btrfs: remove parameter blocksize from read_tree_block
[linux-2.6-block.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
56
57 static struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61                                     int read_only);
62 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64                                       struct btrfs_root *root);
65 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
66 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
67                                         struct extent_io_tree *dirty_pages,
68                                         int mark);
69 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
70                                        struct extent_io_tree *pinned_extents);
71 static int btrfs_cleanup_transaction(struct btrfs_root *root);
72 static void btrfs_error_commit_super(struct btrfs_root *root);
73
74 /*
75  * end_io_wq structs are used to do processing in task context when an IO is
76  * complete.  This is used during reads to verify checksums, and it is used
77  * by writes to insert metadata for new file extents after IO is complete.
78  */
79 struct end_io_wq {
80         struct bio *bio;
81         bio_end_io_t *end_io;
82         void *private;
83         struct btrfs_fs_info *info;
84         int error;
85         int metadata;
86         struct list_head list;
87         struct btrfs_work work;
88 };
89
90 /*
91  * async submit bios are used to offload expensive checksumming
92  * onto the worker threads.  They checksum file and metadata bios
93  * just before they are sent down the IO stack.
94  */
95 struct async_submit_bio {
96         struct inode *inode;
97         struct bio *bio;
98         struct list_head list;
99         extent_submit_bio_hook_t *submit_bio_start;
100         extent_submit_bio_hook_t *submit_bio_done;
101         int rw;
102         int mirror_num;
103         unsigned long bio_flags;
104         /*
105          * bio_offset is optional, can be used if the pages in the bio
106          * can't tell us where in the file the bio should go
107          */
108         u64 bio_offset;
109         struct btrfs_work work;
110         int error;
111 };
112
113 /*
114  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
115  * eb, the lockdep key is determined by the btrfs_root it belongs to and
116  * the level the eb occupies in the tree.
117  *
118  * Different roots are used for different purposes and may nest inside each
119  * other and they require separate keysets.  As lockdep keys should be
120  * static, assign keysets according to the purpose of the root as indicated
121  * by btrfs_root->objectid.  This ensures that all special purpose roots
122  * have separate keysets.
123  *
124  * Lock-nesting across peer nodes is always done with the immediate parent
125  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
126  * subclass to avoid triggering lockdep warning in such cases.
127  *
128  * The key is set by the readpage_end_io_hook after the buffer has passed
129  * csum validation but before the pages are unlocked.  It is also set by
130  * btrfs_init_new_buffer on freshly allocated blocks.
131  *
132  * We also add a check to make sure the highest level of the tree is the
133  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
134  * needs update as well.
135  */
136 #ifdef CONFIG_DEBUG_LOCK_ALLOC
137 # if BTRFS_MAX_LEVEL != 8
138 #  error
139 # endif
140
141 static struct btrfs_lockdep_keyset {
142         u64                     id;             /* root objectid */
143         const char              *name_stem;     /* lock name stem */
144         char                    names[BTRFS_MAX_LEVEL + 1][20];
145         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
146 } btrfs_lockdep_keysets[] = {
147         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
148         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
149         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
150         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
151         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
152         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
153         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
154         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
155         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
156         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
157         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
158         { .id = 0,                              .name_stem = "tree"     },
159 };
160
161 void __init btrfs_init_lockdep(void)
162 {
163         int i, j;
164
165         /* initialize lockdep class names */
166         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
167                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
168
169                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
170                         snprintf(ks->names[j], sizeof(ks->names[j]),
171                                  "btrfs-%s-%02d", ks->name_stem, j);
172         }
173 }
174
175 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
176                                     int level)
177 {
178         struct btrfs_lockdep_keyset *ks;
179
180         BUG_ON(level >= ARRAY_SIZE(ks->keys));
181
182         /* find the matching keyset, id 0 is the default entry */
183         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
184                 if (ks->id == objectid)
185                         break;
186
187         lockdep_set_class_and_name(&eb->lock,
188                                    &ks->keys[level], ks->names[level]);
189 }
190
191 #endif
192
193 /*
194  * extents on the btree inode are pretty simple, there's one extent
195  * that covers the entire device
196  */
197 static struct extent_map *btree_get_extent(struct inode *inode,
198                 struct page *page, size_t pg_offset, u64 start, u64 len,
199                 int create)
200 {
201         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
202         struct extent_map *em;
203         int ret;
204
205         read_lock(&em_tree->lock);
206         em = lookup_extent_mapping(em_tree, start, len);
207         if (em) {
208                 em->bdev =
209                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
210                 read_unlock(&em_tree->lock);
211                 goto out;
212         }
213         read_unlock(&em_tree->lock);
214
215         em = alloc_extent_map();
216         if (!em) {
217                 em = ERR_PTR(-ENOMEM);
218                 goto out;
219         }
220         em->start = 0;
221         em->len = (u64)-1;
222         em->block_len = (u64)-1;
223         em->block_start = 0;
224         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
225
226         write_lock(&em_tree->lock);
227         ret = add_extent_mapping(em_tree, em, 0);
228         if (ret == -EEXIST) {
229                 free_extent_map(em);
230                 em = lookup_extent_mapping(em_tree, start, len);
231                 if (!em)
232                         em = ERR_PTR(-EIO);
233         } else if (ret) {
234                 free_extent_map(em);
235                 em = ERR_PTR(ret);
236         }
237         write_unlock(&em_tree->lock);
238
239 out:
240         return em;
241 }
242
243 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
244 {
245         return btrfs_crc32c(seed, data, len);
246 }
247
248 void btrfs_csum_final(u32 crc, char *result)
249 {
250         put_unaligned_le32(~crc, result);
251 }
252
253 /*
254  * compute the csum for a btree block, and either verify it or write it
255  * into the csum field of the block.
256  */
257 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
258                            int verify)
259 {
260         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
261         char *result = NULL;
262         unsigned long len;
263         unsigned long cur_len;
264         unsigned long offset = BTRFS_CSUM_SIZE;
265         char *kaddr;
266         unsigned long map_start;
267         unsigned long map_len;
268         int err;
269         u32 crc = ~(u32)0;
270         unsigned long inline_result;
271
272         len = buf->len - offset;
273         while (len > 0) {
274                 err = map_private_extent_buffer(buf, offset, 32,
275                                         &kaddr, &map_start, &map_len);
276                 if (err)
277                         return 1;
278                 cur_len = min(len, map_len - (offset - map_start));
279                 crc = btrfs_csum_data(kaddr + offset - map_start,
280                                       crc, cur_len);
281                 len -= cur_len;
282                 offset += cur_len;
283         }
284         if (csum_size > sizeof(inline_result)) {
285                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
286                 if (!result)
287                         return 1;
288         } else {
289                 result = (char *)&inline_result;
290         }
291
292         btrfs_csum_final(crc, result);
293
294         if (verify) {
295                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
296                         u32 val;
297                         u32 found = 0;
298                         memcpy(&found, result, csum_size);
299
300                         read_extent_buffer(buf, &val, 0, csum_size);
301                         printk_ratelimited(KERN_INFO
302                                 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
303                                 "level %d\n",
304                                 root->fs_info->sb->s_id, buf->start,
305                                 val, found, btrfs_header_level(buf));
306                         if (result != (char *)&inline_result)
307                                 kfree(result);
308                         return 1;
309                 }
310         } else {
311                 write_extent_buffer(buf, result, 0, csum_size);
312         }
313         if (result != (char *)&inline_result)
314                 kfree(result);
315         return 0;
316 }
317
318 /*
319  * we can't consider a given block up to date unless the transid of the
320  * block matches the transid in the parent node's pointer.  This is how we
321  * detect blocks that either didn't get written at all or got written
322  * in the wrong place.
323  */
324 static int verify_parent_transid(struct extent_io_tree *io_tree,
325                                  struct extent_buffer *eb, u64 parent_transid,
326                                  int atomic)
327 {
328         struct extent_state *cached_state = NULL;
329         int ret;
330         bool need_lock = (current->journal_info ==
331                           (void *)BTRFS_SEND_TRANS_STUB);
332
333         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334                 return 0;
335
336         if (atomic)
337                 return -EAGAIN;
338
339         if (need_lock) {
340                 btrfs_tree_read_lock(eb);
341                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
342         }
343
344         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
345                          0, &cached_state);
346         if (extent_buffer_uptodate(eb) &&
347             btrfs_header_generation(eb) == parent_transid) {
348                 ret = 0;
349                 goto out;
350         }
351         printk_ratelimited(KERN_INFO "BTRFS (device %s): parent transid verify failed on %llu wanted %llu found %llu\n",
352                         eb->fs_info->sb->s_id, eb->start,
353                         parent_transid, btrfs_header_generation(eb));
354         ret = 1;
355
356         /*
357          * Things reading via commit roots that don't have normal protection,
358          * like send, can have a really old block in cache that may point at a
359          * block that has been free'd and re-allocated.  So don't clear uptodate
360          * if we find an eb that is under IO (dirty/writeback) because we could
361          * end up reading in the stale data and then writing it back out and
362          * making everybody very sad.
363          */
364         if (!extent_buffer_under_io(eb))
365                 clear_extent_buffer_uptodate(eb);
366 out:
367         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
368                              &cached_state, GFP_NOFS);
369         if (need_lock)
370                 btrfs_tree_read_unlock_blocking(eb);
371         return ret;
372 }
373
374 /*
375  * Return 0 if the superblock checksum type matches the checksum value of that
376  * algorithm. Pass the raw disk superblock data.
377  */
378 static int btrfs_check_super_csum(char *raw_disk_sb)
379 {
380         struct btrfs_super_block *disk_sb =
381                 (struct btrfs_super_block *)raw_disk_sb;
382         u16 csum_type = btrfs_super_csum_type(disk_sb);
383         int ret = 0;
384
385         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
386                 u32 crc = ~(u32)0;
387                 const int csum_size = sizeof(crc);
388                 char result[csum_size];
389
390                 /*
391                  * The super_block structure does not span the whole
392                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
393                  * is filled with zeros and is included in the checkum.
394                  */
395                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
396                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
397                 btrfs_csum_final(crc, result);
398
399                 if (memcmp(raw_disk_sb, result, csum_size))
400                         ret = 1;
401
402                 if (ret && btrfs_super_generation(disk_sb) < 10) {
403                         printk(KERN_WARNING
404                                 "BTRFS: super block crcs don't match, older mkfs detected\n");
405                         ret = 0;
406                 }
407         }
408
409         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
410                 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
411                                 csum_type);
412                 ret = 1;
413         }
414
415         return ret;
416 }
417
418 /*
419  * helper to read a given tree block, doing retries as required when
420  * the checksums don't match and we have alternate mirrors to try.
421  */
422 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
423                                           struct extent_buffer *eb,
424                                           u64 start, u64 parent_transid)
425 {
426         struct extent_io_tree *io_tree;
427         int failed = 0;
428         int ret;
429         int num_copies = 0;
430         int mirror_num = 0;
431         int failed_mirror = 0;
432
433         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
434         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
435         while (1) {
436                 ret = read_extent_buffer_pages(io_tree, eb, start,
437                                                WAIT_COMPLETE,
438                                                btree_get_extent, mirror_num);
439                 if (!ret) {
440                         if (!verify_parent_transid(io_tree, eb,
441                                                    parent_transid, 0))
442                                 break;
443                         else
444                                 ret = -EIO;
445                 }
446
447                 /*
448                  * This buffer's crc is fine, but its contents are corrupted, so
449                  * there is no reason to read the other copies, they won't be
450                  * any less wrong.
451                  */
452                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
453                         break;
454
455                 num_copies = btrfs_num_copies(root->fs_info,
456                                               eb->start, eb->len);
457                 if (num_copies == 1)
458                         break;
459
460                 if (!failed_mirror) {
461                         failed = 1;
462                         failed_mirror = eb->read_mirror;
463                 }
464
465                 mirror_num++;
466                 if (mirror_num == failed_mirror)
467                         mirror_num++;
468
469                 if (mirror_num > num_copies)
470                         break;
471         }
472
473         if (failed && !ret && failed_mirror)
474                 repair_eb_io_failure(root, eb, failed_mirror);
475
476         return ret;
477 }
478
479 /*
480  * checksum a dirty tree block before IO.  This has extra checks to make sure
481  * we only fill in the checksum field in the first page of a multi-page block
482  */
483
484 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
485 {
486         u64 start = page_offset(page);
487         u64 found_start;
488         struct extent_buffer *eb;
489
490         eb = (struct extent_buffer *)page->private;
491         if (page != eb->pages[0])
492                 return 0;
493         found_start = btrfs_header_bytenr(eb);
494         if (WARN_ON(found_start != start || !PageUptodate(page)))
495                 return 0;
496         csum_tree_block(root, eb, 0);
497         return 0;
498 }
499
500 static int check_tree_block_fsid(struct btrfs_root *root,
501                                  struct extent_buffer *eb)
502 {
503         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
504         u8 fsid[BTRFS_UUID_SIZE];
505         int ret = 1;
506
507         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
508         while (fs_devices) {
509                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
510                         ret = 0;
511                         break;
512                 }
513                 fs_devices = fs_devices->seed;
514         }
515         return ret;
516 }
517
518 #define CORRUPT(reason, eb, root, slot)                         \
519         btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"       \
520                    "root=%llu, slot=%d", reason,                        \
521                btrfs_header_bytenr(eb), root->objectid, slot)
522
523 static noinline int check_leaf(struct btrfs_root *root,
524                                struct extent_buffer *leaf)
525 {
526         struct btrfs_key key;
527         struct btrfs_key leaf_key;
528         u32 nritems = btrfs_header_nritems(leaf);
529         int slot;
530
531         if (nritems == 0)
532                 return 0;
533
534         /* Check the 0 item */
535         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
536             BTRFS_LEAF_DATA_SIZE(root)) {
537                 CORRUPT("invalid item offset size pair", leaf, root, 0);
538                 return -EIO;
539         }
540
541         /*
542          * Check to make sure each items keys are in the correct order and their
543          * offsets make sense.  We only have to loop through nritems-1 because
544          * we check the current slot against the next slot, which verifies the
545          * next slot's offset+size makes sense and that the current's slot
546          * offset is correct.
547          */
548         for (slot = 0; slot < nritems - 1; slot++) {
549                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
550                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
551
552                 /* Make sure the keys are in the right order */
553                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
554                         CORRUPT("bad key order", leaf, root, slot);
555                         return -EIO;
556                 }
557
558                 /*
559                  * Make sure the offset and ends are right, remember that the
560                  * item data starts at the end of the leaf and grows towards the
561                  * front.
562                  */
563                 if (btrfs_item_offset_nr(leaf, slot) !=
564                         btrfs_item_end_nr(leaf, slot + 1)) {
565                         CORRUPT("slot offset bad", leaf, root, slot);
566                         return -EIO;
567                 }
568
569                 /*
570                  * Check to make sure that we don't point outside of the leaf,
571                  * just incase all the items are consistent to eachother, but
572                  * all point outside of the leaf.
573                  */
574                 if (btrfs_item_end_nr(leaf, slot) >
575                     BTRFS_LEAF_DATA_SIZE(root)) {
576                         CORRUPT("slot end outside of leaf", leaf, root, slot);
577                         return -EIO;
578                 }
579         }
580
581         return 0;
582 }
583
584 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
585                                       u64 phy_offset, struct page *page,
586                                       u64 start, u64 end, int mirror)
587 {
588         u64 found_start;
589         int found_level;
590         struct extent_buffer *eb;
591         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
592         int ret = 0;
593         int reads_done;
594
595         if (!page->private)
596                 goto out;
597
598         eb = (struct extent_buffer *)page->private;
599
600         /* the pending IO might have been the only thing that kept this buffer
601          * in memory.  Make sure we have a ref for all this other checks
602          */
603         extent_buffer_get(eb);
604
605         reads_done = atomic_dec_and_test(&eb->io_pages);
606         if (!reads_done)
607                 goto err;
608
609         eb->read_mirror = mirror;
610         if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
611                 ret = -EIO;
612                 goto err;
613         }
614
615         found_start = btrfs_header_bytenr(eb);
616         if (found_start != eb->start) {
617                 printk_ratelimited(KERN_INFO "BTRFS (device %s): bad tree block start "
618                                "%llu %llu\n",
619                                eb->fs_info->sb->s_id, found_start, eb->start);
620                 ret = -EIO;
621                 goto err;
622         }
623         if (check_tree_block_fsid(root, eb)) {
624                 printk_ratelimited(KERN_INFO "BTRFS (device %s): bad fsid on block %llu\n",
625                                eb->fs_info->sb->s_id, eb->start);
626                 ret = -EIO;
627                 goto err;
628         }
629         found_level = btrfs_header_level(eb);
630         if (found_level >= BTRFS_MAX_LEVEL) {
631                 btrfs_info(root->fs_info, "bad tree block level %d",
632                            (int)btrfs_header_level(eb));
633                 ret = -EIO;
634                 goto err;
635         }
636
637         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
638                                        eb, found_level);
639
640         ret = csum_tree_block(root, eb, 1);
641         if (ret) {
642                 ret = -EIO;
643                 goto err;
644         }
645
646         /*
647          * If this is a leaf block and it is corrupt, set the corrupt bit so
648          * that we don't try and read the other copies of this block, just
649          * return -EIO.
