Btrfs: Do metadata checksums for reads via a workqueue
[linux-2.6-block.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/crc32c.h>
22 #include <linux/scatterlist.h>
23 #include <linux/swap.h>
24 #include <linux/radix-tree.h>
25 #include <linux/writeback.h>
26 #include <linux/buffer_head.h> // for block_sync_page
27 #include <linux/workqueue.h>
28 #include "ctree.h"
29 #include "disk-io.h"
30 #include "transaction.h"
31 #include "btrfs_inode.h"
32 #include "volumes.h"
33 #include "print-tree.h"
34
35 #if 0
36 static int check_tree_block(struct btrfs_root *root, struct extent_buffer *buf)
37 {
38         if (extent_buffer_blocknr(buf) != btrfs_header_blocknr(buf)) {
39                 printk(KERN_CRIT "buf blocknr(buf) is %llu, header is %llu\n",
40                        (unsigned long long)extent_buffer_blocknr(buf),
41                        (unsigned long long)btrfs_header_blocknr(buf));
42                 return 1;
43         }
44         return 0;
45 }
46 #endif
47
48 static struct extent_io_ops btree_extent_io_ops;
49 static struct workqueue_struct *end_io_workqueue;
50
51 struct end_io_wq {
52         struct bio *bio;
53         bio_end_io_t *end_io;
54         void *private;
55         struct btrfs_fs_info *info;
56         int error;
57         struct list_head list;
58 };
59
60 struct extent_map *btree_get_extent(struct inode *inode, struct page *page,
61                                     size_t page_offset, u64 start, u64 len,
62                                     int create)
63 {
64         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
65         struct extent_map *em;
66         int ret;
67
68 again:
69         spin_lock(&em_tree->lock);
70         em = lookup_extent_mapping(em_tree, start, len);
71         spin_unlock(&em_tree->lock);
72         if (em) {
73                 goto out;
74         }
75         em = alloc_extent_map(GFP_NOFS);
76         if (!em) {
77                 em = ERR_PTR(-ENOMEM);
78                 goto out;
79         }
80         em->start = 0;
81         em->len = i_size_read(inode);
82         em->block_start = 0;
83         em->bdev = inode->i_sb->s_bdev;
84
85         spin_lock(&em_tree->lock);
86         ret = add_extent_mapping(em_tree, em);
87         spin_unlock(&em_tree->lock);
88
89         if (ret == -EEXIST) {
90                 free_extent_map(em);
91                 em = NULL;
92                 goto again;
93         } else if (ret) {
94                 em = ERR_PTR(ret);
95         }
96 out:
97         return em;
98 }
99
100 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
101 {
102         return crc32c(seed, data, len);
103 }
104
105 void btrfs_csum_final(u32 crc, char *result)
106 {
107         *(__le32 *)result = ~cpu_to_le32(crc);
108 }
109
110 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
111                            int verify)
112 {
113         char result[BTRFS_CRC32_SIZE];
114         unsigned long len;
115         unsigned long cur_len;
116         unsigned long offset = BTRFS_CSUM_SIZE;
117         char *map_token = NULL;
118         char *kaddr;
119         unsigned long map_start;
120         unsigned long map_len;
121         int err;
122         u32 crc = ~(u32)0;
123
124         len = buf->len - offset;
125         while(len > 0) {
126                 err = map_private_extent_buffer(buf, offset, 32,
127                                         &map_token, &kaddr,
128                                         &map_start, &map_len, KM_USER0);
129                 if (err) {
130                         printk("failed to map extent buffer! %lu\n",
131                                offset);
132                         return 1;
133                 }
134                 cur_len = min(len, map_len - (offset - map_start));
135                 crc = btrfs_csum_data(root, kaddr + offset - map_start,
136                                       crc, cur_len);
137                 len -= cur_len;
138                 offset += cur_len;
139                 unmap_extent_buffer(buf, map_token, KM_USER0);
140         }
141         btrfs_csum_final(crc, result);
142
143         if (verify) {
144                 int from_this_trans = 0;
145
146                 if (root->fs_info->running_transaction &&
147                     btrfs_header_generation(buf) ==
148                     root->fs_info->running_transaction->transid)
149                         from_this_trans = 1;
150
151                 /* FIXME, this is not good */
152                 if (memcmp_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE)) {
153                         u32 val;
154                         u32 found = 0;
155                         memcpy(&found, result, BTRFS_CRC32_SIZE);
156
157                         read_extent_buffer(buf, &val, 0, BTRFS_CRC32_SIZE);
158                         WARN_ON(1);
159                         printk("btrfs: %s checksum verify failed on %llu "
160                                "wanted %X found %X from_this_trans %d "
161                                "level %d\n",
162                                root->fs_info->sb->s_id,
163                                buf->start, val, found, from_this_trans,
164                                btrfs_header_level(buf));
165                         return 1;
166                 }
167         } else {
168                 write_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE);
169         }
170         return 0;
171 }
172
173
174 int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
175 {
176         struct extent_io_tree *tree;
177         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
178         u64 found_start;
179         int found_level;
180         unsigned long len;
181         struct extent_buffer *eb;
182         tree = &BTRFS_I(page->mapping->host)->io_tree;
183
184         if (page->private == EXTENT_PAGE_PRIVATE)
185                 goto out;
186         if (!page->private)
187                 goto out;
188         len = page->private >> 2;
189         if (len == 0) {
190                 WARN_ON(1);
191         }
192         eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
193         read_extent_buffer_pages(tree, eb, start + PAGE_CACHE_SIZE, 1,
194                                  btree_get_extent);
195         btrfs_clear_buffer_defrag(eb);
196         found_start = btrfs_header_bytenr(eb);
197         if (found_start != start) {
198                 printk("warning: eb start incorrect %Lu buffer %Lu len %lu\n",
199                        start, found_start, len);
200                 WARN_ON(1);
