Btrfs: deal with bad mappings in btrfs_map_block
[linux-2.6-block.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49 #include "raid56.h"
50
51 #ifdef CONFIG_X86
52 #include <asm/cpufeature.h>
53 #endif
54
55 static struct extent_io_ops btree_extent_io_ops;
56 static void end_workqueue_fn(struct btrfs_work *work);
57 static void free_fs_root(struct btrfs_root *root);
58 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
59                                     int read_only);
60 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
61                                              struct btrfs_root *root);
62 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
63 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64                                       struct btrfs_root *root);
65 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
66 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
67 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
68                                         struct extent_io_tree *dirty_pages,
69                                         int mark);
70 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
71                                        struct extent_io_tree *pinned_extents);
72
73 /*
74  * end_io_wq structs are used to do processing in task context when an IO is
75  * complete.  This is used during reads to verify checksums, and it is used
76  * by writes to insert metadata for new file extents after IO is complete.
77  */
78 struct end_io_wq {
79         struct bio *bio;
80         bio_end_io_t *end_io;
81         void *private;
82         struct btrfs_fs_info *info;
83         int error;
84         int metadata;
85         struct list_head list;
86         struct btrfs_work work;
87 };
88
89 /*
90  * async submit bios are used to offload expensive checksumming
91  * onto the worker threads.  They checksum file and metadata bios
92  * just before they are sent down the IO stack.
93  */
94 struct async_submit_bio {
95         struct inode *inode;
96         struct bio *bio;
97         struct list_head list;
98         extent_submit_bio_hook_t *submit_bio_start;
99         extent_submit_bio_hook_t *submit_bio_done;
100         int rw;
101         int mirror_num;
102         unsigned long bio_flags;
103         /*
104          * bio_offset is optional, can be used if the pages in the bio
105          * can't tell us where in the file the bio should go
106          */
107         u64 bio_offset;
108         struct btrfs_work work;
109         int error;
110 };
111
112 /*
113  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
114  * eb, the lockdep key is determined by the btrfs_root it belongs to and
115  * the level the eb occupies in the tree.
116  *
117  * Different roots are used for different purposes and may nest inside each
118  * other and they require separate keysets.  As lockdep keys should be
119  * static, assign keysets according to the purpose of the root as indicated
120  * by btrfs_root->objectid.  This ensures that all special purpose roots
121  * have separate keysets.
122  *
123  * Lock-nesting across peer nodes is always done with the immediate parent
124  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
125  * subclass to avoid triggering lockdep warning in such cases.
126  *
127  * The key is set by the readpage_end_io_hook after the buffer has passed
128  * csum validation but before the pages are unlocked.  It is also set by
129  * btrfs_init_new_buffer on freshly allocated blocks.
130  *
131  * We also add a check to make sure the highest level of the tree is the
132  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
133  * needs update as well.
134  */
135 #ifdef CONFIG_DEBUG_LOCK_ALLOC
136 # if BTRFS_MAX_LEVEL != 8
137 #  error
138 # endif
139
140 static struct btrfs_lockdep_keyset {
141         u64                     id;             /* root objectid */
142         const char              *name_stem;     /* lock name stem */
143         char                    names[BTRFS_MAX_LEVEL + 1][20];
144         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
145 } btrfs_lockdep_keysets[] = {
146         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
147         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
148         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
149         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
150         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
151         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
152         { .id = BTRFS_ORPHAN_OBJECTID,          .name_stem = "orphan"   },
153         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
154         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
155         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
156         { .id = 0,                              .name_stem = "tree"     },
157 };
158
159 void __init btrfs_init_lockdep(void)
160 {
161         int i, j;
162
163         /* initialize lockdep class names */
164         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
165                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
166
167                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
168                         snprintf(ks->names[j], sizeof(ks->names[j]),
169                                  "btrfs-%s-%02d", ks->name_stem, j);
170         }
171 }
172
173 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
174                                     int level)
175 {
176         struct btrfs_lockdep_keyset *ks;
177
178         BUG_ON(level >= ARRAY_SIZE(ks->keys));
179
180         /* find the matching keyset, id 0 is the default entry */
181         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
182                 if (ks->id == objectid)
183                         break;
184
185         lockdep_set_class_and_name(&eb->lock,
186                                    &ks->keys[level], ks->names[level]);
187 }
188
189 #endif
190
191 /*
192  * extents on the btree inode are pretty simple, there's one extent
193  * that covers the entire device
194  */
195 static struct extent_map *btree_get_extent(struct inode *inode,
196                 struct page *page, size_t pg_offset, u64 start, u64 len,
197                 int create)
198 {
199         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
200         struct extent_map *em;
201         int ret;
202
203         read_lock(&em_tree->lock);
204         em = lookup_extent_mapping(em_tree, start, len);
205         if (em) {
206                 em->bdev =
207                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
208                 read_unlock(&em_tree->lock);
209                 goto out;
210         }
211         read_unlock(&em_tree->lock);
212
213         em = alloc_extent_map();
214         if (!em) {
215                 em = ERR_PTR(-ENOMEM);
216                 goto out;
217         }
218         em->start = 0;
219         em->len = (u64)-1;
220         em->block_len = (u64)-1;
221         em->block_start = 0;
222         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
223
224         write_lock(&em_tree->lock);
225         ret = add_extent_mapping(em_tree, em, 0);
226         if (ret == -EEXIST) {
227                 free_extent_map(em);
228                 em = lookup_extent_mapping(em_tree, start, len);
229                 if (!em)
230                         em = ERR_PTR(-EIO);
231         } else if (ret) {
232                 free_extent_map(em);
233                 em = ERR_PTR(ret);
234         }
235         write_unlock(&em_tree->lock);
236
237 out:
238         return em;
239 }
240
241 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
242 {
243         return crc32c(seed, data, len);
244 }
245
246 void btrfs_csum_final(u32 crc, char *result)
247 {
248         put_unaligned_le32(~crc, result);
249 }
250
251 /*
252  * compute the csum for a btree block, and either verify it or write it
253  * into the csum field of the block.
254  */
255 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
256                            int verify)
257 {
258         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
259         char *result = NULL;
260         unsigned long len;
261         unsigned long cur_len;
262         unsigned long offset = BTRFS_CSUM_SIZE;
263         char *kaddr;
264         unsigned long map_start;
265         unsigned long map_len;
266         int err;
267         u32 crc = ~(u32)0;
268         unsigned long inline_result;
269
270         len = buf->len - offset;
271         while (len > 0) {
272                 err = map_private_extent_buffer(buf, offset, 32,
273                                         &kaddr, &map_start, &map_len);
274                 if (err)
275                         return 1;
276                 cur_len = min(len, map_len - (offset - map_start));
277                 crc = btrfs_csum_data(kaddr + offset - map_start,
278                                       crc, cur_len);
279                 len -= cur_len;
280                 offset += cur_len;
281         }
282         if (csum_size > sizeof(inline_result)) {
283                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
284                 if (!result)
285                         return 1;
286         } else {
287                 result = (char *)&inline_result;
288         }
289
290         btrfs_csum_final(crc, result);
291
292         if (verify) {
293                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
294                         u32 val;
295                         u32 found = 0;
296                         memcpy(&found, result, csum_size);
297
298                         read_extent_buffer(buf, &val, 0, csum_size);
299                         printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
300                                        "failed on %llu wanted %X found %X "
301                                        "level %d\n",
302                                        root->fs_info->sb->s_id,
303                                        (unsigned long long)buf->start, val, found,
304                                        btrfs_header_level(buf));
305                         if (result != (char *)&inline_result)
306                                 kfree(result);
307                         return 1;
308                 }
309         } else {
310                 write_extent_buffer(buf, result, 0, csum_size);
311         }
312         if (result != (char *)&inline_result)
313                 kfree(result);
314         return 0;
315 }
316
317 /*
318  * we can't consider a given block up to date unless the transid of the
319  * block matches the transid in the parent node's pointer.  This is how we
320  * detect blocks that either didn't get written at all or got written
321  * in the wrong place.
322  */
323 static int verify_parent_transid(struct extent_io_tree *io_tree,
324                                  struct extent_buffer *eb, u64 parent_transid,
325                                  int atomic)
326 {
327         struct extent_state *cached_state = NULL;
328         int ret;
329
330         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
331                 return 0;
332
333         if (atomic)
334                 return -EAGAIN;
335
336         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
337                          0, &cached_state);
338         if (extent_buffer_uptodate(eb) &&
339             btrfs_header_generation(eb) == parent_transid) {
340                 ret = 0;
341                 goto out;
342         }
343         printk_ratelimited("parent transid verify failed on %llu wanted %llu "
344                        "found %llu\n",
345                        (unsigned long long)eb->start,
346                        (unsigned long long)parent_transid,
347                        (unsigned long long)btrfs_header_generation(eb));
348         ret = 1;
349         clear_extent_buffer_uptodate(eb);
350 out:
351         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
352                              &cached_state, GFP_NOFS);
353         return ret;
354 }
355
356 /*
357  * helper to read a given tree block, doing retries as required when
358  * the checksums don't match and we have alternate mirrors to try.
359  */
360 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
361                                           struct extent_buffer *eb,
362                                           u64 start, u64 parent_transid)
363 {
364         struct extent_io_tree *io_tree;
365         int failed = 0;
366         int ret;
367         int num_copies = 0;
368         int mirror_num = 0;
369         int failed_mirror = 0;
370
371         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
372         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
373         while (1) {
374                 ret = read_extent_buffer_pages(io_tree, eb, start,
375                                                WAIT_COMPLETE,
376                                                btree_get_extent, mirror_num);
377                 if (!ret) {
378                         if (!verify_parent_transid(io_tree, eb,
379                                                    parent_transid, 0))
380                                 break;
381                         else
382                                 ret = -EIO;
383                 }
384
385                 /*
386                  * This buffer's crc is fine, but its contents are corrupted, so
387                  * there is no reason to read the other copies, they won't be
388                  * any less wrong.
