BTRFS_ADD_DELAYED_EXTENT);
8455                 ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid,
8456                                                  ins.offset, parent,
8457                                                  root_objectid, level,
8458                                                  BTRFS_ADD_DELAYED_EXTENT,
8459                                                  extent_op, NULL, NULL);
8460                 if (ret)
8461                         goto out_free_delayed;
8462         }
8463         return buf;
8464
8465 out_free_delayed:
8466         btrfs_free_delayed_extent_op(extent_op);
8467 out_free_buf:
8468         free_extent_buffer(buf);
8469 out_free_reserved:
8470         btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8471 out_unuse:
8472         unuse_block_rsv(fs_info, block_rsv, blocksize);
8473         return ERR_PTR(ret);
8474 }
8475
8476 struct walk_control {
8477         u64 refs[BTRFS_MAX_LEVEL];
8478         u64 flags[BTRFS_MAX_LEVEL];
8479         struct btrfs_key update_progress;
8480         int stage;
8481         int level;
8482         int shared_level;
8483         int update_ref;
8484         int keep_locks;
8485         int reada_slot;
8486         int reada_count;
8487         int for_reloc;
8488 };
8489
8490 #define DROP_REFERENCE  1
8491 #define UPDATE_BACKREF  2
8492
8493 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8494                                      struct btrfs_root *root,
8495                                      struct walk_control *wc,
8496                                      struct btrfs_path *path)
8497 {
8498         struct btrfs_fs_info *fs_info = root->fs_info;
8499         u64 bytenr;
8500         u64 generation;
8501         u64 refs;
8502         u64 flags;
8503         u32 nritems;
8504         struct btrfs_key key;
8505         struct extent_buffer *eb;
8506         int ret;
8507         int slot;
8508         int nread = 0;
8509
8510         if (path->slots[wc->level] < wc->reada_slot) {
8511                 wc->reada_count = wc->reada_count * 2 / 3;
8512                 wc->reada_count = max(wc->reada_count, 2);
8513         } else {
8514                 wc->reada_count = wc->reada_count * 3 / 2;
8515                 wc->reada_count = min_t(int, wc->reada_count,
8516                                         BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8517         }
8518
8519         eb = path->nodes[wc->level];
8520         nritems = btrfs_header_nritems(eb);
8521
8522         for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8523                 if (nread >= wc->reada_count)
8524                         break;
8525
8526                 cond_resched();
8527                 bytenr = btrfs_node_blockptr(eb, slot);
8528                 generation = btrfs_node_ptr_generation(eb, slot);
8529
8530                 if (slot == path->slots[wc->level])
8531                         goto reada;
8532
8533                 if (wc->stage == UPDATE_BACKREF &&
8534                     generation <= root->root_key.offset)
8535                         continue;
8536
8537                 /* We don't lock the tree block, it's OK to be racy here */
8538                 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8539                                                wc->level - 1, 1, &refs,
8540                                                &flags);
8541                 /* We don't care about errors in readahead. */
8542                 if (ret < 0)
8543                         continue;
8544                 BUG_ON(refs == 0);
8545
8546                 if (wc->stage == DROP_REFERENCE) {
8547                         if (refs == 1)
8548                                 goto reada;
8549
8550                         if (wc->level == 1 &&
8551                             (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8552                                 continue;
8553                         if (!wc->update_ref ||
8554                             generation <= root->root_key.offset)
8555                                 continue;
8556                         btrfs_node_key_to_cpu(eb, &key, slot);
8557                         ret = btrfs_comp_cpu_keys(&key,
8558                                                   &wc->update_progress);
8559                         if (ret < 0)
8560                                 continue;
8561                 } else {
8562                         if (wc->level == 1 &&
8563                             (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8564                                 continue;
8565                 }
8566 reada:
8567                 readahead_tree_block(fs_info, bytenr);
8568                 nread++;
8569         }
8570         wc->reada_slot = slot;
8571 }
8572
8573 /*
8574  * helper to process tree block while walking down the tree.
8575  *
8576  * when wc->stage == UPDATE_BACKREF, this function updates
8577  * back refs for pointers in the block.
8578  *
8579  * NOTE: return value 1 means we should stop walking down.
8580  */
8581 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8582                                    struct btrfs_root *root,
8583                                    struct btrfs_path *path,
8584                                    struct walk_control *wc, int lookup_info)
8585 {
8586         struct btrfs_fs_info *fs_info = root->fs_info;
8587         int level = wc->level;
8588         struct extent_buffer *eb = path->nodes[level];
8589         u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8590         int ret;
8591
8592         if (wc->stage == UPDATE_BACKREF &&
8593             btrfs_header_owner(eb) != root->root_key.objectid)
8594                 return 1;
8595
8596         /*
8597          * when reference count of tree block is 1, it won't increase
8598          * again. once full backref flag is set, we never clear it.
8599          */
8600         if (lookup_info &&
8601             ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8602              (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8603                 BUG_ON(!path->locks[level]);
8604                 ret = btrfs_lookup_extent_info(trans, fs_info,
8605                                                eb->start, level, 1,
8606                                                &wc->refs[level],
8607                                                &wc->flags[level]);
8608                 BUG_ON(ret == -ENOMEM);
8609                 if (ret)
8610                         return ret;
8611                 BUG_ON(wc->refs[level] == 0);
8612         }
8613
8614         if (wc->stage == DROP_REFERENCE) {
8615                 if (wc->refs[level] > 1)
8616                         return 1;
8617
8618                 if (path->locks[level] && !wc->keep_locks) {
8619                         btrfs_tree_unlock_rw(eb, path->locks[level]);
8620                         path->locks[level] = 0;
8621                 }
8622                 return 0;
8623         }
8624
8625         /* wc->stage == UPDATE_BACKREF */
8626         if (!(wc->flags[level] & flag)) {
8627                 BUG_ON(!path->locks[level]);
8628                 ret = btrfs_inc_ref(trans, root, eb, 1);
8629                 BUG_ON(ret); /* -ENOMEM */
8630                 ret = btrfs_dec_ref(trans, root, eb, 0);
8631                 BUG_ON(ret); /* -ENOMEM */
8632                 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8633                                                   eb->len, flag,
8634                                                   btrfs_header_level(eb), 0);
8635                 BUG_ON(ret); /* -ENOMEM */
8636                 wc->flags[level] |= flag;
8637         }
8638
8639         /*
8640          * the block is shared by multiple trees, so it's not good to
8641          * keep the tree lock
8642          */
8643         if (path->locks[level] && level > 0) {
8644                 btrfs_tree_unlock_rw(eb, path->locks[level]);
8645                 path->locks[level] = 0;
8646         }
8647         return 0;
8648 }
8649
8650 /*
8651  * helper to process tree block pointer.
8652  *
8653  * when wc->stage == DROP_REFERENCE, this function checks
8654  * reference count of the block pointed to. if the block
8655  * is shared and we need update back refs for the subtree
8656  * rooted at the block, this function changes wc->stage to
8657  * UPDATE_BACKREF. if the block is shared and there is no
8658  * need to update back, this function drops the reference
8659  * to the block.
8660  *
8661  * NOTE: return value 1 means we should stop walking down.
8662  */
8663 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8664                                  struct btrfs_root *root,
8665                                  struct btrfs_path *path,
8666                                  struct walk_control *wc, int *lookup_info)
8667 {
8668         struct btrfs_fs_info *fs_info = root->fs_info;
8669         u64 bytenr;
8670         u64 generation;
8671         u64 parent;
8672         u32 blocksize;
8673         struct btrfs_key key;
8674         struct extent_buffer *next;
8675         int level = wc->level;
8676         int reada = 0;
8677         int ret = 0;
8678         bool need_account = false;
8679
8680         generation = btrfs_node_ptr_generation(path->nodes[level],
8681                                                path->slots[level]);
8682         /*
8683          * if the lower level block was created before the snapshot
8684          * was created, we know there is no need to update back refs
8685          * for the subtree
8686          */
8687         if (wc->stage == UPDATE_BACKREF &&
8688             generation <= root->root_key.offset) {
8689                 *lookup_info = 1;
8690                 return 1;
8691         }
8692
8693         bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8694         blocksize = fs_info->nodesize;
8695
8696         next = find_extent_buffer(fs_info, bytenr);
8697         if (!next) {
8698                 next = btrfs_find_create_tree_block(fs_info, bytenr);
8699                 if (IS_ERR(next))
8700                         return PTR_ERR(next);
8701
8702                 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8703                                                level - 1);
8704                 reada = 1;
8705         }
8706         btrfs_tree_lock(next);
8707         btrfs_set_lock_blocking(next);
8708
8709         ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8710                                        &wc->refs[level - 1],
8711                                        &wc->flags[level - 1]);
8712         if (ret < 0)
8713                 goto out_unlock;
8714
8715         if (unlikely(wc->refs[level - 1] == 0)) {
8716                 btrfs_err(fs_info, "Missing references.");
8717                 ret = -EIO;
8718                 goto out_unlock;
8719         }
8720         *lookup_info = 0;
8721
8722         if (wc->stage == DROP_REFERENCE) {
8723                 if (wc->refs[level - 1] > 1) {
8724                         need_account = true;
8725                         if (level == 1 &&
8726                             (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8727                                 goto skip;
8728
8729                         if (!wc->update_ref ||
8730                             generation <= root->root_key.offset)
8731                                 goto skip;
8732
8733                         btrfs_node_key_to_cpu(path->nodes[level], &key,
8734                                               path->slots[level]);
8735                         ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8736                         if (ret < 0)
8737                                 goto skip;
8738
8739                         wc->stage = UPDATE_BACKREF;
8740                         wc->shared_level = level - 1;
8741                 }
8742         } else {
8743                 if (level == 1 &&
8744                     (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8745                         goto skip;
8746         }
8747
8748         if (!btrfs_buffer_uptodate(next, generation, 0)) {
8749                 btrfs_tree_unlock(next);
8750                 free_extent_buffer(next);
8751                 next = NULL;
8752                 *lookup_info = 1;
8753         }
8754
8755         if (!next) {
8756                 if (reada && level == 1)
8757                         reada_walk_down(trans, root, wc, path);
8758                 next = read_tree_block(fs_info, bytenr, generation);
8759                 if (IS_ERR(next)) {
8760                         return PTR_ERR(next);
8761                 } else if (!extent_buffer_uptodate(next)) {
8762                         free_extent_buffer(next);
8763                         return -EIO;
8764                 }
8765                 btrfs_tree_lock(next);
8766                 btrfs_set_lock_blocking(next);
8767         }
8768
8769         level--;
8770         ASSERT(level == btrfs_header_level(next));
8771         if (level != btrfs_header_level(next)) {
8772                 btrfs_err(root->fs_info, "mismatched level");
8773                 ret = -EIO;
8774                 goto out_unlock;
8775         }
8776         path->nodes[level] = next;
8777         path->slots[level] = 0;
8778         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8779         wc->level = level;
8780         if (wc->level == 1)
8781                 wc->reada_slot = 0;
8782         return 0;
8783 skip:
8784         wc->refs[level - 1] = 0;
8785         wc->flags[level - 1] = 0;
8786         if (wc->stage == DROP_REFERENCE) {
8787                 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8788                         parent = path->nodes[level]->start;
8789                 } else {
8790                         ASSERT(root->root_key.objectid ==
8791                                btrfs_header_owner(path->nodes[level]));
8792                         if (root->root_key.objectid !=
8793                             btrfs_header_owner(path->nodes[level])) {
8794                                 btrfs_err(root->fs_info,
8795                                                 "mismatched block owner");
8796                                 ret = -EIO;
8797                                 goto out_unlock;
8798                         }
8799                         parent = 0;
8800                 }
8801
8802                 if (need_account) {
8803                         ret = btrfs_qgroup_trace_subtree(trans, root, next,
8804                                                          generation, level - 1);
8805                         if (ret) {
8806                                 btrfs_err_rl(fs_info,
8807                                              "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8808                                              ret);
8809                         }
8810                 }
8811                 ret = btrfs_free_extent(trans, root, bytenr, blocksize,
8812                                         parent, root->root_key.objectid,
8813                                         level - 1, 0);
8814                 if (ret)
8815                         goto out_unlock;
8816         }
8817
8818         *lookup_info = 1;
8819         ret = 1;
8820
8821 out_unlock:
8822         btrfs_tree_unlock(next);
8823         free_extent_buffer(next);
8824
8825         return ret;
8826 }
8827
8828 /*
8829  * helper to process tree block while walking up the tree.