201                 goto err;
202         }
203         if (eb->first_page != page) {
204                 printk("bad first page %lu %lu\n", eb->first_page->index,
205                        page->index);
206                 WARN_ON(1);
207                 goto err;
208         }
209         if (!PageUptodate(page)) {
210                 printk("csum not up to date page %lu\n", page->index);
211                 WARN_ON(1);
212                 goto err;
213         }
214         found_level = btrfs_header_level(eb);
215         spin_lock(&root->fs_info->hash_lock);
216         btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
217         spin_unlock(&root->fs_info->hash_lock);
218         csum_tree_block(root, eb, 0);
219 err:
220         free_extent_buffer(eb);
221 out:
222         return 0;
223 }
224
225 static int btree_writepage_io_hook(struct page *page, u64 start, u64 end)
226 {
227         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
228
229         csum_dirty_buffer(root, page);
230         return 0;
231 }
232
233 int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
234                                struct extent_state *state)
235 {
236         struct extent_io_tree *tree;
237         u64 found_start;
238         int found_level;
239         unsigned long len;
240         struct extent_buffer *eb;
241         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
242         int ret;
243
244         tree = &BTRFS_I(page->mapping->host)->io_tree;
245         if (page->private == EXTENT_PAGE_PRIVATE)
246                 goto out;
247         if (!page->private)
248                 goto out;
249         len = page->private >> 2;
250         if (len == 0) {
251                 WARN_ON(1);
252         }
253         eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
254         read_extent_buffer_pages(tree, eb, start + PAGE_CACHE_SIZE, 1,
255                                  btree_get_extent);
256         btrfs_clear_buffer_defrag(eb);
257         found_start = btrfs_header_bytenr(eb);
258         if (found_start != start) {
259                 printk("warning: eb start incorrect %Lu buffer %Lu len %lu\n",
260                        start, found_start, len);
261                 WARN_ON(1);
262                 goto err;
263         }
264         if (eb->first_page != page) {
265                 printk("bad first page %lu %lu\n", eb->first_page->index,
266                        page->index);
267                 WARN_ON(1);
268                 goto err;
269         }
270         found_level = btrfs_header_level(eb);
271
272         ret = csum_tree_block(root, eb, 1);
273
274         end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
275         end = eb->start + end - 1;
276         release_extent_buffer_tail_pages(eb);
277 err:
278         free_extent_buffer(eb);
279 out:
280         return 0;
281 }
282
283 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
284 static void end_workqueue_bio(struct bio *bio, int err)
285 #else
286 static int end_workqueue_bio(struct bio *bio,
287                                    unsigned int bytes_done, int err)
288 #endif
289 {
290         struct end_io_wq *end_io_wq = bio->bi_private;
291         struct btrfs_fs_info *fs_info;
292         unsigned long flags;
293
294 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
295         if (bio->bi_size)
296                 return 1;
297 #endif
298
299         fs_info = end_io_wq->info;
300         spin_lock_irqsave(&fs_info->end_io_work_lock, flags);
301         end_io_wq->error = err;
302         list_add_tail(&end_io_wq->list, &fs_info->end_io_work_list);
303         spin_unlock_irqrestore(&fs_info->end_io_work_lock, flags);
304         queue_work(end_io_workqueue, &fs_info->end_io_work);
305
306 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
307         return 0;
308 #endif
309 }
310
311 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio)
312 {
313         struct btrfs_root *root = BTRFS_I(inode)->root;
314         struct end_io_wq *end_io_wq;
315         u64 offset;
316         offset = bio->bi_sector << 9;
317
318         if (rw & (1 << BIO_RW)) {
319                 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio);
320         }
321
322         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
323         if (!end_io_wq)
324                 return -ENOMEM;
325
326         end_io_wq->private = bio->bi_private;
327         end_io_wq->end_io = bio->bi_end_io;
328         end_io_wq->info = root->fs_info;
329         end_io_wq->error = 0;
330         end_io_wq->bio = bio;
331
332         bio->bi_private = end_io_wq;
333         bio->bi_end_io = end_workqueue_bio;
334
335         if (offset == BTRFS_SUPER_INFO_OFFSET) {
336                 bio->bi_bdev = root->fs_info->sb->s_bdev;
337                 submit_bio(rw, bio);
338                 return 0;
339         }
340         return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio);
341 }
342
343 static int btree_writepage(struct page *page, struct writeback_control *wbc)
344 {
345         struct extent_io_tree *tree;
346         tree = &BTRFS_I(page->mapping->host)->io_tree;
347         return extent_write_full_page(tree, page, btree_get_extent, wbc);
348 }
349
350 static int btree_writepages(struct address_space *mapping,
351                             struct writeback_control *wbc)
352 {
353         struct extent_io_tree *tree;
354         tree = &BTRFS_I(mapping->host)->io_tree;
355         if (wbc->sync_mode == WB_SYNC_NONE) {
356                 u64 num_dirty;
357                 u64 start = 0;
358                 unsigned long thresh = 96 * 1024 * 1024;
359
360                 if (wbc->for_kupdate)
361                         return 0;
362
363                 if (current_is_pdflush()) {
364                         thresh = 96 * 1024 * 1024;
365                 } else {
366                         thresh = 8 * 1024 * 1024;
367                 }
368                 num_dirty = count_range_bits(tree, &start, (u64)-1,
369                                              thresh, EXTENT_DIRTY);
370                 if (num_dirty < thresh) {
371                         return 0;
372                 }
373         }
374         return extent_writepages(tree, mapping, btree_get_extent, wbc);
375 }
376
377 int btree_readpage(struct file *file, struct page *page)
378 {
379         struct extent_io_tree *tree;
380         tree = &BTRFS_I(page->mapping->host)->io_tree;
381         return extent_read_full_page(tree, page, btree_get_extent);
382 }
383
