Btrfs: add new sources for device replace code
[linux-2.6-block.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48
49 #ifdef CONFIG_X86
50 #include <asm/cpufeature.h>
51 #endif
52
53 static struct extent_io_ops btree_extent_io_ops;
54 static void end_workqueue_fn(struct btrfs_work *work);
55 static void free_fs_root(struct btrfs_root *root);
56 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
57                                     int read_only);
58 static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
59 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
60 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
61                                       struct btrfs_root *root);
62 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
63 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
64 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
65                                         struct extent_io_tree *dirty_pages,
66                                         int mark);
67 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
68                                        struct extent_io_tree *pinned_extents);
69
70 /*
71  * end_io_wq structs are used to do processing in task context when an IO is
72  * complete.  This is used during reads to verify checksums, and it is used
73  * by writes to insert metadata for new file extents after IO is complete.
74  */
75 struct end_io_wq {
76         struct bio *bio;
77         bio_end_io_t *end_io;
78         void *private;
79         struct btrfs_fs_info *info;
80         int error;
81         int metadata;
82         struct list_head list;
83         struct btrfs_work work;
84 };
85
86 /*
87  * async submit bios are used to offload expensive checksumming
88  * onto the worker threads.  They checksum file and metadata bios
89  * just before they are sent down the IO stack.
90  */
91 struct async_submit_bio {
92         struct inode *inode;
93         struct bio *bio;
94         struct list_head list;
95         extent_submit_bio_hook_t *submit_bio_start;
96         extent_submit_bio_hook_t *submit_bio_done;
97         int rw;
98         int mirror_num;
99         unsigned long bio_flags;
100         /*
101          * bio_offset is optional, can be used if the pages in the bio
102          * can't tell us where in the file the bio should go
103          */
104         u64 bio_offset;
105         struct btrfs_work work;
106         int error;
107 };
108
109 /*
110  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
111  * eb, the lockdep key is determined by the btrfs_root it belongs to and
112  * the level the eb occupies in the tree.
113  *
114  * Different roots are used for different purposes and may nest inside each
115  * other and they require separate keysets.  As lockdep keys should be
116  * static, assign keysets according to the purpose of the root as indicated
117  * by btrfs_root->objectid.  This ensures that all special purpose roots
118  * have separate keysets.
119  *
120  * Lock-nesting across peer nodes is always done with the immediate parent
121  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
122  * subclass to avoid triggering lockdep warning in such cases.
123  *
124  * The key is set by the readpage_end_io_hook after the buffer has passed
125  * csum validation but before the pages are unlocked.  It is also set by
126  * btrfs_init_new_buffer on freshly allocated blocks.
127  *
128  * We also add a check to make sure the highest level of the tree is the
129  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
130  * needs update as well.
131  */
132 #ifdef CONFIG_DEBUG_LOCK_ALLOC
133 # if BTRFS_MAX_LEVEL != 8
134 #  error
135 # endif
136
137 static struct btrfs_lockdep_keyset {
138         u64                     id;             /* root objectid */
139         const char              *name_stem;     /* lock name stem */
140         char                    names[BTRFS_MAX_LEVEL + 1][20];
141         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
142 } btrfs_lockdep_keysets[] = {
143         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
144         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
145         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
146         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
147         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
148         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
149         { .id = BTRFS_ORPHAN_OBJECTID,          .name_stem = "orphan"   },
150         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
151         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
152         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
153         { .id = 0,                              .name_stem = "tree"     },
154 };
155
156 void __init btrfs_init_lockdep(void)
157 {
158         int i, j;
159
160         /* initialize lockdep class names */
161         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
162                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
163
164                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
165                         snprintf(ks->names[j], sizeof(ks->names[j]),
166                                  "btrfs-%s-%02d", ks->name_stem, j);
167         }
168 }
169
170 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
171                                     int level)
172 {
173         struct btrfs_lockdep_keyset *ks;
174
175         BUG_ON(level >= ARRAY_SIZE(ks->keys));
176
177         /* find the matching keyset, id 0 is the default entry */
178         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
179                 if (ks->id == objectid)
180                         break;
181
182         lockdep_set_class_and_name(&eb->lock,
183                                    &ks->keys[level], ks->names[level]);
184 }
185
186 #endif
187
188 /*
189  * extents on the btree inode are pretty simple, there's one extent
190  * that covers the entire device
191  */
192 static struct extent_map *btree_get_extent(struct inode *inode,
193                 struct page *page, size_t pg_offset, u64 start, u64 len,
194                 int create)
195 {
196         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
197         struct extent_map *em;
198         int ret;
199
200         read_lock(&em_tree->lock);
201         em = lookup_extent_mapping(em_tree, start, len);
202         if (em) {
203                 em->bdev =
204                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
205                 read_unlock(&em_tree->lock);
206                 goto out;
207         }
208         read_unlock(&em_tree->lock);
209
210         em = alloc_extent_map();
211         if (!em) {
212                 em = ERR_PTR(-ENOMEM);
213                 goto out;
214         }
215         em->start = 0;
216         em->len = (u64)-1;
217         em->block_len = (u64)-1;
218         em->block_start = 0;
219         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
220
221         write_lock(&em_tree->lock);
222         ret = add_extent_mapping(em_tree, em);
223         if (ret == -EEXIST) {
224                 free_extent_map(em);
225                 em = lookup_extent_mapping(em_tree, start, len);
226                 if (!em)
227                         em = ERR_PTR(-EIO);
228         } else if (ret) {
229                 free_extent_map(em);
230                 em = ERR_PTR(ret);
231         }
232         write_unlock(&em_tree->lock);
233
234 out:
235         return em;
236 }
237
238 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
239 {
240         return crc32c(seed, data, len);
241 }
242
243 void btrfs_csum_final(u32 crc, char *result)
244 {
245         put_unaligned_le32(~crc, result);
246 }
247
248 /*
249  * compute the csum for a btree block, and either verify it or write it
250  * into the csum field of the block.
251  */
252 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
253                            int verify)
254 {
255         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
256         char *result = NULL;
257         unsigned long len;
258         unsigned long cur_len;
259         unsigned long offset = BTRFS_CSUM_SIZE;
260         char *kaddr;
261         unsigned long map_start;
262         unsigned long map_len;
263         int err;
264         u32 crc = ~(u32)0;
265         unsigned long inline_result;
266
267         len = buf->len - offset;
268         while (len > 0) {
269                 err = map_private_extent_buffer(buf, offset, 32,
270                                         &kaddr, &map_start, &map_len);
271                 if (err)
272                         return 1;
273                 cur_len = min(len, map_len - (offset - map_start));
274                 crc = btrfs_csum_data(root, kaddr + offset - map_start,
275                                       crc, cur_len);
276                 len -= cur_len;
277                 offset += cur_len;
278         }
279         if (csum_size > sizeof(inline_result)) {
280                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
281                 if (!result)
282                         return 1;
283         } else {
284                 result = (char *)&inline_result;
285         }
286
287         btrfs_csum_final(crc, result);
288
289         if (verify) {
290                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
291                         u32 val;
292                         u32 found = 0;
293                         memcpy(&found, result, csum_size);
294
295                         read_extent_buffer(buf, &val, 0, csum_size);
296                         printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
297                                        "failed on %llu wanted %X found %X "
298                                        "level %d\n",
299                                        root->fs_info->sb->s_id,
300                                        (unsigned long long)buf->start, val, found,
301                                        btrfs_header_level(buf));
302                         if (result != (char *)&inline_result)
303                                 kfree(result);
304                         return 1;
305                 }
306         } else {
307                 write_extent_buffer(buf, result, 0, csum_size);
308         }
309         if (result != (char *)&inline_result)
310                 kfree(result);
311         return 0;
312 }
313
314 /*
315  * we can't consider a given block up to date unless the transid of the
316  * block matches the transid in the parent node's pointer.  This is how we
317  * detect blocks that either didn't get written at all or got written
318  * in the wrong place.
319  */
320 static int verify_parent_transid(struct extent_io_tree *io_tree,
321                                  struct extent_buffer *eb, u64 parent_transid,
322                                  int atomic)
323 {
324         struct extent_state *cached_state = NULL;
325         int ret;
326
327         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
328                 return 0;
329
330         if (atomic)
331                 return -EAGAIN;
332
333         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
334                          0, &cached_state);
335         if (extent_buffer_uptodate(eb) &&
336             btrfs_header_generation(eb) == parent_transid) {
337                 ret = 0;
338                 goto out;
339         }
340         printk_ratelimited("parent transid verify failed on %llu wanted %llu "
341                        "found %llu\n",
342                        (unsigned long long)eb->start,
343                        (unsigned long long)parent_transid,
344                        (unsigned long long)btrfs_header_generation(eb));
345         ret = 1;
346         clear_extent_buffer_uptodate(eb);
347 out:
348         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
349                              &cached_state, GFP_NOFS);
350         return ret;
351 }
352
353 /*
354  * helper to read a given tree block, doing retries as required when
355  * the checksums don't match and we have alternate mirrors to try.
356  */
357 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
358                                           struct extent_buffer *eb,
359                                           u64 start, u64 parent_transid)
360 {
361         struct extent_io_tree *io_tree;
362         int failed = 0;
363         int ret;
364         int num_copies = 0;
365         int mirror_num = 0;
366         int failed_mirror = 0;
367
368         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
369         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
370         while (1) {
371                 ret = read_extent_buffer_pages(io_tree, eb, start,
372                                                WAIT_COMPLETE,
373                                                btree_get_extent, mirror_num);
374                 if (!ret) {
375                         if (!verify_parent_transid(io_tree, eb,
376                                                    parent_transid, 0))
377                                 break;
378                         else
379                                 ret = -EIO;
380                 }
381
382                 /*
383                  * This buffer's crc is fine, but its contents are corrupted, so
384                  * there is no reason to read the other copies, they won't be
385                  * any less wrong.
386                  */
387                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
388                         break;
389
390                 num_copies = btrfs_num_copies(root->fs_info,
391                                               eb->start, eb->len);
392                 if (num_copies == 1)
393                         break;
394
395                 if (!failed_mirror) {
396                         failed = 1;
397                         failed_mirror = eb->read_mirror;
398                 }
399
400                 mirror_num++;
401                 if (mirror_num == failed_mirror)
402                         mirror_num++;
403
404                 if (mirror_num > num_copies)
405                         break;
406         }
407
408         if (failed && !ret && failed_mirror)
409                 repair_eb_io_failure(root, eb, failed_mirror);
410
411         return ret;
412 }
413
414 /*
415  * checksum a dirty tree block before IO.  This has extra checks to make sure
416  * we only fill in the checksum field in the first page of a multi-page block
417  */
418
419 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
420 {
421         struct extent_io_tree *tree;
422         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
423         u64 found_start;
424         struct extent_buffer *eb;
425
426         tree = &BTRFS_I(page->mapping->host)->io_tree;
427
428         eb = (struct extent_buffer *)page->private;
429         if (page != eb->pages[0])
430                 return 0;
431         found_start = btrfs_header_bytenr(eb);
432         if (found_start != start) {
433                 WARN_ON(1);
434                 return 0;
435         }
436         if (!PageUptodate(page)) {
437                 WARN_ON(1);
438                 return 0;
439         }
440         csum_tree_block(root, eb, 0);
441         return 0;
442 }
443
444 static int check_tree_block_fsid(struct btrfs_root *root,
445                                  struct extent_buffer *eb)
446 {
447         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
448         u8 fsid[BTRFS_UUID_SIZE];
449         int ret = 1;
450
451         read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
452                            BTRFS_FSID_SIZE);
453         while (fs_devices) {
454                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
455                         ret = 0;
456                         break;
457                 }
458                 fs_devices = fs_devices->seed;
459         }
460         return ret;
461 }
462
463 #define CORRUPT(reason, eb, root, slot)                         \
464         printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
465                "root=%llu, slot=%d\n", reason,                  \
466                (unsigned long long)btrfs_header_bytenr(eb),     \
467                (unsigned long long)root->objectid, slot)
468
469 static noinline int check_leaf(struct btrfs_root *root,
470                                struct extent_buffer *leaf)
471 {
472         struct btrfs_key key;
473         struct btrfs_key leaf_key;
474         u32 nritems = btrfs_header_nritems(leaf);
475         int slot;
476
477         if (nritems == 0)
478                 return 0;
479
480         /* Check the 0 item */
481         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
482             BTRFS_LEAF_DATA_SIZE(root)) {
483                 CORRUPT("invalid item offset size pair", leaf, root, 0);
484                 return -EIO;
485         }
486
487         /*
488          * Check to make sure each items keys are in the correct order and their
489          * offsets make sense.  We only have to loop through nritems-1 because
490          * we check the current slot against the next slot, which verifies the
491          * next slot's offset+size makes sense and that the current's slot
492          * offset is correct.
493          */
494         for (slot = 0; slot < nritems - 1; slot++) {
495                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
496                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
497
498                 /* Make sure the keys are in the right order */
499                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
500                         CORRUPT("bad key order", leaf, root, slot);
501                         return -EIO;
502                 }
503
504                 /*
505                  * Make sure the offset and ends are right, remember that the
506                  * item data starts at the end of the leaf and grows towards the
507                  * front.
508                  */
509                 if (btrfs_item_offset_nr(leaf, slot) !=
510                         btrfs_item_end_nr(leaf, slot + 1)) {
511                         CORRUPT("slot offset bad", leaf, root, slot);
512                         return -EIO;
513                 }
514
515                 /*
516                  * Check to make sure that we don't point outside of the leaf,
517                  * just incase all the items are consistent to eachother, but
518                  * all point outside of the leaf.
519                  */
520                 if (btrfs_item_end_nr(leaf, slot) >
521                     BTRFS_LEAF_DATA_SIZE(root)) {
522                         CORRUPT("slot end outside of leaf", leaf, root, slot);
523                         return -EIO;
524                 }
525         }
526
527         return 0;
528 }
529
530 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
531                                        struct page *page, int max_walk)
532 {
533         struct extent_buffer *eb;
534         u64 start = page_offset(page);
535         u64 target = start;
536         u64 min_start;
537
538         if (start < max_walk)
539                 min_start = 0;
540         else
541                 min_start = start - max_walk;
542
543         while (start >= min_start) {
544                 eb = find_extent_buffer(tree, start, 0);
545                 if (eb) {
546                         /*
547                          * we found an extent buffer and it contains our page
548                          * horray!
