btrfs: fix error labels in init_btrfs_fs
[linux-2.6-block.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/slab.h>
30 #include <linux/migrate.h>
31 #include <linux/ratelimit.h>
32 #include <linux/uuid.h>
33 #include <linux/semaphore.h>
34 #include <asm/unaligned.h>
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "hash.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50 #include "sysfs.h"
51 #include "qgroup.h"
52
53 #ifdef CONFIG_X86
54 #include <asm/cpufeature.h>
55 #endif
56
57 static struct extent_io_ops btree_extent_io_ops;
58 static void end_workqueue_fn(struct btrfs_work *work);
59 static void free_fs_root(struct btrfs_root *root);
60 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61                                     int read_only);
62 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64                                       struct btrfs_root *root);
65 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
66 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
67                                         struct extent_io_tree *dirty_pages,
68                                         int mark);
69 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
70                                        struct extent_io_tree *pinned_extents);
71 static int btrfs_cleanup_transaction(struct btrfs_root *root);
72 static void btrfs_error_commit_super(struct btrfs_root *root);
73
74 /*
75  * end_io_wq structs are used to do processing in task context when an IO is
76  * complete.  This is used during reads to verify checksums, and it is used
77  * by writes to insert metadata for new file extents after IO is complete.
78  */
79 struct end_io_wq {
80         struct bio *bio;
81         bio_end_io_t *end_io;
82         void *private;
83         struct btrfs_fs_info *info;
84         int error;
85         enum btrfs_wq_endio_type metadata;
86         struct list_head list;
87         struct btrfs_work work;
88 };
89
90 /*
91  * async submit bios are used to offload expensive checksumming
92  * onto the worker threads.  They checksum file and metadata bios
93  * just before they are sent down the IO stack.
94  */
95 struct async_submit_bio {
96         struct inode *inode;
97         struct bio *bio;
98         struct list_head list;
99         extent_submit_bio_hook_t *submit_bio_start;
100         extent_submit_bio_hook_t *submit_bio_done;
101         int rw;
102         int mirror_num;
103         unsigned long bio_flags;
104         /*
105          * bio_offset is optional, can be used if the pages in the bio
106          * can't tell us where in the file the bio should go
107          */
108         u64 bio_offset;
109         struct btrfs_work work;
110         int error;
111 };
112
113 /*
114  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
115  * eb, the lockdep key is determined by the btrfs_root it belongs to and
116  * the level the eb occupies in the tree.
117  *
118  * Different roots are used for different purposes and may nest inside each
119  * other and they require separate keysets.  As lockdep keys should be
120  * static, assign keysets according to the purpose of the root as indicated
121  * by btrfs_root->objectid.  This ensures that all special purpose roots
122  * have separate keysets.
123  *
124  * Lock-nesting across peer nodes is always done with the immediate parent
125  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
126  * subclass to avoid triggering lockdep warning in such cases.
127  *
128  * The key is set by the readpage_end_io_hook after the buffer has passed
129  * csum validation but before the pages are unlocked.  It is also set by
130  * btrfs_init_new_buffer on freshly allocated blocks.
131  *
132  * We also add a check to make sure the highest level of the tree is the
133  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
134  * needs update as well.
135  */
136 #ifdef CONFIG_DEBUG_LOCK_ALLOC
137 # if BTRFS_MAX_LEVEL != 8
138 #  error
139 # endif
140
141 static struct btrfs_lockdep_keyset {
142         u64                     id;             /* root objectid */
143         const char              *name_stem;     /* lock name stem */
144         char                    names[BTRFS_MAX_LEVEL + 1][20];
145         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
146 } btrfs_lockdep_keysets[] = {
147         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
148         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
149         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
150         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
151         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
152         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
153         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
154         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
155         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
156         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
157         { .id = BTRFS_UUID_TREE_OBJECTID,       .name_stem = "uuid"     },
158         { .id = 0,                              .name_stem = "tree"     },
159 };
160
161 void __init btrfs_init_lockdep(void)
162 {
163         int i, j;
164
165         /* initialize lockdep class names */
166         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
167                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
168
169                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
170                         snprintf(ks->names[j], sizeof(ks->names[j]),
171                                  "btrfs-%s-%02d", ks->name_stem, j);
172         }
173 }
174
175 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
176                                     int level)
177 {
178         struct btrfs_lockdep_keyset *ks;
179
180         BUG_ON(level >= ARRAY_SIZE(ks->keys));
181
182         /* find the matching keyset, id 0 is the default entry */
183         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
184                 if (ks->id == objectid)
185                         break;
186
187         lockdep_set_class_and_name(&eb->lock,
188                                    &ks->keys[level], ks->names[level]);
189 }
190
191 #endif
192
193 /*
194  * extents on the btree inode are pretty simple, there's one extent
195  * that covers the entire device
196  */
197 static struct extent_map *btree_get_extent(struct inode *inode,
198                 struct page *page, size_t pg_offset, u64 start, u64 len,
199                 int create)
200 {
201         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
202         struct extent_map *em;
203         int ret;
204
205         read_lock(&em_tree->lock);
206         em = lookup_extent_mapping(em_tree, start, len);
207         if (em) {
208                 em->bdev =
209                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
210                 read_unlock(&em_tree->lock);
211                 goto out;
212         }
213         read_unlock(&em_tree->lock);
214
215         em = alloc_extent_map();
216         if (!em) {
217                 em = ERR_PTR(-ENOMEM);
218                 goto out;
219         }
220         em->start = 0;
221         em->len = (u64)-1;
222         em->block_len = (u64)-1;
223         em->block_start = 0;
224         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
225
226         write_lock(&em_tree->lock);
227         ret = add_extent_mapping(em_tree, em, 0);
228         if (ret == -EEXIST) {
229                 free_extent_map(em);
230                 em = lookup_extent_mapping(em_tree, start, len);
231                 if (!em)
232                         em = ERR_PTR(-EIO);
233         } else if (ret) {
234                 free_extent_map(em);
235                 em = ERR_PTR(ret);
236         }
237         write_unlock(&em_tree->lock);
238
239 out:
240         return em;
241 }
242
243 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
244 {
245         return btrfs_crc32c(seed, data, len);
246 }
247
248 void btrfs_csum_final(u32 crc, char *result)
249 {
250         put_unaligned_le32(~crc, result);
251 }
252
253 /*
254  * compute the csum for a btree block, and either verify it or write it
255  * into the csum field of the block.
256  */
257 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
258                            int verify)
259 {
260         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
261         char *result = NULL;
262         unsigned long len;
263         unsigned long cur_len;
264         unsigned long offset = BTRFS_CSUM_SIZE;
265         char *kaddr;
266         unsigned long map_start;
267         unsigned long map_len;
268         int err;
269         u32 crc = ~(u32)0;
270         unsigned long inline_result;
271
272         len = buf->len - offset;
273         while (len > 0) {
274                 err = map_private_extent_buffer(buf, offset, 32,
275                                         &kaddr, &map_start, &map_len);
276                 if (err)
277                         return 1;
278                 cur_len = min(len, map_len - (offset - map_start));
279                 crc = btrfs_csum_data(kaddr + offset - map_start,
280                                       crc, cur_len);
281                 len -= cur_len;
282                 offset += cur_len;
283         }
284         if (csum_size > sizeof(inline_result)) {
285                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
286                 if (!result)
287                         return 1;
288         } else {
289                 result = (char *)&inline_result;
290         }
291
292         btrfs_csum_final(crc, result);
293
294         if (verify) {
295                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
296                         u32 val;
297                         u32 found = 0;
298                         memcpy(&found, result, csum_size);
299
300                         read_extent_buffer(buf, &val, 0, csum_size);
301                         printk_ratelimited(KERN_INFO
302                                 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
303                                 "level %d\n",
304                                 root->fs_info->sb->s_id, buf->start,
305                                 val, found, btrfs_header_level(buf));
306                         if (result != (char *)&inline_result)
307                                 kfree(result);
308                         return 1;
309                 }
310         } else {
311                 write_extent_buffer(buf, result, 0, csum_size);
312         }
313         if (result != (char *)&inline_result)
314                 kfree(result);
315         return 0;
316 }
317
318 /*
319  * we can't consider a given block up to date unless the transid of the
320  * block matches the transid in the parent node's pointer.  This is how we
321  * detect blocks that either didn't get written at all or got written
322  * in the wrong place.
323  */
324 static int verify_parent_transid(struct extent_io_tree *io_tree,
325                                  struct extent_buffer *eb, u64 parent_transid,
326                                  int atomic)
327 {
328         struct extent_state *cached_state = NULL;
329         int ret;
330         bool need_lock = (current->journal_info ==
331                           (void *)BTRFS_SEND_TRANS_STUB);
332
333         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334                 return 0;
335
336         if (atomic)
337                 return -EAGAIN;
338
339         if (need_lock) {
340                 btrfs_tree_read_lock(eb);
341                 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
342         }
343
344         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
345                          0, &cached_state);
346         if (extent_buffer_uptodate(eb) &&
347             btrfs_header_generation(eb) == parent_transid) {
348                 ret = 0;
349                 goto out;
350         }
351         printk_ratelimited(KERN_INFO "BTRFS (device %s): parent transid verify failed on %llu wanted %llu found %llu\n",
352                         eb->fs_info->sb->s_id, eb->start,
353                         parent_transid, btrfs_header_generation(eb));
354         ret = 1;
355
356         /*
357          * Things reading via commit roots that don't have normal protection,
358          * like send, can have a really old block in cache that may point at a
359          * block that has been free'd and re-allocated.  So don't clear uptodate
360          * if we find an eb that is under IO (dirty/writeback) because we could
361          * end up reading in the stale data and then writing it back out and
362          * making everybody very sad.
363          */
364         if (!extent_buffer_under_io(eb))
365                 clear_extent_buffer_uptodate(eb);
366 out:
367         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
368                              &cached_state, GFP_NOFS);
369         if (need_lock)
370                 btrfs_tree_read_unlock_blocking(eb);
371         return ret;
372 }
373
374 /*
375  * Return 0 if the superblock checksum type matches the checksum value of that
376  * algorithm. Pass the raw disk superblock data.
377  */
378 static int btrfs_check_super_csum(char *raw_disk_sb)
379 {
380         struct btrfs_super_block *disk_sb =
381                 (struct btrfs_super_block *)raw_disk_sb;
382         u16 csum_type = btrfs_super_csum_type(disk_sb);
383         int ret = 0;
384
385         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
386                 u32 crc = ~(u32)0;
387                 const int csum_size = sizeof(crc);
388                 char result[csum_size];
389
390                 /*
391                  * The super_block structure does not span the whole
392                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
393                  * is filled with zeros and is included in the checkum.
394                  */
395                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
396                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
397                 btrfs_csum_final(crc, result);
398
399                 if (memcmp(raw_disk_sb, result, csum_size))
400                         ret = 1;
401
402                 if (ret && btrfs_super_generation(disk_sb) < 10) {
403                         printk(KERN_WARNING
404                                 "BTRFS: super block crcs don't match, older mkfs detected\n");
405                         ret = 0;
406                 }
407         }
408
409         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
410                 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
411                                 csum_type);
412                 ret = 1;
413         }
414
415         return ret;
416 }
417
418 /*
419  * helper to read a given tree block, doing retries as required when
420  * the checksums don't match and we have alternate mirrors to try.
421  */
422 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
423                                           struct extent_buffer *eb,
424                                           u64 start, u64 parent_transid)
425 {
426         struct extent_io_tree *io_tree;
427         int failed = 0;
428         int ret;
429         int num_copies = 0;
430         int mirror_num = 0;
431         int failed_mirror = 0;
432
433         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
434         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
435         while (1) {
436                 ret = read_extent_buffer_pages(io_tree, eb, start,
437                                                WAIT_COMPLETE,
438                                                btree_get_extent, mirror_num);
439                 if (!ret) {
440                         if (!verify_parent_transid(io_tree, eb,
441                                                    parent_transid, 0))
442                                 break;
443                         else
444                                 ret = -EIO;
445                 }
446
447                 /*
448                  * This buffer's crc is fine, but its contents are corrupted, so
449                  * there is no reason to read the other copies, they won't be
450                  * any less wrong.
451                  */
452                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
453                         break;
454
455                 num_copies = btrfs_num_copies(root->fs_info,
456                                               eb->start, eb->len);
457                 if (num_copies == 1)
458                         break;
459
460                 if (!failed_mirror) {
461                         failed = 1;
462                         failed_mirror = eb->read_mirror;
463                 }
464
465                 mirror_num++;
466                 if (mirror_num == failed_mirror)
467                         mirror_num++;
468
469                 if (mirror_num > num_copies)
470                         break;
471         }
472
473         if (failed && !ret && failed_mirror)
474                 repair_eb_io_failure(root, eb, failed_mirror);
475
476         return ret;
477 }
478
479 /*
480  * checksum a dirty tree block before IO.  This has extra checks to make sure
481  * we only fill in the checksum field in the first page of a multi-page block
482  */
483
484 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
485 {
486         u64 start = page_offset(page);
487         u64 found_start;
488         struct extent_buffer *eb;
489
490         eb = (struct extent_buffer *)page->private;
491         if (page != eb->pages[0])
492                 return 0;
493         found_start = btrfs_header_bytenr(eb);
494         if (WARN_ON(found_start != start || !PageUptodate(page)))
495                 return 0;
496         csum_tree_block(root, eb, 0);
497         return 0;
498 }
499
500 static int check_tree_block_fsid(struct btrfs_root *root,
501                                  struct extent_buffer *eb)
502 {
503         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
504         u8 fsid[BTRFS_UUID_SIZE];
505         int ret = 1;
506
507         read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
508         while (fs_devices) {
509                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
510                         ret = 0;
511                         break;
512                 }
513                 fs_devices = fs_devices->seed;
514         }
515         return ret;
516 }
517
518 #define CORRUPT(reason, eb, root, slot)                         \
519         btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"       \
520                    "root=%llu, slot=%d", reason,                        \
521                btrfs_header_bytenr(eb), root->objectid, slot)
522
523 static noinline int check_leaf(struct btrfs_root *root,
524                                struct extent_buffer *leaf)
525 {
526         struct btrfs_key key;
527         struct btrfs_key leaf_key;
528         u32 nritems = btrfs_header_nritems(leaf);
529         int slot;
530
531         if (nritems == 0)
532                 return 0;
533
534         /* Check the 0 item */
535         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
536             BTRFS_LEAF_DATA_SIZE(root)) {
537                 CORRUPT("invalid item offset size pair", leaf, root, 0);
538                 return -EIO;
539         }
540
541         /*
542          * Check to make sure each items keys are in the correct order and their
543          * offsets make sense.  We only have to loop through nritems-1 because
544          * we check the current slot against the next slot, which verifies the
545          * next slot's offset+size makes sense and that the current's slot
546          * offset is correct.
547          */
548         for (slot = 0; slot < nritems - 1; slot++) {
549                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
550                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
551
552                 /* Make sure the keys are in the right order */
553                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
554                         CORRUPT("bad key order", leaf, root, slot);
555                         return -EIO;
556                 }
557
558                 /*
559                  * Make sure the offset and ends are right, remember that the
560                  * item data starts at the end of the leaf and grows towards the
561                  * front.
562                  */
563                 if (btrfs_item_offset_nr(leaf, slot) !=
564                         btrfs_item_end_nr(leaf, slot + 1)) {
565                         CORRUPT("slot offset bad", leaf, root, slot);
566                         return -EIO;
567                 }
568
569                 /*
570                  * Check to make sure that we don't point outside of the leaf,
571                  * just incase all the items are consistent to eachother, but
572                  * all point outside of the leaf.