384 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
385 {
386         struct extent_io_tree *tree;
387         struct extent_map_tree *map;
388         int ret;
389
390         tree = &BTRFS_I(page->mapping->host)->io_tree;
391         map = &BTRFS_I(page->mapping->host)->extent_tree;
392         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
393         if (ret == 1) {
394                 invalidate_extent_lru(tree, page_offset(page), PAGE_CACHE_SIZE);
395                 ClearPagePrivate(page);
396                 set_page_private(page, 0);
397                 page_cache_release(page);
398         }
399         return ret;
400 }
401
402 static void btree_invalidatepage(struct page *page, unsigned long offset)
403 {
404         struct extent_io_tree *tree;
405         tree = &BTRFS_I(page->mapping->host)->io_tree;
406         extent_invalidatepage(tree, page, offset);
407         btree_releasepage(page, GFP_NOFS);
408 }
409
410 #if 0
411 static int btree_writepage(struct page *page, struct writeback_control *wbc)
412 {
413         struct buffer_head *bh;
414         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
415         struct buffer_head *head;
416         if (!page_has_buffers(page)) {
417                 create_empty_buffers(page, root->fs_info->sb->s_blocksize,
418                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
419         }
420         head = page_buffers(page);
421         bh = head;
422         do {
423                 if (buffer_dirty(bh))
424                         csum_tree_block(root, bh, 0);
425                 bh = bh->b_this_page;
426         } while (bh != head);
427         return block_write_full_page(page, btree_get_block, wbc);
428 }
429 #endif
430
431 static struct address_space_operations btree_aops = {
432         .readpage       = btree_readpage,
433         .writepage      = btree_writepage,
434         .writepages     = btree_writepages,
435         .releasepage    = btree_releasepage,
436         .invalidatepage = btree_invalidatepage,
437         .sync_page      = block_sync_page,
438 };
439
440 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize)
441 {
442         struct extent_buffer *buf = NULL;
443         struct inode *btree_inode = root->fs_info->btree_inode;
444         int ret = 0;
445
446         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
447         if (!buf)
448                 return 0;
449         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
450                                  buf, 0, 0, btree_get_extent);
451         free_extent_buffer(buf);
452         return ret;
453 }
454
455 static int close_all_devices(struct btrfs_fs_info *fs_info)
456 {
457         struct list_head *list;
458         struct list_head *next;
459         struct btrfs_device *device;
460
461         list = &fs_info->fs_devices->devices;
462         list_for_each(next, list) {
463                 device = list_entry(next, struct btrfs_device, dev_list);
464                 if (device->bdev && device->bdev != fs_info->sb->s_bdev)
465                         close_bdev_excl(device->bdev);
466                 device->bdev = NULL;
467         }
468         return 0;
469 }
470
471 int btrfs_verify_block_csum(struct btrfs_root *root,
472                             struct extent_buffer *buf)
473 {
474         return btrfs_buffer_uptodate(buf);
475 }
476
477 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
478                                             u64 bytenr, u32 blocksize)
479 {
480         struct inode *btree_inode = root->fs_info->btree_inode;
481         struct extent_buffer *eb;
482         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
483                                 bytenr, blocksize, GFP_NOFS);
484         return eb;
485 }
486
487 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
488                                                  u64 bytenr, u32 blocksize)
489 {
490         struct inode *btree_inode = root->fs_info->btree_inode;
491         struct extent_buffer *eb;
492
493         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
494                                  bytenr, blocksize, NULL, GFP_NOFS);
495         return eb;
496 }
497
498
499 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
500                                       u32 blocksize)
501 {
502         struct extent_buffer *buf = NULL;
503         struct inode *btree_inode = root->fs_info->btree_inode;
504         struct extent_io_tree *io_tree;
505         int ret;
506
507         io_tree = &BTRFS_I(btree_inode)->io_tree;
508
509         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
510         if (!buf)
511                 return NULL;
512
513         ret = read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, buf, 0,
514                                        1, btree_get_extent);
515
516         if (ret == 0) {
517                 buf->flags |= EXTENT_UPTODATE;
518         }
519         return buf;
520
521 }
522
523 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
524                      struct extent_buffer *buf)
525 {
526         struct inode *btree_inode = root->fs_info->btree_inode;
527         if (btrfs_header_generation(buf) ==
528             root->fs_info->running_transaction->transid)
529                 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
530                                           buf);
531         return 0;
532 }
533
534 int wait_on_tree_block_writeback(struct btrfs_root *root,
535                                  struct extent_buffer *buf)
536 {
537         struct inode *btree_inode = root->fs_info->btree_inode;
538         wait_on_extent_buffer_writeback(&BTRFS_I(btree_inode)->io_tree,
539                                         buf);
540         return 0;
541 }
542
543 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
544                         u32 stripesize, struct btrfs_root *root,
545                         struct btrfs_fs_info *fs_info,
546                         u64 objectid)
547 {
548         root->node = NULL;
549         root->inode = NULL;
550         root->commit_root = NULL;
551         root->sectorsize = sectorsize;
552         root->nodesize = nodesize;
553         root->leafsize = leafsize;
554         root->stripesize = stripesize;
555         root->ref_cows = 0;
556         root->track_dirty = 0;
557
558         root->fs_info = fs_info;
559         root->objectid = objectid;
560         root->last_trans = 0;
561         root->highest_inode = 0;
562         root->last_inode_alloc = 0;
563         root->name = NULL;