650          */
651         if (found_level == 0 && check_leaf(root, eb)) {
652                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
653                 ret = -EIO;
654         }
655
656         if (!ret)
657                 set_extent_buffer_uptodate(eb);
658 err:
659         if (reads_done &&
660             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
661                 btree_readahead_hook(root, eb, eb->start, ret);
662
663         if (ret) {
664                 /*
665                  * our io error hook is going to dec the io pages
666                  * again, we have to make sure it has something
667                  * to decrement
668                  */
669                 atomic_inc(&eb->io_pages);
670                 clear_extent_buffer_uptodate(eb);
671         }
672         free_extent_buffer(eb);
673 out:
674         return ret;
675 }
676
677 static int btree_io_failed_hook(struct page *page, int failed_mirror)
678 {
679         struct extent_buffer *eb;
680         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
681
682         eb = (struct extent_buffer *)page->private;
683         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
684         eb->read_mirror = failed_mirror;
685         atomic_dec(&eb->io_pages);
686         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
687                 btree_readahead_hook(root, eb, eb->start, -EIO);
688         return -EIO;    /* we fixed nothing */
689 }
690
691 static void end_workqueue_bio(struct bio *bio, int err)
692 {
693         struct end_io_wq *end_io_wq = bio->bi_private;
694         struct btrfs_fs_info *fs_info;
695         struct btrfs_workqueue *wq;
696         btrfs_work_func_t func;
697
698         fs_info = end_io_wq->info;
699         end_io_wq->error = err;
700
701         if (bio->bi_rw & REQ_WRITE) {
702                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
703                         wq = fs_info->endio_meta_write_workers;
704                         func = btrfs_endio_meta_write_helper;
705                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
706                         wq = fs_info->endio_freespace_worker;
707                         func = btrfs_freespace_write_helper;
708                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
709                         wq = fs_info->endio_raid56_workers;
710                         func = btrfs_endio_raid56_helper;
711                 } else {
712                         wq = fs_info->endio_write_workers;
713                         func = btrfs_endio_write_helper;
714                 }
715         } else {
716                 if (unlikely(end_io_wq->metadata ==
717                              BTRFS_WQ_ENDIO_DIO_REPAIR)) {
718                         wq = fs_info->endio_repair_workers;
719                         func = btrfs_endio_repair_helper;
720                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
721                         wq = fs_info->endio_raid56_workers;
722                         func = btrfs_endio_raid56_helper;
723                 } else if (end_io_wq->metadata) {
724                         wq = fs_info->endio_meta_workers;
725                         func = btrfs_endio_meta_helper;
726                 } else {
727                         wq = fs_info->endio_workers;
728                         func = btrfs_endio_helper;
729                 }
730         }
731
732         btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
733         btrfs_queue_work(wq, &end_io_wq->work);
734 }
735
736 /*
737  * For the metadata arg you want
738  *
739  * 0 - if data
740  * 1 - if normal metadta
741  * 2 - if writing to the free space cache area
742  * 3 - raid parity work
743  */
744 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
745                         int metadata)
746 {
747         struct end_io_wq *end_io_wq;
748
749         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
750         if (!end_io_wq)
751                 return -ENOMEM;
752
753         end_io_wq->private = bio->bi_private;
754         end_io_wq->end_io = bio->bi_end_io;
755         end_io_wq->info = info;
756         end_io_wq->error = 0;
757         end_io_wq->bio = bio;
758         end_io_wq->metadata = metadata;
759
760         bio->bi_private = end_io_wq;
761         bio->bi_end_io = end_workqueue_bio;
762         return 0;
763 }
764
765 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
766 {
767         unsigned long limit = min_t(unsigned long,
768                                     info->thread_pool_size,
769                                     info->fs_devices->open_devices);
770         return 256 * limit;
771 }
772
773 static void run_one_async_start(struct btrfs_work *work)
774 {
775         struct async_submit_bio *async;
776         int ret;
777
778         async = container_of(work, struct  async_submit_bio, work);
779         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
780                                       async->mirror_num, async->bio_flags,
781                                       async->bio_offset);
782         if (ret)
783                 async->error = ret;
784 }
785
786 static void run_one_async_done(struct btrfs_work *work)
787 {
788         struct btrfs_fs_info *fs_info;
789         struct async_submit_bio *async;
790         int limit;
791
792         async = container_of(work, struct  async_submit_bio, work);
793         fs_info = BTRFS_I(async->inode)->root->fs_info;
794
795         limit = btrfs_async_submit_limit(fs_info);
796         limit = limit * 2 / 3;
797
798         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
799             waitqueue_active(&fs_info->async_submit_wait))
800                 wake_up(&fs_info->async_submit_wait);
801
802         /* If an error occured we just want to clean up the bio and move on */
803         if (async->error) {
804                 bio_endio(async->bio, async->error);
805                 return;
806         }
807
808         async->submit_bio_done(async->inode, async->rw, async->bio,
809                                async->mirror_num, async->bio_flags,
810                                async->bio_offset);
811 }
812
813 static void run_one_async_free(struct btrfs_work *work)
814 {
815         struct async_submit_bio *async;
816
817         async = container_of(work, struct  async_submit_bio, work);
818         kfree(async);
819 }
820
821 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
822                         int rw, struct bio *bio, int mirror_num,
823                         unsigned long bio_flags,
824                         u64 bio_offset,
825                         extent_submit_bio_hook_t *submit_bio_start,
826                         extent_submit_bio_hook_t *submit_bio_done)
827 {
828         struct async_submit_bio *async;
829
830         async = kmalloc(sizeof(*async), GFP_NOFS);
831         if (!async)
832                 return -ENOMEM;
833
834         async->inode = inode;
835         async->rw = rw;
836         async->bio = bio;
837         async->mirror_num = mirror_num;
838         async->submit_bio_start = submit_bio_start;
839         async->submit_bio_done = submit_bio_done;
840
841         btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
842                         run_one_async_done, run_one_async_free);
843
844         async->bio_flags = bio_flags;
845         async->bio_offset = bio_offset;
846
847         async->error = 0;
848
849         atomic_inc(&fs_info->nr_async_submits);
850
851         if (rw & REQ_SYNC)
852                 btrfs_set_work_high_priority(&async->work);
853
854         btrfs_queue_work(fs_info->workers, &async->work);
855
856         while (atomic_read(&fs_info->async_submit_draining) &&
857               atomic_read(&fs_info->nr_async_submits)) {
858                 wait_event(fs_info->async_submit_wait,
859                            (atomic_read(&fs_info->nr_async_submits) == 0));
860         }
861
862         return 0;
863 }
864
865 static int btree_csum_one_bio(struct bio *bio)
866 {
867         struct bio_vec *bvec;
868         struct btrfs_root *root;
869         int i, ret = 0;
870
871         bio_for_each_segment_all(bvec, bio, i) {
872                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
873                 ret = csum_dirty_buffer(root, bvec->bv_page);
874                 if (ret)
875                         break;
876         }
877
878         return ret;
879 }
880
881 static int __btree_submit_bio_start(struct inode *inode, int rw,
882                                     struct bio *bio, int mirror_num,
883                                     unsigned long bio_flags,
884                                     u64 bio_offset)
885 {
886         /*
887          * when we're called for a write, we're already in the async
888          * submission context.  Just jump into btrfs_map_bio
889          */
890         return btree_csum_one_bio(bio);
891 }
892
893 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
894                                  int mirror_num, unsigned long bio_flags,
895                                  u64 bio_offset)
896 {
897         int ret;
898
899         /*
900          * when we're called for a write, we're already in the async
901          * submission context.  Just jump into btrfs_map_bio
902          */
903         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
904         if (ret)
905                 bio_endio(bio, ret);
906         return ret;
907 }
908
909 static int check_async_write(struct inode *inode, unsigned long bio_flags)
910 {
911         if (bio_flags & EXTENT_BIO_TREE_LOG)
912                 return 0;
913 #ifdef CONFIG_X86
914         if (cpu_has_xmm4_2)
915                 return 0;
916 #endif
917         return 1;
918 }
919
920 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
921                                  int mirror_num, unsigned long bio_flags,
922                                  u64 bio_offset)
923 {
924         int async = check_async_write(inode, bio_flags);
925         int ret;
926
927         if (!(rw & REQ_WRITE)) {
928                 /*
929                  * called for a read, do the setup so that checksum validation
930                  * can happen in the async kernel threads
931                  */
932                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
933                                           bio, 1);
934                 if (ret)
935                         goto out_w_error;
936                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
937                                     mirror_num, 0);
938         } else if (!async) {
939                 ret = btree_csum_one_bio(bio);
940                 if (ret)
941                         goto out_w_error;
942                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
943                                     mirror_num, 0);
944         } else {
945                 /*
946                  * kthread helpers are used to submit writes so that
947                  * checksumming can happen in parallel across all CPUs
948                  */
949                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
950                                           inode, rw, bio, mirror_num, 0,
951                                           bio_offset,
952                                           __btree_submit_bio_start,
953                                           __btree_submit_bio_done);
954         }
955
956         if (ret) {
957 out_w_error:
958                 bio_endio(bio, ret);
959         }
960         return ret;
961 }
962
963 #ifdef CONFIG_MIGRATION
964 static int btree_migratepage(struct address_space *mapping,
965                         struct page *newpage, struct page *page,
966                         enum migrate_mode mode)
967 {
968         /*
969          * we can't safely write a btree page from here,
970          * we haven't done the locking hook
971          */
972         if (PageDirty(page))
973                 return -EAGAIN;
974         /*
975          * Buffers may be managed in a filesystem specific way.
976          * We must have no buffers or drop them.
977          */
978         if (page_has_private(page) &&
979             !try_to_release_page(page, GFP_KERNEL))
980                 return -EAGAIN;
981         return migrate_page(mapping, newpage, page, mode);
982 }
983 #endif
984
985
986 static int btree_writepages(struct address_space *mapping,
987                             struct writeback_control *wbc)
988 {
989         struct btrfs_fs_info *fs_info;
990         int ret;
991
992         if (wbc->sync_mode == WB_SYNC_NONE) {
993
994                 if (wbc->for_kupdate)
995                         return 0;
996
997                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
998                 /* this is a bit racy, but that's ok */
999                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1000                                              BTRFS_DIRTY_METADATA_THRESH);
1001                 if (ret < 0)
1002                         return 0;
1003         }
1004         return btree_write_cache_pages(mapping, wbc);
1005 }
1006
1007 static int btree_readpage(struct file *file, struct page *page)
1008 {
1009         struct extent_io_tree *tree;
1010         tree = &BTRFS_I(page->mapping->host)->io_tree;
1011         return extent_read_full_page(tree, page, btree_get_extent, 0);
1012 }
1013
1014 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1015 {
1016         if (PageWriteback(page) || PageDirty(page))
1017                 return 0;
1018
1019         return try_release_extent_buffer(page);
1020 }
1021
1022 static void btree_invalidatepage(struct page *page, unsigned int offset,
1023                                  unsigned int length)
1024 {
1025         struct extent_io_tree *tree;
1026         tree = &BTRFS_I(page->mapping->host)->io_tree;
1027         extent_invalidatepage(tree, page, offset);
1028         btree_releasepage(page, GFP_NOFS);
1029         if (PagePrivate(page)) {
1030                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1031                            "page private not zero on page %llu",
1032                            (unsigned long long)page_offset(page));
1033                 ClearPagePrivate(page);
1034                 set_page_private(page, 0);
1035                 page_cache_release(page);
1036         }
1037 }
1038
1039 static int btree_set_page_dirty(struct page *page)
1040 {
1041 #ifdef DEBUG
1042         struct extent_buffer *eb;
1043
1044         BUG_ON(!PagePrivate(page));
1045         eb = (struct extent_buffer *)page->private;
1046         BUG_ON(!eb);
1047         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1048         BUG_ON(!atomic_read(&eb->refs));
1049         btrfs_assert_tree_locked(eb);
1050 #endif
1051         return __set_page_dirty_nobuffers(page);
1052 }
1053
1054 static const struct address_space_operations btree_aops = {
1055         .readpage       = btree_readpage,
1056         .writepages     = btree_writepages,
1057         .releasepage    = btree_releasepage,
1058         .invalidatepage = btree_invalidatepage,
1059 #ifdef CONFIG_MIGRATION
1060         .migratepage    = btree_migratepage,
1061 #endif
1062         .set_page_dirty = btree_set_page_dirty,
1063 };
1064
1065 void readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize)
1066 {
1067         struct extent_buffer *buf = NULL;
1068         struct inode *btree_inode = root->fs_info->btree_inode;
1069
1070         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1071         if (!buf)
1072                 return;
1073         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1074                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1075         free_extent_buffer(buf);
1076 }
1077
1078 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1079                          int mirror_num, struct extent_buffer **eb)
1080 {
1081         struct extent_buffer *buf = NULL;
1082         struct inode *btree_inode = root->fs_info->btree_inode;
1083         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1084         int ret;
1085
1086         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1087         if (!buf)
1088                 return 0;
1089
1090         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1091
1092         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1093                                        btree_get_extent, mirror_num);
1094         if (ret) {
1095                 free_extent_buffer(buf);
1096                 return ret;
1097         }
1098
1099         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1100                 free_extent_buffer(buf);
1101                 return -EIO;
1102         } else if (extent_buffer_uptodate(buf)) {
1103                 *eb = buf;
1104         } else {
1105                 free_extent_buffer(buf);
1106         }
1107         return 0;
1108 }
1109
1110 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1111                                             u64 bytenr, u32 blocksize)
1112 {
1113         return find_extent_buffer(root->fs_info, bytenr);
1114 }
1115
1116 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1117                                                  u64 bytenr, u32 blocksize)
1118 {
1119 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1120         if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state)))
1121                 return alloc_test_extent_buffer(root->fs_info, bytenr,
1122                                                 blocksize);
1123 #endif
1124         return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
1125 }
1126
1127
1128 int btrfs_write_tree_block(struct extent_buffer *buf)
1129 {
1130         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1131                                         buf->start + buf->len - 1);
1132 }
1133
1134 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1135 {
1136         return filemap_fdatawait_range(buf->pages[0]->mapping,
1137                                        buf->start, buf->start + buf->len - 1);
1138 }
1139
1140 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1141                                       u64 parent_transid)
1142 {
1143         struct extent_buffer *buf = NULL;
1144         int ret;
1145
1146         buf = btrfs_find_create_tree_block(root, bytenr, root->nodesize);
1147         if (!buf)
1148                 return NULL;
1149
1150         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1151         if (ret) {
1152                 free_extent_buffer(buf);
1153                 return NULL;
1154         }
1155         return buf;
1156
1157 }
1158
1159 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1160                       struct extent_buffer *buf)
1161 {
1162         struct btrfs_fs_info *fs_info = root->fs_info;
1163
1164         if (btrfs_header_generation(buf) ==
1165             fs_info->running_transaction->transid) {
1166                 btrfs_assert_tree_locked(buf);
1167
1168                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1169                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1170                                              -buf->len,
1171                                              fs_info->dirty_metadata_batch);
1172                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1173                         btrfs_set_lock_blocking(buf);
1174                         clear_extent_buffer_dirty(buf);
1175                 }
1176         }
1177 }
1178
1179 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1180 {
1181         struct btrfs_subvolume_writers *writers;
1182         int ret;
1183
1184         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1185         if (!writers)
1186                 return ERR_PTR(-ENOMEM);
1187
1188         ret = percpu_counter_init(&writers->counter, 0);
1189         if (ret < 0) {
1190                 kfree(writers);
1191                 return ERR_PTR(ret);
1192         }
1193
1194         init_waitqueue_head(&writers->wait);
1195         return writers;
1196 }
1197
1198 static void
1199 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1200 {
1201         percpu_counter_destroy(&writers->counter);
1202         kfree(writers);
1203 }
1204
1205 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1206                          struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1207                          u64 objectid)
1208 {
1209         root->node = NULL;
1210         root->commit_root = NULL;
1211         root->sectorsize = sectorsize;
1212         root->nodesize = nodesize;