389                  */
390                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
391                         break;
392
393                 num_copies = btrfs_num_copies(root->fs_info,
394                                               eb->start, eb->len);
395                 if (num_copies == 1)
396                         break;
397
398                 if (!failed_mirror) {
399                         failed = 1;
400                         failed_mirror = eb->read_mirror;
401                 }
402
403                 mirror_num++;
404                 if (mirror_num == failed_mirror)
405                         mirror_num++;
406
407                 if (mirror_num > num_copies)
408                         break;
409         }
410
411         if (failed && !ret && failed_mirror)
412                 repair_eb_io_failure(root, eb, failed_mirror);
413
414         return ret;
415 }
416
417 /*
418  * checksum a dirty tree block before IO.  This has extra checks to make sure
419  * we only fill in the checksum field in the first page of a multi-page block
420  */
421
422 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
423 {
424         struct extent_io_tree *tree;
425         u64 start = page_offset(page);
426         u64 found_start;
427         struct extent_buffer *eb;
428
429         tree = &BTRFS_I(page->mapping->host)->io_tree;
430
431         eb = (struct extent_buffer *)page->private;
432         if (page != eb->pages[0])
433                 return 0;
434         found_start = btrfs_header_bytenr(eb);
435         if (found_start != start) {
436                 WARN_ON(1);
437                 return 0;
438         }
439         if (!PageUptodate(page)) {
440                 WARN_ON(1);
441                 return 0;
442         }
443         csum_tree_block(root, eb, 0);
444         return 0;
445 }
446
447 static int check_tree_block_fsid(struct btrfs_root *root,
448                                  struct extent_buffer *eb)
449 {
450         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
451         u8 fsid[BTRFS_UUID_SIZE];
452         int ret = 1;
453
454         read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
455                            BTRFS_FSID_SIZE);
456         while (fs_devices) {
457                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
458                         ret = 0;
459                         break;
460                 }
461                 fs_devices = fs_devices->seed;
462         }
463         return ret;
464 }
465
466 #define CORRUPT(reason, eb, root, slot)                         \
467         printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
468                "root=%llu, slot=%d\n", reason,                  \
469                (unsigned long long)btrfs_header_bytenr(eb),     \
470                (unsigned long long)root->objectid, slot)
471
472 static noinline int check_leaf(struct btrfs_root *root,
473                                struct extent_buffer *leaf)
474 {
475         struct btrfs_key key;
476         struct btrfs_key leaf_key;
477         u32 nritems = btrfs_header_nritems(leaf);
478         int slot;
479
480         if (nritems == 0)
481                 return 0;
482
483         /* Check the 0 item */
484         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
485             BTRFS_LEAF_DATA_SIZE(root)) {
486                 CORRUPT("invalid item offset size pair", leaf, root, 0);
487                 return -EIO;
488         }
489
490         /*
491          * Check to make sure each items keys are in the correct order and their
492          * offsets make sense.  We only have to loop through nritems-1 because
493          * we check the current slot against the next slot, which verifies the
494          * next slot's offset+size makes sense and that the current's slot
495          * offset is correct.
496          */
497         for (slot = 0; slot < nritems - 1; slot++) {
498                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
499                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
500
501                 /* Make sure the keys are in the right order */
502                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
503                         CORRUPT("bad key order", leaf, root, slot);
504                         return -EIO;
505                 }
506
507                 /*
508                  * Make sure the offset and ends are right, remember that the
509                  * item data starts at the end of the leaf and grows towards the
510                  * front.
511                  */
512                 if (btrfs_item_offset_nr(leaf, slot) !=
513                         btrfs_item_end_nr(leaf, slot + 1)) {
514                         CORRUPT("slot offset bad", leaf, root, slot);
515                         return -EIO;
516                 }
517
518                 /*
519                  * Check to make sure that we don't point outside of the leaf,
520                  * just incase all the items are consistent to eachother, but
521                  * all point outside of the leaf.
522                  */
523                 if (btrfs_item_end_nr(leaf, slot) >
524                     BTRFS_LEAF_DATA_SIZE(root)) {
525                         CORRUPT("slot end outside of leaf", leaf, root, slot);
526                         return -EIO;
527                 }
528         }
529
530         return 0;
531 }
532
533 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
534                                        struct page *page, int max_walk)
535 {
536         struct extent_buffer *eb;
537         u64 start = page_offset(page);
538         u64 target = start;
539         u64 min_start;
540
541         if (start < max_walk)
542                 min_start = 0;
543         else
544                 min_start = start - max_walk;
545
546         while (start >= min_start) {
547                 eb = find_extent_buffer(tree, start, 0);
548                 if (eb) {
549                         /*
550                          * we found an extent buffer and it contains our page
551                          * horray!
552                          */
553                         if (eb->start <= target &&
554                             eb->start + eb->len > target)
555                                 return eb;
556
557                         /* we found an extent buffer that wasn't for us */
558                         free_extent_buffer(eb);
559                         return NULL;
560                 }
561                 if (start == 0)
562                         break;
563                 start -= PAGE_CACHE_SIZE;
564         }
565         return NULL;
566 }
567
568 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
569                                struct extent_state *state, int mirror)
570 {
571         struct extent_io_tree *tree;
572         u64 found_start;
573         int found_level;
574         struct extent_buffer *eb;
575         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
576         int ret = 0;
577         int reads_done;
578
579         if (!page->private)
580                 goto out;
581
582         tree = &BTRFS_I(page->mapping->host)->io_tree;
583         eb = (struct extent_buffer *)page->private;
584
585         /* the pending IO might have been the only thing that kept this buffer
586          * in memory.  Make sure we have a ref for all this other checks
587          */
588         extent_buffer_get(eb);
589
590         reads_done = atomic_dec_and_test(&eb->io_pages);
591         if (!reads_done)
592                 goto err;
593
594         eb->read_mirror = mirror;
595         if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
596                 ret = -EIO;
597                 goto err;
598         }
599
600         found_start = btrfs_header_bytenr(eb);
601         if (found_start != eb->start) {
602                 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
603                                "%llu %llu\n",
604                                (unsigned long long)found_start,
605                                (unsigned long long)eb->start);
606                 ret = -EIO;
607                 goto err;
608         }
609         if (check_tree_block_fsid(root, eb)) {
610                 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
611                                (unsigned long long)eb->start);
612                 ret = -EIO;
613                 goto err;
614         }
615         found_level = btrfs_header_level(eb);
616
617         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
618                                        eb, found_level);
619
620         ret = csum_tree_block(root, eb, 1);
621         if (ret) {
622                 ret = -EIO;
623                 goto err;
624         }
625
626         /*
627          * If this is a leaf block and it is corrupt, set the corrupt bit so
628          * that we don't try and read the other copies of this block, just
629          * return -EIO.
630          */
631         if (found_level == 0 && check_leaf(root, eb)) {
632                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
633                 ret = -EIO;
634         }
635
636         if (!ret)
637                 set_extent_buffer_uptodate(eb);
638 err:
639         if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
640                 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
641                 btree_readahead_hook(root, eb, eb->start, ret);
642         }
643
644         if (ret) {
645                 /*
646                  * our io error hook is going to dec the io pages
647                  * again, we have to make sure it has something
648                  * to decrement
649                  */
650                 atomic_inc(&eb->io_pages);
651                 clear_extent_buffer_uptodate(eb);
652         }
653         free_extent_buffer(eb);
654 out:
655         return ret;
656 }
657
658 static int btree_io_failed_hook(struct page *page, int failed_mirror)
659 {
660         struct extent_buffer *eb;
661         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
662
663         eb = (struct extent_buffer *)page->private;
664         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
665         eb->read_mirror = failed_mirror;
666         atomic_dec(&eb->io_pages);
667         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
668                 btree_readahead_hook(root, eb, eb->start, -EIO);
669         return -EIO;    /* we fixed nothing */
670 }
671
672 static void end_workqueue_bio(struct bio *bio, int err)
673 {
674         struct end_io_wq *end_io_wq = bio->bi_private;
675         struct btrfs_fs_info *fs_info;
676
677         fs_info = end_io_wq->info;
678         end_io_wq->error = err;
679         end_io_wq->work.func = end_workqueue_fn;
680         end_io_wq->work.flags = 0;
681
682         if (bio->bi_rw & REQ_WRITE) {
683                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
684                         btrfs_queue_worker(&fs_info->endio_meta_write_workers,
685                                            &end_io_wq->work);
686                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
687                         btrfs_queue_worker(&fs_info->endio_freespace_worker,
688                                            &end_io_wq->work);
689                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