573                  */
574                 if (btrfs_item_end_nr(leaf, slot) >
575                     BTRFS_LEAF_DATA_SIZE(root)) {
576                         CORRUPT("slot end outside of leaf", leaf, root, slot);
577                         return -EIO;
578                 }
579         }
580
581         return 0;
582 }
583
584 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
585                                       u64 phy_offset, struct page *page,
586                                       u64 start, u64 end, int mirror)
587 {
588         u64 found_start;
589         int found_level;
590         struct extent_buffer *eb;
591         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
592         int ret = 0;
593         int reads_done;
594
595         if (!page->private)
596                 goto out;
597
598         eb = (struct extent_buffer *)page->private;
599
600         /* the pending IO might have been the only thing that kept this buffer
601          * in memory.  Make sure we have a ref for all this other checks
602          */
603         extent_buffer_get(eb);
604
605         reads_done = atomic_dec_and_test(&eb->io_pages);
606         if (!reads_done)
607                 goto err;
608
609         eb->read_mirror = mirror;
610         if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
611                 ret = -EIO;
612                 goto err;
613         }
614
615         found_start = btrfs_header_bytenr(eb);
616         if (found_start != eb->start) {
617                 printk_ratelimited(KERN_INFO "BTRFS (device %s): bad tree block start "
618                                "%llu %llu\n",
619                                eb->fs_info->sb->s_id, found_start, eb->start);
620                 ret = -EIO;
621                 goto err;
622         }
623         if (check_tree_block_fsid(root, eb)) {
624                 printk_ratelimited(KERN_INFO "BTRFS (device %s): bad fsid on block %llu\n",
625                                eb->fs_info->sb->s_id, eb->start);
626                 ret = -EIO;
627                 goto err;
628         }
629         found_level = btrfs_header_level(eb);
630         if (found_level >= BTRFS_MAX_LEVEL) {
631                 btrfs_info(root->fs_info, "bad tree block level %d",
632                            (int)btrfs_header_level(eb));
633                 ret = -EIO;
634                 goto err;
635         }
636
637         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
638                                        eb, found_level);
639
640         ret = csum_tree_block(root, eb, 1);
641         if (ret) {
642                 ret = -EIO;
643                 goto err;
644         }
645
646         /*
647          * If this is a leaf block and it is corrupt, set the corrupt bit so
648          * that we don't try and read the other copies of this block, just
649          * return -EIO.
650          */
651         if (found_level == 0 && check_leaf(root, eb)) {
652                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
653                 ret = -EIO;
654         }
655
656         if (!ret)
657                 set_extent_buffer_uptodate(eb);
658 err:
659         if (reads_done &&
660             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
661                 btree_readahead_hook(root, eb, eb->start, ret);
662
663         if (ret) {
664                 /*
665                  * our io error hook is going to dec the io pages
666                  * again, we have to make sure it has something
667                  * to decrement
668                  */
669                 atomic_inc(&eb->io_pages);
670                 clear_extent_buffer_uptodate(eb);
671         }
672         free_extent_buffer(eb);
673 out:
674         return ret;
675 }
676
677 static int btree_io_failed_hook(struct page *page, int failed_mirror)
678 {
679         struct extent_buffer *eb;
680         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
681
682         eb = (struct extent_buffer *)page->private;
683         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
684         eb->read_mirror = failed_mirror;
685         atomic_dec(&eb->io_pages);
686         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
687                 btree_readahead_hook(root, eb, eb->start, -EIO);
688         return -EIO;    /* we fixed nothing */
689 }
690
691 static void end_workqueue_bio(struct bio *bio, int err)
692 {
693         struct end_io_wq *end_io_wq = bio->bi_private;
694         struct btrfs_fs_info *fs_info;
695         struct btrfs_workqueue *wq;
696         btrfs_work_func_t func;
697
698         fs_info = end_io_wq->info;
699         end_io_wq->error = err;
700
701         if (bio->bi_rw & REQ_WRITE) {
702                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
703                         wq = fs_info->endio_meta_write_workers;
704                         func = btrfs_endio_meta_write_helper;
705                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
706                         wq = fs_info->endio_freespace_worker;
707                         func = btrfs_freespace_write_helper;
708                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
709                         wq = fs_info->endio_raid56_workers;
710                         func = btrfs_endio_raid56_helper;
711                 } else {
712                         wq = fs_info->endio_write_workers;
713                         func = btrfs_endio_write_helper;
714                 }
715         } else {
716                 if (unlikely(end_io_wq->metadata ==
717                              BTRFS_WQ_ENDIO_DIO_REPAIR)) {
718                         wq = fs_info->endio_repair_workers;
719                         func = btrfs_endio_repair_helper;
720                 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
721                         wq = fs_info->endio_raid56_workers;
722                         func = btrfs_endio_raid56_helper;
723                 } else if (end_io_wq->metadata) {
724                         wq = fs_info->endio_meta_workers;
725                         func = btrfs_endio_meta_helper;
726                 } else {
727                         wq = fs_info->endio_workers;
728                         func = btrfs_endio_helper;
729                 }
730         }
731
732         btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
733         btrfs_queue_work(wq, &end_io_wq->work);
734 }
735
736 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
737                         enum btrfs_wq_endio_type metadata)
738 {
739         struct end_io_wq *end_io_wq;
740
741         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
742         if (!end_io_wq)
743                 return -ENOMEM;
744
745         end_io_wq->private = bio->bi_private;
746         end_io_wq->end_io = bio->bi_end_io;
747         end_io_wq->info = info;
748         end_io_wq->error = 0;
749         end_io_wq->bio = bio;
750         end_io_wq->metadata = metadata;
751
752         bio->bi_private = end_io_wq;
753         bio->bi_end_io = end_workqueue_bio;
754         return 0;
755 }
756
757 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
758 {
759         unsigned long limit = min_t(unsigned long,
760                                     info->thread_pool_size,
761                                     info->fs_devices->open_devices);
762         return 256 * limit;
763 }
764
765 static void run_one_async_start(struct btrfs_work *work)
766 {
767         struct async_submit_bio *async;
768         int ret;
769
770         async = container_of(work, struct  async_submit_bio, work);
771         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
772                                       async->mirror_num, async->bio_flags,
773                                       async->bio_offset);
774         if (ret)
775                 async->error = ret;
776 }
777
778 static void run_one_async_done(struct btrfs_work *work)
779 {
780         struct btrfs_fs_info *fs_info;
781         struct async_submit_bio *async;
782         int limit;
783
784         async = container_of(work, struct  async_submit_bio, work);
785         fs_info = BTRFS_I(async->inode)->root->fs_info;
786
787         limit = btrfs_async_submit_limit(fs_info);
788         limit = limit * 2 / 3;
789
790         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
791             waitqueue_active(&fs_info->async_submit_wait))
792                 wake_up(&fs_info->async_submit_wait);
793
794         /* If an error occured we just want to clean up the bio and move on */
795         if (async->error) {
796                 bio_endio(async->bio, async->error);
797                 return;
798         }
799
800         async->submit_bio_done(async->inode, async->rw, async->bio,
801                                async->mirror_num, async->bio_flags,
802                                async->bio_offset);
803 }
804
805 static void run_one_async_free(struct btrfs_work *work)
806 {
807         struct async_submit_bio *async;
808
809         async = container_of(work, struct  async_submit_bio, work);
810         kfree(async);
811 }
812
813 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
814                         int rw, struct bio *bio, int mirror_num,
815                         unsigned long bio_flags,
816                         u64 bio_offset,
817                         extent_submit_bio_hook_t *submit_bio_start,
818                         extent_submit_bio_hook_t *submit_bio_done)
819 {
820         struct async_submit_bio *async;
821
822         async = kmalloc(sizeof(*async), GFP_NOFS);
823         if (!async)
824                 return -ENOMEM;
825
826         async->inode = inode;
827         async->rw = rw;
828         async->bio = bio;
829         async->mirror_num = mirror_num;
830         async->submit_bio_start = submit_bio_start;
831         async->submit_bio_done = submit_bio_done;
832
833         btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
834                         run_one_async_done, run_one_async_free);
835
836         async->bio_flags = bio_flags;
837         async->bio_offset = bio_offset;
838
839         async->error = 0;
840
841         atomic_inc(&fs_info->nr_async_submits);
842
843         if (rw & REQ_SYNC)
844                 btrfs_set_work_high_priority(&async->work);
845
846         btrfs_queue_work(fs_info->workers, &async->work);
847
848         while (atomic_read(&fs_info->async_submit_draining) &&
849               atomic_read(&fs_info->nr_async_submits)) {
850                 wait_event(fs_info->async_submit_wait,
851                            (atomic_read(&fs_info->nr_async_submits) == 0));
852         }
853
854         return 0;
855 }
856
857 static int btree_csum_one_bio(struct bio *bio)
858 {
859         struct bio_vec *bvec;
860         struct btrfs_root *root;
861         int i, ret = 0;
862
863         bio_for_each_segment_all(bvec, bio, i) {
864                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
865                 ret = csum_dirty_buffer(root, bvec->bv_page);
866                 if (ret)
867                         break;
868         }
869
870         return ret;
871 }
872
873 static int __btree_submit_bio_start(struct inode *inode, int rw,
874                                     struct bio *bio, int mirror_num,
875                                     unsigned long bio_flags,
876                                     u64 bio_offset)
877 {
878         /*
879          * when we're called for a write, we're already in the async
880          * submission context.  Just jump into btrfs_map_bio
881          */
882         return btree_csum_one_bio(bio);
883 }
884
885 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
886                                  int mirror_num, unsigned long bio_flags,
887                                  u64 bio_offset)
888 {
889         int ret;
890
891         /*
892          * when we're called for a write, we're already in the async
893          * submission context.  Just jump into btrfs_map_bio
894          */
895         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
896         if (ret)
897                 bio_endio(bio, ret);
898         return ret;
899 }
900
901 static int check_async_write(struct inode *inode, unsigned long bio_flags)
902 {
903         if (bio_flags & EXTENT_BIO_TREE_LOG)
904                 return 0;
905 #ifdef CONFIG_X86
906         if (cpu_has_xmm4_2)
907                 return 0;
908 #endif
909         return 1;
910 }
911
912 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
913                                  int mirror_num, unsigned long bio_flags,
914                                  u64 bio_offset)
915 {
916         int async = check_async_write(inode, bio_flags);
917         int ret;
918
919         if (!(rw & REQ_WRITE)) {
920                 /*
921                  * called for a read, do the setup so that checksum validation
922                  * can happen in the async kernel threads
923                  */
924                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
925                                           bio, BTRFS_WQ_ENDIO_METADATA);
926                 if (ret)
927                         goto out_w_error;
928                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
929                                     mirror_num, 0);
930         } else if (!async) {
931                 ret = btree_csum_one_bio(bio);
932                 if (ret)
933                         goto out_w_error;
934                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
935                                     mirror_num, 0);
936         } else {
937                 /*
938                  * kthread helpers are used to submit writes so that
939                  * checksumming can happen in parallel across all CPUs
940                  */
941                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
942                                           inode, rw, bio, mirror_num, 0,
943                                           bio_offset,
944                                           __btree_submit_bio_start,
945                                           __btree_submit_bio_done);
946         }
947
948         if (ret) {
949 out_w_error:
950                 bio_endio(bio, ret);
951         }
952         return ret;
953 }
954
955 #ifdef CONFIG_MIGRATION
956 static int btree_migratepage(struct address_space *mapping,
957                         struct page *newpage, struct page *page,
958                         enum migrate_mode mode)
959 {
960         /*
961          * we can't safely write a btree page from here,
962          * we haven't done the locking hook
963          */
964         if (PageDirty(page))
965                 return -EAGAIN;
966         /*
967          * Buffers may be managed in a filesystem specific way.
968          * We must have no buffers or drop them.
969          */
970         if (page_has_private(page) &&
971             !try_to_release_page(page, GFP_KERNEL))
972                 return -EAGAIN;
973         return migrate_page(mapping, newpage, page, mode);
974 }
975 #endif
976
977
978 static int btree_writepages(struct address_space *mapping,
979                             struct writeback_control *wbc)
980 {
981         struct btrfs_fs_info *fs_info;
982         int ret;
983
984         if (wbc->sync_mode == WB_SYNC_NONE) {
985
986                 if (wbc->for_kupdate)
987                         return 0;
988
989                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
990                 /* this is a bit racy, but that's ok */
991                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
992                                              BTRFS_DIRTY_METADATA_THRESH);
993                 if (ret < 0)
994                         return 0;
995         }
996         return btree_write_cache_pages(mapping, wbc);
997 }
998
999 static int btree_readpage(struct file *file, struct page *page)
1000 {
1001         struct extent_io_tree *tree;
1002         tree = &BTRFS_I(page->mapping->host)->io_tree;
1003         return extent_read_full_page(tree, page, btree_get_extent, 0);
1004 }
1005
1006 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1007 {
1008         if (PageWriteback(page) || PageDirty(page))
1009                 return 0;
1010
1011         return try_release_extent_buffer(page);
1012 }
1013
1014 static void btree_invalidatepage(struct page *page, unsigned int offset,
1015                                  unsigned int length)
1016 {
1017         struct extent_io_tree *tree;
1018         tree = &BTRFS_I(page->mapping->host)->io_tree;
1019         extent_invalidatepage(tree, page, offset);
1020         btree_releasepage(page, GFP_NOFS);
1021         if (PagePrivate(page)) {
1022                 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1023                            "page private not zero on page %llu",
1024                            (unsigned long long)page_offset(page));
1025                 ClearPagePrivate(page);
1026                 set_page_private(page, 0);
1027                 page_cache_release(page);
1028         }
1029 }
1030
1031 static int btree_set_page_dirty(struct page *page)
1032 {
1033 #ifdef DEBUG
1034         struct extent_buffer *eb;
1035
1036         BUG_ON(!PagePrivate(page));
1037         eb = (struct extent_buffer *)page->private;
1038         BUG_ON(!eb);
1039         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1040         BUG_ON(!atomic_read(&eb->refs));
1041         btrfs_assert_tree_locked(eb);
1042 #endif
1043         return __set_page_dirty_nobuffers(page);
1044 }
1045
1046 static const struct address_space_operations btree_aops = {
1047         .readpage       = btree_readpage,
1048         .writepages     = btree_writepages,
1049         .releasepage    = btree_releasepage,
1050         .invalidatepage = btree_invalidatepage,
1051 #ifdef CONFIG_MIGRATION
1052         .migratepage    = btree_migratepage,
1053 #endif
1054         .set_page_dirty = btree_set_page_dirty,
1055 };
1056
1057 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1058                          u64 parent_transid)
1059 {
1060         struct extent_buffer *buf = NULL;
1061         struct inode *btree_inode = root->fs_info->btree_inode;
1062         int ret = 0;
1063
1064         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1065         if (!buf)
1066                 return 0;
1067         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1068                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1069         free_extent_buffer(buf);
1070         return ret;
1071 }
1072
1073 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1074                          int mirror_num, struct extent_buffer **eb)
1075 {
1076         struct extent_buffer *buf = NULL;
1077         struct inode *btree_inode = root->fs_info->btree_inode;
1078         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1079         int ret;
1080
1081         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1082         if (!buf)
1083                 return 0;
1084
1085         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1086
1087         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1088                                        btree_get_extent, mirror_num);
1089         if (ret) {
1090                 free_extent_buffer(buf);
1091                 return ret;
1092         }
1093
1094         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1095                 free_extent_buffer(buf);
1096                 return -EIO;
1097         } else if (extent_buffer_uptodate(buf)) {
1098                 *eb = buf;
1099         } else {
1100                 free_extent_buffer(buf);
1101         }
1102         return 0;
1103 }
1104
1105 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1106                                             u64 bytenr, u32 blocksize)
1107 {
1108         return find_extent_buffer(root->fs_info, bytenr);
1109 }
1110
1111 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1112                                                  u64 bytenr, u32 blocksize)
1113 {
1114 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1115         if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state)))
1116                 return alloc_test_extent_buffer(root->fs_info, bytenr,
1117                                                 blocksize);
1118 #endif
1119         return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
1120 }
1121
1122
1123 int btrfs_write_tree_block(struct extent_buffer *buf)
1124 {
1125         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1126                                         buf->start + buf->len - 1);
1127 }
1128
1129 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1130 {
1131         return filemap_fdatawait_range(buf->pages[0]->mapping,
1132                                        buf->start, buf->start + buf->len - 1);
1133 }
1134
1135 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1136                                       u32 blocksize, u64 parent_transid)
1137 {
1138         struct extent_buffer *buf = NULL;
1139         int ret;
1140
1141         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1142         if (!buf)
1143                 return NULL;
1144
1145         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1146         if (ret) {
1147                 free_extent_buffer(buf);
1148                 return NULL;
1149         }
1150         return buf;
1151
1152 }
1153
1154 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1155                       struct extent_buffer *buf)
1156 {
1157         struct btrfs_fs_info *fs_info = root->fs_info;
1158
1159         if (btrfs_header_generation(buf) ==
1160             fs_info->running_transaction->transid) {
1161                 btrfs_assert_tree_locked(buf);
1162
1163                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1164                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1165                                              -buf->len,
1166                                              fs_info->dirty_metadata_batch);
