1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/sched/signal.h>
8 #include <linux/pagemap.h>
9 #include <linux/writeback.h>
10 #include <linux/blkdev.h>
11 #include <linux/sort.h>
12 #include <linux/rcupdate.h>
13 #include <linux/kthread.h>
14 #include <linux/slab.h>
15 #include <linux/ratelimit.h>
16 #include <linux/percpu_counter.h>
17 #include <linux/lockdep.h>
18 #include <linux/crc32c.h>
21 #include "print-tree.h"
25 #include "free-space-cache.h"
26 #include "free-space-tree.h"
30 #include "ref-verify.h"
32 #undef SCRAMBLE_DELAYED_REFS
35 * control flags for do_chunk_alloc's force field
36 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
37 * if we really need one.
39 * CHUNK_ALLOC_LIMITED means to only try and allocate one
40 * if we have very few chunks already allocated. This is
41 * used as part of the clustering code to help make sure
42 * we have a good pool of storage to cluster in, without
43 * filling the FS with empty chunks
45 * CHUNK_ALLOC_FORCE means it must try to allocate one
49 CHUNK_ALLOC_NO_FORCE = 0,
50 CHUNK_ALLOC_LIMITED = 1,
51 CHUNK_ALLOC_FORCE = 2,
55 * Declare a helper function to detect underflow of various space info members
57 #define DECLARE_SPACE_INFO_UPDATE(name) \
58 static inline void update_##name(struct btrfs_space_info *sinfo, \
61 if (bytes < 0 && sinfo->name < -bytes) { \
66 sinfo->name += bytes; \
69 DECLARE_SPACE_INFO_UPDATE(bytes_may_use);
70 DECLARE_SPACE_INFO_UPDATE(bytes_pinned);
72 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
73 struct btrfs_delayed_ref_node *node, u64 parent,
74 u64 root_objectid, u64 owner_objectid,
75 u64 owner_offset, int refs_to_drop,
76 struct btrfs_delayed_extent_op *extra_op);
77 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
78 struct extent_buffer *leaf,
79 struct btrfs_extent_item *ei);
80 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
81 u64 parent, u64 root_objectid,
82 u64 flags, u64 owner, u64 offset,
83 struct btrfs_key *ins, int ref_mod);
84 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
85 struct btrfs_delayed_ref_node *node,
86 struct btrfs_delayed_extent_op *extent_op);
87 static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
89 static int find_next_key(struct btrfs_path *path, int level,
90 struct btrfs_key *key);
91 static void dump_space_info(struct btrfs_fs_info *fs_info,
92 struct btrfs_space_info *info, u64 bytes,
93 int dump_block_groups);
94 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
96 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
97 struct btrfs_space_info *space_info,
99 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
100 struct btrfs_space_info *space_info,
104 block_group_cache_done(struct btrfs_block_group_cache *cache)
107 return cache->cached == BTRFS_CACHE_FINISHED ||
108 cache->cached == BTRFS_CACHE_ERROR;
111 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
113 return (cache->flags & bits) == bits;
116 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
118 atomic_inc(&cache->count);
121 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
123 if (atomic_dec_and_test(&cache->count)) {
124 WARN_ON(cache->pinned > 0);
125 WARN_ON(cache->reserved > 0);
128 * If not empty, someone is still holding mutex of
129 * full_stripe_lock, which can only be released by caller.
130 * And it will definitely cause use-after-free when caller
131 * tries to release full stripe lock.
133 * No better way to resolve, but only to warn.
135 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
136 kfree(cache->free_space_ctl);
142 * this adds the block group to the fs_info rb tree for the block group
145 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
146 struct btrfs_block_group_cache *block_group)
149 struct rb_node *parent = NULL;
150 struct btrfs_block_group_cache *cache;
152 spin_lock(&info->block_group_cache_lock);
153 p = &info->block_group_cache_tree.rb_node;
157 cache = rb_entry(parent, struct btrfs_block_group_cache,
159 if (block_group->key.objectid < cache->key.objectid) {
161 } else if (block_group->key.objectid > cache->key.objectid) {
164 spin_unlock(&info->block_group_cache_lock);
169 rb_link_node(&block_group->cache_node, parent, p);
170 rb_insert_color(&block_group->cache_node,
171 &info->block_group_cache_tree);
173 if (info->first_logical_byte > block_group->key.objectid)
174 info->first_logical_byte = block_group->key.objectid;
176 spin_unlock(&info->block_group_cache_lock);
182 * This will return the block group at or after bytenr if contains is 0, else
183 * it will return the block group that contains the bytenr
185 static struct btrfs_block_group_cache *
186 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 struct btrfs_block_group_cache *cache, *ret = NULL;
193 spin_lock(&info->block_group_cache_lock);
194 n = info->block_group_cache_tree.rb_node;
197 cache = rb_entry(n, struct btrfs_block_group_cache,
199 end = cache->key.objectid + cache->key.offset - 1;
200 start = cache->key.objectid;
202 if (bytenr < start) {
203 if (!contains && (!ret || start < ret->key.objectid))
206 } else if (bytenr > start) {
207 if (contains && bytenr <= end) {
218 btrfs_get_block_group(ret);
219 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
220 info->first_logical_byte = ret->key.objectid;
222 spin_unlock(&info->block_group_cache_lock);
227 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
228 u64 start, u64 num_bytes)
230 u64 end = start + num_bytes - 1;
231 set_extent_bits(&fs_info->freed_extents[0],
232 start, end, EXTENT_UPTODATE);
233 set_extent_bits(&fs_info->freed_extents[1],
234 start, end, EXTENT_UPTODATE);
238 static void free_excluded_extents(struct btrfs_block_group_cache *cache)
240 struct btrfs_fs_info *fs_info = cache->fs_info;
243 start = cache->key.objectid;
244 end = start + cache->key.offset - 1;
246 clear_extent_bits(&fs_info->freed_extents[0],
247 start, end, EXTENT_UPTODATE);
248 clear_extent_bits(&fs_info->freed_extents[1],
249 start, end, EXTENT_UPTODATE);
252 static int exclude_super_stripes(struct btrfs_block_group_cache *cache)
254 struct btrfs_fs_info *fs_info = cache->fs_info;
260 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
261 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
262 cache->bytes_super += stripe_len;
263 ret = add_excluded_extent(fs_info, cache->key.objectid,
269 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
270 bytenr = btrfs_sb_offset(i);
271 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
272 bytenr, &logical, &nr, &stripe_len);
279 if (logical[nr] > cache->key.objectid +
283 if (logical[nr] + stripe_len <= cache->key.objectid)
287 if (start < cache->key.objectid) {
288 start = cache->key.objectid;
289 len = (logical[nr] + stripe_len) - start;
291 len = min_t(u64, stripe_len,
292 cache->key.objectid +
293 cache->key.offset - start);
296 cache->bytes_super += len;
297 ret = add_excluded_extent(fs_info, start, len);
309 static struct btrfs_caching_control *
310 get_caching_control(struct btrfs_block_group_cache *cache)
312 struct btrfs_caching_control *ctl;
314 spin_lock(&cache->lock);
315 if (!cache->caching_ctl) {
316 spin_unlock(&cache->lock);
320 ctl = cache->caching_ctl;
321 refcount_inc(&ctl->count);
322 spin_unlock(&cache->lock);
326 static void put_caching_control(struct btrfs_caching_control *ctl)
328 if (refcount_dec_and_test(&ctl->count))
332 #ifdef CONFIG_BTRFS_DEBUG
333 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
335 struct btrfs_fs_info *fs_info = block_group->fs_info;
336 u64 start = block_group->key.objectid;
337 u64 len = block_group->key.offset;
338 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
339 fs_info->nodesize : fs_info->sectorsize;
340 u64 step = chunk << 1;
342 while (len > chunk) {
343 btrfs_remove_free_space(block_group, start, chunk);
354 * this is only called by cache_block_group, since we could have freed extents
355 * we need to check the pinned_extents for any extents that can't be used yet
356 * since their free space will be released as soon as the transaction commits.
358 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
361 struct btrfs_fs_info *info = block_group->fs_info;
362 u64 extent_start, extent_end, size, total_added = 0;
365 while (start < end) {
366 ret = find_first_extent_bit(info->pinned_extents, start,
367 &extent_start, &extent_end,
368 EXTENT_DIRTY | EXTENT_UPTODATE,
373 if (extent_start <= start) {
374 start = extent_end + 1;
375 } else if (extent_start > start && extent_start < end) {
376 size = extent_start - start;
378 ret = btrfs_add_free_space(block_group, start,
380 BUG_ON(ret); /* -ENOMEM or logic error */
381 start = extent_end + 1;
390 ret = btrfs_add_free_space(block_group, start, size);
391 BUG_ON(ret); /* -ENOMEM or logic error */
397 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
399 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
400 struct btrfs_fs_info *fs_info = block_group->fs_info;
401 struct btrfs_root *extent_root = fs_info->extent_root;
402 struct btrfs_path *path;
403 struct extent_buffer *leaf;
404 struct btrfs_key key;
411 path = btrfs_alloc_path();
415 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
417 #ifdef CONFIG_BTRFS_DEBUG
419 * If we're fragmenting we don't want to make anybody think we can
420 * allocate from this block group until we've had a chance to fragment
423 if (btrfs_should_fragment_free_space(block_group))
427 * We don't want to deadlock with somebody trying to allocate a new
428 * extent for the extent root while also trying to search the extent
429 * root to add free space. So we skip locking and search the commit
430 * root, since its read-only
432 path->skip_locking = 1;
433 path->search_commit_root = 1;
434 path->reada = READA_FORWARD;
438 key.type = BTRFS_EXTENT_ITEM_KEY;
441 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
445 leaf = path->nodes[0];
446 nritems = btrfs_header_nritems(leaf);
449 if (btrfs_fs_closing(fs_info) > 1) {
454 if (path->slots[0] < nritems) {
455 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
457 ret = find_next_key(path, 0, &key);
461 if (need_resched() ||
462 rwsem_is_contended(&fs_info->commit_root_sem)) {
464 caching_ctl->progress = last;
465 btrfs_release_path(path);
466 up_read(&fs_info->commit_root_sem);
467 mutex_unlock(&caching_ctl->mutex);
469 mutex_lock(&caching_ctl->mutex);
470 down_read(&fs_info->commit_root_sem);
474 ret = btrfs_next_leaf(extent_root, path);
479 leaf = path->nodes[0];
480 nritems = btrfs_header_nritems(leaf);
484 if (key.objectid < last) {
487 key.type = BTRFS_EXTENT_ITEM_KEY;
490 caching_ctl->progress = last;
491 btrfs_release_path(path);
495 if (key.objectid < block_group->key.objectid) {
500 if (key.objectid >= block_group->key.objectid +
501 block_group->key.offset)
504 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
505 key.type == BTRFS_METADATA_ITEM_KEY) {
506 total_found += add_new_free_space(block_group, last,
508 if (key.type == BTRFS_METADATA_ITEM_KEY)
509 last = key.objectid +
512 last = key.objectid + key.offset;
514 if (total_found > CACHING_CTL_WAKE_UP) {
517 wake_up(&caching_ctl->wait);
524 total_found += add_new_free_space(block_group, last,
525 block_group->key.objectid +
526 block_group->key.offset);
527 caching_ctl->progress = (u64)-1;
530 btrfs_free_path(path);
534 static noinline void caching_thread(struct btrfs_work *work)
536 struct btrfs_block_group_cache *block_group;
537 struct btrfs_fs_info *fs_info;
538 struct btrfs_caching_control *caching_ctl;
541 caching_ctl = container_of(work, struct btrfs_caching_control, work);
542 block_group = caching_ctl->block_group;
543 fs_info = block_group->fs_info;
545 mutex_lock(&caching_ctl->mutex);
546 down_read(&fs_info->commit_root_sem);
548 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
549 ret = load_free_space_tree(caching_ctl);
551 ret = load_extent_tree_free(caching_ctl);
553 spin_lock(&block_group->lock);
554 block_group->caching_ctl = NULL;
555 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
556 spin_unlock(&block_group->lock);
558 #ifdef CONFIG_BTRFS_DEBUG
559 if (btrfs_should_fragment_free_space(block_group)) {
562 spin_lock(&block_group->space_info->lock);
563 spin_lock(&block_group->lock);
564 bytes_used = block_group->key.offset -
565 btrfs_block_group_used(&block_group->item);
566 block_group->space_info->bytes_used += bytes_used >> 1;
567 spin_unlock(&block_group->lock);
568 spin_unlock(&block_group->space_info->lock);
569 fragment_free_space(block_group);
573 caching_ctl->progress = (u64)-1;
575 up_read(&fs_info->commit_root_sem);
576 free_excluded_extents(block_group);
577 mutex_unlock(&caching_ctl->mutex);
579 wake_up(&caching_ctl->wait);
581 put_caching_control(caching_ctl);
582 btrfs_put_block_group(block_group);
585 static int cache_block_group(struct btrfs_block_group_cache *cache,
589 struct btrfs_fs_info *fs_info = cache->fs_info;
590 struct btrfs_caching_control *caching_ctl;
593 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
597 INIT_LIST_HEAD(&caching_ctl->list);
598 mutex_init(&caching_ctl->mutex);
599 init_waitqueue_head(&caching_ctl->wait);
600 caching_ctl->block_group = cache;
601 caching_ctl->progress = cache->key.objectid;
602 refcount_set(&caching_ctl->count, 1);
603 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
604 caching_thread, NULL, NULL);
606 spin_lock(&cache->lock);
608 * This should be a rare occasion, but this could happen I think in the
609 * case where one thread starts to load the space cache info, and then
610 * some other thread starts a transaction commit which tries to do an
611 * allocation while the other thread is still loading the space cache
612 * info. The previous loop should have kept us from choosing this block
613 * group, but if we've moved to the state where we will wait on caching
614 * block groups we need to first check if we're doing a fast load here,
615 * so we can wait for it to finish, otherwise we could end up allocating
616 * from a block group who's cache gets evicted for one reason or
619 while (cache->cached == BTRFS_CACHE_FAST) {
620 struct btrfs_caching_control *ctl;
622 ctl = cache->caching_ctl;
623 refcount_inc(&ctl->count);
624 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
625 spin_unlock(&cache->lock);
629 finish_wait(&ctl->wait, &wait);
630 put_caching_control(ctl);
631 spin_lock(&cache->lock);
634 if (cache->cached != BTRFS_CACHE_NO) {
635 spin_unlock(&cache->lock);
639 WARN_ON(cache->caching_ctl);
640 cache->caching_ctl = caching_ctl;
641 cache->cached = BTRFS_CACHE_FAST;
642 spin_unlock(&cache->lock);
644 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
645 mutex_lock(&caching_ctl->mutex);
646 ret = load_free_space_cache(fs_info, cache);
648 spin_lock(&cache->lock);
650 cache->caching_ctl = NULL;
651 cache->cached = BTRFS_CACHE_FINISHED;
652 cache->last_byte_to_unpin = (u64)-1;
653 caching_ctl->progress = (u64)-1;
655 if (load_cache_only) {
656 cache->caching_ctl = NULL;
657 cache->cached = BTRFS_CACHE_NO;
659 cache->cached = BTRFS_CACHE_STARTED;
660 cache->has_caching_ctl = 1;
663 spin_unlock(&cache->lock);
664 #ifdef CONFIG_BTRFS_DEBUG
666 btrfs_should_fragment_free_space(cache)) {
669 spin_lock(&cache->space_info->lock);
670 spin_lock(&cache->lock);
671 bytes_used = cache->key.offset -
672 btrfs_block_group_used(&cache->item);
673 cache->space_info->bytes_used += bytes_used >> 1;
674 spin_unlock(&cache->lock);
675 spin_unlock(&cache->space_info->lock);
676 fragment_free_space(cache);
679 mutex_unlock(&caching_ctl->mutex);
681 wake_up(&caching_ctl->wait);
683 put_caching_control(caching_ctl);
684 free_excluded_extents(cache);
689 * We're either using the free space tree or no caching at all.
690 * Set cached to the appropriate value and wakeup any waiters.
692 spin_lock(&cache->lock);
693 if (load_cache_only) {
694 cache->caching_ctl = NULL;
695 cache->cached = BTRFS_CACHE_NO;
697 cache->cached = BTRFS_CACHE_STARTED;
698 cache->has_caching_ctl = 1;
700 spin_unlock(&cache->lock);
701 wake_up(&caching_ctl->wait);
704 if (load_cache_only) {
705 put_caching_control(caching_ctl);
709 down_write(&fs_info->commit_root_sem);
710 refcount_inc(&caching_ctl->count);
711 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
712 up_write(&fs_info->commit_root_sem);
714 btrfs_get_block_group(cache);
716 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
722 * return the block group that starts at or after bytenr
724 static struct btrfs_block_group_cache *
725 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
727 return block_group_cache_tree_search(info, bytenr, 0);
731 * return the block group that contains the given bytenr
733 struct btrfs_block_group_cache *btrfs_lookup_block_group(
734 struct btrfs_fs_info *info,
737 return block_group_cache_tree_search(info, bytenr, 1);
740 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
743 struct list_head *head = &info->space_info;
744 struct btrfs_space_info *found;
746 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
749 list_for_each_entry_rcu(found, head, list) {
750 if (found->flags & flags) {
759 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
760 bool metadata, u64 root_objectid)
762 struct btrfs_space_info *space_info;
766 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
767 flags = BTRFS_BLOCK_GROUP_SYSTEM;
769 flags = BTRFS_BLOCK_GROUP_METADATA;
771 flags = BTRFS_BLOCK_GROUP_DATA;
774 space_info = __find_space_info(fs_info, flags);
776 percpu_counter_add_batch(&space_info->total_bytes_pinned, num_bytes,
777 BTRFS_TOTAL_BYTES_PINNED_BATCH);
781 * after adding space to the filesystem, we need to clear the full flags
782 * on all the space infos.
784 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
786 struct list_head *head = &info->space_info;
787 struct btrfs_space_info *found;
790 list_for_each_entry_rcu(found, head, list)
795 /* simple helper to search for an existing data extent at a given offset */
796 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
799 struct btrfs_key key;
800 struct btrfs_path *path;
802 path = btrfs_alloc_path();
806 key.objectid = start;
808 key.type = BTRFS_EXTENT_ITEM_KEY;
809 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
810 btrfs_free_path(path);
815 * helper function to lookup reference count and flags of a tree block.
817 * the head node for delayed ref is used to store the sum of all the
818 * reference count modifications queued up in the rbtree. the head
819 * node may also store the extent flags to set. This way you can check
820 * to see what the reference count and extent flags would be if all of
821 * the delayed refs are not processed.
823 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
824 struct btrfs_fs_info *fs_info, u64 bytenr,
825 u64 offset, int metadata, u64 *refs, u64 *flags)
827 struct btrfs_delayed_ref_head *head;
828 struct btrfs_delayed_ref_root *delayed_refs;
829 struct btrfs_path *path;
830 struct btrfs_extent_item *ei;
831 struct extent_buffer *leaf;
832 struct btrfs_key key;
839 * If we don't have skinny metadata, don't bother doing anything
842 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
843 offset = fs_info->nodesize;
847 path = btrfs_alloc_path();
852 path->skip_locking = 1;
853 path->search_commit_root = 1;
857 key.objectid = bytenr;
860 key.type = BTRFS_METADATA_ITEM_KEY;
862 key.type = BTRFS_EXTENT_ITEM_KEY;
864 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
868 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
869 if (path->slots[0]) {
871 btrfs_item_key_to_cpu(path->nodes[0], &key,
873 if (key.objectid == bytenr &&
874 key.type == BTRFS_EXTENT_ITEM_KEY &&
875 key.offset == fs_info->nodesize)
881 leaf = path->nodes[0];
882 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
883 if (item_size >= sizeof(*ei)) {
884 ei = btrfs_item_ptr(leaf, path->slots[0],
885 struct btrfs_extent_item);
886 num_refs = btrfs_extent_refs(leaf, ei);
887 extent_flags = btrfs_extent_flags(leaf, ei);
890 btrfs_print_v0_err(fs_info);
892 btrfs_abort_transaction(trans, ret);
894 btrfs_handle_fs_error(fs_info, ret, NULL);
899 BUG_ON(num_refs == 0);
909 delayed_refs = &trans->transaction->delayed_refs;
910 spin_lock(&delayed_refs->lock);
911 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
913 if (!mutex_trylock(&head->mutex)) {
914 refcount_inc(&head->refs);
915 spin_unlock(&delayed_refs->lock);
917 btrfs_release_path(path);
920 * Mutex was contended, block until it's released and try
923 mutex_lock(&head->mutex);
924 mutex_unlock(&head->mutex);
925 btrfs_put_delayed_ref_head(head);
928 spin_lock(&head->lock);
929 if (head->extent_op && head->extent_op->update_flags)
930 extent_flags |= head->extent_op->flags_to_set;
932 BUG_ON(num_refs == 0);
934 num_refs += head->ref_mod;
935 spin_unlock(&head->lock);
936 mutex_unlock(&head->mutex);
938 spin_unlock(&delayed_refs->lock);
940 WARN_ON(num_refs == 0);
944 *flags = extent_flags;
946 btrfs_free_path(path);
951 * Back reference rules. Back refs have three main goals:
953 * 1) differentiate between all holders of references to an extent so that
954 * when a reference is dropped we can make sure it was a valid reference
955 * before freeing the extent.
957 * 2) Provide enough information to quickly find the holders of an extent
958 * if we notice a given block is corrupted or bad.
960 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
961 * maintenance. This is actually the same as #2, but with a slightly
962 * different use case.
964 * There are two kinds of back refs. The implicit back refs is optimized
965 * for pointers in non-shared tree blocks. For a given pointer in a block,
966 * back refs of this kind provide information about the block's owner tree
967 * and the pointer's key. These information allow us to find the block by
968 * b-tree searching. The full back refs is for pointers in tree blocks not
969 * referenced by their owner trees. The location of tree block is recorded
970 * in the back refs. Actually the full back refs is generic, and can be
971 * used in all cases the implicit back refs is used. The major shortcoming
972 * of the full back refs is its overhead. Every time a tree block gets
973 * COWed, we have to update back refs entry for all pointers in it.
975 * For a newly allocated tree block, we use implicit back refs for
976 * pointers in it. This means most tree related operations only involve
977 * implicit back refs. For a tree block created in old transaction, the
978 * only way to drop a reference to it is COW it. So we can detect the
979 * event that tree block loses its owner tree's reference and do the
980 * back refs conversion.
982 * When a tree block is COWed through a tree, there are four cases:
984 * The reference count of the block is one and the tree is the block's
985 * owner tree. Nothing to do in this case.
987 * The reference count of the block is one and the tree is not the
988 * block's owner tree. In this case, full back refs is used for pointers
989 * in the block. Remove these full back refs, add implicit back refs for
990 * every pointers in the new block.
992 * The reference count of the block is greater than one and the tree is
993 * the block's owner tree. In this case, implicit back refs is used for
994 * pointers in the block. Add full back refs for every pointers in the
995 * block, increase lower level extents' reference counts. The original
996 * implicit back refs are entailed to the new block.
998 * The reference count of the block is greater than one and the tree is
999 * not the block's owner tree. Add implicit back refs for every pointer in
1000 * the new block, increase lower level extents' reference count.
1002 * Back Reference Key composing:
1004 * The key objectid corresponds to the first byte in the extent,
1005 * The key type is used to differentiate between types of back refs.
1006 * There are different meanings of the key offset for different types
1009 * File extents can be referenced by:
1011 * - multiple snapshots, subvolumes, or different generations in one subvol
1012 * - different files inside a single subvolume
1013 * - different offsets inside a file (bookend extents in file.c)
1015 * The extent ref structure for the implicit back refs has fields for:
1017 * - Objectid of the subvolume root
1018 * - objectid of the file holding the reference
1019 * - original offset in the file
1020 * - how many bookend extents
1022 * The key offset for the implicit back refs is hash of the first
1025 * The extent ref structure for the full back refs has field for:
1027 * - number of pointers in the tree leaf
1029 * The key offset for the implicit back refs is the first byte of
1032 * When a file extent is allocated, The implicit back refs is used.
1033 * the fields are filled in:
1035 * (root_key.objectid, inode objectid, offset in file, 1)
1037 * When a file extent is removed file truncation, we find the
1038 * corresponding implicit back refs and check the following fields:
1040 * (btrfs_header_owner(leaf), inode objectid, offset in file)
1042 * Btree extents can be referenced by:
1044 * - Different subvolumes
1046 * Both the implicit back refs and the full back refs for tree blocks
1047 * only consist of key. The key offset for the implicit back refs is
1048 * objectid of block's owner tree. The key offset for the full back refs
1049 * is the first byte of parent block.
1051 * When implicit back refs is used, information about the lowest key and
1052 * level of the tree block are required. These information are stored in
1053 * tree block info structure.
1057 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1058 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
1059 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1061 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1062 struct btrfs_extent_inline_ref *iref,
1063 enum btrfs_inline_ref_type is_data)
1065 int type = btrfs_extent_inline_ref_type(eb, iref);
1066 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
1068 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1069 type == BTRFS_SHARED_BLOCK_REF_KEY ||
1070 type == BTRFS_SHARED_DATA_REF_KEY ||
1071 type == BTRFS_EXTENT_DATA_REF_KEY) {
1072 if (is_data == BTRFS_REF_TYPE_BLOCK) {
1073 if (type == BTRFS_TREE_BLOCK_REF_KEY)
1075 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1076 ASSERT(eb->fs_info);
1078 * Every shared one has parent tree
1079 * block, which must be aligned to
1083 IS_ALIGNED(offset, eb->fs_info->nodesize))
1086 } else if (is_data == BTRFS_REF_TYPE_DATA) {
1087 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1089 if (type == BTRFS_SHARED_DATA_REF_KEY) {
1090 ASSERT(eb->fs_info);
1092 * Every shared one has parent tree
1093 * block, which must be aligned to
1097 IS_ALIGNED(offset, eb->fs_info->nodesize))
1101 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1106 btrfs_print_leaf((struct extent_buffer *)eb);
1107 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1111 return BTRFS_REF_TYPE_INVALID;
1114 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1116 u32 high_crc = ~(u32)0;
1117 u32 low_crc = ~(u32)0;
1120 lenum = cpu_to_le64(root_objectid);
1121 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1122 lenum = cpu_to_le64(owner);
1123 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1124 lenum = cpu_to_le64(offset);
1125 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1127 return ((u64)high_crc << 31) ^ (u64)low_crc;
1130 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1131 struct btrfs_extent_data_ref *ref)
1133 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1134 btrfs_extent_data_ref_objectid(leaf, ref),
1135 btrfs_extent_data_ref_offset(leaf, ref));
1138 static int match_extent_data_ref(struct extent_buffer *leaf,
1139 struct btrfs_extent_data_ref *ref,
1140 u64 root_objectid, u64 owner, u64 offset)
1142 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1143 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1144 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1149 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1150 struct btrfs_path *path,
1151 u64 bytenr, u64 parent,
1153 u64 owner, u64 offset)
1155 struct btrfs_root *root = trans->fs_info->extent_root;
1156 struct btrfs_key key;
1157 struct btrfs_extent_data_ref *ref;
1158 struct extent_buffer *leaf;
1164 key.objectid = bytenr;
1166 key.type = BTRFS_SHARED_DATA_REF_KEY;
1167 key.offset = parent;
1169 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1170 key.offset = hash_extent_data_ref(root_objectid,
1175 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1187 leaf = path->nodes[0];
1188 nritems = btrfs_header_nritems(leaf);
1190 if (path->slots[0] >= nritems) {
1191 ret = btrfs_next_leaf(root, path);
1197 leaf = path->nodes[0];
1198 nritems = btrfs_header_nritems(leaf);
1202 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1203 if (key.objectid != bytenr ||
1204 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1207 ref = btrfs_item_ptr(leaf, path->slots[0],
1208 struct btrfs_extent_data_ref);
1210 if (match_extent_data_ref(leaf, ref, root_objectid,
1213 btrfs_release_path(path);
1225 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1226 struct btrfs_path *path,
1227 u64 bytenr, u64 parent,
1228 u64 root_objectid, u64 owner,
1229 u64 offset, int refs_to_add)
1231 struct btrfs_root *root = trans->fs_info->extent_root;
1232 struct btrfs_key key;
1233 struct extent_buffer *leaf;
1238 key.objectid = bytenr;
1240 key.type = BTRFS_SHARED_DATA_REF_KEY;
1241 key.offset = parent;
1242 size = sizeof(struct btrfs_shared_data_ref);
1244 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1245 key.offset = hash_extent_data_ref(root_objectid,
1247 size = sizeof(struct btrfs_extent_data_ref);
1250 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1251 if (ret && ret != -EEXIST)
1254 leaf = path->nodes[0];
1256 struct btrfs_shared_data_ref *ref;
1257 ref = btrfs_item_ptr(leaf, path->slots[0],
1258 struct btrfs_shared_data_ref);
1260 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1262 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1263 num_refs += refs_to_add;
1264 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1267 struct btrfs_extent_data_ref *ref;
1268 while (ret == -EEXIST) {
1269 ref = btrfs_item_ptr(leaf, path->slots[0],
1270 struct btrfs_extent_data_ref);
1271 if (match_extent_data_ref(leaf, ref, root_objectid,
1274 btrfs_release_path(path);
1276 ret = btrfs_insert_empty_item(trans, root, path, &key,
1278 if (ret && ret != -EEXIST)
1281 leaf = path->nodes[0];
1283 ref = btrfs_item_ptr(leaf, path->slots[0],
1284 struct btrfs_extent_data_ref);
1286 btrfs_set_extent_data_ref_root(leaf, ref,
1288 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1289 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1290 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1292 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1293 num_refs += refs_to_add;
1294 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1297 btrfs_mark_buffer_dirty(leaf);
1300 btrfs_release_path(path);
1304 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1305 struct btrfs_path *path,
1306 int refs_to_drop, int *last_ref)
1308 struct btrfs_key key;
1309 struct btrfs_extent_data_ref *ref1 = NULL;
1310 struct btrfs_shared_data_ref *ref2 = NULL;
1311 struct extent_buffer *leaf;
1315 leaf = path->nodes[0];
1316 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1318 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1319 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1320 struct btrfs_extent_data_ref);
1321 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1322 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1323 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1324 struct btrfs_shared_data_ref);
1325 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1326 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
1327 btrfs_print_v0_err(trans->fs_info);
1328 btrfs_abort_transaction(trans, -EINVAL);
1334 BUG_ON(num_refs < refs_to_drop);
1335 num_refs -= refs_to_drop;
1337 if (num_refs == 0) {
1338 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1341 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1342 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1343 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1344 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1345 btrfs_mark_buffer_dirty(leaf);
1350 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1351 struct btrfs_extent_inline_ref *iref)
1353 struct btrfs_key key;
1354 struct extent_buffer *leaf;
1355 struct btrfs_extent_data_ref *ref1;
1356 struct btrfs_shared_data_ref *ref2;
1360 leaf = path->nodes[0];
1361 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1363 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
1366 * If type is invalid, we should have bailed out earlier than
1369 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1370 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1371 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1372 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1373 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1375 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1376 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1378 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1379 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1380 struct btrfs_extent_data_ref);
1381 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1382 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1383 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1384 struct btrfs_shared_data_ref);
1385 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1392 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1393 struct btrfs_path *path,
1394 u64 bytenr, u64 parent,
1397 struct btrfs_root *root = trans->fs_info->extent_root;
1398 struct btrfs_key key;
1401 key.objectid = bytenr;
1403 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1404 key.offset = parent;
1406 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1407 key.offset = root_objectid;
1410 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1416 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1417 struct btrfs_path *path,
1418 u64 bytenr, u64 parent,
1421 struct btrfs_key key;
1424 key.objectid = bytenr;
1426 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1427 key.offset = parent;
1429 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1430 key.offset = root_objectid;
1433 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
1435 btrfs_release_path(path);
1439 static inline int extent_ref_type(u64 parent, u64 owner)
1442 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1444 type = BTRFS_SHARED_BLOCK_REF_KEY;
1446 type = BTRFS_TREE_BLOCK_REF_KEY;
1449 type = BTRFS_SHARED_DATA_REF_KEY;
1451 type = BTRFS_EXTENT_DATA_REF_KEY;
1456 static int find_next_key(struct btrfs_path *path, int level,
1457 struct btrfs_key *key)
1460 for (; level < BTRFS_MAX_LEVEL; level++) {
1461 if (!path->nodes[level])
1463 if (path->slots[level] + 1 >=
1464 btrfs_header_nritems(path->nodes[level]))
1467 btrfs_item_key_to_cpu(path->nodes[level], key,
1468 path->slots[level] + 1);
1470 btrfs_node_key_to_cpu(path->nodes[level], key,
1471 path->slots[level] + 1);
1478 * look for inline back ref. if back ref is found, *ref_ret is set
1479 * to the address of inline back ref, and 0 is returned.
1481 * if back ref isn't found, *ref_ret is set to the address where it
1482 * should be inserted, and -ENOENT is returned.
1484 * if insert is true and there are too many inline back refs, the path
1485 * points to the extent item, and -EAGAIN is returned.
1487 * NOTE: inline back refs are ordered in the same way that back ref
1488 * items in the tree are ordered.
1490 static noinline_for_stack
1491 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1492 struct btrfs_path *path,
1493 struct btrfs_extent_inline_ref **ref_ret,
1494 u64 bytenr, u64 num_bytes,
1495 u64 parent, u64 root_objectid,
1496 u64 owner, u64 offset, int insert)
1498 struct btrfs_fs_info *fs_info = trans->fs_info;
1499 struct btrfs_root *root = fs_info->extent_root;
1500 struct btrfs_key key;
1501 struct extent_buffer *leaf;
1502 struct btrfs_extent_item *ei;
1503 struct btrfs_extent_inline_ref *iref;
1513 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1516 key.objectid = bytenr;
1517 key.type = BTRFS_EXTENT_ITEM_KEY;
1518 key.offset = num_bytes;
1520 want = extent_ref_type(parent, owner);
1522 extra_size = btrfs_extent_inline_ref_size(want);
1523 path->keep_locks = 1;
1528 * Owner is our level, so we can just add one to get the level for the
1529 * block we are interested in.
1531 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1532 key.type = BTRFS_METADATA_ITEM_KEY;
1537 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1544 * We may be a newly converted file system which still has the old fat
1545 * extent entries for metadata, so try and see if we have one of those.