1213         root->stripesize = stripesize;
1214         root->state = 0;
1215         root->orphan_cleanup_state = 0;
1216
1217         root->objectid = objectid;
1218         root->last_trans = 0;
1219         root->highest_objectid = 0;
1220         root->nr_delalloc_inodes = 0;
1221         root->nr_ordered_extents = 0;
1222         root->name = NULL;
1223         root->inode_tree = RB_ROOT;
1224         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1225         root->block_rsv = NULL;
1226         root->orphan_block_rsv = NULL;
1227
1228         INIT_LIST_HEAD(&root->dirty_list);
1229         INIT_LIST_HEAD(&root->root_list);
1230         INIT_LIST_HEAD(&root->delalloc_inodes);
1231         INIT_LIST_HEAD(&root->delalloc_root);
1232         INIT_LIST_HEAD(&root->ordered_extents);
1233         INIT_LIST_HEAD(&root->ordered_root);
1234         INIT_LIST_HEAD(&root->logged_list[0]);
1235         INIT_LIST_HEAD(&root->logged_list[1]);
1236         spin_lock_init(&root->orphan_lock);
1237         spin_lock_init(&root->inode_lock);
1238         spin_lock_init(&root->delalloc_lock);
1239         spin_lock_init(&root->ordered_extent_lock);
1240         spin_lock_init(&root->accounting_lock);
1241         spin_lock_init(&root->log_extents_lock[0]);
1242         spin_lock_init(&root->log_extents_lock[1]);
1243         mutex_init(&root->objectid_mutex);
1244         mutex_init(&root->log_mutex);
1245         mutex_init(&root->ordered_extent_mutex);
1246         mutex_init(&root->delalloc_mutex);
1247         init_waitqueue_head(&root->log_writer_wait);
1248         init_waitqueue_head(&root->log_commit_wait[0]);
1249         init_waitqueue_head(&root->log_commit_wait[1]);
1250         INIT_LIST_HEAD(&root->log_ctxs[0]);
1251         INIT_LIST_HEAD(&root->log_ctxs[1]);
1252         atomic_set(&root->log_commit[0], 0);
1253         atomic_set(&root->log_commit[1], 0);
1254         atomic_set(&root->log_writers, 0);
1255         atomic_set(&root->log_batch, 0);
1256         atomic_set(&root->orphan_inodes, 0);
1257         atomic_set(&root->refs, 1);
1258         atomic_set(&root->will_be_snapshoted, 0);
1259         root->log_transid = 0;
1260         root->log_transid_committed = -1;
1261         root->last_log_commit = 0;
1262         if (fs_info)
1263                 extent_io_tree_init(&root->dirty_log_pages,
1264                                      fs_info->btree_inode->i_mapping);
1265
1266         memset(&root->root_key, 0, sizeof(root->root_key));
1267         memset(&root->root_item, 0, sizeof(root->root_item));
1268         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1269         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1270         if (fs_info)
1271                 root->defrag_trans_start = fs_info->generation;
1272         else
1273                 root->defrag_trans_start = 0;
1274         init_completion(&root->kobj_unregister);
1275         root->root_key.objectid = objectid;
1276         root->anon_dev = 0;
1277
1278         spin_lock_init(&root->root_item_lock);
1279 }
1280
1281 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1282 {
1283         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1284         if (root)
1285                 root->fs_info = fs_info;
1286         return root;
1287 }
1288
1289 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1290 /* Should only be used by the testing infrastructure */
1291 struct btrfs_root *btrfs_alloc_dummy_root(void)
1292 {
1293         struct btrfs_root *root;
1294
1295         root = btrfs_alloc_root(NULL);
1296         if (!root)
1297                 return ERR_PTR(-ENOMEM);
1298         __setup_root(4096, 4096, 4096, root, NULL, 1);
1299         set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1300         root->alloc_bytenr = 0;
1301
1302         return root;
1303 }
1304 #endif
1305
1306 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1307                                      struct btrfs_fs_info *fs_info,
1308                                      u64 objectid)
1309 {
1310         struct extent_buffer *leaf;
1311         struct btrfs_root *tree_root = fs_info->tree_root;
1312         struct btrfs_root *root;
1313         struct btrfs_key key;
1314         int ret = 0;
1315         uuid_le uuid;
1316
1317         root = btrfs_alloc_root(fs_info);
1318         if (!root)
1319                 return ERR_PTR(-ENOMEM);
1320
1321         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1322                 tree_root->stripesize, root, fs_info, objectid);
1323         root->root_key.objectid = objectid;
1324         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1325         root->root_key.offset = 0;
1326
1327         leaf = btrfs_alloc_free_block(trans, root, root->nodesize,
1328                                       0, objectid, NULL, 0, 0, 0);
1329         if (IS_ERR(leaf)) {
1330                 ret = PTR_ERR(leaf);
1331                 leaf = NULL;
1332                 goto fail;
1333         }
1334
1335         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1336         btrfs_set_header_bytenr(leaf, leaf->start);
1337         btrfs_set_header_generation(leaf, trans->transid);
1338         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1339         btrfs_set_header_owner(leaf, objectid);
1340         root->node = leaf;
1341
1342         write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1343                             BTRFS_FSID_SIZE);
1344         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1345                             btrfs_header_chunk_tree_uuid(leaf),
1346                             BTRFS_UUID_SIZE);
1347         btrfs_mark_buffer_dirty(leaf);
1348
1349         root->commit_root = btrfs_root_node(root);
1350         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1351
1352         root->root_item.flags = 0;
1353         root->root_item.byte_limit = 0;
1354         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1355         btrfs_set_root_generation(&root->root_item, trans->transid);
1356         btrfs_set_root_level(&root->root_item, 0);
1357         btrfs_set_root_refs(&root->root_item, 1);
1358         btrfs_set_root_used(&root->root_item, leaf->len);
1359         btrfs_set_root_last_snapshot(&root->root_item, 0);
1360         btrfs_set_root_dirid(&root->root_item, 0);
1361         uuid_le_gen(&uuid);
1362         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1363         root->root_item.drop_level = 0;
1364
1365         key.objectid = objectid;
1366         key.type = BTRFS_ROOT_ITEM_KEY;
1367         key.offset = 0;
1368         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1369         if (ret)
1370                 goto fail;
1371
1372         btrfs_tree_unlock(leaf);
1373
1374         return root;
1375
1376 fail:
1377         if (leaf) {
1378                 btrfs_tree_unlock(leaf);
1379                 free_extent_buffer(root->commit_root);
1380                 free_extent_buffer(leaf);
1381         }
1382         kfree(root);
1383
1384         return ERR_PTR(ret);
1385 }
1386
1387 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1388                                          struct btrfs_fs_info *fs_info)
1389 {
1390         struct btrfs_root *root;
1391         struct btrfs_root *tree_root = fs_info->tree_root;
1392         struct extent_buffer *leaf;
1393
1394         root = btrfs_alloc_root(fs_info);
1395         if (!root)
1396                 return ERR_PTR(-ENOMEM);
1397
1398         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1399                      tree_root->stripesize, root, fs_info,
1400                      BTRFS_TREE_LOG_OBJECTID);
1401
1402         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1403         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1404         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1405
1406         /*
1407          * DON'T set REF_COWS for log trees
1408          *
1409          * log trees do not get reference counted because they go away
1410          * before a real commit is actually done.  They do store pointers
1411          * to file data extents, and those reference counts still get
1412          * updated (along with back refs to the log tree).
1413          */
1414
1415         leaf = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
1416                                       BTRFS_TREE_LOG_OBJECTID, NULL,
1417                                       0, 0, 0);
1418         if (IS_ERR(leaf)) {
1419                 kfree(root);
1420                 return ERR_CAST(leaf);
1421         }
1422
1423         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1424         btrfs_set_header_bytenr(leaf, leaf->start);
1425         btrfs_set_header_generation(leaf, trans->transid);
1426         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1427         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1428         root->node = leaf;
1429
1430         write_extent_buffer(root->node, root->fs_info->fsid,
1431                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
1432         btrfs_mark_buffer_dirty(root->node);
1433         btrfs_tree_unlock(root->node);
1434         return root;
1435 }
1436
1437 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1438                              struct btrfs_fs_info *fs_info)
1439 {
1440         struct btrfs_root *log_root;
1441
1442         log_root = alloc_log_tree(trans, fs_info);
1443         if (IS_ERR(log_root))
1444                 return PTR_ERR(log_root);
1445         WARN_ON(fs_info->log_root_tree);
1446         fs_info->log_root_tree = log_root;
1447         return 0;
1448 }
1449
1450 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1451                        struct btrfs_root *root)
1452 {
1453         struct btrfs_root *log_root;
1454         struct btrfs_inode_item *inode_item;
1455
1456         log_root = alloc_log_tree(trans, root->fs_info);
1457         if (IS_ERR(log_root))
1458                 return PTR_ERR(log_root);
1459
1460         log_root->last_trans = trans->transid;
1461         log_root->root_key.offset = root->root_key.objectid;
1462
1463         inode_item = &log_root->root_item.inode;
1464         btrfs_set_stack_inode_generation(inode_item, 1);
1465         btrfs_set_stack_inode_size(inode_item, 3);
1466         btrfs_set_stack_inode_nlink(inode_item, 1);
1467         btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1468         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1469
1470         btrfs_set_root_node(&log_root->root_item, log_root->node);
1471
1472         WARN_ON(root->log_root);
1473         root->log_root = log_root;
1474         root->log_transid = 0;
1475         root->log_transid_committed = -1;
1476         root->last_log_commit = 0;
1477         return 0;
1478 }
1479
1480 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1481                                                struct btrfs_key *key)
1482 {
1483         struct btrfs_root *root;
1484         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1485         struct btrfs_path *path;
1486         u64 generation;
1487         int ret;
1488
1489         path = btrfs_alloc_path();
1490         if (!path)
1491                 return ERR_PTR(-ENOMEM);
1492
1493         root = btrfs_alloc_root(fs_info);
1494         if (!root) {
1495                 ret = -ENOMEM;
1496                 goto alloc_fail;
1497         }
1498
1499         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1500                 tree_root->stripesize, root, fs_info, key->objectid);
1501
1502         ret = btrfs_find_root(tree_root, key, path,
1503                               &root->root_item, &root->root_key);
1504         if (ret) {
1505                 if (ret > 0)
1506                         ret = -ENOENT;
1507                 goto find_fail;
1508         }
1509
1510         generation = btrfs_root_generation(&root->root_item);
1511         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1512                                      generation);
1513         if (!root->node) {
1514                 ret = -ENOMEM;
1515                 goto find_fail;
1516         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1517                 ret = -EIO;
1518                 goto read_fail;
1519         }
1520         root->commit_root = btrfs_root_node(root);
1521 out:
1522         btrfs_free_path(path);
1523         return root;
1524
1525 read_fail:
1526         free_extent_buffer(root->node);
1527 find_fail:
1528         kfree(root);
1529 alloc_fail:
1530         root = ERR_PTR(ret);
1531         goto out;
1532 }
1533
1534 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1535                                       struct btrfs_key *location)
1536 {
1537         struct btrfs_root *root;
1538
1539         root = btrfs_read_tree_root(tree_root, location);
1540         if (IS_ERR(root))
1541                 return root;
1542
1543         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1544                 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1545                 btrfs_check_and_init_root_item(&root->root_item);
1546         }
1547
1548         return root;
1549 }
1550
1551 int btrfs_init_fs_root(struct btrfs_root *root)
1552 {
1553         int ret;
1554         struct btrfs_subvolume_writers *writers;
1555
1556         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1557         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1558                                         GFP_NOFS);
1559         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1560                 ret = -ENOMEM;
1561                 goto fail;
1562         }
1563
1564         writers = btrfs_alloc_subvolume_writers();
1565         if (IS_ERR(writers)) {
1566                 ret = PTR_ERR(writers);
1567                 goto fail;
1568         }
1569         root->subv_writers = writers;
1570
1571         btrfs_init_free_ino_ctl(root);
1572         spin_lock_init(&root->ino_cache_lock);
1573         init_waitqueue_head(&root->ino_cache_wait);
1574
1575         ret = get_anon_bdev(&root->anon_dev);
1576         if (ret)
1577                 goto free_writers;
1578         return 0;
1579
1580 free_writers:
1581         btrfs_free_subvolume_writers(root->subv_writers);
1582 fail:
1583         kfree(root->free_ino_ctl);
1584         kfree(root->free_ino_pinned);
1585         return ret;
1586 }
1587
1588 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1589                                                u64 root_id)
1590 {
1591         struct btrfs_root *root;
1592
1593         spin_lock(&fs_info->fs_roots_radix_lock);
1594         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1595                                  (unsigned long)root_id);
1596         spin_unlock(&fs_info->fs_roots_radix_lock);
1597         return root;
1598 }
1599
1600 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1601                          struct btrfs_root *root)
1602 {
1603         int ret;
1604
1605         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1606         if (ret)
1607                 return ret;
1608
1609         spin_lock(&fs_info->fs_roots_radix_lock);
1610         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1611                                 (unsigned long)root->root_key.objectid,
1612                                 root);
1613         if (ret == 0)
1614                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1615         spin_unlock(&fs_info->fs_roots_radix_lock);
1616         radix_tree_preload_end();
1617
1618         return ret;
1619 }
1620
1621 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1622                                      struct btrfs_key *location,
1623                                      bool check_ref)
1624 {
1625         struct btrfs_root *root;
1626         int ret;
1627
1628         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1629                 return fs_info->tree_root;
1630         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1631                 return fs_info->extent_root;
1632         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1633                 return fs_info->chunk_root;
1634         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1635                 return fs_info->dev_root;
1636         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1637                 return fs_info->csum_root;
1638         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1639                 return fs_info->quota_root ? fs_info->quota_root :
1640                                              ERR_PTR(-ENOENT);
1641         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1642                 return fs_info->uuid_root ? fs_info->uuid_root :
1643                                             ERR_PTR(-ENOENT);
1644 again:
1645         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1646         if (root) {
1647                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1648                         return ERR_PTR(-ENOENT);
1649                 return root;
1650         }
1651
1652         root = btrfs_read_fs_root(fs_info->tree_root, location);
1653         if (IS_ERR(root))
1654                 return root;
1655
1656         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1657                 ret = -ENOENT;
1658                 goto fail;
1659         }
1660
1661         ret = btrfs_init_fs_root(root);
1662         if (ret)
1663                 goto fail;
1664
1665         ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
1666                         location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
1667         if (ret < 0)
1668                 goto fail;
1669         if (ret == 0)
1670                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1671
1672         ret = btrfs_insert_fs_root(fs_info, root);
1673         if (ret) {
1674                 if (ret == -EEXIST) {
1675                         free_fs_root(root);
1676                         goto again;
1677                 }
1678                 goto fail;
1679         }
1680         return root;
1681 fail:
1682         free_fs_root(root);
1683         return ERR_PTR(ret);
1684 }
1685
1686 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1687 {
1688         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1689         int ret = 0;
1690         struct btrfs_device *device;
1691         struct backing_dev_info *bdi;
1692
1693         rcu_read_lock();
1694         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1695                 if (!device->bdev)
1696                         continue;
1697                 bdi = blk_get_backing_dev_info(device->bdev);
1698                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1699                         ret = 1;
1700                         break;
1701                 }
1702         }
1703         rcu_read_unlock();
1704         return ret;
1705 }
1706
1707 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1708 {
1709         int err;
1710
1711         bdi->capabilities = BDI_CAP_MAP_COPY;
1712         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1713         if (err)
1714                 return err;
1715
1716         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1717         bdi->congested_fn       = btrfs_congested_fn;
1718         bdi->congested_data     = info;
1719         return 0;
1720 }
1721
1722 /*
1723  * called by the kthread helper functions to finally call the bio end_io
1724  * functions.  This is where read checksum verification actually happens
1725  */
1726 static void end_workqueue_fn(struct btrfs_work *work)
1727 {
1728         struct bio *bio;
1729         struct end_io_wq *end_io_wq;
1730         int error;
1731
1732         end_io_wq = container_of(work, struct end_io_wq, work);
1733         bio = end_io_wq->bio;
1734
1735         error = end_io_wq->error;
1736         bio->bi_private = end_io_wq->private;
1737         bio->bi_end_io = end_io_wq->end_io;
1738         kfree(end_io_wq);
1739         bio_endio_nodec(bio, error);
1740 }
1741
1742 static int cleaner_kthread(void *arg)
1743 {
1744         struct btrfs_root *root = arg;
1745         int again;
1746
1747         do {
1748                 again = 0;
1749
1750                 /* Make the cleaner go to sleep early. */
1751                 if (btrfs_need_cleaner_sleep(root))
1752                         goto sleep;
1753
1754                 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1755                         goto sleep;
1756
1757                 /*
1758                  * Avoid the problem that we change the status of the fs
1759                  * during the above check and trylock.