1167                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1168                         btrfs_set_lock_blocking(buf);
1169                         clear_extent_buffer_dirty(buf);
1170                 }
1171         }
1172 }
1173
1174 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1175 {
1176         struct btrfs_subvolume_writers *writers;
1177         int ret;
1178
1179         writers = kmalloc(sizeof(*writers), GFP_NOFS);
1180         if (!writers)
1181                 return ERR_PTR(-ENOMEM);
1182
1183         ret = percpu_counter_init(&writers->counter, 0);
1184         if (ret < 0) {
1185                 kfree(writers);
1186                 return ERR_PTR(ret);
1187         }
1188
1189         init_waitqueue_head(&writers->wait);
1190         return writers;
1191 }
1192
1193 static void
1194 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1195 {
1196         percpu_counter_destroy(&writers->counter);
1197         kfree(writers);
1198 }
1199
1200 static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1201                          struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1202                          u64 objectid)
1203 {
1204         root->node = NULL;
1205         root->commit_root = NULL;
1206         root->sectorsize = sectorsize;
1207         root->nodesize = nodesize;
1208         root->stripesize = stripesize;
1209         root->state = 0;
1210         root->orphan_cleanup_state = 0;
1211
1212         root->objectid = objectid;
1213         root->last_trans = 0;
1214         root->highest_objectid = 0;
1215         root->nr_delalloc_inodes = 0;
1216         root->nr_ordered_extents = 0;
1217         root->name = NULL;
1218         root->inode_tree = RB_ROOT;
1219         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1220         root->block_rsv = NULL;
1221         root->orphan_block_rsv = NULL;
1222
1223         INIT_LIST_HEAD(&root->dirty_list);
1224         INIT_LIST_HEAD(&root->root_list);
1225         INIT_LIST_HEAD(&root->delalloc_inodes);
1226         INIT_LIST_HEAD(&root->delalloc_root);
1227         INIT_LIST_HEAD(&root->ordered_extents);
1228         INIT_LIST_HEAD(&root->ordered_root);
1229         INIT_LIST_HEAD(&root->logged_list[0]);
1230         INIT_LIST_HEAD(&root->logged_list[1]);
1231         spin_lock_init(&root->orphan_lock);
1232         spin_lock_init(&root->inode_lock);
1233         spin_lock_init(&root->delalloc_lock);
1234         spin_lock_init(&root->ordered_extent_lock);
1235         spin_lock_init(&root->accounting_lock);
1236         spin_lock_init(&root->log_extents_lock[0]);
1237         spin_lock_init(&root->log_extents_lock[1]);
1238         mutex_init(&root->objectid_mutex);
1239         mutex_init(&root->log_mutex);
1240         mutex_init(&root->ordered_extent_mutex);
1241         mutex_init(&root->delalloc_mutex);
1242         init_waitqueue_head(&root->log_writer_wait);
1243         init_waitqueue_head(&root->log_commit_wait[0]);
1244         init_waitqueue_head(&root->log_commit_wait[1]);
1245         INIT_LIST_HEAD(&root->log_ctxs[0]);
1246         INIT_LIST_HEAD(&root->log_ctxs[1]);
1247         atomic_set(&root->log_commit[0], 0);
1248         atomic_set(&root->log_commit[1], 0);
1249         atomic_set(&root->log_writers, 0);
1250         atomic_set(&root->log_batch, 0);
1251         atomic_set(&root->orphan_inodes, 0);
1252         atomic_set(&root->refs, 1);
1253         atomic_set(&root->will_be_snapshoted, 0);
1254         root->log_transid = 0;
1255         root->log_transid_committed = -1;
1256         root->last_log_commit = 0;
1257         if (fs_info)
1258                 extent_io_tree_init(&root->dirty_log_pages,
1259                                      fs_info->btree_inode->i_mapping);
1260
1261         memset(&root->root_key, 0, sizeof(root->root_key));
1262         memset(&root->root_item, 0, sizeof(root->root_item));
1263         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1264         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1265         if (fs_info)
1266                 root->defrag_trans_start = fs_info->generation;
1267         else
1268                 root->defrag_trans_start = 0;
1269         init_completion(&root->kobj_unregister);
1270         root->root_key.objectid = objectid;
1271         root->anon_dev = 0;
1272
1273         spin_lock_init(&root->root_item_lock);
1274 }
1275
1276 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1277 {
1278         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1279         if (root)
1280                 root->fs_info = fs_info;
1281         return root;
1282 }
1283
1284 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1285 /* Should only be used by the testing infrastructure */
1286 struct btrfs_root *btrfs_alloc_dummy_root(void)
1287 {
1288         struct btrfs_root *root;
1289
1290         root = btrfs_alloc_root(NULL);
1291         if (!root)
1292                 return ERR_PTR(-ENOMEM);
1293         __setup_root(4096, 4096, 4096, root, NULL, 1);
1294         set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1295         root->alloc_bytenr = 0;
1296
1297         return root;
1298 }
1299 #endif
1300
1301 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1302                                      struct btrfs_fs_info *fs_info,
1303                                      u64 objectid)
1304 {
1305         struct extent_buffer *leaf;
1306         struct btrfs_root *tree_root = fs_info->tree_root;
1307         struct btrfs_root *root;
1308         struct btrfs_key key;
1309         int ret = 0;
1310         uuid_le uuid;
1311
1312         root = btrfs_alloc_root(fs_info);
1313         if (!root)
1314                 return ERR_PTR(-ENOMEM);
1315
1316         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1317                 tree_root->stripesize, root, fs_info, objectid);
1318         root->root_key.objectid = objectid;
1319         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1320         root->root_key.offset = 0;
1321
1322         leaf = btrfs_alloc_free_block(trans, root, root->nodesize,
1323                                       0, objectid, NULL, 0, 0, 0);
1324         if (IS_ERR(leaf)) {
1325                 ret = PTR_ERR(leaf);
1326                 leaf = NULL;
1327                 goto fail;
1328         }
1329
1330         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1331         btrfs_set_header_bytenr(leaf, leaf->start);
1332         btrfs_set_header_generation(leaf, trans->transid);
1333         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1334         btrfs_set_header_owner(leaf, objectid);
1335         root->node = leaf;
1336
1337         write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1338                             BTRFS_FSID_SIZE);
1339         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1340                             btrfs_header_chunk_tree_uuid(leaf),
1341                             BTRFS_UUID_SIZE);
1342         btrfs_mark_buffer_dirty(leaf);
1343
1344         root->commit_root = btrfs_root_node(root);
1345         set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1346
1347         root->root_item.flags = 0;
1348         root->root_item.byte_limit = 0;
1349         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1350         btrfs_set_root_generation(&root->root_item, trans->transid);
1351         btrfs_set_root_level(&root->root_item, 0);
1352         btrfs_set_root_refs(&root->root_item, 1);
1353         btrfs_set_root_used(&root->root_item, leaf->len);
1354         btrfs_set_root_last_snapshot(&root->root_item, 0);
1355         btrfs_set_root_dirid(&root->root_item, 0);
1356         uuid_le_gen(&uuid);
1357         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1358         root->root_item.drop_level = 0;
1359
1360         key.objectid = objectid;
1361         key.type = BTRFS_ROOT_ITEM_KEY;
1362         key.offset = 0;
1363         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1364         if (ret)
1365                 goto fail;
1366
1367         btrfs_tree_unlock(leaf);
1368
1369         return root;
1370
1371 fail:
1372         if (leaf) {
1373                 btrfs_tree_unlock(leaf);
1374                 free_extent_buffer(root->commit_root);
1375                 free_extent_buffer(leaf);
1376         }
1377         kfree(root);
1378
1379         return ERR_PTR(ret);
1380 }
1381
1382 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1383                                          struct btrfs_fs_info *fs_info)
1384 {
1385         struct btrfs_root *root;
1386         struct btrfs_root *tree_root = fs_info->tree_root;
1387         struct extent_buffer *leaf;
1388
1389         root = btrfs_alloc_root(fs_info);
1390         if (!root)
1391                 return ERR_PTR(-ENOMEM);
1392
1393         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1394                      tree_root->stripesize, root, fs_info,
1395                      BTRFS_TREE_LOG_OBJECTID);
1396
1397         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1398         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1399         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1400
1401         /*
1402          * DON'T set REF_COWS for log trees
1403          *
1404          * log trees do not get reference counted because they go away
1405          * before a real commit is actually done.  They do store pointers
1406          * to file data extents, and those reference counts still get
1407          * updated (along with back refs to the log tree).
1408          */
1409
1410         leaf = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
1411                                       BTRFS_TREE_LOG_OBJECTID, NULL,
1412                                       0, 0, 0);
1413         if (IS_ERR(leaf)) {
1414                 kfree(root);
1415                 return ERR_CAST(leaf);
1416         }
1417
1418         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1419         btrfs_set_header_bytenr(leaf, leaf->start);
1420         btrfs_set_header_generation(leaf, trans->transid);
1421         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1422         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1423         root->node = leaf;
1424
1425         write_extent_buffer(root->node, root->fs_info->fsid,
1426                             btrfs_header_fsid(), BTRFS_FSID_SIZE);
1427         btrfs_mark_buffer_dirty(root->node);
1428         btrfs_tree_unlock(root->node);
1429         return root;
1430 }
1431
1432 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1433                              struct btrfs_fs_info *fs_info)
1434 {
1435         struct btrfs_root *log_root;
1436
1437         log_root = alloc_log_tree(trans, fs_info);
1438         if (IS_ERR(log_root))
1439                 return PTR_ERR(log_root);
1440         WARN_ON(fs_info->log_root_tree);
1441         fs_info->log_root_tree = log_root;
1442         return 0;
1443 }
1444
1445 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1446                        struct btrfs_root *root)
1447 {
1448         struct btrfs_root *log_root;
1449         struct btrfs_inode_item *inode_item;
1450
1451         log_root = alloc_log_tree(trans, root->fs_info);
1452         if (IS_ERR(log_root))
1453                 return PTR_ERR(log_root);
1454
1455         log_root->last_trans = trans->transid;
1456         log_root->root_key.offset = root->root_key.objectid;
1457
1458         inode_item = &log_root->root_item.inode;
1459         btrfs_set_stack_inode_generation(inode_item, 1);
1460         btrfs_set_stack_inode_size(inode_item, 3);
1461         btrfs_set_stack_inode_nlink(inode_item, 1);
1462         btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1463         btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1464
1465         btrfs_set_root_node(&log_root->root_item, log_root->node);
1466
1467         WARN_ON(root->log_root);
1468         root->log_root = log_root;
1469         root->log_transid = 0;
1470         root->log_transid_committed = -1;
1471         root->last_log_commit = 0;
1472         return 0;
1473 }
1474
1475 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1476                                                struct btrfs_key *key)
1477 {
1478         struct btrfs_root *root;
1479         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1480         struct btrfs_path *path;
1481         u64 generation;
1482         u32 blocksize;
1483         int ret;
1484
1485         path = btrfs_alloc_path();
1486         if (!path)
1487                 return ERR_PTR(-ENOMEM);
1488
1489         root = btrfs_alloc_root(fs_info);
1490         if (!root) {
1491                 ret = -ENOMEM;
1492                 goto alloc_fail;
1493         }
1494
1495         __setup_root(tree_root->nodesize, tree_root->sectorsize,
1496                 tree_root->stripesize, root, fs_info, key->objectid);
1497
1498         ret = btrfs_find_root(tree_root, key, path,
1499                               &root->root_item, &root->root_key);
1500         if (ret) {
1501                 if (ret > 0)
1502                         ret = -ENOENT;
1503                 goto find_fail;
1504         }
1505
1506         generation = btrfs_root_generation(&root->root_item);
1507         blocksize = root->nodesize;
1508         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1509                                      blocksize, generation);
1510         if (!root->node) {
1511                 ret = -ENOMEM;
1512                 goto find_fail;
1513         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1514                 ret = -EIO;
1515                 goto read_fail;
1516         }
1517         root->commit_root = btrfs_root_node(root);
1518 out:
1519         btrfs_free_path(path);
1520         return root;
1521
1522 read_fail:
1523         free_extent_buffer(root->node);
1524 find_fail:
1525         kfree(root);
1526 alloc_fail:
1527         root = ERR_PTR(ret);
1528         goto out;
1529 }
1530
1531 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1532                                       struct btrfs_key *location)
1533 {
1534         struct btrfs_root *root;
1535
1536         root = btrfs_read_tree_root(tree_root, location);
1537         if (IS_ERR(root))
1538                 return root;
1539
1540         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1541                 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1542                 btrfs_check_and_init_root_item(&root->root_item);
1543         }
1544
1545         return root;
1546 }
1547
1548 int btrfs_init_fs_root(struct btrfs_root *root)
1549 {
1550         int ret;
1551         struct btrfs_subvolume_writers *writers;
1552
1553         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1554         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1555                                         GFP_NOFS);
1556         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1557                 ret = -ENOMEM;
1558                 goto fail;
1559         }
1560
1561         writers = btrfs_alloc_subvolume_writers();
1562         if (IS_ERR(writers)) {
1563                 ret = PTR_ERR(writers);
1564                 goto fail;
1565         }
1566         root->subv_writers = writers;
1567
1568         btrfs_init_free_ino_ctl(root);
1569         spin_lock_init(&root->ino_cache_lock);
1570         init_waitqueue_head(&root->ino_cache_wait);
1571
1572         ret = get_anon_bdev(&root->anon_dev);
1573         if (ret)
1574                 goto free_writers;
1575         return 0;
1576
1577 free_writers:
1578         btrfs_free_subvolume_writers(root->subv_writers);
1579 fail:
1580         kfree(root->free_ino_ctl);
1581         kfree(root->free_ino_pinned);
1582         return ret;
1583 }
1584
1585 static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1586                                                u64 root_id)
1587 {
1588         struct btrfs_root *root;
1589
1590         spin_lock(&fs_info->fs_roots_radix_lock);
1591         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1592                                  (unsigned long)root_id);
1593         spin_unlock(&fs_info->fs_roots_radix_lock);
1594         return root;
1595 }
1596
1597 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1598                          struct btrfs_root *root)
1599 {
1600         int ret;
1601
1602         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1603         if (ret)
1604                 return ret;
1605
1606         spin_lock(&fs_info->fs_roots_radix_lock);
1607         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1608                                 (unsigned long)root->root_key.objectid,
1609                                 root);
1610         if (ret == 0)
1611                 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1612         spin_unlock(&fs_info->fs_roots_radix_lock);
1613         radix_tree_preload_end();
1614
1615         return ret;
1616 }
1617
1618 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1619                                      struct btrfs_key *location,
1620                                      bool check_ref)
1621 {
1622         struct btrfs_root *root;
1623         int ret;
1624
1625         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1626                 return fs_info->tree_root;
1627         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1628                 return fs_info->extent_root;
1629         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1630                 return fs_info->chunk_root;
1631         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1632                 return fs_info->dev_root;
1633         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1634                 return fs_info->csum_root;
1635         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1636                 return fs_info->quota_root ? fs_info->quota_root :
1637                                              ERR_PTR(-ENOENT);
1638         if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1639                 return fs_info->uuid_root ? fs_info->uuid_root :
1640                                             ERR_PTR(-ENOENT);
1641 again:
1642         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1643         if (root) {
1644                 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1645                         return ERR_PTR(-ENOENT);
1646                 return root;
1647         }
1648
1649         root = btrfs_read_fs_root(fs_info->tree_root, location);
1650         if (IS_ERR(root))
1651                 return root;
1652
1653         if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1654                 ret = -ENOENT;
1655                 goto fail;
1656         }
1657
1658         ret = btrfs_init_fs_root(root);
1659         if (ret)
1660                 goto fail;
1661
1662         ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
1663                         location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
1664         if (ret < 0)
1665                 goto fail;
1666         if (ret == 0)
1667                 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1668
1669         ret = btrfs_insert_fs_root(fs_info, root);
1670         if (ret) {
1671                 if (ret == -EEXIST) {
1672                         free_fs_root(root);
1673                         goto again;
1674                 }
1675                 goto fail;
1676         }
1677         return root;
1678 fail:
1679         free_fs_root(root);
1680         return ERR_PTR(ret);
1681 }
1682
1683 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1684 {
1685         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1686         int ret = 0;
1687         struct btrfs_device *device;
1688         struct backing_dev_info *bdi;
1689
1690         rcu_read_lock();
1691         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1692                 if (!device->bdev)
1693                         continue;
1694                 bdi = blk_get_backing_dev_info(device->bdev);
1695                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1696                         ret = 1;
1697                         break;
1698                 }
1699         }
1700         rcu_read_unlock();
1701         return ret;
1702 }
1703
1704 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1705 {
1706         int err;
1707
1708         bdi->capabilities = BDI_CAP_MAP_COPY;
1709         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1710         if (err)
1711                 return err;
1712
1713         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1714         bdi->congested_fn       = btrfs_congested_fn;
1715         bdi->congested_data     = info;
1716         return 0;
1717 }
1718
1719 /*
1720  * called by the kthread helper functions to finally call the bio end_io
1721  * functions.  This is where read checksum verification actually happens
1722  */
1723 static void end_workqueue_fn(struct btrfs_work *work)
1724 {
1725         struct bio *bio;
1726         struct end_io_wq *end_io_wq;
1727         int error;
1728
1729         end_io_wq = container_of(work, struct end_io_wq, work);
1730         bio = end_io_wq->bio;
1731
1732         error = end_io_wq->error;
1733         bio->bi_private = end_io_wq->private;
1734         bio->bi_end_io = end_io_wq->end_io;
1735         kfree(end_io_wq);
1736         bio_endio_nodec(bio, error);
1737 }
1738
1739 static int cleaner_kthread(void *arg)
1740 {
1741         struct btrfs_root *root = arg;
1742         int again;
1743
1744         do {
1745                 again = 0;
1746
1747                 /* Make the cleaner go to sleep early. */
1748                 if (btrfs_need_cleaner_sleep(root))
1749                         goto sleep;
1750
1751                 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1752                         goto sleep;
1753
1754                 /*
1755                  * Avoid the problem that we change the status of the fs
1756                  * during the above check and trylock.