1547 if (ret > 0 && skinny_metadata) {
1548 skinny_metadata = false;
1549 if (path->slots[0]) {
1551 btrfs_item_key_to_cpu(path->nodes[0], &key,
1553 if (key.objectid == bytenr &&
1554 key.type == BTRFS_EXTENT_ITEM_KEY &&
1555 key.offset == num_bytes)
1559 key.objectid = bytenr;
1560 key.type = BTRFS_EXTENT_ITEM_KEY;
1561 key.offset = num_bytes;
1562 btrfs_release_path(path);
1567 if (ret && !insert) {
1570 } else if (WARN_ON(ret)) {
1575 leaf = path->nodes[0];
1576 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1577 if (unlikely(item_size < sizeof(*ei))) {
1579 btrfs_print_v0_err(fs_info);
1580 btrfs_abort_transaction(trans, err);
1584 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1585 flags = btrfs_extent_flags(leaf, ei);
1587 ptr = (unsigned long)(ei + 1);
1588 end = (unsigned long)ei + item_size;
1590 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1591 ptr += sizeof(struct btrfs_tree_block_info);
1595 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1596 needed = BTRFS_REF_TYPE_DATA;
1598 needed = BTRFS_REF_TYPE_BLOCK;
1606 iref = (struct btrfs_extent_inline_ref *)ptr;
1607 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1608 if (type == BTRFS_REF_TYPE_INVALID) {
1616 ptr += btrfs_extent_inline_ref_size(type);
1620 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1621 struct btrfs_extent_data_ref *dref;
1622 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1623 if (match_extent_data_ref(leaf, dref, root_objectid,
1628 if (hash_extent_data_ref_item(leaf, dref) <
1629 hash_extent_data_ref(root_objectid, owner, offset))
1633 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1635 if (parent == ref_offset) {
1639 if (ref_offset < parent)
1642 if (root_objectid == ref_offset) {
1646 if (ref_offset < root_objectid)
1650 ptr += btrfs_extent_inline_ref_size(type);
1652 if (err == -ENOENT && insert) {
1653 if (item_size + extra_size >=
1654 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1659 * To add new inline back ref, we have to make sure
1660 * there is no corresponding back ref item.
1661 * For simplicity, we just do not add new inline back
1662 * ref if there is any kind of item for this block
1664 if (find_next_key(path, 0, &key) == 0 &&
1665 key.objectid == bytenr &&
1666 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1671 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1674 path->keep_locks = 0;
1675 btrfs_unlock_up_safe(path, 1);
1681 * helper to add new inline back ref
1683 static noinline_for_stack
1684 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1685 struct btrfs_path *path,
1686 struct btrfs_extent_inline_ref *iref,
1687 u64 parent, u64 root_objectid,
1688 u64 owner, u64 offset, int refs_to_add,
1689 struct btrfs_delayed_extent_op *extent_op)
1691 struct extent_buffer *leaf;
1692 struct btrfs_extent_item *ei;
1695 unsigned long item_offset;
1700 leaf = path->nodes[0];
1701 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1702 item_offset = (unsigned long)iref - (unsigned long)ei;
1704 type = extent_ref_type(parent, owner);
1705 size = btrfs_extent_inline_ref_size(type);
1707 btrfs_extend_item(fs_info, path, size);
1709 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1710 refs = btrfs_extent_refs(leaf, ei);
1711 refs += refs_to_add;
1712 btrfs_set_extent_refs(leaf, ei, refs);
1714 __run_delayed_extent_op(extent_op, leaf, ei);
1716 ptr = (unsigned long)ei + item_offset;
1717 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1718 if (ptr < end - size)
1719 memmove_extent_buffer(leaf, ptr + size, ptr,
1722 iref = (struct btrfs_extent_inline_ref *)ptr;
1723 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1724 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1725 struct btrfs_extent_data_ref *dref;
1726 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1727 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1728 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1729 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1730 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1731 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1732 struct btrfs_shared_data_ref *sref;
1733 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1734 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1735 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1736 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1737 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1739 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1741 btrfs_mark_buffer_dirty(leaf);
1744 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1745 struct btrfs_path *path,
1746 struct btrfs_extent_inline_ref **ref_ret,
1747 u64 bytenr, u64 num_bytes, u64 parent,
1748 u64 root_objectid, u64 owner, u64 offset)
1752 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1753 num_bytes, parent, root_objectid,
1758 btrfs_release_path(path);
1761 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1762 ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1765 ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1766 root_objectid, owner, offset);
1772 * helper to update/remove inline back ref
1774 static noinline_for_stack
1775 void update_inline_extent_backref(struct btrfs_path *path,
1776 struct btrfs_extent_inline_ref *iref,
1778 struct btrfs_delayed_extent_op *extent_op,
1781 struct extent_buffer *leaf = path->nodes[0];
1782 struct btrfs_fs_info *fs_info = leaf->fs_info;
1783 struct btrfs_extent_item *ei;
1784 struct btrfs_extent_data_ref *dref = NULL;
1785 struct btrfs_shared_data_ref *sref = NULL;
1793 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1794 refs = btrfs_extent_refs(leaf, ei);
1795 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1796 refs += refs_to_mod;
1797 btrfs_set_extent_refs(leaf, ei, refs);
1799 __run_delayed_extent_op(extent_op, leaf, ei);
1802 * If type is invalid, we should have bailed out after
1803 * lookup_inline_extent_backref().
1805 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1806 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1808 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1809 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1810 refs = btrfs_extent_data_ref_count(leaf, dref);
1811 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1812 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1813 refs = btrfs_shared_data_ref_count(leaf, sref);
1816 BUG_ON(refs_to_mod != -1);
1819 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1820 refs += refs_to_mod;
1823 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1824 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1826 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1829 size = btrfs_extent_inline_ref_size(type);
1830 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1831 ptr = (unsigned long)iref;
1832 end = (unsigned long)ei + item_size;
1833 if (ptr + size < end)
1834 memmove_extent_buffer(leaf, ptr, ptr + size,
1837 btrfs_truncate_item(fs_info, path, item_size, 1);
1839 btrfs_mark_buffer_dirty(leaf);
1842 static noinline_for_stack
1843 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1844 struct btrfs_path *path,
1845 u64 bytenr, u64 num_bytes, u64 parent,
1846 u64 root_objectid, u64 owner,
1847 u64 offset, int refs_to_add,
1848 struct btrfs_delayed_extent_op *extent_op)
1850 struct btrfs_extent_inline_ref *iref;
1853 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1854 num_bytes, parent, root_objectid,
1857 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1858 update_inline_extent_backref(path, iref, refs_to_add,
1860 } else if (ret == -ENOENT) {
1861 setup_inline_extent_backref(trans->fs_info, path, iref, parent,
1862 root_objectid, owner, offset,
1863 refs_to_add, extent_op);
1869 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1870 struct btrfs_path *path,
1871 u64 bytenr, u64 parent, u64 root_objectid,
1872 u64 owner, u64 offset, int refs_to_add)
1875 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1876 BUG_ON(refs_to_add != 1);
1877 ret = insert_tree_block_ref(trans, path, bytenr, parent,
1880 ret = insert_extent_data_ref(trans, path, bytenr, parent,
1881 root_objectid, owner, offset,
1887 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1888 struct btrfs_path *path,
1889 struct btrfs_extent_inline_ref *iref,
1890 int refs_to_drop, int is_data, int *last_ref)
1894 BUG_ON(!is_data && refs_to_drop != 1);
1896 update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1898 } else if (is_data) {
1899 ret = remove_extent_data_ref(trans, path, refs_to_drop,
1903 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
1908 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
1909 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1910 u64 *discarded_bytes)
1913 u64 bytes_left, end;
1914 u64 aligned_start = ALIGN(start, 1 << 9);
1916 if (WARN_ON(start != aligned_start)) {
1917 len -= aligned_start - start;
1918 len = round_down(len, 1 << 9);
1919 start = aligned_start;
1922 *discarded_bytes = 0;
1930 /* Skip any superblocks on this device. */
1931 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1932 u64 sb_start = btrfs_sb_offset(j);
1933 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1934 u64 size = sb_start - start;
1936 if (!in_range(sb_start, start, bytes_left) &&
1937 !in_range(sb_end, start, bytes_left) &&
1938 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1942 * Superblock spans beginning of range. Adjust start and
1945 if (sb_start <= start) {
1946 start += sb_end - start;
1951 bytes_left = end - start;
1956 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1959 *discarded_bytes += size;
1960 else if (ret != -EOPNOTSUPP)
1969 bytes_left = end - start;
1973 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
1976 *discarded_bytes += bytes_left;
1981 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1982 u64 num_bytes, u64 *actual_bytes)
1985 u64 discarded_bytes = 0;
1986 struct btrfs_bio *bbio = NULL;
1990 * Avoid races with device replace and make sure our bbio has devices
1991 * associated to its stripes that don't go away while we are discarding.
1993 btrfs_bio_counter_inc_blocked(fs_info);
1994 /* Tell the block device(s) that the sectors can be discarded */
1995 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
1997 /* Error condition is -ENOMEM */
1999 struct btrfs_bio_stripe *stripe = bbio->stripes;
2003 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2005 struct request_queue *req_q;
2007 if (!stripe->dev->bdev) {
2008 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
2011 req_q = bdev_get_queue(stripe->dev->bdev);
2012 if (!blk_queue_discard(req_q))
2015 ret = btrfs_issue_discard(stripe->dev->bdev,
2020 discarded_bytes += bytes;
2021 else if (ret != -EOPNOTSUPP)
2022 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2025 * Just in case we get back EOPNOTSUPP for some reason,
2026 * just ignore the return value so we don't screw up
2027 * people calling discard_extent.
2031 btrfs_put_bbio(bbio);
2033 btrfs_bio_counter_dec(fs_info);
2036 *actual_bytes = discarded_bytes;
2039 if (ret == -EOPNOTSUPP)
2044 /* Can return -ENOMEM */
2045 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2046 struct btrfs_root *root,
2047 u64 bytenr, u64 num_bytes, u64 parent,
2048 u64 root_objectid, u64 owner, u64 offset)
2050 struct btrfs_fs_info *fs_info = root->fs_info;
2051 int old_ref_mod, new_ref_mod;
2054 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2055 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2057 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2058 owner, offset, BTRFS_ADD_DELAYED_REF);
2060 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2061 ret = btrfs_add_delayed_tree_ref(trans, bytenr,
2063 root_objectid, (int)owner,
2064 BTRFS_ADD_DELAYED_REF, NULL,
2065 &old_ref_mod, &new_ref_mod);
2067 ret = btrfs_add_delayed_data_ref(trans, bytenr,
2069 root_objectid, owner, offset,
2070 0, BTRFS_ADD_DELAYED_REF,
2071 &old_ref_mod, &new_ref_mod);
2074 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) {
2075 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
2077 add_pinned_bytes(fs_info, -num_bytes, metadata, root_objectid);
2084 * __btrfs_inc_extent_ref - insert backreference for a given extent
2086 * @trans: Handle of transaction
2088 * @node: The delayed ref node used to get the bytenr/length for
2089 * extent whose references are incremented.
2091 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
2092 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
2093 * bytenr of the parent block. Since new extents are always
2094 * created with indirect references, this will only be the case
2095 * when relocating a shared extent. In that case, root_objectid
2096 * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
2099 * @root_objectid: The id of the root where this modification has originated,
2100 * this can be either one of the well-known metadata trees or
2101 * the subvolume id which references this extent.
2103 * @owner: For data extents it is the inode number of the owning file.
2104 * For metadata extents this parameter holds the level in the
2105 * tree of the extent.
2107 * @offset: For metadata extents the offset is ignored and is currently
2108 * always passed as 0. For data extents it is the fileoffset
2109 * this extent belongs to.
2111 * @refs_to_add Number of references to add
2113 * @extent_op Pointer to a structure, holding information necessary when
2114 * updating a tree block's flags
2117 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2118 struct btrfs_delayed_ref_node *node,
2119 u64 parent, u64 root_objectid,
2120 u64 owner, u64 offset, int refs_to_add,
2121 struct btrfs_delayed_extent_op *extent_op)
2123 struct btrfs_path *path;
2124 struct extent_buffer *leaf;
2125 struct btrfs_extent_item *item;
2126 struct btrfs_key key;
2127 u64 bytenr = node->bytenr;
2128 u64 num_bytes = node->num_bytes;
2132 path = btrfs_alloc_path();
2136 path->reada = READA_FORWARD;
2137 path->leave_spinning = 1;
2138 /* this will setup the path even if it fails to insert the back ref */
2139 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
2140 parent, root_objectid, owner,
2141 offset, refs_to_add, extent_op);
2142 if ((ret < 0 && ret != -EAGAIN) || !ret)
2146 * Ok we had -EAGAIN which means we didn't have space to insert and
2147 * inline extent ref, so just update the reference count and add a
2150 leaf = path->nodes[0];
2151 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2152 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2153 refs = btrfs_extent_refs(leaf, item);
2154 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2156 __run_delayed_extent_op(extent_op, leaf, item);
2158 btrfs_mark_buffer_dirty(leaf);
2159 btrfs_release_path(path);
2161 path->reada = READA_FORWARD;
2162 path->leave_spinning = 1;
2163 /* now insert the actual backref */
2164 ret = insert_extent_backref(trans, path, bytenr, parent, root_objectid,
2165 owner, offset, refs_to_add);
2167 btrfs_abort_transaction(trans, ret);
2169 btrfs_free_path(path);
2173 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2174 struct btrfs_delayed_ref_node *node,
2175 struct btrfs_delayed_extent_op *extent_op,
2176 int insert_reserved)
2179 struct btrfs_delayed_data_ref *ref;
2180 struct btrfs_key ins;
2185 ins.objectid = node->bytenr;
2186 ins.offset = node->num_bytes;
2187 ins.type = BTRFS_EXTENT_ITEM_KEY;
2189 ref = btrfs_delayed_node_to_data_ref(node);
2190 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
2192 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2193 parent = ref->parent;
2194 ref_root = ref->root;
2196 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2198 flags |= extent_op->flags_to_set;
2199 ret = alloc_reserved_file_extent(trans, parent, ref_root,
2200 flags, ref->objectid,
2203 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2204 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2205 ref->objectid, ref->offset,
2206 node->ref_mod, extent_op);
2207 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2208 ret = __btrfs_free_extent(trans, node, parent,
2209 ref_root, ref->objectid,
2210 ref->offset, node->ref_mod,
2218 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2219 struct extent_buffer *leaf,
2220 struct btrfs_extent_item *ei)
2222 u64 flags = btrfs_extent_flags(leaf, ei);
2223 if (extent_op->update_flags) {
2224 flags |= extent_op->flags_to_set;
2225 btrfs_set_extent_flags(leaf, ei, flags);
2228 if (extent_op->update_key) {
2229 struct btrfs_tree_block_info *bi;
2230 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2231 bi = (struct btrfs_tree_block_info *)(ei + 1);
2232 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2236 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2237 struct btrfs_delayed_ref_head *head,
2238 struct btrfs_delayed_extent_op *extent_op)
2240 struct btrfs_fs_info *fs_info = trans->fs_info;
2241 struct btrfs_key key;
2242 struct btrfs_path *path;
2243 struct btrfs_extent_item *ei;
2244 struct extent_buffer *leaf;
2248 int metadata = !extent_op->is_data;
2253 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2256 path = btrfs_alloc_path();
2260 key.objectid = head->bytenr;
2263 key.type = BTRFS_METADATA_ITEM_KEY;
2264 key.offset = extent_op->level;
2266 key.type = BTRFS_EXTENT_ITEM_KEY;
2267 key.offset = head->num_bytes;
2271 path->reada = READA_FORWARD;
2272 path->leave_spinning = 1;
2273 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2280 if (path->slots[0] > 0) {
2282 btrfs_item_key_to_cpu(path->nodes[0], &key,
2284 if (key.objectid == head->bytenr &&
2285 key.type == BTRFS_EXTENT_ITEM_KEY &&
2286 key.offset == head->num_bytes)
2290 btrfs_release_path(path);
2293 key.objectid = head->bytenr;
2294 key.offset = head->num_bytes;
2295 key.type = BTRFS_EXTENT_ITEM_KEY;
2304 leaf = path->nodes[0];
2305 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2307 if (unlikely(item_size < sizeof(*ei))) {
2309 btrfs_print_v0_err(fs_info);
2310 btrfs_abort_transaction(trans, err);
2314 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2315 __run_delayed_extent_op(extent_op, leaf, ei);
2317 btrfs_mark_buffer_dirty(leaf);
2319 btrfs_free_path(path);
2323 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2324 struct btrfs_delayed_ref_node *node,
2325 struct btrfs_delayed_extent_op *extent_op,
2326 int insert_reserved)
2329 struct btrfs_delayed_tree_ref *ref;
2333 ref = btrfs_delayed_node_to_tree_ref(node);
2334 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
2336 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2337 parent = ref->parent;
2338 ref_root = ref->root;
2340 if (node->ref_mod != 1) {
2341 btrfs_err(trans->fs_info,
2342 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2343 node->bytenr, node->ref_mod, node->action, ref_root,
2347 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2348 BUG_ON(!extent_op || !extent_op->update_flags);
2349 ret = alloc_reserved_tree_block(trans, node, extent_op);
2350 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2351 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2352 ref->level, 0, 1, extent_op);
2353 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2354 ret = __btrfs_free_extent(trans, node, parent, ref_root,
2355 ref->level, 0, 1, extent_op);
2362 /* helper function to actually process a single delayed ref entry */
2363 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2364 struct btrfs_delayed_ref_node *node,
2365 struct btrfs_delayed_extent_op *extent_op,
2366 int insert_reserved)
2370 if (trans->aborted) {
2371 if (insert_reserved)
2372 btrfs_pin_extent(trans->fs_info, node->bytenr,
2373 node->num_bytes, 1);
2377 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2378 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2379 ret = run_delayed_tree_ref(trans, node, extent_op,
2381 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2382 node->type == BTRFS_SHARED_DATA_REF_KEY)
2383 ret = run_delayed_data_ref(trans, node, extent_op,
2387 if (ret && insert_reserved)
2388 btrfs_pin_extent(trans->fs_info, node->bytenr,
2389 node->num_bytes, 1);
2393 static inline struct btrfs_delayed_ref_node *
2394 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2396 struct btrfs_delayed_ref_node *ref;
2398 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
2402 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2403 * This is to prevent a ref count from going down to zero, which deletes
2404 * the extent item from the extent tree, when there still are references
2405 * to add, which would fail because they would not find the extent item.
2407 if (!list_empty(&head->ref_add_list))
2408 return list_first_entry(&head->ref_add_list,
2409 struct btrfs_delayed_ref_node, add_list);
2411 ref = rb_entry(rb_first_cached(&head->ref_tree),
2412 struct btrfs_delayed_ref_node, ref_node);
2413 ASSERT(list_empty(&ref->add_list));
2417 static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2418 struct btrfs_delayed_ref_head *head)
2420 spin_lock(&delayed_refs->lock);
2421 head->processing = 0;
2422 delayed_refs->num_heads_ready++;
2423 spin_unlock(&delayed_refs->lock);
2424 btrfs_delayed_ref_unlock(head);
2427 static struct btrfs_delayed_extent_op *cleanup_extent_op(
2428 struct btrfs_delayed_ref_head *head)
2430 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2435 if (head->must_insert_reserved) {
2436 head->extent_op = NULL;
2437 btrfs_free_delayed_extent_op(extent_op);
2443 static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
2444 struct btrfs_delayed_ref_head *head)
2446 struct btrfs_delayed_extent_op *extent_op;
2449 extent_op = cleanup_extent_op(head);
2452 head->extent_op = NULL;
2453 spin_unlock(&head->lock);
2454 ret = run_delayed_extent_op(trans, head, extent_op);
2455 btrfs_free_delayed_extent_op(extent_op);
2456 return ret ? ret : 1;
2459 void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
2460 struct btrfs_delayed_ref_root *delayed_refs,
2461 struct btrfs_delayed_ref_head *head)
2463 int nr_items = 1; /* Dropping this ref head update. */
2465 if (head->total_ref_mod < 0) {
2466 struct btrfs_space_info *space_info;
2470 flags = BTRFS_BLOCK_GROUP_DATA;
2471 else if (head->is_system)
2472 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2474 flags = BTRFS_BLOCK_GROUP_METADATA;
2475 space_info = __find_space_info(fs_info, flags);
2477 percpu_counter_add_batch(&space_info->total_bytes_pinned,
2479 BTRFS_TOTAL_BYTES_PINNED_BATCH);
2482 * We had csum deletions accounted for in our delayed refs rsv,
2483 * we need to drop the csum leaves for this update from our
2486 if (head->is_data) {
2487 spin_lock(&delayed_refs->lock);
2488 delayed_refs->pending_csums -= head->num_bytes;
2489 spin_unlock(&delayed_refs->lock);
2490 nr_items += btrfs_csum_bytes_to_leaves(fs_info,
2495 /* Also free its reserved qgroup space */
2496 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2497 head->qgroup_reserved);
2498 btrfs_delayed_refs_rsv_release(fs_info, nr_items);
2501 static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2502 struct btrfs_delayed_ref_head *head)
2505 struct btrfs_fs_info *fs_info = trans->fs_info;
2506 struct btrfs_delayed_ref_root *delayed_refs;
2509 delayed_refs = &trans->transaction->delayed_refs;
2511 ret = run_and_cleanup_extent_op(trans, head);
2513 unselect_delayed_ref_head(delayed_refs, head);
2514 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2521 * Need to drop our head ref lock and re-acquire the delayed ref lock
2522 * and then re-check to make sure nobody got added.
2524 spin_unlock(&head->lock);
2525 spin_lock(&delayed_refs->lock);
2526 spin_lock(&head->lock);
2527 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
2528 spin_unlock(&head->lock);
2529 spin_unlock(&delayed_refs->lock);
2532 btrfs_delete_ref_head(delayed_refs, head);
2533 spin_unlock(&head->lock);
2534 spin_unlock(&delayed_refs->lock);
2536 if (head->must_insert_reserved) {
2537 btrfs_pin_extent(fs_info, head->bytenr,
2538 head->num_bytes, 1);
2539 if (head->is_data) {
2540 ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2545 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
2547 trace_run_delayed_ref_head(fs_info, head, 0);
2548 btrfs_delayed_ref_unlock(head);
2549 btrfs_put_delayed_ref_head(head);
2553 static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
2554 struct btrfs_trans_handle *trans)
2556 struct btrfs_delayed_ref_root *delayed_refs =
2557 &trans->transaction->delayed_refs;
2558 struct btrfs_delayed_ref_head *head = NULL;
2561 spin_lock(&delayed_refs->lock);
2562 head = btrfs_select_ref_head(delayed_refs);
2564 spin_unlock(&delayed_refs->lock);
2569 * Grab the lock that says we are going to process all the refs for
2572 ret = btrfs_delayed_ref_lock(delayed_refs, head);
2573 spin_unlock(&delayed_refs->lock);
2576 * We may have dropped the spin lock to get the head mutex lock, and
2577 * that might have given someone else time to free the head. If that's
2578 * true, it has been removed from our list and we can move on.
2581 head = ERR_PTR(-EAGAIN);
2586 static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
2587 struct btrfs_delayed_ref_head *locked_ref,
2588 unsigned long *run_refs)
2590 struct btrfs_fs_info *fs_info = trans->fs_info;
2591 struct btrfs_delayed_ref_root *delayed_refs;
2592 struct btrfs_delayed_extent_op *extent_op;
2593 struct btrfs_delayed_ref_node *ref;
2594 int must_insert_reserved = 0;
2597 delayed_refs = &trans->transaction->delayed_refs;
2599 lockdep_assert_held(&locked_ref->mutex);
2600 lockdep_assert_held(&locked_ref->lock);
2602 while ((ref = select_delayed_ref(locked_ref))) {
2604 btrfs_check_delayed_seq(fs_info, ref->seq)) {
2605 spin_unlock(&locked_ref->lock);
2606 unselect_delayed_ref_head(delayed_refs, locked_ref);
2612 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
2613 RB_CLEAR_NODE(&ref->ref_node);
2614 if (!list_empty(&ref->add_list))
2615 list_del(&ref->add_list);
2617 * When we play the delayed ref, also correct the ref_mod on
2620 switch (ref->action) {
2621 case BTRFS_ADD_DELAYED_REF:
2622 case BTRFS_ADD_DELAYED_EXTENT:
2623 locked_ref->ref_mod -= ref->ref_mod;
2625 case BTRFS_DROP_DELAYED_REF:
2626 locked_ref->ref_mod += ref->ref_mod;
2631 atomic_dec(&delayed_refs->num_entries);
2634 * Record the must_insert_reserved flag before we drop the
2637 must_insert_reserved = locked_ref->must_insert_reserved;
2638 locked_ref->must_insert_reserved = 0;
2640 extent_op = locked_ref->extent_op;
2641 locked_ref->extent_op = NULL;
2642 spin_unlock(&locked_ref->lock);
2644 ret = run_one_delayed_ref(trans, ref, extent_op,
2645 must_insert_reserved);
2647 btrfs_free_delayed_extent_op(extent_op);
2649 unselect_delayed_ref_head(delayed_refs, locked_ref);
2650 btrfs_put_delayed_ref(ref);
2651 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2656 btrfs_put_delayed_ref(ref);
2659 spin_lock(&locked_ref->lock);
2660 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2667 * Returns 0 on success or if called with an already aborted transaction.
2668 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2670 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2673 struct btrfs_fs_info *fs_info = trans->fs_info;
2674 struct btrfs_delayed_ref_root *delayed_refs;
2675 struct btrfs_delayed_ref_head *locked_ref = NULL;
2676 ktime_t start = ktime_get();
2678 unsigned long count = 0;
2679 unsigned long actual_count = 0;
2681 delayed_refs = &trans->transaction->delayed_refs;
2684 locked_ref = btrfs_obtain_ref_head(trans);
2685 if (IS_ERR_OR_NULL(locked_ref)) {
2686 if (PTR_ERR(locked_ref) == -EAGAIN) {
2695 * We need to try and merge add/drops of the same ref since we
2696 * can run into issues with relocate dropping the implicit ref
2697 * and then it being added back again before the drop can
2698 * finish. If we merged anything we need to re-loop so we can
2700 * Or we can get node references of the same type that weren't
2701 * merged when created due to bumps in the tree mod seq, and
2702 * we need to merge them to prevent adding an inline extent
2703 * backref before dropping it (triggering a BUG_ON at
2704 * insert_inline_extent_backref()).
2706 spin_lock(&locked_ref->lock);
2707 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2709 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2711 if (ret < 0 && ret != -EAGAIN) {
2713 * Error, btrfs_run_delayed_refs_for_head already
2714 * unlocked everything so just bail out
2719 * Success, perform the usual cleanup of a processed
2722 ret = cleanup_ref_head(trans, locked_ref);
2724 /* We dropped our lock, we need to loop. */
2733 * Either success case or btrfs_run_delayed_refs_for_head
2734 * returned -EAGAIN, meaning we need to select another head
2739 } while ((nr != -1 && count < nr) || locked_ref);
2742 * We don't want to include ref heads since we can have empty ref heads
2743 * and those will drastically skew our runtime down since we just do
2744 * accounting, no actual extent tree updates.
2746 if (actual_count > 0) {
2747 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2751 * We weigh the current average higher than our current runtime
2752 * to avoid large swings in the average.
2754 spin_lock(&delayed_refs->lock);
2755 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2756 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
2757 spin_unlock(&delayed_refs->lock);
2762 #ifdef SCRAMBLE_DELAYED_REFS
2764 * Normally delayed refs get processed in ascending bytenr order. This
2765 * correlates in most cases to the order added. To expose dependencies on this
2766 * order, we start to process the tree in the middle instead of the beginning
2768 static u64 find_middle(struct rb_root *root)
2770 struct rb_node *n = root->rb_node;
2771 struct btrfs_delayed_ref_node *entry;
2774 u64 first = 0, last = 0;
2778 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2779 first = entry->bytenr;
2783 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2784 last = entry->bytenr;
2789 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2790 WARN_ON(!entry->in_tree);
2792 middle = entry->bytenr;
2805 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2809 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2810 sizeof(struct btrfs_extent_inline_ref));
2811 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2812 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2815 * We don't ever fill up leaves all the way so multiply by 2 just to be
2816 * closer to what we're really going to want to use.
2818 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2822 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2823 * would require to store the csums for that many bytes.
2825 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2828 u64 num_csums_per_leaf;
2831 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2832 num_csums_per_leaf = div64_u64(csum_size,
2833 (u64)btrfs_super_csum_size(fs_info->super_copy));
2834 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2835 num_csums += num_csums_per_leaf - 1;
2836 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2840 bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
2842 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
2843 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2847 spin_lock(&global_rsv->lock);
2848 reserved = global_rsv->reserved;
2849 spin_unlock(&global_rsv->lock);
2852 * Since the global reserve is just kind of magic we don't really want
2853 * to rely on it to save our bacon, so if our size is more than the
2854 * delayed_refs_rsv and the global rsv then it's time to think about
2857 spin_lock(&delayed_refs_rsv->lock);
2858 reserved += delayed_refs_rsv->reserved;
2859 if (delayed_refs_rsv->size >= reserved)
2861 spin_unlock(&delayed_refs_rsv->lock);
2865 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans)
2868 atomic_read(&trans->transaction->delayed_refs.num_entries);
2873 avg_runtime = trans->fs_info->avg_delayed_ref_runtime;
2874 val = num_entries * avg_runtime;
2875 if (val >= NSEC_PER_SEC)
2877 if (val >= NSEC_PER_SEC / 2)
2880 return btrfs_check_space_for_delayed_refs(trans->fs_info);
2883 struct async_delayed_refs {
2884 struct btrfs_root *root;
2889 struct completion wait;
2890 struct btrfs_work work;
2893 static inline struct async_delayed_refs *
2894 to_async_delayed_refs(struct btrfs_work *work)
2896 return container_of(work, struct async_delayed_refs, work);
2899 static void delayed_ref_async_start(struct btrfs_work *work)
2901 struct async_delayed_refs *async = to_async_delayed_refs(work);
2902 struct btrfs_trans_handle *trans;
2903 struct btrfs_fs_info *fs_info = async->root->fs_info;
2906 /* if the commit is already started, we don't need to wait here */
2907 if (btrfs_transaction_blocked(fs_info))
2910 trans = btrfs_join_transaction(async->root);
2911 if (IS_ERR(trans)) {
2912 async->error = PTR_ERR(trans);
2917 * trans->sync means that when we call end_transaction, we won't
2918 * wait on delayed refs
2922 /* Don't bother flushing if we got into a different transaction */
2923 if (trans->transid > async->transid)
2926 ret = btrfs_run_delayed_refs(trans, async->count);
2930 ret = btrfs_end_transaction(trans);
2931 if (ret && !async->error)
2935 complete(&async->wait);
2940 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
2941 unsigned long count, u64 transid, int wait)
2943 struct async_delayed_refs *async;
2946 async = kmalloc(sizeof(*async), GFP_NOFS);
2950 async->root = fs_info->tree_root;
2951 async->count = count;
2953 async->transid = transid;
2958 init_completion(&async->wait);
2960 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2961 delayed_ref_async_start, NULL, NULL);
2963 btrfs_queue_work(fs_info->extent_workers, &async->work);
2966 wait_for_completion(&async->wait);
2975 * this starts processing the delayed reference count updates and
2976 * extent insertions we have queued up so far. count can be
2977 * 0, which means to process everything in the tree at the start
2978 * of the run (but not newly added entries), or it can be some target
2979 * number you'd like to process.
2981 * Returns 0 on success or if called with an aborted transaction
2982 * Returns <0 on error and aborts the transaction
2984 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2985 unsigned long count)
2987 struct btrfs_fs_info *fs_info = trans->fs_info;
2988 struct rb_node *node;
2989 struct btrfs_delayed_ref_root *delayed_refs;
2990 struct btrfs_delayed_ref_head *head;
2992 int run_all = count == (unsigned long)-1;
2994 /* We'll clean this up in btrfs_cleanup_transaction */
2998 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
3001 delayed_refs = &trans->transaction->delayed_refs;
3003 count = atomic_read(&delayed_refs->num_entries) * 2;
3006 #ifdef SCRAMBLE_DELAYED_REFS
3007 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
3009 ret = __btrfs_run_delayed_refs(trans, count);
3011 btrfs_abort_transaction(trans, ret);
3016 btrfs_create_pending_block_groups(trans);
3018 spin_lock(&delayed_refs->lock);
3019 node = rb_first_cached(&delayed_refs->href_root);
3021 spin_unlock(&delayed_refs->lock);
3024 head = rb_entry(node, struct btrfs_delayed_ref_head,
3026 refcount_inc(&head->refs);
3027 spin_unlock(&delayed_refs->lock);
3029 /* Mutex was contended, block until it's released and retry. */
3030 mutex_lock(&head->mutex);
3031 mutex_unlock(&head->mutex);
3033 btrfs_put_delayed_ref_head(head);
3041 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3042 struct btrfs_fs_info *fs_info,
3043 u64 bytenr, u64 num_bytes, u64 flags,
3044 int level, int is_data)
3046 struct btrfs_delayed_extent_op *extent_op;
3049 extent_op = btrfs_alloc_delayed_extent_op();
3053 extent_op->flags_to_set = flags;
3054 extent_op->update_flags = true;
3055 extent_op->update_key = false;
3056 extent_op->is_data = is_data ? true : false;
3057 extent_op->level = level;
3059 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
3060 num_bytes, extent_op);
3062 btrfs_free_delayed_extent_op(extent_op);
3066 static noinline int check_delayed_ref(struct btrfs_root *root,
3067 struct btrfs_path *path,
3068 u64 objectid, u64 offset, u64 bytenr)
3070 struct btrfs_delayed_ref_head *head;
3071 struct btrfs_delayed_ref_node *ref;
3072 struct btrfs_delayed_data_ref *data_ref;
3073 struct btrfs_delayed_ref_root *delayed_refs;
3074 struct btrfs_transaction *cur_trans;
3075 struct rb_node *node;
3078 spin_lock(&root->fs_info->trans_lock);
3079 cur_trans = root->fs_info->running_transaction;
3081 refcount_inc(&cur_trans->use_count);
3082 spin_unlock(&root->fs_info->trans_lock);
3086 delayed_refs = &cur_trans->delayed_refs;
3087 spin_lock(&delayed_refs->lock);
3088 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3090 spin_unlock(&delayed_refs->lock);
3091 btrfs_put_transaction(cur_trans);
3095 if (!mutex_trylock(&head->mutex)) {
3096 refcount_inc(&head->refs);
3097 spin_unlock(&delayed_refs->lock);
3099 btrfs_release_path(path);
3102 * Mutex was contended, block until it's released and let
3105 mutex_lock(&head->mutex);
3106 mutex_unlock(&head->mutex);
3107 btrfs_put_delayed_ref_head(head);
3108 btrfs_put_transaction(cur_trans);
3111 spin_unlock(&delayed_refs->lock);
3113 spin_lock(&head->lock);
3115 * XXX: We should replace this with a proper search function in the
3118 for (node = rb_first_cached(&head->ref_tree); node;
3119 node = rb_next(node)) {
3120 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
3121 /* If it's a shared ref we know a cross reference exists */
3122 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3127 data_ref = btrfs_delayed_node_to_data_ref(ref);
3130 * If our ref doesn't match the one we're currently looking at
3131 * then we have a cross reference.