690                         btrfs_queue_worker(&fs_info->endio_raid56_workers,
691                                            &end_io_wq->work);
692                 else
693                         btrfs_queue_worker(&fs_info->endio_write_workers,
694                                            &end_io_wq->work);
695         } else {
696                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
697                         btrfs_queue_worker(&fs_info->endio_raid56_workers,
698                                            &end_io_wq->work);
699                 else if (end_io_wq->metadata)
700                         btrfs_queue_worker(&fs_info->endio_meta_workers,
701                                            &end_io_wq->work);
702                 else
703                         btrfs_queue_worker(&fs_info->endio_workers,
704                                            &end_io_wq->work);
705         }
706 }
707
708 /*
709  * For the metadata arg you want
710  *
711  * 0 - if data
712  * 1 - if normal metadta
713  * 2 - if writing to the free space cache area
714  * 3 - raid parity work
715  */
716 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
717                         int metadata)
718 {
719         struct end_io_wq *end_io_wq;
720         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
721         if (!end_io_wq)
722                 return -ENOMEM;
723
724         end_io_wq->private = bio->bi_private;
725         end_io_wq->end_io = bio->bi_end_io;
726         end_io_wq->info = info;
727         end_io_wq->error = 0;
728         end_io_wq->bio = bio;
729         end_io_wq->metadata = metadata;
730
731         bio->bi_private = end_io_wq;
732         bio->bi_end_io = end_workqueue_bio;
733         return 0;
734 }
735
736 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
737 {
738         unsigned long limit = min_t(unsigned long,
739                                     info->workers.max_workers,
740                                     info->fs_devices->open_devices);
741         return 256 * limit;
742 }
743
744 static void run_one_async_start(struct btrfs_work *work)
745 {
746         struct async_submit_bio *async;
747         int ret;
748
749         async = container_of(work, struct  async_submit_bio, work);
750         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
751                                       async->mirror_num, async->bio_flags,
752                                       async->bio_offset);
753         if (ret)
754                 async->error = ret;
755 }
756
757 static void run_one_async_done(struct btrfs_work *work)
758 {
759         struct btrfs_fs_info *fs_info;
760         struct async_submit_bio *async;
761         int limit;
762
763         async = container_of(work, struct  async_submit_bio, work);
764         fs_info = BTRFS_I(async->inode)->root->fs_info;
765
766         limit = btrfs_async_submit_limit(fs_info);
767         limit = limit * 2 / 3;
768
769         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
770             waitqueue_active(&fs_info->async_submit_wait))
771                 wake_up(&fs_info->async_submit_wait);
772
773         /* If an error occured we just want to clean up the bio and move on */
774         if (async->error) {
775                 bio_endio(async->bio, async->error);
776                 return;
777         }
778
779         async->submit_bio_done(async->inode, async->rw, async->bio,
780                                async->mirror_num, async->bio_flags,
781                                async->bio_offset);
782 }
783
784 static void run_one_async_free(struct btrfs_work *work)
785 {
786         struct async_submit_bio *async;
787
788         async = container_of(work, struct  async_submit_bio, work);
789         kfree(async);
790 }
791
792 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
793                         int rw, struct bio *bio, int mirror_num,
794                         unsigned long bio_flags,
795                         u64 bio_offset,
796                         extent_submit_bio_hook_t *submit_bio_start,
797                         extent_submit_bio_hook_t *submit_bio_done)
798 {
799         struct async_submit_bio *async;
800
801         async = kmalloc(sizeof(*async), GFP_NOFS);
802         if (!async)
803                 return -ENOMEM;
804
805         async->inode = inode;
806         async->rw = rw;
807         async->bio = bio;
808         async->mirror_num = mirror_num;
809         async->submit_bio_start = submit_bio_start;
810         async->submit_bio_done = submit_bio_done;
811
812         async->work.func = run_one_async_start;
813         async->work.ordered_func = run_one_async_done;
814         async->work.ordered_free = run_one_async_free;
815
816         async->work.flags = 0;
817         async->bio_flags = bio_flags;
818         async->bio_offset = bio_offset;
819
820         async->error = 0;
821
822         atomic_inc(&fs_info->nr_async_submits);
823
824         if (rw & REQ_SYNC)
825                 btrfs_set_work_high_prio(&async->work);
826
827         btrfs_queue_worker(&fs_info->workers, &async->work);
828
829         while (atomic_read(&fs_info->async_submit_draining) &&
830               atomic_read(&fs_info->nr_async_submits)) {
831                 wait_event(fs_info->async_submit_wait,
832                            (atomic_read(&fs_info->nr_async_submits) == 0));
833         }
834
835         return 0;
836 }
837
838 static int btree_csum_one_bio(struct bio *bio)
839 {
840         struct bio_vec *bvec = bio->bi_io_vec;
841         int bio_index = 0;
842         struct btrfs_root *root;
843         int ret = 0;
844
845         WARN_ON(bio->bi_vcnt <= 0);
846         while (bio_index < bio->bi_vcnt) {
847                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
848                 ret = csum_dirty_buffer(root, bvec->bv_page);
849                 if (ret)
850                         break;
851                 bio_index++;
852                 bvec++;
853         }
854         return ret;
855 }
856
857 static int __btree_submit_bio_start(struct inode *inode, int rw,
858                                     struct bio *bio, int mirror_num,
859                                     unsigned long bio_flags,
860                                     u64 bio_offset)
861 {
862         /*
863          * when we're called for a write, we're already in the async
864          * submission context.  Just jump into btrfs_map_bio
865          */
866         return btree_csum_one_bio(bio);
867 }
868
869 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
870                                  int mirror_num, unsigned long bio_flags,
871                                  u64 bio_offset)
872 {
873         int ret;
874
875         /*
876          * when we're called for a write, we're already in the async
877          * submission context.  Just jump into btrfs_map_bio
878          */
879         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
880         if (ret)
881                 bio_endio(bio, ret);
882         return ret;
883 }
884
885 static int check_async_write(struct inode *inode, unsigned long bio_flags)
886 {
887         if (bio_flags & EXTENT_BIO_TREE_LOG)
888                 return 0;
889 #ifdef CONFIG_X86
890         if (cpu_has_xmm4_2)
891                 return 0;
892 #endif
893         return 1;
894 }
895
896 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
897                                  int mirror_num, unsigned long bio_flags,
898                                  u64 bio_offset)
899 {
900         int async = check_async_write(inode, bio_flags);
901         int ret;
902
903         if (!(rw & REQ_WRITE)) {
904                 /*
905                  * called for a read, do the setup so that checksum validation
906                  * can happen in the async kernel threads
907                  */
908                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
909                                           bio, 1);
910                 if (ret)
911                         goto out_w_error;
912                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
913                                     mirror_num, 0);
914         } else if (!async) {
915                 ret = btree_csum_one_bio(bio);
916                 if (ret)
917                         goto out_w_error;
918                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
919                                     mirror_num, 0);
920         } else {
921                 /*
922                  * kthread helpers are used to submit writes so that
923                  * checksumming can happen in parallel across all CPUs
924                  */
925                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
926                                           inode, rw, bio, mirror_num, 0,
927                                           bio_offset,
928                                           __btree_submit_bio_start,
929                                           __btree_submit_bio_done);
930         }
931
932         if (ret) {
933 out_w_error:
934                 bio_endio(bio, ret);
935         }
936         return ret;
937 }
938
939 #ifdef CONFIG_MIGRATION
940 static int btree_migratepage(struct address_space *mapping,
941                         struct page *newpage, struct page *page,
942                         enum migrate_mode mode)
943 {
944         /*
945          * we can't safely write a btree page from here,
946          * we haven't done the locking hook
947          */
948         if (PageDirty(page))
949                 return -EAGAIN;
950         /*
951          * Buffers may be managed in a filesystem specific way.
952          * We must have no buffers or drop them.
953          */
954         if (page_has_private(page) &&
955             !try_to_release_page(page, GFP_KERNEL))
956                 return -EAGAIN;
957         return migrate_page(mapping, newpage, page, mode);
958 }
959 #endif
960
961
962 static int btree_writepages(struct address_space *mapping,
963                             struct writeback_control *wbc)
964 {
965         struct extent_io_tree *tree;
966         struct btrfs_fs_info *fs_info;
967         int ret;
968
969         tree = &BTRFS_I(mapping->host)->io_tree;
970         if (wbc->sync_mode == WB_SYNC_NONE) {
971
972                 if (wbc->for_kupdate)
973                         return 0;
974
975                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
976                 /* this is a bit racy, but that's ok */
977                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
978                                              BTRFS_DIRTY_METADATA_THRESH);
979                 if (ret < 0)
980                         return 0;
981         }
982         return btree_write_cache_pages(mapping, wbc);
983 }
984
985 static int btree_readpage(struct file *file, struct page *page)
986 {
987         struct extent_io_tree *tree;
988         tree = &BTRFS_I(page->mapping->host)->io_tree;
989         return extent_read_full_page(tree, page, btree_get_extent, 0);
990 }
991
992 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
993 {
994         if (PageWriteback(page) || PageDirty(page))
995                 return 0;
996         /*
997          * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
998          * slab allocation from alloc_extent_state down the callchain where
999          * it'd hit a BUG_ON as those flags are not allowed.