1757                  */
1758                 if (btrfs_need_cleaner_sleep(root)) {
1759                         mutex_unlock(&root->fs_info->cleaner_mutex);
1760                         goto sleep;
1761                 }
1762
1763                 btrfs_run_delayed_iputs(root);
1764                 btrfs_delete_unused_bgs(root->fs_info);
1765                 again = btrfs_clean_one_deleted_snapshot(root);
1766                 mutex_unlock(&root->fs_info->cleaner_mutex);
1767
1768                 /*
1769                  * The defragger has dealt with the R/O remount and umount,
1770                  * needn't do anything special here.
1771                  */
1772                 btrfs_run_defrag_inodes(root->fs_info);
1773 sleep:
1774                 if (!try_to_freeze() && !again) {
1775                         set_current_state(TASK_INTERRUPTIBLE);
1776                         if (!kthread_should_stop())
1777                                 schedule();
1778                         __set_current_state(TASK_RUNNING);
1779                 }
1780         } while (!kthread_should_stop());
1781         return 0;
1782 }
1783
1784 static int transaction_kthread(void *arg)
1785 {
1786         struct btrfs_root *root = arg;
1787         struct btrfs_trans_handle *trans;
1788         struct btrfs_transaction *cur;
1789         u64 transid;
1790         unsigned long now;
1791         unsigned long delay;
1792         bool cannot_commit;
1793
1794         do {
1795                 cannot_commit = false;
1796                 delay = HZ * root->fs_info->commit_interval;
1797                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1798
1799                 spin_lock(&root->fs_info->trans_lock);
1800                 cur = root->fs_info->running_transaction;
1801                 if (!cur) {
1802                         spin_unlock(&root->fs_info->trans_lock);
1803                         goto sleep;
1804                 }
1805
1806                 now = get_seconds();
1807                 if (cur->state < TRANS_STATE_BLOCKED &&
1808                     (now < cur->start_time ||
1809                      now - cur->start_time < root->fs_info->commit_interval)) {
1810                         spin_unlock(&root->fs_info->trans_lock);
1811                         delay = HZ * 5;
1812                         goto sleep;
1813                 }
1814                 transid = cur->transid;
1815                 spin_unlock(&root->fs_info->trans_lock);
1816
1817                 /* If the file system is aborted, this will always fail. */
1818                 trans = btrfs_attach_transaction(root);
1819                 if (IS_ERR(trans)) {
1820                         if (PTR_ERR(trans) != -ENOENT)
1821                                 cannot_commit = true;
1822                         goto sleep;
1823                 }
1824                 if (transid == trans->transid) {
1825                         btrfs_commit_transaction(trans, root);
1826                 } else {
1827                         btrfs_end_transaction(trans, root);
1828                 }
1829 sleep:
1830                 wake_up_process(root->fs_info->cleaner_kthread);
1831                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1832
1833                 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1834                                       &root->fs_info->fs_state)))
1835                         btrfs_cleanup_transaction(root);
1836                 if (!try_to_freeze()) {
1837                         set_current_state(TASK_INTERRUPTIBLE);
1838                         if (!kthread_should_stop() &&
1839                             (!btrfs_transaction_blocked(root->fs_info) ||
1840                              cannot_commit))
1841                                 schedule_timeout(delay);
1842                         __set_current_state(TASK_RUNNING);
1843                 }
1844         } while (!kthread_should_stop());
1845         return 0;
1846 }
1847
1848 /*
1849  * this will find the highest generation in the array of
1850  * root backups.  The index of the highest array is returned,
1851  * or -1 if we can't find anything.
1852  *
1853  * We check to make sure the array is valid by comparing the
1854  * generation of the latest  root in the array with the generation
1855  * in the super block.  If they don't match we pitch it.
1856  */
1857 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1858 {
1859         u64 cur;
1860         int newest_index = -1;
1861         struct btrfs_root_backup *root_backup;
1862         int i;
1863
1864         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1865                 root_backup = info->super_copy->super_roots + i;
1866                 cur = btrfs_backup_tree_root_gen(root_backup);
1867                 if (cur == newest_gen)
1868                         newest_index = i;
1869         }
1870
1871         /* check to see if we actually wrapped around */
1872         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1873                 root_backup = info->super_copy->super_roots;
1874                 cur = btrfs_backup_tree_root_gen(root_backup);
1875                 if (cur == newest_gen)
1876                         newest_index = 0;
1877         }
1878         return newest_index;
1879 }
1880
1881
1882 /*
1883  * find the oldest backup so we know where to store new entries
1884  * in the backup array.  This will set the backup_root_index
1885  * field in the fs_info struct
1886  */
1887 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1888                                      u64 newest_gen)
1889 {
1890         int newest_index = -1;
1891
1892         newest_index = find_newest_super_backup(info, newest_gen);
1893         /* if there was garbage in there, just move along */
1894         if (newest_index == -1) {
1895                 info->backup_root_index = 0;
1896         } else {
1897                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1898         }
1899 }
1900
1901 /*
1902  * copy all the root pointers into the super backup array.
1903  * this will bump the backup pointer by one when it is
1904  * done
1905  */
1906 static void backup_super_roots(struct btrfs_fs_info *info)
1907 {
1908         int next_backup;
1909         struct btrfs_root_backup *root_backup;
1910         int last_backup;
1911
1912         next_backup = info->backup_root_index;
1913         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1914                 BTRFS_NUM_BACKUP_ROOTS;
1915
1916         /*
1917          * just overwrite the last backup if we're at the same generation
1918          * this happens only at umount
1919          */
1920         root_backup = info->super_for_commit->super_roots + last_backup;
1921         if (btrfs_backup_tree_root_gen(root_backup) ==
1922             btrfs_header_generation(info->tree_root->node))
1923                 next_backup = last_backup;
1924
1925         root_backup = info->super_for_commit->super_roots + next_backup;
1926
1927         /*
1928          * make sure all of our padding and empty slots get zero filled
1929          * regardless of which ones we use today
1930          */
1931         memset(root_backup, 0, sizeof(*root_backup));
1932
1933         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1934
1935         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1936         btrfs_set_backup_tree_root_gen(root_backup,
1937                                btrfs_header_generation(info->tree_root->node));
1938
1939         btrfs_set_backup_tree_root_level(root_backup,
1940                                btrfs_header_level(info->tree_root->node));
1941
1942         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1943         btrfs_set_backup_chunk_root_gen(root_backup,
1944                                btrfs_header_generation(info->chunk_root->node));
1945         btrfs_set_backup_chunk_root_level(root_backup,
1946                                btrfs_header_level(info->chunk_root->node));
1947
1948         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1949         btrfs_set_backup_extent_root_gen(root_backup,
1950                                btrfs_header_generation(info->extent_root->node));
1951         btrfs_set_backup_extent_root_level(root_backup,
1952                                btrfs_header_level(info->extent_root->node));
1953
1954         /*
1955          * we might commit during log recovery, which happens before we set
1956          * the fs_root.  Make sure it is valid before we fill it in.
1957          */
1958         if (info->fs_root && info->fs_root->node) {
1959                 btrfs_set_backup_fs_root(root_backup,
1960                                          info->fs_root->node->start);
1961                 btrfs_set_backup_fs_root_gen(root_backup,
1962                                btrfs_header_generation(info->fs_root->node));
1963                 btrfs_set_backup_fs_root_level(root_backup,
1964                                btrfs_header_level(info->fs_root->node));
1965         }
1966
1967         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1968         btrfs_set_backup_dev_root_gen(root_backup,
1969                                btrfs_header_generation(info->dev_root->node));
1970         btrfs_set_backup_dev_root_level(root_backup,
1971                                        btrfs_header_level(info->dev_root->node));
1972
1973         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1974         btrfs_set_backup_csum_root_gen(root_backup,
1975                                btrfs_header_generation(info->csum_root->node));
1976         btrfs_set_backup_csum_root_level(root_backup,
1977                                btrfs_header_level(info->csum_root->node));
1978
1979         btrfs_set_backup_total_bytes(root_backup,
1980                              btrfs_super_total_bytes(info->super_copy));
1981         btrfs_set_backup_bytes_used(root_backup,
1982                              btrfs_super_bytes_used(info->super_copy));
1983         btrfs_set_backup_num_devices(root_backup,
1984                              btrfs_super_num_devices(info->super_copy));
1985
1986         /*
1987          * if we don't copy this out to the super_copy, it won't get remembered
1988          * for the next commit
1989          */
1990         memcpy(&info->super_copy->super_roots,
1991                &info->super_for_commit->super_roots,
1992                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1993 }
1994
1995 /*
1996  * this copies info out of the root backup array and back into
1997  * the in-memory super block.  It is meant to help iterate through
1998  * the array, so you send it the number of backups you've already
1999  * tried and the last backup index you used.
2000  *
2001  * this returns -1 when it has tried all the backups
2002  */
2003 static noinline int next_root_backup(struct btrfs_fs_info *info,
2004                                      struct btrfs_super_block *super,
2005                                      int *num_backups_tried, int *backup_index)
2006 {
2007         struct btrfs_root_backup *root_backup;
2008         int newest = *backup_index;
2009
2010         if (*num_backups_tried == 0) {
2011                 u64 gen = btrfs_super_generation(super);
2012
2013                 newest = find_newest_super_backup(info, gen);
2014                 if (newest == -1)
2015                         return -1;
2016
2017                 *backup_index = newest;
2018                 *num_backups_tried = 1;
2019         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2020                 /* we've tried all the backups, all done */
2021                 return -1;
2022         } else {
2023                 /* jump to the next oldest backup */
2024                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2025                         BTRFS_NUM_BACKUP_ROOTS;
2026                 *backup_index = newest;
2027                 *num_backups_tried += 1;
2028         }
2029         root_backup = super->super_roots + newest;
2030
2031         btrfs_set_super_generation(super,
2032                                    btrfs_backup_tree_root_gen(root_backup));
2033         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2034         btrfs_set_super_root_level(super,
2035                                    btrfs_backup_tree_root_level(root_backup));
2036         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2037
2038         /*
2039          * fixme: the total bytes and num_devices need to match or we should
2040          * need a fsck
2041          */
2042         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2043         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2044         return 0;
2045 }
2046
2047 /* helper to cleanup workers */
2048 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2049 {
2050         btrfs_destroy_workqueue(fs_info->fixup_workers);
2051         btrfs_destroy_workqueue(fs_info->delalloc_workers);
2052         btrfs_destroy_workqueue(fs_info->workers);
2053         btrfs_destroy_workqueue(fs_info->endio_workers);
2054         btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2055         btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2056         btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2057         btrfs_destroy_workqueue(fs_info->rmw_workers);
2058         btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2059         btrfs_destroy_workqueue(fs_info->endio_write_workers);
2060         btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2061         btrfs_destroy_workqueue(fs_info->submit_workers);
2062         btrfs_destroy_workqueue(fs_info->delayed_workers);
2063         btrfs_destroy_workqueue(fs_info->caching_workers);
2064         btrfs_destroy_workqueue(fs_info->readahead_workers);
2065         btrfs_destroy_workqueue(fs_info->flush_workers);
2066         btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2067         btrfs_destroy_workqueue(fs_info->extent_workers);
2068 }
2069
2070 static void free_root_extent_buffers(struct btrfs_root *root)
2071 {
2072         if (root) {
2073                 free_extent_buffer(root->node);
2074                 free_extent_buffer(root->commit_root);
2075                 root->node = NULL;
2076                 root->commit_root = NULL;
2077         }
2078 }
2079
2080 /* helper to cleanup tree roots */
2081 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2082 {
2083         free_root_extent_buffers(info->tree_root);
2084
2085         free_root_extent_buffers(info->dev_root);
2086         free_root_extent_buffers(info->extent_root);
2087         free_root_extent_buffers(info->csum_root);
2088         free_root_extent_buffers(info->quota_root);
2089         free_root_extent_buffers(info->uuid_root);
2090         if (chunk_root)
2091                 free_root_extent_buffers(info->chunk_root);
2092 }
2093
2094 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2095 {
2096         int ret;
2097         struct btrfs_root *gang[8];
2098         int i;
2099
2100         while (!list_empty(&fs_info->dead_roots)) {
2101                 gang[0] = list_entry(fs_info->dead_roots.next,
2102                                      struct btrfs_root, root_list);
2103                 list_del(&gang[0]->root_list);
2104
2105                 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2106                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2107                 } else {
2108                         free_extent_buffer(gang[0]->node);
2109                         free_extent_buffer(gang[0]->commit_root);
2110                         btrfs_put_fs_root(gang[0]);
2111                 }
2112         }
2113
2114         while (1) {
2115                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2116                                              (void **)gang, 0,
2117                                              ARRAY_SIZE(gang));
2118                 if (!ret)
2119                         break;
2120                 for (i = 0; i < ret; i++)
2121                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2122         }
2123
2124         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2125                 btrfs_free_log_root_tree(NULL, fs_info);
2126                 btrfs_destroy_pinned_extent(fs_info->tree_root,
2127                                             fs_info->pinned_extents);
2128         }
2129 }
2130
2131 int open_ctree(struct super_block *sb,
2132                struct btrfs_fs_devices *fs_devices,
2133                char *options)
2134 {
2135         u32 sectorsize;
2136         u32 nodesize;
2137         u32 blocksize;
2138         u32 stripesize;
2139         u64 generation;
2140         u64 features;
2141         struct btrfs_key location;
2142         struct buffer_head *bh;
2143         struct btrfs_super_block *disk_super;