564         root->in_sysfs = 0;
565
566         INIT_LIST_HEAD(&root->dirty_list);
567         memset(&root->root_key, 0, sizeof(root->root_key));
568         memset(&root->root_item, 0, sizeof(root->root_item));
569         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
570         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
571         init_completion(&root->kobj_unregister);
572         root->defrag_running = 0;
573         root->defrag_level = 0;
574         root->root_key.objectid = objectid;
575         return 0;
576 }
577
578 static int find_and_setup_root(struct btrfs_root *tree_root,
579                                struct btrfs_fs_info *fs_info,
580                                u64 objectid,
581                                struct btrfs_root *root)
582 {
583         int ret;
584         u32 blocksize;
585
586         __setup_root(tree_root->nodesize, tree_root->leafsize,
587                      tree_root->sectorsize, tree_root->stripesize,
588                      root, fs_info, objectid);
589         ret = btrfs_find_last_root(tree_root, objectid,
590                                    &root->root_item, &root->root_key);
591         BUG_ON(ret);
592
593         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
594         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
595                                      blocksize);
596         BUG_ON(!root->node);
597         return 0;
598 }
599
600 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_fs_info *fs_info,
601                                                struct btrfs_key *location)
602 {
603         struct btrfs_root *root;
604         struct btrfs_root *tree_root = fs_info->tree_root;
605         struct btrfs_path *path;
606         struct extent_buffer *l;
607         u64 highest_inode;
608         u32 blocksize;
609         int ret = 0;
610
611         root = kzalloc(sizeof(*root), GFP_NOFS);
612         if (!root)
613                 return ERR_PTR(-ENOMEM);
614         if (location->offset == (u64)-1) {
615                 ret = find_and_setup_root(tree_root, fs_info,
616                                           location->objectid, root);
617                 if (ret) {
618                         kfree(root);
619                         return ERR_PTR(ret);
620                 }
621                 goto insert;
622         }
623
624         __setup_root(tree_root->nodesize, tree_root->leafsize,
625                      tree_root->sectorsize, tree_root->stripesize,
626                      root, fs_info, location->objectid);
627
628         path = btrfs_alloc_path();
629         BUG_ON(!path);
630         ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
631         if (ret != 0) {
632                 if (ret > 0)
633                         ret = -ENOENT;
634                 goto out;
635         }
636         l = path->nodes[0];
637         read_extent_buffer(l, &root->root_item,
638                btrfs_item_ptr_offset(l, path->slots[0]),
639                sizeof(root->root_item));
640         memcpy(&root->root_key, location, sizeof(*location));
641         ret = 0;
642 out:
643         btrfs_release_path(root, path);
644         btrfs_free_path(path);
645         if (ret) {
646                 kfree(root);
647                 return ERR_PTR(ret);
648         }
649         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
650         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
651                                      blocksize);
652         BUG_ON(!root->node);
653 insert:
654         root->ref_cows = 1;
655         ret = btrfs_find_highest_inode(root, &highest_inode);
656         if (ret == 0) {
657                 root->highest_inode = highest_inode;
658                 root->last_inode_alloc = highest_inode;
659         }
660         return root;
661 }
662
663 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
664                                         u64 root_objectid)
665 {
666         struct btrfs_root *root;
667
668         if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
669                 return fs_info->tree_root;
670         if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
671                 return fs_info->extent_root;
672
673         root = radix_tree_lookup(&fs_info->fs_roots_radix,
674                                  (unsigned long)root_objectid);
675         return root;
676 }
677
678 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
679                                               struct btrfs_key *location)
680 {
681         struct btrfs_root *root;
682         int ret;
683
684         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
685                 return fs_info->tree_root;
686         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
687                 return fs_info->extent_root;
688
689         root = radix_tree_lookup(&fs_info->fs_roots_radix,
690                                  (unsigned long)location->objectid);
691         if (root)
692                 return root;
693
694         root = btrfs_read_fs_root_no_radix(fs_info, location);
695         if (IS_ERR(root))
696                 return root;
697         ret = radix_tree_insert(&fs_info->fs_roots_radix,
698                                 (unsigned long)root->root_key.objectid,
699                                 root);
700         if (ret) {
701                 free_extent_buffer(root->node);
702                 kfree(root);
703                 return ERR_PTR(ret);
704         }
705         ret = btrfs_find_dead_roots(fs_info->tree_root,
706                                     root->root_key.objectid, root);
707         BUG_ON(ret);
708
709         return root;
710 }
711
712 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
713                                       struct btrfs_key *location,
714                                       const char *name, int namelen)
715 {
716         struct btrfs_root *root;
717         int ret;
718
719         root = btrfs_read_fs_root_no_name(fs_info, location);
720         if (!root)
721                 return NULL;
722
723         if (root->in_sysfs)
724                 return root;
725
726         ret = btrfs_set_root_name(root, name, namelen);
727         if (ret) {
728                 free_extent_buffer(root->node);
729                 kfree(root);
730                 return ERR_PTR(ret);
731         }
732
733         ret = btrfs_sysfs_add_root(root);
734         if (ret) {
735                 free_extent_buffer(root->node);
736                 kfree(root->name);