1000          */
1001         gfp_flags &= ~GFP_SLAB_BUG_MASK;
1002
1003         return try_release_extent_buffer(page, gfp_flags);
1004 }
1005
1006 static void btree_invalidatepage(struct page *page, unsigned long offset)
1007 {
1008         struct extent_io_tree *tree;
1009         tree = &BTRFS_I(page->mapping->host)->io_tree;
1010         extent_invalidatepage(tree, page, offset);
1011         btree_releasepage(page, GFP_NOFS);
1012         if (PagePrivate(page)) {
1013                 printk(KERN_WARNING "btrfs warning page private not zero "
1014                        "on page %llu\n", (unsigned long long)page_offset(page));
1015                 ClearPagePrivate(page);
1016                 set_page_private(page, 0);
1017                 page_cache_release(page);
1018         }
1019 }
1020
1021 static int btree_set_page_dirty(struct page *page)
1022 {
1023 #ifdef DEBUG
1024         struct extent_buffer *eb;
1025
1026         BUG_ON(!PagePrivate(page));
1027         eb = (struct extent_buffer *)page->private;
1028         BUG_ON(!eb);
1029         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1030         BUG_ON(!atomic_read(&eb->refs));
1031         btrfs_assert_tree_locked(eb);
1032 #endif
1033         return __set_page_dirty_nobuffers(page);
1034 }
1035
1036 static const struct address_space_operations btree_aops = {
1037         .readpage       = btree_readpage,
1038         .writepages     = btree_writepages,
1039         .releasepage    = btree_releasepage,
1040         .invalidatepage = btree_invalidatepage,
1041 #ifdef CONFIG_MIGRATION
1042         .migratepage    = btree_migratepage,
1043 #endif
1044         .set_page_dirty = btree_set_page_dirty,
1045 };
1046
1047 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1048                          u64 parent_transid)
1049 {
1050         struct extent_buffer *buf = NULL;
1051         struct inode *btree_inode = root->fs_info->btree_inode;
1052         int ret = 0;
1053
1054         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1055         if (!buf)
1056                 return 0;
1057         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1058                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1059         free_extent_buffer(buf);
1060         return ret;
1061 }
1062
1063 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1064                          int mirror_num, struct extent_buffer **eb)
1065 {
1066         struct extent_buffer *buf = NULL;
1067         struct inode *btree_inode = root->fs_info->btree_inode;
1068         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1069         int ret;
1070
1071         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1072         if (!buf)
1073                 return 0;
1074
1075         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1076
1077         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1078                                        btree_get_extent, mirror_num);
1079         if (ret) {
1080                 free_extent_buffer(buf);
1081                 return ret;
1082         }
1083
1084         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1085                 free_extent_buffer(buf);
1086                 return -EIO;
1087         } else if (extent_buffer_uptodate(buf)) {
1088                 *eb = buf;
1089         } else {
1090                 free_extent_buffer(buf);
1091         }
1092         return 0;
1093 }
1094
1095 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1096                                             u64 bytenr, u32 blocksize)
1097 {
1098         struct inode *btree_inode = root->fs_info->btree_inode;
1099         struct extent_buffer *eb;
1100         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1101                                 bytenr, blocksize);
1102         return eb;
1103 }
1104
1105 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1106                                                  u64 bytenr, u32 blocksize)
1107 {
1108         struct inode *btree_inode = root->fs_info->btree_inode;
1109         struct extent_buffer *eb;
1110
1111         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1112                                  bytenr, blocksize);
1113         return eb;
1114 }
1115
1116
1117 int btrfs_write_tree_block(struct extent_buffer *buf)
1118 {
1119         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1120                                         buf->start + buf->len - 1);
1121 }
1122
1123 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1124 {
1125         return filemap_fdatawait_range(buf->pages[0]->mapping,
1126                                        buf->start, buf->start + buf->len - 1);
1127 }
1128
1129 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1130                                       u32 blocksize, u64 parent_transid)
1131 {
1132         struct extent_buffer *buf = NULL;
1133         int ret;
1134
1135         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1136         if (!buf)
1137                 return NULL;
1138
1139         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1140         return buf;
1141
1142 }
1143
1144 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1145                       struct extent_buffer *buf)
1146 {
1147         struct btrfs_fs_info *fs_info = root->fs_info;
1148
1149         if (btrfs_header_generation(buf) ==
1150             fs_info->running_transaction->transid) {
1151                 btrfs_assert_tree_locked(buf);
1152
1153                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1154                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1155                                              -buf->len,
1156                                              fs_info->dirty_metadata_batch);
1157                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1158                         btrfs_set_lock_blocking(buf);
1159                         clear_extent_buffer_dirty(buf);
1160                 }
1161         }
1162 }
1163
1164 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1165                          u32 stripesize, struct btrfs_root *root,
1166                          struct btrfs_fs_info *fs_info,
1167                          u64 objectid)
1168 {
1169         root->node = NULL;
1170         root->commit_root = NULL;
1171         root->sectorsize = sectorsize;
1172         root->nodesize = nodesize;
1173         root->leafsize = leafsize;
1174         root->stripesize = stripesize;
1175         root->ref_cows = 0;
1176         root->track_dirty = 0;
1177         root->in_radix = 0;
1178         root->orphan_item_inserted = 0;
1179         root->orphan_cleanup_state = 0;
1180
1181         root->objectid = objectid;
1182         root->last_trans = 0;
1183         root->highest_objectid = 0;
1184         root->name = NULL;
1185         root->inode_tree = RB_ROOT;
1186         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1187         root->block_rsv = NULL;
1188         root->orphan_block_rsv = NULL;
1189
1190         INIT_LIST_HEAD(&root->dirty_list);
1191         INIT_LIST_HEAD(&root->root_list);
1192         INIT_LIST_HEAD(&root->logged_list[0]);
1193         INIT_LIST_HEAD(&root->logged_list[1]);
1194         spin_lock_init(&root->orphan_lock);
1195         spin_lock_init(&root->inode_lock);
1196         spin_lock_init(&root->accounting_lock);
1197         spin_lock_init(&root->log_extents_lock[0]);
1198         spin_lock_init(&root->log_extents_lock[1]);
1199         mutex_init(&root->objectid_mutex);
1200         mutex_init(&root->log_mutex);
1201         init_waitqueue_head(&root->log_writer_wait);
1202         init_waitqueue_head(&root->log_commit_wait[0]);
1203         init_waitqueue_head(&root->log_commit_wait[1]);
1204         atomic_set(&root->log_commit[0], 0);
1205         atomic_set(&root->log_commit[1], 0);
1206         atomic_set(&root->log_writers, 0);
1207         atomic_set(&root->log_batch, 0);
1208         atomic_set(&root->orphan_inodes, 0);
1209         root->log_transid = 0;
1210         root->last_log_commit = 0;
1211         extent_io_tree_init(&root->dirty_log_pages,
1212                              fs_info->btree_inode->i_mapping);
1213
1214         memset(&root->root_key, 0, sizeof(root->root_key));
1215         memset(&root->root_item, 0, sizeof(root->root_item));
1216         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1217         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1218         root->defrag_trans_start = fs_info->generation;
1219         init_completion(&root->kobj_unregister);
1220         root->defrag_running = 0;
1221         root->root_key.objectid = objectid;
1222         root->anon_dev = 0;
1223
1224         spin_lock_init(&root->root_item_lock);
1225 }
1226
1227 static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1228                                             struct btrfs_fs_info *fs_info,
1229                                             u64 objectid,
1230                                             struct btrfs_root *root)
1231 {
1232         int ret;
1233         u32 blocksize;
1234         u64 generation;
1235
1236         __setup_root(tree_root->nodesize, tree_root->leafsize,
1237                      tree_root->sectorsize, tree_root->stripesize,
1238                      root, fs_info, objectid);
1239         ret = btrfs_find_last_root(tree_root, objectid,
1240                                    &root->root_item, &root->root_key);
1241         if (ret > 0)
1242                 return -ENOENT;
1243         else if (ret < 0)
1244                 return ret;
1245
1246         generation = btrfs_root_generation(&root->root_item);
1247         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1248         root->commit_root = NULL;
1249         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1250                                      blocksize, generation);
1251         if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1252                 free_extent_buffer(root->node);
1253                 root->node = NULL;
1254                 return -EIO;
1255         }
1256         root->commit_root = btrfs_root_node(root);
1257         return 0;
1258 }
1259
1260 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1261 {
1262         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1263         if (root)
1264                 root->fs_info = fs_info;
1265         return root;
1266 }
1267
1268 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1269                                      struct btrfs_fs_info *fs_info,
1270                                      u64 objectid)
1271 {
1272         struct extent_buffer *leaf;
1273         struct btrfs_root *tree_root = fs_info->tree_root;
1274         struct btrfs_root *root;
1275         struct btrfs_key key;
1276         int ret = 0;
1277         u64 bytenr;
1278
1279         root = btrfs_alloc_root(fs_info);
1280         if (!root)
1281                 return ERR_PTR(-ENOMEM);
1282
1283         __setup_root(tree_root->nodesize, tree_root->leafsize,
1284                      tree_root->sectorsize, tree_root->stripesize,
1285                      root, fs_info, objectid);
1286         root->root_key.objectid = objectid;
1287         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1288         root->root_key.offset = 0;
1289
1290         leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1291                                       0, objectid, NULL, 0, 0, 0);
1292         if (IS_ERR(leaf)) {
1293                 ret = PTR_ERR(leaf);
1294                 leaf = NULL;
1295                 goto fail;
1296         }
1297
1298         bytenr = leaf->start;
1299         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1300         btrfs_set_header_bytenr(leaf, leaf->start);
1301         btrfs_set_header_generation(leaf, trans->transid);
1302         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1303         btrfs_set_header_owner(leaf, objectid);
1304         root->node = leaf;
1305
1306         write_extent_buffer(leaf, fs_info->fsid,
1307                             (unsigned long)btrfs_header_fsid(leaf),
1308                             BTRFS_FSID_SIZE);
1309         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1310                             (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1311                             BTRFS_UUID_SIZE);
1312         btrfs_mark_buffer_dirty(leaf);
1313
1314         root->commit_root = btrfs_root_node(root);
1315         root->track_dirty = 1;
1316
1317
1318         root->root_item.flags = 0;
1319         root->root_item.byte_limit = 0;
1320         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1321         btrfs_set_root_generation(&root->root_item, trans->transid);
1322         btrfs_set_root_level(&root->root_item, 0);
1323         btrfs_set_root_refs(&root->root_item, 1);
1324         btrfs_set_root_used(&root->root_item, leaf->len);
1325         btrfs_set_root_last_snapshot(&root->root_item, 0);
1326         btrfs_set_root_dirid(&root->root_item, 0);
1327         root->root_item.drop_level = 0;
1328
1329         key.objectid = objectid;
1330         key.type = BTRFS_ROOT_ITEM_KEY;
1331         key.offset = 0;
1332         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1333         if (ret)
1334                 goto fail;
1335
1336         btrfs_tree_unlock(leaf);
1337
1338         return root;
1339
1340 fail:
1341         if (leaf) {
1342                 btrfs_tree_unlock(leaf);
1343                 free_extent_buffer(leaf);
1344         }
1345         kfree(root);
1346
1347         return ERR_PTR(ret);
1348 }
1349
1350 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1351                                          struct btrfs_fs_info *fs_info)
1352 {
1353         struct btrfs_root *root;
1354         struct btrfs_root *tree_root = fs_info->tree_root;
1355         struct extent_buffer *leaf;
1356
1357         root = btrfs_alloc_root(fs_info);
1358         if (!root)
1359                 return ERR_PTR(-ENOMEM);
1360
1361         __setup_root(tree_root->nodesize, tree_root->leafsize,
1362                      tree_root->sectorsize, tree_root->stripesize,
1363                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1364
1365         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1366         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1367         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1368         /*
1369          * log trees do not get reference counted because they go away
1370          * before a real commit is actually done.  They do store pointers
1371          * to file data extents, and those reference counts still get
1372          * updated (along with back refs to the log tree).