2144         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2145         struct btrfs_root *tree_root;
2146         struct btrfs_root *extent_root;
2147         struct btrfs_root *csum_root;
2148         struct btrfs_root *chunk_root;
2149         struct btrfs_root *dev_root;
2150         struct btrfs_root *quota_root;
2151         struct btrfs_root *uuid_root;
2152         struct btrfs_root *log_tree_root;
2153         int ret;
2154         int err = -EINVAL;
2155         int num_backups_tried = 0;
2156         int backup_index = 0;
2157         int max_active;
2158         int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2159         bool create_uuid_tree;
2160         bool check_uuid_tree;
2161
2162         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2163         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2164         if (!tree_root || !chunk_root) {
2165                 err = -ENOMEM;
2166                 goto fail;
2167         }
2168
2169         ret = init_srcu_struct(&fs_info->subvol_srcu);
2170         if (ret) {
2171                 err = ret;
2172                 goto fail;
2173         }
2174
2175         ret = setup_bdi(fs_info, &fs_info->bdi);
2176         if (ret) {
2177                 err = ret;
2178                 goto fail_srcu;
2179         }
2180
2181         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2182         if (ret) {
2183                 err = ret;
2184                 goto fail_bdi;
2185         }
2186         fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2187                                         (1 + ilog2(nr_cpu_ids));
2188
2189         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2190         if (ret) {
2191                 err = ret;
2192                 goto fail_dirty_metadata_bytes;
2193         }
2194
2195         ret = percpu_counter_init(&fs_info->bio_counter, 0);
2196         if (ret) {
2197                 err = ret;
2198                 goto fail_delalloc_bytes;
2199         }
2200
2201         fs_info->btree_inode = new_inode(sb);
2202         if (!fs_info->btree_inode) {
2203                 err = -ENOMEM;
2204                 goto fail_bio_counter;
2205         }
2206
2207         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2208
2209         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2210         INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2211         INIT_LIST_HEAD(&fs_info->trans_list);
2212         INIT_LIST_HEAD(&fs_info->dead_roots);
2213         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2214         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2215         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2216         spin_lock_init(&fs_info->delalloc_root_lock);
2217         spin_lock_init(&fs_info->trans_lock);
2218         spin_lock_init(&fs_info->fs_roots_radix_lock);
2219         spin_lock_init(&fs_info->delayed_iput_lock);
2220         spin_lock_init(&fs_info->defrag_inodes_lock);
2221         spin_lock_init(&fs_info->free_chunk_lock);
2222         spin_lock_init(&fs_info->tree_mod_seq_lock);
2223         spin_lock_init(&fs_info->super_lock);
2224         spin_lock_init(&fs_info->qgroup_op_lock);
2225         spin_lock_init(&fs_info->buffer_lock);
2226         spin_lock_init(&fs_info->unused_bgs_lock);
2227         rwlock_init(&fs_info->tree_mod_log_lock);
2228         mutex_init(&fs_info->reloc_mutex);
2229         mutex_init(&fs_info->delalloc_root_mutex);
2230         seqlock_init(&fs_info->profiles_lock);
2231
2232         init_completion(&fs_info->kobj_unregister);
2233         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2234         INIT_LIST_HEAD(&fs_info->space_info);
2235         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2236         INIT_LIST_HEAD(&fs_info->unused_bgs);
2237         btrfs_mapping_init(&fs_info->mapping_tree);
2238         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2239                              BTRFS_BLOCK_RSV_GLOBAL);
2240         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2241                              BTRFS_BLOCK_RSV_DELALLOC);
2242         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2243         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2244         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2245         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2246                              BTRFS_BLOCK_RSV_DELOPS);
2247         atomic_set(&fs_info->nr_async_submits, 0);
2248         atomic_set(&fs_info->async_delalloc_pages, 0);
2249         atomic_set(&fs_info->async_submit_draining, 0);
2250         atomic_set(&fs_info->nr_async_bios, 0);
2251         atomic_set(&fs_info->defrag_running, 0);
2252         atomic_set(&fs_info->qgroup_op_seq, 0);
2253         atomic64_set(&fs_info->tree_mod_seq, 0);
2254         fs_info->sb = sb;
2255         fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2256         fs_info->metadata_ratio = 0;
2257         fs_info->defrag_inodes = RB_ROOT;
2258         fs_info->free_chunk_space = 0;
2259         fs_info->tree_mod_log = RB_ROOT;
2260         fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2261         fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
2262         /* readahead state */
2263         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2264         spin_lock_init(&fs_info->reada_lock);
2265
2266         fs_info->thread_pool_size = min_t(unsigned long,
2267                                           num_online_cpus() + 2, 8);
2268
2269         INIT_LIST_HEAD(&fs_info->ordered_roots);
2270         spin_lock_init(&fs_info->ordered_root_lock);
2271         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2272                                         GFP_NOFS);
2273         if (!fs_info->delayed_root) {
2274                 err = -ENOMEM;
2275                 goto fail_iput;
2276         }
2277         btrfs_init_delayed_root(fs_info->delayed_root);
2278
2279         mutex_init(&fs_info->scrub_lock);
2280         atomic_set(&fs_info->scrubs_running, 0);
2281         atomic_set(&fs_info->scrub_pause_req, 0);
2282         atomic_set(&fs_info->scrubs_paused, 0);
2283         atomic_set(&fs_info->scrub_cancel_req, 0);
2284         init_waitqueue_head(&fs_info->replace_wait);
2285         init_waitqueue_head(&fs_info->scrub_pause_wait);
2286         fs_info->scrub_workers_refcnt = 0;
2287 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2288         fs_info->check_integrity_print_mask = 0;
2289 #endif
2290
2291         spin_lock_init(&fs_info->balance_lock);
2292         mutex_init(&fs_info->balance_mutex);
2293         atomic_set(&fs_info->balance_running, 0);
2294         atomic_set(&fs_info->balance_pause_req, 0);
2295         atomic_set(&fs_info->balance_cancel_req, 0);
2296         fs_info->balance_ctl = NULL;
2297         init_waitqueue_head(&fs_info->balance_wait_q);
2298         btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2299
2300         sb->s_blocksize = 4096;
2301         sb->s_blocksize_bits = blksize_bits(4096);
2302         sb->s_bdi = &fs_info->bdi;
2303
2304         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2305         set_nlink(fs_info->btree_inode, 1);
2306         /*
2307          * we set the i_size on the btree inode to the max possible int.
2308          * the real end of the address space is determined by all of
2309          * the devices in the system
2310          */
2311         fs_info->btree_inode->i_size = OFFSET_MAX;
2312         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2313         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2314
2315         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2316         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2317                              fs_info->btree_inode->i_mapping);
2318         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2319         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2320
2321         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2322
2323         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2324         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2325                sizeof(struct btrfs_key));
2326         set_bit(BTRFS_INODE_DUMMY,
2327                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2328         btrfs_insert_inode_hash(fs_info->btree_inode);
2329
2330         spin_lock_init(&fs_info->block_group_cache_lock);
2331         fs_info->block_group_cache_tree = RB_ROOT;
2332         fs_info->first_logical_byte = (u64)-1;
2333
2334         extent_io_tree_init(&fs_info->freed_extents[0],
2335                              fs_info->btree_inode->i_mapping);
2336         extent_io_tree_init(&fs_info->freed_extents[1],
2337                              fs_info->btree_inode->i_mapping);
2338         fs_info->pinned_extents = &fs_info->freed_extents[0];
2339         fs_info->do_barriers = 1;
2340
2341
2342         mutex_init(&fs_info->ordered_operations_mutex);
2343         mutex_init(&fs_info->ordered_extent_flush_mutex);
2344         mutex_init(&fs_info->tree_log_mutex);
2345         mutex_init(&fs_info->chunk_mutex);
2346         mutex_init(&fs_info->transaction_kthread_mutex);
2347         mutex_init(&fs_info->cleaner_mutex);
2348         mutex_init(&fs_info->volume_mutex);
2349         init_rwsem(&fs_info->commit_root_sem);
2350         init_rwsem(&fs_info->cleanup_work_sem);
2351         init_rwsem(&fs_info->subvol_sem);
2352         sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2353         fs_info->dev_replace.lock_owner = 0;
2354         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2355         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2356         mutex_init(&fs_info->dev_replace.lock_management_lock);
2357         mutex_init(&fs_info->dev_replace.lock);
2358
2359         spin_lock_init(&fs_info->qgroup_lock);
2360         mutex_init(&fs_info->qgroup_ioctl_lock);
2361         fs_info->qgroup_tree = RB_ROOT;
2362         fs_info->qgroup_op_tree = RB_ROOT;
2363         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2364         fs_info->qgroup_seq = 1;
2365         fs_info->quota_enabled = 0;
2366         fs_info->pending_quota_state = 0;
2367         fs_info->qgroup_ulist = NULL;
2368         mutex_init(&fs_info->qgroup_rescan_lock);
2369
2370         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2371         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2372
2373         init_waitqueue_head(&fs_info->transaction_throttle);
2374         init_waitqueue_head(&fs_info->transaction_wait);
2375         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2376         init_waitqueue_head(&fs_info->async_submit_wait);
2377
2378         ret = btrfs_alloc_stripe_hash_table(fs_info);
2379         if (ret) {
2380                 err = ret;
2381                 goto fail_alloc;
2382         }
2383
2384         __setup_root(4096, 4096, 4096, tree_root,
2385                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2386
2387         invalidate_bdev(fs_devices->latest_bdev);
2388
2389         /*
2390          * Read super block and check the signature bytes only
2391          */
2392         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2393         if (!bh) {
2394                 err = -EINVAL;
2395                 goto fail_alloc;
2396         }
2397
2398         /*
2399          * We want to check superblock checksum, the type is stored inside.
2400          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2401          */
2402         if (btrfs_check_super_csum(bh->b_data)) {
2403                 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2404                 err = -EINVAL;
2405                 goto fail_alloc;
2406         }
2407
2408         /*
2409          * super_copy is zeroed at allocation time and we never touch the
2410          * following bytes up to INFO_SIZE, the checksum is calculated from
2411          * the whole block of INFO_SIZE
2412          */
2413         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2414         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2415                sizeof(*fs_info->super_for_commit));
2416         brelse(bh);
2417
2418         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2419
2420         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2421         if (ret) {
2422                 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2423                 err = -EINVAL;
2424                 goto fail_alloc;
2425         }
2426
2427         disk_super = fs_info->super_copy;
2428         if (!btrfs_super_root(disk_super))
2429                 goto fail_alloc;
2430
2431         /* check FS state, whether FS is broken. */
2432         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2433                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2434
2435         /*
2436          * run through our array of backup supers and setup
2437          * our ring pointer to the oldest one
2438          */
2439         generation = btrfs_super_generation(disk_super);
2440         find_oldest_super_backup(fs_info, generation);
2441
2442         /*
2443          * In the long term, we'll store the compression type in the super
2444          * block, and it'll be used for per file compression control.
2445          */
2446         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2447
2448         ret = btrfs_parse_options(tree_root, options);
2449         if (ret) {
2450                 err = ret;
2451                 goto fail_alloc;
2452         }
2453
2454         features = btrfs_super_incompat_flags(disk_super) &
2455                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2456         if (features) {
2457                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2458                        "unsupported optional features (%Lx).\n",
2459                        features);
2460                 err = -EINVAL;
2461                 goto fail_alloc;
2462         }
2463
2464         /*
2465          * Leafsize and nodesize were always equal, this is only a sanity check.
2466          */
2467         if (le32_to_cpu(disk_super->__unused_leafsize) !=
2468             btrfs_super_nodesize(disk_super)) {
2469                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2470                        "blocksizes don't match.  node %d leaf %d\n",
2471                        btrfs_super_nodesize(disk_super),
2472                        le32_to_cpu(disk_super->__unused_leafsize));
2473                 err = -EINVAL;
2474                 goto fail_alloc;
2475         }
2476         if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2477                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2478                        "blocksize (%d) was too large\n",
2479                        btrfs_super_nodesize(disk_super));
2480                 err = -EINVAL;
2481                 goto fail_alloc;
2482         }
2483
2484         features = btrfs_super_incompat_flags(disk_super);
2485         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2486         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2487                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2488
2489         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2490                 printk(KERN_ERR "BTRFS: has skinny extents\n");
2491
2492         /*
2493          * flag our filesystem as having big metadata blocks if
2494          * they are bigger than the page size
2495          */
2496         if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
2497                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2498                         printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2499                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2500         }
2501
2502         nodesize = btrfs_super_nodesize(disk_super);
2503         sectorsize = btrfs_super_sectorsize(disk_super);
2504         stripesize = btrfs_super_stripesize(disk_super);
2505         fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2506         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2507
2508         /*
2509          * mixed block groups end up with duplicate but slightly offset
2510          * extent buffers for the same range.  It leads to corruptions
2511          */
2512         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2513             (sectorsize != nodesize)) {
2514                 printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
2515                                 "are not allowed for mixed block groups on %s\n",
2516                                 sb->s_id);
2517                 goto fail_alloc;
2518         }
2519
2520         /*
2521          * Needn't use the lock because there is no other task which will
2522          * update the flag.