3133 if (data_ref->root != root->root_key.objectid ||
3134 data_ref->objectid != objectid ||
3135 data_ref->offset != offset) {
3140 spin_unlock(&head->lock);
3141 mutex_unlock(&head->mutex);
3142 btrfs_put_transaction(cur_trans);
3146 static noinline int check_committed_ref(struct btrfs_root *root,
3147 struct btrfs_path *path,
3148 u64 objectid, u64 offset, u64 bytenr)
3150 struct btrfs_fs_info *fs_info = root->fs_info;
3151 struct btrfs_root *extent_root = fs_info->extent_root;
3152 struct extent_buffer *leaf;
3153 struct btrfs_extent_data_ref *ref;
3154 struct btrfs_extent_inline_ref *iref;
3155 struct btrfs_extent_item *ei;
3156 struct btrfs_key key;
3161 key.objectid = bytenr;
3162 key.offset = (u64)-1;
3163 key.type = BTRFS_EXTENT_ITEM_KEY;
3165 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3168 BUG_ON(ret == 0); /* Corruption */
3171 if (path->slots[0] == 0)
3175 leaf = path->nodes[0];
3176 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3178 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3182 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3183 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3185 if (item_size != sizeof(*ei) +
3186 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3189 if (btrfs_extent_generation(leaf, ei) <=
3190 btrfs_root_last_snapshot(&root->root_item))
3193 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3195 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3196 if (type != BTRFS_EXTENT_DATA_REF_KEY)
3199 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3200 if (btrfs_extent_refs(leaf, ei) !=
3201 btrfs_extent_data_ref_count(leaf, ref) ||
3202 btrfs_extent_data_ref_root(leaf, ref) !=
3203 root->root_key.objectid ||
3204 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3205 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3213 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3216 struct btrfs_path *path;
3219 path = btrfs_alloc_path();
3224 ret = check_committed_ref(root, path, objectid,
3226 if (ret && ret != -ENOENT)
3229 ret = check_delayed_ref(root, path, objectid, offset, bytenr);
3230 } while (ret == -EAGAIN);
3233 btrfs_free_path(path);
3234 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3239 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3240 struct btrfs_root *root,
3241 struct extent_buffer *buf,
3242 int full_backref, int inc)
3244 struct btrfs_fs_info *fs_info = root->fs_info;
3250 struct btrfs_key key;
3251 struct btrfs_file_extent_item *fi;
3255 int (*process_func)(struct btrfs_trans_handle *,
3256 struct btrfs_root *,
3257 u64, u64, u64, u64, u64, u64);
3260 if (btrfs_is_testing(fs_info))
3263 ref_root = btrfs_header_owner(buf);
3264 nritems = btrfs_header_nritems(buf);
3265 level = btrfs_header_level(buf);
3267 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3271 process_func = btrfs_inc_extent_ref;
3273 process_func = btrfs_free_extent;
3276 parent = buf->start;
3280 for (i = 0; i < nritems; i++) {
3282 btrfs_item_key_to_cpu(buf, &key, i);
3283 if (key.type != BTRFS_EXTENT_DATA_KEY)
3285 fi = btrfs_item_ptr(buf, i,
3286 struct btrfs_file_extent_item);
3287 if (btrfs_file_extent_type(buf, fi) ==
3288 BTRFS_FILE_EXTENT_INLINE)
3290 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3294 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3295 key.offset -= btrfs_file_extent_offset(buf, fi);
3296 ret = process_func(trans, root, bytenr, num_bytes,
3297 parent, ref_root, key.objectid,
3302 bytenr = btrfs_node_blockptr(buf, i);
3303 num_bytes = fs_info->nodesize;
3304 ret = process_func(trans, root, bytenr, num_bytes,
3305 parent, ref_root, level - 1, 0);
3315 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3316 struct extent_buffer *buf, int full_backref)
3318 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3321 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3322 struct extent_buffer *buf, int full_backref)
3324 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3327 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3328 struct btrfs_fs_info *fs_info,
3329 struct btrfs_path *path,
3330 struct btrfs_block_group_cache *cache)
3333 struct btrfs_root *extent_root = fs_info->extent_root;
3335 struct extent_buffer *leaf;
3337 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3344 leaf = path->nodes[0];
3345 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3346 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3347 btrfs_mark_buffer_dirty(leaf);
3349 btrfs_release_path(path);
3354 static struct btrfs_block_group_cache *
3355 next_block_group(struct btrfs_fs_info *fs_info,
3356 struct btrfs_block_group_cache *cache)
3358 struct rb_node *node;
3360 spin_lock(&fs_info->block_group_cache_lock);
3362 /* If our block group was removed, we need a full search. */
3363 if (RB_EMPTY_NODE(&cache->cache_node)) {
3364 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3366 spin_unlock(&fs_info->block_group_cache_lock);
3367 btrfs_put_block_group(cache);
3368 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3370 node = rb_next(&cache->cache_node);
3371 btrfs_put_block_group(cache);
3373 cache = rb_entry(node, struct btrfs_block_group_cache,
3375 btrfs_get_block_group(cache);
3378 spin_unlock(&fs_info->block_group_cache_lock);
3382 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3383 struct btrfs_trans_handle *trans,
3384 struct btrfs_path *path)
3386 struct btrfs_fs_info *fs_info = block_group->fs_info;
3387 struct btrfs_root *root = fs_info->tree_root;
3388 struct inode *inode = NULL;
3389 struct extent_changeset *data_reserved = NULL;
3391 int dcs = BTRFS_DC_ERROR;
3397 * If this block group is smaller than 100 megs don't bother caching the
3400 if (block_group->key.offset < (100 * SZ_1M)) {
3401 spin_lock(&block_group->lock);
3402 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3403 spin_unlock(&block_group->lock);
3410 inode = lookup_free_space_inode(fs_info, block_group, path);
3411 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3412 ret = PTR_ERR(inode);
3413 btrfs_release_path(path);
3417 if (IS_ERR(inode)) {
3421 if (block_group->ro)
3424 ret = create_free_space_inode(fs_info, trans, block_group,
3432 * We want to set the generation to 0, that way if anything goes wrong
3433 * from here on out we know not to trust this cache when we load up next
3436 BTRFS_I(inode)->generation = 0;
3437 ret = btrfs_update_inode(trans, root, inode);
3440 * So theoretically we could recover from this, simply set the
3441 * super cache generation to 0 so we know to invalidate the
3442 * cache, but then we'd have to keep track of the block groups
3443 * that fail this way so we know we _have_ to reset this cache
3444 * before the next commit or risk reading stale cache. So to
3445 * limit our exposure to horrible edge cases lets just abort the
3446 * transaction, this only happens in really bad situations
3449 btrfs_abort_transaction(trans, ret);
3454 /* We've already setup this transaction, go ahead and exit */
3455 if (block_group->cache_generation == trans->transid &&
3456 i_size_read(inode)) {
3457 dcs = BTRFS_DC_SETUP;
3461 if (i_size_read(inode) > 0) {
3462 ret = btrfs_check_trunc_cache_free_space(fs_info,
3463 &fs_info->global_block_rsv);
3467 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3472 spin_lock(&block_group->lock);
3473 if (block_group->cached != BTRFS_CACHE_FINISHED ||
3474 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3476 * don't bother trying to write stuff out _if_
3477 * a) we're not cached,
3478 * b) we're with nospace_cache mount option,
3479 * c) we're with v2 space_cache (FREE_SPACE_TREE).
3481 dcs = BTRFS_DC_WRITTEN;
3482 spin_unlock(&block_group->lock);
3485 spin_unlock(&block_group->lock);
3488 * We hit an ENOSPC when setting up the cache in this transaction, just
3489 * skip doing the setup, we've already cleared the cache so we're safe.
3491 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3497 * Try to preallocate enough space based on how big the block group is.
3498 * Keep in mind this has to include any pinned space which could end up
3499 * taking up quite a bit since it's not folded into the other space
3502 num_pages = div_u64(block_group->key.offset, SZ_256M);
3507 num_pages *= PAGE_SIZE;
3509 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
3513 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3514 num_pages, num_pages,
3517 * Our cache requires contiguous chunks so that we don't modify a bunch
3518 * of metadata or split extents when writing the cache out, which means
3519 * we can enospc if we are heavily fragmented in addition to just normal
3520 * out of space conditions. So if we hit this just skip setting up any
3521 * other block groups for this transaction, maybe we'll unpin enough
3522 * space the next time around.
3525 dcs = BTRFS_DC_SETUP;
3526 else if (ret == -ENOSPC)
3527 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3532 btrfs_release_path(path);
3534 spin_lock(&block_group->lock);
3535 if (!ret && dcs == BTRFS_DC_SETUP)
3536 block_group->cache_generation = trans->transid;
3537 block_group->disk_cache_state = dcs;
3538 spin_unlock(&block_group->lock);
3540 extent_changeset_free(data_reserved);
3544 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3545 struct btrfs_fs_info *fs_info)
3547 struct btrfs_block_group_cache *cache, *tmp;
3548 struct btrfs_transaction *cur_trans = trans->transaction;
3549 struct btrfs_path *path;
3551 if (list_empty(&cur_trans->dirty_bgs) ||
3552 !btrfs_test_opt(fs_info, SPACE_CACHE))
3555 path = btrfs_alloc_path();
3559 /* Could add new block groups, use _safe just in case */
3560 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3562 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3563 cache_save_setup(cache, trans, path);
3566 btrfs_free_path(path);
3571 * transaction commit does final block group cache writeback during a
3572 * critical section where nothing is allowed to change the FS. This is
3573 * required in order for the cache to actually match the block group,
3574 * but can introduce a lot of latency into the commit.
3576 * So, btrfs_start_dirty_block_groups is here to kick off block group
3577 * cache IO. There's a chance we'll have to redo some of it if the
3578 * block group changes again during the commit, but it greatly reduces
3579 * the commit latency by getting rid of the easy block groups while
3580 * we're still allowing others to join the commit.
3582 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
3584 struct btrfs_fs_info *fs_info = trans->fs_info;
3585 struct btrfs_block_group_cache *cache;
3586 struct btrfs_transaction *cur_trans = trans->transaction;
3589 struct btrfs_path *path = NULL;
3591 struct list_head *io = &cur_trans->io_bgs;
3592 int num_started = 0;
3595 spin_lock(&cur_trans->dirty_bgs_lock);
3596 if (list_empty(&cur_trans->dirty_bgs)) {
3597 spin_unlock(&cur_trans->dirty_bgs_lock);
3600 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3601 spin_unlock(&cur_trans->dirty_bgs_lock);
3605 * make sure all the block groups on our dirty list actually
3608 btrfs_create_pending_block_groups(trans);
3611 path = btrfs_alloc_path();
3617 * cache_write_mutex is here only to save us from balance or automatic
3618 * removal of empty block groups deleting this block group while we are
3619 * writing out the cache
3621 mutex_lock(&trans->transaction->cache_write_mutex);
3622 while (!list_empty(&dirty)) {
3623 bool drop_reserve = true;
3625 cache = list_first_entry(&dirty,
3626 struct btrfs_block_group_cache,
3629 * this can happen if something re-dirties a block
3630 * group that is already under IO. Just wait for it to
3631 * finish and then do it all again
3633 if (!list_empty(&cache->io_list)) {
3634 list_del_init(&cache->io_list);
3635 btrfs_wait_cache_io(trans, cache, path);
3636 btrfs_put_block_group(cache);
3641 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3642 * if it should update the cache_state. Don't delete
3643 * until after we wait.
3645 * Since we're not running in the commit critical section
3646 * we need the dirty_bgs_lock to protect from update_block_group
3648 spin_lock(&cur_trans->dirty_bgs_lock);
3649 list_del_init(&cache->dirty_list);
3650 spin_unlock(&cur_trans->dirty_bgs_lock);
3654 cache_save_setup(cache, trans, path);
3656 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3657 cache->io_ctl.inode = NULL;
3658 ret = btrfs_write_out_cache(fs_info, trans,
3660 if (ret == 0 && cache->io_ctl.inode) {
3665 * The cache_write_mutex is protecting the
3666 * io_list, also refer to the definition of
3667 * btrfs_transaction::io_bgs for more details
3669 list_add_tail(&cache->io_list, io);
3672 * if we failed to write the cache, the
3673 * generation will be bad and life goes on
3679 ret = write_one_cache_group(trans, fs_info,
3682 * Our block group might still be attached to the list
3683 * of new block groups in the transaction handle of some
3684 * other task (struct btrfs_trans_handle->new_bgs). This
3685 * means its block group item isn't yet in the extent
3686 * tree. If this happens ignore the error, as we will
3687 * try again later in the critical section of the
3688 * transaction commit.
3690 if (ret == -ENOENT) {
3692 spin_lock(&cur_trans->dirty_bgs_lock);
3693 if (list_empty(&cache->dirty_list)) {
3694 list_add_tail(&cache->dirty_list,
3695 &cur_trans->dirty_bgs);
3696 btrfs_get_block_group(cache);
3697 drop_reserve = false;
3699 spin_unlock(&cur_trans->dirty_bgs_lock);
3701 btrfs_abort_transaction(trans, ret);
3705 /* if it's not on the io list, we need to put the block group */
3707 btrfs_put_block_group(cache);
3709 btrfs_delayed_refs_rsv_release(fs_info, 1);
3715 * Avoid blocking other tasks for too long. It might even save
3716 * us from writing caches for block groups that are going to be
3719 mutex_unlock(&trans->transaction->cache_write_mutex);
3720 mutex_lock(&trans->transaction->cache_write_mutex);
3722 mutex_unlock(&trans->transaction->cache_write_mutex);
3725 * go through delayed refs for all the stuff we've just kicked off
3726 * and then loop back (just once)
3728 ret = btrfs_run_delayed_refs(trans, 0);
3729 if (!ret && loops == 0) {
3731 spin_lock(&cur_trans->dirty_bgs_lock);
3732 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3734 * dirty_bgs_lock protects us from concurrent block group
3735 * deletes too (not just cache_write_mutex).
3737 if (!list_empty(&dirty)) {
3738 spin_unlock(&cur_trans->dirty_bgs_lock);
3741 spin_unlock(&cur_trans->dirty_bgs_lock);
3742 } else if (ret < 0) {
3743 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3746 btrfs_free_path(path);
3750 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3751 struct btrfs_fs_info *fs_info)
3753 struct btrfs_block_group_cache *cache;
3754 struct btrfs_transaction *cur_trans = trans->transaction;
3757 struct btrfs_path *path;
3758 struct list_head *io = &cur_trans->io_bgs;
3759 int num_started = 0;
3761 path = btrfs_alloc_path();
3766 * Even though we are in the critical section of the transaction commit,
3767 * we can still have concurrent tasks adding elements to this
3768 * transaction's list of dirty block groups. These tasks correspond to
3769 * endio free space workers started when writeback finishes for a
3770 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3771 * allocate new block groups as a result of COWing nodes of the root
3772 * tree when updating the free space inode. The writeback for the space
3773 * caches is triggered by an earlier call to
3774 * btrfs_start_dirty_block_groups() and iterations of the following
3776 * Also we want to do the cache_save_setup first and then run the
3777 * delayed refs to make sure we have the best chance at doing this all
3780 spin_lock(&cur_trans->dirty_bgs_lock);
3781 while (!list_empty(&cur_trans->dirty_bgs)) {
3782 cache = list_first_entry(&cur_trans->dirty_bgs,
3783 struct btrfs_block_group_cache,
3787 * this can happen if cache_save_setup re-dirties a block
3788 * group that is already under IO. Just wait for it to
3789 * finish and then do it all again
3791 if (!list_empty(&cache->io_list)) {
3792 spin_unlock(&cur_trans->dirty_bgs_lock);
3793 list_del_init(&cache->io_list);
3794 btrfs_wait_cache_io(trans, cache, path);
3795 btrfs_put_block_group(cache);
3796 spin_lock(&cur_trans->dirty_bgs_lock);
3800 * don't remove from the dirty list until after we've waited
3803 list_del_init(&cache->dirty_list);
3804 spin_unlock(&cur_trans->dirty_bgs_lock);
3807 cache_save_setup(cache, trans, path);
3810 ret = btrfs_run_delayed_refs(trans,
3811 (unsigned long) -1);
3813 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3814 cache->io_ctl.inode = NULL;
3815 ret = btrfs_write_out_cache(fs_info, trans,
3817 if (ret == 0 && cache->io_ctl.inode) {
3820 list_add_tail(&cache->io_list, io);
3823 * if we failed to write the cache, the
3824 * generation will be bad and life goes on
3830 ret = write_one_cache_group(trans, fs_info,
3833 * One of the free space endio workers might have
3834 * created a new block group while updating a free space
3835 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3836 * and hasn't released its transaction handle yet, in
3837 * which case the new block group is still attached to
3838 * its transaction handle and its creation has not
3839 * finished yet (no block group item in the extent tree
3840 * yet, etc). If this is the case, wait for all free
3841 * space endio workers to finish and retry. This is a
3842 * a very rare case so no need for a more efficient and
3845 if (ret == -ENOENT) {
3846 wait_event(cur_trans->writer_wait,
3847 atomic_read(&cur_trans->num_writers) == 1);
3848 ret = write_one_cache_group(trans, fs_info,
3852 btrfs_abort_transaction(trans, ret);
3855 /* if its not on the io list, we need to put the block group */
3857 btrfs_put_block_group(cache);
3858 btrfs_delayed_refs_rsv_release(fs_info, 1);
3859 spin_lock(&cur_trans->dirty_bgs_lock);
3861 spin_unlock(&cur_trans->dirty_bgs_lock);
3864 * Refer to the definition of io_bgs member for details why it's safe
3865 * to use it without any locking
3867 while (!list_empty(io)) {
3868 cache = list_first_entry(io, struct btrfs_block_group_cache,
3870 list_del_init(&cache->io_list);
3871 btrfs_wait_cache_io(trans, cache, path);
3872 btrfs_put_block_group(cache);
3875 btrfs_free_path(path);
3879 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3881 struct btrfs_block_group_cache *block_group;
3884 block_group = btrfs_lookup_block_group(fs_info, bytenr);
3885 if (!block_group || block_group->ro)
3888 btrfs_put_block_group(block_group);
3892 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3894 struct btrfs_block_group_cache *bg;
3897 bg = btrfs_lookup_block_group(fs_info, bytenr);
3901 spin_lock(&bg->lock);
3905 atomic_inc(&bg->nocow_writers);
3906 spin_unlock(&bg->lock);
3908 /* no put on block group, done by btrfs_dec_nocow_writers */
3910 btrfs_put_block_group(bg);
3916 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3918 struct btrfs_block_group_cache *bg;
3920 bg = btrfs_lookup_block_group(fs_info, bytenr);
3922 if (atomic_dec_and_test(&bg->nocow_writers))
3923 wake_up_var(&bg->nocow_writers);
3925 * Once for our lookup and once for the lookup done by a previous call
3926 * to btrfs_inc_nocow_writers()
3928 btrfs_put_block_group(bg);
3929 btrfs_put_block_group(bg);
3932 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3934 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
3937 static const char *alloc_name(u64 flags)
3940 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3942 case BTRFS_BLOCK_GROUP_METADATA:
3944 case BTRFS_BLOCK_GROUP_DATA:
3946 case BTRFS_BLOCK_GROUP_SYSTEM:
3950 return "invalid-combination";
3954 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
3957 struct btrfs_space_info *space_info;
3961 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
3965 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
3972 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3973 INIT_LIST_HEAD(&space_info->block_groups[i]);
3974 init_rwsem(&space_info->groups_sem);
3975 spin_lock_init(&space_info->lock);
3976 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3977 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3978 init_waitqueue_head(&space_info->wait);
3979 INIT_LIST_HEAD(&space_info->ro_bgs);
3980 INIT_LIST_HEAD(&space_info->tickets);
3981 INIT_LIST_HEAD(&space_info->priority_tickets);
3983 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
3984 info->space_info_kobj, "%s",
3985 alloc_name(space_info->flags));
3987 percpu_counter_destroy(&space_info->total_bytes_pinned);
3992 list_add_rcu(&space_info->list, &info->space_info);
3993 if (flags & BTRFS_BLOCK_GROUP_DATA)
3994 info->data_sinfo = space_info;
3999 static void update_space_info(struct btrfs_fs_info *info, u64 flags,
4000 u64 total_bytes, u64 bytes_used,
4002 struct btrfs_space_info **space_info)
4004 struct btrfs_space_info *found;
4007 factor = btrfs_bg_type_to_factor(flags);
4009 found = __find_space_info(info, flags);
4011 spin_lock(&found->lock);
4012 found->total_bytes += total_bytes;
4013 found->disk_total += total_bytes * factor;
4014 found->bytes_used += bytes_used;
4015 found->disk_used += bytes_used * factor;
4016 found->bytes_readonly += bytes_readonly;
4017 if (total_bytes > 0)
4019 space_info_add_new_bytes(info, found, total_bytes -
4020 bytes_used - bytes_readonly);
4021 spin_unlock(&found->lock);
4022 *space_info = found;
4025 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4027 u64 extra_flags = chunk_to_extended(flags) &
4028 BTRFS_EXTENDED_PROFILE_MASK;
4030 write_seqlock(&fs_info->profiles_lock);
4031 if (flags & BTRFS_BLOCK_GROUP_DATA)
4032 fs_info->avail_data_alloc_bits |= extra_flags;
4033 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4034 fs_info->avail_metadata_alloc_bits |= extra_flags;
4035 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4036 fs_info->avail_system_alloc_bits |= extra_flags;
4037 write_sequnlock(&fs_info->profiles_lock);
4041 * returns target flags in extended format or 0 if restripe for this
4042 * chunk_type is not in progress
4044 * should be called with balance_lock held
4046 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4048 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4054 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4055 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4056 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4057 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4058 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4059 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4060 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4061 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4062 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4069 * @flags: available profiles in extended format (see ctree.h)
4071 * Returns reduced profile in chunk format. If profile changing is in
4072 * progress (either running or paused) picks the target profile (if it's
4073 * already available), otherwise falls back to plain reducing.
4075 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
4077 u64 num_devices = fs_info->fs_devices->rw_devices;
4083 * see if restripe for this chunk_type is in progress, if so
4084 * try to reduce to the target profile
4086 spin_lock(&fs_info->balance_lock);
4087 target = get_restripe_target(fs_info, flags);
4089 /* pick target profile only if it's already available */
4090 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4091 spin_unlock(&fs_info->balance_lock);
4092 return extended_to_chunk(target);
4095 spin_unlock(&fs_info->balance_lock);
4097 /* First, mask out the RAID levels which aren't possible */
4098 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4099 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4100 allowed |= btrfs_raid_array[raid_type].bg_flag;
4104 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4105 allowed = BTRFS_BLOCK_GROUP_RAID6;
4106 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4107 allowed = BTRFS_BLOCK_GROUP_RAID5;
4108 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4109 allowed = BTRFS_BLOCK_GROUP_RAID10;
4110 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4111 allowed = BTRFS_BLOCK_GROUP_RAID1;
4112 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4113 allowed = BTRFS_BLOCK_GROUP_RAID0;
4115 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4117 return extended_to_chunk(flags | allowed);
4120 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4127 seq = read_seqbegin(&fs_info->profiles_lock);
4129 if (flags & BTRFS_BLOCK_GROUP_DATA)
4130 flags |= fs_info->avail_data_alloc_bits;
4131 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4132 flags |= fs_info->avail_system_alloc_bits;
4133 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4134 flags |= fs_info->avail_metadata_alloc_bits;
4135 } while (read_seqretry(&fs_info->profiles_lock, seq));
4137 return btrfs_reduce_alloc_profile(fs_info, flags);
4140 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
4142 struct btrfs_fs_info *fs_info = root->fs_info;
4147 flags = BTRFS_BLOCK_GROUP_DATA;
4148 else if (root == fs_info->chunk_root)
4149 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4151 flags = BTRFS_BLOCK_GROUP_METADATA;
4153 ret = get_alloc_profile(fs_info, flags);
4157 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4159 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4162 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4164 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4167 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4169 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4172 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4173 bool may_use_included)
4176 return s_info->bytes_used + s_info->bytes_reserved +
4177 s_info->bytes_pinned + s_info->bytes_readonly +
4178 (may_use_included ? s_info->bytes_may_use : 0);
4181 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4183 struct btrfs_root *root = inode->root;
4184 struct btrfs_fs_info *fs_info = root->fs_info;
4185 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
4188 int need_commit = 2;
4189 int have_pinned_space;
4191 /* make sure bytes are sectorsize aligned */
4192 bytes = ALIGN(bytes, fs_info->sectorsize);
4194 if (btrfs_is_free_space_inode(inode)) {
4196 ASSERT(current->journal_info);
4200 /* make sure we have enough space to handle the data first */
4201 spin_lock(&data_sinfo->lock);
4202 used = btrfs_space_info_used(data_sinfo, true);
4204 if (used + bytes > data_sinfo->total_bytes) {
4205 struct btrfs_trans_handle *trans;
4208 * if we don't have enough free bytes in this space then we need
4209 * to alloc a new chunk.
4211 if (!data_sinfo->full) {
4214 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4215 spin_unlock(&data_sinfo->lock);
4217 alloc_target = btrfs_data_alloc_profile(fs_info);
4219 * It is ugly that we don't call nolock join
4220 * transaction for the free space inode case here.
4221 * But it is safe because we only do the data space
4222 * reservation for the free space cache in the
4223 * transaction context, the common join transaction
4224 * just increase the counter of the current transaction
4225 * handler, doesn't try to acquire the trans_lock of
4228 trans = btrfs_join_transaction(root);
4230 return PTR_ERR(trans);
4232 ret = do_chunk_alloc(trans, alloc_target,
4233 CHUNK_ALLOC_NO_FORCE);
4234 btrfs_end_transaction(trans);
4239 have_pinned_space = 1;
4248 * If we don't have enough pinned space to deal with this
4249 * allocation, and no removed chunk in current transaction,
4250 * don't bother committing the transaction.
4252 have_pinned_space = __percpu_counter_compare(
4253 &data_sinfo->total_bytes_pinned,
4254 used + bytes - data_sinfo->total_bytes,
4255 BTRFS_TOTAL_BYTES_PINNED_BATCH);
4256 spin_unlock(&data_sinfo->lock);
4258 /* commit the current transaction and try again */
4263 if (need_commit > 0) {
4264 btrfs_start_delalloc_roots(fs_info, -1);
4265 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
4269 trans = btrfs_join_transaction(root);
4271 return PTR_ERR(trans);
4272 if (have_pinned_space >= 0 ||
4273 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4274 &trans->transaction->flags) ||
4276 ret = btrfs_commit_transaction(trans);
4280 * The cleaner kthread might still be doing iput
4281 * operations. Wait for it to finish so that
4282 * more space is released. We don't need to
4283 * explicitly run the delayed iputs here because
4284 * the commit_transaction would have woken up
4287 ret = btrfs_wait_on_delayed_iputs(fs_info);
4292 btrfs_end_transaction(trans);
4296 trace_btrfs_space_reservation(fs_info,
4297 "space_info:enospc",
4298 data_sinfo->flags, bytes, 1);
4301 update_bytes_may_use(data_sinfo, bytes);
4302 trace_btrfs_space_reservation(fs_info, "space_info",
4303 data_sinfo->flags, bytes, 1);
4304 spin_unlock(&data_sinfo->lock);
4309 int btrfs_check_data_free_space(struct inode *inode,
4310 struct extent_changeset **reserved, u64 start, u64 len)
4312 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4315 /* align the range */
4316 len = round_up(start + len, fs_info->sectorsize) -
4317 round_down(start, fs_info->sectorsize);
4318 start = round_down(start, fs_info->sectorsize);
4320 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4324 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4325 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
4327 btrfs_free_reserved_data_space_noquota(inode, start, len);
4334 * Called if we need to clear a data reservation for this inode
4335 * Normally in a error case.
4337 * This one will *NOT* use accurate qgroup reserved space API, just for case
4338 * which we can't sleep and is sure it won't affect qgroup reserved space.
4339 * Like clear_bit_hook().
4341 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4344 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4345 struct btrfs_space_info *data_sinfo;
4347 /* Make sure the range is aligned to sectorsize */
4348 len = round_up(start + len, fs_info->sectorsize) -
4349 round_down(start, fs_info->sectorsize);
4350 start = round_down(start, fs_info->sectorsize);
4352 data_sinfo = fs_info->data_sinfo;
4353 spin_lock(&data_sinfo->lock);
4354 update_bytes_may_use(data_sinfo, -len);
4355 trace_btrfs_space_reservation(fs_info, "space_info",
4356 data_sinfo->flags, len, 0);
4357 spin_unlock(&data_sinfo->lock);
4361 * Called if we need to clear a data reservation for this inode
4362 * Normally in a error case.
4364 * This one will handle the per-inode data rsv map for accurate reserved
4367 void btrfs_free_reserved_data_space(struct inode *inode,
4368 struct extent_changeset *reserved, u64 start, u64 len)
4370 struct btrfs_root *root = BTRFS_I(inode)->root;
4372 /* Make sure the range is aligned to sectorsize */
4373 len = round_up(start + len, root->fs_info->sectorsize) -
4374 round_down(start, root->fs_info->sectorsize);
4375 start = round_down(start, root->fs_info->sectorsize);
4377 btrfs_free_reserved_data_space_noquota(inode, start, len);
4378 btrfs_qgroup_free_data(inode, reserved, start, len);
4381 static void force_metadata_allocation(struct btrfs_fs_info *info)
4383 struct list_head *head = &info->space_info;
4384 struct btrfs_space_info *found;
4387 list_for_each_entry_rcu(found, head, list) {
4388 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4389 found->force_alloc = CHUNK_ALLOC_FORCE;
4394 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4396 return (global->size << 1);
4399 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4400 struct btrfs_space_info *sinfo, int force)
4402 u64 bytes_used = btrfs_space_info_used(sinfo, false);
4405 if (force == CHUNK_ALLOC_FORCE)
4409 * in limited mode, we want to have some free space up to
4410 * about 1% of the FS size.
4412 if (force == CHUNK_ALLOC_LIMITED) {
4413 thresh = btrfs_super_total_bytes(fs_info->super_copy);
4414 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4416 if (sinfo->total_bytes - bytes_used < thresh)
4420 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
4425 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4429 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4430 BTRFS_BLOCK_GROUP_RAID0 |
4431 BTRFS_BLOCK_GROUP_RAID5 |
4432 BTRFS_BLOCK_GROUP_RAID6))
4433 num_dev = fs_info->fs_devices->rw_devices;
4434 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4437 num_dev = 1; /* DUP or single */
4443 * If @is_allocation is true, reserve space in the system space info necessary
4444 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4447 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
4449 struct btrfs_fs_info *fs_info = trans->fs_info;
4450 struct btrfs_space_info *info;
4457 * Needed because we can end up allocating a system chunk and for an
4458 * atomic and race free space reservation in the chunk block reserve.
4460 lockdep_assert_held(&fs_info->chunk_mutex);
4462 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4463 spin_lock(&info->lock);
4464 left = info->total_bytes - btrfs_space_info_used(info, true);
4465 spin_unlock(&info->lock);
4467 num_devs = get_profile_num_devs(fs_info, type);
4469 /* num_devs device items to update and 1 chunk item to add or remove */
4470 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4471 btrfs_calc_trans_metadata_size(fs_info, 1);
4473 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4474 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4475 left, thresh, type);
4476 dump_space_info(fs_info, info, 0, 0);
4479 if (left < thresh) {
4480 u64 flags = btrfs_system_alloc_profile(fs_info);
4483 * Ignore failure to create system chunk. We might end up not
4484 * needing it, as we might not need to COW all nodes/leafs from
4485 * the paths we visit in the chunk tree (they were already COWed
4486 * or created in the current transaction for example).
4488 ret = btrfs_alloc_chunk(trans, flags);
4492 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4493 &fs_info->chunk_block_rsv,
4494 thresh, BTRFS_RESERVE_NO_FLUSH);
4496 trans->chunk_bytes_reserved += thresh;
4501 * If force is CHUNK_ALLOC_FORCE:
4502 * - return 1 if it successfully allocates a chunk,
4503 * - return errors including -ENOSPC otherwise.
4504 * If force is NOT CHUNK_ALLOC_FORCE:
4505 * - return 0 if it doesn't need to allocate a new chunk,
4506 * - return 1 if it successfully allocates a chunk,
4507 * - return errors including -ENOSPC otherwise.
4509 static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
4512 struct btrfs_fs_info *fs_info = trans->fs_info;
4513 struct btrfs_space_info *space_info;
4514 bool wait_for_alloc = false;
4515 bool should_alloc = false;
4518 /* Don't re-enter if we're already allocating a chunk */
4519 if (trans->allocating_chunk)
4522 space_info = __find_space_info(fs_info, flags);
4526 spin_lock(&space_info->lock);
4527 if (force < space_info->force_alloc)
4528 force = space_info->force_alloc;
4529 should_alloc = should_alloc_chunk(fs_info, space_info, force);
4530 if (space_info->full) {
4531 /* No more free physical space */
4536 spin_unlock(&space_info->lock);
4538 } else if (!should_alloc) {
4539 spin_unlock(&space_info->lock);
4541 } else if (space_info->chunk_alloc) {
4543 * Someone is already allocating, so we need to block
4544 * until this someone is finished and then loop to
4545 * recheck if we should continue with our allocation
4548 wait_for_alloc = true;
4549 spin_unlock(&space_info->lock);
4550 mutex_lock(&fs_info->chunk_mutex);
4551 mutex_unlock(&fs_info->chunk_mutex);
4553 /* Proceed with allocation */
4554 space_info->chunk_alloc = 1;
4555 wait_for_alloc = false;
4556 spin_unlock(&space_info->lock);
4560 } while (wait_for_alloc);
4562 mutex_lock(&fs_info->chunk_mutex);
4563 trans->allocating_chunk = true;
4566 * If we have mixed data/metadata chunks we want to make sure we keep
4567 * allocating mixed chunks instead of individual chunks.
4569 if (btrfs_mixed_space_info(space_info))
4570 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4573 * if we're doing a data chunk, go ahead and make sure that
4574 * we keep a reasonable number of metadata chunks allocated in the
4577 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4578 fs_info->data_chunk_allocations++;
4579 if (!(fs_info->data_chunk_allocations %
4580 fs_info->metadata_ratio))
4581 force_metadata_allocation(fs_info);
4585 * Check if we have enough space in SYSTEM chunk because we may need
4586 * to update devices.