1373          */
1374         root->ref_cows = 0;
1375
1376         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1377                                       BTRFS_TREE_LOG_OBJECTID, NULL,
1378                                       0, 0, 0);
1379         if (IS_ERR(leaf)) {
1380                 kfree(root);
1381                 return ERR_CAST(leaf);
1382         }
1383
1384         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1385         btrfs_set_header_bytenr(leaf, leaf->start);
1386         btrfs_set_header_generation(leaf, trans->transid);
1387         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1388         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1389         root->node = leaf;
1390
1391         write_extent_buffer(root->node, root->fs_info->fsid,
1392                             (unsigned long)btrfs_header_fsid(root->node),
1393                             BTRFS_FSID_SIZE);
1394         btrfs_mark_buffer_dirty(root->node);
1395         btrfs_tree_unlock(root->node);
1396         return root;
1397 }
1398
1399 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1400                              struct btrfs_fs_info *fs_info)
1401 {
1402         struct btrfs_root *log_root;
1403
1404         log_root = alloc_log_tree(trans, fs_info);
1405         if (IS_ERR(log_root))
1406                 return PTR_ERR(log_root);
1407         WARN_ON(fs_info->log_root_tree);
1408         fs_info->log_root_tree = log_root;
1409         return 0;
1410 }
1411
1412 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1413                        struct btrfs_root *root)
1414 {
1415         struct btrfs_root *log_root;
1416         struct btrfs_inode_item *inode_item;
1417
1418         log_root = alloc_log_tree(trans, root->fs_info);
1419         if (IS_ERR(log_root))
1420                 return PTR_ERR(log_root);
1421
1422         log_root->last_trans = trans->transid;
1423         log_root->root_key.offset = root->root_key.objectid;
1424
1425         inode_item = &log_root->root_item.inode;
1426         inode_item->generation = cpu_to_le64(1);
1427         inode_item->size = cpu_to_le64(3);
1428         inode_item->nlink = cpu_to_le32(1);
1429         inode_item->nbytes = cpu_to_le64(root->leafsize);
1430         inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1431
1432         btrfs_set_root_node(&log_root->root_item, log_root->node);
1433
1434         WARN_ON(root->log_root);
1435         root->log_root = log_root;
1436         root->log_transid = 0;
1437         root->last_log_commit = 0;
1438         return 0;
1439 }
1440
1441 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1442                                                struct btrfs_key *location)
1443 {
1444         struct btrfs_root *root;
1445         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1446         struct btrfs_path *path;
1447         struct extent_buffer *l;
1448         u64 generation;
1449         u32 blocksize;
1450         int ret = 0;
1451         int slot;
1452
1453         root = btrfs_alloc_root(fs_info);
1454         if (!root)
1455                 return ERR_PTR(-ENOMEM);
1456         if (location->offset == (u64)-1) {
1457                 ret = find_and_setup_root(tree_root, fs_info,
1458                                           location->objectid, root);
1459                 if (ret) {
1460                         kfree(root);
1461                         return ERR_PTR(ret);
1462                 }
1463                 goto out;
1464         }
1465
1466         __setup_root(tree_root->nodesize, tree_root->leafsize,
1467                      tree_root->sectorsize, tree_root->stripesize,
1468                      root, fs_info, location->objectid);
1469
1470         path = btrfs_alloc_path();
1471         if (!path) {
1472                 kfree(root);
1473                 return ERR_PTR(-ENOMEM);
1474         }
1475         ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1476         if (ret == 0) {
1477                 l = path->nodes[0];
1478                 slot = path->slots[0];
1479                 btrfs_read_root_item(tree_root, l, slot, &root->root_item);
1480                 memcpy(&root->root_key, location, sizeof(*location));
1481         }
1482         btrfs_free_path(path);
1483         if (ret) {
1484                 kfree(root);
1485                 if (ret > 0)
1486                         ret = -ENOENT;
1487                 return ERR_PTR(ret);
1488         }
1489
1490         generation = btrfs_root_generation(&root->root_item);
1491         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1492         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1493                                      blocksize, generation);
1494         root->commit_root = btrfs_root_node(root);
1495         BUG_ON(!root->node); /* -ENOMEM */
1496 out:
1497         if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1498                 root->ref_cows = 1;
1499                 btrfs_check_and_init_root_item(&root->root_item);
1500         }
1501
1502         return root;
1503 }
1504
1505 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1506                                               struct btrfs_key *location)
1507 {
1508         struct btrfs_root *root;
1509         int ret;
1510
1511         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1512                 return fs_info->tree_root;
1513         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1514                 return fs_info->extent_root;
1515         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1516                 return fs_info->chunk_root;
1517         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1518                 return fs_info->dev_root;
1519         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1520                 return fs_info->csum_root;
1521         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1522                 return fs_info->quota_root ? fs_info->quota_root :
1523                                              ERR_PTR(-ENOENT);
1524 again:
1525         spin_lock(&fs_info->fs_roots_radix_lock);
1526         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1527                                  (unsigned long)location->objectid);
1528         spin_unlock(&fs_info->fs_roots_radix_lock);
1529         if (root)
1530                 return root;
1531
1532         root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1533         if (IS_ERR(root))
1534                 return root;
1535
1536         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1537         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1538                                         GFP_NOFS);
1539         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1540                 ret = -ENOMEM;
1541                 goto fail;
1542         }
1543
1544         btrfs_init_free_ino_ctl(root);
1545         mutex_init(&root->fs_commit_mutex);
1546         spin_lock_init(&root->cache_lock);
1547         init_waitqueue_head(&root->cache_wait);
1548
1549         ret = get_anon_bdev(&root->anon_dev);
1550         if (ret)
1551                 goto fail;
1552
1553         if (btrfs_root_refs(&root->root_item) == 0) {
1554                 ret = -ENOENT;
1555                 goto fail;
1556         }
1557
1558         ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1559         if (ret < 0)
1560                 goto fail;
1561         if (ret == 0)
1562                 root->orphan_item_inserted = 1;
1563
1564         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1565         if (ret)
1566                 goto fail;
1567
1568         spin_lock(&fs_info->fs_roots_radix_lock);
1569         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1570                                 (unsigned long)root->root_key.objectid,
1571                                 root);
1572         if (ret == 0)
1573                 root->in_radix = 1;
1574
1575         spin_unlock(&fs_info->fs_roots_radix_lock);
1576         radix_tree_preload_end();
1577         if (ret) {
1578                 if (ret == -EEXIST) {
1579                         free_fs_root(root);
1580                         goto again;
1581                 }
1582                 goto fail;
1583         }
1584
1585         ret = btrfs_find_dead_roots(fs_info->tree_root,
1586                                     root->root_key.objectid);
1587         WARN_ON(ret);
1588         return root;
1589 fail:
1590         free_fs_root(root);
1591         return ERR_PTR(ret);
1592 }
1593
1594 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1595 {
1596         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1597         int ret = 0;
1598         struct btrfs_device *device;
1599         struct backing_dev_info *bdi;
1600
1601         rcu_read_lock();
1602         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1603                 if (!device->bdev)
1604                         continue;
1605                 bdi = blk_get_backing_dev_info(device->bdev);
1606                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1607                         ret = 1;
1608                         break;
1609                 }
1610         }
1611         rcu_read_unlock();
1612         return ret;
1613 }
1614
1615 /*
1616  * If this fails, caller must call bdi_destroy() to get rid of the
1617  * bdi again.
1618  */
1619 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1620 {
1621         int err;
1622
1623         bdi->capabilities = BDI_CAP_MAP_COPY;
1624         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1625         if (err)
1626                 return err;
1627
1628         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1629         bdi->congested_fn       = btrfs_congested_fn;
1630         bdi->congested_data     = info;
1631         return 0;
1632 }
1633
1634 /*
1635  * called by the kthread helper functions to finally call the bio end_io
1636  * functions.  This is where read checksum verification actually happens
1637  */
1638 static void end_workqueue_fn(struct btrfs_work *work)
1639 {
1640         struct bio *bio;
1641         struct end_io_wq *end_io_wq;
1642         struct btrfs_fs_info *fs_info;
1643         int error;
1644
1645         end_io_wq = container_of(work, struct end_io_wq, work);
1646         bio = end_io_wq->bio;
1647         fs_info = end_io_wq->info;
1648
1649         error = end_io_wq->error;
1650         bio->bi_private = end_io_wq->private;
1651         bio->bi_end_io = end_io_wq->end_io;
1652         kfree(end_io_wq);
1653         bio_endio(bio, error);
1654 }
1655
1656 static int cleaner_kthread(void *arg)
1657 {
1658         struct btrfs_root *root = arg;
1659
1660         do {
1661                 int again = 0;
1662
1663                 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1664                     down_read_trylock(&root->fs_info->sb->s_umount)) {
1665                         if (mutex_trylock(&root->fs_info->cleaner_mutex)) {
1666                                 btrfs_run_delayed_iputs(root);
1667                                 again = btrfs_clean_one_deleted_snapshot(root);
1668                                 mutex_unlock(&root->fs_info->cleaner_mutex);
1669                         }
1670                         btrfs_run_defrag_inodes(root->fs_info);
1671                         up_read(&root->fs_info->sb->s_umount);
1672                 }
1673
1674                 if (!try_to_freeze() && !again) {
1675                         set_current_state(TASK_INTERRUPTIBLE);
1676                         if (!kthread_should_stop())
1677                                 schedule();
1678                         __set_current_state(TASK_RUNNING);
1679                 }
1680         } while (!kthread_should_stop());
1681         return 0;
1682 }
1683
1684 static int transaction_kthread(void *arg)
1685 {
1686         struct btrfs_root *root = arg;
1687         struct btrfs_trans_handle *trans;
1688         struct btrfs_transaction *cur;
1689         u64 transid;
1690         unsigned long now;
1691         unsigned long delay;
1692         bool cannot_commit;
1693
1694         do {
1695                 cannot_commit = false;
1696                 delay = HZ * 30;
1697                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1698
1699                 spin_lock(&root->fs_info->trans_lock);
1700                 cur = root->fs_info->running_transaction;
1701                 if (!cur) {
1702                         spin_unlock(&root->fs_info->trans_lock);
1703                         goto sleep;
1704                 }
1705
1706                 now = get_seconds();
1707                 if (!cur->blocked &&
1708                     (now < cur->start_time || now - cur->start_time < 30)) {
1709                         spin_unlock(&root->fs_info->trans_lock);
1710                         delay = HZ * 5;
1711                         goto sleep;
1712                 }
1713                 transid = cur->transid;
1714                 spin_unlock(&root->fs_info->trans_lock);
1715
1716                 /* If the file system is aborted, this will always fail. */
1717                 trans = btrfs_attach_transaction(root);
1718                 if (IS_ERR(trans)) {
1719                         if (PTR_ERR(trans) != -ENOENT)
1720                                 cannot_commit = true;
1721                         goto sleep;
1722                 }
1723                 if (transid == trans->transid) {
1724                         btrfs_commit_transaction(trans, root);
1725                 } else {
1726                         btrfs_end_transaction(trans, root);
1727                 }
1728 sleep:
1729                 wake_up_process(root->fs_info->cleaner_kthread);
1730                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1731
1732                 if (!try_to_freeze()) {
1733                         set_current_state(TASK_INTERRUPTIBLE);
1734                         if (!kthread_should_stop() &&
1735                             (!btrfs_transaction_blocked(root->fs_info) ||
1736                              cannot_commit))
1737                                 schedule_timeout(delay);
1738                         __set_current_state(TASK_RUNNING);
1739                 }
1740         } while (!kthread_should_stop());
1741         return 0;
1742 }
1743
1744 /*
1745  * this will find the highest generation in the array of
1746  * root backups.  The index of the highest array is returned,
1747  * or -1 if we can't find anything.