8830  *
8831  * when wc->stage == DROP_REFERENCE, this function drops
8832  * reference count on the block.
8833  *
8834  * when wc->stage == UPDATE_BACKREF, this function changes
8835  * wc->stage back to DROP_REFERENCE if we changed wc->stage
8836  * to UPDATE_BACKREF previously while processing the block.
8837  *
8838  * NOTE: return value 1 means we should stop walking up.
8839  */
8840 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8841                                  struct btrfs_root *root,
8842                                  struct btrfs_path *path,
8843                                  struct walk_control *wc)
8844 {
8845         struct btrfs_fs_info *fs_info = root->fs_info;
8846         int ret;
8847         int level = wc->level;
8848         struct extent_buffer *eb = path->nodes[level];
8849         u64 parent = 0;
8850
8851         if (wc->stage == UPDATE_BACKREF) {
8852                 BUG_ON(wc->shared_level < level);
8853                 if (level < wc->shared_level)
8854                         goto out;
8855
8856                 ret = find_next_key(path, level + 1, &wc->update_progress);
8857                 if (ret > 0)
8858                         wc->update_ref = 0;
8859
8860                 wc->stage = DROP_REFERENCE;
8861                 wc->shared_level = -1;
8862                 path->slots[level] = 0;
8863
8864                 /*
8865                  * check reference count again if the block isn't locked.
8866                  * we should start walking down the tree again if reference
8867                  * count is one.
8868                  */
8869                 if (!path->locks[level]) {
8870                         BUG_ON(level == 0);
8871                         btrfs_tree_lock(eb);
8872                         btrfs_set_lock_blocking(eb);
8873                         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8874
8875                         ret = btrfs_lookup_extent_info(trans, fs_info,
8876                                                        eb->start, level, 1,
8877                                                        &wc->refs[level],
8878                                                        &wc->flags[level]);
8879                         if (ret < 0) {
8880                                 btrfs_tree_unlock_rw(eb, path->locks[level]);
8881                                 path->locks[level] = 0;
8882                                 return ret;
8883                         }
8884                         BUG_ON(wc->refs[level] == 0);
8885                         if (wc->refs[level] == 1) {
8886                                 btrfs_tree_unlock_rw(eb, path->locks[level]);
8887                                 path->locks[level] = 0;
8888                                 return 1;
8889                         }
8890                 }
8891         }
8892
8893         /* wc->stage == DROP_REFERENCE */
8894         BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
8895
8896         if (wc->refs[level] == 1) {
8897                 if (level == 0) {
8898                         if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8899                                 ret = btrfs_dec_ref(trans, root, eb, 1);
8900                         else
8901                                 ret = btrfs_dec_ref(trans, root, eb, 0);
8902                         BUG_ON(ret); /* -ENOMEM */
8903                         ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
8904                         if (ret) {
8905                                 btrfs_err_rl(fs_info,
8906                                              "error %d accounting leaf items. Quota is out of sync, rescan required.",
8907                                              ret);
8908                         }
8909                 }
8910                 /* make block locked assertion in clean_tree_block happy */
8911                 if (!path->locks[level] &&
8912                     btrfs_header_generation(eb) == trans->transid) {
8913                         btrfs_tree_lock(eb);
8914                         btrfs_set_lock_blocking(eb);
8915                         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8916                 }
8917                 clean_tree_block(fs_info, eb);
8918         }
8919
8920         if (eb == root->node) {
8921                 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8922                         parent = eb->start;
8923                 else
8924                         BUG_ON(root->root_key.objectid !=
8925                                btrfs_header_owner(eb));
8926         } else {
8927                 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8928                         parent = path->nodes[level + 1]->start;
8929                 else
8930                         BUG_ON(root->root_key.objectid !=
8931                                btrfs_header_owner(path->nodes[level + 1]));
8932         }
8933
8934         btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
8935 out:
8936         wc->refs[level] = 0;
8937         wc->flags[level] = 0;
8938         return 0;
8939 }
8940
8941 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8942                                    struct btrfs_root *root,
8943                                    struct btrfs_path *path,
8944                                    struct walk_control *wc)
8945 {
8946         int level = wc->level;
8947         int lookup_info = 1;
8948         int ret;
8949
8950         while (level >= 0) {
8951                 ret = walk_down_proc(trans, root, path, wc, lookup_info);
8952                 if (ret > 0)
8953                         break;
8954
8955                 if (level == 0)
8956                         break;
8957
8958                 if (path->slots[level] >=
8959                     btrfs_header_nritems(path->nodes[level]))
8960                         break;
8961
8962                 ret = do_walk_down(trans, root, path, wc, &lookup_info);
8963                 if (ret > 0) {
8964                         path->slots[level]++;
8965                         continue;
8966                 } else if (ret < 0)
8967                         return ret;
8968                 level = wc->level;
8969         }
8970         return 0;
8971 }
8972
8973 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
8974                                  struct btrfs_root *root,
8975                                  struct btrfs_path *path,
8976                                  struct walk_control *wc, int max_level)
8977 {
8978         int level = wc->level;
8979         int ret;
8980
8981         path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8982         while (level < max_level && path->nodes[level]) {
8983                 wc->level = level;
8984                 if (path->slots[level] + 1 <
8985                     btrfs_header_nritems(path->nodes[level])) {
8986                         path->slots[level]++;
8987                         return 0;
8988                 } else {
8989                         ret = walk_up_proc(trans, root, path, wc);
8990                         if (ret > 0)
8991                                 return 0;
8992
8993                         if (path->locks[level]) {
8994                                 btrfs_tree_unlock_rw(path->nodes[level],
8995                                                      path->locks[level]);
8996                                 path->locks[level] = 0;
8997                         }
8998                         free_extent_buffer(path->nodes[level]);
8999                         path->nodes[level] = NULL;
9000                         level++;
9001                 }
9002         }
9003         return 1;
9004 }
9005
9006 /*
9007  * drop a subvolume tree.
9008  *
9009  * this function traverses the tree freeing any blocks that only
9010  * referenced by the tree.
9011  *
9012  * when a shared tree block is found. this function decreases its
9013  * reference count by one. if update_ref is true, this function
9014  * also make sure backrefs for the shared block and all lower level
9015  * blocks are properly updated.
9016  *
9017  * If called with for_reloc == 0, may exit early with -EAGAIN
9018  */
9019 int btrfs_drop_snapshot(struct btrfs_root *root,
9020                          struct btrfs_block_rsv *block_rsv, int update_ref,
9021                          int for_reloc)
9022 {
9023         struct btrfs_fs_info *fs_info = root->fs_info;
9024         struct btrfs_path *path;
9025         struct btrfs_trans_handle *trans;
9026         struct btrfs_root *tree_root = fs_info->tree_root;
9027         struct btrfs_root_item *root_item = &root->root_item;
9028         struct walk_control *wc;
9029         struct btrfs_key key;
9030         int err = 0;
9031         int ret;
9032         int level;
9033         bool root_dropped = false;
9034
9035         btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
9036
9037         path = btrfs_alloc_path();
9038         if (!path) {
9039                 err = -ENOMEM;
9040                 goto out;
9041         }
9042
9043         wc = kzalloc(sizeof(*wc), GFP_NOFS);
9044         if (!wc) {
9045                 btrfs_free_path(path);
9046                 err = -ENOMEM;
9047                 goto out;
9048         }
9049
9050         trans = btrfs_start_transaction(tree_root, 0);
9051         if (IS_ERR(trans)) {
9052                 err = PTR_ERR(trans);
9053                 goto out_free;
9054         }
9055
9056         if (block_rsv)
9057                 trans->block_rsv = block_rsv;
9058
9059         if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9060                 level = btrfs_header_level(root->node);
9061                 path->nodes[level] = btrfs_lock_root_node(root);
9062                 btrfs_set_lock_blocking(path->nodes[level]);
9063                 path->slots[level] = 0;
9064                 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9065                 memset(&wc->update_progress, 0,
9066                        sizeof(wc->update_progress));
9067         } else {
9068                 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9069                 memcpy(&wc->update_progress, &key,
9070                        sizeof(wc->update_progress));
9071
9072                 level = root_item->drop_level;
9073                 BUG_ON(level == 0);
9074                 path->lowest_level = level;
9075                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9076                 path->lowest_level = 0;
9077                 if (ret < 0) {
9078                         err = ret;
9079                         goto out_end_trans;
9080                 }
9081                 WARN_ON(ret > 0);
9082
9083                 /*
9084                  * unlock our path, this is safe because only this
9085                  * function is allowed to delete this snapshot
9086                  */
9087                 btrfs_unlock_up_safe(path, 0);
9088
9089                 level = btrfs_header_level(root->node);
9090                 while (1) {
9091                         btrfs_tree_lock(path->nodes[level]);
9092                         btrfs_set_lock_blocking(path->nodes[level]);
9093                         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9094
9095                         ret = btrfs_lookup_extent_info(trans, fs_info,
9096                                                 path->nodes[level]->start,
9097                                                 level, 1, &wc->refs[level],
9098                                                 &wc->flags[level]);
9099                         if (ret < 0) {
9100                                 err = ret;
9101                                 goto out_end_trans;
9102                         }
9103                         BUG_ON(wc->refs[level] == 0);
9104
9105                         if (level == root_item->drop_level)
9106                                 break;
9107
9108                         btrfs_tree_unlock(path->nodes[level]);
9109                         path->locks[level] = 0;
9110                         WARN_ON(wc->refs[level] != 1);
9111                         level--;
9112                 }
9113         }
9114
9115         wc->level = level;
9116         wc->shared_level = -1;
9117         wc->stage = DROP_REFERENCE;
9118         wc->update_ref = update_ref;
9119         wc->keep_locks = 0;
9120         wc->for_reloc = for_reloc;
9121         wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9122
9123         while (1) {
9124
9125                 ret = walk_down_tree(trans, root, path, wc);
9126                 if (ret < 0) {
9127                         err = ret;
9128                         break;
9129                 }
9130
9131                 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9132                 if (ret < 0) {
9133                         err = ret;
9134                         break;
9135                 }
9136
9137                 if (ret > 0) {
9138                         BUG_ON(wc->stage != DROP_REFERENCE);
9139                         break;
9140                 }
9141
9142                 if (wc->stage == DROP_REFERENCE) {
9143                         level = wc->level;
9144                         btrfs_node_key(path->nodes[level],
9145                                        &root_item->drop_progress,
9146                                        path->slots[level]);
9147                         root_item->drop_level = level;
9148                 }
9149
9150                 BUG_ON(wc->level == 0);
9151                 if (btrfs_should_end_transaction(trans) ||
9152                     (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9153                         ret = btrfs_update_root(trans, tree_root,
9154                                                 &root->root_key,
9155                                                 root_item);
9156                         if (ret) {
9157                                 btrfs_abort_transaction(trans, ret);
9158                                 err = ret;
9159                                 goto out_end_trans;
9160                         }
9161
9162                         btrfs_end_transaction_throttle(trans);
9163                         if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9164                                 btrfs_debug(fs_info,
9165                                             "drop snapshot early exit");
9166                                 err = -EAGAIN;
9167                                 goto out_free;
9168                         }
9169
9170                         trans = btrfs_start_transaction(tree_root, 0);
9171                         if (IS_ERR(trans)) {
9172                                 err = PTR_ERR(trans);
9173                                 goto out_free;
9174                         }
9175                         if (block_rsv)
9176                                 trans->block_rsv = block_rsv;
9177                 }
9178         }
9179         btrfs_release_path(path);
9180         if (err)
9181                 goto out_end_trans;
9182
9183         ret = btrfs_del_root(trans, fs_info, &root->root_key);
9184         if (ret) {
9185                 btrfs_abort_transaction(trans, ret);
9186                 err = ret;
9187                 goto out_end_trans;
9188         }
9189
9190         if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9191                 ret = btrfs_find_root(tree_root, &root->root_key, path,
9192                                       NULL, NULL);
9193                 if (ret < 0) {
9194                         btrfs_abort_transaction(trans, ret);
9195                         err = ret;
9196                         goto out_end_trans;
9197                 } else if (ret > 0) {
9198                         /* if we fail to delete the orphan item this time
9199                          * around, it'll get picked up the next time.