549                          */
550                         if (eb->start <= target &&
551                             eb->start + eb->len > target)
552                                 return eb;
553
554                         /* we found an extent buffer that wasn't for us */
555                         free_extent_buffer(eb);
556                         return NULL;
557                 }
558                 if (start == 0)
559                         break;
560                 start -= PAGE_CACHE_SIZE;
561         }
562         return NULL;
563 }
564
565 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
566                                struct extent_state *state, int mirror)
567 {
568         struct extent_io_tree *tree;
569         u64 found_start;
570         int found_level;
571         struct extent_buffer *eb;
572         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
573         int ret = 0;
574         int reads_done;
575
576         if (!page->private)
577                 goto out;
578
579         tree = &BTRFS_I(page->mapping->host)->io_tree;
580         eb = (struct extent_buffer *)page->private;
581
582         /* the pending IO might have been the only thing that kept this buffer
583          * in memory.  Make sure we have a ref for all this other checks
584          */
585         extent_buffer_get(eb);
586
587         reads_done = atomic_dec_and_test(&eb->io_pages);
588         if (!reads_done)
589                 goto err;
590
591         eb->read_mirror = mirror;
592         if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
593                 ret = -EIO;
594                 goto err;
595         }
596
597         found_start = btrfs_header_bytenr(eb);
598         if (found_start != eb->start) {
599                 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
600                                "%llu %llu\n",
601                                (unsigned long long)found_start,
602                                (unsigned long long)eb->start);
603                 ret = -EIO;
604                 goto err;
605         }
606         if (check_tree_block_fsid(root, eb)) {
607                 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
608                                (unsigned long long)eb->start);
609                 ret = -EIO;
610                 goto err;
611         }
612         found_level = btrfs_header_level(eb);
613
614         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
615                                        eb, found_level);
616
617         ret = csum_tree_block(root, eb, 1);
618         if (ret) {
619                 ret = -EIO;
620                 goto err;
621         }
622
623         /*
624          * If this is a leaf block and it is corrupt, set the corrupt bit so
625          * that we don't try and read the other copies of this block, just
626          * return -EIO.
627          */
628         if (found_level == 0 && check_leaf(root, eb)) {
629                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
630                 ret = -EIO;
631         }
632
633         if (!ret)
634                 set_extent_buffer_uptodate(eb);
635 err:
636         if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
637                 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
638                 btree_readahead_hook(root, eb, eb->start, ret);
639         }
640
641         if (ret)
642                 clear_extent_buffer_uptodate(eb);
643         free_extent_buffer(eb);
644 out:
645         return ret;
646 }
647
648 static int btree_io_failed_hook(struct page *page, int failed_mirror)
649 {
650         struct extent_buffer *eb;
651         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
652
653         eb = (struct extent_buffer *)page->private;
654         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
655         eb->read_mirror = failed_mirror;
656         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
657                 btree_readahead_hook(root, eb, eb->start, -EIO);
658         return -EIO;    /* we fixed nothing */
659 }
660
661 static void end_workqueue_bio(struct bio *bio, int err)
662 {
663         struct end_io_wq *end_io_wq = bio->bi_private;
664         struct btrfs_fs_info *fs_info;
665
666         fs_info = end_io_wq->info;
667         end_io_wq->error = err;
668         end_io_wq->work.func = end_workqueue_fn;
669         end_io_wq->work.flags = 0;
670
671         if (bio->bi_rw & REQ_WRITE) {
672                 if (end_io_wq->metadata == 1)
673                         btrfs_queue_worker(&fs_info->endio_meta_write_workers,
674                                            &end_io_wq->work);
675                 else if (end_io_wq->metadata == 2)
676                         btrfs_queue_worker(&fs_info->endio_freespace_worker,
677                                            &end_io_wq->work);
678                 else
679                         btrfs_queue_worker(&fs_info->endio_write_workers,
680                                            &end_io_wq->work);
681         } else {
682                 if (end_io_wq->metadata)
683                         btrfs_queue_worker(&fs_info->endio_meta_workers,
684                                            &end_io_wq->work);
685                 else
686                         btrfs_queue_worker(&fs_info->endio_workers,
687                                            &end_io_wq->work);
688         }
689 }
690
691 /*
692  * For the metadata arg you want
693  *
694  * 0 - if data
695  * 1 - if normal metadta
696  * 2 - if writing to the free space cache area
697  */
698 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
699                         int metadata)
700 {
701         struct end_io_wq *end_io_wq;
702         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
703         if (!end_io_wq)
704                 return -ENOMEM;
705
706         end_io_wq->private = bio->bi_private;
707         end_io_wq->end_io = bio->bi_end_io;
708         end_io_wq->info = info;
709         end_io_wq->error = 0;
710         end_io_wq->bio = bio;
711         end_io_wq->metadata = metadata;
712
713         bio->bi_private = end_io_wq;
714         bio->bi_end_io = end_workqueue_bio;
715         return 0;
716 }
717
718 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
719 {
720         unsigned long limit = min_t(unsigned long,
721                                     info->workers.max_workers,
722                                     info->fs_devices->open_devices);
723         return 256 * limit;
724 }
725
726 static void run_one_async_start(struct btrfs_work *work)
727 {
728         struct async_submit_bio *async;
729         int ret;
730
731         async = container_of(work, struct  async_submit_bio, work);
732         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
733                                       async->mirror_num, async->bio_flags,
734                                       async->bio_offset);
735         if (ret)
736                 async->error = ret;
737 }
738
739 static void run_one_async_done(struct btrfs_work *work)
740 {
741         struct btrfs_fs_info *fs_info;
742         struct async_submit_bio *async;
743         int limit;
744
745         async = container_of(work, struct  async_submit_bio, work);
746         fs_info = BTRFS_I(async->inode)->root->fs_info;
747
748         limit = btrfs_async_submit_limit(fs_info);
749         limit = limit * 2 / 3;
750
751         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
752             waitqueue_active(&fs_info->async_submit_wait))
753                 wake_up(&fs_info->async_submit_wait);
754
755         /* If an error occured we just want to clean up the bio and move on */
756         if (async->error) {
757                 bio_endio(async->bio, async->error);
758                 return;
759         }
760
761         async->submit_bio_done(async->inode, async->rw, async->bio,
762                                async->mirror_num, async->bio_flags,
763                                async->bio_offset);
764 }
765
766 static void run_one_async_free(struct btrfs_work *work)
767 {
768         struct async_submit_bio *async;
769
770         async = container_of(work, struct  async_submit_bio, work);
771         kfree(async);
772 }
773
774 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
775                         int rw, struct bio *bio, int mirror_num,
776                         unsigned long bio_flags,
777                         u64 bio_offset,
778                         extent_submit_bio_hook_t *submit_bio_start,
779                         extent_submit_bio_hook_t *submit_bio_done)
780 {
781         struct async_submit_bio *async;
782
783         async = kmalloc(sizeof(*async), GFP_NOFS);
784         if (!async)
785                 return -ENOMEM;
786
787         async->inode = inode;
788         async->rw = rw;
789         async->bio = bio;
790         async->mirror_num = mirror_num;
791         async->submit_bio_start = submit_bio_start;
792         async->submit_bio_done = submit_bio_done;
793
794         async->work.func = run_one_async_start;
795         async->work.ordered_func = run_one_async_done;
796         async->work.ordered_free = run_one_async_free;
797
798         async->work.flags = 0;
799         async->bio_flags = bio_flags;
800         async->bio_offset = bio_offset;
801
802         async->error = 0;
803
804         atomic_inc(&fs_info->nr_async_submits);
805
806         if (rw & REQ_SYNC)
807                 btrfs_set_work_high_prio(&async->work);
808
809         btrfs_queue_worker(&fs_info->workers, &async->work);
810
811         while (atomic_read(&fs_info->async_submit_draining) &&
812               atomic_read(&fs_info->nr_async_submits)) {
813                 wait_event(fs_info->async_submit_wait,
814                            (atomic_read(&fs_info->nr_async_submits) == 0));
815         }
816
817         return 0;
818 }
819
820 static int btree_csum_one_bio(struct bio *bio)
821 {
822         struct bio_vec *bvec = bio->bi_io_vec;
823         int bio_index = 0;
824         struct btrfs_root *root;
825         int ret = 0;
826
827         WARN_ON(bio->bi_vcnt <= 0);
828         while (bio_index < bio->bi_vcnt) {
829                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
830                 ret = csum_dirty_buffer(root, bvec->bv_page);
831                 if (ret)
832                         break;
833                 bio_index++;
834                 bvec++;
835         }
836         return ret;
837 }
838
839 static int __btree_submit_bio_start(struct inode *inode, int rw,
840                                     struct bio *bio, int mirror_num,
841                                     unsigned long bio_flags,
842                                     u64 bio_offset)
843 {
844         /*
845          * when we're called for a write, we're already in the async
846          * submission context.  Just jump into btrfs_map_bio
847          */
848         return btree_csum_one_bio(bio);
849 }
850
851 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
852                                  int mirror_num, unsigned long bio_flags,
853                                  u64 bio_offset)
854 {
855         int ret;
856
857         /*
858          * when we're called for a write, we're already in the async
859          * submission context.  Just jump into btrfs_map_bio
860          */
861         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
862         if (ret)
863                 bio_endio(bio, ret);
864         return ret;
865 }
866
867 static int check_async_write(struct inode *inode, unsigned long bio_flags)
868 {
869         if (bio_flags & EXTENT_BIO_TREE_LOG)
870                 return 0;
871 #ifdef CONFIG_X86
872         if (cpu_has_xmm4_2)
873                 return 0;
874 #endif
875         return 1;
876 }
877
878 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
879                                  int mirror_num, unsigned long bio_flags,
880                                  u64 bio_offset)
881 {
882         int async = check_async_write(inode, bio_flags);
883         int ret;
884
885         if (!(rw & REQ_WRITE)) {
886                 /*
887                  * called for a read, do the setup so that checksum validation
888                  * can happen in the async kernel threads
889                  */
890                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
891                                           bio, 1);
892                 if (ret)
893                         goto out_w_error;
894                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
895                                     mirror_num, 0);
896         } else if (!async) {
897                 ret = btree_csum_one_bio(bio);
898                 if (ret)
899                         goto out_w_error;
900                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
901                                     mirror_num, 0);
902         } else {
903                 /*
904                  * kthread helpers are used to submit writes so that
905                  * checksumming can happen in parallel across all CPUs
906                  */
907                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
908                                           inode, rw, bio, mirror_num, 0,
909                                           bio_offset,
910                                           __btree_submit_bio_start,
911                                           __btree_submit_bio_done);
912         }
913
914         if (ret) {
915 out_w_error:
916                 bio_endio(bio, ret);
917         }
918         return ret;
919 }
920
921 #ifdef CONFIG_MIGRATION
922 static int btree_migratepage(struct address_space *mapping,
923                         struct page *newpage, struct page *page,
924                         enum migrate_mode mode)
925 {
926         /*
927          * we can't safely write a btree page from here,
928          * we haven't done the locking hook
929          */
930         if (PageDirty(page))
931                 return -EAGAIN;
932         /*
933          * Buffers may be managed in a filesystem specific way.
934          * We must have no buffers or drop them.
935          */
936         if (page_has_private(page) &&
937             !try_to_release_page(page, GFP_KERNEL))
938                 return -EAGAIN;
939         return migrate_page(mapping, newpage, page, mode);
940 }
941 #endif
942
943
944 static int btree_writepages(struct address_space *mapping,
945                             struct writeback_control *wbc)
946 {
947         struct extent_io_tree *tree;
948         tree = &BTRFS_I(mapping->host)->io_tree;
949         if (wbc->sync_mode == WB_SYNC_NONE) {
950                 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
951                 u64 num_dirty;
952                 unsigned long thresh = 32 * 1024 * 1024;
953
954                 if (wbc->for_kupdate)
955                         return 0;
956
957                 /* this is a bit racy, but that's ok */
958                 num_dirty = root->fs_info->dirty_metadata_bytes;
959                 if (num_dirty < thresh)
960                         return 0;
961         }
962         return btree_write_cache_pages(mapping, wbc);
963 }
964
965 static int btree_readpage(struct file *file, struct page *page)
966 {
967         struct extent_io_tree *tree;
968         tree = &BTRFS_I(page->mapping->host)->io_tree;
969         return extent_read_full_page(tree, page, btree_get_extent, 0);
970 }
971
972 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
973 {
974         if (PageWriteback(page) || PageDirty(page))
975                 return 0;
976         /*
977          * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
978          * slab allocation from alloc_extent_state down the callchain where
979          * it'd hit a BUG_ON as those flags are not allowed.