4588 check_system_chunk(trans, flags);
4590 ret = btrfs_alloc_chunk(trans, flags);
4591 trans->allocating_chunk = false;
4593 spin_lock(&space_info->lock);
4596 space_info->full = 1;
4601 space_info->max_extent_size = 0;
4604 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4606 space_info->chunk_alloc = 0;
4607 spin_unlock(&space_info->lock);
4608 mutex_unlock(&fs_info->chunk_mutex);
4610 * When we allocate a new chunk we reserve space in the chunk block
4611 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4612 * add new nodes/leafs to it if we end up needing to do it when
4613 * inserting the chunk item and updating device items as part of the
4614 * second phase of chunk allocation, performed by
4615 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4616 * large number of new block groups to create in our transaction
4617 * handle's new_bgs list to avoid exhausting the chunk block reserve
4618 * in extreme cases - like having a single transaction create many new
4619 * block groups when starting to write out the free space caches of all
4620 * the block groups that were made dirty during the lifetime of the
4623 if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
4624 btrfs_create_pending_block_groups(trans);
4629 static int can_overcommit(struct btrfs_fs_info *fs_info,
4630 struct btrfs_space_info *space_info, u64 bytes,
4631 enum btrfs_reserve_flush_enum flush,
4634 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4641 /* Don't overcommit when in mixed mode. */
4642 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4646 profile = btrfs_system_alloc_profile(fs_info);
4648 profile = btrfs_metadata_alloc_profile(fs_info);
4650 used = btrfs_space_info_used(space_info, false);
4653 * We only want to allow over committing if we have lots of actual space
4654 * free, but if we don't have enough space to handle the global reserve
4655 * space then we could end up having a real enospc problem when trying
4656 * to allocate a chunk or some other such important allocation.
4658 spin_lock(&global_rsv->lock);
4659 space_size = calc_global_rsv_need_space(global_rsv);
4660 spin_unlock(&global_rsv->lock);
4661 if (used + space_size >= space_info->total_bytes)
4664 used += space_info->bytes_may_use;
4666 avail = atomic64_read(&fs_info->free_chunk_space);
4669 * If we have dup, raid1 or raid10 then only half of the free
4670 * space is actually usable. For raid56, the space info used
4671 * doesn't include the parity drive, so we don't have to
4674 factor = btrfs_bg_type_to_factor(profile);
4675 avail = div_u64(avail, factor);
4678 * If we aren't flushing all things, let us overcommit up to
4679 * 1/2th of the space. If we can flush, don't let us overcommit
4680 * too much, let it overcommit up to 1/8 of the space.
4682 if (flush == BTRFS_RESERVE_FLUSH_ALL)
4687 if (used + bytes < space_info->total_bytes + avail)
4692 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4693 unsigned long nr_pages, int nr_items)
4695 struct super_block *sb = fs_info->sb;
4697 if (down_read_trylock(&sb->s_umount)) {
4698 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4699 up_read(&sb->s_umount);
4702 * We needn't worry the filesystem going from r/w to r/o though
4703 * we don't acquire ->s_umount mutex, because the filesystem
4704 * should guarantee the delalloc inodes list be empty after
4705 * the filesystem is readonly(all dirty pages are written to
4708 btrfs_start_delalloc_roots(fs_info, nr_items);
4709 if (!current->journal_info)
4710 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4714 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4720 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4721 nr = div64_u64(to_reclaim, bytes);
4727 #define EXTENT_SIZE_PER_ITEM SZ_256K
4730 * shrink metadata reservation for delalloc
4732 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4733 u64 orig, bool wait_ordered)
4735 struct btrfs_space_info *space_info;
4736 struct btrfs_trans_handle *trans;
4741 unsigned long nr_pages;
4744 /* Calc the number of the pages we need flush for space reservation */
4745 items = calc_reclaim_items_nr(fs_info, to_reclaim);
4746 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4748 trans = (struct btrfs_trans_handle *)current->journal_info;
4749 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4751 delalloc_bytes = percpu_counter_sum_positive(
4752 &fs_info->delalloc_bytes);
4753 if (delalloc_bytes == 0) {
4757 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4762 while (delalloc_bytes && loops < 3) {
4763 nr_pages = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
4766 * Triggers inode writeback for up to nr_pages. This will invoke
4767 * ->writepages callback and trigger delalloc filling
4768 * (btrfs_run_delalloc_range()).
4770 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4773 * We need to wait for the compressed pages to start before
4776 async_pages = atomic_read(&fs_info->async_delalloc_pages);
4781 * Calculate how many compressed pages we want to be written
4782 * before we continue. I.e if there are more async pages than we
4783 * require wait_event will wait until nr_pages are written.
4785 if (async_pages <= nr_pages)
4788 async_pages -= nr_pages;
4790 wait_event(fs_info->async_submit_wait,
4791 atomic_read(&fs_info->async_delalloc_pages) <=
4794 spin_lock(&space_info->lock);
4795 if (list_empty(&space_info->tickets) &&
4796 list_empty(&space_info->priority_tickets)) {
4797 spin_unlock(&space_info->lock);
4800 spin_unlock(&space_info->lock);
4803 if (wait_ordered && !trans) {
4804 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4806 time_left = schedule_timeout_killable(1);
4810 delalloc_bytes = percpu_counter_sum_positive(
4811 &fs_info->delalloc_bytes);
4815 struct reserve_ticket {
4819 struct list_head list;
4820 wait_queue_head_t wait;
4824 * maybe_commit_transaction - possibly commit the transaction if its ok to
4825 * @root - the root we're allocating for
4826 * @bytes - the number of bytes we want to reserve
4827 * @force - force the commit
4829 * This will check to make sure that committing the transaction will actually
4830 * get us somewhere and then commit the transaction if it does. Otherwise it
4831 * will return -ENOSPC.
4833 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4834 struct btrfs_space_info *space_info)
4836 struct reserve_ticket *ticket = NULL;
4837 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4838 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
4839 struct btrfs_trans_handle *trans;
4841 u64 reclaim_bytes = 0;
4843 trans = (struct btrfs_trans_handle *)current->journal_info;
4847 spin_lock(&space_info->lock);
4848 if (!list_empty(&space_info->priority_tickets))
4849 ticket = list_first_entry(&space_info->priority_tickets,
4850 struct reserve_ticket, list);
4851 else if (!list_empty(&space_info->tickets))
4852 ticket = list_first_entry(&space_info->tickets,
4853 struct reserve_ticket, list);
4854 bytes_needed = (ticket) ? ticket->bytes : 0;
4855 spin_unlock(&space_info->lock);
4860 trans = btrfs_join_transaction(fs_info->extent_root);
4862 return PTR_ERR(trans);
4865 * See if there is enough pinned space to make this reservation, or if
4866 * we have block groups that are going to be freed, allowing us to
4867 * possibly do a chunk allocation the next loop through.
4869 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) ||
4870 __percpu_counter_compare(&space_info->total_bytes_pinned,
4872 BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
4876 * See if there is some space in the delayed insertion reservation for
4879 if (space_info != delayed_rsv->space_info)
4882 spin_lock(&delayed_rsv->lock);
4883 reclaim_bytes += delayed_rsv->reserved;
4884 spin_unlock(&delayed_rsv->lock);
4886 spin_lock(&delayed_refs_rsv->lock);
4887 reclaim_bytes += delayed_refs_rsv->reserved;
4888 spin_unlock(&delayed_refs_rsv->lock);
4889 if (reclaim_bytes >= bytes_needed)
4891 bytes_needed -= reclaim_bytes;
4893 if (__percpu_counter_compare(&space_info->total_bytes_pinned,
4895 BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0)
4899 return btrfs_commit_transaction(trans);
4901 btrfs_end_transaction(trans);
4906 * Try to flush some data based on policy set by @state. This is only advisory
4907 * and may fail for various reasons. The caller is supposed to examine the
4908 * state of @space_info to detect the outcome.
4910 static void flush_space(struct btrfs_fs_info *fs_info,
4911 struct btrfs_space_info *space_info, u64 num_bytes,
4914 struct btrfs_root *root = fs_info->extent_root;
4915 struct btrfs_trans_handle *trans;
4920 case FLUSH_DELAYED_ITEMS_NR:
4921 case FLUSH_DELAYED_ITEMS:
4922 if (state == FLUSH_DELAYED_ITEMS_NR)
4923 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
4927 trans = btrfs_join_transaction(root);
4928 if (IS_ERR(trans)) {
4929 ret = PTR_ERR(trans);
4932 ret = btrfs_run_delayed_items_nr(trans, nr);
4933 btrfs_end_transaction(trans);
4935 case FLUSH_DELALLOC:
4936 case FLUSH_DELALLOC_WAIT:
4937 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
4938 state == FLUSH_DELALLOC_WAIT);
4940 case FLUSH_DELAYED_REFS_NR:
4941 case FLUSH_DELAYED_REFS:
4942 trans = btrfs_join_transaction(root);
4943 if (IS_ERR(trans)) {
4944 ret = PTR_ERR(trans);
4947 if (state == FLUSH_DELAYED_REFS_NR)
4948 nr = calc_reclaim_items_nr(fs_info, num_bytes);
4951 btrfs_run_delayed_refs(trans, nr);
4952 btrfs_end_transaction(trans);
4955 case ALLOC_CHUNK_FORCE:
4956 trans = btrfs_join_transaction(root);
4957 if (IS_ERR(trans)) {
4958 ret = PTR_ERR(trans);
4961 ret = do_chunk_alloc(trans,
4962 btrfs_metadata_alloc_profile(fs_info),
4963 (state == ALLOC_CHUNK) ?
4964 CHUNK_ALLOC_NO_FORCE : CHUNK_ALLOC_FORCE);
4965 btrfs_end_transaction(trans);
4966 if (ret > 0 || ret == -ENOSPC)
4971 * If we have pending delayed iputs then we could free up a
4972 * bunch of pinned space, so make sure we run the iputs before
4973 * we do our pinned bytes check below.
4975 btrfs_run_delayed_iputs(fs_info);
4976 btrfs_wait_on_delayed_iputs(fs_info);
4978 ret = may_commit_transaction(fs_info, space_info);
4985 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
4991 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
4992 struct btrfs_space_info *space_info,
4995 struct reserve_ticket *ticket;
5000 list_for_each_entry(ticket, &space_info->tickets, list)
5001 to_reclaim += ticket->bytes;
5002 list_for_each_entry(ticket, &space_info->priority_tickets, list)
5003 to_reclaim += ticket->bytes;
5007 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
5008 if (can_overcommit(fs_info, space_info, to_reclaim,
5009 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
5012 used = btrfs_space_info_used(space_info, true);
5014 if (can_overcommit(fs_info, space_info, SZ_1M,
5015 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
5016 expected = div_factor_fine(space_info->total_bytes, 95);
5018 expected = div_factor_fine(space_info->total_bytes, 90);
5020 if (used > expected)
5021 to_reclaim = used - expected;
5024 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
5025 space_info->bytes_reserved);
5029 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
5030 struct btrfs_space_info *space_info,
5031 u64 used, bool system_chunk)
5033 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
5035 /* If we're just plain full then async reclaim just slows us down. */
5036 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
5039 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5043 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
5044 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
5047 static bool wake_all_tickets(struct list_head *head)
5049 struct reserve_ticket *ticket;
5051 while (!list_empty(head)) {
5052 ticket = list_first_entry(head, struct reserve_ticket, list);
5053 list_del_init(&ticket->list);
5054 ticket->error = -ENOSPC;
5055 wake_up(&ticket->wait);
5056 if (ticket->bytes != ticket->orig_bytes)
5063 * This is for normal flushers, we can wait all goddamned day if we want to. We
5064 * will loop and continuously try to flush as long as we are making progress.
5065 * We count progress as clearing off tickets each time we have to loop.
5067 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5069 struct btrfs_fs_info *fs_info;
5070 struct btrfs_space_info *space_info;
5073 int commit_cycles = 0;
5074 u64 last_tickets_id;
5076 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5077 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5079 spin_lock(&space_info->lock);
5080 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5083 space_info->flush = 0;
5084 spin_unlock(&space_info->lock);
5087 last_tickets_id = space_info->tickets_id;
5088 spin_unlock(&space_info->lock);
5090 flush_state = FLUSH_DELAYED_ITEMS_NR;
5092 flush_space(fs_info, space_info, to_reclaim, flush_state);
5093 spin_lock(&space_info->lock);
5094 if (list_empty(&space_info->tickets)) {
5095 space_info->flush = 0;
5096 spin_unlock(&space_info->lock);
5099 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5102 if (last_tickets_id == space_info->tickets_id) {
5105 last_tickets_id = space_info->tickets_id;
5106 flush_state = FLUSH_DELAYED_ITEMS_NR;
5112 * We don't want to force a chunk allocation until we've tried
5113 * pretty hard to reclaim space. Think of the case where we
5114 * freed up a bunch of space and so have a lot of pinned space
5115 * to reclaim. We would rather use that than possibly create a
5116 * underutilized metadata chunk. So if this is our first run
5117 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
5118 * commit the transaction. If nothing has changed the next go
5119 * around then we can force a chunk allocation.
5121 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
5124 if (flush_state > COMMIT_TRANS) {
5126 if (commit_cycles > 2) {
5127 if (wake_all_tickets(&space_info->tickets)) {
5128 flush_state = FLUSH_DELAYED_ITEMS_NR;
5131 space_info->flush = 0;
5134 flush_state = FLUSH_DELAYED_ITEMS_NR;
5137 spin_unlock(&space_info->lock);
5138 } while (flush_state <= COMMIT_TRANS);
5141 void btrfs_init_async_reclaim_work(struct work_struct *work)
5143 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5146 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5147 struct btrfs_space_info *space_info,
5148 struct reserve_ticket *ticket)
5151 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5153 spin_lock(&space_info->lock);
5154 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5157 spin_unlock(&space_info->lock);
5160 spin_unlock(&space_info->lock);
5163 flush_space(fs_info, space_info, to_reclaim, flush_state);
5165 spin_lock(&space_info->lock);
5166 if (ticket->bytes == 0) {
5167 spin_unlock(&space_info->lock);
5170 spin_unlock(&space_info->lock);
5173 * Priority flushers can't wait on delalloc without
5176 if (flush_state == FLUSH_DELALLOC ||
5177 flush_state == FLUSH_DELALLOC_WAIT)
5178 flush_state = ALLOC_CHUNK;
5179 } while (flush_state < COMMIT_TRANS);
5182 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5183 struct btrfs_space_info *space_info,
5184 struct reserve_ticket *ticket)
5188 u64 reclaim_bytes = 0;
5191 spin_lock(&space_info->lock);
5192 while (ticket->bytes > 0 && ticket->error == 0) {
5193 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5198 spin_unlock(&space_info->lock);
5202 finish_wait(&ticket->wait, &wait);
5203 spin_lock(&space_info->lock);
5206 ret = ticket->error;
5207 if (!list_empty(&ticket->list))
5208 list_del_init(&ticket->list);
5209 if (ticket->bytes && ticket->bytes < ticket->orig_bytes)
5210 reclaim_bytes = ticket->orig_bytes - ticket->bytes;
5211 spin_unlock(&space_info->lock);
5214 space_info_add_old_bytes(fs_info, space_info, reclaim_bytes);
5219 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5220 * @root - the root we're allocating for
5221 * @space_info - the space info we want to allocate from
5222 * @orig_bytes - the number of bytes we want
5223 * @flush - whether or not we can flush to make our reservation
5225 * This will reserve orig_bytes number of bytes from the space info associated
5226 * with the block_rsv. If there is not enough space it will make an attempt to
5227 * flush out space to make room. It will do this by flushing delalloc if
5228 * possible or committing the transaction. If flush is 0 then no attempts to
5229 * regain reservations will be made and this will fail if there is not enough
5232 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
5233 struct btrfs_space_info *space_info,
5235 enum btrfs_reserve_flush_enum flush,
5238 struct reserve_ticket ticket;
5240 u64 reclaim_bytes = 0;
5244 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5246 spin_lock(&space_info->lock);
5248 used = btrfs_space_info_used(space_info, true);
5251 * If we have enough space then hooray, make our reservation and carry
5252 * on. If not see if we can overcommit, and if we can, hooray carry on.
5253 * If not things get more complicated.
5255 if (used + orig_bytes <= space_info->total_bytes) {
5256 update_bytes_may_use(space_info, orig_bytes);
5257 trace_btrfs_space_reservation(fs_info, "space_info",
5258 space_info->flags, orig_bytes, 1);
5260 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5262 update_bytes_may_use(space_info, orig_bytes);
5263 trace_btrfs_space_reservation(fs_info, "space_info",
5264 space_info->flags, orig_bytes, 1);
5269 * If we couldn't make a reservation then setup our reservation ticket
5270 * and kick the async worker if it's not already running.
5272 * If we are a priority flusher then we just need to add our ticket to
5273 * the list and we will do our own flushing further down.
5275 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5276 ticket.orig_bytes = orig_bytes;
5277 ticket.bytes = orig_bytes;
5279 init_waitqueue_head(&ticket.wait);
5280 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5281 list_add_tail(&ticket.list, &space_info->tickets);
5282 if (!space_info->flush) {
5283 space_info->flush = 1;
5284 trace_btrfs_trigger_flush(fs_info,
5288 queue_work(system_unbound_wq,
5289 &fs_info->async_reclaim_work);
5292 list_add_tail(&ticket.list,
5293 &space_info->priority_tickets);
5295 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5298 * We will do the space reservation dance during log replay,
5299 * which means we won't have fs_info->fs_root set, so don't do
5300 * the async reclaim as we will panic.
5302 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5303 need_do_async_reclaim(fs_info, space_info,
5304 used, system_chunk) &&
5305 !work_busy(&fs_info->async_reclaim_work)) {
5306 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5307 orig_bytes, flush, "preempt");
5308 queue_work(system_unbound_wq,
5309 &fs_info->async_reclaim_work);
5312 spin_unlock(&space_info->lock);
5313 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5316 if (flush == BTRFS_RESERVE_FLUSH_ALL)
5317 return wait_reserve_ticket(fs_info, space_info, &ticket);
5320 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5321 spin_lock(&space_info->lock);
5323 if (ticket.bytes < orig_bytes)
5324 reclaim_bytes = orig_bytes - ticket.bytes;
5325 list_del_init(&ticket.list);
5328 spin_unlock(&space_info->lock);
5331 space_info_add_old_bytes(fs_info, space_info, reclaim_bytes);
5332 ASSERT(list_empty(&ticket.list));
5337 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5338 * @root - the root we're allocating for
5339 * @block_rsv - the block_rsv we're allocating for
5340 * @orig_bytes - the number of bytes we want
5341 * @flush - whether or not we can flush to make our reservation
5343 * This will reserve orig_bytes number of bytes from the space info associated
5344 * with the block_rsv. If there is not enough space it will make an attempt to
5345 * flush out space to make room. It will do this by flushing delalloc if
5346 * possible or committing the transaction. If flush is 0 then no attempts to
5347 * regain reservations will be made and this will fail if there is not enough
5350 static int reserve_metadata_bytes(struct btrfs_root *root,
5351 struct btrfs_block_rsv *block_rsv,
5353 enum btrfs_reserve_flush_enum flush)
5355 struct btrfs_fs_info *fs_info = root->fs_info;
5356 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5358 bool system_chunk = (root == fs_info->chunk_root);
5360 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5361 orig_bytes, flush, system_chunk);
5362 if (ret == -ENOSPC &&
5363 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5364 if (block_rsv != global_rsv &&
5365 !block_rsv_use_bytes(global_rsv, orig_bytes))
5368 if (ret == -ENOSPC) {
5369 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5370 block_rsv->space_info->flags,
5373 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
5374 dump_space_info(fs_info, block_rsv->space_info,
5380 static struct btrfs_block_rsv *get_block_rsv(
5381 const struct btrfs_trans_handle *trans,
5382 const struct btrfs_root *root)
5384 struct btrfs_fs_info *fs_info = root->fs_info;
5385 struct btrfs_block_rsv *block_rsv = NULL;
5387 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5388 (root == fs_info->csum_root && trans->adding_csums) ||
5389 (root == fs_info->uuid_root))
5390 block_rsv = trans->block_rsv;
5393 block_rsv = root->block_rsv;
5396 block_rsv = &fs_info->empty_block_rsv;
5401 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5405 spin_lock(&block_rsv->lock);
5406 if (block_rsv->reserved >= num_bytes) {
5407 block_rsv->reserved -= num_bytes;
5408 if (block_rsv->reserved < block_rsv->size)
5409 block_rsv->full = 0;
5412 spin_unlock(&block_rsv->lock);
5416 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5417 u64 num_bytes, bool update_size)
5419 spin_lock(&block_rsv->lock);
5420 block_rsv->reserved += num_bytes;
5422 block_rsv->size += num_bytes;
5423 else if (block_rsv->reserved >= block_rsv->size)
5424 block_rsv->full = 1;
5425 spin_unlock(&block_rsv->lock);
5428 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5429 struct btrfs_block_rsv *dest, u64 num_bytes,
5432 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5435 if (global_rsv->space_info != dest->space_info)
5438 spin_lock(&global_rsv->lock);
5439 min_bytes = div_factor(global_rsv->size, min_factor);
5440 if (global_rsv->reserved < min_bytes + num_bytes) {
5441 spin_unlock(&global_rsv->lock);
5444 global_rsv->reserved -= num_bytes;
5445 if (global_rsv->reserved < global_rsv->size)
5446 global_rsv->full = 0;
5447 spin_unlock(&global_rsv->lock);
5449 block_rsv_add_bytes(dest, num_bytes, true);
5454 * btrfs_migrate_to_delayed_refs_rsv - transfer bytes to our delayed refs rsv.
5455 * @fs_info - the fs info for our fs.
5456 * @src - the source block rsv to transfer from.
5457 * @num_bytes - the number of bytes to transfer.
5459 * This transfers up to the num_bytes amount from the src rsv to the
5460 * delayed_refs_rsv. Any extra bytes are returned to the space info.
5462 void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info,
5463 struct btrfs_block_rsv *src,
5466 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
5469 spin_lock(&src->lock);
5470 src->reserved -= num_bytes;
5471 src->size -= num_bytes;
5472 spin_unlock(&src->lock);
5474 spin_lock(&delayed_refs_rsv->lock);
5475 if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) {
5476 u64 delta = delayed_refs_rsv->size -
5477 delayed_refs_rsv->reserved;
5478 if (num_bytes > delta) {
5479 to_free = num_bytes - delta;
5483 to_free = num_bytes;
5488 delayed_refs_rsv->reserved += num_bytes;
5489 if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size)
5490 delayed_refs_rsv->full = 1;
5491 spin_unlock(&delayed_refs_rsv->lock);
5494 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
5497 space_info_add_old_bytes(fs_info, delayed_refs_rsv->space_info,
5502 * btrfs_delayed_refs_rsv_refill - refill based on our delayed refs usage.
5503 * @fs_info - the fs_info for our fs.
5504 * @flush - control how we can flush for this reservation.
5506 * This will refill the delayed block_rsv up to 1 items size worth of space and
5507 * will return -ENOSPC if we can't make the reservation.
5509 int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
5510 enum btrfs_reserve_flush_enum flush)
5512 struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
5513 u64 limit = btrfs_calc_trans_metadata_size(fs_info, 1);
5517 spin_lock(&block_rsv->lock);
5518 if (block_rsv->reserved < block_rsv->size) {
5519 num_bytes = block_rsv->size - block_rsv->reserved;
5520 num_bytes = min(num_bytes, limit);
5522 spin_unlock(&block_rsv->lock);
5527 ret = reserve_metadata_bytes(fs_info->extent_root, block_rsv,
5531 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5532 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
5538 * This is for space we already have accounted in space_info->bytes_may_use, so
5539 * basically when we're returning space from block_rsv's.
5541 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5542 struct btrfs_space_info *space_info,
5545 struct reserve_ticket *ticket;
5546 struct list_head *head;
5548 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5549 bool check_overcommit = false;
5551 spin_lock(&space_info->lock);
5552 head = &space_info->priority_tickets;
5555 * If we are over our limit then we need to check and see if we can
5556 * overcommit, and if we can't then we just need to free up our space
5557 * and not satisfy any requests.
5559 used = btrfs_space_info_used(space_info, true);
5560 if (used - num_bytes >= space_info->total_bytes)
5561 check_overcommit = true;
5563 while (!list_empty(head) && num_bytes) {
5564 ticket = list_first_entry(head, struct reserve_ticket,
5567 * We use 0 bytes because this space is already reserved, so
5568 * adding the ticket space would be a double count.
5570 if (check_overcommit &&
5571 !can_overcommit(fs_info, space_info, 0, flush, false))
5573 if (num_bytes >= ticket->bytes) {
5574 list_del_init(&ticket->list);
5575 num_bytes -= ticket->bytes;
5577 space_info->tickets_id++;
5578 wake_up(&ticket->wait);
5580 ticket->bytes -= num_bytes;
5585 if (num_bytes && head == &space_info->priority_tickets) {
5586 head = &space_info->tickets;
5587 flush = BTRFS_RESERVE_FLUSH_ALL;
5590 update_bytes_may_use(space_info, -num_bytes);
5591 trace_btrfs_space_reservation(fs_info, "space_info",
5592 space_info->flags, num_bytes, 0);
5593 spin_unlock(&space_info->lock);
5597 * This is for newly allocated space that isn't accounted in
5598 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5599 * we use this helper.
5601 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5602 struct btrfs_space_info *space_info,
5605 struct reserve_ticket *ticket;
5606 struct list_head *head = &space_info->priority_tickets;
5609 while (!list_empty(head) && num_bytes) {
5610 ticket = list_first_entry(head, struct reserve_ticket,
5612 if (num_bytes >= ticket->bytes) {
5613 trace_btrfs_space_reservation(fs_info, "space_info",
5616 list_del_init(&ticket->list);
5617 num_bytes -= ticket->bytes;
5618 update_bytes_may_use(space_info, ticket->bytes);
5620 space_info->tickets_id++;
5621 wake_up(&ticket->wait);
5623 trace_btrfs_space_reservation(fs_info, "space_info",
5626 update_bytes_may_use(space_info, num_bytes);
5627 ticket->bytes -= num_bytes;
5632 if (num_bytes && head == &space_info->priority_tickets) {
5633 head = &space_info->tickets;
5638 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5639 struct btrfs_block_rsv *block_rsv,
5640 struct btrfs_block_rsv *dest, u64 num_bytes,
5641 u64 *qgroup_to_release_ret)
5643 struct btrfs_space_info *space_info = block_rsv->space_info;
5644 u64 qgroup_to_release = 0;
5647 spin_lock(&block_rsv->lock);
5648 if (num_bytes == (u64)-1) {
5649 num_bytes = block_rsv->size;
5650 qgroup_to_release = block_rsv->qgroup_rsv_size;
5652 block_rsv->size -= num_bytes;
5653 if (block_rsv->reserved >= block_rsv->size) {
5654 num_bytes = block_rsv->reserved - block_rsv->size;
5655 block_rsv->reserved = block_rsv->size;
5656 block_rsv->full = 1;
5660 if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
5661 qgroup_to_release = block_rsv->qgroup_rsv_reserved -
5662 block_rsv->qgroup_rsv_size;
5663 block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
5665 qgroup_to_release = 0;
5667 spin_unlock(&block_rsv->lock);
5670 if (num_bytes > 0) {
5672 spin_lock(&dest->lock);
5676 bytes_to_add = dest->size - dest->reserved;
5677 bytes_to_add = min(num_bytes, bytes_to_add);
5678 dest->reserved += bytes_to_add;
5679 if (dest->reserved >= dest->size)
5681 num_bytes -= bytes_to_add;
5683 spin_unlock(&dest->lock);
5686 space_info_add_old_bytes(fs_info, space_info,
5689 if (qgroup_to_release_ret)
5690 *qgroup_to_release_ret = qgroup_to_release;
5694 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5695 struct btrfs_block_rsv *dst, u64 num_bytes,
5700 ret = block_rsv_use_bytes(src, num_bytes);
5704 block_rsv_add_bytes(dst, num_bytes, update_size);
5708 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5710 memset(rsv, 0, sizeof(*rsv));
5711 spin_lock_init(&rsv->lock);
5715 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5716 struct btrfs_block_rsv *rsv,
5717 unsigned short type)
5719 btrfs_init_block_rsv(rsv, type);
5720 rsv->space_info = __find_space_info(fs_info,
5721 BTRFS_BLOCK_GROUP_METADATA);
5724 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5725 unsigned short type)
5727 struct btrfs_block_rsv *block_rsv;
5729 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5733 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
5737 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5738 struct btrfs_block_rsv *rsv)
5742 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5746 int btrfs_block_rsv_add(struct btrfs_root *root,
5747 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5748 enum btrfs_reserve_flush_enum flush)
5755 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5757 block_rsv_add_bytes(block_rsv, num_bytes, true);
5762 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5770 spin_lock(&block_rsv->lock);
5771 num_bytes = div_factor(block_rsv->size, min_factor);
5772 if (block_rsv->reserved >= num_bytes)
5774 spin_unlock(&block_rsv->lock);
5779 int btrfs_block_rsv_refill(struct btrfs_root *root,
5780 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5781 enum btrfs_reserve_flush_enum flush)
5789 spin_lock(&block_rsv->lock);
5790 num_bytes = min_reserved;
5791 if (block_rsv->reserved >= num_bytes)
5794 num_bytes -= block_rsv->reserved;
5795 spin_unlock(&block_rsv->lock);
5800 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5802 block_rsv_add_bytes(block_rsv, num_bytes, false);
5809 static void calc_refill_bytes(struct btrfs_block_rsv *block_rsv,
5810 u64 *metadata_bytes, u64 *qgroup_bytes)
5812 *metadata_bytes = 0;
5815 spin_lock(&block_rsv->lock);
5816 if (block_rsv->reserved < block_rsv->size)
5817 *metadata_bytes = block_rsv->size - block_rsv->reserved;
5818 if (block_rsv->qgroup_rsv_reserved < block_rsv->qgroup_rsv_size)
5819 *qgroup_bytes = block_rsv->qgroup_rsv_size -
5820 block_rsv->qgroup_rsv_reserved;
5821 spin_unlock(&block_rsv->lock);
5825 * btrfs_inode_rsv_refill - refill the inode block rsv.
5826 * @inode - the inode we are refilling.
5827 * @flush - the flushing restriction.
5829 * Essentially the same as btrfs_block_rsv_refill, except it uses the
5830 * block_rsv->size as the minimum size. We'll either refill the missing amount
5831 * or return if we already have enough space. This will also handle the reserve
5832 * tracepoint for the reserved amount.
5834 static int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5835 enum btrfs_reserve_flush_enum flush)
5837 struct btrfs_root *root = inode->root;
5838 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5839 u64 num_bytes, last = 0;
5840 u64 qgroup_num_bytes;
5843 calc_refill_bytes(block_rsv, &num_bytes, &qgroup_num_bytes);
5848 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_num_bytes,
5852 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5854 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
5857 * If we are fragmented we can end up with a lot of
5858 * outstanding extents which will make our size be much
5859 * larger than our reserved amount.
5861 * If the reservation happens here, it might be very
5862 * big though not needed in the end, if the delalloc
5865 * If this is the case try and do the reserve again.
5867 if (flush == BTRFS_RESERVE_FLUSH_ALL)
5868 calc_refill_bytes(block_rsv, &num_bytes,
5873 } while (ret && last != num_bytes);
5876 block_rsv_add_bytes(block_rsv, num_bytes, false);
5877 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5878 btrfs_ino(inode), num_bytes, 1);
5880 /* Don't forget to increase qgroup_rsv_reserved */
5881 spin_lock(&block_rsv->lock);
5882 block_rsv->qgroup_rsv_reserved += qgroup_num_bytes;
5883 spin_unlock(&block_rsv->lock);
5888 static u64 __btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5889 struct btrfs_block_rsv *block_rsv,
5890 u64 num_bytes, u64 *qgroup_to_release)
5892 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5893 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
5894 struct btrfs_block_rsv *target = delayed_rsv;
5896 if (target->full || target == block_rsv)
5897 target = global_rsv;
5899 if (block_rsv->space_info != target->space_info)
5902 return block_rsv_release_bytes(fs_info, block_rsv, target, num_bytes,
5906 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5907 struct btrfs_block_rsv *block_rsv,
5910 __btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL);
5914 * btrfs_inode_rsv_release - release any excessive reservation.
5915 * @inode - the inode we need to release from.
5916 * @qgroup_free - free or convert qgroup meta.
5917 * Unlike normal operation, qgroup meta reservation needs to know if we are
5918 * freeing qgroup reservation or just converting it into per-trans. Normally
5919 * @qgroup_free is true for error handling, and false for normal release.
5921 * This is the same as btrfs_block_rsv_release, except that it handles the
5922 * tracepoint for the reservation.
5924 static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
5926 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5927 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5929 u64 qgroup_to_release = 0;
5932 * Since we statically set the block_rsv->size we just want to say we
5933 * are releasing 0 bytes, and then we'll just get the reservation over
5936 released = __btrfs_block_rsv_release(fs_info, block_rsv, 0,
5937 &qgroup_to_release);
5939 trace_btrfs_space_reservation(fs_info, "delalloc",
5940 btrfs_ino(inode), released, 0);
5942 btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
5944 btrfs_qgroup_convert_reserved_meta(inode->root,
5949 * btrfs_delayed_refs_rsv_release - release a ref head's reservation.
5950 * @fs_info - the fs_info for our fs.
5951 * @nr - the number of items to drop.
5953 * This drops the delayed ref head's count from the delayed refs rsv and frees
5954 * any excess reservation we had.
5956 void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr)
5958 struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
5959 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5960 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, nr);
5963 released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv,
5966 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
5970 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5972 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5973 struct btrfs_space_info *sinfo = block_rsv->space_info;
5977 * The global block rsv is based on the size of the extent tree, the
5978 * checksum tree and the root tree. If the fs is empty we want to set
5979 * it to a minimal amount for safety.