1760                  */
1761                 if (btrfs_need_cleaner_sleep(root)) {
1762                         mutex_unlock(&root->fs_info->cleaner_mutex);
1763                         goto sleep;
1764                 }
1765
1766                 btrfs_run_delayed_iputs(root);
1767                 btrfs_delete_unused_bgs(root->fs_info);
1768                 again = btrfs_clean_one_deleted_snapshot(root);
1769                 mutex_unlock(&root->fs_info->cleaner_mutex);
1770
1771                 /*
1772                  * The defragger has dealt with the R/O remount and umount,
1773                  * needn't do anything special here.
1774                  */
1775                 btrfs_run_defrag_inodes(root->fs_info);
1776 sleep:
1777                 if (!try_to_freeze() && !again) {
1778                         set_current_state(TASK_INTERRUPTIBLE);
1779                         if (!kthread_should_stop())
1780                                 schedule();
1781                         __set_current_state(TASK_RUNNING);
1782                 }
1783         } while (!kthread_should_stop());
1784         return 0;
1785 }
1786
1787 static int transaction_kthread(void *arg)
1788 {
1789         struct btrfs_root *root = arg;
1790         struct btrfs_trans_handle *trans;
1791         struct btrfs_transaction *cur;
1792         u64 transid;
1793         unsigned long now;
1794         unsigned long delay;
1795         bool cannot_commit;
1796
1797         do {
1798                 cannot_commit = false;
1799                 delay = HZ * root->fs_info->commit_interval;
1800                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1801
1802                 spin_lock(&root->fs_info->trans_lock);
1803                 cur = root->fs_info->running_transaction;
1804                 if (!cur) {
1805                         spin_unlock(&root->fs_info->trans_lock);
1806                         goto sleep;
1807                 }
1808
1809                 now = get_seconds();
1810                 if (cur->state < TRANS_STATE_BLOCKED &&
1811                     (now < cur->start_time ||
1812                      now - cur->start_time < root->fs_info->commit_interval)) {
1813                         spin_unlock(&root->fs_info->trans_lock);
1814                         delay = HZ * 5;
1815                         goto sleep;
1816                 }
1817                 transid = cur->transid;
1818                 spin_unlock(&root->fs_info->trans_lock);
1819
1820                 /* If the file system is aborted, this will always fail. */
1821                 trans = btrfs_attach_transaction(root);
1822                 if (IS_ERR(trans)) {
1823                         if (PTR_ERR(trans) != -ENOENT)
1824                                 cannot_commit = true;
1825                         goto sleep;
1826                 }
1827                 if (transid == trans->transid) {
1828                         btrfs_commit_transaction(trans, root);
1829                 } else {
1830                         btrfs_end_transaction(trans, root);
1831                 }
1832 sleep:
1833                 wake_up_process(root->fs_info->cleaner_kthread);
1834                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1835
1836                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1837                                       &root->fs_info->fs_state)))
1838                         btrfs_cleanup_transaction(root);
1839                 if (!try_to_freeze()) {
1840                         set_current_state(TASK_INTERRUPTIBLE);
1841                         if (!kthread_should_stop() &&
1842                             (!btrfs_transaction_blocked(root->fs_info) ||
1843                              cannot_commit))
1844                                 schedule_timeout(delay);
1845                         __set_current_state(TASK_RUNNING);
1846                 }
1847         } while (!kthread_should_stop());
1848         return 0;
1849 }
1850
1851 /*
1852  * this will find the highest generation in the array of
1853  * root backups.  The index of the highest array is returned,
1854  * or -1 if we can't find anything.
1855  *
1856  * We check to make sure the array is valid by comparing the
1857  * generation of the latest  root in the array with the generation
1858  * in the super block.  If they don't match we pitch it.
1859  */
1860 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1861 {
1862         u64 cur;
1863         int newest_index = -1;
1864         struct btrfs_root_backup *root_backup;
1865         int i;
1866
1867         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1868                 root_backup = info->super_copy->super_roots + i;
1869                 cur = btrfs_backup_tree_root_gen(root_backup);
1870                 if (cur == newest_gen)
1871                         newest_index = i;
1872         }
1873
1874         /* check to see if we actually wrapped around */
1875         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1876                 root_backup = info->super_copy->super_roots;
1877                 cur = btrfs_backup_tree_root_gen(root_backup);
1878                 if (cur == newest_gen)
1879                         newest_index = 0;
1880         }
1881         return newest_index;
1882 }
1883
1884
1885 /*
1886  * find the oldest backup so we know where to store new entries
1887  * in the backup array.  This will set the backup_root_index
1888  * field in the fs_info struct
1889  */
1890 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1891                                      u64 newest_gen)
1892 {
1893         int newest_index = -1;
1894
1895         newest_index = find_newest_super_backup(info, newest_gen);
1896         /* if there was garbage in there, just move along */
1897         if (newest_index == -1) {
1898                 info->backup_root_index = 0;
1899         } else {
1900                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1901         }
1902 }
1903
1904 /*
1905  * copy all the root pointers into the super backup array.
1906  * this will bump the backup pointer by one when it is
1907  * done
1908  */
1909 static void backup_super_roots(struct btrfs_fs_info *info)
1910 {
1911         int next_backup;
1912         struct btrfs_root_backup *root_backup;
1913         int last_backup;
1914
1915         next_backup = info->backup_root_index;
1916         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1917                 BTRFS_NUM_BACKUP_ROOTS;
1918
1919         /*
1920          * just overwrite the last backup if we're at the same generation
1921          * this happens only at umount
1922          */
1923         root_backup = info->super_for_commit->super_roots + last_backup;
1924         if (btrfs_backup_tree_root_gen(root_backup) ==
1925             btrfs_header_generation(info->tree_root->node))
1926                 next_backup = last_backup;
1927
1928         root_backup = info->super_for_commit->super_roots + next_backup;
1929
1930         /*
1931          * make sure all of our padding and empty slots get zero filled
1932          * regardless of which ones we use today
1933          */
1934         memset(root_backup, 0, sizeof(*root_backup));
1935
1936         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1937
1938         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1939         btrfs_set_backup_tree_root_gen(root_backup,
1940                                btrfs_header_generation(info->tree_root->node));
1941
1942         btrfs_set_backup_tree_root_level(root_backup,
1943                                btrfs_header_level(info->tree_root->node));
1944
1945         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1946         btrfs_set_backup_chunk_root_gen(root_backup,
1947                                btrfs_header_generation(info->chunk_root->node));
1948         btrfs_set_backup_chunk_root_level(root_backup,
1949                                btrfs_header_level(info->chunk_root->node));
1950
1951         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1952         btrfs_set_backup_extent_root_gen(root_backup,
1953                                btrfs_header_generation(info->extent_root->node));
1954         btrfs_set_backup_extent_root_level(root_backup,
1955                                btrfs_header_level(info->extent_root->node));
1956
1957         /*
1958          * we might commit during log recovery, which happens before we set
1959          * the fs_root.  Make sure it is valid before we fill it in.
1960          */
1961         if (info->fs_root && info->fs_root->node) {
1962                 btrfs_set_backup_fs_root(root_backup,
1963                                          info->fs_root->node->start);
1964                 btrfs_set_backup_fs_root_gen(root_backup,
1965                                btrfs_header_generation(info->fs_root->node));
1966                 btrfs_set_backup_fs_root_level(root_backup,
1967                                btrfs_header_level(info->fs_root->node));
1968         }
1969
1970         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1971         btrfs_set_backup_dev_root_gen(root_backup,
1972                                btrfs_header_generation(info->dev_root->node));
1973         btrfs_set_backup_dev_root_level(root_backup,
1974                                        btrfs_header_level(info->dev_root->node));
1975
1976         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1977         btrfs_set_backup_csum_root_gen(root_backup,
1978                                btrfs_header_generation(info->csum_root->node));
1979         btrfs_set_backup_csum_root_level(root_backup,
1980                                btrfs_header_level(info->csum_root->node));
1981
1982         btrfs_set_backup_total_bytes(root_backup,
1983                              btrfs_super_total_bytes(info->super_copy));
1984         btrfs_set_backup_bytes_used(root_backup,
1985                              btrfs_super_bytes_used(info->super_copy));
1986         btrfs_set_backup_num_devices(root_backup,
1987                              btrfs_super_num_devices(info->super_copy));
1988
1989         /*
1990          * if we don't copy this out to the super_copy, it won't get remembered
1991          * for the next commit
1992          */
1993         memcpy(&info->super_copy->super_roots,
1994                &info->super_for_commit->super_roots,
1995                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1996 }
1997
1998 /*
1999  * this copies info out of the root backup array and back into
2000  * the in-memory super block.  It is meant to help iterate through
2001  * the array, so you send it the number of backups you've already
2002  * tried and the last backup index you used.
2003  *
2004  * this returns -1 when it has tried all the backups
2005  */
2006 static noinline int next_root_backup(struct btrfs_fs_info *info,
2007                                      struct btrfs_super_block *super,
2008                                      int *num_backups_tried, int *backup_index)
2009 {
2010         struct btrfs_root_backup *root_backup;
2011         int newest = *backup_index;
2012
2013         if (*num_backups_tried == 0) {
2014                 u64 gen = btrfs_super_generation(super);
2015
2016                 newest = find_newest_super_backup(info, gen);
2017                 if (newest == -1)
2018                         return -1;
2019
2020                 *backup_index = newest;
2021                 *num_backups_tried = 1;
2022         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2023                 /* we've tried all the backups, all done */
2024                 return -1;
2025         } else {
2026                 /* jump to the next oldest backup */
2027                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2028                         BTRFS_NUM_BACKUP_ROOTS;
2029                 *backup_index = newest;
2030                 *num_backups_tried += 1;
2031         }
2032         root_backup = super->super_roots + newest;
2033
2034         btrfs_set_super_generation(super,
2035                                    btrfs_backup_tree_root_gen(root_backup));
2036         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2037         btrfs_set_super_root_level(super,
2038                                    btrfs_backup_tree_root_level(root_backup));
2039         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2040
2041         /*
2042          * fixme: the total bytes and num_devices need to match or we should
2043          * need a fsck
2044          */
2045         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2046         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2047         return 0;
2048 }
2049
2050 /* helper to cleanup workers */
2051 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2052 {
2053         btrfs_destroy_workqueue(fs_info->fixup_workers);
2054         btrfs_destroy_workqueue(fs_info->delalloc_workers);
2055         btrfs_destroy_workqueue(fs_info->workers);
2056         btrfs_destroy_workqueue(fs_info->endio_workers);
2057         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2058         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2059         btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2060         btrfs_destroy_workqueue(fs_info->rmw_workers);
2061         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2062         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2063         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2064         btrfs_destroy_workqueue(fs_info->submit_workers);
2065         btrfs_destroy_workqueue(fs_info->delayed_workers);
2066         btrfs_destroy_workqueue(fs_info->caching_workers);
2067         btrfs_destroy_workqueue(fs_info->readahead_workers);
2068         btrfs_destroy_workqueue(fs_info->flush_workers);
2069         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2070         btrfs_destroy_workqueue(fs_info->extent_workers);
2071 }
2072
2073 static void free_root_extent_buffers(struct btrfs_root *root)
2074 {
2075         if (root) {
2076                 free_extent_buffer(root->node);
2077                 free_extent_buffer(root->commit_root);
2078                 root->node = NULL;
2079                 root->commit_root = NULL;
2080         }
2081 }
2082
2083 /* helper to cleanup tree roots */
2084 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2085 {
2086         free_root_extent_buffers(info->tree_root);
2087
2088         free_root_extent_buffers(info->dev_root);
2089         free_root_extent_buffers(info->extent_root);
2090         free_root_extent_buffers(info->csum_root);
2091         free_root_extent_buffers(info->quota_root);
2092         free_root_extent_buffers(info->uuid_root);
2093         if (chunk_root)
2094                 free_root_extent_buffers(info->chunk_root);
2095 }
2096
2097 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2098 {
2099         int ret;
2100         struct btrfs_root *gang[8];
2101         int i;
2102
2103         while (!list_empty(&fs_info->dead_roots)) {
2104                 gang[0] = list_entry(fs_info->dead_roots.next,
2105                                      struct btrfs_root, root_list);
2106                 list_del(&gang[0]->root_list);
2107
2108                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2109                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2110                 } else {
2111                         free_extent_buffer(gang[0]->node);
2112                         free_extent_buffer(gang[0]->commit_root);
2113                         btrfs_put_fs_root(gang[0]);
2114                 }
2115         }
2116
2117         while (1) {
2118                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2119                                              (void **)gang, 0,
2120                                              ARRAY_SIZE(gang));
2121                 if (!ret)
2122                         break;
2123                 for (i = 0; i < ret; i++)
2124                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2125         }
2126
2127         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2128                 btrfs_free_log_root_tree(NULL, fs_info);
2129                 btrfs_destroy_pinned_extent(fs_info->tree_root,
2130                                             fs_info->pinned_extents);
2131         }
2132 }
2133
2134 int open_ctree(struct super_block *sb,
2135                struct btrfs_fs_devices *fs_devices,
2136                char *options)
2137 {
2138         u32 sectorsize;
2139         u32 nodesize;
2140         u32 stripesize;
2141         u64 generation;
2142         u64 features;
2143         struct btrfs_key location;
2144         struct buffer_head *bh;
2145         struct btrfs_super_block *disk_super;