2523          */
2524         btrfs_set_super_incompat_flags(disk_super, features);
2525
2526         features = btrfs_super_compat_ro_flags(disk_super) &
2527                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2528         if (!(sb->s_flags & MS_RDONLY) && features) {
2529                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2530                        "unsupported option features (%Lx).\n",
2531                        features);
2532                 err = -EINVAL;
2533                 goto fail_alloc;
2534         }
2535
2536         max_active = fs_info->thread_pool_size;
2537
2538         fs_info->workers =
2539                 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2540                                       max_active, 16);
2541
2542         fs_info->delalloc_workers =
2543                 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2544
2545         fs_info->flush_workers =
2546                 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2547
2548         fs_info->caching_workers =
2549                 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2550
2551         /*
2552          * a higher idle thresh on the submit workers makes it much more
2553          * likely that bios will be send down in a sane order to the
2554          * devices
2555          */
2556         fs_info->submit_workers =
2557                 btrfs_alloc_workqueue("submit", flags,
2558                                       min_t(u64, fs_devices->num_devices,
2559                                             max_active), 64);
2560
2561         fs_info->fixup_workers =
2562                 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2563
2564         /*
2565          * endios are largely parallel and should have a very
2566          * low idle thresh
2567          */
2568         fs_info->endio_workers =
2569                 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2570         fs_info->endio_meta_workers =
2571                 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2572         fs_info->endio_meta_write_workers =
2573                 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2574         fs_info->endio_raid56_workers =
2575                 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2576         fs_info->endio_repair_workers =
2577                 btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2578         fs_info->rmw_workers =
2579                 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2580         fs_info->endio_write_workers =
2581                 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2582         fs_info->endio_freespace_worker =
2583                 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2584         fs_info->delayed_workers =
2585                 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2586         fs_info->readahead_workers =
2587                 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2588         fs_info->qgroup_rescan_workers =
2589                 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2590         fs_info->extent_workers =
2591                 btrfs_alloc_workqueue("extent-refs", flags,
2592                                       min_t(u64, fs_devices->num_devices,
2593                                             max_active), 8);
2594
2595         if (!(fs_info->workers && fs_info->delalloc_workers &&
2596               fs_info->submit_workers && fs_info->flush_workers &&
2597               fs_info->endio_workers && fs_info->endio_meta_workers &&
2598               fs_info->endio_meta_write_workers &&
2599               fs_info->endio_repair_workers &&
2600               fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2601               fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2602               fs_info->caching_workers && fs_info->readahead_workers &&
2603               fs_info->fixup_workers && fs_info->delayed_workers &&
2604               fs_info->extent_workers &&
2605               fs_info->qgroup_rescan_workers)) {
2606                 err = -ENOMEM;
2607                 goto fail_sb_buffer;
2608         }
2609
2610         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2611         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2612                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2613
2614         tree_root->nodesize = nodesize;
2615         tree_root->sectorsize = sectorsize;
2616         tree_root->stripesize = stripesize;
2617
2618         sb->s_blocksize = sectorsize;
2619         sb->s_blocksize_bits = blksize_bits(sectorsize);
2620
2621         if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2622                 printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
2623                 goto fail_sb_buffer;
2624         }
2625
2626         if (sectorsize != PAGE_SIZE) {
2627                 printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
2628                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2629                 goto fail_sb_buffer;
2630         }
2631
2632         mutex_lock(&fs_info->chunk_mutex);
2633         ret = btrfs_read_sys_array(tree_root);
2634         mutex_unlock(&fs_info->chunk_mutex);
2635         if (ret) {
2636                 printk(KERN_WARNING "BTRFS: failed to read the system "
2637                        "array on %s\n", sb->s_id);
2638                 goto fail_sb_buffer;
2639         }
2640
2641         blocksize = tree_root->nodesize;
2642         generation = btrfs_super_chunk_root_generation(disk_super);
2643
2644         __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2645                      fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2646
2647         chunk_root->node = read_tree_block(chunk_root,
2648                                            btrfs_super_chunk_root(disk_super),
2649                                            blocksize, generation);
2650         if (!chunk_root->node ||
2651             !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2652                 printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
2653                        sb->s_id);
2654                 goto fail_tree_roots;
2655         }
2656         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2657         chunk_root->commit_root = btrfs_root_node(chunk_root);
2658
2659         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2660            btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2661
2662         ret = btrfs_read_chunk_tree(chunk_root);
2663         if (ret) {
2664                 printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
2665                        sb->s_id);
2666                 goto fail_tree_roots;
2667         }
2668
2669         /*
2670          * keep the device that is marked to be the target device for the
2671          * dev_replace procedure
2672          */
2673         btrfs_close_extra_devices(fs_info, fs_devices, 0);
2674
2675         if (!fs_devices->latest_bdev) {
2676                 printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
2677                        sb->s_id);
2678                 goto fail_tree_roots;
2679         }
2680
2681 retry_root_backup:
2682         blocksize = tree_root->nodesize;
2683         generation = btrfs_super_generation(disk_super);
2684
2685         tree_root->node = read_tree_block(tree_root,
2686                                           btrfs_super_root(disk_super),
2687                                           blocksize, generation);
2688         if (!tree_root->node ||
2689             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2690                 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2691                        sb->s_id);
2692
2693                 goto recovery_tree_root;
2694         }
2695
2696         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2697         tree_root->commit_root = btrfs_root_node(tree_root);
2698         btrfs_set_root_refs(&tree_root->root_item, 1);
2699
2700         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2701         location.type = BTRFS_ROOT_ITEM_KEY;
2702         location.offset = 0;
2703
2704         extent_root = btrfs_read_tree_root(tree_root, &location);
2705         if (IS_ERR(extent_root)) {
2706                 ret = PTR_ERR(extent_root);
2707                 goto recovery_tree_root;
2708         }
2709         set_bit(BTRFS_ROOT_TRACK_DIRTY, &extent_root->state);
2710         fs_info->extent_root = extent_root;
2711
2712         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2713         dev_root = btrfs_read_tree_root(tree_root, &location);
2714         if (IS_ERR(dev_root)) {
2715                 ret = PTR_ERR(dev_root);
2716                 goto recovery_tree_root;
2717         }
2718         set_bit(BTRFS_ROOT_TRACK_DIRTY, &dev_root->state);
2719         fs_info->dev_root = dev_root;
2720         btrfs_init_devices_late(fs_info);
2721
2722         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2723         csum_root = btrfs_read_tree_root(tree_root, &location);
2724         if (IS_ERR(csum_root)) {
2725                 ret = PTR_ERR(csum_root);
2726                 goto recovery_tree_root;
2727         }
2728         set_bit(BTRFS_ROOT_TRACK_DIRTY, &csum_root->state);
2729         fs_info->csum_root = csum_root;
2730
2731         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2732         quota_root = btrfs_read_tree_root(tree_root, &location);
2733         if (!IS_ERR(quota_root)) {
2734                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &quota_root->state);
2735                 fs_info->quota_enabled = 1;
2736                 fs_info->pending_quota_state = 1;
2737                 fs_info->quota_root = quota_root;
2738         }
2739
2740         location.objectid = BTRFS_UUID_TREE_OBJECTID;
2741         uuid_root = btrfs_read_tree_root(tree_root, &location);
2742         if (IS_ERR(uuid_root)) {
2743                 ret = PTR_ERR(uuid_root);
2744                 if (ret != -ENOENT)
2745                         goto recovery_tree_root;
2746                 create_uuid_tree = true;
2747                 check_uuid_tree = false;
2748         } else {
2749                 set_bit(BTRFS_ROOT_TRACK_DIRTY, &uuid_root->state);
2750                 fs_info->uuid_root = uuid_root;
2751                 create_uuid_tree = false;
2752                 check_uuid_tree =
2753                     generation != btrfs_super_uuid_tree_generation(disk_super);
2754         }
2755
2756         fs_info->generation = generation;
2757         fs_info->last_trans_committed = generation;
2758
2759         ret = btrfs_recover_balance(fs_info);
2760         if (ret) {
2761                 printk(KERN_WARNING "BTRFS: failed to recover balance\n");
2762                 goto fail_block_groups;
2763         }
2764
2765         ret = btrfs_init_dev_stats(fs_info);
2766         if (ret) {
2767                 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2768                        ret);
2769                 goto fail_block_groups;
2770         }
2771
2772         ret = btrfs_init_dev_replace(fs_info);
2773         if (ret) {
2774                 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2775                 goto fail_block_groups;
2776         }
2777
2778         btrfs_close_extra_devices(fs_info, fs_devices, 1);
2779
2780         ret = btrfs_sysfs_add_one(fs_info);
2781         if (ret) {
2782                 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2783                 goto fail_block_groups;
2784         }
2785
2786         ret = btrfs_init_space_info(fs_info);
2787         if (ret) {
2788                 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2789                 goto fail_sysfs;
2790         }
2791
2792         ret = btrfs_read_block_groups(extent_root);
2793         if (ret) {
2794                 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2795                 goto fail_sysfs;
2796         }
2797         fs_info->num_tolerated_disk_barrier_failures =
2798                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2799         if (fs_info->fs_devices->missing_devices >
2800              fs_info->num_tolerated_disk_barrier_failures &&
2801             !(sb->s_flags & MS_RDONLY)) {
2802                 printk(KERN_WARNING "BTRFS: "
2803                         "too many missing devices, writeable mount is not allowed\n");
2804                 goto fail_sysfs;
2805         }
2806
2807         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2808                                                "btrfs-cleaner");
2809         if (IS_ERR(fs_info->cleaner_kthread))
2810                 goto fail_sysfs;
2811
2812         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2813                                                    tree_root,
2814                                                    "btrfs-transaction");
2815         if (IS_ERR(fs_info->transaction_kthread))
2816                 goto fail_cleaner;
2817
2818         if (!btrfs_test_opt(tree_root, SSD) &&
2819             !btrfs_test_opt(tree_root, NOSSD) &&
2820             !fs_info->fs_devices->rotating) {
2821                 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2822                        "mode\n");
2823                 btrfs_set_opt(fs_info->mount_opt, SSD);
2824         }
2825
2826         /* Set the real inode map cache flag */
2827         if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
2828                 btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
2829
2830 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2831         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2832                 ret = btrfsic_mount(tree_root, fs_devices,
2833                                     btrfs_test_opt(tree_root,
2834                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2835                                     1 : 0,
2836                                     fs_info->check_integrity_print_mask);
2837                 if (ret)
2838                         printk(KERN_WARNING "BTRFS: failed to initialize"
2839                                " integrity check module %s\n", sb->s_id);
2840         }
2841 #endif
2842         ret = btrfs_read_qgroup_config(fs_info);
2843         if (ret)
2844                 goto fail_trans_kthread;
2845
2846         /* do not make disk changes in broken FS */
2847         if (btrfs_super_log_root(disk_super) != 0) {
2848                 u64 bytenr = btrfs_super_log_root(disk_super);
2849
2850                 if (fs_devices->rw_devices == 0) {
2851                         printk(KERN_WARNING "BTRFS: log replay required "
2852                                "on RO media\n");
2853                         err = -EIO;
2854                         goto fail_qgroup;
2855                 }
2856                 blocksize = tree_root->nodesize;
2857
2858                 log_tree_root = btrfs_alloc_root(fs_info);
2859                 if (!log_tree_root) {
2860                         err = -ENOMEM;
2861                         goto fail_qgroup;
2862                 }
2863
2864                 __setup_root(nodesize, sectorsize, stripesize,
2865                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2866
2867                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2868                                                       blocksize,
2869                                                       generation + 1);
2870                 if (!log_tree_root->node ||
2871                     !extent_buffer_uptodate(log_tree_root->node)) {
2872                         printk(KERN_ERR "BTRFS: failed to read log tree\n");
2873                         free_extent_buffer(log_tree_root->node);
2874                         kfree(log_tree_root);
2875                         goto fail_qgroup;
2876                 }
2877                 /* returns with log_tree_root freed on success */
2878                 ret = btrfs_recover_log_trees(log_tree_root);
2879                 if (ret) {
2880                         btrfs_error(tree_root->fs_info, ret,
2881                                     "Failed to recover log tree");
2882                         free_extent_buffer(log_tree_root->node);
2883                         kfree(log_tree_root);
2884                         goto fail_qgroup;
2885                 }
2886
2887                 if (sb->s_flags & MS_RDONLY) {
2888                         ret = btrfs_commit_super(tree_root);
2889                         if (ret)
2890                                 goto fail_qgroup;
2891                 }
2892         }
2893
2894         ret = btrfs_find_orphan_roots(tree_root);
2895         if (ret)
2896                 goto fail_qgroup;
2897
2898         if (!(sb->s_flags & MS_RDONLY)) {
2899                 ret = btrfs_cleanup_fs_roots(fs_info);
2900                 if (ret)
2901                         goto fail_qgroup;
2902
2903                 mutex_lock(&fs_info->cleaner_mutex);
2904                 ret = btrfs_recover_relocation(tree_root);
2905                 mutex_unlock(&fs_info->cleaner_mutex);
2906                 if (ret < 0) {
2907                         printk(KERN_WARNING
2908                                "BTRFS: failed to recover relocation\n");
2909                         err = -EINVAL;
2910                         goto fail_qgroup;
2911                 }
2912         }
2913
2914         location.objectid = BTRFS_FS_TREE_OBJECTID;
2915         location.type = BTRFS_ROOT_ITEM_KEY;
2916         location.offset = 0;
2917
2918         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2919         if (IS_ERR(fs_info->fs_root)) {
2920                 err = PTR_ERR(fs_info->fs_root);
2921                 goto fail_qgroup;
2922         }
2923
2924         if (sb->s_flags & MS_RDONLY)
2925                 return 0;
2926
2927         down_read(&fs_info->cleanup_work_sem);
2928         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2929             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2930                 up_read(&fs_info->cleanup_work_sem);
2931                 close_ctree(tree_root);
2932                 return ret;
2933         }
2934         up_read(&fs_info->cleanup_work_sem);
2935
2936         ret = btrfs_resume_balance_async(fs_info);
2937         if (ret) {
2938                 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2939                 close_ctree(tree_root);
2940                 return ret;
2941         }
2942
2943         ret = btrfs_resume_dev_replace_async(fs_info);
2944         if (ret) {
2945                 pr_warn("BTRFS: failed to resume dev_replace\n");
2946                 close_ctree(tree_root);
2947                 return ret;
2948         }
2949
2950         btrfs_qgroup_rescan_resume(fs_info);
2951
2952         if (create_uuid_tree) {
2953                 pr_info("BTRFS: creating UUID tree\n");
2954                 ret = btrfs_create_uuid_tree(fs_info);
2955                 if (ret) {
2956                         pr_warn("BTRFS: failed to create the UUID tree %d\n",
2957                                 ret);
2958                         close_ctree(tree_root);
2959                         return ret;
2960                 }
2961         } else if (check_uuid_tree ||
2962                    btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
2963                 pr_info("BTRFS: checking UUID tree\n");
2964                 ret = btrfs_check_uuid_tree(fs_info);
2965                 if (ret) {
2966                         pr_warn("BTRFS: failed to check the UUID tree %d\n",
2967                                 ret);
2968                         close_ctree(tree_root);
2969                         return ret;
2970                 }
2971         } else {
2972                 fs_info->update_uuid_tree_gen = 1;
2973         }
2974
2975         fs_info->open = 1;
2976
2977         return 0;
2978
2979 fail_qgroup:
2980         btrfs_free_qgroup_config(fs_info);
2981 fail_trans_kthread:
2982         kthread_stop(fs_info->transaction_kthread);
2983         btrfs_cleanup_transaction(fs_info->tree_root);
2984         btrfs_free_fs_roots(fs_info);
2985 fail_cleaner:
2986         kthread_stop(fs_info->cleaner_kthread);
2987
2988         /*
2989          * make sure we're done with the btree inode before we stop our
2990          * kthreads
2991          */
2992         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2993
2994 fail_sysfs:
2995         btrfs_sysfs_remove_one(fs_info);
2996
2997 fail_block_groups:
2998         btrfs_put_block_group_cache(fs_info);
2999         btrfs_free_block_groups(fs_info);
3000
3001 fail_tree_roots:
3002         free_root_pointers(fs_info, 1);
3003         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3004
3005 fail_sb_buffer:
3006         btrfs_stop_all_workers(fs_info);
3007 fail_alloc:
3008 fail_iput:
3009         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3010
3011         iput(fs_info->btree_inode);
3012 fail_bio_counter:
3013         percpu_counter_destroy(&fs_info->bio_counter);
3014 fail_delalloc_bytes:
3015         percpu_counter_destroy(&fs_info->delalloc_bytes);
3016 fail_dirty_metadata_bytes:
3017         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3018 fail_bdi:
3019         bdi_destroy(&fs_info->bdi);
3020 fail_srcu:
3021         cleanup_srcu_struct(&fs_info->subvol_srcu);
3022 fail:
3023         btrfs_free_stripe_hash_table(fs_info);
3024         btrfs_close_devices(fs_info->fs_devices);
3025         return err;
3026
3027 recovery_tree_root:
3028         if (!btrfs_test_opt(tree_root, RECOVERY))
3029                 goto fail_tree_roots;
3030
3031         free_root_pointers(fs_info, 0);
3032
3033         /* don't use the log in recovery mode, it won't be valid */
3034         btrfs_set_super_log_root(disk_super, 0);
3035
3036         /* we can't trust the free space cache either */
3037         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3038
3039         ret = next_root_backup(fs_info, fs_info->super_copy,
3040                                &num_backups_tried, &backup_index);
3041         if (ret == -1)
3042                 goto fail_block_groups;
3043         goto retry_root_backup;
3044 }
3045
3046 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3047 {
3048         if (uptodate) {
3049                 set_buffer_uptodate(bh);
3050         } else {
3051                 struct btrfs_device *device = (struct btrfs_device *)
3052                         bh->b_private;
3053
3054                 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
3055                                           "I/O error on %s\n",
3056                                           rcu_str_deref(device->name));
3057                 /* note, we dont' set_buffer_write_io_error because we have
3058                  * our own ways of dealing with the IO errors
3059                  */
3060                 clear_buffer_uptodate(bh);
3061                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3062         }
3063         unlock_buffer(bh);
3064         put_bh(bh);
3065 }
3066
3067 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3068 {
3069         struct buffer_head *bh;
3070         struct buffer_head *latest = NULL;
3071         struct btrfs_super_block *super;
3072         int i;
3073         u64 transid = 0;
3074         u64 bytenr;
3075
3076         /* we would like to check all the supers, but that would make
3077          * a btrfs mount succeed after a mkfs from a different FS.
3078          * So, we need to add a special mount option to scan for
3079          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3080          */
3081         for (i = 0; i < 1; i++) {
3082                 bytenr = btrfs_sb_offset(i);
3083                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3084                                         i_size_read(bdev->bd_inode))
3085                         break;
3086                 bh = __bread(bdev, bytenr / 4096,
3087                                         BTRFS_SUPER_INFO_SIZE);
3088                 if (!bh)
3089                         continue;
3090
3091                 super = (struct btrfs_super_block *)bh->b_data;
3092                 if (btrfs_super_bytenr(super) != bytenr ||
3093                     btrfs_super_magic(super) != BTRFS_MAGIC) {
3094                         brelse(bh);
3095                         continue;
3096                 }
3097
3098                 if (!latest || btrfs_super_generation(super) > transid) {
3099                         brelse(latest);
3100                         latest = bh;
3101                         transid = btrfs_super_generation(super);
3102                 } else {
3103                         brelse(bh);
3104                 }
3105         }
3106         return latest;
3107 }
3108
3109 /*
3110  * this should be called twice, once with wait == 0 and
3111  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3112  * we write are pinned.
3113  *
3114  * They are released when wait == 1 is done.
3115  * max_mirrors must be the same for both runs, and it indicates how
3116  * many supers on this one device should be written.
3117  *
3118  * max_mirrors == 0 means to write them all.