5981 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5982 btrfs_root_used(&fs_info->csum_root->root_item) +
5983 btrfs_root_used(&fs_info->tree_root->root_item);
5984 num_bytes = max_t(u64, num_bytes, SZ_16M);
5986 spin_lock(&sinfo->lock);
5987 spin_lock(&block_rsv->lock);
5989 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5991 if (block_rsv->reserved < block_rsv->size) {
5992 num_bytes = btrfs_space_info_used(sinfo, true);
5993 if (sinfo->total_bytes > num_bytes) {
5994 num_bytes = sinfo->total_bytes - num_bytes;
5995 num_bytes = min(num_bytes,
5996 block_rsv->size - block_rsv->reserved);
5997 block_rsv->reserved += num_bytes;
5998 update_bytes_may_use(sinfo, num_bytes);
5999 trace_btrfs_space_reservation(fs_info, "space_info",
6000 sinfo->flags, num_bytes,
6003 } else if (block_rsv->reserved > block_rsv->size) {
6004 num_bytes = block_rsv->reserved - block_rsv->size;
6005 update_bytes_may_use(sinfo, -num_bytes);
6006 trace_btrfs_space_reservation(fs_info, "space_info",
6007 sinfo->flags, num_bytes, 0);
6008 block_rsv->reserved = block_rsv->size;
6011 if (block_rsv->reserved == block_rsv->size)
6012 block_rsv->full = 1;
6014 block_rsv->full = 0;
6016 spin_unlock(&block_rsv->lock);
6017 spin_unlock(&sinfo->lock);
6020 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6022 struct btrfs_space_info *space_info;
6024 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
6025 fs_info->chunk_block_rsv.space_info = space_info;
6027 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
6028 fs_info->global_block_rsv.space_info = space_info;
6029 fs_info->trans_block_rsv.space_info = space_info;
6030 fs_info->empty_block_rsv.space_info = space_info;
6031 fs_info->delayed_block_rsv.space_info = space_info;
6032 fs_info->delayed_refs_rsv.space_info = space_info;
6034 fs_info->extent_root->block_rsv = &fs_info->delayed_refs_rsv;
6035 fs_info->csum_root->block_rsv = &fs_info->delayed_refs_rsv;
6036 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
6037 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
6038 if (fs_info->quota_root)
6039 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
6040 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
6042 update_global_block_rsv(fs_info);
6045 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6047 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
6049 WARN_ON(fs_info->trans_block_rsv.size > 0);
6050 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
6051 WARN_ON(fs_info->chunk_block_rsv.size > 0);
6052 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6053 WARN_ON(fs_info->delayed_block_rsv.size > 0);
6054 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
6055 WARN_ON(fs_info->delayed_refs_rsv.reserved > 0);
6056 WARN_ON(fs_info->delayed_refs_rsv.size > 0);
6060 * btrfs_update_delayed_refs_rsv - adjust the size of the delayed refs rsv
6061 * @trans - the trans that may have generated delayed refs
6063 * This is to be called anytime we may have adjusted trans->delayed_ref_updates,
6064 * it'll calculate the additional size and add it to the delayed_refs_rsv.
6066 void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
6068 struct btrfs_fs_info *fs_info = trans->fs_info;
6069 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
6072 if (!trans->delayed_ref_updates)
6075 num_bytes = btrfs_calc_trans_metadata_size(fs_info,
6076 trans->delayed_ref_updates);
6077 spin_lock(&delayed_rsv->lock);
6078 delayed_rsv->size += num_bytes;
6079 delayed_rsv->full = 0;
6080 spin_unlock(&delayed_rsv->lock);
6081 trans->delayed_ref_updates = 0;
6085 * To be called after all the new block groups attached to the transaction
6086 * handle have been created (btrfs_create_pending_block_groups()).
6088 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
6090 struct btrfs_fs_info *fs_info = trans->fs_info;
6092 if (!trans->chunk_bytes_reserved)
6095 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
6097 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
6098 trans->chunk_bytes_reserved, NULL);
6099 trans->chunk_bytes_reserved = 0;
6103 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
6104 * root: the root of the parent directory
6105 * rsv: block reservation
6106 * items: the number of items that we need do reservation
6107 * use_global_rsv: allow fallback to the global block reservation
6109 * This function is used to reserve the space for snapshot/subvolume
6110 * creation and deletion. Those operations are different with the
6111 * common file/directory operations, they change two fs/file trees
6112 * and root tree, the number of items that the qgroup reserves is
6113 * different with the free space reservation. So we can not use
6114 * the space reservation mechanism in start_transaction().
6116 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
6117 struct btrfs_block_rsv *rsv, int items,
6118 bool use_global_rsv)
6120 u64 qgroup_num_bytes = 0;
6123 struct btrfs_fs_info *fs_info = root->fs_info;
6124 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6126 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
6127 /* One for parent inode, two for dir entries */
6128 qgroup_num_bytes = 3 * fs_info->nodesize;
6129 ret = btrfs_qgroup_reserve_meta_prealloc(root,
6130 qgroup_num_bytes, true);
6135 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
6136 rsv->space_info = __find_space_info(fs_info,
6137 BTRFS_BLOCK_GROUP_METADATA);
6138 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
6139 BTRFS_RESERVE_FLUSH_ALL);
6141 if (ret == -ENOSPC && use_global_rsv)
6142 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true);
6144 if (ret && qgroup_num_bytes)
6145 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
6150 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
6151 struct btrfs_block_rsv *rsv)
6153 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
6156 static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
6157 struct btrfs_inode *inode)
6159 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
6160 u64 reserve_size = 0;
6161 u64 qgroup_rsv_size = 0;
6163 unsigned outstanding_extents;
6165 lockdep_assert_held(&inode->lock);
6166 outstanding_extents = inode->outstanding_extents;
6167 if (outstanding_extents)
6168 reserve_size = btrfs_calc_trans_metadata_size(fs_info,
6169 outstanding_extents + 1);
6170 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
6172 reserve_size += btrfs_calc_trans_metadata_size(fs_info,
6175 * For qgroup rsv, the calculation is very simple:
6176 * account one nodesize for each outstanding extent
6178 * This is overestimating in most cases.
6180 qgroup_rsv_size = outstanding_extents * fs_info->nodesize;
6182 spin_lock(&block_rsv->lock);
6183 block_rsv->size = reserve_size;
6184 block_rsv->qgroup_rsv_size = qgroup_rsv_size;
6185 spin_unlock(&block_rsv->lock);
6188 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
6190 struct btrfs_fs_info *fs_info = inode->root->fs_info;
6191 unsigned nr_extents;
6192 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
6194 bool delalloc_lock = true;
6196 /* If we are a free space inode we need to not flush since we will be in
6197 * the middle of a transaction commit. We also don't need the delalloc
6198 * mutex since we won't race with anybody. We need this mostly to make
6199 * lockdep shut its filthy mouth.
6201 * If we have a transaction open (can happen if we call truncate_block
6202 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
6204 if (btrfs_is_free_space_inode(inode)) {
6205 flush = BTRFS_RESERVE_NO_FLUSH;
6206 delalloc_lock = false;
6208 if (current->journal_info)
6209 flush = BTRFS_RESERVE_FLUSH_LIMIT;
6211 if (btrfs_transaction_in_commit(fs_info))
6212 schedule_timeout(1);
6216 mutex_lock(&inode->delalloc_mutex);
6218 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6220 /* Add our new extents and calculate the new rsv size. */
6221 spin_lock(&inode->lock);
6222 nr_extents = count_max_extents(num_bytes);
6223 btrfs_mod_outstanding_extents(inode, nr_extents);
6224 inode->csum_bytes += num_bytes;
6225 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6226 spin_unlock(&inode->lock);
6228 ret = btrfs_inode_rsv_refill(inode, flush);
6233 mutex_unlock(&inode->delalloc_mutex);
6237 spin_lock(&inode->lock);
6238 nr_extents = count_max_extents(num_bytes);
6239 btrfs_mod_outstanding_extents(inode, -nr_extents);
6240 inode->csum_bytes -= num_bytes;
6241 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6242 spin_unlock(&inode->lock);
6244 btrfs_inode_rsv_release(inode, true);
6246 mutex_unlock(&inode->delalloc_mutex);
6251 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6252 * @inode: the inode to release the reservation for.
6253 * @num_bytes: the number of bytes we are releasing.
6254 * @qgroup_free: free qgroup reservation or convert it to per-trans reservation
6256 * This will release the metadata reservation for an inode. This can be called
6257 * once we complete IO for a given set of bytes to release their metadata
6258 * reservations, or on error for the same reason.
6260 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
6263 struct btrfs_fs_info *fs_info = inode->root->fs_info;
6265 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6266 spin_lock(&inode->lock);
6267 inode->csum_bytes -= num_bytes;
6268 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6269 spin_unlock(&inode->lock);
6271 if (btrfs_is_testing(fs_info))
6274 btrfs_inode_rsv_release(inode, qgroup_free);
6278 * btrfs_delalloc_release_extents - release our outstanding_extents
6279 * @inode: the inode to balance the reservation for.
6280 * @num_bytes: the number of bytes we originally reserved with
6281 * @qgroup_free: do we need to free qgroup meta reservation or convert them.
6283 * When we reserve space we increase outstanding_extents for the extents we may
6284 * add. Once we've set the range as delalloc or created our ordered extents we
6285 * have outstanding_extents to track the real usage, so we use this to free our
6286 * temporarily tracked outstanding_extents. This _must_ be used in conjunction
6287 * with btrfs_delalloc_reserve_metadata.
6289 void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes,
6292 struct btrfs_fs_info *fs_info = inode->root->fs_info;
6293 unsigned num_extents;
6295 spin_lock(&inode->lock);
6296 num_extents = count_max_extents(num_bytes);
6297 btrfs_mod_outstanding_extents(inode, -num_extents);
6298 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
6299 spin_unlock(&inode->lock);
6301 if (btrfs_is_testing(fs_info))
6304 btrfs_inode_rsv_release(inode, qgroup_free);
6308 * btrfs_delalloc_reserve_space - reserve data and metadata space for
6310 * @inode: inode we're writing to
6311 * @start: start range we are writing to
6312 * @len: how long the range we are writing to
6313 * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6314 * current reservation.
6316 * This will do the following things
6318 * o reserve space in data space info for num bytes
6319 * and reserve precious corresponding qgroup space
6320 * (Done in check_data_free_space)
6322 * o reserve space for metadata space, based on the number of outstanding
6323 * extents and how much csums will be needed
6324 * also reserve metadata space in a per root over-reserve method.
6325 * o add to the inodes->delalloc_bytes
6326 * o add it to the fs_info's delalloc inodes list.
6327 * (Above 3 all done in delalloc_reserve_metadata)
6329 * Return 0 for success
6330 * Return <0 for error(-ENOSPC or -EQUOT)
6332 int btrfs_delalloc_reserve_space(struct inode *inode,
6333 struct extent_changeset **reserved, u64 start, u64 len)
6337 ret = btrfs_check_data_free_space(inode, reserved, start, len);
6340 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6342 btrfs_free_reserved_data_space(inode, *reserved, start, len);
6347 * btrfs_delalloc_release_space - release data and metadata space for delalloc
6348 * @inode: inode we're releasing space for
6349 * @start: start position of the space already reserved
6350 * @len: the len of the space already reserved
6351 * @release_bytes: the len of the space we consumed or didn't use
6353 * This function will release the metadata space that was not used and will
6354 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6355 * list if there are no delalloc bytes left.
6356 * Also it will handle the qgroup reserved space.
6358 void btrfs_delalloc_release_space(struct inode *inode,
6359 struct extent_changeset *reserved,
6360 u64 start, u64 len, bool qgroup_free)
6362 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free);
6363 btrfs_free_reserved_data_space(inode, reserved, start, len);
6366 static int update_block_group(struct btrfs_trans_handle *trans,
6367 struct btrfs_fs_info *info, u64 bytenr,
6368 u64 num_bytes, int alloc)
6370 struct btrfs_block_group_cache *cache = NULL;
6371 u64 total = num_bytes;
6377 /* block accounting for super block */
6378 spin_lock(&info->delalloc_root_lock);
6379 old_val = btrfs_super_bytes_used(info->super_copy);
6381 old_val += num_bytes;
6383 old_val -= num_bytes;
6384 btrfs_set_super_bytes_used(info->super_copy, old_val);
6385 spin_unlock(&info->delalloc_root_lock);
6388 cache = btrfs_lookup_block_group(info, bytenr);
6393 factor = btrfs_bg_type_to_factor(cache->flags);
6396 * If this block group has free space cache written out, we
6397 * need to make sure to load it if we are removing space. This
6398 * is because we need the unpinning stage to actually add the
6399 * space back to the block group, otherwise we will leak space.
6401 if (!alloc && cache->cached == BTRFS_CACHE_NO)
6402 cache_block_group(cache, 1);
6404 byte_in_group = bytenr - cache->key.objectid;
6405 WARN_ON(byte_in_group > cache->key.offset);
6407 spin_lock(&cache->space_info->lock);
6408 spin_lock(&cache->lock);
6410 if (btrfs_test_opt(info, SPACE_CACHE) &&
6411 cache->disk_cache_state < BTRFS_DC_CLEAR)
6412 cache->disk_cache_state = BTRFS_DC_CLEAR;
6414 old_val = btrfs_block_group_used(&cache->item);
6415 num_bytes = min(total, cache->key.offset - byte_in_group);
6417 old_val += num_bytes;
6418 btrfs_set_block_group_used(&cache->item, old_val);
6419 cache->reserved -= num_bytes;
6420 cache->space_info->bytes_reserved -= num_bytes;
6421 cache->space_info->bytes_used += num_bytes;
6422 cache->space_info->disk_used += num_bytes * factor;
6423 spin_unlock(&cache->lock);
6424 spin_unlock(&cache->space_info->lock);
6426 old_val -= num_bytes;
6427 btrfs_set_block_group_used(&cache->item, old_val);
6428 cache->pinned += num_bytes;
6429 update_bytes_pinned(cache->space_info, num_bytes);
6430 cache->space_info->bytes_used -= num_bytes;
6431 cache->space_info->disk_used -= num_bytes * factor;
6432 spin_unlock(&cache->lock);
6433 spin_unlock(&cache->space_info->lock);
6435 trace_btrfs_space_reservation(info, "pinned",
6436 cache->space_info->flags,
6438 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6440 BTRFS_TOTAL_BYTES_PINNED_BATCH);
6441 set_extent_dirty(info->pinned_extents,
6442 bytenr, bytenr + num_bytes - 1,
6443 GFP_NOFS | __GFP_NOFAIL);
6446 spin_lock(&trans->transaction->dirty_bgs_lock);
6447 if (list_empty(&cache->dirty_list)) {
6448 list_add_tail(&cache->dirty_list,
6449 &trans->transaction->dirty_bgs);
6450 trans->transaction->num_dirty_bgs++;
6451 trans->delayed_ref_updates++;
6452 btrfs_get_block_group(cache);
6454 spin_unlock(&trans->transaction->dirty_bgs_lock);
6457 * No longer have used bytes in this block group, queue it for
6458 * deletion. We do this after adding the block group to the
6459 * dirty list to avoid races between cleaner kthread and space
6462 if (!alloc && old_val == 0)
6463 btrfs_mark_bg_unused(cache);
6465 btrfs_put_block_group(cache);
6467 bytenr += num_bytes;
6470 /* Modified block groups are accounted for in the delayed_refs_rsv. */
6471 btrfs_update_delayed_refs_rsv(trans);
6475 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6477 struct btrfs_block_group_cache *cache;
6480 spin_lock(&fs_info->block_group_cache_lock);
6481 bytenr = fs_info->first_logical_byte;
6482 spin_unlock(&fs_info->block_group_cache_lock);
6484 if (bytenr < (u64)-1)
6487 cache = btrfs_lookup_first_block_group(fs_info, search_start);
6491 bytenr = cache->key.objectid;
6492 btrfs_put_block_group(cache);
6497 static int pin_down_extent(struct btrfs_fs_info *fs_info,
6498 struct btrfs_block_group_cache *cache,
6499 u64 bytenr, u64 num_bytes, int reserved)
6501 spin_lock(&cache->space_info->lock);
6502 spin_lock(&cache->lock);
6503 cache->pinned += num_bytes;
6504 update_bytes_pinned(cache->space_info, num_bytes);
6506 cache->reserved -= num_bytes;
6507 cache->space_info->bytes_reserved -= num_bytes;
6509 spin_unlock(&cache->lock);
6510 spin_unlock(&cache->space_info->lock);
6512 trace_btrfs_space_reservation(fs_info, "pinned",
6513 cache->space_info->flags, num_bytes, 1);
6514 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6515 num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
6516 set_extent_dirty(fs_info->pinned_extents, bytenr,
6517 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6522 * this function must be called within transaction
6524 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6525 u64 bytenr, u64 num_bytes, int reserved)
6527 struct btrfs_block_group_cache *cache;
6529 cache = btrfs_lookup_block_group(fs_info, bytenr);
6530 BUG_ON(!cache); /* Logic error */
6532 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6534 btrfs_put_block_group(cache);
6539 * this function must be called within transaction
6541 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6542 u64 bytenr, u64 num_bytes)
6544 struct btrfs_block_group_cache *cache;
6547 cache = btrfs_lookup_block_group(fs_info, bytenr);
6552 * pull in the free space cache (if any) so that our pin
6553 * removes the free space from the cache. We have load_only set
6554 * to one because the slow code to read in the free extents does check
6555 * the pinned extents.
6557 cache_block_group(cache, 1);
6559 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6561 /* remove us from the free space cache (if we're there at all) */
6562 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6563 btrfs_put_block_group(cache);
6567 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6568 u64 start, u64 num_bytes)
6571 struct btrfs_block_group_cache *block_group;
6572 struct btrfs_caching_control *caching_ctl;
6574 block_group = btrfs_lookup_block_group(fs_info, start);
6578 cache_block_group(block_group, 0);
6579 caching_ctl = get_caching_control(block_group);
6583 BUG_ON(!block_group_cache_done(block_group));
6584 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6586 mutex_lock(&caching_ctl->mutex);
6588 if (start >= caching_ctl->progress) {
6589 ret = add_excluded_extent(fs_info, start, num_bytes);
6590 } else if (start + num_bytes <= caching_ctl->progress) {
6591 ret = btrfs_remove_free_space(block_group,
6594 num_bytes = caching_ctl->progress - start;
6595 ret = btrfs_remove_free_space(block_group,
6600 num_bytes = (start + num_bytes) -
6601 caching_ctl->progress;
6602 start = caching_ctl->progress;
6603 ret = add_excluded_extent(fs_info, start, num_bytes);
6606 mutex_unlock(&caching_ctl->mutex);
6607 put_caching_control(caching_ctl);
6609 btrfs_put_block_group(block_group);
6613 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6614 struct extent_buffer *eb)
6616 struct btrfs_file_extent_item *item;
6617 struct btrfs_key key;
6622 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6625 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6626 btrfs_item_key_to_cpu(eb, &key, i);
6627 if (key.type != BTRFS_EXTENT_DATA_KEY)
6629 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6630 found_type = btrfs_file_extent_type(eb, item);
6631 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6633 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6635 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6636 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6637 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
6646 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6648 atomic_inc(&bg->reservations);
6651 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6654 struct btrfs_block_group_cache *bg;
6656 bg = btrfs_lookup_block_group(fs_info, start);
6658 if (atomic_dec_and_test(&bg->reservations))
6659 wake_up_var(&bg->reservations);
6660 btrfs_put_block_group(bg);
6663 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6665 struct btrfs_space_info *space_info = bg->space_info;
6669 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6673 * Our block group is read only but before we set it to read only,
6674 * some task might have had allocated an extent from it already, but it
6675 * has not yet created a respective ordered extent (and added it to a
6676 * root's list of ordered extents).
6677 * Therefore wait for any task currently allocating extents, since the
6678 * block group's reservations counter is incremented while a read lock
6679 * on the groups' semaphore is held and decremented after releasing
6680 * the read access on that semaphore and creating the ordered extent.
6682 down_write(&space_info->groups_sem);
6683 up_write(&space_info->groups_sem);
6685 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
6689 * btrfs_add_reserved_bytes - update the block_group and space info counters
6690 * @cache: The cache we are manipulating
6691 * @ram_bytes: The number of bytes of file content, and will be same to
6692 * @num_bytes except for the compress path.
6693 * @num_bytes: The number of bytes in question
6694 * @delalloc: The blocks are allocated for the delalloc write
6696 * This is called by the allocator when it reserves space. If this is a
6697 * reservation and the block group has become read only we cannot make the
6698 * reservation and return -EAGAIN, otherwise this function always succeeds.
6700 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6701 u64 ram_bytes, u64 num_bytes, int delalloc)
6703 struct btrfs_space_info *space_info = cache->space_info;
6706 spin_lock(&space_info->lock);
6707 spin_lock(&cache->lock);
6711 cache->reserved += num_bytes;
6712 space_info->bytes_reserved += num_bytes;
6713 update_bytes_may_use(space_info, -ram_bytes);
6715 cache->delalloc_bytes += num_bytes;
6717 spin_unlock(&cache->lock);
6718 spin_unlock(&space_info->lock);
6723 * btrfs_free_reserved_bytes - update the block_group and space info counters
6724 * @cache: The cache we are manipulating
6725 * @num_bytes: The number of bytes in question
6726 * @delalloc: The blocks are allocated for the delalloc write
6728 * This is called by somebody who is freeing space that was never actually used
6729 * on disk. For example if you reserve some space for a new leaf in transaction
6730 * A and before transaction A commits you free that leaf, you call this with
6731 * reserve set to 0 in order to clear the reservation.
6734 static void btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6735 u64 num_bytes, int delalloc)
6737 struct btrfs_space_info *space_info = cache->space_info;
6739 spin_lock(&space_info->lock);
6740 spin_lock(&cache->lock);
6742 space_info->bytes_readonly += num_bytes;
6743 cache->reserved -= num_bytes;
6744 space_info->bytes_reserved -= num_bytes;
6745 space_info->max_extent_size = 0;
6748 cache->delalloc_bytes -= num_bytes;
6749 spin_unlock(&cache->lock);
6750 spin_unlock(&space_info->lock);
6752 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6754 struct btrfs_caching_control *next;
6755 struct btrfs_caching_control *caching_ctl;
6756 struct btrfs_block_group_cache *cache;
6758 down_write(&fs_info->commit_root_sem);
6760 list_for_each_entry_safe(caching_ctl, next,
6761 &fs_info->caching_block_groups, list) {
6762 cache = caching_ctl->block_group;
6763 if (block_group_cache_done(cache)) {
6764 cache->last_byte_to_unpin = (u64)-1;
6765 list_del_init(&caching_ctl->list);
6766 put_caching_control(caching_ctl);
6768 cache->last_byte_to_unpin = caching_ctl->progress;
6772 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6773 fs_info->pinned_extents = &fs_info->freed_extents[1];
6775 fs_info->pinned_extents = &fs_info->freed_extents[0];
6777 up_write(&fs_info->commit_root_sem);
6779 update_global_block_rsv(fs_info);
6783 * Returns the free cluster for the given space info and sets empty_cluster to
6784 * what it should be based on the mount options.
6786 static struct btrfs_free_cluster *
6787 fetch_cluster_info(struct btrfs_fs_info *fs_info,
6788 struct btrfs_space_info *space_info, u64 *empty_cluster)
6790 struct btrfs_free_cluster *ret = NULL;
6793 if (btrfs_mixed_space_info(space_info))
6796 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6797 ret = &fs_info->meta_alloc_cluster;
6798 if (btrfs_test_opt(fs_info, SSD))
6799 *empty_cluster = SZ_2M;
6801 *empty_cluster = SZ_64K;
6802 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6803 btrfs_test_opt(fs_info, SSD_SPREAD)) {
6804 *empty_cluster = SZ_2M;
6805 ret = &fs_info->data_alloc_cluster;
6811 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6813 const bool return_free_space)
6815 struct btrfs_block_group_cache *cache = NULL;
6816 struct btrfs_space_info *space_info;
6817 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6818 struct btrfs_free_cluster *cluster = NULL;
6820 u64 total_unpinned = 0;
6821 u64 empty_cluster = 0;
6824 while (start <= end) {
6827 start >= cache->key.objectid + cache->key.offset) {
6829 btrfs_put_block_group(cache);
6831 cache = btrfs_lookup_block_group(fs_info, start);
6832 BUG_ON(!cache); /* Logic error */
6834 cluster = fetch_cluster_info(fs_info,
6837 empty_cluster <<= 1;
6840 len = cache->key.objectid + cache->key.offset - start;
6841 len = min(len, end + 1 - start);
6843 if (start < cache->last_byte_to_unpin) {
6844 len = min(len, cache->last_byte_to_unpin - start);
6845 if (return_free_space)
6846 btrfs_add_free_space(cache, start, len);
6850 total_unpinned += len;
6851 space_info = cache->space_info;
6854 * If this space cluster has been marked as fragmented and we've
6855 * unpinned enough in this block group to potentially allow a
6856 * cluster to be created inside of it go ahead and clear the
6859 if (cluster && cluster->fragmented &&
6860 total_unpinned > empty_cluster) {
6861 spin_lock(&cluster->lock);
6862 cluster->fragmented = 0;
6863 spin_unlock(&cluster->lock);
6866 spin_lock(&space_info->lock);
6867 spin_lock(&cache->lock);
6868 cache->pinned -= len;
6869 update_bytes_pinned(space_info, -len);
6871 trace_btrfs_space_reservation(fs_info, "pinned",
6872 space_info->flags, len, 0);
6873 space_info->max_extent_size = 0;
6874 percpu_counter_add_batch(&space_info->total_bytes_pinned,
6875 -len, BTRFS_TOTAL_BYTES_PINNED_BATCH);
6877 space_info->bytes_readonly += len;
6880 spin_unlock(&cache->lock);
6881 if (!readonly && return_free_space &&
6882 global_rsv->space_info == space_info) {
6885 spin_lock(&global_rsv->lock);
6886 if (!global_rsv->full) {
6887 to_add = min(len, global_rsv->size -
6888 global_rsv->reserved);
6889 global_rsv->reserved += to_add;
6890 update_bytes_may_use(space_info, to_add);
6891 if (global_rsv->reserved >= global_rsv->size)
6892 global_rsv->full = 1;
6893 trace_btrfs_space_reservation(fs_info,
6899 spin_unlock(&global_rsv->lock);
6900 /* Add to any tickets we may have */
6902 space_info_add_new_bytes(fs_info, space_info,
6905 spin_unlock(&space_info->lock);
6909 btrfs_put_block_group(cache);
6913 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
6915 struct btrfs_fs_info *fs_info = trans->fs_info;
6916 struct btrfs_block_group_cache *block_group, *tmp;
6917 struct list_head *deleted_bgs;
6918 struct extent_io_tree *unpin;
6923 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6924 unpin = &fs_info->freed_extents[1];
6926 unpin = &fs_info->freed_extents[0];
6928 while (!trans->aborted) {
6929 struct extent_state *cached_state = NULL;
6931 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6932 ret = find_first_extent_bit(unpin, 0, &start, &end,
6933 EXTENT_DIRTY, &cached_state);
6935 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6939 if (btrfs_test_opt(fs_info, DISCARD))
6940 ret = btrfs_discard_extent(fs_info, start,
6941 end + 1 - start, NULL);
6943 clear_extent_dirty(unpin, start, end, &cached_state);
6944 unpin_extent_range(fs_info, start, end, true);
6945 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6946 free_extent_state(cached_state);
6951 * Transaction is finished. We don't need the lock anymore. We
6952 * do need to clean up the block groups in case of a transaction
6955 deleted_bgs = &trans->transaction->deleted_bgs;
6956 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6960 if (!trans->aborted)
6961 ret = btrfs_discard_extent(fs_info,
6962 block_group->key.objectid,
6963 block_group->key.offset,
6966 list_del_init(&block_group->bg_list);
6967 btrfs_put_block_group_trimming(block_group);
6968 btrfs_put_block_group(block_group);
6971 const char *errstr = btrfs_decode_error(ret);
6973 "discard failed while removing blockgroup: errno=%d %s",
6981 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6982 struct btrfs_delayed_ref_node *node, u64 parent,
6983 u64 root_objectid, u64 owner_objectid,
6984 u64 owner_offset, int refs_to_drop,
6985 struct btrfs_delayed_extent_op *extent_op)
6987 struct btrfs_fs_info *info = trans->fs_info;
6988 struct btrfs_key key;
6989 struct btrfs_path *path;
6990 struct btrfs_root *extent_root = info->extent_root;
6991 struct extent_buffer *leaf;
6992 struct btrfs_extent_item *ei;
6993 struct btrfs_extent_inline_ref *iref;
6996 int extent_slot = 0;
6997 int found_extent = 0;
7001 u64 bytenr = node->bytenr;
7002 u64 num_bytes = node->num_bytes;
7004 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
7006 path = btrfs_alloc_path();
7010 path->reada = READA_FORWARD;
7011 path->leave_spinning = 1;
7013 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
7014 BUG_ON(!is_data && refs_to_drop != 1);
7017 skinny_metadata = false;
7019 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
7020 parent, root_objectid, owner_objectid,
7023 extent_slot = path->slots[0];
7024 while (extent_slot >= 0) {
7025 btrfs_item_key_to_cpu(path->nodes[0], &key,
7027 if (key.objectid != bytenr)
7029 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
7030 key.offset == num_bytes) {
7034 if (key.type == BTRFS_METADATA_ITEM_KEY &&
7035 key.offset == owner_objectid) {
7039 if (path->slots[0] - extent_slot > 5)
7044 if (!found_extent) {
7046 ret = remove_extent_backref(trans, path, NULL,
7048 is_data, &last_ref);
7050 btrfs_abort_transaction(trans, ret);
7053 btrfs_release_path(path);
7054 path->leave_spinning = 1;
7056 key.objectid = bytenr;
7057 key.type = BTRFS_EXTENT_ITEM_KEY;
7058 key.offset = num_bytes;
7060 if (!is_data && skinny_metadata) {
7061 key.type = BTRFS_METADATA_ITEM_KEY;
7062 key.offset = owner_objectid;
7065 ret = btrfs_search_slot(trans, extent_root,
7067 if (ret > 0 && skinny_metadata && path->slots[0]) {
7069 * Couldn't find our skinny metadata item,
7070 * see if we have ye olde extent item.
7073 btrfs_item_key_to_cpu(path->nodes[0], &key,
7075 if (key.objectid == bytenr &&
7076 key.type == BTRFS_EXTENT_ITEM_KEY &&
7077 key.offset == num_bytes)
7081 if (ret > 0 && skinny_metadata) {
7082 skinny_metadata = false;
7083 key.objectid = bytenr;
7084 key.type = BTRFS_EXTENT_ITEM_KEY;
7085 key.offset = num_bytes;
7086 btrfs_release_path(path);
7087 ret = btrfs_search_slot(trans, extent_root,
7093 "umm, got %d back from search, was looking for %llu",
7096 btrfs_print_leaf(path->nodes[0]);
7099 btrfs_abort_transaction(trans, ret);
7102 extent_slot = path->slots[0];
7104 } else if (WARN_ON(ret == -ENOENT)) {
7105 btrfs_print_leaf(path->nodes[0]);
7107 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
7108 bytenr, parent, root_objectid, owner_objectid,
7110 btrfs_abort_transaction(trans, ret);
7113 btrfs_abort_transaction(trans, ret);
7117 leaf = path->nodes[0];
7118 item_size = btrfs_item_size_nr(leaf, extent_slot);
7119 if (unlikely(item_size < sizeof(*ei))) {
7121 btrfs_print_v0_err(info);
7122 btrfs_abort_transaction(trans, ret);
7125 ei = btrfs_item_ptr(leaf, extent_slot,
7126 struct btrfs_extent_item);
7127 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7128 key.type == BTRFS_EXTENT_ITEM_KEY) {
7129 struct btrfs_tree_block_info *bi;
7130 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7131 bi = (struct btrfs_tree_block_info *)(ei + 1);
7132 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7135 refs = btrfs_extent_refs(leaf, ei);
7136 if (refs < refs_to_drop) {
7138 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7139 refs_to_drop, refs, bytenr);
7141 btrfs_abort_transaction(trans, ret);
7144 refs -= refs_to_drop;
7148 __run_delayed_extent_op(extent_op, leaf, ei);
7150 * In the case of inline back ref, reference count will
7151 * be updated by remove_extent_backref
7154 BUG_ON(!found_extent);
7156 btrfs_set_extent_refs(leaf, ei, refs);
7157 btrfs_mark_buffer_dirty(leaf);
7160 ret = remove_extent_backref(trans, path, iref,
7161 refs_to_drop, is_data,
7164 btrfs_abort_transaction(trans, ret);
7170 BUG_ON(is_data && refs_to_drop !=
7171 extent_data_ref_count(path, iref));
7173 BUG_ON(path->slots[0] != extent_slot);
7175 BUG_ON(path->slots[0] != extent_slot + 1);
7176 path->slots[0] = extent_slot;
7182 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7185 btrfs_abort_transaction(trans, ret);
7188 btrfs_release_path(path);
7191 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
7193 btrfs_abort_transaction(trans, ret);
7198 ret = add_to_free_space_tree(trans, bytenr, num_bytes);
7200 btrfs_abort_transaction(trans, ret);
7204 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
7206 btrfs_abort_transaction(trans, ret);
7210 btrfs_release_path(path);
7213 btrfs_free_path(path);
7218 * when we free an block, it is possible (and likely) that we free the last
7219 * delayed ref for that extent as well. This searches the delayed ref tree for
7220 * a given extent, and if there are no other delayed refs to be processed, it
7221 * removes it from the tree.
7223 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7226 struct btrfs_delayed_ref_head *head;
7227 struct btrfs_delayed_ref_root *delayed_refs;
7230 delayed_refs = &trans->transaction->delayed_refs;
7231 spin_lock(&delayed_refs->lock);
7232 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7234 goto out_delayed_unlock;
7236 spin_lock(&head->lock);
7237 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
7240 if (cleanup_extent_op(head) != NULL)
7244 * waiting for the lock here would deadlock. If someone else has it
7245 * locked they are already in the process of dropping it anyway
7247 if (!mutex_trylock(&head->mutex))
7250 btrfs_delete_ref_head(delayed_refs, head);
7251 head->processing = 0;
7253 spin_unlock(&head->lock);
7254 spin_unlock(&delayed_refs->lock);
7256 BUG_ON(head->extent_op);
7257 if (head->must_insert_reserved)
7260 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
7261 mutex_unlock(&head->mutex);
7262 btrfs_put_delayed_ref_head(head);
7265 spin_unlock(&head->lock);
7268 spin_unlock(&delayed_refs->lock);
7272 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7273 struct btrfs_root *root,
7274 struct extent_buffer *buf,
7275 u64 parent, int last_ref)
7277 struct btrfs_fs_info *fs_info = root->fs_info;
7281 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7282 int old_ref_mod, new_ref_mod;
7284 btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
7285 root->root_key.objectid,
7286 btrfs_header_level(buf), 0,
7287 BTRFS_DROP_DELAYED_REF);
7288 ret = btrfs_add_delayed_tree_ref(trans, buf->start,
7290 root->root_key.objectid,
7291 btrfs_header_level(buf),
7292 BTRFS_DROP_DELAYED_REF, NULL,
7293 &old_ref_mod, &new_ref_mod);
7294 BUG_ON(ret); /* -ENOMEM */
7295 pin = old_ref_mod >= 0 && new_ref_mod < 0;
7298 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
7299 struct btrfs_block_group_cache *cache;
7301 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7302 ret = check_ref_cleanup(trans, buf->start);
7308 cache = btrfs_lookup_block_group(fs_info, buf->start);
7310 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7311 pin_down_extent(fs_info, cache, buf->start,
7313 btrfs_put_block_group(cache);
7317 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7319 btrfs_add_free_space(cache, buf->start, buf->len);
7320 btrfs_free_reserved_bytes(cache, buf->len, 0);
7321 btrfs_put_block_group(cache);
7322 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7326 add_pinned_bytes(fs_info, buf->len, true,
7327 root->root_key.objectid);
7331 * Deleting the buffer, clear the corrupt flag since it doesn't
7334 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7338 /* Can return -ENOMEM */
7339 int btrfs_free_extent(struct btrfs_trans_handle *trans,
7340 struct btrfs_root *root,
7341 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7342 u64 owner, u64 offset)
7344 struct btrfs_fs_info *fs_info = root->fs_info;
7345 int old_ref_mod, new_ref_mod;
7348 if (btrfs_is_testing(fs_info))
7351 if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7352 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7353 root_objectid, owner, offset,
7354 BTRFS_DROP_DELAYED_REF);
7357 * tree log blocks never actually go into the extent allocation
7358 * tree, just update pinning info and exit early.