2146         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2147         struct btrfs_root *tree_root;
2148         struct btrfs_root *extent_root;
2149         struct btrfs_root *csum_root;
2150         struct btrfs_root *chunk_root;
2151         struct btrfs_root *dev_root;
2152         struct btrfs_root *quota_root;
2153         struct btrfs_root *uuid_root;
2154         struct btrfs_root *log_tree_root;
2155         int ret;
2156         int err = -EINVAL;
2157         int num_backups_tried = 0;
2158         int backup_index = 0;
2159         int max_active;
2160         int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2161         bool create_uuid_tree;
2162         bool check_uuid_tree;
2163
2164         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2165         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2166         if (!tree_root || !chunk_root) {
2167                 err = -ENOMEM;
2168                 goto fail;
2169         }
2170
2171         ret = init_srcu_struct(&fs_info->subvol_srcu);
2172         if (ret) {
2173                 err = ret;
2174                 goto fail;
2175         }
2176
2177         ret = setup_bdi(fs_info, &fs_info->bdi);
2178         if (ret) {
2179                 err = ret;
2180                 goto fail_srcu;
2181         }
2182
2183         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2184         if (ret) {
2185                 err = ret;
2186                 goto fail_bdi;
2187         }
2188         fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2189                                         (1 + ilog2(nr_cpu_ids));
2190
2191         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2192         if (ret) {
2193                 err = ret;
2194                 goto fail_dirty_metadata_bytes;
2195         }
2196
2197         ret = percpu_counter_init(&fs_info->bio_counter, 0);
2198         if (ret) {
2199                 err = ret;
2200                 goto fail_delalloc_bytes;
2201         }
2202
2203         fs_info->btree_inode = new_inode(sb);
2204         if (!fs_info->btree_inode) {
2205                 err = -ENOMEM;
2206                 goto fail_bio_counter;
2207         }
2208
2209         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2210
2211         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2212         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2213         INIT_LIST_HEAD(&fs_info->trans_list);
2214         INIT_LIST_HEAD(&fs_info->dead_roots);
2215         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2216         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2217         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2218         spin_lock_init(&fs_info->delalloc_root_lock);
2219         spin_lock_init(&fs_info->trans_lock);
2220         spin_lock_init(&fs_info->fs_roots_radix_lock);
2221         spin_lock_init(&fs_info->delayed_iput_lock);
2222         spin_lock_init(&fs_info->defrag_inodes_lock);
2223         spin_lock_init(&fs_info->free_chunk_lock);
2224         spin_lock_init(&fs_info->tree_mod_seq_lock);
2225         spin_lock_init(&fs_info->super_lock);
2226         spin_lock_init(&fs_info->qgroup_op_lock);
2227         spin_lock_init(&fs_info->buffer_lock);
2228         spin_lock_init(&fs_info->unused_bgs_lock);
2229         rwlock_init(&fs_info->tree_mod_log_lock);
2230         mutex_init(&fs_info->reloc_mutex);
2231         mutex_init(&fs_info->delalloc_root_mutex);
2232         seqlock_init(&fs_info->profiles_lock);
2233
2234         init_completion(&fs_info->kobj_unregister);
2235         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2236         INIT_LIST_HEAD(&fs_info->space_info);
2237         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2238         INIT_LIST_HEAD(&fs_info->unused_bgs);
2239         btrfs_mapping_init(&fs_info->mapping_tree);
2240         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2241                              BTRFS_BLOCK_RSV_GLOBAL);
2242         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2243                              BTRFS_BLOCK_RSV_DELALLOC);
2244         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2245         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2246         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2247         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2248                              BTRFS_BLOCK_RSV_DELOPS);
2249         atomic_set(&fs_info->nr_async_submits, 0);
2250         atomic_set(&fs_info->async_delalloc_pages, 0);
2251         atomic_set(&fs_info->async_submit_draining, 0);
2252         atomic_set(&fs_info->nr_async_bios, 0);
2253         atomic_set(&fs_info->defrag_running, 0);
2254         atomic_set(&fs_info->qgroup_op_seq, 0);
2255         atomic64_set(&fs_info->tree_mod_seq, 0);
2256         fs_info->sb = sb;
2257         fs_info->max_inline = 8192 * 1024;
2258         fs_info->metadata_ratio = 0;
2259         fs_info->defrag_inodes = RB_ROOT;
2260         fs_info->free_chunk_space = 0;
2261         fs_info->tree_mod_log = RB_ROOT;
2262         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2263         fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
2264         /* readahead state */
2265         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2266         spin_lock_init(&fs_info->reada_lock);
2267
2268         fs_info->thread_pool_size = min_t(unsigned long,
2269                                           num_online_cpus() + 2, 8);
2270
2271         INIT_LIST_HEAD(&fs_info->ordered_roots);
2272         spin_lock_init(&fs_info->ordered_root_lock);
2273         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2274                                         GFP_NOFS);
2275         if (!fs_info->delayed_root) {
2276                 err = -ENOMEM;
2277                 goto fail_iput;
2278         }
2279         btrfs_init_delayed_root(fs_info->delayed_root);
2280
2281         mutex_init(&fs_info->scrub_lock);
2282         atomic_set(&fs_info->scrubs_running, 0);
2283         atomic_set(&fs_info->scrub_pause_req, 0);
2284         atomic_set(&fs_info->scrubs_paused, 0);
2285         atomic_set(&fs_info->scrub_cancel_req, 0);
2286         init_waitqueue_head(&fs_info->replace_wait);
2287         init_waitqueue_head(&fs_info->scrub_pause_wait);
2288         fs_info->scrub_workers_refcnt = 0;
2289 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2290         fs_info->check_integrity_print_mask = 0;
2291 #endif
2292
2293         spin_lock_init(&fs_info->balance_lock);
2294         mutex_init(&fs_info->balance_mutex);
2295         atomic_set(&fs_info->balance_running, 0);
2296         atomic_set(&fs_info->balance_pause_req, 0);
2297         atomic_set(&fs_info->balance_cancel_req, 0);
2298         fs_info->balance_ctl = NULL;
2299         init_waitqueue_head(&fs_info->balance_wait_q);
2300         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2301
2302         sb->s_blocksize = 4096;
2303         sb->s_blocksize_bits = blksize_bits(4096);
2304         sb->s_bdi = &fs_info->bdi;
2305
2306         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2307         set_nlink(fs_info->btree_inode, 1);
2308         /*
2309          * we set the i_size on the btree inode to the max possible int.
2310          * the real end of the address space is determined by all of
2311          * the devices in the system
2312          */
2313         fs_info->btree_inode->i_size = OFFSET_MAX;
2314         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2315         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2316
2317         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2318         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2319                              fs_info->btree_inode->i_mapping);
2320         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2321         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2322
2323         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2324
2325         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2326         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2327                sizeof(struct btrfs_key));
2328         set_bit(BTRFS_INODE_DUMMY,
2329                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2330         btrfs_insert_inode_hash(fs_info->btree_inode);
2331
2332         spin_lock_init(&fs_info->block_group_cache_lock);
2333         fs_info->block_group_cache_tree = RB_ROOT;
2334         fs_info->first_logical_byte = (u64)-1;
2335
2336         extent_io_tree_init(&fs_info->freed_extents[0],
2337                              fs_info->btree_inode->i_mapping);
2338         extent_io_tree_init(&fs_info->freed_extents[1],
2339                              fs_info->btree_inode->i_mapping);
2340         fs_info->pinned_extents = &fs_info->freed_extents[0];
2341         fs_info->do_barriers = 1;
2342
2343
2344         mutex_init(&fs_info->ordered_operations_mutex);
2345         mutex_init(&fs_info->ordered_extent_flush_mutex);
2346         mutex_init(&fs_info->tree_log_mutex);
2347         mutex_init(&fs_info->chunk_mutex);
2348         mutex_init(&fs_info->transaction_kthread_mutex);
2349         mutex_init(&fs_info->cleaner_mutex);
2350         mutex_init(&fs_info->volume_mutex);
2351         init_rwsem(&fs_info->commit_root_sem);
2352         init_rwsem(&fs_info->cleanup_work_sem);
2353         init_rwsem(&fs_info->subvol_sem);
2354         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2355         fs_info->dev_replace.lock_owner = 0;
2356         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2357         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2358         mutex_init(&fs_info->dev_replace.lock_management_lock);
2359         mutex_init(&fs_info->dev_replace.lock);
2360
2361         spin_lock_init(&fs_info->qgroup_lock);
2362         mutex_init(&fs_info->qgroup_ioctl_lock);
2363         fs_info->qgroup_tree = RB_ROOT;
2364         fs_info->qgroup_op_tree = RB_ROOT;
2365         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2366         fs_info->qgroup_seq = 1;
2367         fs_info->quota_enabled = 0;
2368         fs_info->pending_quota_state = 0;
2369         fs_info->qgroup_ulist = NULL;
2370         mutex_init(&fs_info->qgroup_rescan_lock);
2371
2372         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2373         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2374
2375         init_waitqueue_head(&fs_info->transaction_throttle);
2376         init_waitqueue_head(&fs_info->transaction_wait);
2377         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2378         init_waitqueue_head(&fs_info->async_submit_wait);
2379
2380         ret = btrfs_alloc_stripe_hash_table(fs_info);
2381         if (ret) {
2382                 err = ret;
2383                 goto fail_alloc;
2384         }
2385
2386         __setup_root(4096, 4096, 4096, tree_root,
2387                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2388
2389         invalidate_bdev(fs_devices->latest_bdev);
2390
2391         /*
2392          * Read super block and check the signature bytes only
2393          */
2394         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2395         if (!bh) {
2396                 err = -EINVAL;
2397                 goto fail_alloc;
2398         }
2399
2400         /*
2401          * We want to check superblock checksum, the type is stored inside.
2402          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2403          */
2404         if (btrfs_check_super_csum(bh->b_data)) {
2405                 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2406                 err = -EINVAL;
2407                 goto fail_alloc;
2408         }
2409
2410         /*
2411          * super_copy is zeroed at allocation time and we never touch the
2412          * following bytes up to INFO_SIZE, the checksum is calculated from
2413          * the whole block of INFO_SIZE
2414          */
2415         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2416         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2417                sizeof(*fs_info->super_for_commit));
2418         brelse(bh);
2419
2420         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2421
2422         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2423         if (ret) {
2424                 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2425                 err = -EINVAL;
2426                 goto fail_alloc;
2427         }
2428
2429         disk_super = fs_info->super_copy;
2430         if (!btrfs_super_root(disk_super))
2431                 goto fail_alloc;
2432
2433         /* check FS state, whether FS is broken. */
2434         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2435                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2436
2437         /*
2438          * run through our array of backup supers and setup
2439          * our ring pointer to the oldest one
2440          */
2441         generation = btrfs_super_generation(disk_super);
2442         find_oldest_super_backup(fs_info, generation);
2443
2444         /*
2445          * In the long term, we'll store the compression type in the super
2446          * block, and it'll be used for per file compression control.
2447          */
2448         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2449
2450         ret = btrfs_parse_options(tree_root, options);
2451         if (ret) {
2452                 err = ret;
2453                 goto fail_alloc;
2454         }
2455
2456         features = btrfs_super_incompat_flags(disk_super) &
2457                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2458         if (features) {
2459                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2460                        "unsupported optional features (%Lx).\n",
2461                        features);
2462                 err = -EINVAL;
2463                 goto fail_alloc;
2464         }
2465
2466         /*
2467          * Leafsize and nodesize were always equal, this is only a sanity check.
2468          */
2469         if (le32_to_cpu(disk_super->__unused_leafsize) !=
2470             btrfs_super_nodesize(disk_super)) {
2471                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2472                        "blocksizes don't match.  node %d leaf %d\n",
2473                        btrfs_super_nodesize(disk_super),
2474                        le32_to_cpu(disk_super->__unused_leafsize));
2475                 err = -EINVAL;
2476                 goto fail_alloc;
2477         }
2478         if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2479                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2480                        "blocksize (%d) was too large\n",
2481                        btrfs_super_nodesize(disk_super));
2482                 err = -EINVAL;
2483                 goto fail_alloc;
2484         }
2485
2486         features = btrfs_super_incompat_flags(disk_super);
2487         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2488         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2489                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2490
2491         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2492                 printk(KERN_ERR "BTRFS: has skinny extents\n");
2493
2494         /*
2495          * flag our filesystem as having big metadata blocks if
2496          * they are bigger than the page size
2497          */
2498         if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
2499                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2500                         printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2501                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2502         }
2503
2504         nodesize = btrfs_super_nodesize(disk_super);
2505         sectorsize = btrfs_super_sectorsize(disk_super);
2506         stripesize = btrfs_super_stripesize(disk_super);
2507         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2508         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2509
2510         /*
2511          * mixed block groups end up with duplicate but slightly offset
2512          * extent buffers for the same range.  It leads to corruptions
2513          */
2514         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2515             (sectorsize != nodesize)) {
2516                 printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
2517                                 "are not allowed for mixed block groups on %s\n",
2518                                 sb->s_id);
2519                 goto fail_alloc;
2520         }
2521
2522         /*
2523          * Needn't use the lock because there is no other task which will
2524          * update the flag.