9200                          *
9201                          * The most common failure here is just -ENOENT.
9202                          */
9203                         btrfs_del_orphan_item(trans, tree_root,
9204                                               root->root_key.objectid);
9205                 }
9206         }
9207
9208         if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9209                 btrfs_add_dropped_root(trans, root);
9210         } else {
9211                 free_extent_buffer(root->node);
9212                 free_extent_buffer(root->commit_root);
9213                 btrfs_put_fs_root(root);
9214         }
9215         root_dropped = true;
9216 out_end_trans:
9217         btrfs_end_transaction_throttle(trans);
9218 out_free:
9219         kfree(wc);
9220         btrfs_free_path(path);
9221 out:
9222         /*
9223          * So if we need to stop dropping the snapshot for whatever reason we
9224          * need to make sure to add it back to the dead root list so that we
9225          * keep trying to do the work later.  This also cleans up roots if we
9226          * don't have it in the radix (like when we recover after a power fail
9227          * or unmount) so we don't leak memory.
9228          */
9229         if (!for_reloc && !root_dropped)
9230                 btrfs_add_dead_root(root);
9231         if (err && err != -EAGAIN)
9232                 btrfs_handle_fs_error(fs_info, err, NULL);
9233         return err;
9234 }
9235
9236 /*
9237  * drop subtree rooted at tree block 'node'.
9238  *
9239  * NOTE: this function will unlock and release tree block 'node'
9240  * only used by relocation code
9241  */
9242 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9243                         struct btrfs_root *root,
9244                         struct extent_buffer *node,
9245                         struct extent_buffer *parent)
9246 {
9247         struct btrfs_fs_info *fs_info = root->fs_info;
9248         struct btrfs_path *path;
9249         struct walk_control *wc;
9250         int level;
9251         int parent_level;
9252         int ret = 0;
9253         int wret;
9254
9255         BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9256
9257         path = btrfs_alloc_path();
9258         if (!path)
9259                 return -ENOMEM;
9260
9261         wc = kzalloc(sizeof(*wc), GFP_NOFS);
9262         if (!wc) {
9263                 btrfs_free_path(path);
9264                 return -ENOMEM;
9265         }
9266
9267         btrfs_assert_tree_locked(parent);
9268         parent_level = btrfs_header_level(parent);
9269         extent_buffer_get(parent);
9270         path->nodes[parent_level] = parent;
9271         path->slots[parent_level] = btrfs_header_nritems(parent);
9272
9273         btrfs_assert_tree_locked(node);
9274         level = btrfs_header_level(node);
9275         path->nodes[level] = node;
9276         path->slots[level] = 0;
9277         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9278
9279         wc->refs[parent_level] = 1;
9280         wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9281         wc->level = level;
9282         wc->shared_level = -1;
9283         wc->stage = DROP_REFERENCE;
9284         wc->update_ref = 0;
9285         wc->keep_locks = 1;
9286         wc->for_reloc = 1;
9287         wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9288
9289         while (1) {
9290                 wret = walk_down_tree(trans, root, path, wc);
9291                 if (wret < 0) {
9292                         ret = wret;
9293                         break;
9294                 }
9295
9296                 wret = walk_up_tree(trans, root, path, wc, parent_level);
9297                 if (wret < 0)
9298                         ret = wret;
9299                 if (wret != 0)
9300                         break;
9301         }
9302
9303         kfree(wc);
9304         btrfs_free_path(path);
9305         return ret;
9306 }
9307
9308 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9309 {
9310         u64 num_devices;
9311         u64 stripped;
9312
9313         /*
9314          * if restripe for this chunk_type is on pick target profile and
9315          * return, otherwise do the usual balance
9316          */
9317         stripped = get_restripe_target(fs_info, flags);
9318         if (stripped)
9319                 return extended_to_chunk(stripped);
9320
9321         num_devices = fs_info->fs_devices->rw_devices;
9322
9323         stripped = BTRFS_BLOCK_GROUP_RAID0 |
9324                 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9325                 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9326
9327         if (num_devices == 1) {
9328                 stripped |= BTRFS_BLOCK_GROUP_DUP;
9329                 stripped = flags & ~stripped;
9330
9331                 /* turn raid0 into single device chunks */
9332                 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9333                         return stripped;
9334
9335                 /* turn mirroring into duplication */
9336                 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9337                              BTRFS_BLOCK_GROUP_RAID10))
9338                         return stripped | BTRFS_BLOCK_GROUP_DUP;
9339         } else {
9340                 /* they already had raid on here, just return */
9341                 if (flags & stripped)
9342                         return flags;
9343
9344                 stripped |= BTRFS_BLOCK_GROUP_DUP;
9345                 stripped = flags & ~stripped;
9346
9347                 /* switch duplicated blocks with raid1 */
9348                 if (flags & BTRFS_BLOCK_GROUP_DUP)
9349                         return stripped | BTRFS_BLOCK_GROUP_RAID1;
9350
9351                 /* this is drive concat, leave it alone */
9352         }
9353
9354         return flags;
9355 }
9356
9357 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9358 {
9359         struct btrfs_space_info *sinfo = cache->space_info;
9360         u64 num_bytes;
9361         u64 min_allocable_bytes;
9362         int ret = -ENOSPC;
9363
9364         /*
9365          * We need some metadata space and system metadata space for
9366          * allocating chunks in some corner cases until we force to set
9367          * it to be readonly.
9368          */
9369         if ((sinfo->flags &
9370              (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9371             !force)
9372                 min_allocable_bytes = SZ_1M;
9373         else
9374                 min_allocable_bytes = 0;
9375
9376         spin_lock(&sinfo->lock);
9377         spin_lock(&cache->lock);
9378
9379         if (cache->ro) {
9380                 cache->ro++;
9381                 ret = 0;
9382                 goto out;
9383         }
9384
9385         num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9386                     cache->bytes_super - btrfs_block_group_used(&cache->item);
9387
9388         if (btrfs_space_info_used(sinfo, true) + num_bytes +
9389             min_allocable_bytes <= sinfo->total_bytes) {
9390                 sinfo->bytes_readonly += num_bytes;
9391                 cache->ro++;
9392                 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9393                 ret = 0;
9394         }
9395 out:
9396         spin_unlock(&cache->lock);
9397         spin_unlock(&sinfo->lock);
9398         return ret;
9399 }
9400
9401 int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
9402                              struct btrfs_block_group_cache *cache)
9403
9404 {
9405         struct btrfs_trans_handle *trans;
9406         u64 alloc_flags;
9407         int ret;
9408
9409 again:
9410         trans = btrfs_join_transaction(fs_info->extent_root);
9411         if (IS_ERR(trans))
9412                 return PTR_ERR(trans);
9413
9414         /*
9415          * we're not allowed to set block groups readonly after the dirty
9416          * block groups cache has started writing.  If it already started,
9417          * back off and let this transaction commit
9418          */
9419         mutex_lock(&fs_info->ro_block_group_mutex);
9420         if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9421                 u64 transid = trans->transid;
9422
9423                 mutex_unlock(&fs_info->ro_block_group_mutex);
9424                 btrfs_end_transaction(trans);
9425
9426                 ret = btrfs_wait_for_commit(fs_info, transid);
9427                 if (ret)
9428                         return ret;
9429                 goto again;
9430         }
9431
9432         /*
9433          * if we are changing raid levels, try to allocate a corresponding
9434          * block group with the new raid level.
9435          */
9436         alloc_flags = update_block_group_flags(fs_info, cache->flags);
9437         if (alloc_flags != cache->flags) {
9438                 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9439                                      CHUNK_ALLOC_FORCE);
9440                 /*
9441                  * ENOSPC is allowed here, we may have enough space
9442                  * already allocated at the new raid level to
9443                  * carry on
9444                  */
9445                 if (ret == -ENOSPC)
9446                         ret = 0;
9447                 if (ret < 0)
9448                         goto out;
9449         }
9450
9451         ret = inc_block_group_ro(cache, 0);
9452         if (!ret)
9453                 goto out;
9454         alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9455         ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9456                              CHUNK_ALLOC_FORCE);
9457         if (ret < 0)
9458                 goto out;
9459         ret = inc_block_group_ro(cache, 0);
9460 out:
9461         if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9462                 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9463                 mutex_lock(&fs_info->chunk_mutex);
9464                 check_system_chunk(trans, fs_info, alloc_flags);
9465                 mutex_unlock(&fs_info->chunk_mutex);
9466         }
9467         mutex_unlock(&fs_info->ro_block_group_mutex);
9468
9469         btrfs_end_transaction(trans);
9470         return ret;
9471 }
9472
9473 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9474                             struct btrfs_fs_info *fs_info, u64 type)
9475 {
9476         u64 alloc_flags = get_alloc_profile(fs_info, type);
9477
9478         return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
9479 }
9480
9481 /*
9482  * helper to account the unused space of all the readonly block group in the
9483  * space_info. takes mirrors into account.