3119  */
3120 static int write_dev_supers(struct btrfs_device *device,
3121                             struct btrfs_super_block *sb,
3122                             int do_barriers, int wait, int max_mirrors)
3123 {
3124         struct buffer_head *bh;
3125         int i;
3126         int ret;
3127         int errors = 0;
3128         u32 crc;
3129         u64 bytenr;
3130
3131         if (max_mirrors == 0)
3132                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3133
3134         for (i = 0; i < max_mirrors; i++) {
3135                 bytenr = btrfs_sb_offset(i);
3136                 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3137                     device->commit_total_bytes)
3138                         break;
3139
3140                 if (wait) {
3141                         bh = __find_get_block(device->bdev, bytenr / 4096,
3142                                               BTRFS_SUPER_INFO_SIZE);
3143                         if (!bh) {
3144                                 errors++;
3145                                 continue;
3146                         }
3147                         wait_on_buffer(bh);
3148                         if (!buffer_uptodate(bh))
3149                                 errors++;
3150
3151                         /* drop our reference */
3152                         brelse(bh);
3153
3154                         /* drop the reference from the wait == 0 run */
3155                         brelse(bh);
3156                         continue;
3157                 } else {
3158                         btrfs_set_super_bytenr(sb, bytenr);
3159
3160                         crc = ~(u32)0;
3161                         crc = btrfs_csum_data((char *)sb +
3162                                               BTRFS_CSUM_SIZE, crc,
3163                                               BTRFS_SUPER_INFO_SIZE -
3164                                               BTRFS_CSUM_SIZE);
3165                         btrfs_csum_final(crc, sb->csum);
3166
3167                         /*
3168                          * one reference for us, and we leave it for the
3169                          * caller
3170                          */
3171                         bh = __getblk(device->bdev, bytenr / 4096,
3172                                       BTRFS_SUPER_INFO_SIZE);
3173                         if (!bh) {
3174                                 printk(KERN_ERR "BTRFS: couldn't get super "
3175                                        "buffer head for bytenr %Lu\n", bytenr);
3176                                 errors++;
3177                                 continue;
3178                         }
3179
3180                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3181
3182                         /* one reference for submit_bh */
3183                         get_bh(bh);
3184
3185                         set_buffer_uptodate(bh);
3186                         lock_buffer(bh);
3187                         bh->b_end_io = btrfs_end_buffer_write_sync;
3188                         bh->b_private = device;
3189                 }
3190
3191                 /*
3192                  * we fua the first super.  The others we allow
3193                  * to go down lazy.
3194                  */
3195                 if (i == 0)
3196                         ret = btrfsic_submit_bh(WRITE_FUA, bh);
3197                 else
3198                         ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3199                 if (ret)
3200                         errors++;
3201         }
3202         return errors < i ? 0 : -1;
3203 }
3204
3205 /*
3206  * endio for the write_dev_flush, this will wake anyone waiting
3207  * for the barrier when it is done
3208  */
3209 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3210 {
3211         if (err) {
3212                 if (err == -EOPNOTSUPP)
3213                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3214                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3215         }
3216         if (bio->bi_private)
3217                 complete(bio->bi_private);
3218         bio_put(bio);
3219 }
3220
3221 /*
3222  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3223  * sent down.  With wait == 1, it waits for the previous flush.
3224  *
3225  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3226  * capable
3227  */
3228 static int write_dev_flush(struct btrfs_device *device, int wait)
3229 {
3230         struct bio *bio;
3231         int ret = 0;
3232
3233         if (device->nobarriers)
3234                 return 0;
3235
3236         if (wait) {
3237                 bio = device->flush_bio;
3238                 if (!bio)
3239                         return 0;
3240
3241                 wait_for_completion(&device->flush_wait);
3242
3243                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3244                         printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
3245                                       rcu_str_deref(device->name));
3246                         device->nobarriers = 1;
3247                 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3248                         ret = -EIO;
3249                         btrfs_dev_stat_inc_and_print(device,
3250                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3251                 }
3252
3253                 /* drop the reference from the wait == 0 run */
3254                 bio_put(bio);
3255                 device->flush_bio = NULL;
3256
3257                 return ret;
3258         }
3259
3260         /*
3261          * one reference for us, and we leave it for the
3262          * caller
3263          */
3264         device->flush_bio = NULL;
3265         bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3266         if (!bio)
3267                 return -ENOMEM;
3268
3269         bio->bi_end_io = btrfs_end_empty_barrier;
3270         bio->bi_bdev = device->bdev;
3271         init_completion(&device->flush_wait);
3272         bio->bi_private = &device->flush_wait;
3273         device->flush_bio = bio;
3274
3275         bio_get(bio);
3276         btrfsic_submit_bio(WRITE_FLUSH, bio);
3277
3278         return 0;
3279 }
3280
3281 /*
3282  * send an empty flush down to each device in parallel,
3283  * then wait for them
3284  */
3285 static int barrier_all_devices(struct btrfs_fs_info *info)
3286 {
3287         struct list_head *head;
3288         struct btrfs_device *dev;
3289         int errors_send = 0;
3290         int errors_wait = 0;
3291         int ret;
3292
3293         /* send down all the barriers */
3294         head = &info->fs_devices->devices;
3295         list_for_each_entry_rcu(dev, head, dev_list) {
3296                 if (dev->missing)
3297                         continue;
3298                 if (!dev->bdev) {
3299                         errors_send++;
3300                         continue;
3301                 }
3302                 if (!dev->in_fs_metadata || !dev->writeable)
3303                         continue;
3304
3305                 ret = write_dev_flush(dev, 0);
3306                 if (ret)
3307                         errors_send++;
3308         }
3309
3310         /* wait for all the barriers */
3311         list_for_each_entry_rcu(dev, head, dev_list) {
3312                 if (dev->missing)
3313                         continue;
3314                 if (!dev->bdev) {
3315                         errors_wait++;
3316                         continue;
3317                 }
3318                 if (!dev->in_fs_metadata || !dev->writeable)
3319                         continue;
3320
3321                 ret = write_dev_flush(dev, 1);
3322                 if (ret)
3323                         errors_wait++;
3324         }
3325         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3326             errors_wait > info->num_tolerated_disk_barrier_failures)
3327                 return -EIO;
3328         return 0;
3329 }
3330
3331 int btrfs_calc_num_tolerated_disk_barrier_failures(
3332         struct btrfs_fs_info *fs_info)
3333 {
3334         struct btrfs_ioctl_space_info space;
3335         struct btrfs_space_info *sinfo;
3336         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3337                        BTRFS_BLOCK_GROUP_SYSTEM,
3338                        BTRFS_BLOCK_GROUP_METADATA,
3339                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3340         int num_types = 4;
3341         int i;
3342         int c;
3343         int num_tolerated_disk_barrier_failures =
3344                 (int)fs_info->fs_devices->num_devices;
3345
3346         for (i = 0; i < num_types; i++) {
3347                 struct btrfs_space_info *tmp;
3348
3349                 sinfo = NULL;
3350                 rcu_read_lock();
3351                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3352                         if (tmp->flags == types[i]) {
3353                                 sinfo = tmp;
3354                                 break;
3355                         }
3356                 }
3357                 rcu_read_unlock();
3358
3359                 if (!sinfo)
3360                         continue;
3361
3362                 down_read(&sinfo->groups_sem);
3363                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3364                         if (!list_empty(&sinfo->block_groups[c])) {
3365                                 u64 flags;
3366
3367                                 btrfs_get_block_group_info(
3368                                         &sinfo->block_groups[c], &space);
3369                                 if (space.total_bytes == 0 ||
3370                                     space.used_bytes == 0)
3371                                         continue;
3372                                 flags = space.flags;
3373                                 /*
3374                                  * return
3375                                  * 0: if dup, single or RAID0 is configured for
3376                                  *    any of metadata, system or data, else
3377                                  * 1: if RAID5 is configured, or if RAID1 or
3378                                  *    RAID10 is configured and only two mirrors
3379                                  *    are used, else
3380                                  * 2: if RAID6 is configured, else
3381                                  * num_mirrors - 1: if RAID1 or RAID10 is
3382                                  *                  configured and more than
3383                                  *                  2 mirrors are used.
3384                                  */
3385                                 if (num_tolerated_disk_barrier_failures > 0 &&
3386                                     ((flags & (BTRFS_BLOCK_GROUP_DUP |
3387                                                BTRFS_BLOCK_GROUP_RAID0)) ||
3388                                      ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3389                                       == 0)))
3390                                         num_tolerated_disk_barrier_failures = 0;
3391                                 else if (num_tolerated_disk_barrier_failures > 1) {
3392                                         if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3393                                             BTRFS_BLOCK_GROUP_RAID5 |
3394                                             BTRFS_BLOCK_GROUP_RAID10)) {
3395                                                 num_tolerated_disk_barrier_failures = 1;
3396                                         } else if (flags &
3397                                                    BTRFS_BLOCK_GROUP_RAID6) {
3398                                                 num_tolerated_disk_barrier_failures = 2;
3399                                         }
3400                                 }
3401                         }
3402                 }
3403                 up_read(&sinfo->groups_sem);
3404         }
3405
3406         return num_tolerated_disk_barrier_failures;
3407 }
3408
3409 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3410 {
3411         struct list_head *head;
3412         struct btrfs_device *dev;
3413         struct btrfs_super_block *sb;
3414         struct btrfs_dev_item *dev_item;
3415         int ret;
3416         int do_barriers;
3417         int max_errors;
3418         int total_errors = 0;
3419         u64 flags;
3420
3421         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3422         backup_super_roots(root->fs_info);
3423
3424         sb = root->fs_info->super_for_commit;
3425         dev_item = &sb->dev_item;
3426
3427         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3428         head = &root->fs_info->fs_devices->devices;
3429         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3430
3431         if (do_barriers) {
3432                 ret = barrier_all_devices(root->fs_info);
3433                 if (ret) {
3434                         mutex_unlock(
3435                                 &root->fs_info->fs_devices->device_list_mutex);
3436                         btrfs_error(root->fs_info, ret,
3437                                     "errors while submitting device barriers.");
3438                         return ret;
3439                 }
3440         }
3441
3442         list_for_each_entry_rcu(dev, head, dev_list) {
3443                 if (!dev->bdev) {
3444                         total_errors++;
3445                         continue;
3446                 }
3447                 if (!dev->in_fs_metadata || !dev->writeable)
3448                         continue;
3449
3450                 btrfs_set_stack_device_generation(dev_item, 0);
3451                 btrfs_set_stack_device_type(dev_item, dev->type);
3452                 btrfs_set_stack_device_id(dev_item, dev->devid);
3453                 btrfs_set_stack_device_total_bytes(dev_item,
3454                                                    dev->commit_total_bytes);
3455                 btrfs_set_stack_device_bytes_used(dev_item,
3456                                                   dev->commit_bytes_used);
3457                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3458                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3459                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3460                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3461                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3462
3463                 flags = btrfs_super_flags(sb);
3464                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3465
3466                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3467                 if (ret)
3468                         total_errors++;
3469         }
3470         if (total_errors > max_errors) {
3471                 btrfs_err(root->fs_info, "%d errors while writing supers",
3472                        total_errors);
3473                 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3474
3475                 /* FUA is masked off if unsupported and can't be the reason */
3476                 btrfs_error(root->fs_info, -EIO,
3477                             "%d errors while writing supers", total_errors);
3478                 return -EIO;
3479         }
3480
3481         total_errors = 0;
3482         list_for_each_entry_rcu(dev, head, dev_list) {
3483                 if (!dev->bdev)
3484                         continue;
3485                 if (!dev->in_fs_metadata || !dev->writeable)
3486                         continue;
3487
3488                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3489                 if (ret)
3490                         total_errors++;
3491         }
3492         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3493         if (total_errors > max_errors) {
3494                 btrfs_error(root->fs_info, -EIO,
3495                             "%d errors while writing supers", total_errors);
3496                 return -EIO;
3497         }
3498         return 0;
3499 }
3500
3501 int write_ctree_super(struct btrfs_trans_handle *trans,
3502                       struct btrfs_root *root, int max_mirrors)
3503 {
3504         return write_all_supers(root, max_mirrors);
3505 }
3506
3507 /* Drop a fs root from the radix tree and free it. */
3508 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3509                                   struct btrfs_root *root)
3510 {
3511         spin_lock(&fs_info->fs_roots_radix_lock);
3512         radix_tree_delete(&fs_info->fs_roots_radix,
3513                           (unsigned long)root->root_key.objectid);
3514         spin_unlock(&fs_info->fs_roots_radix_lock);
3515
3516         if (btrfs_root_refs(&root->root_item) == 0)
3517                 synchronize_srcu(&fs_info->subvol_srcu);
3518
3519         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3520                 btrfs_free_log(NULL, root);
3521
3522         if (root->free_ino_pinned)
3523                 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3524         if (root->free_ino_ctl)
3525                 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3526         free_fs_root(root);
3527 }
3528
3529 static void free_fs_root(struct btrfs_root *root)
3530 {
3531         iput(root->ino_cache_inode);
3532         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3533         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3534         root->orphan_block_rsv = NULL;
3535         if (root->anon_dev)
3536                 free_anon_bdev(root->anon_dev);
3537         if (root->subv_writers)
3538                 btrfs_free_subvolume_writers(root->subv_writers);
3539         free_extent_buffer(root->node);
3540         free_extent_buffer(root->commit_root);
3541         kfree(root->free_ino_ctl);
3542         kfree(root->free_ino_pinned);
3543         kfree(root->name);
3544         btrfs_put_fs_root(root);
3545 }
3546
3547 void btrfs_free_fs_root(struct btrfs_root *root)
3548 {
3549         free_fs_root(root);
3550 }
3551
3552 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3553 {
3554         u64 root_objectid = 0;
3555         struct btrfs_root *gang[8];
3556         int i = 0;
3557         int err = 0;
3558         unsigned int ret = 0;
3559         int index;
3560
3561         while (1) {
3562                 index = srcu_read_lock(&fs_info->subvol_srcu);
3563                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3564                                              (void **)gang, root_objectid,
3565                                              ARRAY_SIZE(gang));
3566                 if (!ret) {
3567                         srcu_read_unlock(&fs_info->subvol_srcu, index);
3568                         break;
3569                 }
3570                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3571
3572                 for (i = 0; i < ret; i++) {
3573                         /* Avoid to grab roots in dead_roots */
3574                         if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3575                                 gang[i] = NULL;
3576                                 continue;
3577                         }
3578                         /* grab all the search result for later use */
3579                         gang[i] = btrfs_grab_fs_root(gang[i]);
3580                 }
3581                 srcu_read_unlock(&fs_info->subvol_srcu, index);
3582
3583                 for (i = 0; i < ret; i++) {
3584                         if (!gang[i])
3585                                 continue;
3586                         root_objectid = gang[i]->root_key.objectid;
3587                         err = btrfs_orphan_cleanup(gang[i]);
3588                         if (err)
3589                                 break;
3590                         btrfs_put_fs_root(gang[i]);
3591                 }
3592                 root_objectid++;
3593         }
3594
3595         /* release the uncleaned roots due to error */
3596         for (; i < ret; i++) {
3597                 if (gang[i])
3598                         btrfs_put_fs_root(gang[i]);
3599         }
3600         return err;
3601 }
3602
3603 int btrfs_commit_super(struct btrfs_root *root)
3604 {
3605         struct btrfs_trans_handle *trans;
3606
3607         mutex_lock(&root->fs_info->cleaner_mutex);
3608         btrfs_run_delayed_iputs(root);
3609         mutex_unlock(&root->fs_info->cleaner_mutex);
3610         wake_up_process(root->fs_info->cleaner_kthread);
3611
3612         /* wait until ongoing cleanup work done */
3613         down_write(&root->fs_info->cleanup_work_sem);
3614         up_write(&root->fs_info->cleanup_work_sem);
3615
3616         trans = btrfs_join_transaction(root);
3617         if (IS_ERR(trans))
3618                 return PTR_ERR(trans);
3619         return btrfs_commit_transaction(trans, root);
3620 }
3621
3622 void close_ctree(struct btrfs_root *root)
3623 {
3624         struct btrfs_fs_info *fs_info = root->fs_info;
3625         int ret;
3626
3627         fs_info->closing = 1;
3628         smp_mb();
3629
3630         /* wait for the uuid_scan task to finish */
3631         down(&fs_info->uuid_tree_rescan_sem);
3632         /* avoid complains from lockdep et al., set sem back to initial state */
3633         up(&fs_info->uuid_tree_rescan_sem);
3634
3635         /* pause restriper - we want to resume on mount */
3636         btrfs_pause_balance(fs_info);
3637
3638         btrfs_dev_replace_suspend_for_unmount(fs_info);
3639
3640         btrfs_scrub_cancel(fs_info);
3641
3642         /* wait for any defraggers to finish */
3643         wait_event(fs_info->transaction_wait,
3644                    (atomic_read(&fs_info->defrag_running) == 0));
3645
3646         /* clear out the rbtree of defraggable inodes */
3647         btrfs_cleanup_defrag_inodes(fs_info);
3648
3649         cancel_work_sync(&fs_info->async_reclaim_work);
3650
3651         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3652                 ret = btrfs_commit_super(root);
3653                 if (ret)
3654                         btrfs_err(root->fs_info, "commit super ret %d", ret);
3655         }
3656
3657         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3658                 btrfs_error_commit_super(root);
3659
3660         kthread_stop(fs_info->transaction_kthread);
3661         kthread_stop(fs_info->cleaner_kthread);
3662
3663         fs_info->closing = 2;
3664         smp_mb();
3665
3666         btrfs_free_qgroup_config(root->fs_info);
3667
3668         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3669                 btrfs_info(root->fs_info, "at unmount delalloc count %lld",
3670                        percpu_counter_sum(&fs_info->delalloc_bytes));
3671         }
3672
3673         btrfs_sysfs_remove_one(fs_info);
3674
3675         btrfs_free_fs_roots(fs_info);
3676
3677         btrfs_put_block_group_cache(fs_info);
3678
3679         btrfs_free_block_groups(fs_info);
3680
3681         /*
3682          * we must make sure there is not any read request to
3683          * submit after we stopping all workers.