2525          */
2526         btrfs_set_super_incompat_flags(disk_super, features);
2527
2528         features = btrfs_super_compat_ro_flags(disk_super) &
2529                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2530         if (!(sb->s_flags & MS_RDONLY) && features) {
2531                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2532                        "unsupported option features (%Lx).\n",
2533                        features);
2534                 err = -EINVAL;
2535                 goto fail_alloc;
2536         }
2537
2538         max_active = fs_info->thread_pool_size;
2539
2540         fs_info->workers =
2541                 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2542                                       max_active, 16);
2543
2544         fs_info->delalloc_workers =
2545                 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2546
2547         fs_info->flush_workers =
2548                 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2549
2550         fs_info->caching_workers =
2551                 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2552
2553         /*
2554          * a higher idle thresh on the submit workers makes it much more
2555          * likely that bios will be send down in a sane order to the
2556          * devices
2557          */
2558         fs_info->submit_workers =
2559                 btrfs_alloc_workqueue("submit", flags,
2560                                       min_t(u64, fs_devices->num_devices,
2561                                             max_active), 64);
2562
2563         fs_info->fixup_workers =
2564                 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2565
2566         /*
2567          * endios are largely parallel and should have a very
2568          * low idle thresh
2569          */
2570         fs_info->endio_workers =
2571                 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2572         fs_info->endio_meta_workers =
2573                 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2574         fs_info->endio_meta_write_workers =
2575                 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2576         fs_info->endio_raid56_workers =
2577                 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2578         fs_info->endio_repair_workers =
2579                 btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2580         fs_info->rmw_workers =
2581                 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2582         fs_info->endio_write_workers =
2583                 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2584         fs_info->endio_freespace_worker =
2585                 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2586         fs_info->delayed_workers =
2587                 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2588         fs_info->readahead_workers =
2589                 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2590         fs_info->qgroup_rescan_workers =
2591                 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2592         fs_info->extent_workers =
2593                 btrfs_alloc_workqueue("extent-refs", flags,
2594                                       min_t(u64, fs_devices->num_devices,
2595                                             max_active), 8);
2596
2597         if (!(fs_info->workers && fs_info->delalloc_workers &&
2598               fs_info->submit_workers && fs_info->flush_workers &&
2599               fs_info->endio_workers && fs_info->endio_meta_workers &&
2600               fs_info->endio_meta_write_workers &&
2601               fs_info->endio_repair_workers &&
2602               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2603               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2604               fs_info->caching_workers && fs_info->readahead_workers &&
2605               fs_info->fixup_workers && fs_info->delayed_workers &&
2606               fs_info->extent_workers &&
2607               fs_info->qgroup_rescan_workers)) {
2608                 err = -ENOMEM;
2609                 goto fail_sb_buffer;
2610         }
2611
2612         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2613         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2614                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2615
2616         tree_root->nodesize = nodesize;
2617         tree_root->sectorsize = sectorsize;
2618         tree_root->stripesize = stripesize;
2619
2620         sb->s_blocksize = sectorsize;
2621         sb->s_blocksize_bits = blksize_bits(sectorsize);
2622
2623         if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2624                 printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
2625                 goto fail_sb_buffer;
2626         }
2627
2628         if (sectorsize != PAGE_SIZE) {
2629                 printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
2630                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2631                 goto fail_sb_buffer;
2632         }
2633
2634         mutex_lock(&fs_info->chunk_mutex);
2635         ret = btrfs_read_sys_array(tree_root);
2636         mutex_unlock(&fs_info->chunk_mutex);
2637         if (ret) {
2638                 printk(KERN_WARNING "BTRFS: failed to read the system "
2639                        "array on %s\n", sb->s_id);
2640                 goto fail_sb_buffer;
2641         }
2642
2643         generation = btrfs_super_chunk_root_generation(disk_super);
2644
2645         __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2646                      fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2647
2648         chunk_root->node = read_tree_block(chunk_root,
2649                                            btrfs_super_chunk_root(disk_super),
2650                                            generation);
2651         if (!chunk_root->node ||
2652             !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2653                 printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
2654                        sb->s_id);
2655                 goto fail_tree_roots;
2656         }
2657         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2658         chunk_root->commit_root = btrfs_root_node(chunk_root);
2659
2660         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2661            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2662
2663         ret = btrfs_read_chunk_tree(chunk_root);
2664         if (ret) {
2665                 printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
2666                        sb->s_id);
2667                 goto fail_tree_roots;
2668         }
2669
2670         /*
2671          * keep the device that is marked to be the target device for the
2672          * dev_replace procedure
2673          */
2674         btrfs_close_extra_devices(fs_info, fs_devices, 0);
2675
2676         if (!fs_devices->latest_bdev) {
2677                 printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
2678                        sb->s_id);
2679                 goto fail_tree_roots;
2680         }
2681
2682 retry_root_backup:
2683         generation = btrfs_super_generation(disk_super);
2684
2685         tree_root->node = read_tree_block(tree_root,
2686                                           btrfs_super_root(disk_super),
2687                                           generation);
2688         if (!tree_root->node ||
2689             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2690                 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2691                        sb->s_id);
2692
2693                 goto recovery_tree_root;
2694         }
2695
2696         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2697         tree_root->commit_root = btrfs_root_node(tree_root);
2698         btrfs_set_root_refs(&tree_root->root_item, 1);
2699
2700         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2701         location.type = BTRFS_ROOT_ITEM_KEY;
2702         location.offset = 0;
2703
2704         extent_root = btrfs_read_tree_root(tree_root, &location);
2705         if (IS_ERR(extent_root)) {
2706                 ret = PTR_ERR(extent_root);
2707                 goto recovery_tree_root;
2708         }
2709         set_bit(BTRFS_ROOT_TRACK_DIRTY, &extent_root->state);
2710         fs_info->extent_root = extent_root;
2711
2712         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2713         dev_root = btrfs_read_tree_root(tree_root, &location);
2714         if (IS_ERR(dev_root)) {
2715                 ret = PTR_ERR(dev_root);
2716                 goto recovery_tree_root;
2717         }
2718         set_bit(BTRFS_ROOT_TRACK_DIRTY, &dev_root->state);
2719         fs_info->dev_root = dev_root;
2720         btrfs_init_devices_late(fs_info);
2721
2722         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2723         csum_root = btrfs_read_tree_root(tree_root, &location);
2724         if (IS_ERR(csum_root)) {
2725                 ret = PTR_ERR(csum_root);
2726                 goto recovery_tree_root;
2727         }
2728         set_bit(BTRFS_ROOT_TRACK_DIRTY, &csum_root->state);
2729         fs_info->csum_root = csum_root;
2730
2731         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2732         quota_root = btrfs_read_tree_root(tree_root, &location);
2733         if (!IS_ERR(quota_root)) {
2734                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &quota_root->state);
2735                 fs_info->quota_enabled = 1;
2736                 fs_info->pending_quota_state = 1;
2737                 fs_info->quota_root = quota_root;
2738         }
2739
2740         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2741         uuid_root = btrfs_read_tree_root(tree_root, &location);
2742         if (IS_ERR(uuid_root)) {
2743                 ret = PTR_ERR(uuid_root);
2744                 if (ret != -ENOENT)
2745                         goto recovery_tree_root;
2746                 create_uuid_tree = true;
2747                 check_uuid_tree = false;
2748         } else {
2749                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &uuid_root->state);
2750                 fs_info->uuid_root = uuid_root;
2751                 create_uuid_tree = false;
2752                 check_uuid_tree =
2753                     generation != btrfs_super_uuid_tree_generation(disk_super);
2754         }
2755
2756         fs_info->generation = generation;
2757         fs_info->last_trans_committed = generation;
2758
2759         ret = btrfs_recover_balance(fs_info);
2760         if (ret) {
2761                 printk(KERN_WARNING "BTRFS: failed to recover balance\n");
2762                 goto fail_block_groups;
2763         }
2764
2765         ret = btrfs_init_dev_stats(fs_info);
2766         if (ret) {
2767                 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2768                        ret);
2769                 goto fail_block_groups;
2770         }
2771
2772         ret = btrfs_init_dev_replace(fs_info);
2773         if (ret) {
2774                 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2775                 goto fail_block_groups;
2776         }
2777
2778         btrfs_close_extra_devices(fs_info, fs_devices, 1);
2779
2780         ret = btrfs_sysfs_add_one(fs_info);
2781         if (ret) {
2782                 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2783                 goto fail_block_groups;
2784         }
2785
2786         ret = btrfs_init_space_info(fs_info);
2787         if (ret) {
2788                 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2789                 goto fail_sysfs;
2790         }
2791
2792         ret = btrfs_read_block_groups(extent_root);
2793         if (ret) {
2794                 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2795                 goto fail_sysfs;
2796         }
2797         fs_info->num_tolerated_disk_barrier_failures =
2798                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2799         if (fs_info->fs_devices->missing_devices >
2800              fs_info->num_tolerated_disk_barrier_failures &&
2801             !(sb->s_flags & MS_RDONLY)) {
2802                 printk(KERN_WARNING "BTRFS: "
2803                         "too many missing devices, writeable mount is not allowed\n");
2804                 goto fail_sysfs;
2805         }
2806
2807         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2808                                                "btrfs-cleaner");
2809         if (IS_ERR(fs_info->cleaner_kthread))
2810                 goto fail_sysfs;
2811
2812         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2813                                                    tree_root,
2814                                                    "btrfs-transaction");
2815         if (IS_ERR(fs_info->transaction_kthread))
2816                 goto fail_cleaner;
2817
2818         if (!btrfs_test_opt(tree_root, SSD) &&
2819             !btrfs_test_opt(tree_root, NOSSD) &&
2820             !fs_info->fs_devices->rotating) {
2821                 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2822                        "mode\n");
2823                 btrfs_set_opt(fs_info->mount_opt, SSD);
2824         }
2825
2826         /* Set the real inode map cache flag */
2827         if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
2828                 btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
2829
2830 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2831         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2832                 ret = btrfsic_mount(tree_root, fs_devices,
2833                                     btrfs_test_opt(tree_root,
2834                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2835                                     1 : 0,
2836                                     fs_info->check_integrity_print_mask);
2837                 if (ret)
2838                         printk(KERN_WARNING "BTRFS: failed to initialize"
2839                                " integrity check module %s\n", sb->s_id);
2840         }
2841 #endif
2842         ret = btrfs_read_qgroup_config(fs_info);
2843         if (ret)
2844                 goto fail_trans_kthread;
2845
2846         /* do not make disk changes in broken FS */
2847         if (btrfs_super_log_root(disk_super) != 0) {
2848                 u64 bytenr = btrfs_super_log_root(disk_super);
2849
2850                 if (fs_devices->rw_devices == 0) {
2851                         printk(KERN_WARNING "BTRFS: log replay required "
2852                                "on RO media\n");
2853                         err = -EIO;
2854                         goto fail_qgroup;
2855                 }
2856
2857                 log_tree_root = btrfs_alloc_root(fs_info);
2858                 if (!log_tree_root) {
2859                         err = -ENOMEM;
2860                         goto fail_qgroup;
2861                 }
2862
2863                 __setup_root(nodesize, sectorsize, stripesize,
2864                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2865
2866                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2867                                                       generation + 1);
2868                 if (!log_tree_root->node ||
2869                     !extent_buffer_uptodate(log_tree_root->node)) {
2870                         printk(KERN_ERR "BTRFS: failed to read log tree\n");
2871                         free_extent_buffer(log_tree_root->node);
2872                         kfree(log_tree_root);
2873                         goto fail_qgroup;
2874                 }
2875                 /* returns with log_tree_root freed on success */
2876                 ret = btrfs_recover_log_trees(log_tree_root);
2877                 if (ret) {
2878                         btrfs_error(tree_root->fs_info, ret,
2879                                     "Failed to recover log tree");
2880                         free_extent_buffer(log_tree_root->node);
2881                         kfree(log_tree_root);
2882                         goto fail_qgroup;
2883                 }
2884
2885                 if (sb->s_flags & MS_RDONLY) {
2886                         ret = btrfs_commit_super(tree_root);
2887                         if (ret)
2888                                 goto fail_qgroup;
2889                 }
2890         }
2891
2892         ret = btrfs_find_orphan_roots(tree_root);
2893         if (ret)
2894                 goto fail_qgroup;
2895
2896         if (!(sb->s_flags & MS_RDONLY)) {
2897                 ret = btrfs_cleanup_fs_roots(fs_info);
2898                 if (ret)
2899                         goto fail_qgroup;
2900
2901                 mutex_lock(&fs_info->cleaner_mutex);
2902                 ret = btrfs_recover_relocation(tree_root);
2903                 mutex_unlock(&fs_info->cleaner_mutex);
2904                 if (ret < 0) {
2905                         printk(KERN_WARNING
2906                                "BTRFS: failed to recover relocation\n");
2907                         err = -EINVAL;
2908                         goto fail_qgroup;
2909                 }
2910         }
2911
2912         location.objectid = BTRFS_FS_TREE_OBJECTID;
2913         location.type = BTRFS_ROOT_ITEM_KEY;
2914         location.offset = 0;
2915
2916         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2917         if (IS_ERR(fs_info->fs_root)) {
2918                 err = PTR_ERR(fs_info->fs_root);
2919                 goto fail_qgroup;
2920         }
2921
2922         if (sb->s_flags & MS_RDONLY)
2923                 return 0;
2924
2925         down_read(&fs_info->cleanup_work_sem);
2926         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2927             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2928                 up_read(&fs_info->cleanup_work_sem);
2929                 close_ctree(tree_root);
2930                 return ret;
2931         }
2932         up_read(&fs_info->cleanup_work_sem);
2933
2934         ret = btrfs_resume_balance_async(fs_info);
2935         if (ret) {
2936                 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2937                 close_ctree(tree_root);
2938                 return ret;
2939         }
2940
2941         ret = btrfs_resume_dev_replace_async(fs_info);
2942         if (ret) {
2943                 pr_warn("BTRFS: failed to resume dev_replace\n");
2944                 close_ctree(tree_root);
2945                 return ret;
2946         }
2947
2948         btrfs_qgroup_rescan_resume(fs_info);
2949
2950         if (create_uuid_tree) {
2951                 pr_info("BTRFS: creating UUID tree\n");
2952                 ret = btrfs_create_uuid_tree(fs_info);
2953                 if (ret) {
2954                         pr_warn("BTRFS: failed to create the UUID tree %d\n",
2955                                 ret);
2956                         close_ctree(tree_root);
2957                         return ret;
2958                 }
2959         } else if (check_uuid_tree ||
2960                    btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
2961                 pr_info("BTRFS: checking UUID tree\n");
2962                 ret = btrfs_check_uuid_tree(fs_info);
2963                 if (ret) {
2964                         pr_warn("BTRFS: failed to check the UUID tree %d\n",
2965                                 ret);
2966                         close_ctree(tree_root);
2967                         return ret;
2968                 }
2969         } else {
2970                 fs_info->update_uuid_tree_gen = 1;
2971         }
2972
2973         fs_info->open = 1;
2974
2975         return 0;
2976
2977 fail_qgroup:
2978         btrfs_free_qgroup_config(fs_info);
2979 fail_trans_kthread:
2980         kthread_stop(fs_info->transaction_kthread);
2981         btrfs_cleanup_transaction(fs_info->tree_root);
2982         btrfs_free_fs_roots(fs_info);
2983 fail_cleaner:
2984         kthread_stop(fs_info->cleaner_kthread);
2985
2986         /*
2987          * make sure we're done with the btree inode before we stop our
2988          * kthreads
2989          */
2990         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2991
2992 fail_sysfs:
2993         btrfs_sysfs_remove_one(fs_info);
2994
2995 fail_block_groups:
2996         btrfs_put_block_group_cache(fs_info);
2997         btrfs_free_block_groups(fs_info);
2998
2999 fail_tree_roots:
3000         free_root_pointers(fs_info, 1);
3001         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3002
3003 fail_sb_buffer:
3004         btrfs_stop_all_workers(fs_info);
3005 fail_alloc:
3006 fail_iput:
3007         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3008
3009         iput(fs_info->btree_inode);
3010 fail_bio_counter:
3011         percpu_counter_destroy(&fs_info->bio_counter);
3012 fail_delalloc_bytes:
3013         percpu_counter_destroy(&fs_info->delalloc_bytes);
3014 fail_dirty_metadata_bytes:
3015         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3016 fail_bdi:
3017         bdi_destroy(&fs_info->bdi);
3018 fail_srcu:
3019         cleanup_srcu_struct(&fs_info->subvol_srcu);
3020 fail:
3021         btrfs_free_stripe_hash_table(fs_info);
3022         btrfs_close_devices(fs_info->fs_devices);
3023         return err;
3024
3025 recovery_tree_root:
3026         if (!btrfs_test_opt(tree_root, RECOVERY))
3027                 goto fail_tree_roots;
3028
3029         free_root_pointers(fs_info, 0);
3030
3031         /* don't use the log in recovery mode, it won't be valid */
3032         btrfs_set_super_log_root(disk_super, 0);
3033
3034         /* we can't trust the free space cache either */
3035         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3036
3037         ret = next_root_backup(fs_info, fs_info->super_copy,
3038                                &num_backups_tried, &backup_index);
3039         if (ret == -1)
3040                 goto fail_block_groups;
3041         goto retry_root_backup;
3042 }
3043
3044 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3045 {
3046         if (uptodate) {
3047                 set_buffer_uptodate(bh);
3048         } else {
3049                 struct btrfs_device *device = (struct btrfs_device *)
3050                         bh->b_private;
3051
3052                 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
3053                                           "I/O error on %s\n",
3054                                           rcu_str_deref(device->name));
3055                 /* note, we dont' set_buffer_write_io_error because we have
3056                  * our own ways of dealing with the IO errors
3057                  */
3058                 clear_buffer_uptodate(bh);
3059                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3060         }
3061         unlock_buffer(bh);
3062         put_bh(bh);
3063 }
3064
3065 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3066 {
3067         struct buffer_head *bh;
3068         struct buffer_head *latest = NULL;
3069         struct btrfs_super_block *super;
3070         int i;
3071         u64 transid = 0;
3072         u64 bytenr;
3073
3074         /* we would like to check all the supers, but that would make
3075          * a btrfs mount succeed after a mkfs from a different FS.
3076          * So, we need to add a special mount option to scan for
3077          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3078          */
3079         for (i = 0; i < 1; i++) {
3080                 bytenr = btrfs_sb_offset(i);
3081                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3082                                         i_size_read(bdev->bd_inode))
3083                         break;
3084                 bh = __bread(bdev, bytenr / 4096,
3085                                         BTRFS_SUPER_INFO_SIZE);
3086                 if (!bh)
3087                         continue;
3088
3089                 super = (struct btrfs_super_block *)bh->b_data;
3090                 if (btrfs_super_bytenr(super) != bytenr ||
3091                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3092                         brelse(bh);
3093                         continue;
3094                 }
3095
3096                 if (!latest || btrfs_super_generation(super) > transid) {
3097                         brelse(latest);
3098                         latest = bh;
3099                         transid = btrfs_super_generation(super);
3100                 } else {
3101                         brelse(bh);
3102                 }
3103         }
3104         return latest;
3105 }
3106
3107 /*
3108  * this should be called twice, once with wait == 0 and
3109  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3110  * we write are pinned.
3111  *
3112  * They are released when wait == 1 is done.
3113  * max_mirrors must be the same for both runs, and it indicates how
3114  * many supers on this one device should be written.
3115  *
3116  * max_mirrors == 0 means to write them all.