980          */
981         gfp_flags &= ~GFP_SLAB_BUG_MASK;
982
983         return try_release_extent_buffer(page, gfp_flags);
984 }
985
986 static void btree_invalidatepage(struct page *page, unsigned long offset)
987 {
988         struct extent_io_tree *tree;
989         tree = &BTRFS_I(page->mapping->host)->io_tree;
990         extent_invalidatepage(tree, page, offset);
991         btree_releasepage(page, GFP_NOFS);
992         if (PagePrivate(page)) {
993                 printk(KERN_WARNING "btrfs warning page private not zero "
994                        "on page %llu\n", (unsigned long long)page_offset(page));
995                 ClearPagePrivate(page);
996                 set_page_private(page, 0);
997                 page_cache_release(page);
998         }
999 }
1000
1001 static int btree_set_page_dirty(struct page *page)
1002 {
1003         struct extent_buffer *eb;
1004
1005         BUG_ON(!PagePrivate(page));
1006         eb = (struct extent_buffer *)page->private;
1007         BUG_ON(!eb);
1008         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1009         BUG_ON(!atomic_read(&eb->refs));
1010         btrfs_assert_tree_locked(eb);
1011         return __set_page_dirty_nobuffers(page);
1012 }
1013
1014 static const struct address_space_operations btree_aops = {
1015         .readpage       = btree_readpage,
1016         .writepages     = btree_writepages,
1017         .releasepage    = btree_releasepage,
1018         .invalidatepage = btree_invalidatepage,
1019 #ifdef CONFIG_MIGRATION
1020         .migratepage    = btree_migratepage,
1021 #endif
1022         .set_page_dirty = btree_set_page_dirty,
1023 };
1024
1025 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1026                          u64 parent_transid)
1027 {
1028         struct extent_buffer *buf = NULL;
1029         struct inode *btree_inode = root->fs_info->btree_inode;
1030         int ret = 0;
1031
1032         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1033         if (!buf)
1034                 return 0;
1035         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1036                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1037         free_extent_buffer(buf);
1038         return ret;
1039 }
1040
1041 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1042                          int mirror_num, struct extent_buffer **eb)
1043 {
1044         struct extent_buffer *buf = NULL;
1045         struct inode *btree_inode = root->fs_info->btree_inode;
1046         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1047         int ret;
1048
1049         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1050         if (!buf)
1051                 return 0;
1052
1053         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1054
1055         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1056                                        btree_get_extent, mirror_num);
1057         if (ret) {
1058                 free_extent_buffer(buf);
1059                 return ret;
1060         }
1061
1062         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1063                 free_extent_buffer(buf);
1064                 return -EIO;
1065         } else if (extent_buffer_uptodate(buf)) {
1066                 *eb = buf;
1067         } else {
1068                 free_extent_buffer(buf);
1069         }
1070         return 0;
1071 }
1072
1073 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1074                                             u64 bytenr, u32 blocksize)
1075 {
1076         struct inode *btree_inode = root->fs_info->btree_inode;
1077         struct extent_buffer *eb;
1078         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1079                                 bytenr, blocksize);
1080         return eb;
1081 }
1082
1083 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1084                                                  u64 bytenr, u32 blocksize)
1085 {
1086         struct inode *btree_inode = root->fs_info->btree_inode;
1087         struct extent_buffer *eb;
1088
1089         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1090                                  bytenr, blocksize);
1091         return eb;
1092 }
1093
1094
1095 int btrfs_write_tree_block(struct extent_buffer *buf)
1096 {
1097         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1098                                         buf->start + buf->len - 1);
1099 }
1100
1101 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1102 {
1103         return filemap_fdatawait_range(buf->pages[0]->mapping,
1104                                        buf->start, buf->start + buf->len - 1);
1105 }
1106
1107 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1108                                       u32 blocksize, u64 parent_transid)
1109 {
1110         struct extent_buffer *buf = NULL;
1111         int ret;
1112
1113         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1114         if (!buf)
1115                 return NULL;
1116
1117         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1118         return buf;
1119
1120 }
1121
1122 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1123                       struct extent_buffer *buf)
1124 {
1125         if (btrfs_header_generation(buf) ==
1126             root->fs_info->running_transaction->transid) {
1127                 btrfs_assert_tree_locked(buf);
1128
1129                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1130                         spin_lock(&root->fs_info->delalloc_lock);
1131                         if (root->fs_info->dirty_metadata_bytes >= buf->len)
1132                                 root->fs_info->dirty_metadata_bytes -= buf->len;
1133                         else {
1134                                 spin_unlock(&root->fs_info->delalloc_lock);
1135                                 btrfs_panic(root->fs_info, -EOVERFLOW,
1136                                           "Can't clear %lu bytes from "
1137                                           " dirty_mdatadata_bytes (%llu)",
1138                                           buf->len,
1139                                           root->fs_info->dirty_metadata_bytes);
1140                         }
1141                         spin_unlock(&root->fs_info->delalloc_lock);
1142                 }
1143
1144                 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1145                 btrfs_set_lock_blocking(buf);
1146                 clear_extent_buffer_dirty(buf);
1147         }
1148 }
1149
1150 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1151                          u32 stripesize, struct btrfs_root *root,
1152                          struct btrfs_fs_info *fs_info,
1153                          u64 objectid)
1154 {
1155         root->node = NULL;
1156         root->commit_root = NULL;
1157         root->sectorsize = sectorsize;
1158         root->nodesize = nodesize;
1159         root->leafsize = leafsize;
1160         root->stripesize = stripesize;
1161         root->ref_cows = 0;
1162         root->track_dirty = 0;
1163         root->in_radix = 0;
1164         root->orphan_item_inserted = 0;
1165         root->orphan_cleanup_state = 0;
1166
1167         root->objectid = objectid;
1168         root->last_trans = 0;
1169         root->highest_objectid = 0;
1170         root->name = NULL;
1171         root->inode_tree = RB_ROOT;
1172         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1173         root->block_rsv = NULL;
1174         root->orphan_block_rsv = NULL;
1175
1176         INIT_LIST_HEAD(&root->dirty_list);
1177         INIT_LIST_HEAD(&root->root_list);
1178         spin_lock_init(&root->orphan_lock);
1179         spin_lock_init(&root->inode_lock);
1180         spin_lock_init(&root->accounting_lock);
1181         mutex_init(&root->objectid_mutex);
1182         mutex_init(&root->log_mutex);
1183         init_waitqueue_head(&root->log_writer_wait);
1184         init_waitqueue_head(&root->log_commit_wait[0]);
1185         init_waitqueue_head(&root->log_commit_wait[1]);
1186         atomic_set(&root->log_commit[0], 0);
1187         atomic_set(&root->log_commit[1], 0);
1188         atomic_set(&root->log_writers, 0);
1189         atomic_set(&root->log_batch, 0);
1190         atomic_set(&root->orphan_inodes, 0);
1191         root->log_transid = 0;
1192         root->last_log_commit = 0;
1193         extent_io_tree_init(&root->dirty_log_pages,
1194                              fs_info->btree_inode->i_mapping);
1195
1196         memset(&root->root_key, 0, sizeof(root->root_key));
1197         memset(&root->root_item, 0, sizeof(root->root_item));
1198         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1199         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1200         root->defrag_trans_start = fs_info->generation;
1201         init_completion(&root->kobj_unregister);
1202         root->defrag_running = 0;
1203         root->root_key.objectid = objectid;
1204         root->anon_dev = 0;
1205
1206         spin_lock_init(&root->root_times_lock);
1207 }
1208
1209 static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1210                                             struct btrfs_fs_info *fs_info,
1211                                             u64 objectid,
1212                                             struct btrfs_root *root)
1213 {
1214         int ret;
1215         u32 blocksize;
1216         u64 generation;
1217
1218         __setup_root(tree_root->nodesize, tree_root->leafsize,
1219                      tree_root->sectorsize, tree_root->stripesize,
1220                      root, fs_info, objectid);
1221         ret = btrfs_find_last_root(tree_root, objectid,
1222                                    &root->root_item, &root->root_key);
1223         if (ret > 0)
1224                 return -ENOENT;
1225         else if (ret < 0)
1226                 return ret;
1227
1228         generation = btrfs_root_generation(&root->root_item);
1229         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1230         root->commit_root = NULL;
1231         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1232                                      blocksize, generation);
1233         if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1234                 free_extent_buffer(root->node);
1235                 root->node = NULL;
1236                 return -EIO;
1237         }
1238         root->commit_root = btrfs_root_node(root);
1239         return 0;
1240 }
1241
1242 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1243 {
1244         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1245         if (root)
1246                 root->fs_info = fs_info;
1247         return root;
1248 }
1249
1250 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1251                                      struct btrfs_fs_info *fs_info,
1252                                      u64 objectid)
1253 {
1254         struct extent_buffer *leaf;
1255         struct btrfs_root *tree_root = fs_info->tree_root;
1256         struct btrfs_root *root;
1257         struct btrfs_key key;
1258         int ret = 0;
1259         u64 bytenr;
1260
1261         root = btrfs_alloc_root(fs_info);
1262         if (!root)
1263                 return ERR_PTR(-ENOMEM);
1264
1265         __setup_root(tree_root->nodesize, tree_root->leafsize,
1266                      tree_root->sectorsize, tree_root->stripesize,
1267                      root, fs_info, objectid);
1268         root->root_key.objectid = objectid;
1269         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1270         root->root_key.offset = 0;
1271
1272         leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1273                                       0, objectid, NULL, 0, 0, 0);
1274         if (IS_ERR(leaf)) {
1275                 ret = PTR_ERR(leaf);
1276                 goto fail;
1277         }
1278
1279         bytenr = leaf->start;
1280         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1281         btrfs_set_header_bytenr(leaf, leaf->start);
1282         btrfs_set_header_generation(leaf, trans->transid);
1283         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1284         btrfs_set_header_owner(leaf, objectid);
1285         root->node = leaf;
1286
1287         write_extent_buffer(leaf, fs_info->fsid,
1288                             (unsigned long)btrfs_header_fsid(leaf),
1289                             BTRFS_FSID_SIZE);
1290         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1291                             (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1292                             BTRFS_UUID_SIZE);
1293         btrfs_mark_buffer_dirty(leaf);
1294
1295         root->commit_root = btrfs_root_node(root);
1296         root->track_dirty = 1;
1297
1298
1299         root->root_item.flags = 0;
1300         root->root_item.byte_limit = 0;
1301         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1302         btrfs_set_root_generation(&root->root_item, trans->transid);
1303         btrfs_set_root_level(&root->root_item, 0);
1304         btrfs_set_root_refs(&root->root_item, 1);
1305         btrfs_set_root_used(&root->root_item, leaf->len);
1306         btrfs_set_root_last_snapshot(&root->root_item, 0);
1307         btrfs_set_root_dirid(&root->root_item, 0);
1308         root->root_item.drop_level = 0;
1309
1310         key.objectid = objectid;
1311         key.type = BTRFS_ROOT_ITEM_KEY;
1312         key.offset = 0;
1313         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1314         if (ret)
1315                 goto fail;
1316
1317         btrfs_tree_unlock(leaf);
1318
1319 fail:
1320         if (ret)
1321                 return ERR_PTR(ret);
1322
1323         return root;
1324 }
1325
1326 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1327                                          struct btrfs_fs_info *fs_info)
1328 {
1329         struct btrfs_root *root;
1330         struct btrfs_root *tree_root = fs_info->tree_root;
1331         struct extent_buffer *leaf;
1332
1333         root = btrfs_alloc_root(fs_info);
1334         if (!root)
1335                 return ERR_PTR(-ENOMEM);
1336
1337         __setup_root(tree_root->nodesize, tree_root->leafsize,
1338                      tree_root->sectorsize, tree_root->stripesize,
1339                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1340
1341         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1342         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1343         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1344         /*
1345          * log trees do not get reference counted because they go away
1346          * before a real commit is actually done.  They do store pointers
1347          * to file data extents, and those reference counts still get
1348          * updated (along with back refs to the log tree).
1349          */
1350         root->ref_cows = 0;
1351
1352         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1353                                       BTRFS_TREE_LOG_OBJECTID, NULL,
1354                                       0, 0, 0);
1355         if (IS_ERR(leaf)) {
1356                 kfree(root);
1357                 return ERR_CAST(leaf);
1358         }
1359
1360         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1361         btrfs_set_header_bytenr(leaf, leaf->start);
1362         btrfs_set_header_generation(leaf, trans->transid);
1363         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1364         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1365         root->node = leaf;
1366
1367         write_extent_buffer(root->node, root->fs_info->fsid,
1368                             (unsigned long)btrfs_header_fsid(root->node),
1369                             BTRFS_FSID_SIZE);
1370         btrfs_mark_buffer_dirty(root->node);
1371         btrfs_tree_unlock(root->node);
1372         return root;
1373 }
1374
1375 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1376                              struct btrfs_fs_info *fs_info)
1377 {
1378         struct btrfs_root *log_root;
1379
1380         log_root = alloc_log_tree(trans, fs_info);
1381         if (IS_ERR(log_root))
1382                 return PTR_ERR(log_root);
1383         WARN_ON(fs_info->log_root_tree);
1384         fs_info->log_root_tree = log_root;
1385         return 0;
1386 }
1387
1388 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1389                        struct btrfs_root *root)
1390 {
1391         struct btrfs_root *log_root;
1392         struct btrfs_inode_item *inode_item;
1393
1394         log_root = alloc_log_tree(trans, root->fs_info);
1395         if (IS_ERR(log_root))
1396                 return PTR_ERR(log_root);
1397
1398         log_root->last_trans = trans->transid;
1399         log_root->root_key.offset = root->root_key.objectid;
1400
1401         inode_item = &log_root->root_item.inode;
1402         inode_item->generation = cpu_to_le64(1);
1403         inode_item->size = cpu_to_le64(3);
1404         inode_item->nlink = cpu_to_le32(1);
1405         inode_item->nbytes = cpu_to_le64(root->leafsize);
1406         inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1407
1408         btrfs_set_root_node(&log_root->root_item, log_root->node);
1409
1410         WARN_ON(root->log_root);
1411         root->log_root = log_root;
1412         root->log_transid = 0;
1413         root->last_log_commit = 0;
1414         return 0;
1415 }
1416
1417 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1418                                                struct btrfs_key *location)
1419 {
1420         struct btrfs_root *root;
1421         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1422         struct btrfs_path *path;
1423         struct extent_buffer *l;
1424         u64 generation;
1425         u32 blocksize;
1426         int ret = 0;
1427         int slot;
1428
1429         root = btrfs_alloc_root(fs_info);
1430         if (!root)
1431                 return ERR_PTR(-ENOMEM);
1432         if (location->offset == (u64)-1) {
1433                 ret = find_and_setup_root(tree_root, fs_info,
1434                                           location->objectid, root);
1435                 if (ret) {
1436                         kfree(root);
1437                         return ERR_PTR(ret);
1438                 }
1439                 goto out;
1440         }
1441
1442         __setup_root(tree_root->nodesize, tree_root->leafsize,
1443                      tree_root->sectorsize, tree_root->stripesize,
1444                      root, fs_info, location->objectid);
1445
1446         path = btrfs_alloc_path();
1447         if (!path) {
1448                 kfree(root);
1449                 return ERR_PTR(-ENOMEM);
1450         }
1451         ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1452         if (ret == 0) {
1453                 l = path->nodes[0];
1454                 slot = path->slots[0];
1455                 btrfs_read_root_item(tree_root, l, slot, &root->root_item);
1456                 memcpy(&root->root_key, location, sizeof(*location));
1457         }
1458         btrfs_free_path(path);
1459         if (ret) {
1460                 kfree(root);
1461                 if (ret > 0)
1462                         ret = -ENOENT;
1463                 return ERR_PTR(ret);
1464         }
1465
1466         generation = btrfs_root_generation(&root->root_item);
1467         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1468         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1469                                      blocksize, generation);
1470         root->commit_root = btrfs_root_node(root);
1471         BUG_ON(!root->node); /* -ENOMEM */
1472 out:
1473         if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1474                 root->ref_cows = 1;
1475                 btrfs_check_and_init_root_item(&root->root_item);
1476         }
1477
1478         return root;
1479 }
1480
1481 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1482                                               struct btrfs_key *location)
1483 {
1484         struct btrfs_root *root;
1485         int ret;
1486
1487         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1488                 return fs_info->tree_root;
1489         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1490                 return fs_info->extent_root;
1491         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1492                 return fs_info->chunk_root;
1493         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1494                 return fs_info->dev_root;
1495         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1496                 return fs_info->csum_root;
1497         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1498                 return fs_info->quota_root ? fs_info->quota_root :
1499                                              ERR_PTR(-ENOENT);
1500 again:
1501         spin_lock(&fs_info->fs_roots_radix_lock);
1502         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1503                                  (unsigned long)location->objectid);
1504         spin_unlock(&fs_info->fs_roots_radix_lock);
1505         if (root)
1506                 return root;
1507
1508         root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1509         if (IS_ERR(root))
1510                 return root;
1511
1512         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1513         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1514                                         GFP_NOFS);
1515         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1516                 ret = -ENOMEM;
1517                 goto fail;
1518         }
1519
1520         btrfs_init_free_ino_ctl(root);
1521         mutex_init(&root->fs_commit_mutex);
1522         spin_lock_init(&root->cache_lock);
1523         init_waitqueue_head(&root->cache_wait);
1524
1525         ret = get_anon_bdev(&root->anon_dev);
1526         if (ret)
1527                 goto fail;
1528
1529         if (btrfs_root_refs(&root->root_item) == 0) {
1530                 ret = -ENOENT;
1531                 goto fail;
1532         }
1533
1534         ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1535         if (ret < 0)
1536                 goto fail;
1537         if (ret == 0)
1538                 root->orphan_item_inserted = 1;
1539
1540         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1541         if (ret)
1542                 goto fail;
1543
1544         spin_lock(&fs_info->fs_roots_radix_lock);
1545         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1546                                 (unsigned long)root->root_key.objectid,
1547                                 root);
1548         if (ret == 0)
1549                 root->in_radix = 1;
1550
1551         spin_unlock(&fs_info->fs_roots_radix_lock);
1552         radix_tree_preload_end();
1553         if (ret) {
1554                 if (ret == -EEXIST) {
1555                         free_fs_root(root);
1556                         goto again;
1557                 }
1558                 goto fail;
1559         }
1560
1561         ret = btrfs_find_dead_roots(fs_info->tree_root,
1562                                     root->root_key.objectid);
1563         WARN_ON(ret);
1564         return root;
1565 fail:
1566         free_fs_root(root);
1567         return ERR_PTR(ret);
1568 }
1569
1570 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1571 {
1572         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1573         int ret = 0;
1574         struct btrfs_device *device;
1575         struct backing_dev_info *bdi;
1576
1577         rcu_read_lock();
1578         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1579                 if (!device->bdev)
1580                         continue;
1581                 bdi = blk_get_backing_dev_info(device->bdev);
1582                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1583                         ret = 1;
1584                         break;
1585                 }
1586         }
1587         rcu_read_unlock();
1588         return ret;
1589 }
1590
1591 /*
1592  * If this fails, caller must call bdi_destroy() to get rid of the
1593  * bdi again.