737                 kfree(root);
738                 return ERR_PTR(ret);
739         }
740         root->in_sysfs = 1;
741         return root;
742 }
743 #if 0
744 static int add_hasher(struct btrfs_fs_info *info, char *type) {
745         struct btrfs_hasher *hasher;
746
747         hasher = kmalloc(sizeof(*hasher), GFP_NOFS);
748         if (!hasher)
749                 return -ENOMEM;
750         hasher->hash_tfm = crypto_alloc_hash(type, 0, CRYPTO_ALG_ASYNC);
751         if (!hasher->hash_tfm) {
752                 kfree(hasher);
753                 return -EINVAL;
754         }
755         spin_lock(&info->hash_lock);
756         list_add(&hasher->list, &info->hashers);
757         spin_unlock(&info->hash_lock);
758         return 0;
759 }
760 #endif
761
762 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
763 {
764         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
765         int ret = 0;
766         struct list_head *cur;
767         struct btrfs_device *device;
768         struct backing_dev_info *bdi;
769
770         list_for_each(cur, &info->fs_devices->devices) {
771                 device = list_entry(cur, struct btrfs_device, dev_list);
772                 bdi = blk_get_backing_dev_info(device->bdev);
773                 if (bdi && bdi_congested(bdi, bdi_bits)) {
774                         ret = 1;
775                         break;
776                 }
777         }
778         return ret;
779 }
780
781 void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
782 {
783         struct list_head *cur;
784         struct btrfs_device *device;
785         struct btrfs_fs_info *info;
786
787         info = (struct btrfs_fs_info *)bdi->unplug_io_data;
788         list_for_each(cur, &info->fs_devices->devices) {
789                 device = list_entry(cur, struct btrfs_device, dev_list);
790                 bdi = blk_get_backing_dev_info(device->bdev);
791                 if (bdi->unplug_io_fn) {
792                         bdi->unplug_io_fn(bdi, page);
793                 }
794         }
795 }
796
797 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
798 {
799         bdi_init(bdi);
800         bdi->ra_pages   = default_backing_dev_info.ra_pages * 4;
801         bdi->state              = 0;
802         bdi->capabilities       = default_backing_dev_info.capabilities;
803         bdi->unplug_io_fn       = btrfs_unplug_io_fn;
804         bdi->unplug_io_data     = info;
805         bdi->congested_fn       = btrfs_congested_fn;
806         bdi->congested_data     = info;
807         return 0;
808 }
809
810 static int bio_ready_for_csum(struct bio *bio)
811 {
812         u64 length = 0;
813         u64 buf_len = 0;
814         u64 start = 0;
815         struct page *page;
816         struct extent_io_tree *io_tree = NULL;
817         struct btrfs_fs_info *info = NULL;
818         struct bio_vec *bvec;
819         int i;
820         int ret;
821
822         bio_for_each_segment(bvec, bio, i) {
823                 page = bvec->bv_page;
824                 if (page->private == EXTENT_PAGE_PRIVATE) {
825                         length += bvec->bv_len;
826                         continue;
827                 }
828                 if (!page->private) {
829                         length += bvec->bv_len;
830                         continue;
831                 }
832                 length = bvec->bv_len;
833                 buf_len = page->private >> 2;
834                 start = page_offset(page) + bvec->bv_offset;
835                 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
836                 info = BTRFS_I(page->mapping->host)->root->fs_info;
837         }
838         /* are we fully contained in this bio? */
839         if (buf_len <= length)
840                 return 1;
841
842         ret = extent_range_uptodate(io_tree, start + length,
843                                     start + buf_len - 1);
844         if (ret == 1)
845                 return ret;
846         return ret;
847 }
848
849 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
850 void btrfs_end_io_csum(void *p)
851 #else
852 void btrfs_end_io_csum(struct work_struct *work)
853 #endif
854 {
855 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
856         struct btrfs_fs_info *fs_info = p;
857 #else
858         struct btrfs_fs_info *fs_info = container_of(work,
859                                                      struct btrfs_fs_info,
860                                                      end_io_work);
861 #endif
862         unsigned long flags;
863         struct end_io_wq *end_io_wq;
864         struct bio *bio;
865         struct list_head *next;
866         int error;
867         int was_empty;
868
869         while(1) {
870                 spin_lock_irqsave(&fs_info->end_io_work_lock, flags);
871                 if (list_empty(&fs_info->end_io_work_list)) {
872                         spin_unlock_irqrestore(&fs_info->end_io_work_lock,
873                                                flags);
874                         return;
875                 }
876                 next = fs_info->end_io_work_list.next;
877                 list_del(next);
878                 spin_unlock_irqrestore(&fs_info->end_io_work_lock, flags);
879
880                 end_io_wq = list_entry(next, struct end_io_wq, list);
881
882                 bio = end_io_wq->bio;
883                 if (!bio_ready_for_csum(bio)) {
884                         spin_lock_irqsave(&fs_info->end_io_work_lock, flags);
885                         was_empty = list_empty(&fs_info->end_io_work_list);
886                         list_add_tail(&end_io_wq->list,
887                                       &fs_info->end_io_work_list);
888                         spin_unlock_irqrestore(&fs_info->end_io_work_lock,
889                                                flags);
890                         if (was_empty)
891                                 return;
892                         continue;
893                 }
894                 error = end_io_wq->error;
895                 bio->bi_private = end_io_wq->private;
896                 bio->bi_end_io = end_io_wq->end_io;
897                 kfree(end_io_wq);
898                 bio_endio(bio, error);
899         }
900 }
901
902
903 struct btrfs_root *open_ctree(struct super_block *sb,
904                               struct btrfs_fs_devices *fs_devices)
905 {
906         u32 sectorsize;
907         u32 nodesize;
908         u32 leafsize;
909         u32 blocksize;
910         u32 stripesize;
911         struct btrfs_root *extent_root = kmalloc(sizeof(struct btrfs_root),