9484  */
9485 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9486 {
9487         struct btrfs_block_group_cache *block_group;
9488         u64 free_bytes = 0;
9489         int factor;
9490
9491         /* It's df, we don't care if it's racy */
9492         if (list_empty(&sinfo->ro_bgs))
9493                 return 0;
9494
9495         spin_lock(&sinfo->lock);
9496         list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9497                 spin_lock(&block_group->lock);
9498
9499                 if (!block_group->ro) {
9500                         spin_unlock(&block_group->lock);
9501                         continue;
9502                 }
9503
9504                 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9505                                           BTRFS_BLOCK_GROUP_RAID10 |
9506                                           BTRFS_BLOCK_GROUP_DUP))
9507                         factor = 2;
9508                 else
9509                         factor = 1;
9510
9511                 free_bytes += (block_group->key.offset -
9512                                btrfs_block_group_used(&block_group->item)) *
9513                                factor;
9514
9515                 spin_unlock(&block_group->lock);
9516         }
9517         spin_unlock(&sinfo->lock);
9518
9519         return free_bytes;
9520 }
9521
9522 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9523 {
9524         struct btrfs_space_info *sinfo = cache->space_info;
9525         u64 num_bytes;
9526
9527         BUG_ON(!cache->ro);
9528
9529         spin_lock(&sinfo->lock);
9530         spin_lock(&cache->lock);
9531         if (!--cache->ro) {
9532                 num_bytes = cache->key.offset - cache->reserved -
9533                             cache->pinned - cache->bytes_super -
9534                             btrfs_block_group_used(&cache->item);
9535                 sinfo->bytes_readonly -= num_bytes;
9536                 list_del_init(&cache->ro_list);
9537         }
9538         spin_unlock(&cache->lock);
9539         spin_unlock(&sinfo->lock);
9540 }
9541
9542 /*
9543  * checks to see if its even possible to relocate this block group.
9544  *
9545  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9546  * ok to go ahead and try.
9547  */
9548 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9549 {
9550         struct btrfs_root *root = fs_info->extent_root;
9551         struct btrfs_block_group_cache *block_group;
9552         struct btrfs_space_info *space_info;
9553         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9554         struct btrfs_device *device;
9555         struct btrfs_trans_handle *trans;
9556         u64 min_free;
9557         u64 dev_min = 1;
9558         u64 dev_nr = 0;
9559         u64 target;
9560         int debug;
9561         int index;
9562         int full = 0;
9563         int ret = 0;
9564
9565         debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9566
9567         block_group = btrfs_lookup_block_group(fs_info, bytenr);
9568
9569         /* odd, couldn't find the block group, leave it alone */
9570         if (!block_group) {
9571                 if (debug)
9572                         btrfs_warn(fs_info,
9573                                    "can't find block group for bytenr %llu",
9574                                    bytenr);
9575                 return -1;
9576         }
9577
9578         min_free = btrfs_block_group_used(&block_group->item);
9579
9580         /* no bytes used, we're good */
9581         if (!min_free)
9582                 goto out;
9583
9584         space_info = block_group->space_info;
9585         spin_lock(&space_info->lock);
9586
9587         full = space_info->full;
9588
9589         /*
9590          * if this is the last block group we have in this space, we can't
9591          * relocate it unless we're able to allocate a new chunk below.
9592          *
9593          * Otherwise, we need to make sure we have room in the space to handle
9594          * all of the extents from this block group.  If we can, we're good
9595          */
9596         if ((space_info->total_bytes != block_group->key.offset) &&
9597             (btrfs_space_info_used(space_info, false) + min_free <
9598              space_info->total_bytes)) {
9599                 spin_unlock(&space_info->lock);
9600                 goto out;
9601         }
9602         spin_unlock(&space_info->lock);
9603
9604         /*
9605          * ok we don't have enough space, but maybe we have free space on our
9606          * devices to allocate new chunks for relocation, so loop through our
9607          * alloc devices and guess if we have enough space.  if this block
9608          * group is going to be restriped, run checks against the target
9609          * profile instead of the current one.
9610          */
9611         ret = -1;
9612
9613         /*
9614          * index:
9615          *      0: raid10
9616          *      1: raid1
9617          *      2: dup
9618          *      3: raid0
9619          *      4: single
9620          */
9621         target = get_restripe_target(fs_info, block_group->flags);
9622         if (target) {
9623                 index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target));
9624         } else {
9625                 /*
9626                  * this is just a balance, so if we were marked as full
9627                  * we know there is no space for a new chunk
9628                  */
9629                 if (full) {
9630                         if (debug)
9631                                 btrfs_warn(fs_info,
9632                                            "no space to alloc new chunk for block group %llu",
9633                                            block_group->key.objectid);
9634                         goto out;
9635                 }
9636
9637                 index = btrfs_bg_flags_to_raid_index(block_group->flags);
9638         }
9639
9640         if (index == BTRFS_RAID_RAID10) {
9641                 dev_min = 4;
9642                 /* Divide by 2 */
9643                 min_free >>= 1;
9644         } else if (index == BTRFS_RAID_RAID1) {
9645                 dev_min = 2;
9646         } else if (index == BTRFS_RAID_DUP) {
9647                 /* Multiply by 2 */
9648                 min_free <<= 1;
9649         } else if (index == BTRFS_RAID_RAID0) {
9650                 dev_min = fs_devices->rw_devices;
9651                 min_free = div64_u64(min_free, dev_min);
9652         }
9653
9654         /* We need to do this so that we can look at pending chunks */
9655         trans = btrfs_join_transaction(root);
9656         if (IS_ERR(trans)) {
9657                 ret = PTR_ERR(trans);
9658                 goto out;
9659         }
9660
9661         mutex_lock(&fs_info->chunk_mutex);
9662         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9663                 u64 dev_offset;
9664
9665                 /*
9666                  * check to make sure we can actually find a chunk with enough
9667                  * space to fit our block group in.
9668                  */
9669                 if (device->total_bytes > device->bytes_used + min_free &&
9670                     !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
9671                         ret = find_free_dev_extent(trans, device, min_free,
9672                                                    &dev_offset, NULL);
9673                         if (!ret)
9674                                 dev_nr++;
9675
9676                         if (dev_nr >= dev_min)
9677                                 break;
9678
9679                         ret = -1;
9680                 }
9681         }
9682         if (debug && ret == -1)
9683                 btrfs_warn(fs_info,
9684                            "no space to allocate a new chunk for block group %llu",
9685                            block_group->key.objectid);
9686         mutex_unlock(&fs_info->chunk_mutex);
9687         btrfs_end_transaction(trans);
9688 out:
9689         btrfs_put_block_group(block_group);
9690         return ret;
9691 }
9692
9693 static int find_first_block_group(struct btrfs_fs_info *fs_info,
9694                                   struct btrfs_path *path,
9695                                   struct btrfs_key *key)
9696 {
9697         struct btrfs_root *root = fs_info->extent_root;
9698         int ret = 0;
9699         struct btrfs_key found_key;
9700         struct extent_buffer *leaf;
9701         int slot;
9702
9703         ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9704         if (ret < 0)
9705                 goto out;
9706
9707         while (1) {
9708                 slot = path->slots[0];
9709                 leaf = path->nodes[0];
9710                 if (slot >= btrfs_header_nritems(leaf)) {
9711                         ret = btrfs_next_leaf(root, path);
9712                         if (ret == 0)
9713                                 continue;
9714                         if (ret < 0)
9715                                 goto out;
9716                         break;
9717                 }
9718                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9719
9720                 if (found_key.objectid >= key->objectid &&
9721                     found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9722                         struct extent_map_tree *em_tree;
9723                         struct extent_map *em;
9724
9725                         em_tree = &root->fs_info->mapping_tree.map_tree;
9726                         read_lock(&em_tree->lock);
9727                         em = lookup_extent_mapping(em_tree, found_key.objectid,
9728                                                    found_key.offset);
9729                         read_unlock(&em_tree->lock);
9730                         if (!em) {
9731                                 btrfs_err(fs_info,
9732                         "logical %llu len %llu found bg but no related chunk",
9733                                           found_key.objectid, found_key.offset);
9734                                 ret = -ENOENT;
9735                         } else {
9736                                 ret = 0;
9737                         }
9738                         free_extent_map(em);
9739                         goto out;
9740                 }
9741                 path->slots[0]++;
9742         }
9743 out:
9744         return ret;
9745 }
9746
9747 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9748 {
9749         struct btrfs_block_group_cache *block_group;
9750         u64 last = 0;
9751
9752         while (1) {
9753                 struct inode *inode;
9754
9755                 block_group = btrfs_lookup_first_block_group(info, last);
9756                 while (block_group) {
9757                         spin_lock(&block_group->lock);
9758                         if (block_group->iref)
9759                                 break;
9760                         spin_unlock(&block_group->lock);
9761                         block_group = next_block_group(info, block_group);
9762                 }
9763                 if (!block_group) {
9764                         if (last == 0)
9765                                 break;
9766                         last = 0;
9767                         continue;
9768                 }
9769
9770                 inode = block_group->inode;
9771                 block_group->iref = 0;
9772                 block_group->inode = NULL;
9773                 spin_unlock(&block_group->lock);
9774                 ASSERT(block_group->io_ctl.inode == NULL);
9775                 iput(inode);
9776                 last = block_group->key.objectid + block_group->key.offset;
9777                 btrfs_put_block_group(block_group);
9778         }
9779 }
9780
9781 /*
9782  * Must be called only after stopping all workers, since we could have block
9783  * group caching kthreads running, and therefore they could race with us if we
9784  * freed the block groups before stopping them.