1748  *
1749  * We check to make sure the array is valid by comparing the
1750  * generation of the latest  root in the array with the generation
1751  * in the super block.  If they don't match we pitch it.
1752  */
1753 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1754 {
1755         u64 cur;
1756         int newest_index = -1;
1757         struct btrfs_root_backup *root_backup;
1758         int i;
1759
1760         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1761                 root_backup = info->super_copy->super_roots + i;
1762                 cur = btrfs_backup_tree_root_gen(root_backup);
1763                 if (cur == newest_gen)
1764                         newest_index = i;
1765         }
1766
1767         /* check to see if we actually wrapped around */
1768         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1769                 root_backup = info->super_copy->super_roots;
1770                 cur = btrfs_backup_tree_root_gen(root_backup);
1771                 if (cur == newest_gen)
1772                         newest_index = 0;
1773         }
1774         return newest_index;
1775 }
1776
1777
1778 /*
1779  * find the oldest backup so we know where to store new entries
1780  * in the backup array.  This will set the backup_root_index
1781  * field in the fs_info struct
1782  */
1783 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1784                                      u64 newest_gen)
1785 {
1786         int newest_index = -1;
1787
1788         newest_index = find_newest_super_backup(info, newest_gen);
1789         /* if there was garbage in there, just move along */
1790         if (newest_index == -1) {
1791                 info->backup_root_index = 0;
1792         } else {
1793                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1794         }
1795 }
1796
1797 /*
1798  * copy all the root pointers into the super backup array.
1799  * this will bump the backup pointer by one when it is
1800  * done
1801  */
1802 static void backup_super_roots(struct btrfs_fs_info *info)
1803 {
1804         int next_backup;
1805         struct btrfs_root_backup *root_backup;
1806         int last_backup;
1807
1808         next_backup = info->backup_root_index;
1809         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1810                 BTRFS_NUM_BACKUP_ROOTS;
1811
1812         /*
1813          * just overwrite the last backup if we're at the same generation
1814          * this happens only at umount
1815          */
1816         root_backup = info->super_for_commit->super_roots + last_backup;
1817         if (btrfs_backup_tree_root_gen(root_backup) ==
1818             btrfs_header_generation(info->tree_root->node))
1819                 next_backup = last_backup;
1820
1821         root_backup = info->super_for_commit->super_roots + next_backup;
1822
1823         /*
1824          * make sure all of our padding and empty slots get zero filled
1825          * regardless of which ones we use today
1826          */
1827         memset(root_backup, 0, sizeof(*root_backup));
1828
1829         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1830
1831         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1832         btrfs_set_backup_tree_root_gen(root_backup,
1833                                btrfs_header_generation(info->tree_root->node));
1834
1835         btrfs_set_backup_tree_root_level(root_backup,
1836                                btrfs_header_level(info->tree_root->node));
1837
1838         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1839         btrfs_set_backup_chunk_root_gen(root_backup,
1840                                btrfs_header_generation(info->chunk_root->node));
1841         btrfs_set_backup_chunk_root_level(root_backup,
1842                                btrfs_header_level(info->chunk_root->node));
1843
1844         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1845         btrfs_set_backup_extent_root_gen(root_backup,
1846                                btrfs_header_generation(info->extent_root->node));
1847         btrfs_set_backup_extent_root_level(root_backup,
1848                                btrfs_header_level(info->extent_root->node));
1849
1850         /*
1851          * we might commit during log recovery, which happens before we set
1852          * the fs_root.  Make sure it is valid before we fill it in.
1853          */
1854         if (info->fs_root && info->fs_root->node) {
1855                 btrfs_set_backup_fs_root(root_backup,
1856                                          info->fs_root->node->start);
1857                 btrfs_set_backup_fs_root_gen(root_backup,
1858                                btrfs_header_generation(info->fs_root->node));
1859                 btrfs_set_backup_fs_root_level(root_backup,
1860                                btrfs_header_level(info->fs_root->node));
1861         }
1862
1863         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1864         btrfs_set_backup_dev_root_gen(root_backup,
1865                                btrfs_header_generation(info->dev_root->node));
1866         btrfs_set_backup_dev_root_level(root_backup,
1867                                        btrfs_header_level(info->dev_root->node));
1868
1869         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1870         btrfs_set_backup_csum_root_gen(root_backup,
1871                                btrfs_header_generation(info->csum_root->node));
1872         btrfs_set_backup_csum_root_level(root_backup,
1873                                btrfs_header_level(info->csum_root->node));
1874
1875         btrfs_set_backup_total_bytes(root_backup,
1876                              btrfs_super_total_bytes(info->super_copy));
1877         btrfs_set_backup_bytes_used(root_backup,
1878                              btrfs_super_bytes_used(info->super_copy));
1879         btrfs_set_backup_num_devices(root_backup,
1880                              btrfs_super_num_devices(info->super_copy));
1881
1882         /*
1883          * if we don't copy this out to the super_copy, it won't get remembered
1884          * for the next commit
1885          */
1886         memcpy(&info->super_copy->super_roots,
1887                &info->super_for_commit->super_roots,
1888                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1889 }
1890
1891 /*
1892  * this copies info out of the root backup array and back into
1893  * the in-memory super block.  It is meant to help iterate through
1894  * the array, so you send it the number of backups you've already
1895  * tried and the last backup index you used.