7360 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7361 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7362 /* unlocks the pinned mutex */
7363 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7364 old_ref_mod = new_ref_mod = 0;
7366 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7367 ret = btrfs_add_delayed_tree_ref(trans, bytenr,
7369 root_objectid, (int)owner,
7370 BTRFS_DROP_DELAYED_REF, NULL,
7371 &old_ref_mod, &new_ref_mod);
7373 ret = btrfs_add_delayed_data_ref(trans, bytenr,
7375 root_objectid, owner, offset,
7376 0, BTRFS_DROP_DELAYED_REF,
7377 &old_ref_mod, &new_ref_mod);
7380 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) {
7381 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
7383 add_pinned_bytes(fs_info, num_bytes, metadata, root_objectid);
7390 * when we wait for progress in the block group caching, its because
7391 * our allocation attempt failed at least once. So, we must sleep
7392 * and let some progress happen before we try again.
7394 * This function will sleep at least once waiting for new free space to
7395 * show up, and then it will check the block group free space numbers
7396 * for our min num_bytes. Another option is to have it go ahead
7397 * and look in the rbtree for a free extent of a given size, but this
7400 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7401 * any of the information in this block group.
7403 static noinline void
7404 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7407 struct btrfs_caching_control *caching_ctl;
7409 caching_ctl = get_caching_control(cache);
7413 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7414 (cache->free_space_ctl->free_space >= num_bytes));
7416 put_caching_control(caching_ctl);
7420 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7422 struct btrfs_caching_control *caching_ctl;
7425 caching_ctl = get_caching_control(cache);
7427 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7429 wait_event(caching_ctl->wait, block_group_cache_done(cache));
7430 if (cache->cached == BTRFS_CACHE_ERROR)
7432 put_caching_control(caching_ctl);
7436 enum btrfs_loop_type {
7437 LOOP_CACHING_NOWAIT = 0,
7438 LOOP_CACHING_WAIT = 1,
7439 LOOP_ALLOC_CHUNK = 2,
7440 LOOP_NO_EMPTY_SIZE = 3,
7444 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7448 down_read(&cache->data_rwsem);
7452 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7455 btrfs_get_block_group(cache);
7457 down_read(&cache->data_rwsem);
7460 static struct btrfs_block_group_cache *
7461 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7462 struct btrfs_free_cluster *cluster,
7465 struct btrfs_block_group_cache *used_bg = NULL;
7467 spin_lock(&cluster->refill_lock);
7469 used_bg = cluster->block_group;
7473 if (used_bg == block_group)
7476 btrfs_get_block_group(used_bg);
7481 if (down_read_trylock(&used_bg->data_rwsem))
7484 spin_unlock(&cluster->refill_lock);
7486 /* We should only have one-level nested. */
7487 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7489 spin_lock(&cluster->refill_lock);
7490 if (used_bg == cluster->block_group)
7493 up_read(&used_bg->data_rwsem);
7494 btrfs_put_block_group(used_bg);
7499 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7503 up_read(&cache->data_rwsem);
7504 btrfs_put_block_group(cache);
7508 * Structure used internally for find_free_extent() function. Wraps needed
7511 struct find_free_extent_ctl {
7512 /* Basic allocation info */
7519 /* Where to start the search inside the bg */
7522 /* For clustered allocation */
7525 bool have_caching_bg;
7526 bool orig_have_caching_bg;
7528 /* RAID index, converted from flags */
7532 * Current loop number, check find_free_extent_update_loop() for details
7537 * Whether we're refilling a cluster, if true we need to re-search
7538 * current block group but don't try to refill the cluster again.
7540 bool retry_clustered;
7543 * Whether we're updating free space cache, if true we need to re-search
7544 * current block group but don't try updating free space cache again.
7546 bool retry_unclustered;
7548 /* If current block group is cached */
7551 /* Max contiguous hole found */
7552 u64 max_extent_size;
7554 /* Total free space from free space cache, not always contiguous */
7555 u64 total_free_space;
7563 * Helper function for find_free_extent().
7565 * Return -ENOENT to inform caller that we need fallback to unclustered mode.
7566 * Return -EAGAIN to inform caller that we need to re-search this block group
7567 * Return >0 to inform caller that we find nothing
7568 * Return 0 means we have found a location and set ffe_ctl->found_offset.
7570 static int find_free_extent_clustered(struct btrfs_block_group_cache *bg,
7571 struct btrfs_free_cluster *last_ptr,
7572 struct find_free_extent_ctl *ffe_ctl,
7573 struct btrfs_block_group_cache **cluster_bg_ret)
7575 struct btrfs_fs_info *fs_info = bg->fs_info;
7576 struct btrfs_block_group_cache *cluster_bg;
7577 u64 aligned_cluster;
7581 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
7583 goto refill_cluster;
7584 if (cluster_bg != bg && (cluster_bg->ro ||
7585 !block_group_bits(cluster_bg, ffe_ctl->flags)))
7586 goto release_cluster;
7588 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
7589 ffe_ctl->num_bytes, cluster_bg->key.objectid,
7590 &ffe_ctl->max_extent_size);
7592 /* We have a block, we're done */
7593 spin_unlock(&last_ptr->refill_lock);
7594 trace_btrfs_reserve_extent_cluster(cluster_bg,
7595 ffe_ctl->search_start, ffe_ctl->num_bytes);
7596 *cluster_bg_ret = cluster_bg;
7597 ffe_ctl->found_offset = offset;
7600 WARN_ON(last_ptr->block_group != cluster_bg);
7604 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
7605 * lets just skip it and let the allocator find whatever block it can
7606 * find. If we reach this point, we will have tried the cluster
7607 * allocator plenty of times and not have found anything, so we are
7608 * likely way too fragmented for the clustering stuff to find anything.
7610 * However, if the cluster is taken from the current block group,
7611 * release the cluster first, so that we stand a better chance of
7612 * succeeding in the unclustered allocation.
7614 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
7615 spin_unlock(&last_ptr->refill_lock);
7616 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
7620 /* This cluster didn't work out, free it and start over */
7621 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7623 if (cluster_bg != bg)
7624 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
7627 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
7628 spin_unlock(&last_ptr->refill_lock);
7632 aligned_cluster = max_t(u64,
7633 ffe_ctl->empty_cluster + ffe_ctl->empty_size,
7634 bg->full_stripe_len);
7635 ret = btrfs_find_space_cluster(fs_info, bg, last_ptr,
7636 ffe_ctl->search_start, ffe_ctl->num_bytes,
7639 /* Now pull our allocation out of this cluster */
7640 offset = btrfs_alloc_from_cluster(bg, last_ptr,
7641 ffe_ctl->num_bytes, ffe_ctl->search_start,
7642 &ffe_ctl->max_extent_size);
7644 /* We found one, proceed */
7645 spin_unlock(&last_ptr->refill_lock);
7646 trace_btrfs_reserve_extent_cluster(bg,
7647 ffe_ctl->search_start,
7648 ffe_ctl->num_bytes);
7649 ffe_ctl->found_offset = offset;
7652 } else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
7653 !ffe_ctl->retry_clustered) {
7654 spin_unlock(&last_ptr->refill_lock);
7656 ffe_ctl->retry_clustered = true;
7657 wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
7658 ffe_ctl->empty_cluster + ffe_ctl->empty_size);
7662 * At this point we either didn't find a cluster or we weren't able to
7663 * allocate a block from our cluster. Free the cluster we've been
7664 * trying to use, and go to the next block group.
7666 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7667 spin_unlock(&last_ptr->refill_lock);
7672 * Return >0 to inform caller that we find nothing
7673 * Return 0 when we found an free extent and set ffe_ctrl->found_offset
7674 * Return -EAGAIN to inform caller that we need to re-search this block group
7676 static int find_free_extent_unclustered(struct btrfs_block_group_cache *bg,
7677 struct btrfs_free_cluster *last_ptr,
7678 struct find_free_extent_ctl *ffe_ctl)
7683 * We are doing an unclustered allocation, set the fragmented flag so
7684 * we don't bother trying to setup a cluster again until we get more
7687 if (unlikely(last_ptr)) {
7688 spin_lock(&last_ptr->lock);
7689 last_ptr->fragmented = 1;
7690 spin_unlock(&last_ptr->lock);
7692 if (ffe_ctl->cached) {
7693 struct btrfs_free_space_ctl *free_space_ctl;
7695 free_space_ctl = bg->free_space_ctl;
7696 spin_lock(&free_space_ctl->tree_lock);
7697 if (free_space_ctl->free_space <
7698 ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
7699 ffe_ctl->empty_size) {
7700 ffe_ctl->total_free_space = max_t(u64,
7701 ffe_ctl->total_free_space,
7702 free_space_ctl->free_space);
7703 spin_unlock(&free_space_ctl->tree_lock);
7706 spin_unlock(&free_space_ctl->tree_lock);
7709 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
7710 ffe_ctl->num_bytes, ffe_ctl->empty_size,
7711 &ffe_ctl->max_extent_size);
7714 * If we didn't find a chunk, and we haven't failed on this block group
7715 * before, and this block group is in the middle of caching and we are
7716 * ok with waiting, then go ahead and wait for progress to be made, and
7717 * set @retry_unclustered to true.
7719 * If @retry_unclustered is true then we've already waited on this
7720 * block group once and should move on to the next block group.
7722 if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
7723 ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
7724 wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
7725 ffe_ctl->empty_size);
7726 ffe_ctl->retry_unclustered = true;
7728 } else if (!offset) {
7731 ffe_ctl->found_offset = offset;
7736 * Return >0 means caller needs to re-search for free extent
7737 * Return 0 means we have the needed free extent.
7738 * Return <0 means we failed to locate any free extent.
7740 static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
7741 struct btrfs_free_cluster *last_ptr,
7742 struct btrfs_key *ins,
7743 struct find_free_extent_ctl *ffe_ctl,
7744 int full_search, bool use_cluster)
7746 struct btrfs_root *root = fs_info->extent_root;
7749 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
7750 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
7751 ffe_ctl->orig_have_caching_bg = true;
7753 if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT &&
7754 ffe_ctl->have_caching_bg)
7757 if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES)
7760 if (ins->objectid) {
7761 if (!use_cluster && last_ptr) {
7762 spin_lock(&last_ptr->lock);
7763 last_ptr->window_start = ins->objectid;
7764 spin_unlock(&last_ptr->lock);
7770 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7771 * caching kthreads as we move along
7772 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7773 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7774 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7777 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
7779 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) {
7781 * We want to skip the LOOP_CACHING_WAIT step if we
7782 * don't have any uncached bgs and we've already done a
7783 * full search through.
7785 if (ffe_ctl->orig_have_caching_bg || !full_search)
7786 ffe_ctl->loop = LOOP_CACHING_WAIT;
7788 ffe_ctl->loop = LOOP_ALLOC_CHUNK;
7793 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
7794 struct btrfs_trans_handle *trans;
7797 trans = current->journal_info;
7801 trans = btrfs_join_transaction(root);
7803 if (IS_ERR(trans)) {
7804 ret = PTR_ERR(trans);
7808 ret = do_chunk_alloc(trans, ffe_ctl->flags,
7812 * If we can't allocate a new chunk we've already looped
7813 * through at least once, move on to the NO_EMPTY_SIZE
7817 ffe_ctl->loop = LOOP_NO_EMPTY_SIZE;
7819 /* Do not bail out on ENOSPC since we can do more. */
7820 if (ret < 0 && ret != -ENOSPC)
7821 btrfs_abort_transaction(trans, ret);
7825 btrfs_end_transaction(trans);
7830 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
7832 * Don't loop again if we already have no empty_size and
7835 if (ffe_ctl->empty_size == 0 &&
7836 ffe_ctl->empty_cluster == 0)
7838 ffe_ctl->empty_size = 0;
7839 ffe_ctl->empty_cluster = 0;
7847 * walks the btree of allocated extents and find a hole of a given size.
7848 * The key ins is changed to record the hole:
7849 * ins->objectid == start position
7850 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7851 * ins->offset == the size of the hole.
7852 * Any available blocks before search_start are skipped.
7854 * If there is no suitable free space, we will record the max size of
7855 * the free space extent currently.
7857 * The overall logic and call chain:
7859 * find_free_extent()
7860 * |- Iterate through all block groups
7861 * | |- Get a valid block group
7862 * | |- Try to do clustered allocation in that block group
7863 * | |- Try to do unclustered allocation in that block group
7864 * | |- Check if the result is valid
7865 * | | |- If valid, then exit
7866 * | |- Jump to next block group
7868 * |- Push harder to find free extents
7869 * |- If not found, re-iterate all block groups
7871 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7872 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7873 u64 hint_byte, struct btrfs_key *ins,
7874 u64 flags, int delalloc)
7877 struct btrfs_free_cluster *last_ptr = NULL;
7878 struct btrfs_block_group_cache *block_group = NULL;
7879 struct find_free_extent_ctl ffe_ctl = {0};
7880 struct btrfs_space_info *space_info;
7881 bool use_cluster = true;
7882 bool full_search = false;
7884 WARN_ON(num_bytes < fs_info->sectorsize);
7886 ffe_ctl.ram_bytes = ram_bytes;
7887 ffe_ctl.num_bytes = num_bytes;
7888 ffe_ctl.empty_size = empty_size;
7889 ffe_ctl.flags = flags;
7890 ffe_ctl.search_start = 0;
7891 ffe_ctl.retry_clustered = false;
7892 ffe_ctl.retry_unclustered = false;
7893 ffe_ctl.delalloc = delalloc;
7894 ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags);
7895 ffe_ctl.have_caching_bg = false;
7896 ffe_ctl.orig_have_caching_bg = false;
7897 ffe_ctl.found_offset = 0;
7899 ins->type = BTRFS_EXTENT_ITEM_KEY;
7903 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7905 space_info = __find_space_info(fs_info, flags);
7907 btrfs_err(fs_info, "No space info for %llu", flags);
7912 * If our free space is heavily fragmented we may not be able to make
7913 * big contiguous allocations, so instead of doing the expensive search
7914 * for free space, simply return ENOSPC with our max_extent_size so we
7915 * can go ahead and search for a more manageable chunk.
7917 * If our max_extent_size is large enough for our allocation simply
7918 * disable clustering since we will likely not be able to find enough
7919 * space to create a cluster and induce latency trying.
7921 if (unlikely(space_info->max_extent_size)) {
7922 spin_lock(&space_info->lock);
7923 if (space_info->max_extent_size &&
7924 num_bytes > space_info->max_extent_size) {
7925 ins->offset = space_info->max_extent_size;
7926 spin_unlock(&space_info->lock);
7928 } else if (space_info->max_extent_size) {
7929 use_cluster = false;
7931 spin_unlock(&space_info->lock);
7934 last_ptr = fetch_cluster_info(fs_info, space_info,
7935 &ffe_ctl.empty_cluster);
7937 spin_lock(&last_ptr->lock);
7938 if (last_ptr->block_group)
7939 hint_byte = last_ptr->window_start;
7940 if (last_ptr->fragmented) {
7942 * We still set window_start so we can keep track of the
7943 * last place we found an allocation to try and save
7946 hint_byte = last_ptr->window_start;
7947 use_cluster = false;
7949 spin_unlock(&last_ptr->lock);
7952 ffe_ctl.search_start = max(ffe_ctl.search_start,
7953 first_logical_byte(fs_info, 0));
7954 ffe_ctl.search_start = max(ffe_ctl.search_start, hint_byte);
7955 if (ffe_ctl.search_start == hint_byte) {
7956 block_group = btrfs_lookup_block_group(fs_info,
7957 ffe_ctl.search_start);
7959 * we don't want to use the block group if it doesn't match our
7960 * allocation bits, or if its not cached.
7962 * However if we are re-searching with an ideal block group
7963 * picked out then we don't care that the block group is cached.
7965 if (block_group && block_group_bits(block_group, flags) &&
7966 block_group->cached != BTRFS_CACHE_NO) {
7967 down_read(&space_info->groups_sem);
7968 if (list_empty(&block_group->list) ||
7971 * someone is removing this block group,
7972 * we can't jump into the have_block_group
7973 * target because our list pointers are not
7976 btrfs_put_block_group(block_group);
7977 up_read(&space_info->groups_sem);
7979 ffe_ctl.index = btrfs_bg_flags_to_raid_index(
7980 block_group->flags);
7981 btrfs_lock_block_group(block_group, delalloc);
7982 goto have_block_group;
7984 } else if (block_group) {
7985 btrfs_put_block_group(block_group);
7989 ffe_ctl.have_caching_bg = false;
7990 if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) ||
7993 down_read(&space_info->groups_sem);
7994 list_for_each_entry(block_group,
7995 &space_info->block_groups[ffe_ctl.index], list) {
7996 /* If the block group is read-only, we can skip it entirely. */
7997 if (unlikely(block_group->ro))
8000 btrfs_grab_block_group(block_group, delalloc);
8001 ffe_ctl.search_start = block_group->key.objectid;
8004 * this can happen if we end up cycling through all the
8005 * raid types, but we want to make sure we only allocate
8006 * for the proper type.
8008 if (!block_group_bits(block_group, flags)) {
8009 u64 extra = BTRFS_BLOCK_GROUP_DUP |
8010 BTRFS_BLOCK_GROUP_RAID1 |
8011 BTRFS_BLOCK_GROUP_RAID5 |
8012 BTRFS_BLOCK_GROUP_RAID6 |
8013 BTRFS_BLOCK_GROUP_RAID10;
8016 * if they asked for extra copies and this block group
8017 * doesn't provide them, bail. This does allow us to
8018 * fill raid0 from raid1.
8020 if ((flags & extra) && !(block_group->flags & extra))
8025 ffe_ctl.cached = block_group_cache_done(block_group);
8026 if (unlikely(!ffe_ctl.cached)) {
8027 ffe_ctl.have_caching_bg = true;
8028 ret = cache_block_group(block_group, 0);
8033 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
8037 * Ok we want to try and use the cluster allocator, so
8040 if (last_ptr && use_cluster) {
8041 struct btrfs_block_group_cache *cluster_bg = NULL;
8043 ret = find_free_extent_clustered(block_group, last_ptr,
8044 &ffe_ctl, &cluster_bg);
8047 if (cluster_bg && cluster_bg != block_group) {
8048 btrfs_release_block_group(block_group,
8050 block_group = cluster_bg;
8053 } else if (ret == -EAGAIN) {
8054 goto have_block_group;
8055 } else if (ret > 0) {
8058 /* ret == -ENOENT case falls through */
8061 ret = find_free_extent_unclustered(block_group, last_ptr,
8064 goto have_block_group;
8067 /* ret == 0 case falls through */
8069 ffe_ctl.search_start = round_up(ffe_ctl.found_offset,
8070 fs_info->stripesize);
8072 /* move on to the next group */
8073 if (ffe_ctl.search_start + num_bytes >
8074 block_group->key.objectid + block_group->key.offset) {
8075 btrfs_add_free_space(block_group, ffe_ctl.found_offset,
8080 if (ffe_ctl.found_offset < ffe_ctl.search_start)
8081 btrfs_add_free_space(block_group, ffe_ctl.found_offset,
8082 ffe_ctl.search_start - ffe_ctl.found_offset);
8084 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
8085 num_bytes, delalloc);
8086 if (ret == -EAGAIN) {
8087 btrfs_add_free_space(block_group, ffe_ctl.found_offset,
8091 btrfs_inc_block_group_reservations(block_group);
8093 /* we are all good, lets return */
8094 ins->objectid = ffe_ctl.search_start;
8095 ins->offset = num_bytes;
8097 trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start,
8099 btrfs_release_block_group(block_group, delalloc);
8102 ffe_ctl.retry_clustered = false;
8103 ffe_ctl.retry_unclustered = false;
8104 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
8106 btrfs_release_block_group(block_group, delalloc);
8109 up_read(&space_info->groups_sem);
8111 ret = find_free_extent_update_loop(fs_info, last_ptr, ins, &ffe_ctl,
8112 full_search, use_cluster);
8116 if (ret == -ENOSPC) {
8118 * Use ffe_ctl->total_free_space as fallback if we can't find
8119 * any contiguous hole.
8121 if (!ffe_ctl.max_extent_size)
8122 ffe_ctl.max_extent_size = ffe_ctl.total_free_space;
8123 spin_lock(&space_info->lock);
8124 space_info->max_extent_size = ffe_ctl.max_extent_size;
8125 spin_unlock(&space_info->lock);
8126 ins->offset = ffe_ctl.max_extent_size;
8131 #define DUMP_BLOCK_RSV(fs_info, rsv_name) \
8133 struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \
8134 spin_lock(&__rsv->lock); \
8135 btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \
8136 __rsv->size, __rsv->reserved); \
8137 spin_unlock(&__rsv->lock); \
8140 static void dump_space_info(struct btrfs_fs_info *fs_info,
8141 struct btrfs_space_info *info, u64 bytes,
8142 int dump_block_groups)
8144 struct btrfs_block_group_cache *cache;
8147 spin_lock(&info->lock);
8148 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
8150 info->total_bytes - btrfs_space_info_used(info, true),
8151 info->full ? "" : "not ");
8153 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
8154 info->total_bytes, info->bytes_used, info->bytes_pinned,
8155 info->bytes_reserved, info->bytes_may_use,
8156 info->bytes_readonly);
8157 spin_unlock(&info->lock);
8159 DUMP_BLOCK_RSV(fs_info, global_block_rsv);
8160 DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
8161 DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
8162 DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
8163 DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
8165 if (!dump_block_groups)
8168 down_read(&info->groups_sem);
8170 list_for_each_entry(cache, &info->block_groups[index], list) {
8171 spin_lock(&cache->lock);
8173 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
8174 cache->key.objectid, cache->key.offset,
8175 btrfs_block_group_used(&cache->item), cache->pinned,
8176 cache->reserved, cache->ro ? "[readonly]" : "");
8177 btrfs_dump_free_space(cache, bytes);
8178 spin_unlock(&cache->lock);
8180 if (++index < BTRFS_NR_RAID_TYPES)
8182 up_read(&info->groups_sem);
8186 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
8187 * hole that is at least as big as @num_bytes.
8189 * @root - The root that will contain this extent
8191 * @ram_bytes - The amount of space in ram that @num_bytes take. This
8192 * is used for accounting purposes. This value differs
8193 * from @num_bytes only in the case of compressed extents.
8195 * @num_bytes - Number of bytes to allocate on-disk.
8197 * @min_alloc_size - Indicates the minimum amount of space that the
8198 * allocator should try to satisfy. In some cases
8199 * @num_bytes may be larger than what is required and if
8200 * the filesystem is fragmented then allocation fails.
8201 * However, the presence of @min_alloc_size gives a
8202 * chance to try and satisfy the smaller allocation.
8204 * @empty_size - A hint that you plan on doing more COW. This is the
8205 * size in bytes the allocator should try to find free
8206 * next to the block it returns. This is just a hint and
8207 * may be ignored by the allocator.
8209 * @hint_byte - Hint to the allocator to start searching above the byte
8210 * address passed. It might be ignored.
8212 * @ins - This key is modified to record the found hole. It will
8213 * have the following values:
8214 * ins->objectid == start position
8215 * ins->flags = BTRFS_EXTENT_ITEM_KEY
8216 * ins->offset == the size of the hole.
8218 * @is_data - Boolean flag indicating whether an extent is
8219 * allocated for data (true) or metadata (false)
8221 * @delalloc - Boolean flag indicating whether this allocation is for
8222 * delalloc or not. If 'true' data_rwsem of block groups
8223 * is going to be acquired.
8226 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
8227 * case -ENOSPC is returned then @ins->offset will contain the size of the
8228 * largest available hole the allocator managed to find.
8230 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
8231 u64 num_bytes, u64 min_alloc_size,
8232 u64 empty_size, u64 hint_byte,
8233 struct btrfs_key *ins, int is_data, int delalloc)
8235 struct btrfs_fs_info *fs_info = root->fs_info;
8236 bool final_tried = num_bytes == min_alloc_size;
8240 flags = get_alloc_profile_by_root(root, is_data);
8242 WARN_ON(num_bytes < fs_info->sectorsize);
8243 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
8244 hint_byte, ins, flags, delalloc);
8245 if (!ret && !is_data) {
8246 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
8247 } else if (ret == -ENOSPC) {
8248 if (!final_tried && ins->offset) {
8249 num_bytes = min(num_bytes >> 1, ins->offset);
8250 num_bytes = round_down(num_bytes,
8251 fs_info->sectorsize);
8252 num_bytes = max(num_bytes, min_alloc_size);
8253 ram_bytes = num_bytes;
8254 if (num_bytes == min_alloc_size)
8257 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8258 struct btrfs_space_info *sinfo;
8260 sinfo = __find_space_info(fs_info, flags);
8262 "allocation failed flags %llu, wanted %llu",
8265 dump_space_info(fs_info, sinfo, num_bytes, 1);
8272 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8274 int pin, int delalloc)
8276 struct btrfs_block_group_cache *cache;
8279 cache = btrfs_lookup_block_group(fs_info, start);
8281 btrfs_err(fs_info, "Unable to find block group for %llu",
8287 pin_down_extent(fs_info, cache, start, len, 1);
8289 if (btrfs_test_opt(fs_info, DISCARD))
8290 ret = btrfs_discard_extent(fs_info, start, len, NULL);
8291 btrfs_add_free_space(cache, start, len);
8292 btrfs_free_reserved_bytes(cache, len, delalloc);
8293 trace_btrfs_reserved_extent_free(fs_info, start, len);
8296 btrfs_put_block_group(cache);
8300 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8301 u64 start, u64 len, int delalloc)
8303 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
8306 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
8309 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
8312 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8313 u64 parent, u64 root_objectid,
8314 u64 flags, u64 owner, u64 offset,
8315 struct btrfs_key *ins, int ref_mod)
8317 struct btrfs_fs_info *fs_info = trans->fs_info;
8319 struct btrfs_extent_item *extent_item;
8320 struct btrfs_extent_inline_ref *iref;
8321 struct btrfs_path *path;
8322 struct extent_buffer *leaf;
8327 type = BTRFS_SHARED_DATA_REF_KEY;
8329 type = BTRFS_EXTENT_DATA_REF_KEY;
8331 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8333 path = btrfs_alloc_path();
8337 path->leave_spinning = 1;
8338 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8341 btrfs_free_path(path);
8345 leaf = path->nodes[0];
8346 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8347 struct btrfs_extent_item);
8348 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8349 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8350 btrfs_set_extent_flags(leaf, extent_item,
8351 flags | BTRFS_EXTENT_FLAG_DATA);
8353 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8354 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8356 struct btrfs_shared_data_ref *ref;
8357 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8358 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8359 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8361 struct btrfs_extent_data_ref *ref;
8362 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8363 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8364 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8365 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8366 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8369 btrfs_mark_buffer_dirty(path->nodes[0]);
8370 btrfs_free_path(path);
8372 ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
8376 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
8377 if (ret) { /* -ENOENT, logic error */
8378 btrfs_err(fs_info, "update block group failed for %llu %llu",
8379 ins->objectid, ins->offset);
8382 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
8386 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8387 struct btrfs_delayed_ref_node *node,
8388 struct btrfs_delayed_extent_op *extent_op)
8390 struct btrfs_fs_info *fs_info = trans->fs_info;
8392 struct btrfs_extent_item *extent_item;
8393 struct btrfs_key extent_key;
8394 struct btrfs_tree_block_info *block_info;
8395 struct btrfs_extent_inline_ref *iref;
8396 struct btrfs_path *path;
8397 struct extent_buffer *leaf;
8398 struct btrfs_delayed_tree_ref *ref;
8399 u32 size = sizeof(*extent_item) + sizeof(*iref);
8401 u64 flags = extent_op->flags_to_set;
8402 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8404 ref = btrfs_delayed_node_to_tree_ref(node);
8406 extent_key.objectid = node->bytenr;
8407 if (skinny_metadata) {
8408 extent_key.offset = ref->level;
8409 extent_key.type = BTRFS_METADATA_ITEM_KEY;
8410 num_bytes = fs_info->nodesize;
8412 extent_key.offset = node->num_bytes;
8413 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
8414 size += sizeof(*block_info);
8415 num_bytes = node->num_bytes;
8418 path = btrfs_alloc_path();
8422 path->leave_spinning = 1;
8423 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8426 btrfs_free_path(path);
8430 leaf = path->nodes[0];
8431 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8432 struct btrfs_extent_item);
8433 btrfs_set_extent_refs(leaf, extent_item, 1);
8434 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8435 btrfs_set_extent_flags(leaf, extent_item,
8436 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8438 if (skinny_metadata) {
8439 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8441 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8442 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
8443 btrfs_set_tree_block_level(leaf, block_info, ref->level);
8444 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8447 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
8448 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8449 btrfs_set_extent_inline_ref_type(leaf, iref,
8450 BTRFS_SHARED_BLOCK_REF_KEY);
8451 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
8453 btrfs_set_extent_inline_ref_type(leaf, iref,
8454 BTRFS_TREE_BLOCK_REF_KEY);
8455 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
8458 btrfs_mark_buffer_dirty(leaf);
8459 btrfs_free_path(path);
8461 ret = remove_from_free_space_tree(trans, extent_key.objectid,
8466 ret = update_block_group(trans, fs_info, extent_key.objectid,
8467 fs_info->nodesize, 1);
8468 if (ret) { /* -ENOENT, logic error */
8469 btrfs_err(fs_info, "update block group failed for %llu %llu",
8470 extent_key.objectid, extent_key.offset);
8474 trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
8479 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8480 struct btrfs_root *root, u64 owner,
8481 u64 offset, u64 ram_bytes,
8482 struct btrfs_key *ins)
8486 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
8488 btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8489 root->root_key.objectid, owner, offset,
8490 BTRFS_ADD_DELAYED_EXTENT);
8492 ret = btrfs_add_delayed_data_ref(trans, ins->objectid,
8494 root->root_key.objectid, owner,
8496 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
8501 * this is used by the tree logging recovery code. It records that
8502 * an extent has been allocated and makes sure to clear the free
8503 * space cache bits as well
8505 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8506 u64 root_objectid, u64 owner, u64 offset,
8507 struct btrfs_key *ins)
8509 struct btrfs_fs_info *fs_info = trans->fs_info;
8511 struct btrfs_block_group_cache *block_group;
8512 struct btrfs_space_info *space_info;
8515 * Mixed block groups will exclude before processing the log so we only
8516 * need to do the exclude dance if this fs isn't mixed.
8518 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8519 ret = __exclude_logged_extent(fs_info, ins->objectid,
8525 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8529 space_info = block_group->space_info;
8530 spin_lock(&space_info->lock);
8531 spin_lock(&block_group->lock);
8532 space_info->bytes_reserved += ins->offset;
8533 block_group->reserved += ins->offset;
8534 spin_unlock(&block_group->lock);
8535 spin_unlock(&space_info->lock);
8537 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
8539 btrfs_put_block_group(block_group);
8543 static struct extent_buffer *
8544 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8545 u64 bytenr, int level, u64 owner)
8547 struct btrfs_fs_info *fs_info = root->fs_info;
8548 struct extent_buffer *buf;
8550 buf = btrfs_find_create_tree_block(fs_info, bytenr);
8555 * Extra safety check in case the extent tree is corrupted and extent
8556 * allocator chooses to use a tree block which is already used and
8559 if (buf->lock_owner == current->pid) {
8560 btrfs_err_rl(fs_info,
8561 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
8562 buf->start, btrfs_header_owner(buf), current->pid);
8563 free_extent_buffer(buf);
8564 return ERR_PTR(-EUCLEAN);
8567 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8568 btrfs_tree_lock(buf);
8569 clean_tree_block(fs_info, buf);
8570 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8572 btrfs_set_lock_blocking_write(buf);
8573 set_extent_buffer_uptodate(buf);
8575 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
8576 btrfs_set_header_level(buf, level);
8577 btrfs_set_header_bytenr(buf, buf->start);
8578 btrfs_set_header_generation(buf, trans->transid);
8579 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
8580 btrfs_set_header_owner(buf, owner);
8581 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
8582 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
8583 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8584 buf->log_index = root->log_transid % 2;
8586 * we allow two log transactions at a time, use different
8587 * EXTENT bit to differentiate dirty pages.
8589 if (buf->log_index == 0)
8590 set_extent_dirty(&root->dirty_log_pages, buf->start,
8591 buf->start + buf->len - 1, GFP_NOFS);
8593 set_extent_new(&root->dirty_log_pages, buf->start,
8594 buf->start + buf->len - 1);
8596 buf->log_index = -1;
8597 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8598 buf->start + buf->len - 1, GFP_NOFS);
8600 trans->dirty = true;
8601 /* this returns a buffer locked for blocking */
8605 static struct btrfs_block_rsv *
8606 use_block_rsv(struct btrfs_trans_handle *trans,
8607 struct btrfs_root *root, u32 blocksize)
8609 struct btrfs_fs_info *fs_info = root->fs_info;
8610 struct btrfs_block_rsv *block_rsv;
8611 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8613 bool global_updated = false;
8615 block_rsv = get_block_rsv(trans, root);
8617 if (unlikely(block_rsv->size == 0))
8620 ret = block_rsv_use_bytes(block_rsv, blocksize);
8624 if (block_rsv->failfast)
8625 return ERR_PTR(ret);
8627 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8628 global_updated = true;
8629 update_global_block_rsv(fs_info);
8634 * The global reserve still exists to save us from ourselves, so don't
8635 * warn_on if we are short on our delayed refs reserve.