9785  */
9786 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9787 {
9788         struct btrfs_block_group_cache *block_group;
9789         struct btrfs_space_info *space_info;
9790         struct btrfs_caching_control *caching_ctl;
9791         struct rb_node *n;
9792
9793         down_write(&info->commit_root_sem);
9794         while (!list_empty(&info->caching_block_groups)) {
9795                 caching_ctl = list_entry(info->caching_block_groups.next,
9796                                          struct btrfs_caching_control, list);
9797                 list_del(&caching_ctl->list);
9798                 put_caching_control(caching_ctl);
9799         }
9800         up_write(&info->commit_root_sem);
9801
9802         spin_lock(&info->unused_bgs_lock);
9803         while (!list_empty(&info->unused_bgs)) {
9804                 block_group = list_first_entry(&info->unused_bgs,
9805                                                struct btrfs_block_group_cache,
9806                                                bg_list);
9807                 list_del_init(&block_group->bg_list);
9808                 btrfs_put_block_group(block_group);
9809         }
9810         spin_unlock(&info->unused_bgs_lock);
9811
9812         spin_lock(&info->block_group_cache_lock);
9813         while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9814                 block_group = rb_entry(n, struct btrfs_block_group_cache,
9815                                        cache_node);
9816                 rb_erase(&block_group->cache_node,
9817                          &info->block_group_cache_tree);
9818                 RB_CLEAR_NODE(&block_group->cache_node);
9819                 spin_unlock(&info->block_group_cache_lock);
9820
9821                 down_write(&block_group->space_info->groups_sem);
9822                 list_del(&block_group->list);
9823                 up_write(&block_group->space_info->groups_sem);
9824
9825                 /*
9826                  * We haven't cached this block group, which means we could
9827                  * possibly have excluded extents on this block group.
9828                  */
9829                 if (block_group->cached == BTRFS_CACHE_NO ||
9830                     block_group->cached == BTRFS_CACHE_ERROR)
9831                         free_excluded_extents(info, block_group);
9832
9833                 btrfs_remove_free_space_cache(block_group);
9834                 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
9835                 ASSERT(list_empty(&block_group->dirty_list));
9836                 ASSERT(list_empty(&block_group->io_list));
9837                 ASSERT(list_empty(&block_group->bg_list));
9838                 ASSERT(atomic_read(&block_group->count) == 1);
9839                 btrfs_put_block_group(block_group);
9840
9841                 spin_lock(&info->block_group_cache_lock);
9842         }
9843         spin_unlock(&info->block_group_cache_lock);
9844
9845         /* now that all the block groups are freed, go through and
9846          * free all the space_info structs.  This is only called during
9847          * the final stages of unmount, and so we know nobody is
9848          * using them.  We call synchronize_rcu() once before we start,
9849          * just to be on the safe side.
9850          */
9851         synchronize_rcu();
9852
9853         release_global_block_rsv(info);
9854
9855         while (!list_empty(&info->space_info)) {
9856                 int i;
9857
9858                 space_info = list_entry(info->space_info.next,
9859                                         struct btrfs_space_info,
9860                                         list);
9861
9862                 /*
9863                  * Do not hide this behind enospc_debug, this is actually
9864                  * important and indicates a real bug if this happens.
9865                  */
9866                 if (WARN_ON(space_info->bytes_pinned > 0 ||
9867                             space_info->bytes_reserved > 0 ||
9868                             space_info->bytes_may_use > 0))
9869                         dump_space_info(info, space_info, 0, 0);
9870                 list_del(&space_info->list);
9871                 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9872                         struct kobject *kobj;
9873                         kobj = space_info->block_group_kobjs[i];
9874                         space_info->block_group_kobjs[i] = NULL;
9875                         if (kobj) {
9876                                 kobject_del(kobj);
9877                                 kobject_put(kobj);
9878                         }
9879                 }
9880                 kobject_del(&space_info->kobj);
9881                 kobject_put(&space_info->kobj);
9882         }
9883         return 0;
9884 }
9885
9886 static void link_block_group(struct btrfs_block_group_cache *cache)
9887 {
9888         struct btrfs_space_info *space_info = cache->space_info;
9889         int index = btrfs_bg_flags_to_raid_index(cache->flags);
9890         bool first = false;
9891
9892         down_write(&space_info->groups_sem);
9893         if (list_empty(&space_info->block_groups[index]))
9894                 first = true;
9895         list_add_tail(&cache->list, &space_info->block_groups[index]);
9896         up_write(&space_info->groups_sem);
9897
9898         if (first) {
9899                 struct raid_kobject *rkobj;
9900                 int ret;
9901
9902                 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9903                 if (!rkobj)
9904                         goto out_err;
9905                 rkobj->raid_type = index;
9906                 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9907                 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9908                                   "%s", get_raid_name(index));
9909                 if (ret) {
9910                         kobject_put(&rkobj->kobj);
9911                         goto out_err;
9912                 }
9913                 space_info->block_group_kobjs[index] = &rkobj->kobj;
9914         }
9915
9916         return;
9917 out_err:
9918         btrfs_warn(cache->fs_info,
9919                    "failed to add kobject for block cache, ignoring");
9920 }
9921
9922 static struct btrfs_block_group_cache *
9923 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9924                                u64 start, u64 size)
9925 {
9926         struct btrfs_block_group_cache *cache;
9927
9928         cache = kzalloc(sizeof(*cache), GFP_NOFS);
9929         if (!cache)
9930                 return NULL;
9931
9932         cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9933                                         GFP_NOFS);
9934         if (!cache->free_space_ctl) {
9935                 kfree(cache);
9936                 return NULL;
9937         }
9938
9939         cache->key.objectid = start;
9940         cache->key.offset = size;
9941         cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9942
9943         cache->fs_info = fs_info;
9944         cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
9945         set_free_space_tree_thresholds(cache);
9946
9947         atomic_set(&cache->count, 1);
9948         spin_lock_init(&cache->lock);
9949         init_rwsem(&cache->data_rwsem);
9950         INIT_LIST_HEAD(&cache->list);
9951         INIT_LIST_HEAD(&cache->cluster_list);
9952         INIT_LIST_HEAD(&cache->bg_list);
9953         INIT_LIST_HEAD(&cache->ro_list);
9954         INIT_LIST_HEAD(&cache->dirty_list);
9955         INIT_LIST_HEAD(&cache->io_list);
9956         btrfs_init_free_space_ctl(cache);
9957         atomic_set(&cache->trimming, 0);
9958         mutex_init(&cache->free_space_lock);
9959         btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
9960
9961         return cache;
9962 }
9963
9964 int btrfs_read_block_groups(struct btrfs_fs_info *info)
9965 {
9966         struct btrfs_path *path;
9967         int ret;
9968         struct btrfs_block_group_cache *cache;
9969         struct btrfs_space_info *space_info;
9970         struct btrfs_key key;
9971         struct btrfs_key found_key;
9972         struct extent_buffer *leaf;
9973         int need_clear = 0;
9974         u64 cache_gen;
9975         u64 feature;
9976         int mixed;
9977
9978         feature = btrfs_super_incompat_flags(info->super_copy);
9979         mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
9980
9981         key.objectid = 0;
9982         key.offset = 0;
9983         key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9984         path = btrfs_alloc_path();
9985         if (!path)
9986                 return -ENOMEM;
9987         path->reada = READA_FORWARD;
9988
9989         cache_gen = btrfs_super_cache_generation(info->super_copy);
9990         if (btrfs_test_opt(info, SPACE_CACHE) &&
9991             btrfs_super_generation(info->super_copy) != cache_gen)
9992                 need_clear = 1;
9993         if (btrfs_test_opt(info, CLEAR_CACHE))
9994                 need_clear = 1;
9995
9996         while (1) {
9997                 ret = find_first_block_group(info, path, &key);
9998                 if (ret > 0)
9999                         break;
10000                 if (ret != 0)
10001                         goto error;
10002
10003                 leaf = path->nodes[0];
10004                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
10005
10006                 cache = btrfs_create_block_group_cache(info, found_key.objectid,
10007                                                        found_key.offset);
10008                 if (!cache) {
10009                         ret = -ENOMEM;
10010                         goto error;
10011                 }
10012
10013                 if (need_clear) {
10014                         /*
10015                          * When we mount with old space cache, we need to
10016                          * set BTRFS_DC_CLEAR and set dirty flag.
10017                          *
10018                          * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10019                          *    truncate the old free space cache inode and
10020                          *    setup a new one.
10021                          * b) Setting 'dirty flag' makes sure that we flush
10022                          *    the new space cache info onto disk.
10023                          */
10024                         if (btrfs_test_opt(info, SPACE_CACHE))
10025                                 cache->disk_cache_state = BTRFS_DC_CLEAR;
10026                 }
10027
10028                 read_extent_buffer(leaf, &cache->item,
10029                                    btrfs_item_ptr_offset(leaf, path->slots[0]),
10030                                    sizeof(cache->item));
10031                 cache->flags = btrfs_block_group_flags(&cache->item);
10032                 if (!mixed &&
10033                     ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10034                     (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10035                         btrfs_err(info,
10036 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10037                                   cache->key.objectid);
10038                         ret = -EINVAL;
10039                         goto error;
10040                 }
10041
10042                 key.objectid = found_key.objectid + found_key.offset;
10043                 btrfs_release_path(path);
10044
10045                 /*
10046                  * We need to exclude the super stripes now so that the space
10047                  * info has super bytes accounted for, otherwise we'll think
10048                  * we have more space than we actually do.
10049                  */
10050                 ret = exclude_super_stripes(info, cache);
10051                 if (ret) {
10052                         /*
10053                          * We may have excluded something, so call this just in
10054                          * case.
10055                          */
10056                         free_excluded_extents(info, cache);
10057                         btrfs_put_block_group(cache);
10058                         goto error;
10059                 }
10060
10061                 /*
10062                  * check for two cases, either we are full, and therefore
10063                  * don't need to bother with the caching work since we won't
10064                  * find any space, or we are empty, and we can just add all
10065                  * the space in and be done with it.  This saves us _alot_ of
10066                  * time, particularly in the full case.
10067                  */
10068                 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10069                         cache->last_byte_to_unpin = (u64)-1;
10070                         cache->cached = BTRFS_CACHE_FINISHED;
10071                         free_excluded_extents(info, cache);
10072                 } else if (btrfs_block_group_used(&cache->item) == 0) {
10073                         cache->last_byte_to_unpin = (u64)-1;
10074                         cache->cached = BTRFS_CACHE_FINISHED;
10075                         add_new_free_space(cache, info,
10076                                            found_key.objectid,
10077                                            found_key.objectid +
10078                                            found_key.offset);
10079                         free_excluded_extents(info, cache);
10080                 }
10081
10082                 ret = btrfs_add_block_group_cache(info, cache);
10083                 if (ret) {
10084                         btrfs_remove_free_space_cache(cache);
10085                         btrfs_put_block_group(cache);
10086                         goto error;
10087                 }
10088
10089                 trace_btrfs_add_block_group(info, cache, 0);
10090                 update_space_info(info, cache->flags, found_key.offset,
10091                                   btrfs_block_group_used(&cache->item),
10092                                   cache->bytes_super, &space_info);
10093
10094                 cache->space_info = space_info;
10095
10096                 link_block_group(cache);
10097
10098                 set_avail_alloc_bits(info, cache->flags);
10099                 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10100                         inc_block_group_ro(cache, 1);
10101                 } else if (btrfs_block_group_used(&cache->item) == 0) {
10102                         spin_lock(&info->unused_bgs_lock);
10103                         /* Should always be true but just in case. */
10104                         if (list_empty(&cache->bg_list)) {
10105                                 btrfs_get_block_group(cache);
10106                                 list_add_tail(&cache->bg_list,
10107                                               &info->unused_bgs);
10108                         }
10109                         spin_unlock(&info->unused_bgs_lock);
10110                 }
10111         }
10112
10113         list_for_each_entry_rcu(space_info, &info->space_info, list) {
10114                 if (!(get_alloc_profile(info, space_info->flags) &
10115                       (BTRFS_BLOCK_GROUP_RAID10 |
10116                        BTRFS_BLOCK_GROUP_RAID1 |
10117                        BTRFS_BLOCK_GROUP_RAID5 |
10118                        BTRFS_BLOCK_GROUP_RAID6 |
10119                        BTRFS_BLOCK_GROUP_DUP)))
10120                         continue;
10121                 /*
10122                  * avoid allocating from un-mirrored block group if there are
10123                  * mirrored block groups.