912                                                  GFP_NOFS);
913         struct btrfs_root *tree_root = kmalloc(sizeof(struct btrfs_root),
914                                                GFP_NOFS);
915         struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
916                                                 GFP_NOFS);
917         struct btrfs_root *chunk_root = kmalloc(sizeof(struct btrfs_root),
918                                                 GFP_NOFS);
919         struct btrfs_root *dev_root = kmalloc(sizeof(struct btrfs_root),
920                                               GFP_NOFS);
921         int ret;
922         int err = -EINVAL;
923         struct btrfs_super_block *disk_super;
924
925         if (!extent_root || !tree_root || !fs_info) {
926                 err = -ENOMEM;
927                 goto fail;
928         }
929         end_io_workqueue = create_workqueue("btrfs-end-io");
930         BUG_ON(!end_io_workqueue);
931
932         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
933         INIT_LIST_HEAD(&fs_info->trans_list);
934         INIT_LIST_HEAD(&fs_info->dead_roots);
935         INIT_LIST_HEAD(&fs_info->hashers);
936         INIT_LIST_HEAD(&fs_info->end_io_work_list);
937         spin_lock_init(&fs_info->hash_lock);
938         spin_lock_init(&fs_info->end_io_work_lock);
939         spin_lock_init(&fs_info->delalloc_lock);
940         spin_lock_init(&fs_info->new_trans_lock);
941
942         init_completion(&fs_info->kobj_unregister);
943         sb_set_blocksize(sb, 4096);
944         fs_info->tree_root = tree_root;
945         fs_info->extent_root = extent_root;
946         fs_info->chunk_root = chunk_root;
947         fs_info->dev_root = dev_root;
948         fs_info->fs_devices = fs_devices;
949         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
950         INIT_LIST_HEAD(&fs_info->space_info);
951         btrfs_mapping_init(&fs_info->mapping_tree);
952         fs_info->sb = sb;
953         fs_info->max_extent = (u64)-1;
954         fs_info->max_inline = 8192 * 1024;
955         setup_bdi(fs_info, &fs_info->bdi);
956         fs_info->btree_inode = new_inode(sb);
957         fs_info->btree_inode->i_ino = 1;
958         fs_info->btree_inode->i_nlink = 1;
959         fs_info->btree_inode->i_size = sb->s_bdev->bd_inode->i_size;
960         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
961         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
962
963         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
964                              fs_info->btree_inode->i_mapping,
965                              GFP_NOFS);
966         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
967                              GFP_NOFS);
968
969         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
970
971         extent_io_tree_init(&fs_info->free_space_cache,
972                              fs_info->btree_inode->i_mapping, GFP_NOFS);
973         extent_io_tree_init(&fs_info->block_group_cache,
974                              fs_info->btree_inode->i_mapping, GFP_NOFS);
975         extent_io_tree_init(&fs_info->pinned_extents,
976                              fs_info->btree_inode->i_mapping, GFP_NOFS);
977         extent_io_tree_init(&fs_info->pending_del,
978                              fs_info->btree_inode->i_mapping, GFP_NOFS);
979         extent_io_tree_init(&fs_info->extent_ins,
980                              fs_info->btree_inode->i_mapping, GFP_NOFS);
981         fs_info->do_barriers = 1;
982
983         INIT_WORK(&fs_info->end_io_work, btrfs_end_io_csum);
984 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
985         INIT_WORK(&fs_info->trans_work, btrfs_transaction_cleaner, fs_info);
986 #else
987         INIT_DELAYED_WORK(&fs_info->trans_work, btrfs_transaction_cleaner);
988 #endif
989         BTRFS_I(fs_info->btree_inode)->root = tree_root;
990         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
991                sizeof(struct btrfs_key));
992         insert_inode_hash(fs_info->btree_inode);
993         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
994
995         mutex_init(&fs_info->trans_mutex);
996         mutex_init(&fs_info->fs_mutex);
997
998 #if 0
999         ret = add_hasher(fs_info, "crc32c");
1000         if (ret) {
1001                 printk("btrfs: failed hash setup, modprobe cryptomgr?\n");
1002                 err = -ENOMEM;
1003                 goto fail_iput;
1004         }
1005 #endif
1006         __setup_root(4096, 4096, 4096, 4096, tree_root,
1007                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
1008
1009         fs_info->sb_buffer = read_tree_block(tree_root,
1010                                              BTRFS_SUPER_INFO_OFFSET,
1011                                              4096);
1012
1013         if (!fs_info->sb_buffer)
1014                 goto fail_iput;
1015
1016         read_extent_buffer(fs_info->sb_buffer, &fs_info->super_copy, 0,
1017                            sizeof(fs_info->super_copy));
1018
1019         read_extent_buffer(fs_info->sb_buffer, fs_info->fsid,
1020                            (unsigned long)btrfs_super_fsid(fs_info->sb_buffer),
1021                            BTRFS_FSID_SIZE);
1022
1023         disk_super = &fs_info->super_copy;
1024         if (!btrfs_super_root(disk_super))
1025                 goto fail_sb_buffer;
1026
1027         if (btrfs_super_num_devices(disk_super) != fs_devices->num_devices) {
1028                 printk("Btrfs: wanted %llu devices, but found %llu\n",
1029                        (unsigned long long)btrfs_super_num_devices(disk_super),
1030                        (unsigned long long)fs_devices->num_devices);
1031                 goto fail_sb_buffer;
1032         }
1033         nodesize = btrfs_super_nodesize(disk_super);
1034         leafsize = btrfs_super_leafsize(disk_super);
1035         sectorsize = btrfs_super_sectorsize(disk_super);
1036         stripesize = btrfs_super_stripesize(disk_super);
1037         tree_root->nodesize = nodesize;
1038         tree_root->leafsize = leafsize;
1039         tree_root->sectorsize = sectorsize;
1040         tree_root->stripesize = stripesize;
1041         sb_set_blocksize(sb, sectorsize);
1042
1043         i_size_write(fs_info->btree_inode,
1044                      btrfs_super_total_bytes(disk_super));
1045
1046         if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1047                     sizeof(disk_super->magic))) {