1594  */
1595 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1596 {
1597         int err;
1598
1599         bdi->capabilities = BDI_CAP_MAP_COPY;
1600         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1601         if (err)
1602                 return err;
1603
1604         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1605         bdi->congested_fn       = btrfs_congested_fn;
1606         bdi->congested_data     = info;
1607         return 0;
1608 }
1609
1610 /*
1611  * called by the kthread helper functions to finally call the bio end_io
1612  * functions.  This is where read checksum verification actually happens
1613  */
1614 static void end_workqueue_fn(struct btrfs_work *work)
1615 {
1616         struct bio *bio;
1617         struct end_io_wq *end_io_wq;
1618         struct btrfs_fs_info *fs_info;
1619         int error;
1620
1621         end_io_wq = container_of(work, struct end_io_wq, work);
1622         bio = end_io_wq->bio;
1623         fs_info = end_io_wq->info;
1624
1625         error = end_io_wq->error;
1626         bio->bi_private = end_io_wq->private;
1627         bio->bi_end_io = end_io_wq->end_io;
1628         kfree(end_io_wq);
1629         bio_endio(bio, error);
1630 }
1631
1632 static int cleaner_kthread(void *arg)
1633 {
1634         struct btrfs_root *root = arg;
1635
1636         do {
1637                 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1638                     mutex_trylock(&root->fs_info->cleaner_mutex)) {
1639                         btrfs_run_delayed_iputs(root);
1640                         btrfs_clean_old_snapshots(root);
1641                         mutex_unlock(&root->fs_info->cleaner_mutex);
1642                         btrfs_run_defrag_inodes(root->fs_info);
1643                 }
1644
1645                 if (!try_to_freeze()) {
1646                         set_current_state(TASK_INTERRUPTIBLE);
1647                         if (!kthread_should_stop())
1648                                 schedule();
1649                         __set_current_state(TASK_RUNNING);
1650                 }
1651         } while (!kthread_should_stop());
1652         return 0;
1653 }
1654
1655 static int transaction_kthread(void *arg)
1656 {
1657         struct btrfs_root *root = arg;
1658         struct btrfs_trans_handle *trans;
1659         struct btrfs_transaction *cur;
1660         u64 transid;
1661         unsigned long now;
1662         unsigned long delay;
1663         bool cannot_commit;
1664
1665         do {
1666                 cannot_commit = false;
1667                 delay = HZ * 30;
1668                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1669
1670                 spin_lock(&root->fs_info->trans_lock);
1671                 cur = root->fs_info->running_transaction;
1672                 if (!cur) {
1673                         spin_unlock(&root->fs_info->trans_lock);
1674                         goto sleep;
1675                 }
1676
1677                 now = get_seconds();
1678                 if (!cur->blocked &&
1679                     (now < cur->start_time || now - cur->start_time < 30)) {
1680                         spin_unlock(&root->fs_info->trans_lock);
1681                         delay = HZ * 5;
1682                         goto sleep;
1683                 }
1684                 transid = cur->transid;
1685                 spin_unlock(&root->fs_info->trans_lock);
1686
1687                 /* If the file system is aborted, this will always fail. */
1688                 trans = btrfs_attach_transaction(root);
1689                 if (IS_ERR(trans)) {
1690                         if (PTR_ERR(trans) != -ENOENT)
1691                                 cannot_commit = true;
1692                         goto sleep;
1693                 }
1694                 if (transid == trans->transid) {
1695                         btrfs_commit_transaction(trans, root);
1696                 } else {
1697                         btrfs_end_transaction(trans, root);
1698                 }
1699 sleep:
1700                 wake_up_process(root->fs_info->cleaner_kthread);
1701                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1702
1703                 if (!try_to_freeze()) {
1704                         set_current_state(TASK_INTERRUPTIBLE);
1705                         if (!kthread_should_stop() &&
1706                             (!btrfs_transaction_blocked(root->fs_info) ||
1707                              cannot_commit))
1708                                 schedule_timeout(delay);
1709                         __set_current_state(TASK_RUNNING);
1710                 }
1711         } while (!kthread_should_stop());
1712         return 0;
1713 }
1714
1715 /*
1716  * this will find the highest generation in the array of
1717  * root backups.  The index of the highest array is returned,
1718  * or -1 if we can't find anything.
1719  *
1720  * We check to make sure the array is valid by comparing the
1721  * generation of the latest  root in the array with the generation
1722  * in the super block.  If they don't match we pitch it.
1723  */
1724 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1725 {
1726         u64 cur;
1727         int newest_index = -1;
1728         struct btrfs_root_backup *root_backup;
1729         int i;
1730
1731         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1732                 root_backup = info->super_copy->super_roots + i;
1733                 cur = btrfs_backup_tree_root_gen(root_backup);
1734                 if (cur == newest_gen)
1735                         newest_index = i;
1736         }
1737
1738         /* check to see if we actually wrapped around */
1739         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1740                 root_backup = info->super_copy->super_roots;
1741                 cur = btrfs_backup_tree_root_gen(root_backup);
1742                 if (cur == newest_gen)
1743                         newest_index = 0;
1744         }
1745         return newest_index;
1746 }
1747
1748
1749 /*
1750  * find the oldest backup so we know where to store new entries
1751  * in the backup array.  This will set the backup_root_index
1752  * field in the fs_info struct
1753  */
1754 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1755                                      u64 newest_gen)
1756 {
1757         int newest_index = -1;
1758
1759         newest_index = find_newest_super_backup(info, newest_gen);
1760         /* if there was garbage in there, just move along */
1761         if (newest_index == -1) {
1762                 info->backup_root_index = 0;
1763         } else {
1764                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1765         }
1766 }
1767
1768 /*
1769  * copy all the root pointers into the super backup array.
1770  * this will bump the backup pointer by one when it is
1771  * done
1772  */
1773 static void backup_super_roots(struct btrfs_fs_info *info)
1774 {
1775         int next_backup;
1776         struct btrfs_root_backup *root_backup;
1777         int last_backup;
1778
1779         next_backup = info->backup_root_index;
1780         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1781                 BTRFS_NUM_BACKUP_ROOTS;
1782
1783         /*
1784          * just overwrite the last backup if we're at the same generation
1785          * this happens only at umount
1786          */
1787         root_backup = info->super_for_commit->super_roots + last_backup;
1788         if (btrfs_backup_tree_root_gen(root_backup) ==
1789             btrfs_header_generation(info->tree_root->node))
1790                 next_backup = last_backup;
1791
1792         root_backup = info->super_for_commit->super_roots + next_backup;
1793
1794         /*
1795          * make sure all of our padding and empty slots get zero filled
1796          * regardless of which ones we use today
1797          */
1798         memset(root_backup, 0, sizeof(*root_backup));
1799
1800         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1801
1802         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1803         btrfs_set_backup_tree_root_gen(root_backup,
1804                                btrfs_header_generation(info->tree_root->node));
1805
1806         btrfs_set_backup_tree_root_level(root_backup,
1807                                btrfs_header_level(info->tree_root->node));
1808
1809         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1810         btrfs_set_backup_chunk_root_gen(root_backup,
1811                                btrfs_header_generation(info->chunk_root->node));
1812         btrfs_set_backup_chunk_root_level(root_backup,
1813                                btrfs_header_level(info->chunk_root->node));
1814
1815         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1816         btrfs_set_backup_extent_root_gen(root_backup,
1817                                btrfs_header_generation(info->extent_root->node));
1818         btrfs_set_backup_extent_root_level(root_backup,
1819                                btrfs_header_level(info->extent_root->node));
1820
1821         /*
1822          * we might commit during log recovery, which happens before we set
1823          * the fs_root.  Make sure it is valid before we fill it in.
1824          */
1825         if (info->fs_root && info->fs_root->node) {
1826                 btrfs_set_backup_fs_root(root_backup,
1827                                          info->fs_root->node->start);
1828                 btrfs_set_backup_fs_root_gen(root_backup,
1829                                btrfs_header_generation(info->fs_root->node));
1830                 btrfs_set_backup_fs_root_level(root_backup,
1831                                btrfs_header_level(info->fs_root->node));
1832         }
1833
1834         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1835         btrfs_set_backup_dev_root_gen(root_backup,
1836                                btrfs_header_generation(info->dev_root->node));
1837         btrfs_set_backup_dev_root_level(root_backup,
1838                                        btrfs_header_level(info->dev_root->node));
1839
1840         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1841         btrfs_set_backup_csum_root_gen(root_backup,
1842                                btrfs_header_generation(info->csum_root->node));
1843         btrfs_set_backup_csum_root_level(root_backup,
1844                                btrfs_header_level(info->csum_root->node));
1845
1846         btrfs_set_backup_total_bytes(root_backup,
1847                              btrfs_super_total_bytes(info->super_copy));
1848         btrfs_set_backup_bytes_used(root_backup,
1849                              btrfs_super_bytes_used(info->super_copy));
1850         btrfs_set_backup_num_devices(root_backup,
1851                              btrfs_super_num_devices(info->super_copy));
1852
1853         /*
1854          * if we don't copy this out to the super_copy, it won't get remembered
1855          * for the next commit
1856          */
1857         memcpy(&info->super_copy->super_roots,
1858                &info->super_for_commit->super_roots,
1859                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1860 }
1861
1862 /*
1863  * this copies info out of the root backup array and back into
1864  * the in-memory super block.  It is meant to help iterate through
1865  * the array, so you send it the number of backups you've already
1866  * tried and the last backup index you used.
1867  *
1868  * this returns -1 when it has tried all the backups
1869  */
1870 static noinline int next_root_backup(struct btrfs_fs_info *info,
1871                                      struct btrfs_super_block *super,
1872                                      int *num_backups_tried, int *backup_index)
1873 {
1874         struct btrfs_root_backup *root_backup;
1875         int newest = *backup_index;
1876
1877         if (*num_backups_tried == 0) {
1878                 u64 gen = btrfs_super_generation(super);
1879
1880                 newest = find_newest_super_backup(info, gen);
1881                 if (newest == -1)
1882                         return -1;
1883
1884                 *backup_index = newest;
1885                 *num_backups_tried = 1;
1886         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1887                 /* we've tried all the backups, all done */
1888                 return -1;
1889         } else {
1890                 /* jump to the next oldest backup */
1891                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1892                         BTRFS_NUM_BACKUP_ROOTS;
1893                 *backup_index = newest;
1894                 *num_backups_tried += 1;
1895         }
1896         root_backup = super->super_roots + newest;
1897
1898         btrfs_set_super_generation(super,
1899                                    btrfs_backup_tree_root_gen(root_backup));
1900         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1901         btrfs_set_super_root_level(super,
1902                                    btrfs_backup_tree_root_level(root_backup));
1903         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1904
1905         /*
1906          * fixme: the total bytes and num_devices need to match or we should
1907          * need a fsck
1908          */
1909         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1910         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1911         return 0;
1912 }
1913
1914 /* helper to cleanup tree roots */
1915 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1916 {
1917         free_extent_buffer(info->tree_root->node);
1918         free_extent_buffer(info->tree_root->commit_root);
1919         free_extent_buffer(info->dev_root->node);
1920         free_extent_buffer(info->dev_root->commit_root);
1921         free_extent_buffer(info->extent_root->node);
1922         free_extent_buffer(info->extent_root->commit_root);
1923         free_extent_buffer(info->csum_root->node);
1924         free_extent_buffer(info->csum_root->commit_root);
1925         if (info->quota_root) {
1926                 free_extent_buffer(info->quota_root->node);
1927                 free_extent_buffer(info->quota_root->commit_root);
1928         }
1929
1930         info->tree_root->node = NULL;
1931         info->tree_root->commit_root = NULL;
1932         info->dev_root->node = NULL;
1933         info->dev_root->commit_root = NULL;
1934         info->extent_root->node = NULL;
1935         info->extent_root->commit_root = NULL;
1936         info->csum_root->node = NULL;
1937         info->csum_root->commit_root = NULL;
1938         if (info->quota_root) {
1939                 info->quota_root->node = NULL;
1940                 info->quota_root->commit_root = NULL;
1941         }
1942
1943         if (chunk_root) {
1944                 free_extent_buffer(info->chunk_root->node);
1945                 free_extent_buffer(info->chunk_root->commit_root);
1946                 info->chunk_root->node = NULL;
1947                 info->chunk_root->commit_root = NULL;
1948         }
1949 }
1950
1951
1952 int open_ctree(struct super_block *sb,
1953                struct btrfs_fs_devices *fs_devices,
1954                char *options)
1955 {
1956         u32 sectorsize;
1957         u32 nodesize;
1958         u32 leafsize;
1959         u32 blocksize;
1960         u32 stripesize;
1961         u64 generation;
1962         u64 features;
1963         struct btrfs_key location;
1964         struct buffer_head *bh;
1965         struct btrfs_super_block *disk_super;
1966         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1967         struct btrfs_root *tree_root;
1968         struct btrfs_root *extent_root;
1969         struct btrfs_root *csum_root;
1970         struct btrfs_root *chunk_root;
1971         struct btrfs_root *dev_root;
1972         struct btrfs_root *quota_root;
1973         struct btrfs_root *log_tree_root;
1974         int ret;
1975         int err = -EINVAL;
1976         int num_backups_tried = 0;
1977         int backup_index = 0;
1978
1979         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
1980         extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1981         csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1982         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1983         dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
1984         quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
1985
1986         if (!tree_root || !extent_root || !csum_root ||
1987             !chunk_root || !dev_root || !quota_root) {
1988                 err = -ENOMEM;
1989                 goto fail;
1990         }
1991
1992         ret = init_srcu_struct(&fs_info->subvol_srcu);
1993         if (ret) {
1994                 err = ret;
1995                 goto fail;
1996         }
1997
1998         ret = setup_bdi(fs_info, &fs_info->bdi);
1999         if (ret) {
2000                 err = ret;
2001                 goto fail_srcu;
2002         }
2003
2004         fs_info->btree_inode = new_inode(sb);
2005         if (!fs_info->btree_inode) {
2006                 err = -ENOMEM;
2007                 goto fail_bdi;
2008         }
2009
2010         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2011
2012         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2013         INIT_LIST_HEAD(&fs_info->trans_list);
2014         INIT_LIST_HEAD(&fs_info->dead_roots);
2015         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2016         INIT_LIST_HEAD(&fs_info->delalloc_inodes);
2017         INIT_LIST_HEAD(&fs_info->ordered_operations);
2018         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2019         spin_lock_init(&fs_info->delalloc_lock);
2020         spin_lock_init(&fs_info->trans_lock);
2021         spin_lock_init(&fs_info->fs_roots_radix_lock);
2022         spin_lock_init(&fs_info->delayed_iput_lock);
2023         spin_lock_init(&fs_info->defrag_inodes_lock);
2024         spin_lock_init(&fs_info->free_chunk_lock);
2025         spin_lock_init(&fs_info->tree_mod_seq_lock);
2026         rwlock_init(&fs_info->tree_mod_log_lock);
2027         mutex_init(&fs_info->reloc_mutex);
2028
2029         init_completion(&fs_info->kobj_unregister);
2030         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2031         INIT_LIST_HEAD(&fs_info->space_info);
2032         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2033         btrfs_mapping_init(&fs_info->mapping_tree);
2034         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2035                              BTRFS_BLOCK_RSV_GLOBAL);
2036         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2037                              BTRFS_BLOCK_RSV_DELALLOC);
2038         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2039         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2040         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2041         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2042                              BTRFS_BLOCK_RSV_DELOPS);
2043         atomic_set(&fs_info->nr_async_submits, 0);
2044         atomic_set(&fs_info->async_delalloc_pages, 0);
2045         atomic_set(&fs_info->async_submit_draining, 0);
2046         atomic_set(&fs_info->nr_async_bios, 0);
2047         atomic_set(&fs_info->defrag_running, 0);
2048         atomic_set(&fs_info->tree_mod_seq, 0);
2049         fs_info->sb = sb;
2050         fs_info->max_inline = 8192 * 1024;
2051         fs_info->metadata_ratio = 0;
2052         fs_info->defrag_inodes = RB_ROOT;
2053         fs_info->trans_no_join = 0;
2054         fs_info->free_chunk_space = 0;
2055         fs_info->tree_mod_log = RB_ROOT;
2056
2057         /* readahead state */
2058         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2059         spin_lock_init(&fs_info->reada_lock);
2060
2061         fs_info->thread_pool_size = min_t(unsigned long,
2062                                           num_online_cpus() + 2, 8);
2063
2064         INIT_LIST_HEAD(&fs_info->ordered_extents);
2065         spin_lock_init(&fs_info->ordered_extent_lock);
2066         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2067                                         GFP_NOFS);
2068         if (!fs_info->delayed_root) {
2069                 err = -ENOMEM;
2070                 goto fail_iput;
2071         }
2072         btrfs_init_delayed_root(fs_info->delayed_root);
2073
2074         mutex_init(&fs_info->scrub_lock);
2075         atomic_set(&fs_info->scrubs_running, 0);
2076         atomic_set(&fs_info->scrub_pause_req, 0);
2077         atomic_set(&fs_info->scrubs_paused, 0);
2078         atomic_set(&fs_info->scrub_cancel_req, 0);
2079         init_waitqueue_head(&fs_info->scrub_pause_wait);
2080         init_rwsem(&fs_info->scrub_super_lock);
2081         fs_info->scrub_workers_refcnt = 0;
2082 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2083         fs_info->check_integrity_print_mask = 0;
2084 #endif
2085
2086         spin_lock_init(&fs_info->balance_lock);
2087         mutex_init(&fs_info->balance_mutex);
2088         atomic_set(&fs_info->balance_running, 0);
2089         atomic_set(&fs_info->balance_pause_req, 0);
2090         atomic_set(&fs_info->balance_cancel_req, 0);
2091         fs_info->balance_ctl = NULL;
2092         init_waitqueue_head(&fs_info->balance_wait_q);
2093
2094         sb->s_blocksize = 4096;
2095         sb->s_blocksize_bits = blksize_bits(4096);
2096         sb->s_bdi = &fs_info->bdi;
2097
2098         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2099         set_nlink(fs_info->btree_inode, 1);
2100         /*
2101          * we set the i_size on the btree inode to the max possible int.