10124                  */
10125                 list_for_each_entry(cache,
10126                                 &space_info->block_groups[BTRFS_RAID_RAID0],
10127                                 list)
10128                         inc_block_group_ro(cache, 1);
10129                 list_for_each_entry(cache,
10130                                 &space_info->block_groups[BTRFS_RAID_SINGLE],
10131                                 list)
10132                         inc_block_group_ro(cache, 1);
10133         }
10134
10135         init_global_block_rsv(info);
10136         ret = 0;
10137 error:
10138         btrfs_free_path(path);
10139         return ret;
10140 }
10141
10142 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
10143 {
10144         struct btrfs_fs_info *fs_info = trans->fs_info;
10145         struct btrfs_block_group_cache *block_group, *tmp;
10146         struct btrfs_root *extent_root = fs_info->extent_root;
10147         struct btrfs_block_group_item item;
10148         struct btrfs_key key;
10149         int ret = 0;
10150         bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10151
10152         trans->can_flush_pending_bgs = false;
10153         list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
10154                 if (ret)
10155                         goto next;
10156
10157                 spin_lock(&block_group->lock);
10158                 memcpy(&item, &block_group->item, sizeof(item));
10159                 memcpy(&key, &block_group->key, sizeof(key));
10160                 spin_unlock(&block_group->lock);
10161
10162                 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10163                                         sizeof(item));
10164                 if (ret)
10165                         btrfs_abort_transaction(trans, ret);
10166                 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10167                                                key.offset);
10168                 if (ret)
10169                         btrfs_abort_transaction(trans, ret);
10170                 add_block_group_free_space(trans, fs_info, block_group);
10171                 /* already aborted the transaction if it failed. */
10172 next:
10173                 list_del_init(&block_group->bg_list);
10174         }
10175         trans->can_flush_pending_bgs = can_flush_pending_bgs;
10176 }
10177
10178 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10179                            struct btrfs_fs_info *fs_info, u64 bytes_used,
10180                            u64 type, u64 chunk_offset, u64 size)
10181 {
10182         struct btrfs_block_group_cache *cache;
10183         int ret;
10184
10185         btrfs_set_log_full_commit(fs_info, trans);
10186
10187         cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10188         if (!cache)
10189                 return -ENOMEM;
10190
10191         btrfs_set_block_group_used(&cache->item, bytes_used);
10192         btrfs_set_block_group_chunk_objectid(&cache->item,
10193                                              BTRFS_FIRST_CHUNK_TREE_OBJECTID);
10194         btrfs_set_block_group_flags(&cache->item, type);
10195
10196         cache->flags = type;
10197         cache->last_byte_to_unpin = (u64)-1;
10198         cache->cached = BTRFS_CACHE_FINISHED;
10199         cache->needs_free_space = 1;
10200         ret = exclude_super_stripes(fs_info, cache);
10201         if (ret) {
10202                 /*
10203                  * We may have excluded something, so call this just in
10204                  * case.
10205                  */
10206                 free_excluded_extents(fs_info, cache);
10207                 btrfs_put_block_group(cache);
10208                 return ret;
10209         }
10210
10211         add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
10212
10213         free_excluded_extents(fs_info, cache);
10214
10215 #ifdef CONFIG_BTRFS_DEBUG
10216         if (btrfs_should_fragment_free_space(cache)) {
10217                 u64 new_bytes_used = size - bytes_used;
10218
10219                 bytes_used += new_bytes_used >> 1;
10220                 fragment_free_space(cache);
10221         }
10222 #endif
10223         /*
10224          * Ensure the corresponding space_info object is created and
10225          * assigned to our block group. We want our bg to be added to the rbtree
10226          * with its ->space_info set.
10227          */
10228         cache->space_info = __find_space_info(fs_info, cache->flags);
10229         if (!cache->space_info) {
10230                 ret = create_space_info(fs_info, cache->flags,
10231                                        &cache->space_info);
10232                 if (ret) {
10233                         btrfs_remove_free_space_cache(cache);
10234                         btrfs_put_block_group(cache);
10235                         return ret;
10236                 }
10237         }
10238
10239         ret = btrfs_add_block_group_cache(fs_info, cache);
10240         if (ret) {
10241                 btrfs_remove_free_space_cache(cache);
10242                 btrfs_put_block_group(cache);
10243                 return ret;
10244         }
10245
10246         /*
10247          * Now that our block group has its ->space_info set and is inserted in
10248          * the rbtree, update the space info's counters.
10249          */
10250         trace_btrfs_add_block_group(fs_info, cache, 1);
10251         update_space_info(fs_info, cache->flags, size, bytes_used,
10252                                 cache->bytes_super, &cache->space_info);
10253         update_global_block_rsv(fs_info);
10254
10255         link_block_group(cache);
10256
10257         list_add_tail(&cache->bg_list, &trans->new_bgs);
10258
10259         set_avail_alloc_bits(fs_info, type);
10260         return 0;
10261 }
10262
10263 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10264 {
10265         u64 extra_flags = chunk_to_extended(flags) &
10266                                 BTRFS_EXTENDED_PROFILE_MASK;
10267
10268         write_seqlock(&fs_info->profiles_lock);
10269         if (flags & BTRFS_BLOCK_GROUP_DATA)
10270                 fs_info->avail_data_alloc_bits &= ~extra_flags;
10271         if (flags & BTRFS_BLOCK_GROUP_METADATA)
10272                 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10273         if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10274                 fs_info->avail_system_alloc_bits &= ~extra_flags;
10275         write_sequnlock(&fs_info->profiles_lock);
10276 }
10277
10278 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10279                              struct btrfs_fs_info *fs_info, u64 group_start,
10280                              struct extent_map *em)
10281 {
10282         struct btrfs_root *root = fs_info->extent_root;
10283         struct btrfs_path *path;
10284         struct btrfs_block_group_cache *block_group;
10285         struct btrfs_free_cluster *cluster;
10286         struct btrfs_root *tree_root = fs_info->tree_root;
10287         struct btrfs_key key;
10288         struct inode *inode;
10289         struct kobject *kobj = NULL;
10290         int ret;
10291         int index;
10292         int factor;
10293         struct btrfs_caching_control *caching_ctl = NULL;
10294         bool remove_em;
10295
10296         block_group = btrfs_lookup_block_group(fs_info, group_start);
10297         BUG_ON(!block_group);
10298         BUG_ON(!block_group->ro);
10299
10300         /*
10301          * Free the reserved super bytes from this block group before
10302          * remove it.
10303          */
10304         free_excluded_extents(fs_info, block_group);
10305         btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10306                                   block_group->key.offset);
10307
10308         memcpy(&key, &block_group->key, sizeof(key));
10309         index = btrfs_bg_flags_to_raid_index(block_group->flags);
10310         if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10311                                   BTRFS_BLOCK_GROUP_RAID1 |
10312                                   BTRFS_BLOCK_GROUP_RAID10))
10313                 factor = 2;
10314         else
10315                 factor = 1;
10316
10317         /* make sure this block group isn't part of an allocation cluster */
10318         cluster = &fs_info->data_alloc_cluster;
10319         spin_lock(&cluster->refill_lock);
10320         btrfs_return_cluster_to_free_space(block_group, cluster);
10321         spin_unlock(&cluster->refill_lock);
10322
10323         /*
10324          * make sure this block group isn't part of a metadata
10325          * allocation cluster
10326          */
10327         cluster = &fs_info->meta_alloc_cluster;
10328         spin_lock(&cluster->refill_lock);
10329         btrfs_return_cluster_to_free_space(block_group, cluster);
10330         spin_unlock(&cluster->refill_lock);
10331
10332         path = btrfs_alloc_path();
10333         if (!path) {
10334                 ret = -ENOMEM;
10335                 goto out;
10336         }
10337
10338         /*
10339          * get the inode first so any iput calls done for the io_list
10340          * aren't the final iput (no unlinks allowed now)
10341          */
10342         inode = lookup_free_space_inode(fs_info, block_group, path);
10343
10344         mutex_lock(&trans->transaction->cache_write_mutex);
10345         /*
10346          * make sure our free spache cache IO is done before remove the
10347          * free space inode
10348          */
10349         spin_lock(&trans->transaction->dirty_bgs_lock);
10350         if (!list_empty(&block_group->io_list)) {
10351                 list_del_init(&block_group->io_list);
10352
10353                 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10354
10355                 spin_unlock(&trans->transaction->dirty_bgs_lock);
10356                 btrfs_wait_cache_io(trans, block_group, path);
10357                 btrfs_put_block_group(block_group);
10358                 spin_lock(&trans->transaction->dirty_bgs_lock);
10359         }
10360
10361         if (!list_empty(&block_group->dirty_list)) {
10362                 list_del_init(&block_group->dirty_list);
10363                 btrfs_put_block_group(block_group);
10364         }
10365         spin_unlock(&trans->transaction->dirty_bgs_lock);
10366         mutex_unlock(&trans->transaction->cache_write_mutex);
10367
10368         if (!IS_ERR(inode)) {
10369                 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10370                 if (ret) {
10371                         btrfs_add_delayed_iput(inode);
10372                         goto out;
10373                 }
10374                 clear_nlink(inode);
10375                 /* One for the block groups ref */
10376                 spin_lock(&block_group->lock);
10377                 if (block_group->iref) {
10378                         block_group->iref = 0;
10379                         block_group->inode = NULL;
10380                         spin_unlock(&block_group->lock);
10381                         iput(inode);
10382                 } else {
10383                         spin_unlock(&block_group->lock);
10384                 }
10385                 /* One for our lookup ref */
10386                 btrfs_add_delayed_iput(inode);
10387         }
10388
10389         key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10390         key.offset = block_group->key.objectid;
10391         key.type = 0;
10392
10393         ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10394         if (ret < 0)
10395                 goto out;
10396         if (ret > 0)
10397                 btrfs_release_path(path);
10398         if (ret == 0) {
10399                 ret = btrfs_del_item(trans, tree_root, path);
10400                 if (ret)
10401                         goto out;
10402                 btrfs_release_path(path);
10403         }
10404
10405         spin_lock(&fs_info->block_group_cache_lock);
10406         rb_erase(&block_group->cache_node,
10407                  &fs_info->block_group_cache_tree);
10408         RB_CLEAR_NODE(&block_group->cache_node);
10409
10410         if (fs_info->first_logical_byte == block_group->key.objectid)
10411                 fs_info->first_logical_byte = (u64)-1;
10412         spin_unlock(&fs_info->block_group_cache_lock);
10413
10414         down_write(&block_group->space_info->groups_sem);
10415         /*
10416          * we must use list_del_init so people can check to see if they
10417          * are still on the list after taking the semaphore
10418          */
10419         list_del_init(&block_group->list);
10420         if (list_empty(&block_group->space_info->block_groups[index])) {
10421                 kobj = block_group->space_info->block_group_kobjs[index];
10422                 block_group->space_info->block_group_kobjs[index] = NULL;
10423                 clear_avail_alloc_bits(fs_info, block_group->flags);