1896  *
1897  * this returns -1 when it has tried all the backups
1898  */
1899 static noinline int next_root_backup(struct btrfs_fs_info *info,
1900                                      struct btrfs_super_block *super,
1901                                      int *num_backups_tried, int *backup_index)
1902 {
1903         struct btrfs_root_backup *root_backup;
1904         int newest = *backup_index;
1905
1906         if (*num_backups_tried == 0) {
1907                 u64 gen = btrfs_super_generation(super);
1908
1909                 newest = find_newest_super_backup(info, gen);
1910                 if (newest == -1)
1911                         return -1;
1912
1913                 *backup_index = newest;
1914                 *num_backups_tried = 1;
1915         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1916                 /* we've tried all the backups, all done */
1917                 return -1;
1918         } else {
1919                 /* jump to the next oldest backup */
1920                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1921                         BTRFS_NUM_BACKUP_ROOTS;
1922                 *backup_index = newest;
1923                 *num_backups_tried += 1;
1924         }
1925         root_backup = super->super_roots + newest;
1926
1927         btrfs_set_super_generation(super,
1928                                    btrfs_backup_tree_root_gen(root_backup));
1929         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1930         btrfs_set_super_root_level(super,
1931                                    btrfs_backup_tree_root_level(root_backup));
1932         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1933
1934         /*
1935          * fixme: the total bytes and num_devices need to match or we should
1936          * need a fsck
1937          */
1938         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1939         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1940         return 0;
1941 }
1942
1943 /* helper to cleanup workers */
1944 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1945 {
1946         btrfs_stop_workers(&fs_info->generic_worker);
1947         btrfs_stop_workers(&fs_info->fixup_workers);
1948         btrfs_stop_workers(&fs_info->delalloc_workers);
1949         btrfs_stop_workers(&fs_info->workers);
1950         btrfs_stop_workers(&fs_info->endio_workers);
1951         btrfs_stop_workers(&fs_info->endio_meta_workers);
1952         btrfs_stop_workers(&fs_info->endio_raid56_workers);
1953         btrfs_stop_workers(&fs_info->rmw_workers);
1954         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
1955         btrfs_stop_workers(&fs_info->endio_write_workers);
1956         btrfs_stop_workers(&fs_info->endio_freespace_worker);
1957         btrfs_stop_workers(&fs_info->submit_workers);
1958         btrfs_stop_workers(&fs_info->delayed_workers);
1959         btrfs_stop_workers(&fs_info->caching_workers);
1960         btrfs_stop_workers(&fs_info->readahead_workers);
1961         btrfs_stop_workers(&fs_info->flush_workers);
1962 }
1963
1964 /* helper to cleanup tree roots */
1965 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1966 {
1967         free_extent_buffer(info->tree_root->node);
1968         free_extent_buffer(info->tree_root->commit_root);
1969         free_extent_buffer(info->dev_root->node);
1970         free_extent_buffer(info->dev_root->commit_root);
1971         free_extent_buffer(info->extent_root->node);
1972         free_extent_buffer(info->extent_root->commit_root);
1973         free_extent_buffer(info->csum_root->node);
1974         free_extent_buffer(info->csum_root->commit_root);
1975         if (info->quota_root) {
1976                 free_extent_buffer(info->quota_root->node);
1977                 free_extent_buffer(info->quota_root->commit_root);
1978         }
1979
1980         info->tree_root->node = NULL;
1981         info->tree_root->commit_root = NULL;
1982         info->dev_root->node = NULL;
1983         info->dev_root->commit_root = NULL;
1984         info->extent_root->node = NULL;
1985         info->extent_root->commit_root = NULL;
1986         info->csum_root->node = NULL;
1987         info->csum_root->commit_root = NULL;
1988         if (info->quota_root) {
1989                 info->quota_root->node = NULL;
1990                 info->quota_root->commit_root = NULL;
1991         }
1992
1993         if (chunk_root) {
1994                 free_extent_buffer(info->chunk_root->node);
1995                 free_extent_buffer(info->chunk_root->commit_root);
1996                 info->chunk_root->node = NULL;
1997                 info->chunk_root->commit_root = NULL;
1998         }
1999 }
2000
2001
2002 int open_ctree(struct super_block *sb,
2003                struct btrfs_fs_devices *fs_devices,
2004                char *options)
2005 {
2006         u32 sectorsize;
2007         u32 nodesize;
2008         u32 leafsize;
2009         u32 blocksize;
2010         u32 stripesize;
2011         u64 generation;
2012         u64 features;
2013         struct btrfs_key location;
2014         struct buffer_head *bh;
2015         struct btrfs_super_block *disk_super;
2016         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2017         struct btrfs_root *tree_root;
2018         struct btrfs_root *extent_root;
2019         struct btrfs_root *csum_root;
2020         struct btrfs_root *chunk_root;
2021         struct btrfs_root *dev_root;
2022         struct btrfs_root *quota_root;
2023         struct btrfs_root *log_tree_root;
2024         int ret;
2025         int err = -EINVAL;
2026         int num_backups_tried = 0;
2027         int backup_index = 0;
2028
2029         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2030         extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
2031         csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
2032         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2033         dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
2034         quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
2035
2036         if (!tree_root || !extent_root || !csum_root ||
2037             !chunk_root || !dev_root || !quota_root) {
2038                 err = -ENOMEM;
2039                 goto fail;
2040         }
2041
2042         ret = init_srcu_struct(&fs_info->subvol_srcu);
2043         if (ret) {
2044                 err = ret;
2045                 goto fail;
2046         }
2047
2048         ret = setup_bdi(fs_info, &fs_info->bdi);
2049         if (ret) {
2050                 err = ret;
2051                 goto fail_srcu;
2052         }
2053
2054         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2055         if (ret) {
2056                 err = ret;
2057                 goto fail_bdi;
2058         }
2059         fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2060                                         (1 + ilog2(nr_cpu_ids));
2061
2062         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2063         if (ret) {
2064                 err = ret;
2065                 goto fail_dirty_metadata_bytes;
2066         }
2067
2068         fs_info->btree_inode = new_inode(sb);
2069         if (!fs_info->btree_inode) {
2070                 err = -ENOMEM;
2071                 goto fail_delalloc_bytes;
2072         }
2073
2074         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2075
2076         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2077         INIT_LIST_HEAD(&fs_info->trans_list);
2078         INIT_LIST_HEAD(&fs_info->dead_roots);
2079         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2080         INIT_LIST_HEAD(&fs_info->delalloc_inodes);
2081         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2082         spin_lock_init(&fs_info->delalloc_lock);
2083         spin_lock_init(&fs_info->trans_lock);
2084         spin_lock_init(&fs_info->fs_roots_radix_lock);
2085         spin_lock_init(&fs_info->delayed_iput_lock);
2086         spin_lock_init(&fs_info->defrag_inodes_lock);
2087         spin_lock_init(&fs_info->free_chunk_lock);
2088         spin_lock_init(&fs_info->tree_mod_seq_lock);
2089         spin_lock_init(&fs_info->super_lock);
2090         rwlock_init(&fs_info->tree_mod_log_lock);
2091         mutex_init(&fs_info->reloc_mutex);
2092         seqlock_init(&fs_info->profiles_lock);
2093
2094         init_completion(&fs_info->kobj_unregister);
2095         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2096         INIT_LIST_HEAD(&fs_info->space_info);
2097         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2098         btrfs_mapping_init(&fs_info->mapping_tree);
2099         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2100                              BTRFS_BLOCK_RSV_GLOBAL);
2101         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2102                              BTRFS_BLOCK_RSV_DELALLOC);
2103         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2104         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2105         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2106         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2107                              BTRFS_BLOCK_RSV_DELOPS);
2108         atomic_set(&fs_info->nr_async_submits, 0);
2109         atomic_set(&fs_info->async_delalloc_pages, 0);
2110         atomic_set(&fs_info->async_submit_draining, 0);
2111         atomic_set(&fs_info->nr_async_bios, 0);
2112         atomic_set(&fs_info->defrag_running, 0);
2113         atomic_set(&fs_info->tree_mod_seq, 0);
2114         fs_info->sb = sb;
2115         fs_info->max_inline = 8192 * 1024;
2116         fs_info->metadata_ratio = 0;
2117         fs_info->defrag_inodes = RB_ROOT;
2118         fs_info->trans_no_join = 0;
2119         fs_info->free_chunk_space = 0;
2120         fs_info->tree_mod_log = RB_ROOT;
2121
2122         /* readahead state */
2123         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2124         spin_lock_init(&fs_info->reada_lock);
2125
2126         fs_info->thread_pool_size = min_t(unsigned long,
2127                                           num_online_cpus() + 2, 8);
2128
2129         INIT_LIST_HEAD(&fs_info->ordered_extents);
2130         spin_lock_init(&fs_info->ordered_extent_lock);
2131         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2132                                         GFP_NOFS);
2133         if (!fs_info->delayed_root) {
2134                 err = -ENOMEM;
2135                 goto fail_iput;
2136         }
2137         btrfs_init_delayed_root(fs_info->delayed_root);
2138
2139         mutex_init(&fs_info->scrub_lock);
2140         atomic_set(&fs_info->scrubs_running, 0);
2141         atomic_set(&fs_info->scrub_pause_req, 0);
2142         atomic_set(&fs_info->scrubs_paused, 0);
2143         atomic_set(&fs_info->scrub_cancel_req, 0);
2144         init_waitqueue_head(&fs_info->scrub_pause_wait);
2145         init_rwsem(&fs_info->scrub_super_lock);
2146         fs_info->scrub_workers_refcnt = 0;
2147 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2148         fs_info->check_integrity_print_mask = 0;
2149 #endif
2150
2151         spin_lock_init(&fs_info->balance_lock);
2152         mutex_init(&fs_info->balance_mutex);
2153         atomic_set(&fs_info->balance_running, 0);
2154         atomic_set(&fs_info->balance_pause_req, 0);
2155         atomic_set(&fs_info->balance_cancel_req, 0);
2156         fs_info->balance_ctl = NULL;
2157         init_waitqueue_head(&fs_info->balance_wait_q);
2158
2159         sb->s_blocksize = 4096;
2160         sb->s_blocksize_bits = blksize_bits(4096);
2161         sb->s_bdi = &fs_info->bdi;
2162
2163         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2164         set_nlink(fs_info->btree_inode, 1);
2165         /*
2166          * we set the i_size on the btree inode to the max possible int.
2167          * the real end of the address space is determined by all of
2168          * the devices in the system
2169          */
2170         fs_info->btree_inode->i_size = OFFSET_MAX;
2171         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2172         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2173
2174         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2175         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2176                              fs_info->btree_inode->i_mapping);
2177         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2178         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2179
2180         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2181
2182         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2183         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2184                sizeof(struct btrfs_key));
2185         set_bit(BTRFS_INODE_DUMMY,
2186                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2187         insert_inode_hash(fs_info->btree_inode);
2188
2189         spin_lock_init(&fs_info->block_group_cache_lock);
2190         fs_info->block_group_cache_tree = RB_ROOT;
2191         fs_info->first_logical_byte = (u64)-1;
2192
2193         extent_io_tree_init(&fs_info->freed_extents[0],
2194                              fs_info->btree_inode->i_mapping);
2195         extent_io_tree_init(&fs_info->freed_extents[1],
2196                              fs_info->btree_inode->i_mapping);
2197         fs_info->pinned_extents = &fs_info->freed_extents[0];
2198         fs_info->do_barriers = 1;
2199
2200
2201         mutex_init(&fs_info->ordered_operations_mutex);
2202         mutex_init(&fs_info->tree_log_mutex);
2203         mutex_init(&fs_info->chunk_mutex);
2204         mutex_init(&fs_info->transaction_kthread_mutex);
2205         mutex_init(&fs_info->cleaner_mutex);
2206         mutex_init(&fs_info->volume_mutex);
2207         init_rwsem(&fs_info->extent_commit_sem);
2208         init_rwsem(&fs_info->cleanup_work_sem);
2209         init_rwsem(&fs_info->subvol_sem);
2210         fs_info->dev_replace.lock_owner = 0;
2211         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2212         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2213         mutex_init(&fs_info->dev_replace.lock_management_lock);
2214         mutex_init(&fs_info->dev_replace.lock);
2215
2216         spin_lock_init(&fs_info->qgroup_lock);
2217         mutex_init(&fs_info->qgroup_ioctl_lock);
2218         fs_info->qgroup_tree = RB_ROOT;
2219         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2220         fs_info->qgroup_seq = 1;
2221         fs_info->quota_enabled = 0;
2222         fs_info->pending_quota_state = 0;
2223
2224         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2225         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2226
2227         init_waitqueue_head(&fs_info->transaction_throttle);
2228         init_waitqueue_head(&fs_info->transaction_wait);
2229         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2230         init_waitqueue_head(&fs_info->async_submit_wait);
2231
2232         ret = btrfs_alloc_stripe_hash_table(fs_info);
2233         if (ret) {
2234                 err = ret;
2235                 goto fail_alloc;
2236         }
2237
2238         __setup_root(4096, 4096, 4096, 4096, tree_root,
2239                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2240
2241         invalidate_bdev(fs_devices->latest_bdev);
2242         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2243         if (!bh) {
2244                 err = -EINVAL;
2245                 goto fail_alloc;
2246         }
2247
2248         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2249         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2250                sizeof(*fs_info->super_for_commit));
2251         brelse(bh);
2252
2253         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2254
2255         disk_super = fs_info->super_copy;
2256         if (!btrfs_super_root(disk_super))
2257                 goto fail_alloc;
2258
2259         /* check FS state, whether FS is broken. */
2260         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2261                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2262
2263         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2264         if (ret) {
2265                 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2266                 err = ret;
2267                 goto fail_alloc;
2268         }
2269
2270         /*
2271          * run through our array of backup supers and setup
2272          * our ring pointer to the oldest one
2273          */
2274         generation = btrfs_super_generation(disk_super);
2275         find_oldest_super_backup(fs_info, generation);
2276
2277         /*
2278          * In the long term, we'll store the compression type in the super
2279          * block, and it'll be used for per file compression control.