8637 if (block_rsv->type != BTRFS_BLOCK_RSV_DELREFS &&
8638 btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8639 static DEFINE_RATELIMIT_STATE(_rs,
8640 DEFAULT_RATELIMIT_INTERVAL * 10,
8641 /*DEFAULT_RATELIMIT_BURST*/ 1);
8642 if (__ratelimit(&_rs))
8644 "BTRFS: block rsv returned %d\n", ret);
8647 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8648 BTRFS_RESERVE_NO_FLUSH);
8652 * If we couldn't reserve metadata bytes try and use some from
8653 * the global reserve if its space type is the same as the global
8656 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8657 block_rsv->space_info == global_rsv->space_info) {
8658 ret = block_rsv_use_bytes(global_rsv, blocksize);
8662 return ERR_PTR(ret);
8665 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8666 struct btrfs_block_rsv *block_rsv, u32 blocksize)
8668 block_rsv_add_bytes(block_rsv, blocksize, false);
8669 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0, NULL);
8673 * finds a free extent and does all the dirty work required for allocation
8674 * returns the tree buffer or an ERR_PTR on error.
8676 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8677 struct btrfs_root *root,
8678 u64 parent, u64 root_objectid,
8679 const struct btrfs_disk_key *key,
8680 int level, u64 hint,
8683 struct btrfs_fs_info *fs_info = root->fs_info;
8684 struct btrfs_key ins;
8685 struct btrfs_block_rsv *block_rsv;
8686 struct extent_buffer *buf;
8687 struct btrfs_delayed_extent_op *extent_op;
8690 u32 blocksize = fs_info->nodesize;
8691 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8693 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8694 if (btrfs_is_testing(fs_info)) {
8695 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8696 level, root_objectid);
8698 root->alloc_bytenr += blocksize;
8703 block_rsv = use_block_rsv(trans, root, blocksize);
8704 if (IS_ERR(block_rsv))
8705 return ERR_CAST(block_rsv);
8707 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8708 empty_size, hint, &ins, 0, 0);
8712 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
8716 goto out_free_reserved;
8719 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8721 parent = ins.objectid;
8722 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8726 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8727 extent_op = btrfs_alloc_delayed_extent_op();
8733 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8735 memset(&extent_op->key, 0, sizeof(extent_op->key));
8736 extent_op->flags_to_set = flags;
8737 extent_op->update_key = skinny_metadata ? false : true;
8738 extent_op->update_flags = true;
8739 extent_op->is_data = false;
8740 extent_op->level = level;
8742 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8743 root_objectid, level, 0,
8744 BTRFS_ADD_DELAYED_EXTENT);
8745 ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
8747 root_objectid, level,
8748 BTRFS_ADD_DELAYED_EXTENT,
8749 extent_op, NULL, NULL);
8751 goto out_free_delayed;
8756 btrfs_free_delayed_extent_op(extent_op);
8758 free_extent_buffer(buf);
8760 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8762 unuse_block_rsv(fs_info, block_rsv, blocksize);
8763 return ERR_PTR(ret);
8766 struct walk_control {
8767 u64 refs[BTRFS_MAX_LEVEL];
8768 u64 flags[BTRFS_MAX_LEVEL];
8769 struct btrfs_key update_progress;
8779 #define DROP_REFERENCE 1
8780 #define UPDATE_BACKREF 2
8782 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8783 struct btrfs_root *root,
8784 struct walk_control *wc,
8785 struct btrfs_path *path)
8787 struct btrfs_fs_info *fs_info = root->fs_info;
8793 struct btrfs_key key;
8794 struct extent_buffer *eb;
8799 if (path->slots[wc->level] < wc->reada_slot) {
8800 wc->reada_count = wc->reada_count * 2 / 3;
8801 wc->reada_count = max(wc->reada_count, 2);
8803 wc->reada_count = wc->reada_count * 3 / 2;
8804 wc->reada_count = min_t(int, wc->reada_count,
8805 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8808 eb = path->nodes[wc->level];
8809 nritems = btrfs_header_nritems(eb);
8811 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8812 if (nread >= wc->reada_count)
8816 bytenr = btrfs_node_blockptr(eb, slot);
8817 generation = btrfs_node_ptr_generation(eb, slot);
8819 if (slot == path->slots[wc->level])
8822 if (wc->stage == UPDATE_BACKREF &&
8823 generation <= root->root_key.offset)
8826 /* We don't lock the tree block, it's OK to be racy here */
8827 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8828 wc->level - 1, 1, &refs,
8830 /* We don't care about errors in readahead. */
8835 if (wc->stage == DROP_REFERENCE) {
8839 if (wc->level == 1 &&
8840 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8842 if (!wc->update_ref ||
8843 generation <= root->root_key.offset)
8845 btrfs_node_key_to_cpu(eb, &key, slot);
8846 ret = btrfs_comp_cpu_keys(&key,
8847 &wc->update_progress);
8851 if (wc->level == 1 &&
8852 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8856 readahead_tree_block(fs_info, bytenr);
8859 wc->reada_slot = slot;
8863 * helper to process tree block while walking down the tree.
8865 * when wc->stage == UPDATE_BACKREF, this function updates
8866 * back refs for pointers in the block.
8868 * NOTE: return value 1 means we should stop walking down.
8870 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8871 struct btrfs_root *root,
8872 struct btrfs_path *path,
8873 struct walk_control *wc, int lookup_info)
8875 struct btrfs_fs_info *fs_info = root->fs_info;
8876 int level = wc->level;
8877 struct extent_buffer *eb = path->nodes[level];
8878 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8881 if (wc->stage == UPDATE_BACKREF &&
8882 btrfs_header_owner(eb) != root->root_key.objectid)
8886 * when reference count of tree block is 1, it won't increase
8887 * again. once full backref flag is set, we never clear it.
8890 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8891 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8892 BUG_ON(!path->locks[level]);
8893 ret = btrfs_lookup_extent_info(trans, fs_info,
8894 eb->start, level, 1,
8897 BUG_ON(ret == -ENOMEM);
8900 BUG_ON(wc->refs[level] == 0);
8903 if (wc->stage == DROP_REFERENCE) {
8904 if (wc->refs[level] > 1)
8907 if (path->locks[level] && !wc->keep_locks) {
8908 btrfs_tree_unlock_rw(eb, path->locks[level]);
8909 path->locks[level] = 0;
8914 /* wc->stage == UPDATE_BACKREF */
8915 if (!(wc->flags[level] & flag)) {
8916 BUG_ON(!path->locks[level]);
8917 ret = btrfs_inc_ref(trans, root, eb, 1);
8918 BUG_ON(ret); /* -ENOMEM */
8919 ret = btrfs_dec_ref(trans, root, eb, 0);
8920 BUG_ON(ret); /* -ENOMEM */
8921 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8923 btrfs_header_level(eb), 0);
8924 BUG_ON(ret); /* -ENOMEM */
8925 wc->flags[level] |= flag;
8929 * the block is shared by multiple trees, so it's not good to
8930 * keep the tree lock
8932 if (path->locks[level] && level > 0) {
8933 btrfs_tree_unlock_rw(eb, path->locks[level]);
8934 path->locks[level] = 0;
8940 * helper to process tree block pointer.
8942 * when wc->stage == DROP_REFERENCE, this function checks
8943 * reference count of the block pointed to. if the block
8944 * is shared and we need update back refs for the subtree
8945 * rooted at the block, this function changes wc->stage to
8946 * UPDATE_BACKREF. if the block is shared and there is no
8947 * need to update back, this function drops the reference
8950 * NOTE: return value 1 means we should stop walking down.
8952 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8953 struct btrfs_root *root,
8954 struct btrfs_path *path,
8955 struct walk_control *wc, int *lookup_info)
8957 struct btrfs_fs_info *fs_info = root->fs_info;
8961 struct btrfs_key key;
8962 struct btrfs_key first_key;
8963 struct extent_buffer *next;
8964 int level = wc->level;
8967 bool need_account = false;
8969 generation = btrfs_node_ptr_generation(path->nodes[level],
8970 path->slots[level]);
8972 * if the lower level block was created before the snapshot
8973 * was created, we know there is no need to update back refs
8976 if (wc->stage == UPDATE_BACKREF &&
8977 generation <= root->root_key.offset) {
8982 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8983 btrfs_node_key_to_cpu(path->nodes[level], &first_key,
8984 path->slots[level]);
8986 next = find_extent_buffer(fs_info, bytenr);
8988 next = btrfs_find_create_tree_block(fs_info, bytenr);
8990 return PTR_ERR(next);
8992 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8996 btrfs_tree_lock(next);
8997 btrfs_set_lock_blocking_write(next);
8999 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
9000 &wc->refs[level - 1],
9001 &wc->flags[level - 1]);
9005 if (unlikely(wc->refs[level - 1] == 0)) {
9006 btrfs_err(fs_info, "Missing references.");
9012 if (wc->stage == DROP_REFERENCE) {
9013 if (wc->refs[level - 1] > 1) {
9014 need_account = true;
9016 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
9019 if (!wc->update_ref ||
9020 generation <= root->root_key.offset)
9023 btrfs_node_key_to_cpu(path->nodes[level], &key,
9024 path->slots[level]);
9025 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
9029 wc->stage = UPDATE_BACKREF;
9030 wc->shared_level = level - 1;
9034 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
9038 if (!btrfs_buffer_uptodate(next, generation, 0)) {
9039 btrfs_tree_unlock(next);
9040 free_extent_buffer(next);
9046 if (reada && level == 1)
9047 reada_walk_down(trans, root, wc, path);
9048 next = read_tree_block(fs_info, bytenr, generation, level - 1,
9051 return PTR_ERR(next);
9052 } else if (!extent_buffer_uptodate(next)) {
9053 free_extent_buffer(next);
9056 btrfs_tree_lock(next);
9057 btrfs_set_lock_blocking_write(next);
9061 ASSERT(level == btrfs_header_level(next));
9062 if (level != btrfs_header_level(next)) {
9063 btrfs_err(root->fs_info, "mismatched level");
9067 path->nodes[level] = next;
9068 path->slots[level] = 0;
9069 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9075 wc->refs[level - 1] = 0;
9076 wc->flags[level - 1] = 0;
9077 if (wc->stage == DROP_REFERENCE) {
9078 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
9079 parent = path->nodes[level]->start;
9081 ASSERT(root->root_key.objectid ==
9082 btrfs_header_owner(path->nodes[level]));
9083 if (root->root_key.objectid !=
9084 btrfs_header_owner(path->nodes[level])) {
9085 btrfs_err(root->fs_info,
9086 "mismatched block owner");
9094 * Reloc tree doesn't contribute to qgroup numbers, and we have
9095 * already accounted them at merge time (replace_path),
9096 * thus we could skip expensive subtree trace here.
9098 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
9100 ret = btrfs_qgroup_trace_subtree(trans, next,
9101 generation, level - 1);
9103 btrfs_err_rl(fs_info,
9104 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
9108 ret = btrfs_free_extent(trans, root, bytenr, fs_info->nodesize,
9109 parent, root->root_key.objectid,
9119 btrfs_tree_unlock(next);
9120 free_extent_buffer(next);
9126 * helper to process tree block while walking up the tree.
9128 * when wc->stage == DROP_REFERENCE, this function drops
9129 * reference count on the block.
9131 * when wc->stage == UPDATE_BACKREF, this function changes
9132 * wc->stage back to DROP_REFERENCE if we changed wc->stage
9133 * to UPDATE_BACKREF previously while processing the block.
9135 * NOTE: return value 1 means we should stop walking up.
9137 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
9138 struct btrfs_root *root,
9139 struct btrfs_path *path,
9140 struct walk_control *wc)
9142 struct btrfs_fs_info *fs_info = root->fs_info;
9144 int level = wc->level;
9145 struct extent_buffer *eb = path->nodes[level];
9148 if (wc->stage == UPDATE_BACKREF) {
9149 BUG_ON(wc->shared_level < level);
9150 if (level < wc->shared_level)
9153 ret = find_next_key(path, level + 1, &wc->update_progress);
9157 wc->stage = DROP_REFERENCE;
9158 wc->shared_level = -1;
9159 path->slots[level] = 0;
9162 * check reference count again if the block isn't locked.
9163 * we should start walking down the tree again if reference
9166 if (!path->locks[level]) {
9168 btrfs_tree_lock(eb);
9169 btrfs_set_lock_blocking_write(eb);
9170 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9172 ret = btrfs_lookup_extent_info(trans, fs_info,
9173 eb->start, level, 1,
9177 btrfs_tree_unlock_rw(eb, path->locks[level]);
9178 path->locks[level] = 0;
9181 BUG_ON(wc->refs[level] == 0);
9182 if (wc->refs[level] == 1) {
9183 btrfs_tree_unlock_rw(eb, path->locks[level]);
9184 path->locks[level] = 0;
9190 /* wc->stage == DROP_REFERENCE */
9191 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
9193 if (wc->refs[level] == 1) {
9195 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9196 ret = btrfs_dec_ref(trans, root, eb, 1);
9198 ret = btrfs_dec_ref(trans, root, eb, 0);
9199 BUG_ON(ret); /* -ENOMEM */
9200 ret = btrfs_qgroup_trace_leaf_items(trans, eb);
9202 btrfs_err_rl(fs_info,
9203 "error %d accounting leaf items. Quota is out of sync, rescan required.",
9207 /* make block locked assertion in clean_tree_block happy */
9208 if (!path->locks[level] &&
9209 btrfs_header_generation(eb) == trans->transid) {
9210 btrfs_tree_lock(eb);
9211 btrfs_set_lock_blocking_write(eb);
9212 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9214 clean_tree_block(fs_info, eb);
9217 if (eb == root->node) {
9218 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9220 else if (root->root_key.objectid != btrfs_header_owner(eb))
9221 goto owner_mismatch;
9223 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9224 parent = path->nodes[level + 1]->start;
9225 else if (root->root_key.objectid !=
9226 btrfs_header_owner(path->nodes[level + 1]))
9227 goto owner_mismatch;
9230 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
9232 wc->refs[level] = 0;
9233 wc->flags[level] = 0;
9237 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
9238 btrfs_header_owner(eb), root->root_key.objectid);
9242 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
9243 struct btrfs_root *root,
9244 struct btrfs_path *path,
9245 struct walk_control *wc)
9247 int level = wc->level;
9248 int lookup_info = 1;
9251 while (level >= 0) {
9252 ret = walk_down_proc(trans, root, path, wc, lookup_info);
9259 if (path->slots[level] >=
9260 btrfs_header_nritems(path->nodes[level]))
9263 ret = do_walk_down(trans, root, path, wc, &lookup_info);
9265 path->slots[level]++;
9274 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
9275 struct btrfs_root *root,
9276 struct btrfs_path *path,
9277 struct walk_control *wc, int max_level)
9279 int level = wc->level;
9282 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9283 while (level < max_level && path->nodes[level]) {
9285 if (path->slots[level] + 1 <
9286 btrfs_header_nritems(path->nodes[level])) {
9287 path->slots[level]++;
9290 ret = walk_up_proc(trans, root, path, wc);
9296 if (path->locks[level]) {
9297 btrfs_tree_unlock_rw(path->nodes[level],
9298 path->locks[level]);
9299 path->locks[level] = 0;
9301 free_extent_buffer(path->nodes[level]);
9302 path->nodes[level] = NULL;
9310 * drop a subvolume tree.
9312 * this function traverses the tree freeing any blocks that only
9313 * referenced by the tree.
9315 * when a shared tree block is found. this function decreases its
9316 * reference count by one. if update_ref is true, this function
9317 * also make sure backrefs for the shared block and all lower level
9318 * blocks are properly updated.
9320 * If called with for_reloc == 0, may exit early with -EAGAIN
9322 int btrfs_drop_snapshot(struct btrfs_root *root,
9323 struct btrfs_block_rsv *block_rsv, int update_ref,
9326 struct btrfs_fs_info *fs_info = root->fs_info;
9327 struct btrfs_path *path;
9328 struct btrfs_trans_handle *trans;
9329 struct btrfs_root *tree_root = fs_info->tree_root;
9330 struct btrfs_root_item *root_item = &root->root_item;
9331 struct walk_control *wc;
9332 struct btrfs_key key;
9336 bool root_dropped = false;
9338 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
9340 path = btrfs_alloc_path();
9346 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9348 btrfs_free_path(path);
9353 trans = btrfs_start_transaction(tree_root, 0);
9354 if (IS_ERR(trans)) {
9355 err = PTR_ERR(trans);
9359 err = btrfs_run_delayed_items(trans);
9364 trans->block_rsv = block_rsv;
9367 * This will help us catch people modifying the fs tree while we're
9368 * dropping it. It is unsafe to mess with the fs tree while it's being
9369 * dropped as we unlock the root node and parent nodes as we walk down
9370 * the tree, assuming nothing will change. If something does change
9371 * then we'll have stale information and drop references to blocks we've
9374 set_bit(BTRFS_ROOT_DELETING, &root->state);
9375 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9376 level = btrfs_header_level(root->node);
9377 path->nodes[level] = btrfs_lock_root_node(root);
9378 btrfs_set_lock_blocking_write(path->nodes[level]);
9379 path->slots[level] = 0;
9380 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9381 memset(&wc->update_progress, 0,
9382 sizeof(wc->update_progress));
9384 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9385 memcpy(&wc->update_progress, &key,
9386 sizeof(wc->update_progress));
9388 level = root_item->drop_level;
9390 path->lowest_level = level;
9391 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9392 path->lowest_level = 0;
9400 * unlock our path, this is safe because only this
9401 * function is allowed to delete this snapshot
9403 btrfs_unlock_up_safe(path, 0);
9405 level = btrfs_header_level(root->node);
9407 btrfs_tree_lock(path->nodes[level]);
9408 btrfs_set_lock_blocking_write(path->nodes[level]);
9409 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9411 ret = btrfs_lookup_extent_info(trans, fs_info,
9412 path->nodes[level]->start,
9413 level, 1, &wc->refs[level],
9419 BUG_ON(wc->refs[level] == 0);
9421 if (level == root_item->drop_level)
9424 btrfs_tree_unlock(path->nodes[level]);
9425 path->locks[level] = 0;
9426 WARN_ON(wc->refs[level] != 1);
9432 wc->shared_level = -1;
9433 wc->stage = DROP_REFERENCE;
9434 wc->update_ref = update_ref;
9436 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9440 ret = walk_down_tree(trans, root, path, wc);
9446 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9453 BUG_ON(wc->stage != DROP_REFERENCE);
9457 if (wc->stage == DROP_REFERENCE) {
9459 btrfs_node_key(path->nodes[level],
9460 &root_item->drop_progress,
9461 path->slots[level]);
9462 root_item->drop_level = level;
9465 BUG_ON(wc->level == 0);
9466 if (btrfs_should_end_transaction(trans) ||
9467 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9468 ret = btrfs_update_root(trans, tree_root,
9472 btrfs_abort_transaction(trans, ret);
9477 btrfs_end_transaction_throttle(trans);
9478 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9479 btrfs_debug(fs_info,
9480 "drop snapshot early exit");
9485 trans = btrfs_start_transaction(tree_root, 0);
9486 if (IS_ERR(trans)) {
9487 err = PTR_ERR(trans);
9491 trans->block_rsv = block_rsv;
9494 btrfs_release_path(path);
9498 ret = btrfs_del_root(trans, &root->root_key);
9500 btrfs_abort_transaction(trans, ret);
9505 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9506 ret = btrfs_find_root(tree_root, &root->root_key, path,
9509 btrfs_abort_transaction(trans, ret);
9512 } else if (ret > 0) {
9513 /* if we fail to delete the orphan item this time
9514 * around, it'll get picked up the next time.
9516 * The most common failure here is just -ENOENT.
9518 btrfs_del_orphan_item(trans, tree_root,
9519 root->root_key.objectid);
9523 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9524 btrfs_add_dropped_root(trans, root);
9526 free_extent_buffer(root->node);
9527 free_extent_buffer(root->commit_root);
9528 btrfs_put_fs_root(root);
9530 root_dropped = true;
9532 btrfs_end_transaction_throttle(trans);
9535 btrfs_free_path(path);
9538 * So if we need to stop dropping the snapshot for whatever reason we
9539 * need to make sure to add it back to the dead root list so that we
9540 * keep trying to do the work later. This also cleans up roots if we
9541 * don't have it in the radix (like when we recover after a power fail
9542 * or unmount) so we don't leak memory.
9544 if (!for_reloc && !root_dropped)
9545 btrfs_add_dead_root(root);
9546 if (err && err != -EAGAIN)
9547 btrfs_handle_fs_error(fs_info, err, NULL);
9552 * drop subtree rooted at tree block 'node'.
9554 * NOTE: this function will unlock and release tree block 'node'
9555 * only used by relocation code
9557 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9558 struct btrfs_root *root,
9559 struct extent_buffer *node,
9560 struct extent_buffer *parent)
9562 struct btrfs_fs_info *fs_info = root->fs_info;
9563 struct btrfs_path *path;
9564 struct walk_control *wc;
9570 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9572 path = btrfs_alloc_path();
9576 wc = kzalloc(sizeof(*wc), GFP_NOFS);
9578 btrfs_free_path(path);
9582 btrfs_assert_tree_locked(parent);
9583 parent_level = btrfs_header_level(parent);
9584 extent_buffer_get(parent);
9585 path->nodes[parent_level] = parent;
9586 path->slots[parent_level] = btrfs_header_nritems(parent);
9588 btrfs_assert_tree_locked(node);
9589 level = btrfs_header_level(node);
9590 path->nodes[level] = node;
9591 path->slots[level] = 0;
9592 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9594 wc->refs[parent_level] = 1;
9595 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9597 wc->shared_level = -1;
9598 wc->stage = DROP_REFERENCE;
9601 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9604 wret = walk_down_tree(trans, root, path, wc);
9610 wret = walk_up_tree(trans, root, path, wc, parent_level);
9618 btrfs_free_path(path);
9622 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9628 * if restripe for this chunk_type is on pick target profile and
9629 * return, otherwise do the usual balance
9631 stripped = get_restripe_target(fs_info, flags);
9633 return extended_to_chunk(stripped);
9635 num_devices = fs_info->fs_devices->rw_devices;
9637 stripped = BTRFS_BLOCK_GROUP_RAID0 |
9638 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9639 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9641 if (num_devices == 1) {
9642 stripped |= BTRFS_BLOCK_GROUP_DUP;
9643 stripped = flags & ~stripped;
9645 /* turn raid0 into single device chunks */
9646 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9649 /* turn mirroring into duplication */
9650 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9651 BTRFS_BLOCK_GROUP_RAID10))
9652 return stripped | BTRFS_BLOCK_GROUP_DUP;
9654 /* they already had raid on here, just return */
9655 if (flags & stripped)
9658 stripped |= BTRFS_BLOCK_GROUP_DUP;
9659 stripped = flags & ~stripped;
9661 /* switch duplicated blocks with raid1 */
9662 if (flags & BTRFS_BLOCK_GROUP_DUP)
9663 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9665 /* this is drive concat, leave it alone */
9671 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9673 struct btrfs_space_info *sinfo = cache->space_info;
9676 u64 min_allocable_bytes;
9680 * We need some metadata space and system metadata space for
9681 * allocating chunks in some corner cases until we force to set
9682 * it to be readonly.
9685 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9687 min_allocable_bytes = SZ_1M;
9689 min_allocable_bytes = 0;
9691 spin_lock(&sinfo->lock);
9692 spin_lock(&cache->lock);
9700 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9701 cache->bytes_super - btrfs_block_group_used(&cache->item);
9702 sinfo_used = btrfs_space_info_used(sinfo, true);
9704 if (sinfo_used + num_bytes + min_allocable_bytes <=
9705 sinfo->total_bytes) {
9706 sinfo->bytes_readonly += num_bytes;
9708 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9712 spin_unlock(&cache->lock);
9713 spin_unlock(&sinfo->lock);
9714 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
9715 btrfs_info(cache->fs_info,
9716 "unable to make block group %llu ro",
9717 cache->key.objectid);
9718 btrfs_info(cache->fs_info,
9719 "sinfo_used=%llu bg_num_bytes=%llu min_allocable=%llu",
9720 sinfo_used, num_bytes, min_allocable_bytes);
9721 dump_space_info(cache->fs_info, cache->space_info, 0, 0);
9726 int btrfs_inc_block_group_ro(struct btrfs_block_group_cache *cache)
9729 struct btrfs_fs_info *fs_info = cache->fs_info;
9730 struct btrfs_trans_handle *trans;
9735 trans = btrfs_join_transaction(fs_info->extent_root);
9737 return PTR_ERR(trans);
9740 * we're not allowed to set block groups readonly after the dirty
9741 * block groups cache has started writing. If it already started,
9742 * back off and let this transaction commit
9744 mutex_lock(&fs_info->ro_block_group_mutex);
9745 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9746 u64 transid = trans->transid;
9748 mutex_unlock(&fs_info->ro_block_group_mutex);
9749 btrfs_end_transaction(trans);
9751 ret = btrfs_wait_for_commit(fs_info, transid);
9758 * if we are changing raid levels, try to allocate a corresponding
9759 * block group with the new raid level.
9761 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9762 if (alloc_flags != cache->flags) {
9763 ret = do_chunk_alloc(trans, alloc_flags,
9766 * ENOSPC is allowed here, we may have enough space
9767 * already allocated at the new raid level to
9776 ret = inc_block_group_ro(cache, 0);
9779 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9780 ret = do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
9783 ret = inc_block_group_ro(cache, 0);
9785 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9786 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9787 mutex_lock(&fs_info->chunk_mutex);
9788 check_system_chunk(trans, alloc_flags);
9789 mutex_unlock(&fs_info->chunk_mutex);
9791 mutex_unlock(&fs_info->ro_block_group_mutex);
9793 btrfs_end_transaction(trans);
9797 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
9799 u64 alloc_flags = get_alloc_profile(trans->fs_info, type);
9801 return do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
9805 * helper to account the unused space of all the readonly block group in the
9806 * space_info. takes mirrors into account.
9808 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9810 struct btrfs_block_group_cache *block_group;
9814 /* It's df, we don't care if it's racy */
9815 if (list_empty(&sinfo->ro_bgs))
9818 spin_lock(&sinfo->lock);
9819 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9820 spin_lock(&block_group->lock);
9822 if (!block_group->ro) {
9823 spin_unlock(&block_group->lock);
9827 factor = btrfs_bg_type_to_factor(block_group->flags);
9828 free_bytes += (block_group->key.offset -
9829 btrfs_block_group_used(&block_group->item)) *
9832 spin_unlock(&block_group->lock);
9834 spin_unlock(&sinfo->lock);
9839 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9841 struct btrfs_space_info *sinfo = cache->space_info;
9846 spin_lock(&sinfo->lock);
9847 spin_lock(&cache->lock);
9849 num_bytes = cache->key.offset - cache->reserved -
9850 cache->pinned - cache->bytes_super -
9851 btrfs_block_group_used(&cache->item);
9852 sinfo->bytes_readonly -= num_bytes;
9853 list_del_init(&cache->ro_list);
9855 spin_unlock(&cache->lock);
9856 spin_unlock(&sinfo->lock);
9860 * Checks to see if it's even possible to relocate this block group.
9862 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9863 * ok to go ahead and try.
9865 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9867 struct btrfs_root *root = fs_info->extent_root;
9868 struct btrfs_block_group_cache *block_group;
9869 struct btrfs_space_info *space_info;
9870 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9871 struct btrfs_device *device;
9872 struct btrfs_trans_handle *trans;
9882 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9884 block_group = btrfs_lookup_block_group(fs_info, bytenr);
9886 /* odd, couldn't find the block group, leave it alone */
9890 "can't find block group for bytenr %llu",
9895 min_free = btrfs_block_group_used(&block_group->item);
9897 /* no bytes used, we're good */
9901 space_info = block_group->space_info;
9902 spin_lock(&space_info->lock);
9904 full = space_info->full;
9907 * if this is the last block group we have in this space, we can't
9908 * relocate it unless we're able to allocate a new chunk below.
9910 * Otherwise, we need to make sure we have room in the space to handle
9911 * all of the extents from this block group. If we can, we're good
9913 if ((space_info->total_bytes != block_group->key.offset) &&
9914 (btrfs_space_info_used(space_info, false) + min_free <
9915 space_info->total_bytes)) {
9916 spin_unlock(&space_info->lock);
9919 spin_unlock(&space_info->lock);
9922 * ok we don't have enough space, but maybe we have free space on our
9923 * devices to allocate new chunks for relocation, so loop through our
9924 * alloc devices and guess if we have enough space. if this block
9925 * group is going to be restriped, run checks against the target
9926 * profile instead of the current one.
9938 target = get_restripe_target(fs_info, block_group->flags);
9940 index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target));
9943 * this is just a balance, so if we were marked as full
9944 * we know there is no space for a new chunk
9949 "no space to alloc new chunk for block group %llu",
9950 block_group->key.objectid);
9954 index = btrfs_bg_flags_to_raid_index(block_group->flags);
9957 if (index == BTRFS_RAID_RAID10) {
9961 } else if (index == BTRFS_RAID_RAID1) {
9963 } else if (index == BTRFS_RAID_DUP) {
9966 } else if (index == BTRFS_RAID_RAID0) {
9967 dev_min = fs_devices->rw_devices;
9968 min_free = div64_u64(min_free, dev_min);
9971 /* We need to do this so that we can look at pending chunks */
9972 trans = btrfs_join_transaction(root);
9973 if (IS_ERR(trans)) {
9974 ret = PTR_ERR(trans);
9978 mutex_lock(&fs_info->chunk_mutex);
9979 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9983 * check to make sure we can actually find a chunk with enough
9984 * space to fit our block group in.
9986 if (device->total_bytes > device->bytes_used + min_free &&
9987 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
9988 ret = find_free_dev_extent(trans, device, min_free,
9993 if (dev_nr >= dev_min)
9999 if (debug && ret == -1)
10000 btrfs_warn(fs_info,
10001 "no space to allocate a new chunk for block group %llu",
10002 block_group->key.objectid);
10003 mutex_unlock(&fs_info->chunk_mutex);
10004 btrfs_end_transaction(trans);
10006 btrfs_put_block_group(block_group);
10010 static int find_first_block_group(struct btrfs_fs_info *fs_info,
10011 struct btrfs_path *path,
10012 struct btrfs_key *key)
10014 struct btrfs_root *root = fs_info->extent_root;
10016 struct btrfs_key found_key;
10017 struct extent_buffer *leaf;
10018 struct btrfs_block_group_item bg;
10022 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
10027 slot = path->slots[0];
10028 leaf = path->nodes[0];
10029 if (slot >= btrfs_header_nritems(leaf)) {
10030 ret = btrfs_next_leaf(root, path);
10037 btrfs_item_key_to_cpu(leaf, &found_key, slot);
10039 if (found_key.objectid >= key->objectid &&
10040 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
10041 struct extent_map_tree *em_tree;
10042 struct extent_map *em;
10044 em_tree = &root->fs_info->mapping_tree.map_tree;
10045 read_lock(&em_tree->lock);
10046 em = lookup_extent_mapping(em_tree, found_key.objectid,
10048 read_unlock(&em_tree->lock);
10051 "logical %llu len %llu found bg but no related chunk",
10052 found_key.objectid, found_key.offset);
10054 } else if (em->start != found_key.objectid ||
10055 em->len != found_key.offset) {
10057 "block group %llu len %llu mismatch with chunk %llu len %llu",
10058 found_key.objectid, found_key.offset,
10059 em->start, em->len);
10062 read_extent_buffer(leaf, &bg,
10063 btrfs_item_ptr_offset(leaf, slot),
10065 flags = btrfs_block_group_flags(&bg) &
10066 BTRFS_BLOCK_GROUP_TYPE_MASK;
10068 if (flags != (em->map_lookup->type &
10069 BTRFS_BLOCK_GROUP_TYPE_MASK)) {
10071 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
10072 found_key.objectid,
10073 found_key.offset, flags,
10074 (BTRFS_BLOCK_GROUP_TYPE_MASK &
10075 em->map_lookup->type));
10081 free_extent_map(em);
10090 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
10092 struct btrfs_block_group_cache *block_group;
10096 struct inode *inode;
10098 block_group = btrfs_lookup_first_block_group(info, last);
10099 while (block_group) {
10100 wait_block_group_cache_done(block_group);
10101 spin_lock(&block_group->lock);
10102 if (block_group->iref)
10104 spin_unlock(&block_group->lock);
10105 block_group = next_block_group(info, block_group);
10107 if (!block_group) {
10114 inode = block_group->inode;
10115 block_group->iref = 0;
10116 block_group->inode = NULL;
10117 spin_unlock(&block_group->lock);
10118 ASSERT(block_group->io_ctl.inode == NULL);
10120 last = block_group->key.objectid + block_group->key.offset;
10121 btrfs_put_block_group(block_group);
10126 * Must be called only after stopping all workers, since we could have block
10127 * group caching kthreads running, and therefore they could race with us if we
10128 * freed the block groups before stopping them.
10130 int btrfs_free_block_groups(struct btrfs_fs_info *info)
10132 struct btrfs_block_group_cache *block_group;
10133 struct btrfs_space_info *space_info;
10134 struct btrfs_caching_control *caching_ctl;
10137 down_write(&info->commit_root_sem);
10138 while (!list_empty(&info->caching_block_groups)) {
10139 caching_ctl = list_entry(info->caching_block_groups.next,
10140 struct btrfs_caching_control, list);
10141 list_del(&caching_ctl->list);
10142 put_caching_control(caching_ctl);
10144 up_write(&info->commit_root_sem);
10146 spin_lock(&info->unused_bgs_lock);
10147 while (!list_empty(&info->unused_bgs)) {
10148 block_group = list_first_entry(&info->unused_bgs,
10149 struct btrfs_block_group_cache,
10151 list_del_init(&block_group->bg_list);
10152 btrfs_put_block_group(block_group);
10154 spin_unlock(&info->unused_bgs_lock);
10156 spin_lock(&info->block_group_cache_lock);
10157 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
10158 block_group = rb_entry(n, struct btrfs_block_group_cache,
10160 rb_erase(&block_group->cache_node,
10161 &info->block_group_cache_tree);
10162 RB_CLEAR_NODE(&block_group->cache_node);
10163 spin_unlock(&info->block_group_cache_lock);
10165 down_write(&block_group->space_info->groups_sem);
10166 list_del(&block_group->list);
10167 up_write(&block_group->space_info->groups_sem);
10170 * We haven't cached this block group, which means we could
10171 * possibly have excluded extents on this block group.
10173 if (block_group->cached == BTRFS_CACHE_NO ||
10174 block_group->cached == BTRFS_CACHE_ERROR)
10175 free_excluded_extents(block_group);
10177 btrfs_remove_free_space_cache(block_group);
10178 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
10179 ASSERT(list_empty(&block_group->dirty_list));
10180 ASSERT(list_empty(&block_group->io_list));
10181 ASSERT(list_empty(&block_group->bg_list));
10182 ASSERT(atomic_read(&block_group->count) == 1);
10183 btrfs_put_block_group(block_group);
10185 spin_lock(&info->block_group_cache_lock);
10187 spin_unlock(&info->block_group_cache_lock);
10189 /* now that all the block groups are freed, go through and
10190 * free all the space_info structs. This is only called during
10191 * the final stages of unmount, and so we know nobody is
10192 * using them. We call synchronize_rcu() once before we start,
10193 * just to be on the safe side.