3117  */
3118 static int write_dev_supers(struct btrfs_device *device,
3119                             struct btrfs_super_block *sb,
3120                             int do_barriers, int wait, int max_mirrors)
3121 {
3122         struct buffer_head *bh;
3123         int i;
3124         int ret;
3125         int errors = 0;
3126         u32 crc;
3127         u64 bytenr;
3128
3129         if (max_mirrors == 0)
3130                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3131
3132         for (i = 0; i < max_mirrors; i++) {
3133                 bytenr = btrfs_sb_offset(i);
3134                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3135                     device->commit_total_bytes)
3136                         break;
3137
3138                 if (wait) {
3139                         bh = __find_get_block(device->bdev, bytenr / 4096,
3140                                               BTRFS_SUPER_INFO_SIZE);
3141                         if (!bh) {
3142                                 errors++;
3143                                 continue;
3144                         }
3145                         wait_on_buffer(bh);
3146                         if (!buffer_uptodate(bh))
3147                                 errors++;
3148
3149                         /* drop our reference */
3150                         brelse(bh);
3151
3152                         /* drop the reference from the wait == 0 run */
3153                         brelse(bh);
3154                         continue;
3155                 } else {
3156                         btrfs_set_super_bytenr(sb, bytenr);
3157
3158                         crc = ~(u32)0;
3159                         crc = btrfs_csum_data((char *)sb +
3160                                               BTRFS_CSUM_SIZE, crc,
3161                                               BTRFS_SUPER_INFO_SIZE -
3162                                               BTRFS_CSUM_SIZE);
3163                         btrfs_csum_final(crc, sb->csum);
3164
3165                         /*
3166                          * one reference for us, and we leave it for the
3167                          * caller
3168                          */
3169                         bh = __getblk(device->bdev, bytenr / 4096,
3170                                       BTRFS_SUPER_INFO_SIZE);
3171                         if (!bh) {
3172                                 printk(KERN_ERR "BTRFS: couldn't get super "
3173                                        "buffer head for bytenr %Lu\n", bytenr);
3174                                 errors++;
3175                                 continue;
3176                         }
3177
3178                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3179
3180                         /* one reference for submit_bh */
3181                         get_bh(bh);
3182
3183                         set_buffer_uptodate(bh);
3184                         lock_buffer(bh);
3185                         bh->b_end_io = btrfs_end_buffer_write_sync;
3186                         bh->b_private = device;
3187                 }
3188
3189                 /*
3190                  * we fua the first super.  The others we allow
3191                  * to go down lazy.
3192                  */
3193                 if (i == 0)
3194                         ret = btrfsic_submit_bh(WRITE_FUA, bh);
3195                 else
3196                         ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3197                 if (ret)
3198                         errors++;
3199         }
3200         return errors < i ? 0 : -1;
3201 }
3202
3203 /*
3204  * endio for the write_dev_flush, this will wake anyone waiting
3205  * for the barrier when it is done
3206  */
3207 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3208 {
3209         if (err) {
3210                 if (err == -EOPNOTSUPP)
3211                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3212                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3213         }
3214         if (bio->bi_private)
3215                 complete(bio->bi_private);
3216         bio_put(bio);
3217 }
3218
3219 /*
3220  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3221  * sent down.  With wait == 1, it waits for the previous flush.
3222  *
3223  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3224  * capable
3225  */
3226 static int write_dev_flush(struct btrfs_device *device, int wait)
3227 {
3228         struct bio *bio;
3229         int ret = 0;
3230
3231         if (device->nobarriers)
3232                 return 0;
3233
3234         if (wait) {
3235                 bio = device->flush_bio;
3236                 if (!bio)
3237                         return 0;
3238
3239                 wait_for_completion(&device->flush_wait);
3240
3241                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3242                         printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
3243                                       rcu_str_deref(device->name));
3244                         device->nobarriers = 1;
3245                 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3246                         ret = -EIO;
3247                         btrfs_dev_stat_inc_and_print(device,
3248                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3249                 }
3250
3251                 /* drop the reference from the wait == 0 run */
3252                 bio_put(bio);
3253                 device->flush_bio = NULL;
3254
3255                 return ret;
3256         }
3257
3258         /*
3259          * one reference for us, and we leave it for the
3260          * caller
3261          */
3262         device->flush_bio = NULL;
3263         bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3264         if (!bio)
3265                 return -ENOMEM;
3266
3267         bio->bi_end_io = btrfs_end_empty_barrier;
3268         bio->bi_bdev = device->bdev;
3269         init_completion(&device->flush_wait);
3270         bio->bi_private = &device->flush_wait;
3271         device->flush_bio = bio;
3272
3273         bio_get(bio);
3274         btrfsic_submit_bio(WRITE_FLUSH, bio);
3275
3276         return 0;
3277 }
3278
3279 /*
3280  * send an empty flush down to each device in parallel,
3281  * then wait for them
3282  */
3283 static int barrier_all_devices(struct btrfs_fs_info *info)
3284 {
3285         struct list_head *head;
3286         struct btrfs_device *dev;
3287         int errors_send = 0;
3288         int errors_wait = 0;
3289         int ret;
3290
3291         /* send down all the barriers */
3292         head = &info->fs_devices->devices;
3293         list_for_each_entry_rcu(dev, head, dev_list) {
3294                 if (dev->missing)
3295                         continue;
3296                 if (!dev->bdev) {
3297                         errors_send++;
3298                         continue;
3299                 }
3300                 if (!dev->in_fs_metadata || !dev->writeable)
3301                         continue;
3302
3303                 ret = write_dev_flush(dev, 0);
3304                 if (ret)
3305                         errors_send++;
3306         }
3307
3308         /* wait for all the barriers */
3309         list_for_each_entry_rcu(dev, head, dev_list) {
3310                 if (dev->missing)
3311                         continue;
3312                 if (!dev->bdev) {
3313                         errors_wait++;
3314                         continue;
3315                 }
3316                 if (!dev->in_fs_metadata || !dev->writeable)
3317                         continue;
3318
3319                 ret = write_dev_flush(dev, 1);
3320                 if (ret)
3321                         errors_wait++;
3322         }
3323         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3324             errors_wait > info->num_tolerated_disk_barrier_failures)
3325                 return -EIO;
3326         return 0;
3327 }
3328
3329 int btrfs_calc_num_tolerated_disk_barrier_failures(
3330         struct btrfs_fs_info *fs_info)
3331 {
3332         struct btrfs_ioctl_space_info space;
3333         struct btrfs_space_info *sinfo;
3334         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3335                        BTRFS_BLOCK_GROUP_SYSTEM,
3336                        BTRFS_BLOCK_GROUP_METADATA,
3337                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3338         int num_types = 4;
3339         int i;
3340         int c;
3341         int num_tolerated_disk_barrier_failures =
3342                 (int)fs_info->fs_devices->num_devices;
3343
3344         for (i = 0; i < num_types; i++) {
3345                 struct btrfs_space_info *tmp;
3346
3347                 sinfo = NULL;
3348                 rcu_read_lock();
3349                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3350                         if (tmp->flags == types[i]) {
3351                                 sinfo = tmp;
3352                                 break;
3353                         }
3354                 }
3355                 rcu_read_unlock();
3356
3357                 if (!sinfo)
3358                         continue;
3359
3360                 down_read(&sinfo->groups_sem);
3361                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3362                         if (!list_empty(&sinfo->block_groups[c])) {
3363                                 u64 flags;
3364
3365                                 btrfs_get_block_group_info(
3366                                         &sinfo->block_groups[c], &space);
3367                                 if (space.total_bytes == 0 ||
3368                                     space.used_bytes == 0)
3369                                         continue;
3370                                 flags = space.flags;
3371                                 /*
3372                                  * return
3373                                  * 0: if dup, single or RAID0 is configured for
3374                                  *    any of metadata, system or data, else
3375                                  * 1: if RAID5 is configured, or if RAID1 or
3376                                  *    RAID10 is configured and only two mirrors
3377                                  *    are used, else
3378                                  * 2: if RAID6 is configured, else
3379                                  * num_mirrors - 1: if RAID1 or RAID10 is
3380                                  *                  configured and more than
3381                                  *                  2 mirrors are used.
3382                                  */
3383                                 if (num_tolerated_disk_barrier_failures > 0 &&
3384                                     ((flags & (BTRFS_BLOCK_GROUP_DUP |
3385                                                BTRFS_BLOCK_GROUP_RAID0)) ||
3386                                      ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3387                                       == 0)))
3388                                         num_tolerated_disk_barrier_failures = 0;
3389                                 else if (num_tolerated_disk_barrier_failures > 1) {
3390                                         if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3391                                             BTRFS_BLOCK_GROUP_RAID5 |
3392                                             BTRFS_BLOCK_GROUP_RAID10)) {
3393                                                 num_tolerated_disk_barrier_failures = 1;
3394                                         } else if (flags &
3395                                                    BTRFS_BLOCK_GROUP_RAID6) {
3396                                                 num_tolerated_disk_barrier_failures = 2;
3397                                         }
3398                                 }
3399                         }
3400                 }
3401                 up_read(&sinfo->groups_sem);
3402         }
3403
3404         return num_tolerated_disk_barrier_failures;
3405 }
3406
3407 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3408 {
3409         struct list_head *head;
3410         struct btrfs_device *dev;
3411         struct btrfs_super_block *sb;
3412         struct btrfs_dev_item *dev_item;
3413         int ret;
3414         int do_barriers;
3415         int max_errors;
3416         int total_errors = 0;
3417         u64 flags;
3418
3419         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3420         backup_super_roots(root->fs_info);
3421
3422         sb = root->fs_info->super_for_commit;
3423         dev_item = &sb->dev_item;
3424
3425         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3426         head = &root->fs_info->fs_devices->devices;
3427         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3428
3429         if (do_barriers) {
3430                 ret = barrier_all_devices(root->fs_info);
3431                 if (ret) {
3432                         mutex_unlock(
3433                                 &root->fs_info->fs_devices->device_list_mutex);
3434                         btrfs_error(root->fs_info, ret,
3435                                     "errors while submitting device barriers.");
3436                         return ret;
3437                 }
3438         }
3439
3440         list_for_each_entry_rcu(dev, head, dev_list) {
3441                 if (!dev->bdev) {
3442                         total_errors++;
3443                         continue;
3444                 }
3445                 if (!dev->in_fs_metadata || !dev->writeable)
3446                         continue;
3447
3448                 btrfs_set_stack_device_generation(dev_item, 0);
3449                 btrfs_set_stack_device_type(dev_item, dev->type);
3450                 btrfs_set_stack_device_id(dev_item, dev->devid);
3451                 btrfs_set_stack_device_total_bytes(dev_item,
3452                                                    dev->commit_total_bytes);
3453                 btrfs_set_stack_device_bytes_used(dev_item,
3454                                                   dev->commit_bytes_used);
3455                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3456                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3457                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3458                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3459                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3460
3461                 flags = btrfs_super_flags(sb);
3462                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3463
3464                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3465                 if (ret)
3466                         total_errors++;
3467         }
3468         if (total_errors > max_errors) {
3469                 btrfs_err(root->fs_info, "%d errors while writing supers",
3470                        total_errors);
3471                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3472
3473                 /* FUA is masked off if unsupported and can't be the reason */
3474                 btrfs_error(root->fs_info, -EIO,
3475                             "%d errors while writing supers", total_errors);
3476                 return -EIO;
3477         }
3478
3479         total_errors = 0;
3480         list_for_each_entry_rcu(dev, head, dev_list) {
3481                 if (!dev->bdev)
3482                         continue;
3483                 if (!dev->in_fs_metadata || !dev->writeable)
3484                         continue;
3485
3486                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3487                 if (ret)
3488                         total_errors++;
3489         }
3490         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3491         if (total_errors > max_errors) {
3492                 btrfs_error(root->fs_info, -EIO,
3493                             "%d errors while writing supers", total_errors);
3494                 return -EIO;
3495         }
3496         return 0;
3497 }
3498
3499 int write_ctree_super(struct btrfs_trans_handle *trans,
3500                       struct btrfs_root *root, int max_mirrors)
3501 {
3502         return write_all_supers(root, max_mirrors);
3503 }
3504
3505 /* Drop a fs root from the radix tree and free it. */
3506 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3507                                   struct btrfs_root *root)
3508 {
3509         spin_lock(&fs_info->fs_roots_radix_lock);
3510         radix_tree_delete(&fs_info->fs_roots_radix,
3511                           (unsigned long)root->root_key.objectid);
3512         spin_unlock(&fs_info->fs_roots_radix_lock);
3513
3514         if (btrfs_root_refs(&root->root_item) == 0)
3515                 synchronize_srcu(&fs_info->subvol_srcu);
3516
3517         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3518                 btrfs_free_log(NULL, root);
3519
3520         if (root->free_ino_pinned)
3521                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3522         if (root->free_ino_ctl)
3523                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3524         free_fs_root(root);
3525 }
3526
3527 static void free_fs_root(struct btrfs_root *root)
3528 {
3529         iput(root->ino_cache_inode);
3530         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3531         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3532         root->orphan_block_rsv = NULL;
3533         if (root->anon_dev)
3534                 free_anon_bdev(root->anon_dev);
3535         if (root->subv_writers)
3536                 btrfs_free_subvolume_writers(root->subv_writers);
3537         free_extent_buffer(root->node);
3538         free_extent_buffer(root->commit_root);
3539         kfree(root->free_ino_ctl);
3540         kfree(root->free_ino_pinned);
3541         kfree(root->name);
3542         btrfs_put_fs_root(root);
3543 }
3544
3545 void btrfs_free_fs_root(struct btrfs_root *root)
3546 {
3547         free_fs_root(root);
3548 }
3549
3550 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3551 {
3552         u64 root_objectid = 0;
3553         struct btrfs_root *gang[8];
3554         int i = 0;
3555         int err = 0;
3556         unsigned int ret = 0;
3557         int index;
3558
3559         while (1) {
3560                 index = srcu_read_lock(&fs_info->subvol_srcu);
3561                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3562                                              (void **)gang, root_objectid,
3563                                              ARRAY_SIZE(gang));
3564                 if (!ret) {
3565                         srcu_read_unlock(&fs_info->subvol_srcu, index);
3566                         break;
3567                 }
3568                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3569
3570                 for (i = 0; i < ret; i++) {
3571                         /* Avoid to grab roots in dead_roots */
3572                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3573                                 gang[i] = NULL;
3574                                 continue;
3575                         }
3576                         /* grab all the search result for later use */
3577                         gang[i] = btrfs_grab_fs_root(gang[i]);
3578                 }
3579                 srcu_read_unlock(&fs_info->subvol_srcu, index);
3580
3581                 for (i = 0; i < ret; i++) {
3582                         if (!gang[i])
3583                                 continue;
3584                         root_objectid = gang[i]->root_key.objectid;
3585                         err = btrfs_orphan_cleanup(gang[i]);
3586                         if (err)
3587                                 break;
3588                         btrfs_put_fs_root(gang[i]);
3589                 }
3590                 root_objectid++;
3591         }
3592
3593         /* release the uncleaned roots due to error */
3594         for (; i < ret; i++) {
3595                 if (gang[i])
3596                         btrfs_put_fs_root(gang[i]);
3597         }
3598         return err;
3599 }
3600
3601 int btrfs_commit_super(struct btrfs_root *root)
3602 {
3603         struct btrfs_trans_handle *trans;
3604
3605         mutex_lock(&root->fs_info->cleaner_mutex);
3606         btrfs_run_delayed_iputs(root);
3607         mutex_unlock(&root->fs_info->cleaner_mutex);
3608         wake_up_process(root->fs_info->cleaner_kthread);
3609
3610         /* wait until ongoing cleanup work done */
3611         down_write(&root->fs_info->cleanup_work_sem);
3612         up_write(&root->fs_info->cleanup_work_sem);
3613
3614         trans = btrfs_join_transaction(root);
3615         if (IS_ERR(trans))
3616                 return PTR_ERR(trans);
3617         return btrfs_commit_transaction(trans, root);
3618 }
3619
3620 void close_ctree(struct btrfs_root *root)
3621 {
3622         struct btrfs_fs_info *fs_info = root->fs_info;
3623         int ret;
3624
3625         fs_info->closing = 1;
3626         smp_mb();
3627
3628         /* wait for the uuid_scan task to finish */
3629         down(&fs_info->uuid_tree_rescan_sem);
3630         /* avoid complains from lockdep et al., set sem back to initial state */
3631         up(&fs_info->uuid_tree_rescan_sem);
3632
3633         /* pause restriper - we want to resume on mount */
3634         btrfs_pause_balance(fs_info);
3635
3636         btrfs_dev_replace_suspend_for_unmount(fs_info);
3637
3638         btrfs_scrub_cancel(fs_info);
3639
3640         /* wait for any defraggers to finish */
3641         wait_event(fs_info->transaction_wait,
3642                    (atomic_read(&fs_info->defrag_running) == 0));
3643
3644         /* clear out the rbtree of defraggable inodes */
3645         btrfs_cleanup_defrag_inodes(fs_info);
3646
3647         cancel_work_sync(&fs_info->async_reclaim_work);
3648
3649         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3650                 ret = btrfs_commit_super(root);
3651                 if (ret)
3652                         btrfs_err(root->fs_info, "commit super ret %d", ret);
3653         }
3654
3655         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3656                 btrfs_error_commit_super(root);
3657
3658         kthread_stop(fs_info->transaction_kthread);
3659         kthread_stop(fs_info->cleaner_kthread);
3660
3661         fs_info->closing = 2;
3662         smp_mb();
3663
3664         btrfs_free_qgroup_config(root->fs_info);
3665
3666         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3667                 btrfs_info(root->fs_info, "at unmount delalloc count %lld",
3668                        percpu_counter_sum(&fs_info->delalloc_bytes));
3669         }
3670
3671         btrfs_sysfs_remove_one(fs_info);
3672
3673         btrfs_free_fs_roots(fs_info);
3674
3675         btrfs_put_block_group_cache(fs_info);
3676
3677         btrfs_free_block_groups(fs_info);
3678
3679         /*
3680          * we must make sure there is not any read request to
3681          * submit after we stopping all workers.