2102          * the real end of the address space is determined by all of
2103          * the devices in the system
2104          */
2105         fs_info->btree_inode->i_size = OFFSET_MAX;
2106         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2107         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2108
2109         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2110         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2111                              fs_info->btree_inode->i_mapping);
2112         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2113         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2114
2115         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2116
2117         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2118         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2119                sizeof(struct btrfs_key));
2120         set_bit(BTRFS_INODE_DUMMY,
2121                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2122         insert_inode_hash(fs_info->btree_inode);
2123
2124         spin_lock_init(&fs_info->block_group_cache_lock);
2125         fs_info->block_group_cache_tree = RB_ROOT;
2126
2127         extent_io_tree_init(&fs_info->freed_extents[0],
2128                              fs_info->btree_inode->i_mapping);
2129         extent_io_tree_init(&fs_info->freed_extents[1],
2130                              fs_info->btree_inode->i_mapping);
2131         fs_info->pinned_extents = &fs_info->freed_extents[0];
2132         fs_info->do_barriers = 1;
2133
2134
2135         mutex_init(&fs_info->ordered_operations_mutex);
2136         mutex_init(&fs_info->tree_log_mutex);
2137         mutex_init(&fs_info->chunk_mutex);
2138         mutex_init(&fs_info->transaction_kthread_mutex);
2139         mutex_init(&fs_info->cleaner_mutex);
2140         mutex_init(&fs_info->volume_mutex);
2141         init_rwsem(&fs_info->extent_commit_sem);
2142         init_rwsem(&fs_info->cleanup_work_sem);
2143         init_rwsem(&fs_info->subvol_sem);
2144         fs_info->dev_replace.lock_owner = 0;
2145         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2146         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2147         mutex_init(&fs_info->dev_replace.lock_management_lock);
2148         mutex_init(&fs_info->dev_replace.lock);
2149
2150         spin_lock_init(&fs_info->qgroup_lock);
2151         fs_info->qgroup_tree = RB_ROOT;
2152         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2153         fs_info->qgroup_seq = 1;
2154         fs_info->quota_enabled = 0;
2155         fs_info->pending_quota_state = 0;
2156
2157         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2158         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2159
2160         init_waitqueue_head(&fs_info->transaction_throttle);
2161         init_waitqueue_head(&fs_info->transaction_wait);
2162         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2163         init_waitqueue_head(&fs_info->async_submit_wait);
2164
2165         __setup_root(4096, 4096, 4096, 4096, tree_root,
2166                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2167
2168         invalidate_bdev(fs_devices->latest_bdev);
2169         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2170         if (!bh) {
2171                 err = -EINVAL;
2172                 goto fail_alloc;
2173         }
2174
2175         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2176         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2177                sizeof(*fs_info->super_for_commit));
2178         brelse(bh);
2179
2180         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2181
2182         disk_super = fs_info->super_copy;
2183         if (!btrfs_super_root(disk_super))
2184                 goto fail_alloc;
2185
2186         /* check FS state, whether FS is broken. */
2187         fs_info->fs_state |= btrfs_super_flags(disk_super);
2188
2189         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2190         if (ret) {
2191                 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2192                 err = ret;
2193                 goto fail_alloc;
2194         }
2195
2196         /*
2197          * run through our array of backup supers and setup
2198          * our ring pointer to the oldest one
2199          */
2200         generation = btrfs_super_generation(disk_super);
2201         find_oldest_super_backup(fs_info, generation);
2202
2203         /*
2204          * In the long term, we'll store the compression type in the super
2205          * block, and it'll be used for per file compression control.
2206          */
2207         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2208
2209         ret = btrfs_parse_options(tree_root, options);
2210         if (ret) {
2211                 err = ret;
2212                 goto fail_alloc;
2213         }
2214
2215         features = btrfs_super_incompat_flags(disk_super) &
2216                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2217         if (features) {
2218                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2219                        "unsupported optional features (%Lx).\n",
2220                        (unsigned long long)features);
2221                 err = -EINVAL;
2222                 goto fail_alloc;
2223         }
2224
2225         if (btrfs_super_leafsize(disk_super) !=
2226             btrfs_super_nodesize(disk_super)) {
2227                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2228                        "blocksizes don't match.  node %d leaf %d\n",
2229                        btrfs_super_nodesize(disk_super),
2230                        btrfs_super_leafsize(disk_super));
2231                 err = -EINVAL;
2232                 goto fail_alloc;
2233         }
2234         if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2235                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2236                        "blocksize (%d) was too large\n",
2237                        btrfs_super_leafsize(disk_super));
2238                 err = -EINVAL;
2239                 goto fail_alloc;
2240         }
2241
2242         features = btrfs_super_incompat_flags(disk_super);
2243         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2244         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2245                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2246
2247         /*
2248          * flag our filesystem as having big metadata blocks if
2249          * they are bigger than the page size
2250          */
2251         if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2252                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2253                         printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2254                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2255         }
2256
2257         nodesize = btrfs_super_nodesize(disk_super);
2258         leafsize = btrfs_super_leafsize(disk_super);
2259         sectorsize = btrfs_super_sectorsize(disk_super);
2260         stripesize = btrfs_super_stripesize(disk_super);
2261
2262         /*
2263          * mixed block groups end up with duplicate but slightly offset
2264          * extent buffers for the same range.  It leads to corruptions
2265          */
2266         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2267             (sectorsize != leafsize)) {
2268                 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2269                                 "are not allowed for mixed block groups on %s\n",
2270                                 sb->s_id);
2271                 goto fail_alloc;
2272         }
2273
2274         btrfs_set_super_incompat_flags(disk_super, features);
2275
2276         features = btrfs_super_compat_ro_flags(disk_super) &
2277                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2278         if (!(sb->s_flags & MS_RDONLY) && features) {
2279                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2280                        "unsupported option features (%Lx).\n",
2281                        (unsigned long long)features);
2282                 err = -EINVAL;
2283                 goto fail_alloc;
2284         }
2285
2286         btrfs_init_workers(&fs_info->generic_worker,
2287                            "genwork", 1, NULL);
2288
2289         btrfs_init_workers(&fs_info->workers, "worker",
2290                            fs_info->thread_pool_size,
2291                            &fs_info->generic_worker);
2292
2293         btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2294                            fs_info->thread_pool_size,
2295                            &fs_info->generic_worker);
2296
2297         btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2298                            fs_info->thread_pool_size,
2299                            &fs_info->generic_worker);
2300
2301         btrfs_init_workers(&fs_info->submit_workers, "submit",
2302                            min_t(u64, fs_devices->num_devices,
2303                            fs_info->thread_pool_size),
2304                            &fs_info->generic_worker);
2305
2306         btrfs_init_workers(&fs_info->caching_workers, "cache",
2307                            2, &fs_info->generic_worker);
2308
2309         /* a higher idle thresh on the submit workers makes it much more
2310          * likely that bios will be send down in a sane order to the
2311          * devices
2312          */
2313         fs_info->submit_workers.idle_thresh = 64;
2314
2315         fs_info->workers.idle_thresh = 16;
2316         fs_info->workers.ordered = 1;
2317
2318         fs_info->delalloc_workers.idle_thresh = 2;
2319         fs_info->delalloc_workers.ordered = 1;
2320
2321         btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2322                            &fs_info->generic_worker);
2323         btrfs_init_workers(&fs_info->endio_workers, "endio",
2324                            fs_info->thread_pool_size,
2325                            &fs_info->generic_worker);
2326         btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2327                            fs_info->thread_pool_size,
2328                            &fs_info->generic_worker);
2329         btrfs_init_workers(&fs_info->endio_meta_write_workers,
2330                            "endio-meta-write", fs_info->thread_pool_size,
2331                            &fs_info->generic_worker);
2332         btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2333                            fs_info->thread_pool_size,
2334                            &fs_info->generic_worker);
2335         btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2336                            1, &fs_info->generic_worker);
2337         btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2338                            fs_info->thread_pool_size,
2339                            &fs_info->generic_worker);
2340         btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2341                            fs_info->thread_pool_size,
2342                            &fs_info->generic_worker);
2343
2344         /*
2345          * endios are largely parallel and should have a very
2346          * low idle thresh
2347          */
2348         fs_info->endio_workers.idle_thresh = 4;
2349         fs_info->endio_meta_workers.idle_thresh = 4;
2350
2351         fs_info->endio_write_workers.idle_thresh = 2;
2352         fs_info->endio_meta_write_workers.idle_thresh = 2;
2353         fs_info->readahead_workers.idle_thresh = 2;
2354
2355         /*
2356          * btrfs_start_workers can really only fail because of ENOMEM so just
2357          * return -ENOMEM if any of these fail.