10197 release_global_block_rsv(info);
10199 while (!list_empty(&info->space_info)) {
10202 space_info = list_entry(info->space_info.next,
10203 struct btrfs_space_info,
10207 * Do not hide this behind enospc_debug, this is actually
10208 * important and indicates a real bug if this happens.
10210 if (WARN_ON(space_info->bytes_pinned > 0 ||
10211 space_info->bytes_reserved > 0 ||
10212 space_info->bytes_may_use > 0))
10213 dump_space_info(info, space_info, 0, 0);
10214 list_del(&space_info->list);
10215 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
10216 struct kobject *kobj;
10217 kobj = space_info->block_group_kobjs[i];
10218 space_info->block_group_kobjs[i] = NULL;
10224 kobject_del(&space_info->kobj);
10225 kobject_put(&space_info->kobj);
10230 /* link_block_group will queue up kobjects to add when we're reclaim-safe */
10231 void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info)
10233 struct btrfs_space_info *space_info;
10234 struct raid_kobject *rkobj;
10239 spin_lock(&fs_info->pending_raid_kobjs_lock);
10240 list_splice_init(&fs_info->pending_raid_kobjs, &list);
10241 spin_unlock(&fs_info->pending_raid_kobjs_lock);
10243 list_for_each_entry(rkobj, &list, list) {
10244 space_info = __find_space_info(fs_info, rkobj->flags);
10245 index = btrfs_bg_flags_to_raid_index(rkobj->flags);
10247 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
10248 "%s", get_raid_name(index));
10250 kobject_put(&rkobj->kobj);
10255 btrfs_warn(fs_info,
10256 "failed to add kobject for block cache, ignoring");
10259 static void link_block_group(struct btrfs_block_group_cache *cache)
10261 struct btrfs_space_info *space_info = cache->space_info;
10262 struct btrfs_fs_info *fs_info = cache->fs_info;
10263 int index = btrfs_bg_flags_to_raid_index(cache->flags);
10264 bool first = false;
10266 down_write(&space_info->groups_sem);
10267 if (list_empty(&space_info->block_groups[index]))
10269 list_add_tail(&cache->list, &space_info->block_groups[index]);
10270 up_write(&space_info->groups_sem);
10273 struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
10275 btrfs_warn(cache->fs_info,
10276 "couldn't alloc memory for raid level kobject");
10279 rkobj->flags = cache->flags;
10280 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
10282 spin_lock(&fs_info->pending_raid_kobjs_lock);
10283 list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs);
10284 spin_unlock(&fs_info->pending_raid_kobjs_lock);
10285 space_info->block_group_kobjs[index] = &rkobj->kobj;
10289 static struct btrfs_block_group_cache *
10290 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
10291 u64 start, u64 size)
10293 struct btrfs_block_group_cache *cache;
10295 cache = kzalloc(sizeof(*cache), GFP_NOFS);
10299 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
10301 if (!cache->free_space_ctl) {
10306 cache->key.objectid = start;
10307 cache->key.offset = size;
10308 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10310 cache->fs_info = fs_info;
10311 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
10312 set_free_space_tree_thresholds(cache);
10314 atomic_set(&cache->count, 1);
10315 spin_lock_init(&cache->lock);
10316 init_rwsem(&cache->data_rwsem);
10317 INIT_LIST_HEAD(&cache->list);
10318 INIT_LIST_HEAD(&cache->cluster_list);
10319 INIT_LIST_HEAD(&cache->bg_list);
10320 INIT_LIST_HEAD(&cache->ro_list);
10321 INIT_LIST_HEAD(&cache->dirty_list);
10322 INIT_LIST_HEAD(&cache->io_list);
10323 btrfs_init_free_space_ctl(cache);
10324 atomic_set(&cache->trimming, 0);
10325 mutex_init(&cache->free_space_lock);
10326 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
10333 * Iterate all chunks and verify that each of them has the corresponding block
10336 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
10338 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
10339 struct extent_map *em;
10340 struct btrfs_block_group_cache *bg;
10345 read_lock(&map_tree->map_tree.lock);
10347 * lookup_extent_mapping will return the first extent map
10348 * intersecting the range, so setting @len to 1 is enough to
10349 * get the first chunk.
10351 em = lookup_extent_mapping(&map_tree->map_tree, start, 1);
10352 read_unlock(&map_tree->map_tree.lock);
10356 bg = btrfs_lookup_block_group(fs_info, em->start);
10359 "chunk start=%llu len=%llu doesn't have corresponding block group",
10360 em->start, em->len);
10362 free_extent_map(em);
10365 if (bg->key.objectid != em->start ||
10366 bg->key.offset != em->len ||
10367 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
10368 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
10370 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
10371 em->start, em->len,
10372 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
10373 bg->key.objectid, bg->key.offset,
10374 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
10376 free_extent_map(em);
10377 btrfs_put_block_group(bg);
10380 start = em->start + em->len;
10381 free_extent_map(em);
10382 btrfs_put_block_group(bg);
10387 int btrfs_read_block_groups(struct btrfs_fs_info *info)
10389 struct btrfs_path *path;
10391 struct btrfs_block_group_cache *cache;
10392 struct btrfs_space_info *space_info;
10393 struct btrfs_key key;
10394 struct btrfs_key found_key;
10395 struct extent_buffer *leaf;
10396 int need_clear = 0;
10401 feature = btrfs_super_incompat_flags(info->super_copy);
10402 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
10406 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10407 path = btrfs_alloc_path();
10410 path->reada = READA_FORWARD;
10412 cache_gen = btrfs_super_cache_generation(info->super_copy);
10413 if (btrfs_test_opt(info, SPACE_CACHE) &&
10414 btrfs_super_generation(info->super_copy) != cache_gen)
10416 if (btrfs_test_opt(info, CLEAR_CACHE))
10420 ret = find_first_block_group(info, path, &key);
10426 leaf = path->nodes[0];
10427 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
10429 cache = btrfs_create_block_group_cache(info, found_key.objectid,
10438 * When we mount with old space cache, we need to
10439 * set BTRFS_DC_CLEAR and set dirty flag.
10441 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10442 * truncate the old free space cache inode and
10444 * b) Setting 'dirty flag' makes sure that we flush
10445 * the new space cache info onto disk.
10447 if (btrfs_test_opt(info, SPACE_CACHE))
10448 cache->disk_cache_state = BTRFS_DC_CLEAR;
10451 read_extent_buffer(leaf, &cache->item,
10452 btrfs_item_ptr_offset(leaf, path->slots[0]),
10453 sizeof(cache->item));
10454 cache->flags = btrfs_block_group_flags(&cache->item);
10456 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10457 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10459 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10460 cache->key.objectid);
10465 key.objectid = found_key.objectid + found_key.offset;
10466 btrfs_release_path(path);
10469 * We need to exclude the super stripes now so that the space
10470 * info has super bytes accounted for, otherwise we'll think
10471 * we have more space than we actually do.
10473 ret = exclude_super_stripes(cache);
10476 * We may have excluded something, so call this just in
10479 free_excluded_extents(cache);
10480 btrfs_put_block_group(cache);
10485 * check for two cases, either we are full, and therefore
10486 * don't need to bother with the caching work since we won't
10487 * find any space, or we are empty, and we can just add all
10488 * the space in and be done with it. This saves us _a_lot_ of
10489 * time, particularly in the full case.
10491 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10492 cache->last_byte_to_unpin = (u64)-1;
10493 cache->cached = BTRFS_CACHE_FINISHED;
10494 free_excluded_extents(cache);
10495 } else if (btrfs_block_group_used(&cache->item) == 0) {
10496 cache->last_byte_to_unpin = (u64)-1;
10497 cache->cached = BTRFS_CACHE_FINISHED;
10498 add_new_free_space(cache, found_key.objectid,
10499 found_key.objectid +
10501 free_excluded_extents(cache);
10504 ret = btrfs_add_block_group_cache(info, cache);
10506 btrfs_remove_free_space_cache(cache);
10507 btrfs_put_block_group(cache);
10511 trace_btrfs_add_block_group(info, cache, 0);
10512 update_space_info(info, cache->flags, found_key.offset,
10513 btrfs_block_group_used(&cache->item),
10514 cache->bytes_super, &space_info);
10516 cache->space_info = space_info;
10518 link_block_group(cache);
10520 set_avail_alloc_bits(info, cache->flags);
10521 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10522 inc_block_group_ro(cache, 1);
10523 } else if (btrfs_block_group_used(&cache->item) == 0) {
10524 ASSERT(list_empty(&cache->bg_list));
10525 btrfs_mark_bg_unused(cache);
10529 list_for_each_entry_rcu(space_info, &info->space_info, list) {
10530 if (!(get_alloc_profile(info, space_info->flags) &
10531 (BTRFS_BLOCK_GROUP_RAID10 |
10532 BTRFS_BLOCK_GROUP_RAID1 |
10533 BTRFS_BLOCK_GROUP_RAID5 |
10534 BTRFS_BLOCK_GROUP_RAID6 |
10535 BTRFS_BLOCK_GROUP_DUP)))
10538 * avoid allocating from un-mirrored block group if there are
10539 * mirrored block groups.
10541 list_for_each_entry(cache,
10542 &space_info->block_groups[BTRFS_RAID_RAID0],
10544 inc_block_group_ro(cache, 1);
10545 list_for_each_entry(cache,
10546 &space_info->block_groups[BTRFS_RAID_SINGLE],
10548 inc_block_group_ro(cache, 1);
10551 btrfs_add_raid_kobjects(info);
10552 init_global_block_rsv(info);
10553 ret = check_chunk_block_group_mappings(info);
10555 btrfs_free_path(path);
10559 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
10561 struct btrfs_fs_info *fs_info = trans->fs_info;
10562 struct btrfs_block_group_cache *block_group;
10563 struct btrfs_root *extent_root = fs_info->extent_root;
10564 struct btrfs_block_group_item item;
10565 struct btrfs_key key;
10568 if (!trans->can_flush_pending_bgs)
10571 while (!list_empty(&trans->new_bgs)) {
10572 block_group = list_first_entry(&trans->new_bgs,
10573 struct btrfs_block_group_cache,
10578 spin_lock(&block_group->lock);
10579 memcpy(&item, &block_group->item, sizeof(item));
10580 memcpy(&key, &block_group->key, sizeof(key));
10581 spin_unlock(&block_group->lock);
10583 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10586 btrfs_abort_transaction(trans, ret);
10587 ret = btrfs_finish_chunk_alloc(trans, key.objectid, key.offset);
10589 btrfs_abort_transaction(trans, ret);
10590 add_block_group_free_space(trans, block_group);
10591 /* already aborted the transaction if it failed. */
10593 btrfs_delayed_refs_rsv_release(fs_info, 1);
10594 list_del_init(&block_group->bg_list);
10596 btrfs_trans_release_chunk_metadata(trans);
10599 int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
10600 u64 type, u64 chunk_offset, u64 size)
10602 struct btrfs_fs_info *fs_info = trans->fs_info;
10603 struct btrfs_block_group_cache *cache;
10606 btrfs_set_log_full_commit(fs_info, trans);
10608 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10612 btrfs_set_block_group_used(&cache->item, bytes_used);
10613 btrfs_set_block_group_chunk_objectid(&cache->item,
10614 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
10615 btrfs_set_block_group_flags(&cache->item, type);
10617 cache->flags = type;
10618 cache->last_byte_to_unpin = (u64)-1;
10619 cache->cached = BTRFS_CACHE_FINISHED;
10620 cache->needs_free_space = 1;
10621 ret = exclude_super_stripes(cache);
10624 * We may have excluded something, so call this just in
10627 free_excluded_extents(cache);
10628 btrfs_put_block_group(cache);
10632 add_new_free_space(cache, chunk_offset, chunk_offset + size);
10634 free_excluded_extents(cache);
10636 #ifdef CONFIG_BTRFS_DEBUG
10637 if (btrfs_should_fragment_free_space(cache)) {
10638 u64 new_bytes_used = size - bytes_used;
10640 bytes_used += new_bytes_used >> 1;
10641 fragment_free_space(cache);
10645 * Ensure the corresponding space_info object is created and
10646 * assigned to our block group. We want our bg to be added to the rbtree
10647 * with its ->space_info set.
10649 cache->space_info = __find_space_info(fs_info, cache->flags);
10650 ASSERT(cache->space_info);
10652 ret = btrfs_add_block_group_cache(fs_info, cache);
10654 btrfs_remove_free_space_cache(cache);
10655 btrfs_put_block_group(cache);
10660 * Now that our block group has its ->space_info set and is inserted in
10661 * the rbtree, update the space info's counters.
10663 trace_btrfs_add_block_group(fs_info, cache, 1);
10664 update_space_info(fs_info, cache->flags, size, bytes_used,
10665 cache->bytes_super, &cache->space_info);
10666 update_global_block_rsv(fs_info);
10668 link_block_group(cache);
10670 list_add_tail(&cache->bg_list, &trans->new_bgs);
10671 trans->delayed_ref_updates++;
10672 btrfs_update_delayed_refs_rsv(trans);
10674 set_avail_alloc_bits(fs_info, type);
10678 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10680 u64 extra_flags = chunk_to_extended(flags) &
10681 BTRFS_EXTENDED_PROFILE_MASK;
10683 write_seqlock(&fs_info->profiles_lock);
10684 if (flags & BTRFS_BLOCK_GROUP_DATA)
10685 fs_info->avail_data_alloc_bits &= ~extra_flags;
10686 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10687 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10688 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10689 fs_info->avail_system_alloc_bits &= ~extra_flags;
10690 write_sequnlock(&fs_info->profiles_lock);
10693 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10694 u64 group_start, struct extent_map *em)
10696 struct btrfs_fs_info *fs_info = trans->fs_info;
10697 struct btrfs_root *root = fs_info->extent_root;
10698 struct btrfs_path *path;
10699 struct btrfs_block_group_cache *block_group;
10700 struct btrfs_free_cluster *cluster;
10701 struct btrfs_root *tree_root = fs_info->tree_root;
10702 struct btrfs_key key;
10703 struct inode *inode;
10704 struct kobject *kobj = NULL;
10708 struct btrfs_caching_control *caching_ctl = NULL;
10710 bool remove_rsv = false;
10712 block_group = btrfs_lookup_block_group(fs_info, group_start);
10713 BUG_ON(!block_group);
10714 BUG_ON(!block_group->ro);
10716 trace_btrfs_remove_block_group(block_group);
10718 * Free the reserved super bytes from this block group before
10721 free_excluded_extents(block_group);
10722 btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10723 block_group->key.offset);
10725 memcpy(&key, &block_group->key, sizeof(key));
10726 index = btrfs_bg_flags_to_raid_index(block_group->flags);
10727 factor = btrfs_bg_type_to_factor(block_group->flags);
10729 /* make sure this block group isn't part of an allocation cluster */
10730 cluster = &fs_info->data_alloc_cluster;
10731 spin_lock(&cluster->refill_lock);
10732 btrfs_return_cluster_to_free_space(block_group, cluster);
10733 spin_unlock(&cluster->refill_lock);
10736 * make sure this block group isn't part of a metadata
10737 * allocation cluster
10739 cluster = &fs_info->meta_alloc_cluster;
10740 spin_lock(&cluster->refill_lock);
10741 btrfs_return_cluster_to_free_space(block_group, cluster);
10742 spin_unlock(&cluster->refill_lock);
10744 path = btrfs_alloc_path();
10751 * get the inode first so any iput calls done for the io_list
10752 * aren't the final iput (no unlinks allowed now)
10754 inode = lookup_free_space_inode(fs_info, block_group, path);
10756 mutex_lock(&trans->transaction->cache_write_mutex);
10758 * Make sure our free space cache IO is done before removing the
10761 spin_lock(&trans->transaction->dirty_bgs_lock);
10762 if (!list_empty(&block_group->io_list)) {
10763 list_del_init(&block_group->io_list);
10765 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10767 spin_unlock(&trans->transaction->dirty_bgs_lock);
10768 btrfs_wait_cache_io(trans, block_group, path);
10769 btrfs_put_block_group(block_group);
10770 spin_lock(&trans->transaction->dirty_bgs_lock);
10773 if (!list_empty(&block_group->dirty_list)) {
10774 list_del_init(&block_group->dirty_list);
10776 btrfs_put_block_group(block_group);
10778 spin_unlock(&trans->transaction->dirty_bgs_lock);
10779 mutex_unlock(&trans->transaction->cache_write_mutex);
10781 if (!IS_ERR(inode)) {
10782 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10784 btrfs_add_delayed_iput(inode);
10787 clear_nlink(inode);
10788 /* One for the block groups ref */
10789 spin_lock(&block_group->lock);
10790 if (block_group->iref) {
10791 block_group->iref = 0;
10792 block_group->inode = NULL;
10793 spin_unlock(&block_group->lock);
10796 spin_unlock(&block_group->lock);
10798 /* One for our lookup ref */
10799 btrfs_add_delayed_iput(inode);
10802 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10803 key.offset = block_group->key.objectid;
10806 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10810 btrfs_release_path(path);
10812 ret = btrfs_del_item(trans, tree_root, path);
10815 btrfs_release_path(path);
10818 spin_lock(&fs_info->block_group_cache_lock);
10819 rb_erase(&block_group->cache_node,
10820 &fs_info->block_group_cache_tree);
10821 RB_CLEAR_NODE(&block_group->cache_node);
10823 if (fs_info->first_logical_byte == block_group->key.objectid)
10824 fs_info->first_logical_byte = (u64)-1;
10825 spin_unlock(&fs_info->block_group_cache_lock);
10827 down_write(&block_group->space_info->groups_sem);
10829 * we must use list_del_init so people can check to see if they
10830 * are still on the list after taking the semaphore
10832 list_del_init(&block_group->list);
10833 if (list_empty(&block_group->space_info->block_groups[index])) {
10834 kobj = block_group->space_info->block_group_kobjs[index];
10835 block_group->space_info->block_group_kobjs[index] = NULL;
10836 clear_avail_alloc_bits(fs_info, block_group->flags);
10838 up_write(&block_group->space_info->groups_sem);
10844 if (block_group->has_caching_ctl)
10845 caching_ctl = get_caching_control(block_group);
10846 if (block_group->cached == BTRFS_CACHE_STARTED)
10847 wait_block_group_cache_done(block_group);
10848 if (block_group->has_caching_ctl) {
10849 down_write(&fs_info->commit_root_sem);
10850 if (!caching_ctl) {
10851 struct btrfs_caching_control *ctl;
10853 list_for_each_entry(ctl,
10854 &fs_info->caching_block_groups, list)
10855 if (ctl->block_group == block_group) {
10857 refcount_inc(&caching_ctl->count);
10862 list_del_init(&caching_ctl->list);
10863 up_write(&fs_info->commit_root_sem);
10865 /* Once for the caching bgs list and once for us. */
10866 put_caching_control(caching_ctl);
10867 put_caching_control(caching_ctl);
10871 spin_lock(&trans->transaction->dirty_bgs_lock);
10872 if (!list_empty(&block_group->dirty_list)) {
10875 if (!list_empty(&block_group->io_list)) {
10878 spin_unlock(&trans->transaction->dirty_bgs_lock);
10879 btrfs_remove_free_space_cache(block_group);
10881 spin_lock(&block_group->space_info->lock);
10882 list_del_init(&block_group->ro_list);
10884 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10885 WARN_ON(block_group->space_info->total_bytes
10886 < block_group->key.offset);
10887 WARN_ON(block_group->space_info->bytes_readonly
10888 < block_group->key.offset);
10889 WARN_ON(block_group->space_info->disk_total
10890 < block_group->key.offset * factor);
10892 block_group->space_info->total_bytes -= block_group->key.offset;
10893 block_group->space_info->bytes_readonly -= block_group->key.offset;
10894 block_group->space_info->disk_total -= block_group->key.offset * factor;
10896 spin_unlock(&block_group->space_info->lock);
10898 memcpy(&key, &block_group->key, sizeof(key));
10900 mutex_lock(&fs_info->chunk_mutex);
10901 if (!list_empty(&em->list)) {
10902 /* We're in the transaction->pending_chunks list. */
10903 free_extent_map(em);
10905 spin_lock(&block_group->lock);
10906 block_group->removed = 1;
10908 * At this point trimming can't start on this block group, because we
10909 * removed the block group from the tree fs_info->block_group_cache_tree
10910 * so no one can't find it anymore and even if someone already got this
10911 * block group before we removed it from the rbtree, they have already
10912 * incremented block_group->trimming - if they didn't, they won't find
10913 * any free space entries because we already removed them all when we
10914 * called btrfs_remove_free_space_cache().
10916 * And we must not remove the extent map from the fs_info->mapping_tree
10917 * to prevent the same logical address range and physical device space
10918 * ranges from being reused for a new block group. This is because our
10919 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10920 * completely transactionless, so while it is trimming a range the
10921 * currently running transaction might finish and a new one start,
10922 * allowing for new block groups to be created that can reuse the same
10923 * physical device locations unless we take this special care.
10925 * There may also be an implicit trim operation if the file system
10926 * is mounted with -odiscard. The same protections must remain
10927 * in place until the extents have been discarded completely when
10928 * the transaction commit has completed.
10930 remove_em = (atomic_read(&block_group->trimming) == 0);
10932 * Make sure a trimmer task always sees the em in the pinned_chunks list
10933 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10934 * before checking block_group->removed).
10938 * Our em might be in trans->transaction->pending_chunks which
10939 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10940 * and so is the fs_info->pinned_chunks list.
10942 * So at this point we must be holding the chunk_mutex to avoid
10943 * any races with chunk allocation (more specifically at
10944 * volumes.c:contains_pending_extent()), to ensure it always
10945 * sees the em, either in the pending_chunks list or in the
10946 * pinned_chunks list.
10948 list_move_tail(&em->list, &fs_info->pinned_chunks);
10950 spin_unlock(&block_group->lock);
10953 struct extent_map_tree *em_tree;
10955 em_tree = &fs_info->mapping_tree.map_tree;
10956 write_lock(&em_tree->lock);
10958 * The em might be in the pending_chunks list, so make sure the
10959 * chunk mutex is locked, since remove_extent_mapping() will
10960 * delete us from that list.
10962 remove_extent_mapping(em_tree, em);
10963 write_unlock(&em_tree->lock);
10964 /* once for the tree */
10965 free_extent_map(em);
10968 mutex_unlock(&fs_info->chunk_mutex);
10970 ret = remove_block_group_free_space(trans, block_group);
10974 btrfs_put_block_group(block_group);
10975 btrfs_put_block_group(block_group);
10977 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10983 ret = btrfs_del_item(trans, root, path);
10986 btrfs_delayed_refs_rsv_release(fs_info, 1);
10987 btrfs_free_path(path);
10991 struct btrfs_trans_handle *
10992 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10993 const u64 chunk_offset)
10995 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10996 struct extent_map *em;
10997 struct map_lookup *map;
10998 unsigned int num_items;
11000 read_lock(&em_tree->lock);
11001 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
11002 read_unlock(&em_tree->lock);
11003 ASSERT(em && em->start == chunk_offset);
11006 * We need to reserve 3 + N units from the metadata space info in order
11007 * to remove a block group (done at btrfs_remove_chunk() and at
11008 * btrfs_remove_block_group()), which are used for:
11010 * 1 unit for adding the free space inode's orphan (located in the tree
11012 * 1 unit for deleting the block group item (located in the extent
11014 * 1 unit for deleting the free space item (located in tree of tree
11016 * N units for deleting N device extent items corresponding to each
11017 * stripe (located in the device tree).
11019 * In order to remove a block group we also need to reserve units in the
11020 * system space info in order to update the chunk tree (update one or
11021 * more device items and remove one chunk item), but this is done at
11022 * btrfs_remove_chunk() through a call to check_system_chunk().
11024 map = em->map_lookup;
11025 num_items = 3 + map->num_stripes;
11026 free_extent_map(em);
11028 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
11033 * Process the unused_bgs list and remove any that don't have any allocated
11034 * space inside of them.
11036 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
11038 struct btrfs_block_group_cache *block_group;
11039 struct btrfs_space_info *space_info;
11040 struct btrfs_trans_handle *trans;
11043 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
11046 spin_lock(&fs_info->unused_bgs_lock);
11047 while (!list_empty(&fs_info->unused_bgs)) {
11051 block_group = list_first_entry(&fs_info->unused_bgs,
11052 struct btrfs_block_group_cache,
11054 list_del_init(&block_group->bg_list);
11056 space_info = block_group->space_info;
11058 if (ret || btrfs_mixed_space_info(space_info)) {
11059 btrfs_put_block_group(block_group);
11062 spin_unlock(&fs_info->unused_bgs_lock);
11064 mutex_lock(&fs_info->delete_unused_bgs_mutex);
11066 /* Don't want to race with allocators so take the groups_sem */
11067 down_write(&space_info->groups_sem);
11068 spin_lock(&block_group->lock);
11069 if (block_group->reserved || block_group->pinned ||
11070 btrfs_block_group_used(&block_group->item) ||
11072 list_is_singular(&block_group->list)) {
11074 * We want to bail if we made new allocations or have
11075 * outstanding allocations in this block group. We do
11076 * the ro check in case balance is currently acting on
11077 * this block group.
11079 trace_btrfs_skip_unused_block_group(block_group);
11080 spin_unlock(&block_group->lock);
11081 up_write(&space_info->groups_sem);
11084 spin_unlock(&block_group->lock);
11086 /* We don't want to force the issue, only flip if it's ok. */
11087 ret = inc_block_group_ro(block_group, 0);
11088 up_write(&space_info->groups_sem);
11095 * Want to do this before we do anything else so we can recover
11096 * properly if we fail to join the transaction.
11098 trans = btrfs_start_trans_remove_block_group(fs_info,
11099 block_group->key.objectid);
11100 if (IS_ERR(trans)) {
11101 btrfs_dec_block_group_ro(block_group);
11102 ret = PTR_ERR(trans);
11107 * We could have pending pinned extents for this block group,
11108 * just delete them, we don't care about them anymore.
11110 start = block_group->key.objectid;
11111 end = start + block_group->key.offset - 1;
11113 * Hold the unused_bg_unpin_mutex lock to avoid racing with
11114 * btrfs_finish_extent_commit(). If we are at transaction N,
11115 * another task might be running finish_extent_commit() for the
11116 * previous transaction N - 1, and have seen a range belonging
11117 * to the block group in freed_extents[] before we were able to
11118 * clear the whole block group range from freed_extents[]. This
11119 * means that task can lookup for the block group after we
11120 * unpinned it from freed_extents[] and removed it, leading to
11121 * a BUG_ON() at btrfs_unpin_extent_range().
11123 mutex_lock(&fs_info->unused_bg_unpin_mutex);
11124 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
11127 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
11128 btrfs_dec_block_group_ro(block_group);
11131 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
11134 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
11135 btrfs_dec_block_group_ro(block_group);
11138 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
11140 /* Reset pinned so btrfs_put_block_group doesn't complain */
11141 spin_lock(&space_info->lock);
11142 spin_lock(&block_group->lock);
11144 update_bytes_pinned(space_info, -block_group->pinned);
11145 space_info->bytes_readonly += block_group->pinned;
11146 percpu_counter_add_batch(&space_info->total_bytes_pinned,
11147 -block_group->pinned,
11148 BTRFS_TOTAL_BYTES_PINNED_BATCH);
11149 block_group->pinned = 0;
11151 spin_unlock(&block_group->lock);
11152 spin_unlock(&space_info->lock);
11154 /* DISCARD can flip during remount */
11155 trimming = btrfs_test_opt(fs_info, DISCARD);
11157 /* Implicit trim during transaction commit. */
11159 btrfs_get_block_group_trimming(block_group);
11162 * Btrfs_remove_chunk will abort the transaction if things go
11165 ret = btrfs_remove_chunk(trans, block_group->key.objectid);
11169 btrfs_put_block_group_trimming(block_group);
11174 * If we're not mounted with -odiscard, we can just forget
11175 * about this block group. Otherwise we'll need to wait
11176 * until transaction commit to do the actual discard.
11179 spin_lock(&fs_info->unused_bgs_lock);
11181 * A concurrent scrub might have added us to the list
11182 * fs_info->unused_bgs, so use a list_move operation
11183 * to add the block group to the deleted_bgs list.
11185 list_move(&block_group->bg_list,
11186 &trans->transaction->deleted_bgs);
11187 spin_unlock(&fs_info->unused_bgs_lock);
11188 btrfs_get_block_group(block_group);
11191 btrfs_end_transaction(trans);
11193 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
11194 btrfs_put_block_group(block_group);
11195 spin_lock(&fs_info->unused_bgs_lock);
11197 spin_unlock(&fs_info->unused_bgs_lock);
11200 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
11202 struct btrfs_super_block *disk_super;
11208 disk_super = fs_info->super_copy;
11209 if (!btrfs_super_root(disk_super))
11212 features = btrfs_super_incompat_flags(disk_super);
11213 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
11216 flags = BTRFS_BLOCK_GROUP_SYSTEM;
11217 ret = create_space_info(fs_info, flags);
11222 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
11223 ret = create_space_info(fs_info, flags);
11225 flags = BTRFS_BLOCK_GROUP_METADATA;
11226 ret = create_space_info(fs_info, flags);
11230 flags = BTRFS_BLOCK_GROUP_DATA;
11231 ret = create_space_info(fs_info, flags);
11237 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
11238 u64 start, u64 end)
11240 return unpin_extent_range(fs_info, start, end, false);
11244 * It used to be that old block groups would be left around forever.
11245 * Iterating over them would be enough to trim unused space. Since we
11246 * now automatically remove them, we also need to iterate over unallocated
11249 * We don't want a transaction for this since the discard may take a
11250 * substantial amount of time. We don't require that a transaction be
11251 * running, but we do need to take a running transaction into account
11252 * to ensure that we're not discarding chunks that were released or
11253 * allocated in the current transaction.
11255 * Holding the chunks lock will prevent other threads from allocating
11256 * or releasing chunks, but it won't prevent a running transaction
11257 * from committing and releasing the memory that the pending chunks
11258 * list head uses. For that, we need to take a reference to the
11259 * transaction and hold the commit root sem. We only need to hold
11260 * it while performing the free space search since we have already
11261 * held back allocations.
11263 static int btrfs_trim_free_extents(struct btrfs_device *device,
11264 u64 minlen, u64 *trimmed)
11266 u64 start = 0, len = 0;
11271 /* Discard not supported = nothing to do. */
11272 if (!blk_queue_discard(bdev_get_queue(device->bdev)))
11275 /* Not writable = nothing to do. */
11276 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
11279 /* No free space = nothing to do. */
11280 if (device->total_bytes <= device->bytes_used)
11286 struct btrfs_fs_info *fs_info = device->fs_info;
11287 struct btrfs_transaction *trans;
11290 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
11294 ret = down_read_killable(&fs_info->commit_root_sem);
11296 mutex_unlock(&fs_info->chunk_mutex);
11300 spin_lock(&fs_info->trans_lock);
11301 trans = fs_info->running_transaction;
11303 refcount_inc(&trans->use_count);
11304 spin_unlock(&fs_info->trans_lock);
11307 up_read(&fs_info->commit_root_sem);
11309 ret = find_free_dev_extent_start(trans, device, minlen, start,
11312 up_read(&fs_info->commit_root_sem);
11313 btrfs_put_transaction(trans);
11317 mutex_unlock(&fs_info->chunk_mutex);
11318 if (ret == -ENOSPC)
11323 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
11324 mutex_unlock(&fs_info->chunk_mutex);
11332 if (fatal_signal_pending(current)) {
11333 ret = -ERESTARTSYS;
11344 * Trim the whole filesystem by:
11345 * 1) trimming the free space in each block group
11346 * 2) trimming the unallocated space on each device
11348 * This will also continue trimming even if a block group or device encounters
11349 * an error. The return value will be the last error, or 0 if nothing bad
11352 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
11354 struct btrfs_block_group_cache *cache = NULL;
11355 struct btrfs_device *device;
11356 struct list_head *devices;
11362 u64 dev_failed = 0;
11367 cache = btrfs_lookup_first_block_group(fs_info, range->start);
11368 for (; cache; cache = next_block_group(fs_info, cache)) {
11369 if (cache->key.objectid >= (range->start + range->len)) {
11370 btrfs_put_block_group(cache);
11374 start = max(range->start, cache->key.objectid);
11375 end = min(range->start + range->len,
11376 cache->key.objectid + cache->key.offset);
11378 if (end - start >= range->minlen) {
11379 if (!block_group_cache_done(cache)) {
11380 ret = cache_block_group(cache, 0);
11386 ret = wait_block_group_cache_done(cache);
11393 ret = btrfs_trim_block_group(cache,
11399 trimmed += group_trimmed;
11409 btrfs_warn(fs_info,
11410 "failed to trim %llu block group(s), last error %d",
11411 bg_failed, bg_ret);
11412 mutex_lock(&fs_info->fs_devices->device_list_mutex);
11413 devices = &fs_info->fs_devices->devices;
11414 list_for_each_entry(device, devices, dev_list) {
11415 ret = btrfs_trim_free_extents(device, range->minlen,
11423 trimmed += group_trimmed;
11425 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
11428 btrfs_warn(fs_info,
11429 "failed to trim %llu device(s), last error %d",
11430 dev_failed, dev_ret);
11431 range->len = trimmed;
11438 * btrfs_{start,end}_write_no_snapshotting() are similar to
11439 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11440 * data into the page cache through nocow before the subvolume is snapshoted,
11441 * but flush the data into disk after the snapshot creation, or to prevent
11442 * operations while snapshotting is ongoing and that cause the snapshot to be
11443 * inconsistent (writes followed by expanding truncates for example).
11445 void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
11447 percpu_counter_dec(&root->subv_writers->counter);
11448 cond_wake_up(&root->subv_writers->wait);
11451 int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
11453 if (atomic_read(&root->will_be_snapshotted))
11456 percpu_counter_inc(&root->subv_writers->counter);
11458 * Make sure counter is updated before we check for snapshot creation.
11461 if (atomic_read(&root->will_be_snapshotted)) {
11462 btrfs_end_write_no_snapshotting(root);
11468 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11473 ret = btrfs_start_write_no_snapshotting(root);
11476 wait_var_event(&root->will_be_snapshotted,
11477 !atomic_read(&root->will_be_snapshotted));
11481 void btrfs_mark_bg_unused(struct btrfs_block_group_cache *bg)
11483 struct btrfs_fs_info *fs_info = bg->fs_info;
11485 spin_lock(&fs_info->unused_bgs_lock);
11486 if (list_empty(&bg->bg_list)) {
11487 btrfs_get_block_group(bg);
11488 trace_btrfs_add_unused_block_group(bg);
11489 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
11491 spin_unlock(&fs_info->unused_bgs_lock);