3684          */
3685         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3686         btrfs_stop_all_workers(fs_info);
3687
3688         fs_info->open = 0;
3689         free_root_pointers(fs_info, 1);
3690
3691         iput(fs_info->btree_inode);
3692
3693 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3694         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3695                 btrfsic_unmount(root, fs_info->fs_devices);
3696 #endif
3697
3698         btrfs_close_devices(fs_info->fs_devices);
3699         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3700
3701         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3702         percpu_counter_destroy(&fs_info->delalloc_bytes);
3703         percpu_counter_destroy(&fs_info->bio_counter);
3704         bdi_destroy(&fs_info->bdi);
3705         cleanup_srcu_struct(&fs_info->subvol_srcu);
3706
3707         btrfs_free_stripe_hash_table(fs_info);
3708
3709         btrfs_free_block_rsv(root, root->orphan_block_rsv);
3710         root->orphan_block_rsv = NULL;
3711 }
3712
3713 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3714                           int atomic)
3715 {
3716         int ret;
3717         struct inode *btree_inode = buf->pages[0]->mapping->host;
3718
3719         ret = extent_buffer_uptodate(buf);
3720         if (!ret)
3721                 return ret;
3722
3723         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3724                                     parent_transid, atomic);
3725         if (ret == -EAGAIN)
3726                 return ret;
3727         return !ret;
3728 }
3729
3730 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3731 {
3732         return set_extent_buffer_uptodate(buf);
3733 }
3734
3735 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3736 {
3737         struct btrfs_root *root;
3738         u64 transid = btrfs_header_generation(buf);
3739         int was_dirty;
3740
3741 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3742         /*
3743          * This is a fast path so only do this check if we have sanity tests
3744          * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3745          * outside of the sanity tests.
3746          */
3747         if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3748                 return;
3749 #endif
3750         root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3751         btrfs_assert_tree_locked(buf);
3752         if (transid != root->fs_info->generation)
3753                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3754                        "found %llu running %llu\n",
3755                         buf->start, transid, root->fs_info->generation);
3756         was_dirty = set_extent_buffer_dirty(buf);
3757         if (!was_dirty)
3758                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3759                                      buf->len,
3760                                      root->fs_info->dirty_metadata_batch);
3761 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3762         if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3763                 btrfs_print_leaf(root, buf);
3764                 ASSERT(0);
3765         }
3766 #endif
3767 }
3768
3769 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3770                                         int flush_delayed)
3771 {
3772         /*
3773          * looks as though older kernels can get into trouble with
3774          * this code, they end up stuck in balance_dirty_pages forever
3775          */
3776         int ret;
3777
3778         if (current->flags & PF_MEMALLOC)
3779                 return;
3780
3781         if (flush_delayed)
3782                 btrfs_balance_delayed_items(root);
3783
3784         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3785                                      BTRFS_DIRTY_METADATA_THRESH);
3786         if (ret > 0) {
3787                 balance_dirty_pages_ratelimited(
3788                                    root->fs_info->btree_inode->i_mapping);
3789         }
3790         return;
3791 }
3792
3793 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3794 {
3795         __btrfs_btree_balance_dirty(root, 1);
3796 }
3797
3798 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3799 {
3800         __btrfs_btree_balance_dirty(root, 0);
3801 }
3802
3803 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3804 {
3805         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3806         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3807 }
3808
3809 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3810                               int read_only)
3811 {
3812         /*
3813          * Placeholder for checks
3814          */
3815         return 0;
3816 }
3817
3818 static void btrfs_error_commit_super(struct btrfs_root *root)
3819 {
3820         mutex_lock(&root->fs_info->cleaner_mutex);
3821         btrfs_run_delayed_iputs(root);
3822         mutex_unlock(&root->fs_info->cleaner_mutex);
3823
3824         down_write(&root->fs_info->cleanup_work_sem);
3825         up_write(&root->fs_info->cleanup_work_sem);
3826
3827         /* cleanup FS via transaction */
3828         btrfs_cleanup_transaction(root);
3829 }
3830
3831 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3832 {
3833         struct btrfs_ordered_extent *ordered;
3834
3835         spin_lock(&root->ordered_extent_lock);
3836         /*
3837          * This will just short circuit the ordered completion stuff which will
3838          * make sure the ordered extent gets properly cleaned up.
3839          */
3840         list_for_each_entry(ordered, &root->ordered_extents,
3841                             root_extent_list)
3842                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3843         spin_unlock(&root->ordered_extent_lock);
3844 }
3845
3846 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3847 {
3848         struct btrfs_root *root;
3849         struct list_head splice;
3850
3851         INIT_LIST_HEAD(&splice);
3852
3853         spin_lock(&fs_info->ordered_root_lock);
3854         list_splice_init(&fs_info->ordered_roots, &splice);
3855         while (!list_empty(&splice)) {
3856                 root = list_first_entry(&splice, struct btrfs_root,
3857                                         ordered_root);
3858                 list_move_tail(&root->ordered_root,
3859                                &fs_info->ordered_roots);
3860
3861                 spin_unlock(&fs_info->ordered_root_lock);
3862                 btrfs_destroy_ordered_extents(root);
3863
3864                 cond_resched();
3865                 spin_lock(&fs_info->ordered_root_lock);
3866         }
3867         spin_unlock(&fs_info->ordered_root_lock);
3868 }
3869
3870 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3871                                       struct btrfs_root *root)
3872 {
3873         struct rb_node *node;
3874         struct btrfs_delayed_ref_root *delayed_refs;
3875         struct btrfs_delayed_ref_node *ref;
3876         int ret = 0;
3877
3878         delayed_refs = &trans->delayed_refs;
3879
3880         spin_lock(&delayed_refs->lock);
3881         if (atomic_read(&delayed_refs->num_entries) == 0) {
3882                 spin_unlock(&delayed_refs->lock);
3883                 btrfs_info(root->fs_info, "delayed_refs has NO entry");
3884                 return ret;
3885         }
3886
3887         while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
3888                 struct btrfs_delayed_ref_head *head;
3889                 bool pin_bytes = false;
3890
3891                 head = rb_entry(node, struct btrfs_delayed_ref_head,
3892                                 href_node);
3893                 if (!mutex_trylock(&head->mutex)) {
3894                         atomic_inc(&head->node.refs);
3895                         spin_unlock(&delayed_refs->lock);
3896
3897                         mutex_lock(&head->mutex);
3898                         mutex_unlock(&head->mutex);
3899                         btrfs_put_delayed_ref(&head->node);
3900                         spin_lock(&delayed_refs->lock);
3901                         continue;
3902                 }
3903                 spin_lock(&head->lock);
3904                 while ((node = rb_first(&head->ref_root)) != NULL) {
3905                         ref = rb_entry(node, struct btrfs_delayed_ref_node,
3906                                        rb_node);
3907                         ref->in_tree = 0;
3908                         rb_erase(&ref->rb_node, &head->ref_root);
3909                         atomic_dec(&delayed_refs->num_entries);
3910                         btrfs_put_delayed_ref(ref);
3911                 }
3912                 if (head->must_insert_reserved)
3913                         pin_bytes = true;
3914                 btrfs_free_delayed_extent_op(head->extent_op);
3915                 delayed_refs->num_heads--;
3916                 if (head->processing == 0)
3917                         delayed_refs->num_heads_ready--;
3918                 atomic_dec(&delayed_refs->num_entries);
3919                 head->node.in_tree = 0;
3920                 rb_erase(&head->href_node, &delayed_refs->href_root);
3921                 spin_unlock(&head->lock);
3922                 spin_unlock(&delayed_refs->lock);
3923                 mutex_unlock(&head->mutex);
3924
3925                 if (pin_bytes)
3926                         btrfs_pin_extent(root, head->node.bytenr,
3927                                          head->node.num_bytes, 1);
3928                 btrfs_put_delayed_ref(&head->node);
3929                 cond_resched();
3930                 spin_lock(&delayed_refs->lock);
3931         }
3932
3933         spin_unlock(&delayed_refs->lock);
3934
3935         return ret;
3936 }
3937
3938 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3939 {
3940         struct btrfs_inode *btrfs_inode;
3941         struct list_head splice;
3942
3943         INIT_LIST_HEAD(&splice);
3944
3945         spin_lock(&root->delalloc_lock);
3946         list_splice_init(&root->delalloc_inodes, &splice);
3947
3948         while (!list_empty(&splice)) {
3949                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3950                                                delalloc_inodes);
3951
3952                 list_del_init(&btrfs_inode->delalloc_inodes);
3953                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3954                           &btrfs_inode->runtime_flags);
3955                 spin_unlock(&root->delalloc_lock);
3956
3957                 btrfs_invalidate_inodes(btrfs_inode->root);
3958
3959                 spin_lock(&root->delalloc_lock);
3960         }
3961
3962         spin_unlock(&root->delalloc_lock);
3963 }
3964
3965 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3966 {
3967         struct btrfs_root *root;
3968         struct list_head splice;
3969
3970         INIT_LIST_HEAD(&splice);
3971
3972         spin_lock(&fs_info->delalloc_root_lock);
3973         list_splice_init(&fs_info->delalloc_roots, &splice);
3974         while (!list_empty(&splice)) {
3975                 root = list_first_entry(&splice, struct btrfs_root,
3976                                          delalloc_root);
3977                 list_del_init(&root->delalloc_root);
3978                 root = btrfs_grab_fs_root(root);
3979                 BUG_ON(!root);
3980                 spin_unlock(&fs_info->delalloc_root_lock);
3981
3982                 btrfs_destroy_delalloc_inodes(root);
3983                 btrfs_put_fs_root(root);
3984
3985                 spin_lock(&fs_info->delalloc_root_lock);
3986         }
3987         spin_unlock(&fs_info->delalloc_root_lock);
3988 }
3989
3990 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3991                                         struct extent_io_tree *dirty_pages,
3992                                         int mark)
3993 {
3994         int ret;
3995         struct extent_buffer *eb;
3996         u64 start = 0;
3997         u64 end;
3998
3999         while (1) {
4000                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4001                                             mark, NULL);
4002                 if (ret)
4003                         break;
4004
4005                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4006                 while (start <= end) {
4007                         eb = btrfs_find_tree_block(root, start,
4008                                                    root->nodesize);
4009                         start += root->nodesize;
4010                         if (!eb)
4011                                 continue;
4012                         wait_on_extent_buffer_writeback(eb);
4013
4014                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4015                                                &eb->bflags))
4016                                 clear_extent_buffer_dirty(eb);
4017                         free_extent_buffer_stale(eb);
4018                 }
4019         }
4020
4021         return ret;
4022 }
4023
4024 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4025                                        struct extent_io_tree *pinned_extents)
4026 {
4027         struct extent_io_tree *unpin;
4028         u64 start;
4029         u64 end;
4030         int ret;
4031         bool loop = true;
4032
4033         unpin = pinned_extents;
4034 again:
4035         while (1) {
4036                 ret = find_first_extent_bit(unpin, 0, &start, &end,
4037                                             EXTENT_DIRTY, NULL);
4038                 if (ret)
4039                         break;
4040
4041                 /* opt_discard */
4042                 if (btrfs_test_opt(root, DISCARD))
4043                         ret = btrfs_error_discard_extent(root, start,
4044                                                          end + 1 - start,
4045                                                          NULL);
4046
4047                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4048                 btrfs_error_unpin_extent_range(root, start, end);
4049                 cond_resched();
4050         }
4051
4052         if (loop) {
4053                 if (unpin == &root->fs_info->freed_extents[0])
4054                         unpin = &root->fs_info->freed_extents[1];
4055                 else
4056                         unpin = &root->fs_info->freed_extents[0];
4057                 loop = false;
4058                 goto again;
4059         }
4060
4061         return 0;
4062 }
4063
4064 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4065                                    struct btrfs_root *root)
4066 {
4067         btrfs_destroy_delayed_refs(cur_trans, root);
4068
4069         cur_trans->state = TRANS_STATE_COMMIT_START;
4070         wake_up(&root->fs_info->transaction_blocked_wait);
4071
4072         cur_trans->state = TRANS_STATE_UNBLOCKED;
4073         wake_up(&root->fs_info->transaction_wait);
4074
4075         btrfs_destroy_delayed_inodes(root);
4076         btrfs_assert_delayed_root_empty(root);
4077
4078         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4079                                      EXTENT_DIRTY);
4080         btrfs_destroy_pinned_extent(root,
4081                                     root->fs_info->pinned_extents);
4082
4083         cur_trans->state =TRANS_STATE_COMPLETED;
4084         wake_up(&cur_trans->commit_wait);
4085
4086         /*
4087         memset(cur_trans, 0, sizeof(*cur_trans));
4088         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4089         */
4090 }
4091
4092 static int btrfs_cleanup_transaction(struct btrfs_root *root)
4093 {
4094         struct btrfs_transaction *t;
4095
4096         mutex_lock(&root->fs_info->transaction_kthread_mutex);
4097
4098         spin_lock(&root->fs_info->trans_lock);
4099         while (!list_empty(&root->fs_info->trans_list)) {
4100                 t = list_first_entry(&root->fs_info->trans_list,
4101                                      struct btrfs_transaction, list);
4102                 if (t->state >= TRANS_STATE_COMMIT_START) {
4103                         atomic_inc(&t->use_count);
4104                         spin_unlock(&root->fs_info->trans_lock);
4105                         btrfs_wait_for_commit(root, t->transid);
4106                         btrfs_put_transaction(t);
4107                         spin_lock(&root->fs_info->trans_lock);
4108                         continue;
4109                 }
4110                 if (t == root->fs_info->running_transaction) {
4111                         t->state = TRANS_STATE_COMMIT_DOING;
4112                         spin_unlock(&root->fs_info->trans_lock);
4113                         /*
4114                          * We wait for 0 num_writers since we don't hold a trans
4115                          * handle open currently for this transaction.
4116                          */
4117                         wait_event(t->writer_wait,
4118                                    atomic_read(&t->num_writers) == 0);
4119                 } else {
4120                         spin_unlock(&root->fs_info->trans_lock);
4121                 }
4122                 btrfs_cleanup_one_transaction(t, root);
4123
4124                 spin_lock(&root->fs_info->trans_lock);
4125                 if (t == root->fs_info->running_transaction)
4126                         root->fs_info->running_transaction = NULL;
4127                 list_del_init(&t->list);
4128                 spin_unlock(&root->fs_info->trans_lock);
4129
4130                 btrfs_put_transaction(t);
4131                 trace_btrfs_transaction_commit(root);
4132                 spin_lock(&root->fs_info->trans_lock);
4133         }
4134         spin_unlock(&root->fs_info->trans_lock);
4135         btrfs_destroy_all_ordered_extents(root->fs_info);
4136         btrfs_destroy_delayed_inodes(root);
4137         btrfs_assert_delayed_root_empty(root);
4138         btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4139         btrfs_destroy_all_delalloc_inodes(root->fs_info);
4140         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4141
4142         return 0;
4143 }
4144
4145 static struct extent_io_ops btree_extent_io_ops = {
4146         .readpage_end_io_hook = btree_readpage_end_io_hook,
4147         .readpage_io_failed_hook = btree_io_failed_hook,
4148         .submit_bio_hook = btree_submit_bio_hook,
4149         /* note we're sharing with inode.c for the merge bio hook */
4150         .merge_bio_hook = btrfs_merge_bio_hook,
4151 };