1048                 printk("btrfs: valid FS not found on %s\n", sb->s_id);
1049                 goto fail_sb_buffer;
1050         }
1051
1052         mutex_lock(&fs_info->fs_mutex);
1053
1054         ret = btrfs_read_sys_array(tree_root);
1055         BUG_ON(ret);
1056
1057         blocksize = btrfs_level_size(tree_root,
1058                                      btrfs_super_chunk_root_level(disk_super));
1059
1060         __setup_root(nodesize, leafsize, sectorsize, stripesize,
1061                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1062
1063         chunk_root->node = read_tree_block(chunk_root,
1064                                            btrfs_super_chunk_root(disk_super),
1065                                            blocksize);
1066         BUG_ON(!chunk_root->node);
1067
1068         ret = btrfs_read_chunk_tree(chunk_root);
1069         BUG_ON(ret);
1070
1071         blocksize = btrfs_level_size(tree_root,
1072                                      btrfs_super_root_level(disk_super));
1073
1074
1075         tree_root->node = read_tree_block(tree_root,
1076                                           btrfs_super_root(disk_super),
1077                                           blocksize);
1078         if (!tree_root->node)
1079                 goto fail_sb_buffer;
1080
1081
1082         ret = find_and_setup_root(tree_root, fs_info,
1083                                   BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1084         if (ret)
1085                 goto fail_tree_root;
1086         extent_root->track_dirty = 1;
1087
1088         ret = find_and_setup_root(tree_root, fs_info,
1089                                   BTRFS_DEV_TREE_OBJECTID, dev_root);
1090         dev_root->track_dirty = 1;
1091
1092         if (ret)
1093                 goto fail_extent_root;
1094
1095         btrfs_read_block_groups(extent_root);
1096
1097         fs_info->generation = btrfs_super_generation(disk_super) + 1;
1098         fs_info->data_alloc_profile = (u64)-1;
1099         fs_info->metadata_alloc_profile = (u64)-1;
1100         fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1101
1102         mutex_unlock(&fs_info->fs_mutex);
1103         return tree_root;
1104
1105 fail_extent_root:
1106         free_extent_buffer(extent_root->node);
1107 fail_tree_root:
1108         mutex_unlock(&fs_info->fs_mutex);
1109         free_extent_buffer(tree_root->node);
1110 fail_sb_buffer:
1111         free_extent_buffer(fs_info->sb_buffer);
1112         extent_io_tree_empty_lru(&BTRFS_I(fs_info->btree_inode)->io_tree);
1113 fail_iput:
1114         iput(fs_info->btree_inode);
1115 fail:
1116         close_all_devices(fs_info);
1117         kfree(extent_root);
1118         kfree(tree_root);
1119         bdi_destroy(&fs_info->bdi);
1120         kfree(fs_info);
1121         return ERR_PTR(err);
1122 }
1123
1124 int write_ctree_super(struct btrfs_trans_handle *trans, struct btrfs_root
1125                       *root)
1126 {
1127         int ret;
1128         struct extent_buffer *super = root->fs_info->sb_buffer;
1129         struct inode *btree_inode = root->fs_info->btree_inode;
1130         struct super_block *sb = root->fs_info->sb;
1131
1132         if (!btrfs_test_opt(root, NOBARRIER))
1133                 blkdev_issue_flush(sb->s_bdev, NULL);
1134         set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, super);
1135         ret = sync_page_range_nolock(btree_inode, btree_inode->i_mapping,
1136                                      super->start, super->len);
1137         if (!btrfs_test_opt(root, NOBARRIER))
1138                 blkdev_issue_flush(sb->s_bdev, NULL);
1139         return ret;
1140 }
1141
1142 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
1143 {
1144         radix_tree_delete(&fs_info->fs_roots_radix,
1145                           (unsigned long)root->root_key.objectid);
1146         if (root->in_sysfs)
1147                 btrfs_sysfs_del_root(root);
1148         if (root->inode)
1149                 iput(root->inode);
1150         if (root->node)
1151                 free_extent_buffer(root->node);
1152         if (root->commit_root)
1153                 free_extent_buffer(root->commit_root);
1154         if (root->name)
1155                 kfree(root->name);
1156         kfree(root);
1157         return 0;
1158 }
1159
1160 static int del_fs_roots(struct btrfs_fs_info *fs_info)
1161 {
1162         int ret;
1163         struct btrfs_root *gang[8];
1164         int i;
1165
1166         while(1) {
1167                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1168                                              (void **)gang, 0,
1169                                              ARRAY_SIZE(gang));
1170                 if (!ret)
1171                         break;
1172                 for (i = 0; i < ret; i++)
1173                         btrfs_free_fs_root(fs_info, gang[i]);
1174         }
1175         return 0;
1176 }
1177
1178 int close_ctree(struct btrfs_root *root)
1179 {
1180         int ret;
1181         struct btrfs_trans_handle *trans;
1182         struct btrfs_fs_info *fs_info = root->fs_info;
1183
1184         fs_info->closing = 1;
1185         btrfs_transaction_flush_work(root);
1186         mutex_lock(&fs_info->fs_mutex);
1187         btrfs_defrag_dirty_roots(root->fs_info);
1188         trans = btrfs_start_transaction(root, 1);
1189         ret = btrfs_commit_transaction(trans, root);
1190         /* run commit again to  drop the original snapshot */
1191         trans = btrfs_start_transaction(root, 1);
1192         btrfs_commit_transaction(trans, root);
1193         ret = btrfs_write_and_wait_transaction(NULL, root);
1194         BUG_ON(ret);
1195         write_ctree_super(NULL, root);
1196         mutex_unlock(&fs_info->fs_mutex);
1197
1198         if (fs_info->delalloc_bytes) {
1199                 printk("btrfs: at unmount delalloc count %Lu\n",
1200                        fs_info->delalloc_bytes);
1201         }
1202         if (fs_info->extent_root->node)
1203                 free_extent_buffer(fs_info->extent_root->node);
1204
1205         if (fs_info->tree_root->node)
1206                 free_extent_buffer(fs_info->tree_root->node);
1207
1208         if (root->fs_info->chunk_root->node);
1209                 free_extent_buffer(root->fs_info->chunk_root->node);
1210
1211         if (root->fs_info->dev_root->node);
1212                 free_extent_buffer(root->fs_info->dev_root->node);
1213
1214         free_extent_buffer(fs_info->sb_buffer);
1215
1216         btrfs_free_block_groups(root->fs_info);
1217         del_fs_roots(fs_info);