3682          */
3683         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3684         btrfs_stop_all_workers(fs_info);
3685
3686         fs_info->open = 0;
3687         free_root_pointers(fs_info, 1);
3688
3689         iput(fs_info->btree_inode);
3690
3691 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3692         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3693                 btrfsic_unmount(root, fs_info->fs_devices);
3694 #endif
3695
3696         btrfs_close_devices(fs_info->fs_devices);
3697         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3698
3699         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3700         percpu_counter_destroy(&fs_info->delalloc_bytes);
3701         percpu_counter_destroy(&fs_info->bio_counter);
3702         bdi_destroy(&fs_info->bdi);
3703         cleanup_srcu_struct(&fs_info->subvol_srcu);
3704
3705         btrfs_free_stripe_hash_table(fs_info);
3706
3707         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3708         root->orphan_block_rsv = NULL;
3709 }
3710
3711 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3712                           int atomic)
3713 {
3714         int ret;
3715         struct inode *btree_inode = buf->pages[0]->mapping->host;
3716
3717         ret = extent_buffer_uptodate(buf);
3718         if (!ret)
3719                 return ret;
3720
3721         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3722                                     parent_transid, atomic);
3723         if (ret == -EAGAIN)
3724                 return ret;
3725         return !ret;
3726 }
3727
3728 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3729 {
3730         return set_extent_buffer_uptodate(buf);
3731 }
3732
3733 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3734 {
3735         struct btrfs_root *root;
3736         u64 transid = btrfs_header_generation(buf);
3737         int was_dirty;
3738
3739 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3740         /*
3741          * This is a fast path so only do this check if we have sanity tests
3742          * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3743          * outside of the sanity tests.
3744          */
3745         if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3746                 return;
3747 #endif
3748         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3749         btrfs_assert_tree_locked(buf);
3750         if (transid != root->fs_info->generation)
3751                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3752                        "found %llu running %llu\n",
3753                         buf->start, transid, root->fs_info->generation);
3754         was_dirty = set_extent_buffer_dirty(buf);
3755         if (!was_dirty)
3756                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3757                                      buf->len,
3758                                      root->fs_info->dirty_metadata_batch);
3759 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3760         if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3761                 btrfs_print_leaf(root, buf);
3762                 ASSERT(0);
3763         }
3764 #endif
3765 }
3766
3767 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3768                                         int flush_delayed)
3769 {
3770         /*
3771          * looks as though older kernels can get into trouble with
3772          * this code, they end up stuck in balance_dirty_pages forever
3773          */
3774         int ret;
3775
3776         if (current->flags & PF_MEMALLOC)
3777                 return;
3778
3779         if (flush_delayed)
3780                 btrfs_balance_delayed_items(root);
3781
3782         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3783                                      BTRFS_DIRTY_METADATA_THRESH);
3784         if (ret > 0) {
3785                 balance_dirty_pages_ratelimited(
3786                                    root->fs_info->btree_inode->i_mapping);
3787         }
3788         return;
3789 }
3790
3791 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3792 {
3793         __btrfs_btree_balance_dirty(root, 1);
3794 }
3795
3796 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3797 {
3798         __btrfs_btree_balance_dirty(root, 0);
3799 }
3800
3801 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3802 {
3803         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3804         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3805 }
3806
3807 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3808                               int read_only)
3809 {
3810         /*
3811          * Placeholder for checks
3812          */
3813         return 0;
3814 }
3815
3816 static void btrfs_error_commit_super(struct btrfs_root *root)
3817 {
3818         mutex_lock(&root->fs_info->cleaner_mutex);
3819         btrfs_run_delayed_iputs(root);
3820         mutex_unlock(&root->fs_info->cleaner_mutex);
3821
3822         down_write(&root->fs_info->cleanup_work_sem);
3823         up_write(&root->fs_info->cleanup_work_sem);
3824
3825         /* cleanup FS via transaction */
3826         btrfs_cleanup_transaction(root);
3827 }
3828
3829 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3830 {
3831         struct btrfs_ordered_extent *ordered;
3832
3833         spin_lock(&root->ordered_extent_lock);
3834         /*
3835          * This will just short circuit the ordered completion stuff which will
3836          * make sure the ordered extent gets properly cleaned up.
3837          */
3838         list_for_each_entry(ordered, &root->ordered_extents,
3839                             root_extent_list)
3840                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3841         spin_unlock(&root->ordered_extent_lock);
3842 }
3843
3844 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3845 {
3846         struct btrfs_root *root;
3847         struct list_head splice;
3848
3849         INIT_LIST_HEAD(&splice);
3850
3851         spin_lock(&fs_info->ordered_root_lock);
3852         list_splice_init(&fs_info->ordered_roots, &splice);
3853         while (!list_empty(&splice)) {
3854                 root = list_first_entry(&splice, struct btrfs_root,
3855                                         ordered_root);
3856                 list_move_tail(&root->ordered_root,
3857                                &fs_info->ordered_roots);
3858
3859                 spin_unlock(&fs_info->ordered_root_lock);
3860                 btrfs_destroy_ordered_extents(root);
3861
3862                 cond_resched();
3863                 spin_lock(&fs_info->ordered_root_lock);
3864         }
3865         spin_unlock(&fs_info->ordered_root_lock);
3866 }
3867
3868 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3869                                       struct btrfs_root *root)
3870 {
3871         struct rb_node *node;
3872         struct btrfs_delayed_ref_root *delayed_refs;
3873         struct btrfs_delayed_ref_node *ref;
3874         int ret = 0;
3875
3876         delayed_refs = &trans->delayed_refs;
3877
3878         spin_lock(&delayed_refs->lock);
3879         if (atomic_read(&delayed_refs->num_entries) == 0) {
3880                 spin_unlock(&delayed_refs->lock);
3881                 btrfs_info(root->fs_info, "delayed_refs has NO entry");
3882                 return ret;
3883         }
3884
3885         while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
3886                 struct btrfs_delayed_ref_head *head;
3887                 bool pin_bytes = false;
3888
3889                 head = rb_entry(node, struct btrfs_delayed_ref_head,
3890                                 href_node);
3891                 if (!mutex_trylock(&head->mutex)) {
3892                         atomic_inc(&head->node.refs);
3893                         spin_unlock(&delayed_refs->lock);
3894
3895                         mutex_lock(&head->mutex);
3896                         mutex_unlock(&head->mutex);
3897                         btrfs_put_delayed_ref(&head->node);
3898                         spin_lock(&delayed_refs->lock);
3899                         continue;
3900                 }
3901                 spin_lock(&head->lock);
3902                 while ((node = rb_first(&head->ref_root)) != NULL) {
3903                         ref = rb_entry(node, struct btrfs_delayed_ref_node,
3904                                        rb_node);
3905                         ref->in_tree = 0;
3906                         rb_erase(&ref->rb_node, &head->ref_root);
3907                         atomic_dec(&delayed_refs->num_entries);
3908                         btrfs_put_delayed_ref(ref);
3909                 }
3910                 if (head->must_insert_reserved)
3911                         pin_bytes = true;
3912                 btrfs_free_delayed_extent_op(head->extent_op);
3913                 delayed_refs->num_heads--;
3914                 if (head->processing == 0)
3915                         delayed_refs->num_heads_ready--;
3916                 atomic_dec(&delayed_refs->num_entries);
3917                 head->node.in_tree = 0;
3918                 rb_erase(&head->href_node, &delayed_refs->href_root);
3919                 spin_unlock(&head->lock);
3920                 spin_unlock(&delayed_refs->lock);
3921                 mutex_unlock(&head->mutex);
3922
3923                 if (pin_bytes)
3924                         btrfs_pin_extent(root, head->node.bytenr,
3925                                          head->node.num_bytes, 1);
3926                 btrfs_put_delayed_ref(&head->node);
3927                 cond_resched();
3928                 spin_lock(&delayed_refs->lock);
3929         }
3930
3931         spin_unlock(&delayed_refs->lock);
3932
3933         return ret;
3934 }
3935
3936 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3937 {
3938         struct btrfs_inode *btrfs_inode;
3939         struct list_head splice;
3940
3941         INIT_LIST_HEAD(&splice);
3942
3943         spin_lock(&root->delalloc_lock);
3944         list_splice_init(&root->delalloc_inodes, &splice);
3945
3946         while (!list_empty(&splice)) {
3947                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3948                                                delalloc_inodes);
3949
3950                 list_del_init(&btrfs_inode->delalloc_inodes);
3951                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3952                           &btrfs_inode->runtime_flags);
3953                 spin_unlock(&root->delalloc_lock);
3954
3955                 btrfs_invalidate_inodes(btrfs_inode->root);
3956
3957                 spin_lock(&root->delalloc_lock);
3958         }
3959
3960         spin_unlock(&root->delalloc_lock);
3961 }
3962
3963 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3964 {
3965         struct btrfs_root *root;
3966         struct list_head splice;
3967
3968         INIT_LIST_HEAD(&splice);
3969
3970         spin_lock(&fs_info->delalloc_root_lock);
3971         list_splice_init(&fs_info->delalloc_roots, &splice);
3972         while (!list_empty(&splice)) {
3973                 root = list_first_entry(&splice, struct btrfs_root,
3974                                          delalloc_root);
3975                 list_del_init(&root->delalloc_root);
3976                 root = btrfs_grab_fs_root(root);
3977                 BUG_ON(!root);
3978                 spin_unlock(&fs_info->delalloc_root_lock);
3979
3980                 btrfs_destroy_delalloc_inodes(root);
3981                 btrfs_put_fs_root(root);
3982
3983                 spin_lock(&fs_info->delalloc_root_lock);
3984         }
3985         spin_unlock(&fs_info->delalloc_root_lock);
3986 }
3987
3988 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3989                                         struct extent_io_tree *dirty_pages,
3990                                         int mark)
3991 {
3992         int ret;
3993         struct extent_buffer *eb;
3994         u64 start = 0;
3995         u64 end;
3996
3997         while (1) {
3998                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3999                                             mark, NULL);
4000                 if (ret)
4001                         break;
4002
4003                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4004                 while (start <= end) {
4005                         eb = btrfs_find_tree_block(root, start,
4006                                                    root->nodesize);
4007                         start += root->nodesize;
4008                         if (!eb)
4009                                 continue;
4010                         wait_on_extent_buffer_writeback(eb);
4011
4012                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4013                                                &eb->bflags))
4014                                 clear_extent_buffer_dirty(eb);
4015                         free_extent_buffer_stale(eb);
4016                 }
4017         }
4018
4019         return ret;
4020 }
4021
4022 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4023                                        struct extent_io_tree *pinned_extents)
4024 {
4025         struct extent_io_tree *unpin;
4026         u64 start;
4027         u64 end;
4028         int ret;
4029         bool loop = true;
4030
4031         unpin = pinned_extents;
4032 again:
4033         while (1) {
4034                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4035                                             EXTENT_DIRTY, NULL);
4036                 if (ret)
4037                         break;
4038
4039                 /* opt_discard */
4040                 if (btrfs_test_opt(root, DISCARD))
4041                         ret = btrfs_error_discard_extent(root, start,
4042                                                          end + 1 - start,
4043                                                          NULL);
4044
4045                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4046                 btrfs_error_unpin_extent_range(root, start, end);
4047                 cond_resched();
4048         }
4049
4050         if (loop) {
4051                 if (unpin == &root->fs_info->freed_extents[0])
4052                         unpin = &root->fs_info->freed_extents[1];
4053                 else
4054                         unpin = &root->fs_info->freed_extents[0];
4055                 loop = false;
4056                 goto again;
4057         }
4058
4059         return 0;
4060 }
4061
4062 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4063                                    struct btrfs_root *root)
4064 {
4065         btrfs_destroy_delayed_refs(cur_trans, root);
4066
4067         cur_trans->state = TRANS_STATE_COMMIT_START;
4068         wake_up(&root->fs_info->transaction_blocked_wait);
4069
4070         cur_trans->state = TRANS_STATE_UNBLOCKED;
4071         wake_up(&root->fs_info->transaction_wait);
4072
4073         btrfs_destroy_delayed_inodes(root);
4074         btrfs_assert_delayed_root_empty(root);
4075
4076         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4077                                      EXTENT_DIRTY);
4078         btrfs_destroy_pinned_extent(root,
4079                                     root->fs_info->pinned_extents);
4080
4081         cur_trans->state =TRANS_STATE_COMPLETED;
4082         wake_up(&cur_trans->commit_wait);
4083
4084         /*
4085         memset(cur_trans, 0, sizeof(*cur_trans));
4086         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4087         */
4088 }
4089
4090 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4091 {
4092         struct btrfs_transaction *t;
4093
4094         mutex_lock(&root->fs_info->transaction_kthread_mutex);
4095
4096         spin_lock(&root->fs_info->trans_lock);
4097         while (!list_empty(&root->fs_info->trans_list)) {
4098                 t = list_first_entry(&root->fs_info->trans_list,
4099                                      struct btrfs_transaction, list);
4100                 if (t->state >= TRANS_STATE_COMMIT_START) {
4101                         atomic_inc(&t->use_count);
4102                         spin_unlock(&root->fs_info->trans_lock);
4103                         btrfs_wait_for_commit(root, t->transid);
4104                         btrfs_put_transaction(t);
4105                         spin_lock(&root->fs_info->trans_lock);
4106                         continue;
4107                 }
4108                 if (t == root->fs_info->running_transaction) {
4109                         t->state = TRANS_STATE_COMMIT_DOING;
4110                         spin_unlock(&root->fs_info->trans_lock);
4111                         /*
4112                          * We wait for 0 num_writers since we don't hold a trans
4113                          * handle open currently for this transaction.
4114                          */
4115                         wait_event(t->writer_wait,
4116                                    atomic_read(&t->num_writers) == 0);
4117                 } else {
4118                         spin_unlock(&root->fs_info->trans_lock);
4119                 }
4120                 btrfs_cleanup_one_transaction(t, root);
4121
4122                 spin_lock(&root->fs_info->trans_lock);
4123                 if (t == root->fs_info->running_transaction)
4124                         root->fs_info->running_transaction = NULL;
4125                 list_del_init(&t->list);
4126                 spin_unlock(&root->fs_info->trans_lock);
4127
4128                 btrfs_put_transaction(t);
4129                 trace_btrfs_transaction_commit(root);
4130                 spin_lock(&root->fs_info->trans_lock);
4131         }
4132         spin_unlock(&root->fs_info->trans_lock);
4133         btrfs_destroy_all_ordered_extents(root->fs_info);
4134         btrfs_destroy_delayed_inodes(root);
4135         btrfs_assert_delayed_root_empty(root);
4136         btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4137         btrfs_destroy_all_delalloc_inodes(root->fs_info);
4138         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4139
4140         return 0;
4141 }
4142
4143 static struct extent_io_ops btree_extent_io_ops = {
4144         .readpage_end_io_hook = btree_readpage_end_io_hook,
4145         .readpage_io_failed_hook = btree_io_failed_hook,
4146         .submit_bio_hook = btree_submit_bio_hook,
4147         /* note we're sharing with inode.c for the merge bio hook */
4148         .merge_bio_hook = btrfs_merge_bio_hook,
4149 };