10424         }
10425         up_write(&block_group->space_info->groups_sem);
10426         if (kobj) {
10427                 kobject_del(kobj);
10428                 kobject_put(kobj);
10429         }
10430
10431         if (block_group->has_caching_ctl)
10432                 caching_ctl = get_caching_control(block_group);
10433         if (block_group->cached == BTRFS_CACHE_STARTED)
10434                 wait_block_group_cache_done(block_group);
10435         if (block_group->has_caching_ctl) {
10436                 down_write(&fs_info->commit_root_sem);
10437                 if (!caching_ctl) {
10438                         struct btrfs_caching_control *ctl;
10439
10440                         list_for_each_entry(ctl,
10441                                     &fs_info->caching_block_groups, list)
10442                                 if (ctl->block_group == block_group) {
10443                                         caching_ctl = ctl;
10444                                         refcount_inc(&caching_ctl->count);
10445                                         break;
10446                                 }
10447                 }
10448                 if (caching_ctl)
10449                         list_del_init(&caching_ctl->list);
10450                 up_write(&fs_info->commit_root_sem);
10451                 if (caching_ctl) {
10452                         /* Once for the caching bgs list and once for us. */
10453                         put_caching_control(caching_ctl);
10454                         put_caching_control(caching_ctl);
10455                 }
10456         }
10457
10458         spin_lock(&trans->transaction->dirty_bgs_lock);
10459         if (!list_empty(&block_group->dirty_list)) {
10460                 WARN_ON(1);
10461         }
10462         if (!list_empty(&block_group->io_list)) {
10463                 WARN_ON(1);
10464         }
10465         spin_unlock(&trans->transaction->dirty_bgs_lock);
10466         btrfs_remove_free_space_cache(block_group);
10467
10468         spin_lock(&block_group->space_info->lock);
10469         list_del_init(&block_group->ro_list);
10470
10471         if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10472                 WARN_ON(block_group->space_info->total_bytes
10473                         < block_group->key.offset);
10474                 WARN_ON(block_group->space_info->bytes_readonly
10475                         < block_group->key.offset);
10476                 WARN_ON(block_group->space_info->disk_total
10477                         < block_group->key.offset * factor);
10478         }
10479         block_group->space_info->total_bytes -= block_group->key.offset;
10480         block_group->space_info->bytes_readonly -= block_group->key.offset;
10481         block_group->space_info->disk_total -= block_group->key.offset * factor;
10482
10483         spin_unlock(&block_group->space_info->lock);
10484
10485         memcpy(&key, &block_group->key, sizeof(key));
10486
10487         mutex_lock(&fs_info->chunk_mutex);
10488         if (!list_empty(&em->list)) {
10489                 /* We're in the transaction->pending_chunks list. */
10490                 free_extent_map(em);
10491         }
10492         spin_lock(&block_group->lock);
10493         block_group->removed = 1;
10494         /*
10495          * At this point trimming can't start on this block group, because we
10496          * removed the block group from the tree fs_info->block_group_cache_tree
10497          * so no one can't find it anymore and even if someone already got this
10498          * block group before we removed it from the rbtree, they have already
10499          * incremented block_group->trimming - if they didn't, they won't find
10500          * any free space entries because we already removed them all when we
10501          * called btrfs_remove_free_space_cache().
10502          *
10503          * And we must not remove the extent map from the fs_info->mapping_tree
10504          * to prevent the same logical address range and physical device space
10505          * ranges from being reused for a new block group. This is because our
10506          * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10507          * completely transactionless, so while it is trimming a range the
10508          * currently running transaction might finish and a new one start,
10509          * allowing for new block groups to be created that can reuse the same
10510          * physical device locations unless we take this special care.
10511          *
10512          * There may also be an implicit trim operation if the file system
10513          * is mounted with -odiscard. The same protections must remain
10514          * in place until the extents have been discarded completely when
10515          * the transaction commit has completed.
10516          */
10517         remove_em = (atomic_read(&block_group->trimming) == 0);
10518         /*
10519          * Make sure a trimmer task always sees the em in the pinned_chunks list
10520          * if it sees block_group->removed == 1 (needs to lock block_group->lock
10521          * before checking block_group->removed).
10522          */
10523         if (!remove_em) {
10524                 /*
10525                  * Our em might be in trans->transaction->pending_chunks which
10526                  * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10527                  * and so is the fs_info->pinned_chunks list.
10528                  *
10529                  * So at this point we must be holding the chunk_mutex to avoid
10530                  * any races with chunk allocation (more specifically at
10531                  * volumes.c:contains_pending_extent()), to ensure it always
10532                  * sees the em, either in the pending_chunks list or in the
10533                  * pinned_chunks list.
10534                  */
10535                 list_move_tail(&em->list, &fs_info->pinned_chunks);
10536         }
10537         spin_unlock(&block_group->lock);
10538
10539         if (remove_em) {
10540                 struct extent_map_tree *em_tree;
10541
10542                 em_tree = &fs_info->mapping_tree.map_tree;
10543                 write_lock(&em_tree->lock);
10544                 /*
10545                  * The em might be in the pending_chunks list, so make sure the
10546                  * chunk mutex is locked, since remove_extent_mapping() will
10547                  * delete us from that list.
10548                  */
10549                 remove_extent_mapping(em_tree, em);
10550                 write_unlock(&em_tree->lock);
10551                 /* once for the tree */
10552                 free_extent_map(em);
10553         }
10554
10555         mutex_unlock(&fs_info->chunk_mutex);
10556
10557         ret = remove_block_group_free_space(trans, fs_info, block_group);
10558         if (ret)
10559                 goto out;
10560
10561         btrfs_put_block_group(block_group);
10562         btrfs_put_block_group(block_group);
10563
10564         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10565         if (ret > 0)
10566                 ret = -EIO;
10567         if (ret < 0)
10568                 goto out;
10569
10570         ret = btrfs_del_item(trans, root, path);
10571 out:
10572         btrfs_free_path(path);
10573         return ret;
10574 }
10575
10576 struct btrfs_trans_handle *
10577 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10578                                      const u64 chunk_offset)
10579 {
10580         struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10581         struct extent_map *em;
10582         struct map_lookup *map;
10583         unsigned int num_items;
10584
10585         read_lock(&em_tree->lock);
10586         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10587         read_unlock(&em_tree->lock);
10588         ASSERT(em && em->start == chunk_offset);
10589
10590         /*
10591          * We need to reserve 3 + N units from the metadata space info in order
10592          * to remove a block group (done at btrfs_remove_chunk() and at
10593          * btrfs_remove_block_group()), which are used for:
10594          *
10595          * 1 unit for adding the free space inode's orphan (located in the tree
10596          * of tree roots).
10597          * 1 unit for deleting the block group item (located in the extent
10598          * tree).
10599          * 1 unit for deleting the free space item (located in tree of tree
10600          * roots).
10601          * N units for deleting N device extent items corresponding to each
10602          * stripe (located in the device tree).
10603          *
10604          * In order to remove a block group we also need to reserve units in the
10605          * system space info in order to update the chunk tree (update one or
10606          * more device items and remove one chunk item), but this is done at
10607          * btrfs_remove_chunk() through a call to check_system_chunk().
10608          */
10609         map = em->map_lookup;
10610         num_items = 3 + map->num_stripes;
10611         free_extent_map(em);
10612
10613         return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10614                                                            num_items, 1);
10615 }
10616
10617 /*
10618  * Process the unused_bgs list and remove any that don't have any allocated
10619  * space inside of them.
10620  */
10621 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10622 {
10623         struct btrfs_block_group_cache *block_group;
10624         struct btrfs_space_info *space_info;
10625         struct btrfs_trans_handle *trans;
10626         int ret = 0;
10627
10628         if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10629                 return;
10630
10631         spin_lock(&fs_info->unused_bgs_lock);
10632         while (!list_empty(&fs_info->unused_bgs)) {
10633                 u64 start, end;
10634                 int trimming;
10635
10636                 block_group = list_first_entry(&fs_info->unused_bgs,
10637                                                struct btrfs_block_group_cache,
10638                                                bg_list);
10639                 list_del_init(&block_group->bg_list);
10640
10641                 space_info = block_group->space_info;
10642
10643                 if (ret || btrfs_mixed_space_info(space_info)) {
10644                         btrfs_put_block_group(block_group);
10645                         continue;
10646                 }
10647                 spin_unlock(&fs_info->unused_bgs_lock);
10648
10649                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10650
10651                 /* Don't want to race with allocators so take the groups_sem */
10652                 down_write(&space_info->groups_sem);
10653                 spin_lock(&block_group->lock);
10654                 if (block_group->reserved ||
10655                     btrfs_block_group_used(&block_group->item) ||
10656                     block_group->ro ||
10657                     list_is_singular(&block_group->list)) {
10658                         /*
10659                          * We want to bail if we made new allocations or have
10660                          * outstanding allocations in this block group.  We do
10661                          * the ro check in case balance is currently acting on
10662                          * this block group.
10663                          */
10664                         spin_unlock(&block_group->lock);
10665                         up_write(&space_info->groups_sem);
10666                         goto next;
10667                 }
10668                 spin_unlock(&block_group->lock);
10669
10670                 /* We don't want to force the issue, only flip if it's ok. */
10671                 ret = inc_block_group_ro(block_group, 0);
10672                 up_write(&space_info->groups_sem);
10673                 if (ret < 0) {
10674                         ret = 0;
10675                         goto next;
10676                 }
10677
10678                 /*
10679                  * Want to do this before we do anything else so we can recover
10680                  * properly if we fail to join the transaction.
10681                  */
10682                 trans = btrfs_start_trans_remove_block_group(fs_info,
10683                                                      block_group->key.objectid);
10684                 if (IS_ERR(trans)) {
10685                         btrfs_dec_block_group_ro(block_group);
10686                         ret = PTR_ERR(trans);
10687                         goto next;
10688                 }
10689
10690                 /*
10691                  * We could have pending pinned extents for this block group,
10692                  * just delete them, we don't care about them anymore.