1218
1219         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
1220
1221         extent_io_tree_empty_lru(&fs_info->free_space_cache);
1222         extent_io_tree_empty_lru(&fs_info->block_group_cache);
1223         extent_io_tree_empty_lru(&fs_info->pinned_extents);
1224         extent_io_tree_empty_lru(&fs_info->pending_del);
1225         extent_io_tree_empty_lru(&fs_info->extent_ins);
1226         extent_io_tree_empty_lru(&BTRFS_I(fs_info->btree_inode)->io_tree);
1227
1228         truncate_inode_pages(fs_info->btree_inode->i_mapping, 0);
1229         flush_workqueue(end_io_workqueue);
1230         destroy_workqueue(end_io_workqueue);
1231
1232         iput(fs_info->btree_inode);
1233 #if 0
1234         while(!list_empty(&fs_info->hashers)) {
1235                 struct btrfs_hasher *hasher;
1236                 hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher,
1237                                     hashers);
1238                 list_del(&hasher->hashers);
1239                 crypto_free_hash(&fs_info->hash_tfm);
1240                 kfree(hasher);
1241         }
1242 #endif
1243         close_all_devices(fs_info);
1244         btrfs_mapping_tree_free(&fs_info->mapping_tree);
1245         bdi_destroy(&fs_info->bdi);
1246
1247         kfree(fs_info->extent_root);
1248         kfree(fs_info->tree_root);
1249         kfree(fs_info->chunk_root);
1250         kfree(fs_info->dev_root);
1251         return 0;
1252 }
1253
1254 int btrfs_buffer_uptodate(struct extent_buffer *buf)
1255 {
1256         struct inode *btree_inode = buf->first_page->mapping->host;
1257         return extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
1258 }
1259
1260 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
1261 {
1262         struct inode *btree_inode = buf->first_page->mapping->host;
1263         return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
1264                                           buf);
1265 }
1266
1267 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
1268 {
1269         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1270         u64 transid = btrfs_header_generation(buf);
1271         struct inode *btree_inode = root->fs_info->btree_inode;
1272
1273         if (transid != root->fs_info->generation) {
1274                 printk(KERN_CRIT "transid mismatch buffer %llu, found %Lu running %Lu\n",
1275                         (unsigned long long)buf->start,
1276                         transid, root->fs_info->generation);
1277                 WARN_ON(1);
1278         }
1279         set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, buf);
1280 }
1281
1282 void btrfs_throttle(struct btrfs_root *root)
1283 {
1284         struct backing_dev_info *bdi;
1285
1286         bdi = root->fs_info->sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
1287         if (root->fs_info->throttles && bdi_write_congested(bdi)) {
1288 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,18)
1289                 congestion_wait(WRITE, HZ/20);
1290 #else
1291                 blk_congestion_wait(WRITE, HZ/20);
1292 #endif
1293         }
1294 }
1295
1296 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
1297 {
1298         balance_dirty_pages_ratelimited_nr(
1299                                    root->fs_info->btree_inode->i_mapping, 1);
1300 }
1301
1302 void btrfs_set_buffer_defrag(struct extent_buffer *buf)
1303 {
1304         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1305         struct inode *btree_inode = root->fs_info->btree_inode;
1306         set_extent_bits(&BTRFS_I(btree_inode)->io_tree, buf->start,
1307                         buf->start + buf->len - 1, EXTENT_DEFRAG, GFP_NOFS);
1308 }
1309
1310 void btrfs_set_buffer_defrag_done(struct extent_buffer *buf)
1311 {
1312         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1313         struct inode *btree_inode = root->fs_info->btree_inode;
1314         set_extent_bits(&BTRFS_I(btree_inode)->io_tree, buf->start,
1315                         buf->start + buf->len - 1, EXTENT_DEFRAG_DONE,
1316                         GFP_NOFS);
1317 }
1318
1319 int btrfs_buffer_defrag(struct extent_buffer *buf)
1320 {
1321         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1322         struct inode *btree_inode = root->fs_info->btree_inode;
1323         return test_range_bit(&BTRFS_I(btree_inode)->io_tree,
1324                      buf->start, buf->start + buf->len - 1, EXTENT_DEFRAG, 0);
1325 }
1326
1327 int btrfs_buffer_defrag_done(struct extent_buffer *buf)
1328 {
1329         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1330         struct inode *btree_inode = root->fs_info->btree_inode;
1331         return test_range_bit(&BTRFS_I(btree_inode)->io_tree,
1332                      buf->start, buf->start + buf->len - 1,
1333                      EXTENT_DEFRAG_DONE, 0);
1334 }
1335
1336 int btrfs_clear_buffer_defrag_done(struct extent_buffer *buf)
1337 {
1338         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1339         struct inode *btree_inode = root->fs_info->btree_inode;
1340         return clear_extent_bits(&BTRFS_I(btree_inode)->io_tree,
1341                      buf->start, buf->start + buf->len - 1,
1342                      EXTENT_DEFRAG_DONE, GFP_NOFS);
1343 }
1344
1345 int btrfs_clear_buffer_defrag(struct extent_buffer *buf)
1346 {
1347         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1348         struct inode *btree_inode = root->fs_info->btree_inode;
1349         return clear_extent_bits(&BTRFS_I(btree_inode)->io_tree,
1350                      buf->start, buf->start + buf->len - 1,
1351                      EXTENT_DEFRAG, GFP_NOFS);
1352 }
1353
1354 int btrfs_read_buffer(struct extent_buffer *buf)
1355 {
1356         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1357         struct inode *btree_inode = root->fs_info->btree_inode;
1358         int ret;
1359         ret = read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1360                                         buf, 0, 1, btree_get_extent);
1361         if (ret == 0) {
1362                 buf->flags |= EXTENT_UPTODATE;
1363         }
1364         return ret;
1365 }
1366
1367 static struct extent_io_ops btree_extent_io_ops = {
1368         .writepage_io_hook = btree_writepage_io_hook,
1369         .readpage_end_io_hook = btree_readpage_end_io_hook,
1370         .submit_bio_hook = btree_submit_bio_hook,
1371         /* note we're sharing with inode.c for the merge bio hook */
1372         .merge_bio_hook = btrfs_merge_bio_hook,
1373 };