2358          */
2359         ret = btrfs_start_workers(&fs_info->workers);
2360         ret |= btrfs_start_workers(&fs_info->generic_worker);
2361         ret |= btrfs_start_workers(&fs_info->submit_workers);
2362         ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2363         ret |= btrfs_start_workers(&fs_info->fixup_workers);
2364         ret |= btrfs_start_workers(&fs_info->endio_workers);
2365         ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2366         ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2367         ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2368         ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2369         ret |= btrfs_start_workers(&fs_info->delayed_workers);
2370         ret |= btrfs_start_workers(&fs_info->caching_workers);
2371         ret |= btrfs_start_workers(&fs_info->readahead_workers);
2372         ret |= btrfs_start_workers(&fs_info->flush_workers);
2373         if (ret) {
2374                 err = -ENOMEM;
2375                 goto fail_sb_buffer;
2376         }
2377
2378         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2379         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2380                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2381
2382         tree_root->nodesize = nodesize;
2383         tree_root->leafsize = leafsize;
2384         tree_root->sectorsize = sectorsize;
2385         tree_root->stripesize = stripesize;
2386
2387         sb->s_blocksize = sectorsize;
2388         sb->s_blocksize_bits = blksize_bits(sectorsize);
2389
2390         if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2391                     sizeof(disk_super->magic))) {
2392                 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2393                 goto fail_sb_buffer;
2394         }
2395
2396         if (sectorsize != PAGE_SIZE) {
2397                 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2398                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2399                 goto fail_sb_buffer;
2400         }
2401
2402         mutex_lock(&fs_info->chunk_mutex);
2403         ret = btrfs_read_sys_array(tree_root);
2404         mutex_unlock(&fs_info->chunk_mutex);
2405         if (ret) {
2406                 printk(KERN_WARNING "btrfs: failed to read the system "
2407                        "array on %s\n", sb->s_id);
2408                 goto fail_sb_buffer;
2409         }
2410
2411         blocksize = btrfs_level_size(tree_root,
2412                                      btrfs_super_chunk_root_level(disk_super));
2413         generation = btrfs_super_chunk_root_generation(disk_super);
2414
2415         __setup_root(nodesize, leafsize, sectorsize, stripesize,
2416                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2417
2418         chunk_root->node = read_tree_block(chunk_root,
2419                                            btrfs_super_chunk_root(disk_super),
2420                                            blocksize, generation);
2421         BUG_ON(!chunk_root->node); /* -ENOMEM */
2422         if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2423                 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2424                        sb->s_id);
2425                 goto fail_tree_roots;
2426         }
2427         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2428         chunk_root->commit_root = btrfs_root_node(chunk_root);
2429
2430         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2431            (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2432            BTRFS_UUID_SIZE);
2433
2434         ret = btrfs_read_chunk_tree(chunk_root);
2435         if (ret) {
2436                 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2437                        sb->s_id);
2438                 goto fail_tree_roots;
2439         }
2440
2441         btrfs_close_extra_devices(fs_devices);
2442
2443         if (!fs_devices->latest_bdev) {
2444                 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2445                        sb->s_id);
2446                 goto fail_tree_roots;
2447         }
2448
2449 retry_root_backup:
2450         blocksize = btrfs_level_size(tree_root,
2451                                      btrfs_super_root_level(disk_super));
2452         generation = btrfs_super_generation(disk_super);
2453
2454         tree_root->node = read_tree_block(tree_root,
2455                                           btrfs_super_root(disk_super),
2456                                           blocksize, generation);
2457         if (!tree_root->node ||
2458             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2459                 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2460                        sb->s_id);
2461
2462                 goto recovery_tree_root;
2463         }
2464
2465         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2466         tree_root->commit_root = btrfs_root_node(tree_root);
2467
2468         ret = find_and_setup_root(tree_root, fs_info,
2469                                   BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2470         if (ret)
2471                 goto recovery_tree_root;
2472         extent_root->track_dirty = 1;
2473
2474         ret = find_and_setup_root(tree_root, fs_info,
2475                                   BTRFS_DEV_TREE_OBJECTID, dev_root);
2476         if (ret)
2477                 goto recovery_tree_root;
2478         dev_root->track_dirty = 1;
2479
2480         ret = find_and_setup_root(tree_root, fs_info,
2481                                   BTRFS_CSUM_TREE_OBJECTID, csum_root);
2482         if (ret)
2483                 goto recovery_tree_root;
2484         csum_root->track_dirty = 1;
2485
2486         ret = find_and_setup_root(tree_root, fs_info,
2487                                   BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2488         if (ret) {
2489                 kfree(quota_root);
2490                 quota_root = fs_info->quota_root = NULL;
2491         } else {
2492                 quota_root->track_dirty = 1;
2493                 fs_info->quota_enabled = 1;
2494                 fs_info->pending_quota_state = 1;
2495         }
2496
2497         fs_info->generation = generation;
2498         fs_info->last_trans_committed = generation;
2499
2500         ret = btrfs_recover_balance(fs_info);
2501         if (ret) {
2502                 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2503                 goto fail_block_groups;
2504         }
2505
2506         ret = btrfs_init_dev_stats(fs_info);
2507         if (ret) {
2508                 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2509                        ret);
2510                 goto fail_block_groups;
2511         }
2512
2513         ret = btrfs_init_space_info(fs_info);
2514         if (ret) {
2515                 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2516                 goto fail_block_groups;
2517         }
2518
2519         ret = btrfs_read_block_groups(extent_root);
2520         if (ret) {
2521                 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2522                 goto fail_block_groups;
2523         }
2524         fs_info->num_tolerated_disk_barrier_failures =
2525                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2526         if (fs_info->fs_devices->missing_devices >
2527              fs_info->num_tolerated_disk_barrier_failures &&
2528             !(sb->s_flags & MS_RDONLY)) {
2529                 printk(KERN_WARNING
2530                        "Btrfs: too many missing devices, writeable mount is not allowed\n");
2531                 goto fail_block_groups;
2532         }
2533
2534         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2535                                                "btrfs-cleaner");
2536         if (IS_ERR(fs_info->cleaner_kthread))
2537                 goto fail_block_groups;
2538
2539         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2540                                                    tree_root,
2541                                                    "btrfs-transaction");
2542         if (IS_ERR(fs_info->transaction_kthread))
2543                 goto fail_cleaner;
2544
2545         if (!btrfs_test_opt(tree_root, SSD) &&
2546             !btrfs_test_opt(tree_root, NOSSD) &&
2547             !fs_info->fs_devices->rotating) {
2548                 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2549                        "mode\n");
2550                 btrfs_set_opt(fs_info->mount_opt, SSD);
2551         }
2552
2553 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2554         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2555                 ret = btrfsic_mount(tree_root, fs_devices,
2556                                     btrfs_test_opt(tree_root,
2557                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2558                                     1 : 0,
2559                                     fs_info->check_integrity_print_mask);
2560                 if (ret)
2561                         printk(KERN_WARNING "btrfs: failed to initialize"
2562                                " integrity check module %s\n", sb->s_id);
2563         }
2564 #endif
2565         ret = btrfs_read_qgroup_config(fs_info);
2566         if (ret)
2567                 goto fail_trans_kthread;
2568
2569         /* do not make disk changes in broken FS */
2570         if (btrfs_super_log_root(disk_super) != 0) {
2571                 u64 bytenr = btrfs_super_log_root(disk_super);
2572
2573                 if (fs_devices->rw_devices == 0) {
2574                         printk(KERN_WARNING "Btrfs log replay required "
2575                                "on RO media\n");
2576                         err = -EIO;
2577                         goto fail_qgroup;
2578                 }
2579                 blocksize =
2580                      btrfs_level_size(tree_root,
2581                                       btrfs_super_log_root_level(disk_super));
2582
2583                 log_tree_root = btrfs_alloc_root(fs_info);
2584                 if (!log_tree_root) {
2585                         err = -ENOMEM;
2586                         goto fail_qgroup;
2587                 }
2588
2589                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2590                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2591
2592                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2593                                                       blocksize,
2594                                                       generation + 1);
2595                 /* returns with log_tree_root freed on success */
2596                 ret = btrfs_recover_log_trees(log_tree_root);
2597                 if (ret) {
2598                         btrfs_error(tree_root->fs_info, ret,
2599                                     "Failed to recover log tree");
2600                         free_extent_buffer(log_tree_root->node);
2601                         kfree(log_tree_root);
2602                         goto fail_trans_kthread;
2603                 }
2604
2605                 if (sb->s_flags & MS_RDONLY) {
2606                         ret = btrfs_commit_super(tree_root);
2607                         if (ret)
2608                                 goto fail_trans_kthread;
2609                 }
2610         }
2611
2612         ret = btrfs_find_orphan_roots(tree_root);
2613         if (ret)
2614                 goto fail_trans_kthread;
2615
2616         if (!(sb->s_flags & MS_RDONLY)) {
2617                 ret = btrfs_cleanup_fs_roots(fs_info);
2618                 if (ret)
2619                         goto fail_trans_kthread;
2620
2621                 ret = btrfs_recover_relocation(tree_root);
2622                 if (ret < 0) {
2623                         printk(KERN_WARNING
2624                                "btrfs: failed to recover relocation\n");
2625                         err = -EINVAL;
2626                         goto fail_qgroup;
2627                 }
2628         }
2629
2630         location.objectid = BTRFS_FS_TREE_OBJECTID;
2631         location.type = BTRFS_ROOT_ITEM_KEY;
2632         location.offset = (u64)-1;
2633
2634         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2635         if (!fs_info->fs_root)
2636                 goto fail_qgroup;
2637         if (IS_ERR(fs_info->fs_root)) {
2638                 err = PTR_ERR(fs_info->fs_root);
2639                 goto fail_qgroup;
2640         }
2641
2642         if (sb->s_flags & MS_RDONLY)
2643                 return 0;
2644
2645         down_read(&fs_info->cleanup_work_sem);
2646         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2647             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2648                 up_read(&fs_info->cleanup_work_sem);
2649                 close_ctree(tree_root);
2650                 return ret;
2651         }
2652         up_read(&fs_info->cleanup_work_sem);
2653
2654         ret = btrfs_resume_balance_async(fs_info);
2655         if (ret) {
2656                 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2657                 close_ctree(tree_root);
2658                 return ret;
2659         }
2660
2661         return 0;
2662
2663 fail_qgroup:
2664         btrfs_free_qgroup_config(fs_info);
2665 fail_trans_kthread:
2666         kthread_stop(fs_info->transaction_kthread);
2667 fail_cleaner:
2668         kthread_stop(fs_info->cleaner_kthread);
2669
2670         /*
2671          * make sure we're done with the btree inode before we stop our
2672          * kthreads
2673          */
2674         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2675         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2676
2677 fail_block_groups:
2678         btrfs_free_block_groups(fs_info);
2679
2680 fail_tree_roots:
2681         free_root_pointers(fs_info, 1);
2682
2683 fail_sb_buffer:
2684         btrfs_stop_workers(&fs_info->generic_worker);
2685         btrfs_stop_workers(&fs_info->readahead_workers);
2686         btrfs_stop_workers(&fs_info->fixup_workers);
2687         btrfs_stop_workers(&fs_info->delalloc_workers);
2688         btrfs_stop_workers(&fs_info->workers);
2689         btrfs_stop_workers(&fs_info->endio_workers);
2690         btrfs_stop_workers(&fs_info->endio_meta_workers);
2691         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2692         btrfs_stop_workers(&fs_info->endio_write_workers);
2693         btrfs_stop_workers(&fs_info->endio_freespace_worker);
2694         btrfs_stop_workers(&fs_info->submit_workers);
2695         btrfs_stop_workers(&fs_info->delayed_workers);
2696         btrfs_stop_workers(&fs_info->caching_workers);
2697         btrfs_stop_workers(&fs_info->flush_workers);
2698 fail_alloc:
2699 fail_iput:
2700         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2701
2702         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2703         iput(fs_info->btree_inode);
2704 fail_bdi:
2705         bdi_destroy(&fs_info->bdi);
2706 fail_srcu:
2707         cleanup_srcu_struct(&fs_info->subvol_srcu);
2708 fail:
2709         btrfs_close_devices(fs_info->fs_devices);
2710         return err;
2711
2712 recovery_tree_root:
2713         if (!btrfs_test_opt(tree_root, RECOVERY))
2714                 goto fail_tree_roots;
2715
2716         free_root_pointers(fs_info, 0);
2717
2718         /* don't use the log in recovery mode, it won't be valid */
2719         btrfs_set_super_log_root(disk_super, 0);
2720
2721         /* we can't trust the free space cache either */
2722         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2723
2724         ret = next_root_backup(fs_info, fs_info->super_copy,
2725                                &num_backups_tried, &backup_index);
2726         if (ret == -1)
2727                 goto fail_block_groups;
2728         goto retry_root_backup;
2729 }
2730
2731 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2732 {
2733         if (uptodate) {
2734                 set_buffer_uptodate(bh);
2735         } else {
2736                 struct btrfs_device *device = (struct btrfs_device *)
2737                         bh->b_private;
2738
2739                 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2740                                           "I/O error on %s\n",
2741                                           rcu_str_deref(device->name));
2742                 /* note, we dont' set_buffer_write_io_error because we have
2743                  * our own ways of dealing with the IO errors
2744                  */
2745                 clear_buffer_uptodate(bh);
2746                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2747         }
2748         unlock_buffer(bh);
2749         put_bh(bh);
2750 }
2751
2752 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2753 {
2754         struct buffer_head *bh;
2755         struct buffer_head *latest = NULL;
2756         struct btrfs_super_block *super;
2757         int i;
2758         u64 transid = 0;
2759         u64 bytenr;
2760
2761         /* we would like to check all the supers, but that would make
2762          * a btrfs mount succeed after a mkfs from a different FS.
2763          * So, we need to add a special mount option to scan for
2764          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2765          */
2766         for (i = 0; i < 1; i++) {
2767                 bytenr = btrfs_sb_offset(i);
2768                 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2769                         break;
2770                 bh = __bread(bdev, bytenr / 4096, 4096);
2771                 if (!bh)
2772                         continue;
2773
2774                 super = (struct btrfs_super_block *)bh->b_data;
2775                 if (btrfs_super_bytenr(super) != bytenr ||
2776                     strncmp((char *)(&super->magic), BTRFS_MAGIC,
2777                             sizeof(super->magic))) {
2778                         brelse(bh);
2779                         continue;
2780                 }
2781
2782                 if (!latest || btrfs_super_generation(super) > transid) {
2783                         brelse(latest);
2784                         latest = bh;
2785                         transid = btrfs_super_generation(super);
2786                 } else {
2787                         brelse(bh);
2788                 }
2789         }
2790         return latest;
2791 }
2792
2793 /*
2794  * this should be called twice, once with wait == 0 and
2795  * once with wait == 1.  When wait == 0 is done, all the buffer heads
2796  * we write are pinned.
2797  *
2798  * They are released when wait == 1 is done.
2799  * max_mirrors must be the same for both runs, and it indicates how
2800  * many supers on this one device should be written.
2801  *
2802  * max_mirrors == 0 means to write them all.
2803  */
2804 static int write_dev_supers(struct btrfs_device *device,
2805                             struct btrfs_super_block *sb,
2806                             int do_barriers, int wait, int max_mirrors)
2807 {
2808         struct buffer_head *bh;
2809         int i;
2810         int ret;
2811         int errors = 0;
2812         u32 crc;
2813         u64 bytenr;
2814
2815         if (max_mirrors == 0)
2816                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2817
2818         for (i = 0; i < max_mirrors; i++) {
2819                 bytenr = btrfs_sb_offset(i);
2820                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2821                         break;
2822
2823                 if (wait) {
2824                         bh = __find_get_block(device->bdev, bytenr / 4096,
2825                                               BTRFS_SUPER_INFO_SIZE);
2826                         BUG_ON(!bh);
2827                         wait_on_buffer(bh);
2828                         if (!buffer_uptodate(bh))
2829                                 errors++;
2830
2831                         /* drop our reference */
2832                         brelse(bh);
2833
2834                         /* drop the reference from the wait == 0 run */
2835                         brelse(bh);
2836                         continue;
2837                 } else {
2838                         btrfs_set_super_bytenr(sb, bytenr);
2839
2840                         crc = ~(u32)0;
2841                         crc = btrfs_csum_data(NULL, (char *)sb +
2842                                               BTRFS_CSUM_SIZE, crc,
2843                                               BTRFS_SUPER_INFO_SIZE -
2844                                               BTRFS_CSUM_SIZE);
2845                         btrfs_csum_final(crc, sb->csum);
2846
2847                         /*
2848                          * one reference for us, and we leave it for the
2849                          * caller
2850                          */
2851                         bh = __getblk(device->bdev, bytenr / 4096,
2852                                       BTRFS_SUPER_INFO_SIZE);
2853                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2854
2855                         /* one reference for submit_bh */
2856                         get_bh(bh);
2857
2858                         set_buffer_uptodate(bh);
2859                         lock_buffer(bh);
2860                         bh->b_end_io = btrfs_end_buffer_write_sync;
2861                         bh->b_private = device;
2862                 }
2863
2864                 /*
2865                  * we fua the first super.  The others we allow
2866                  * to go down lazy.
2867                  */
2868                 ret = btrfsic_submit_bh(WRITE_FUA, bh);
2869                 if (ret)
2870                         errors++;
2871         }
2872         return errors < i ? 0 : -1;
2873 }
2874
2875 /*
2876  * endio for the write_dev_flush, this will wake anyone waiting
2877  * for the barrier when it is done
2878  */
2879 static void btrfs_end_empty_barrier(struct bio *bio, int err)
2880 {
2881         if (err) {
2882                 if (err == -EOPNOTSUPP)
2883                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2884                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2885         }
2886         if (bio->bi_private)
2887                 complete(bio->bi_private);
2888         bio_put(bio);
2889 }
2890
2891 /*
2892  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
2893  * sent down.  With wait == 1, it waits for the previous flush.