10693                  */
10694                 start = block_group->key.objectid;
10695                 end = start + block_group->key.offset - 1;
10696                 /*
10697                  * Hold the unused_bg_unpin_mutex lock to avoid racing with
10698                  * btrfs_finish_extent_commit(). If we are at transaction N,
10699                  * another task might be running finish_extent_commit() for the
10700                  * previous transaction N - 1, and have seen a range belonging
10701                  * to the block group in freed_extents[] before we were able to
10702                  * clear the whole block group range from freed_extents[]. This
10703                  * means that task can lookup for the block group after we
10704                  * unpinned it from freed_extents[] and removed it, leading to
10705                  * a BUG_ON() at btrfs_unpin_extent_range().
10706                  */
10707                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10708                 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10709                                   EXTENT_DIRTY);
10710                 if (ret) {
10711                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10712                         btrfs_dec_block_group_ro(block_group);
10713                         goto end_trans;
10714                 }
10715                 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10716                                   EXTENT_DIRTY);
10717                 if (ret) {
10718                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10719                         btrfs_dec_block_group_ro(block_group);
10720                         goto end_trans;
10721                 }
10722                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10723
10724                 /* Reset pinned so btrfs_put_block_group doesn't complain */
10725                 spin_lock(&space_info->lock);
10726                 spin_lock(&block_group->lock);
10727
10728                 space_info->bytes_pinned -= block_group->pinned;
10729                 space_info->bytes_readonly += block_group->pinned;
10730                 percpu_counter_add(&space_info->total_bytes_pinned,
10731                                    -block_group->pinned);
10732                 block_group->pinned = 0;
10733
10734                 spin_unlock(&block_group->lock);
10735                 spin_unlock(&space_info->lock);
10736
10737                 /* DISCARD can flip during remount */
10738                 trimming = btrfs_test_opt(fs_info, DISCARD);
10739
10740                 /* Implicit trim during transaction commit. */
10741                 if (trimming)
10742                         btrfs_get_block_group_trimming(block_group);
10743
10744                 /*
10745                  * Btrfs_remove_chunk will abort the transaction if things go
10746                  * horribly wrong.
10747                  */
10748                 ret = btrfs_remove_chunk(trans, fs_info,
10749                                          block_group->key.objectid);
10750
10751                 if (ret) {
10752                         if (trimming)
10753                                 btrfs_put_block_group_trimming(block_group);
10754                         goto end_trans;
10755                 }
10756
10757                 /*
10758                  * If we're not mounted with -odiscard, we can just forget
10759                  * about this block group. Otherwise we'll need to wait
10760                  * until transaction commit to do the actual discard.
10761                  */
10762                 if (trimming) {
10763                         spin_lock(&fs_info->unused_bgs_lock);
10764                         /*
10765                          * A concurrent scrub might have added us to the list
10766                          * fs_info->unused_bgs, so use a list_move operation
10767                          * to add the block group to the deleted_bgs list.
10768                          */
10769                         list_move(&block_group->bg_list,
10770                                   &trans->transaction->deleted_bgs);
10771                         spin_unlock(&fs_info->unused_bgs_lock);
10772                         btrfs_get_block_group(block_group);
10773                 }
10774 end_trans:
10775                 btrfs_end_transaction(trans);
10776 next:
10777                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
10778                 btrfs_put_block_group(block_group);
10779                 spin_lock(&fs_info->unused_bgs_lock);
10780         }
10781         spin_unlock(&fs_info->unused_bgs_lock);
10782 }
10783
10784 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10785 {
10786         struct btrfs_space_info *space_info;
10787         struct btrfs_super_block *disk_super;
10788         u64 features;
10789         u64 flags;
10790         int mixed = 0;
10791         int ret;
10792
10793         disk_super = fs_info->super_copy;
10794         if (!btrfs_super_root(disk_super))
10795                 return -EINVAL;
10796
10797         features = btrfs_super_incompat_flags(disk_super);
10798         if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10799                 mixed = 1;
10800
10801         flags = BTRFS_BLOCK_GROUP_SYSTEM;
10802         ret = create_space_info(fs_info, flags, &space_info);
10803         if (ret)
10804                 goto out;
10805
10806         if (mixed) {
10807                 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10808                 ret = create_space_info(fs_info, flags, &space_info);
10809         } else {
10810                 flags = BTRFS_BLOCK_GROUP_METADATA;
10811                 ret = create_space_info(fs_info, flags, &space_info);
10812                 if (ret)
10813                         goto out;
10814
10815                 flags = BTRFS_BLOCK_GROUP_DATA;
10816                 ret = create_space_info(fs_info, flags, &space_info);
10817         }
10818 out:
10819         return ret;
10820 }
10821
10822 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10823                                    u64 start, u64 end)
10824 {
10825         return unpin_extent_range(fs_info, start, end, false);
10826 }
10827
10828 /*
10829  * It used to be that old block groups would be left around forever.
10830  * Iterating over them would be enough to trim unused space.  Since we
10831  * now automatically remove them, we also need to iterate over unallocated
10832  * space.
10833  *
10834  * We don't want a transaction for this since the discard may take a
10835  * substantial amount of time.  We don't require that a transaction be
10836  * running, but we do need to take a running transaction into account
10837  * to ensure that we're not discarding chunks that were released in
10838  * the current transaction.
10839  *
10840  * Holding the chunks lock will prevent other threads from allocating
10841  * or releasing chunks, but it won't prevent a running transaction
10842  * from committing and releasing the memory that the pending chunks
10843  * list head uses.  For that, we need to take a reference to the
10844  * transaction.
10845  */
10846 static int btrfs_trim_free_extents(struct btrfs_device *device,
10847                                    u64 minlen, u64 *trimmed)
10848 {
10849         u64 start = 0, len = 0;
10850         int ret;
10851
10852         *trimmed = 0;
10853
10854         /* Not writeable = nothing to do. */
10855         if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
10856                 return 0;
10857
10858         /* No free space = nothing to do. */
10859         if (device->total_bytes <= device->bytes_used)
10860                 return 0;
10861
10862         ret = 0;
10863
10864         while (1) {
10865                 struct btrfs_fs_info *fs_info = device->fs_info;
10866                 struct btrfs_transaction *trans;
10867                 u64 bytes;
10868
10869                 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10870                 if (ret)
10871                         return ret;
10872
10873                 down_read(&fs_info->commit_root_sem);
10874
10875                 spin_lock(&fs_info->trans_lock);
10876                 trans = fs_info->running_transaction;
10877                 if (trans)
10878                         refcount_inc(&trans->use_count);
10879                 spin_unlock(&fs_info->trans_lock);
10880
10881                 ret = find_free_dev_extent_start(trans, device, minlen, start,
10882                                                  &start, &len);
10883                 if (trans)
10884                         btrfs_put_transaction(trans);
10885
10886                 if (ret) {
10887                         up_read(&fs_info->commit_root_sem);
10888                         mutex_unlock(&fs_info->chunk_mutex);
10889                         if (ret == -ENOSPC)
10890                                 ret = 0;
10891                         break;
10892                 }
10893
10894                 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10895                 up_read(&fs_info->commit_root_sem);
10896                 mutex_unlock(&fs_info->chunk_mutex);
10897
10898                 if (ret)
10899                         break;
10900
10901                 start += len;
10902                 *trimmed += bytes;
10903
10904                 if (fatal_signal_pending(current)) {
10905                         ret = -ERESTARTSYS;
10906                         break;
10907                 }
10908
10909                 cond_resched();
10910         }
10911
10912         return ret;
10913 }
10914
10915 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
10916 {
10917         struct btrfs_block_group_cache *cache = NULL;
10918         struct btrfs_device *device;
10919         struct list_head *devices;
10920         u64 group_trimmed;
10921         u64 start;
10922         u64 end;
10923         u64 trimmed = 0;
10924         u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
10925         int ret = 0;
10926
10927         /*
10928          * try to trim all FS space, our block group may start from non-zero.
10929          */
10930         if (range->len == total_bytes)
10931                 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10932         else
10933                 cache = btrfs_lookup_block_group(fs_info, range->start);
10934
10935         while (cache) {
10936                 if (cache->key.objectid >= (range->start + range->len)) {
10937                         btrfs_put_block_group(cache);
10938                         break;
10939                 }
10940
10941                 start = max(range->start, cache->key.objectid);
10942                 end = min(range->start + range->len,
10943                                 cache->key.objectid + cache->key.offset);
10944
10945                 if (end - start >= range->minlen) {
10946                         if (!block_group_cache_done(cache)) {
10947                                 ret = cache_block_group(cache, 0);
10948                                 if (ret) {
10949                                         btrfs_put_block_group(cache);
10950                                         break;
10951                                 }
10952                                 ret = wait_block_group_cache_done(cache);
10953                                 if (ret) {
10954                                         btrfs_put_block_group(cache);
10955                                         break;
10956                                 }
10957                         }
10958                         ret = btrfs_trim_block_group(cache,
10959                                                      &group_trimmed,
10960                                                      start,
10961                                                      end,
10962                                                      range->minlen);
10963
10964                         trimmed += group_trimmed;
10965                         if (ret) {
10966                                 btrfs_put_block_group(cache);
10967                                 break;
10968                         }
10969                 }
10970
10971                 cache = next_block_group(fs_info, cache);
10972         }
10973
10974         mutex_lock(&fs_info->fs_devices->device_list_mutex);
10975         devices = &fs_info->fs_devices->alloc_list;
10976         list_for_each_entry(device, devices, dev_alloc_list) {
10977                 ret = btrfs_trim_free_extents(device, range->minlen,
10978                                               &group_trimmed);
10979                 if (ret)
10980                         break;
10981
10982                 trimmed += group_trimmed;
10983         }
10984         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
10985
10986         range->len = trimmed;
10987         return ret;
10988 }
10989
10990 /*
10991  * btrfs_{start,end}_write_no_snapshotting() are similar to
10992  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10993  * data into the page cache through nocow before the subvolume is snapshoted,
10994  * but flush the data into disk after the snapshot creation, or to prevent
10995  * operations while snapshotting is ongoing and that cause the snapshot to be
10996  * inconsistent (writes followed by expanding truncates for example).
10997  */
10998 void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
10999 {
11000         percpu_counter_dec(&root->subv_writers->counter);
11001         /*
11002          * Make sure counter is updated before we wake up waiters.
11003          */
11004         smp_mb();
11005         if (waitqueue_active(&root->subv_writers->wait))
11006                 wake_up(&root->subv_writers->wait);
11007 }
11008
11009 int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
11010 {
11011         if (atomic_read(&root->will_be_snapshotted))
11012                 return 0;
11013
11014         percpu_counter_inc(&root->subv_writers->counter);
11015         /*
11016          * Make sure counter is updated before we check for snapshot creation.
11017          */
11018         smp_mb();
11019         if (atomic_read(&root->will_be_snapshotted)) {
11020                 btrfs_end_write_no_snapshotting(root);
11021                 return 0;
11022         }
11023         return 1;
11024 }
11025
11026 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11027 {
11028         while (true) {
11029                 int ret;
11030
11031                 ret = btrfs_start_write_no_snapshotting(root);
11032                 if (ret)
11033                         break;
11034                 wait_on_atomic_t(&root->will_be_snapshotted, atomic_t_wait,
11035                                  TASK_UNINTERRUPTIBLE);
11036         }
11037 }