2894  *
2895  * any device where the flush fails with eopnotsupp are flagged as not-barrier
2896  * capable
2897  */
2898 static int write_dev_flush(struct btrfs_device *device, int wait)
2899 {
2900         struct bio *bio;
2901         int ret = 0;
2902
2903         if (device->nobarriers)
2904                 return 0;
2905
2906         if (wait) {
2907                 bio = device->flush_bio;
2908                 if (!bio)
2909                         return 0;
2910
2911                 wait_for_completion(&device->flush_wait);
2912
2913                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2914                         printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2915                                       rcu_str_deref(device->name));
2916                         device->nobarriers = 1;
2917                 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
2918                         ret = -EIO;
2919                         btrfs_dev_stat_inc_and_print(device,
2920                                 BTRFS_DEV_STAT_FLUSH_ERRS);
2921                 }
2922
2923                 /* drop the reference from the wait == 0 run */
2924                 bio_put(bio);
2925                 device->flush_bio = NULL;
2926
2927                 return ret;
2928         }
2929
2930         /*
2931          * one reference for us, and we leave it for the
2932          * caller
2933          */
2934         device->flush_bio = NULL;
2935         bio = bio_alloc(GFP_NOFS, 0);
2936         if (!bio)
2937                 return -ENOMEM;
2938
2939         bio->bi_end_io = btrfs_end_empty_barrier;
2940         bio->bi_bdev = device->bdev;
2941         init_completion(&device->flush_wait);
2942         bio->bi_private = &device->flush_wait;
2943         device->flush_bio = bio;
2944
2945         bio_get(bio);
2946         btrfsic_submit_bio(WRITE_FLUSH, bio);
2947
2948         return 0;
2949 }
2950
2951 /*
2952  * send an empty flush down to each device in parallel,
2953  * then wait for them
2954  */
2955 static int barrier_all_devices(struct btrfs_fs_info *info)
2956 {
2957         struct list_head *head;
2958         struct btrfs_device *dev;
2959         int errors_send = 0;
2960         int errors_wait = 0;
2961         int ret;
2962
2963         /* send down all the barriers */
2964         head = &info->fs_devices->devices;
2965         list_for_each_entry_rcu(dev, head, dev_list) {
2966                 if (!dev->bdev) {
2967                         errors_send++;
2968                         continue;
2969                 }
2970                 if (!dev->in_fs_metadata || !dev->writeable)
2971                         continue;
2972
2973                 ret = write_dev_flush(dev, 0);
2974                 if (ret)
2975                         errors_send++;
2976         }
2977
2978         /* wait for all the barriers */
2979         list_for_each_entry_rcu(dev, head, dev_list) {
2980                 if (!dev->bdev) {
2981                         errors_wait++;
2982                         continue;
2983                 }
2984                 if (!dev->in_fs_metadata || !dev->writeable)
2985                         continue;
2986
2987                 ret = write_dev_flush(dev, 1);
2988                 if (ret)
2989                         errors_wait++;
2990         }
2991         if (errors_send > info->num_tolerated_disk_barrier_failures ||
2992             errors_wait > info->num_tolerated_disk_barrier_failures)
2993                 return -EIO;
2994         return 0;
2995 }
2996
2997 int btrfs_calc_num_tolerated_disk_barrier_failures(
2998         struct btrfs_fs_info *fs_info)
2999 {
3000         struct btrfs_ioctl_space_info space;
3001         struct btrfs_space_info *sinfo;
3002         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3003                        BTRFS_BLOCK_GROUP_SYSTEM,
3004                        BTRFS_BLOCK_GROUP_METADATA,
3005                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3006         int num_types = 4;
3007         int i;
3008         int c;
3009         int num_tolerated_disk_barrier_failures =
3010                 (int)fs_info->fs_devices->num_devices;
3011
3012         for (i = 0; i < num_types; i++) {
3013                 struct btrfs_space_info *tmp;
3014
3015                 sinfo = NULL;
3016                 rcu_read_lock();
3017                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3018                         if (tmp->flags == types[i]) {
3019                                 sinfo = tmp;
3020                                 break;
3021                         }
3022                 }
3023                 rcu_read_unlock();
3024
3025                 if (!sinfo)
3026                         continue;
3027
3028                 down_read(&sinfo->groups_sem);
3029                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3030                         if (!list_empty(&sinfo->block_groups[c])) {
3031                                 u64 flags;
3032
3033                                 btrfs_get_block_group_info(
3034                                         &sinfo->block_groups[c], &space);
3035                                 if (space.total_bytes == 0 ||
3036                                     space.used_bytes == 0)
3037                                         continue;
3038                                 flags = space.flags;
3039                                 /*
3040                                  * return
3041                                  * 0: if dup, single or RAID0 is configured for
3042                                  *    any of metadata, system or data, else
3043                                  * 1: if RAID5 is configured, or if RAID1 or
3044                                  *    RAID10 is configured and only two mirrors
3045                                  *    are used, else
3046                                  * 2: if RAID6 is configured, else
3047                                  * num_mirrors - 1: if RAID1 or RAID10 is
3048                                  *                  configured and more than
3049                                  *                  2 mirrors are used.
3050                                  */
3051                                 if (num_tolerated_disk_barrier_failures > 0 &&
3052                                     ((flags & (BTRFS_BLOCK_GROUP_DUP |
3053                                                BTRFS_BLOCK_GROUP_RAID0)) ||
3054                                      ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3055                                       == 0)))
3056                                         num_tolerated_disk_barrier_failures = 0;
3057                                 else if (num_tolerated_disk_barrier_failures > 1
3058                                          &&
3059                                          (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3060                                                    BTRFS_BLOCK_GROUP_RAID10)))
3061                                         num_tolerated_disk_barrier_failures = 1;
3062                         }
3063                 }
3064                 up_read(&sinfo->groups_sem);
3065         }
3066
3067         return num_tolerated_disk_barrier_failures;
3068 }
3069
3070 int write_all_supers(struct btrfs_root *root, int max_mirrors)
3071 {
3072         struct list_head *head;
3073         struct btrfs_device *dev;
3074         struct btrfs_super_block *sb;
3075         struct btrfs_dev_item *dev_item;
3076         int ret;
3077         int do_barriers;
3078         int max_errors;
3079         int total_errors = 0;
3080         u64 flags;
3081
3082         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3083         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3084         backup_super_roots(root->fs_info);
3085
3086         sb = root->fs_info->super_for_commit;
3087         dev_item = &sb->dev_item;
3088
3089         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3090         head = &root->fs_info->fs_devices->devices;
3091
3092         if (do_barriers) {
3093                 ret = barrier_all_devices(root->fs_info);
3094                 if (ret) {
3095                         mutex_unlock(
3096                                 &root->fs_info->fs_devices->device_list_mutex);
3097                         btrfs_error(root->fs_info, ret,
3098                                     "errors while submitting device barriers.");
3099                         return ret;
3100                 }
3101         }
3102
3103         list_for_each_entry_rcu(dev, head, dev_list) {
3104                 if (!dev->bdev) {
3105                         total_errors++;
3106                         continue;
3107                 }
3108                 if (!dev->in_fs_metadata || !dev->writeable)
3109                         continue;
3110
3111                 btrfs_set_stack_device_generation(dev_item, 0);
3112                 btrfs_set_stack_device_type(dev_item, dev->type);
3113                 btrfs_set_stack_device_id(dev_item, dev->devid);
3114                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3115                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3116                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3117                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3118                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3119                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3120                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3121
3122                 flags = btrfs_super_flags(sb);
3123                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3124
3125                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3126                 if (ret)
3127                         total_errors++;
3128         }
3129         if (total_errors > max_errors) {
3130                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3131                        total_errors);
3132
3133                 /* This shouldn't happen. FUA is masked off if unsupported */
3134                 BUG();
3135         }
3136
3137         total_errors = 0;
3138         list_for_each_entry_rcu(dev, head, dev_list) {
3139                 if (!dev->bdev)
3140                         continue;
3141                 if (!dev->in_fs_metadata || !dev->writeable)
3142                         continue;
3143
3144                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3145                 if (ret)
3146                         total_errors++;
3147         }
3148         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3149         if (total_errors > max_errors) {
3150                 btrfs_error(root->fs_info, -EIO,
3151                             "%d errors while writing supers", total_errors);
3152                 return -EIO;
3153         }
3154         return 0;
3155 }
3156
3157 int write_ctree_super(struct btrfs_trans_handle *trans,
3158                       struct btrfs_root *root, int max_mirrors)
3159 {
3160         int ret;
3161
3162         ret = write_all_supers(root, max_mirrors);
3163         return ret;
3164 }
3165
3166 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3167 {
3168         spin_lock(&fs_info->fs_roots_radix_lock);
3169         radix_tree_delete(&fs_info->fs_roots_radix,
3170                           (unsigned long)root->root_key.objectid);
3171         spin_unlock(&fs_info->fs_roots_radix_lock);
3172
3173         if (btrfs_root_refs(&root->root_item) == 0)
3174                 synchronize_srcu(&fs_info->subvol_srcu);
3175
3176         __btrfs_remove_free_space_cache(root->free_ino_pinned);
3177         __btrfs_remove_free_space_cache(root->free_ino_ctl);
3178         free_fs_root(root);
3179 }
3180
3181 static void free_fs_root(struct btrfs_root *root)
3182 {
3183         iput(root->cache_inode);
3184         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3185         if (root->anon_dev)
3186                 free_anon_bdev(root->anon_dev);
3187         free_extent_buffer(root->node);
3188         free_extent_buffer(root->commit_root);
3189         kfree(root->free_ino_ctl);
3190         kfree(root->free_ino_pinned);
3191         kfree(root->name);
3192         kfree(root);
3193 }
3194
3195 static void del_fs_roots(struct btrfs_fs_info *fs_info)
3196 {
3197         int ret;
3198         struct btrfs_root *gang[8];
3199         int i;
3200
3201         while (!list_empty(&fs_info->dead_roots)) {
3202                 gang[0] = list_entry(fs_info->dead_roots.next,
3203                                      struct btrfs_root, root_list);
3204                 list_del(&gang[0]->root_list);
3205
3206                 if (gang[0]->in_radix) {
3207                         btrfs_free_fs_root(fs_info, gang[0]);
3208                 } else {
3209                         free_extent_buffer(gang[0]->node);
3210                         free_extent_buffer(gang[0]->commit_root);
3211                         kfree(gang[0]);
3212                 }
3213         }
3214
3215         while (1) {
3216                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3217                                              (void **)gang, 0,
3218                                              ARRAY_SIZE(gang));
3219                 if (!ret)
3220                         break;
3221                 for (i = 0; i < ret; i++)
3222                         btrfs_free_fs_root(fs_info, gang[i]);
3223         }
3224 }
3225
3226 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3227 {
3228         u64 root_objectid = 0;
3229         struct btrfs_root *gang[8];
3230         int i;
3231         int ret;
3232
3233         while (1) {
3234                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3235                                              (void **)gang, root_objectid,
3236                                              ARRAY_SIZE(gang));
3237                 if (!ret)
3238                         break;
3239
3240                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3241                 for (i = 0; i < ret; i++) {
3242                         int err;
3243
3244                         root_objectid = gang[i]->root_key.objectid;
3245                         err = btrfs_orphan_cleanup(gang[i]);
3246                         if (err)
3247                                 return err;
3248                 }
3249                 root_objectid++;
3250         }
3251         return 0;
3252 }
3253
3254 int btrfs_commit_super(struct btrfs_root *root)
3255 {
3256         struct btrfs_trans_handle *trans;
3257         int ret;
3258
3259         mutex_lock(&root->fs_info->cleaner_mutex);
3260         btrfs_run_delayed_iputs(root);
3261         btrfs_clean_old_snapshots(root);
3262         mutex_unlock(&root->fs_info->cleaner_mutex);
3263
3264         /* wait until ongoing cleanup work done */
3265         down_write(&root->fs_info->cleanup_work_sem);
3266         up_write(&root->fs_info->cleanup_work_sem);
3267
3268         trans = btrfs_join_transaction(root);
3269         if (IS_ERR(trans))
3270                 return PTR_ERR(trans);
3271         ret = btrfs_commit_transaction(trans, root);
3272         if (ret)
3273                 return ret;
3274         /* run commit again to drop the original snapshot */
3275         trans = btrfs_join_transaction(root);
3276         if (IS_ERR(trans))
3277                 return PTR_ERR(trans);
3278         ret = btrfs_commit_transaction(trans, root);
3279         if (ret)
3280                 return ret;
3281         ret = btrfs_write_and_wait_transaction(NULL, root);
3282         if (ret) {
3283                 btrfs_error(root->fs_info, ret,
3284                             "Failed to sync btree inode to disk.");
3285                 return ret;
3286         }
3287
3288         ret = write_ctree_super(NULL, root, 0);
3289         return ret;
3290 }
3291
3292 int close_ctree(struct btrfs_root *root)
3293 {
3294         struct btrfs_fs_info *fs_info = root->fs_info;
3295         int ret;
3296
3297         fs_info->closing = 1;
3298         smp_mb();
3299
3300         /* pause restriper - we want to resume on mount */
3301         btrfs_pause_balance(fs_info);
3302
3303         btrfs_scrub_cancel(fs_info);
3304
3305         /* wait for any defraggers to finish */
3306         wait_event(fs_info->transaction_wait,
3307                    (atomic_read(&fs_info->defrag_running) == 0));
3308
3309         /* clear out the rbtree of defraggable inodes */
3310         btrfs_run_defrag_inodes(fs_info);
3311
3312         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3313                 ret = btrfs_commit_super(root);
3314                 if (ret)
3315                         printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3316         }
3317
3318         if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
3319                 btrfs_error_commit_super(root);
3320
3321         btrfs_put_block_group_cache(fs_info);
3322
3323         kthread_stop(fs_info->transaction_kthread);
3324         kthread_stop(fs_info->cleaner_kthread);
3325
3326         fs_info->closing = 2;
3327         smp_mb();
3328
3329         btrfs_free_qgroup_config(root->fs_info);
3330
3331         if (fs_info->delalloc_bytes) {
3332                 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
3333                        (unsigned long long)fs_info->delalloc_bytes);
3334         }
3335
3336         free_extent_buffer(fs_info->extent_root->node);
3337         free_extent_buffer(fs_info->extent_root->commit_root);
3338         free_extent_buffer(fs_info->tree_root->node);
3339         free_extent_buffer(fs_info->tree_root->commit_root);
3340         free_extent_buffer(fs_info->chunk_root->node);
3341         free_extent_buffer(fs_info->chunk_root->commit_root);
3342         free_extent_buffer(fs_info->dev_root->node);
3343         free_extent_buffer(fs_info->dev_root->commit_root);
3344         free_extent_buffer(fs_info->csum_root->node);
3345         free_extent_buffer(fs_info->csum_root->commit_root);
3346         if (fs_info->quota_root) {
3347                 free_extent_buffer(fs_info->quota_root->node);
3348                 free_extent_buffer(fs_info->quota_root->commit_root);
3349         }
3350
3351         btrfs_free_block_groups(fs_info);
3352
3353         del_fs_roots(fs_info);
3354
3355         iput(fs_info->btree_inode);
3356
3357         btrfs_stop_workers(&fs_info->generic_worker);
3358         btrfs_stop_workers(&fs_info->fixup_workers);
3359         btrfs_stop_workers(&fs_info->delalloc_workers);
3360         btrfs_stop_workers(&fs_info->workers);
3361         btrfs_stop_workers(&fs_info->endio_workers);
3362         btrfs_stop_workers(&fs_info->endio_meta_workers);
3363         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3364         btrfs_stop_workers(&fs_info->endio_write_workers);
3365         btrfs_stop_workers(&fs_info->endio_freespace_worker);
3366         btrfs_stop_workers(&fs_info->submit_workers);
3367         btrfs_stop_workers(&fs_info->delayed_workers);
3368         btrfs_stop_workers(&fs_info->caching_workers);
3369         btrfs_stop_workers(&fs_info->readahead_workers);
3370         btrfs_stop_workers(&fs_info->flush_workers);
3371
3372 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3373         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3374                 btrfsic_unmount(root, fs_info->fs_devices);
3375 #endif
3376
3377         btrfs_close_devices(fs_info->fs_devices);
3378         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3379
3380         bdi_destroy(&fs_info->bdi);
3381         cleanup_srcu_struct(&fs_info->subvol_srcu);
3382
3383         return 0;
3384 }
3385
3386 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3387                           int atomic)
3388 {
3389         int ret;
3390         struct inode *btree_inode = buf->pages[0]->mapping->host;
3391
3392         ret = extent_buffer_uptodate(buf);
3393         if (!ret)
3394                 return ret;
3395
3396         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3397                                     parent_transid, atomic);
3398         if (ret == -EAGAIN)
3399                 return ret;
3400         return !ret;
3401 }
3402
3403 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3404 {
3405         return set_extent_buffer_uptodate(buf);
3406 }
3407
3408 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3409 {
3410         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3411         u64 transid = btrfs_header_generation(buf);
3412         int was_dirty;
3413
3414         btrfs_assert_tree_locked(buf);
3415         if (transid != root->fs_info->generation)
3416                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3417                        "found %llu running %llu\n",
3418                         (unsigned long long)buf->start,
3419                         (unsigned long long)transid,
3420                         (unsigned long long)root->fs_info->generation);
3421         was_dirty = set_extent_buffer_dirty(buf);
3422         if (!was_dirty) {
3423                 spin_lock(&root->fs_info->delalloc_lock);
3424                 root->fs_info->dirty_metadata_bytes += buf->len;
3425                 spin_unlock(&root->fs_info->delalloc_lock);
3426         }
3427 }
3428
3429 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3430                                         int flush_delayed)
3431 {
3432         /*
3433          * looks as though older kernels can get into trouble with
3434          * this code, they end up stuck in balance_dirty_pages forever
3435          */
3436         u64 num_dirty;
3437         unsigned long thresh = 32 * 1024 * 1024;
3438
3439         if (current->flags & PF_MEMALLOC)
3440                 return;
3441
3442         if (flush_delayed)
3443                 btrfs_balance_delayed_items(root);
3444
3445         num_dirty = root->fs_info->dirty_metadata_bytes;
3446
3447         if (num_dirty > thresh) {
3448                 balance_dirty_pages_ratelimited_nr(
3449                                    root->fs_info->btree_inode->i_mapping, 1);
3450         }
3451         return;
3452 }
3453
3454 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3455 {
3456         __btrfs_btree_balance_dirty(root, 1);
3457 }
3458
3459 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3460 {
3461         __btrfs_btree_balance_dirty(root, 0);
3462 }
3463
3464 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3465 {
3466         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3467         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3468 }
3469
3470 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3471                               int read_only)
3472 {
3473         if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3474                 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3475                 return -EINVAL;
3476         }
3477
3478         if (read_only)
3479                 return 0;
3480
3481         return 0;
3482 }
3483
3484 void btrfs_error_commit_super(struct btrfs_root *root)
3485 {
3486         mutex_lock(&root->fs_info->cleaner_mutex);
3487         btrfs_run_delayed_iputs(root);
3488         mutex_unlock(&root->fs_info->cleaner_mutex);
3489
3490         down_write(&root->fs_info->cleanup_work_sem);
3491         up_write(&root->fs_info->cleanup_work_sem);
3492
3493         /* cleanup FS via transaction */
3494         btrfs_cleanup_transaction(root);
3495 }
3496
3497 static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
3498 {
3499         struct btrfs_inode *btrfs_inode;
3500         struct list_head splice;
3501
3502         INIT_LIST_HEAD(&splice);
3503
3504         mutex_lock(&root->fs_info->ordered_operations_mutex);
3505         spin_lock(&root->fs_info->ordered_extent_lock);
3506
3507         list_splice_init(&root->fs_info->ordered_operations, &splice);
3508         while (!list_empty(&splice)) {
3509                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3510                                          ordered_operations);
3511
3512                 list_del_init(&btrfs_inode->ordered_operations);
3513
3514                 btrfs_invalidate_inodes(btrfs_inode->root);
3515         }
3516
3517         spin_unlock(&root->fs_info->ordered_extent_lock);
3518         mutex_unlock(&root->fs_info->ordered_operations_mutex);
3519 }
3520
3521 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3522 {
3523         struct list_head splice;
3524         struct btrfs_ordered_extent *ordered;
3525         struct inode *inode;
3526
3527         INIT_LIST_HEAD(&splice);
3528
3529         spin_lock(&root->fs_info->ordered_extent_lock);
3530
3531         list_splice_init(&root->fs_info->ordered_extents, &splice);
3532         while (!list_empty(&splice)) {
3533                 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3534                                      root_extent_list);
3535
3536                 list_del_init(&ordered->root_extent_list);
3537                 atomic_inc(&ordered->refs);
3538
3539                 /* the inode may be getting freed (in sys_unlink path). */
3540                 inode = igrab(ordered->inode);
3541
3542                 spin_unlock(&root->fs_info->ordered_extent_lock);
3543                 if (inode)
3544                         iput(inode);
3545
3546                 atomic_set(&ordered->refs, 1);
3547                 btrfs_put_ordered_extent(ordered);
3548
3549                 spin_lock(&root->fs_info->ordered_extent_lock);
3550         }
3551
3552         spin_unlock(&root->fs_info->ordered_extent_lock);
3553 }
3554
3555 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3556                                struct btrfs_root *root)
3557 {
3558         struct rb_node *node;
3559         struct btrfs_delayed_ref_root *delayed_refs;
3560         struct btrfs_delayed_ref_node *ref;
3561         int ret = 0;
3562
3563         delayed_refs = &trans->delayed_refs;
3564
3565         spin_lock(&delayed_refs->lock);
3566         if (delayed_refs->num_entries == 0) {
3567                 spin_unlock(&delayed_refs->lock);
3568                 printk(KERN_INFO "delayed_refs has NO entry\n");
3569                 return ret;
3570         }
3571
3572         while ((node = rb_first(&delayed_refs->root)) != NULL) {
3573                 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3574
3575                 atomic_set(&ref->refs, 1);
3576                 if (btrfs_delayed_ref_is_head(ref)) {
3577                         struct btrfs_delayed_ref_head *head;
3578
3579                         head = btrfs_delayed_node_to_head(ref);
3580                         if (!mutex_trylock(&head->mutex)) {
3581                                 atomic_inc(&ref->refs);
3582                                 spin_unlock(&delayed_refs->lock);
3583
3584                                 /* Need to wait for the delayed ref to run */
3585                                 mutex_lock(&head->mutex);
3586                                 mutex_unlock(&head->mutex);
3587                                 btrfs_put_delayed_ref(ref);
3588
3589                                 spin_lock(&delayed_refs->lock);
3590                                 continue;
3591                         }
3592
3593                         kfree(head->extent_op);
3594                         delayed_refs->num_heads--;
3595                         if (list_empty(&head->cluster))
3596                                 delayed_refs->num_heads_ready--;
3597                         list_del_init(&head->cluster);
3598                 }
3599                 ref->in_tree = 0;
3600                 rb_erase(&ref->rb_node, &delayed_refs->root);
3601                 delayed_refs->num_entries--;
3602
3603                 spin_unlock(&delayed_refs->lock);
3604                 btrfs_put_delayed_ref(ref);
3605
3606                 cond_resched();
3607                 spin_lock(&delayed_refs->lock);
3608         }
3609
3610         spin_unlock(&delayed_refs->lock);
3611
3612         return ret;
3613 }
3614
3615 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3616 {
3617         struct btrfs_pending_snapshot *snapshot;
3618         struct list_head splice;
3619
3620         INIT_LIST_HEAD(&splice);
3621
3622         list_splice_init(&t->pending_snapshots, &splice);
3623
3624         while (!list_empty(&splice)) {
3625                 snapshot = list_entry(splice.next,
3626                                       struct btrfs_pending_snapshot,
3627                                       list);
3628
3629                 list_del_init(&snapshot->list);
3630
3631                 kfree(snapshot);
3632         }
3633 }
3634
3635 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3636 {
3637         struct btrfs_inode *btrfs_inode;
3638         struct list_head splice;
3639
3640         INIT_LIST_HEAD(&splice);
3641
3642         spin_lock(&root->fs_info->delalloc_lock);
3643         list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3644
3645         while (!list_empty(&splice)) {
3646                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3647                                     delalloc_inodes);
3648
3649                 list_del_init(&btrfs_inode->delalloc_inodes);
3650
3651                 btrfs_invalidate_inodes(btrfs_inode->root);
3652         }
3653
3654         spin_unlock(&root->fs_info->delalloc_lock);
3655 }
3656
3657 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3658                                         struct extent_io_tree *dirty_pages,
3659                                         int mark)
3660 {
3661         int ret;
3662         struct page *page;
3663         struct inode *btree_inode = root->fs_info->btree_inode;
3664         struct extent_buffer *eb;
3665         u64 start = 0;
3666         u64 end;
3667         u64 offset;
3668         unsigned long index;
3669
3670         while (1) {
3671                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3672                                             mark, NULL);
3673                 if (ret)
3674                         break;
3675
3676                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3677                 while (start <= end) {
3678                         index = start >> PAGE_CACHE_SHIFT;
3679                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3680                         page = find_get_page(btree_inode->i_mapping, index);
3681                         if (!page)
3682                                 continue;
3683                         offset = page_offset(page);
3684
3685                         spin_lock(&dirty_pages->buffer_lock);
3686                         eb = radix_tree_lookup(
3687                              &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3688                                                offset >> PAGE_CACHE_SHIFT);
3689                         spin_unlock(&dirty_pages->buffer_lock);
3690                         if (eb)
3691                                 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3692                                                          &eb->bflags);
3693                         if (PageWriteback(page))
3694                                 end_page_writeback(page);
3695
3696                         lock_page(page);
3697                         if (PageDirty(page)) {
3698                                 clear_page_dirty_for_io(page);
3699                                 spin_lock_irq(&page->mapping->tree_lock);
3700                                 radix_tree_tag_clear(&page->mapping->page_tree,
3701                                                         page_index(page),
3702                                                         PAGECACHE_TAG_DIRTY);
3703                                 spin_unlock_irq(&page->mapping->tree_lock);
3704                         }
3705
3706                         unlock_page(page);
3707                         page_cache_release(page);
3708                 }
3709         }
3710
3711         return ret;
3712 }
3713
3714 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3715                                        struct extent_io_tree *pinned_extents)
3716 {
3717         struct extent_io_tree *unpin;
3718         u64 start;
3719         u64 end;
3720         int ret;
3721         bool loop = true;
3722
3723         unpin = pinned_extents;
3724 again:
3725         while (1) {
3726                 ret = find_first_extent_bit(unpin, 0, &start, &end,
3727                                             EXTENT_DIRTY, NULL);
3728                 if (ret)
3729                         break;
3730
3731                 /* opt_discard */
3732                 if (btrfs_test_opt(root, DISCARD))
3733                         ret = btrfs_error_discard_extent(root, start,
3734                                                          end + 1 - start,
3735                                                          NULL);
3736
3737                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3738                 btrfs_error_unpin_extent_range(root, start, end);
3739                 cond_resched();
3740         }
3741
3742         if (loop) {
3743                 if (unpin == &root->fs_info->freed_extents[0])
3744                         unpin = &root->fs_info->freed_extents[1];
3745                 else
3746                         unpin = &root->fs_info->freed_extents[0];
3747                 loop = false;
3748                 goto again;
3749         }
3750
3751         return 0;
3752 }
3753
3754 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3755                                    struct btrfs_root *root)
3756 {
3757         btrfs_destroy_delayed_refs(cur_trans, root);
3758         btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3759                                 cur_trans->dirty_pages.dirty_bytes);
3760
3761         /* FIXME: cleanup wait for commit */
3762         cur_trans->in_commit = 1;
3763         cur_trans->blocked = 1;
3764         wake_up(&root->fs_info->transaction_blocked_wait);
3765
3766         cur_trans->blocked = 0;
3767         wake_up(&root->fs_info->transaction_wait);
3768
3769         cur_trans->commit_done = 1;
3770         wake_up(&cur_trans->commit_wait);
3771
3772         btrfs_destroy_delayed_inodes(root);
3773         btrfs_assert_delayed_root_empty(root);
3774
3775         btrfs_destroy_pending_snapshots(cur_trans);
3776
3777         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3778                                      EXTENT_DIRTY);
3779         btrfs_destroy_pinned_extent(root,
3780                                     root->fs_info->pinned_extents);
3781
3782         /*
3783         memset(cur_trans, 0, sizeof(*cur_trans));
3784         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3785         */
3786 }
3787
3788 int btrfs_cleanup_transaction(struct btrfs_root *root)
3789 {
3790         struct btrfs_transaction *t;
3791         LIST_HEAD(list);
3792
3793         mutex_lock(&root->fs_info->transaction_kthread_mutex);
3794
3795         spin_lock(&root->fs_info->trans_lock);
3796         list_splice_init(&root->fs_info->trans_list, &list);
3797         root->fs_info->trans_no_join = 1;
3798         spin_unlock(&root->fs_info->trans_lock);
3799
3800         while (!list_empty(&list)) {
3801                 t = list_entry(list.next, struct btrfs_transaction, list);
3802                 if (!t)
3803                         break;
3804
3805                 btrfs_destroy_ordered_operations(root);
3806
3807                 btrfs_destroy_ordered_extents(root);
3808
3809                 btrfs_destroy_delayed_refs(t, root);
3810
3811                 btrfs_block_rsv_release(root,
3812                                         &root->fs_info->trans_block_rsv,
3813                                         t->dirty_pages.dirty_bytes);
3814
3815                 /* FIXME: cleanup wait for commit */
3816                 t->in_commit = 1;
3817                 t->blocked = 1;
3818                 smp_mb();
3819                 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3820                         wake_up(&root->fs_info->transaction_blocked_wait);
3821
3822                 t->blocked = 0;
3823                 smp_mb();
3824                 if (waitqueue_active(&root->fs_info->transaction_wait))
3825                         wake_up(&root->fs_info->transaction_wait);
3826
3827                 t->commit_done = 1;
3828                 smp_mb();
3829                 if (waitqueue_active(&t->commit_wait))
3830                         wake_up(&t->commit_wait);
3831
3832                 btrfs_destroy_delayed_inodes(root);
3833                 btrfs_assert_delayed_root_empty(root);
3834
3835                 btrfs_destroy_pending_snapshots(t);
3836
3837                 btrfs_destroy_delalloc_inodes(root);
3838
3839                 spin_lock(&root->fs_info->trans_lock);
3840                 root->fs_info->running_transaction = NULL;
3841                 spin_unlock(&root->fs_info->trans_lock);
3842
3843                 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3844                                              EXTENT_DIRTY);
3845
3846                 btrfs_destroy_pinned_extent(root,
3847                                             root->fs_info->pinned_extents);
3848
3849                 atomic_set(&t->use_count, 0);
3850                 list_del_init(&t->list);
3851                 memset(t, 0, sizeof(*t));
3852                 kmem_cache_free(btrfs_transaction_cachep, t);
3853         }
3854
3855         spin_lock(&root->fs_info->trans_lock);
3856         root->fs_info->trans_no_join = 0;
3857         spin_unlock(&root->fs_info->trans_lock);
3858         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3859
3860         return 0;
3861 }
3862
3863 static struct extent_io_ops btree_extent_io_ops = {
3864         .readpage_end_io_hook = btree_readpage_end_io_hook,
3865         .readpage_io_failed_hook = btree_io_failed_hook,
3866         .submit_bio_hook = btree_submit_bio_hook,
3867         /* note we're sharing with inode.c for the merge bio hook */
3868         .merge_bio_hook = btrfs_merge_bio_hook,
3869 };