2280          */
2281         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2282
2283         ret = btrfs_parse_options(tree_root, options);
2284         if (ret) {
2285                 err = ret;
2286                 goto fail_alloc;
2287         }
2288
2289         features = btrfs_super_incompat_flags(disk_super) &
2290                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2291         if (features) {
2292                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2293                        "unsupported optional features (%Lx).\n",
2294                        (unsigned long long)features);
2295                 err = -EINVAL;
2296                 goto fail_alloc;
2297         }
2298
2299         if (btrfs_super_leafsize(disk_super) !=
2300             btrfs_super_nodesize(disk_super)) {
2301                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2302                        "blocksizes don't match.  node %d leaf %d\n",
2303                        btrfs_super_nodesize(disk_super),
2304                        btrfs_super_leafsize(disk_super));
2305                 err = -EINVAL;
2306                 goto fail_alloc;
2307         }
2308         if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2309                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2310                        "blocksize (%d) was too large\n",
2311                        btrfs_super_leafsize(disk_super));
2312                 err = -EINVAL;
2313                 goto fail_alloc;
2314         }
2315
2316         features = btrfs_super_incompat_flags(disk_super);
2317         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2318         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2319                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2320
2321         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2322                 printk(KERN_ERR "btrfs: has skinny extents\n");
2323
2324         /*
2325          * flag our filesystem as having big metadata blocks if
2326          * they are bigger than the page size
2327          */
2328         if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2329                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2330                         printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2331                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2332         }
2333
2334         nodesize = btrfs_super_nodesize(disk_super);
2335         leafsize = btrfs_super_leafsize(disk_super);
2336         sectorsize = btrfs_super_sectorsize(disk_super);
2337         stripesize = btrfs_super_stripesize(disk_super);
2338         fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2339         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2340
2341         /*
2342          * mixed block groups end up with duplicate but slightly offset
2343          * extent buffers for the same range.  It leads to corruptions
2344          */
2345         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2346             (sectorsize != leafsize)) {
2347                 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2348                                 "are not allowed for mixed block groups on %s\n",
2349                                 sb->s_id);
2350                 goto fail_alloc;
2351         }
2352
2353         /*
2354          * Needn't use the lock because there is no other task which will
2355          * update the flag.
2356          */
2357         btrfs_set_super_incompat_flags(disk_super, features);
2358
2359         features = btrfs_super_compat_ro_flags(disk_super) &
2360                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2361         if (!(sb->s_flags & MS_RDONLY) && features) {
2362                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2363                        "unsupported option features (%Lx).\n",
2364                        (unsigned long long)features);
2365                 err = -EINVAL;
2366                 goto fail_alloc;
2367         }
2368
2369         btrfs_init_workers(&fs_info->generic_worker,
2370                            "genwork", 1, NULL);
2371
2372         btrfs_init_workers(&fs_info->workers, "worker",
2373                            fs_info->thread_pool_size,
2374                            &fs_info->generic_worker);
2375
2376         btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2377                            fs_info->thread_pool_size,
2378                            &fs_info->generic_worker);
2379
2380         btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2381                            fs_info->thread_pool_size,
2382                            &fs_info->generic_worker);
2383
2384         btrfs_init_workers(&fs_info->submit_workers, "submit",
2385                            min_t(u64, fs_devices->num_devices,
2386                            fs_info->thread_pool_size),
2387                            &fs_info->generic_worker);
2388
2389         btrfs_init_workers(&fs_info->caching_workers, "cache",
2390                            2, &fs_info->generic_worker);
2391
2392         /* a higher idle thresh on the submit workers makes it much more
2393          * likely that bios will be send down in a sane order to the
2394          * devices
2395          */
2396         fs_info->submit_workers.idle_thresh = 64;
2397
2398         fs_info->workers.idle_thresh = 16;
2399         fs_info->workers.ordered = 1;
2400
2401         fs_info->delalloc_workers.idle_thresh = 2;
2402         fs_info->delalloc_workers.ordered = 1;
2403
2404         btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2405                            &fs_info->generic_worker);
2406         btrfs_init_workers(&fs_info->endio_workers, "endio",
2407                            fs_info->thread_pool_size,
2408                            &fs_info->generic_worker);
2409         btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2410                            fs_info->thread_pool_size,
2411                            &fs_info->generic_worker);
2412         btrfs_init_workers(&fs_info->endio_meta_write_workers,
2413                            "endio-meta-write", fs_info->thread_pool_size,
2414                            &fs_info->generic_worker);
2415         btrfs_init_workers(&fs_info->endio_raid56_workers,
2416                            "endio-raid56", fs_info->thread_pool_size,
2417                            &fs_info->generic_worker);
2418         btrfs_init_workers(&fs_info->rmw_workers,
2419                            "rmw", fs_info->thread_pool_size,
2420                            &fs_info->generic_worker);
2421         btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2422                            fs_info->thread_pool_size,
2423                            &fs_info->generic_worker);
2424         btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2425                            1, &fs_info->generic_worker);
2426         btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2427                            fs_info->thread_pool_size,
2428                            &fs_info->generic_worker);
2429         btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2430                            fs_info->thread_pool_size,
2431                            &fs_info->generic_worker);
2432
2433         /*
2434          * endios are largely parallel and should have a very
2435          * low idle thresh
2436          */
2437         fs_info->endio_workers.idle_thresh = 4;
2438         fs_info->endio_meta_workers.idle_thresh = 4;
2439         fs_info->endio_raid56_workers.idle_thresh = 4;
2440         fs_info->rmw_workers.idle_thresh = 2;
2441
2442         fs_info->endio_write_workers.idle_thresh = 2;
2443         fs_info->endio_meta_write_workers.idle_thresh = 2;
2444         fs_info->readahead_workers.idle_thresh = 2;
2445
2446         /*
2447          * btrfs_start_workers can really only fail because of ENOMEM so just
2448          * return -ENOMEM if any of these fail.
2449          */
2450         ret = btrfs_start_workers(&fs_info->workers);
2451         ret |= btrfs_start_workers(&fs_info->generic_worker);
2452         ret |= btrfs_start_workers(&fs_info->submit_workers);
2453         ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2454         ret |= btrfs_start_workers(&fs_info->fixup_workers);
2455         ret |= btrfs_start_workers(&fs_info->endio_workers);
2456         ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2457         ret |= btrfs_start_workers(&fs_info->rmw_workers);
2458         ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
2459         ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2460         ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2461         ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2462         ret |= btrfs_start_workers(&fs_info->delayed_workers);
2463         ret |= btrfs_start_workers(&fs_info->caching_workers);
2464         ret |= btrfs_start_workers(&fs_info->readahead_workers);
2465         ret |= btrfs_start_workers(&fs_info->flush_workers);
2466         if (ret) {
2467                 err = -ENOMEM;
2468                 goto fail_sb_buffer;
2469         }
2470
2471         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2472         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2473                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2474
2475         tree_root->nodesize = nodesize;
2476         tree_root->leafsize = leafsize;
2477         tree_root->sectorsize = sectorsize;
2478         tree_root->stripesize = stripesize;
2479
2480         sb->s_blocksize = sectorsize;
2481         sb->s_blocksize_bits = blksize_bits(sectorsize);
2482
2483         if (disk_super->magic != cpu_to_le64(BTRFS_MAGIC)) {
2484                 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2485                 goto fail_sb_buffer;
2486         }
2487
2488         if (sectorsize != PAGE_SIZE) {
2489                 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2490                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2491                 goto fail_sb_buffer;
2492         }
2493
2494         mutex_lock(&fs_info->chunk_mutex);
2495         ret = btrfs_read_sys_array(tree_root);
2496         mutex_unlock(&fs_info->chunk_mutex);
2497         if (ret) {
2498                 printk(KERN_WARNING "btrfs: failed to read the system "
2499                        "array on %s\n", sb->s_id);
2500                 goto fail_sb_buffer;
2501         }
2502
2503         blocksize = btrfs_level_size(tree_root,
2504                                      btrfs_super_chunk_root_level(disk_super));
2505         generation = btrfs_super_chunk_root_generation(disk_super);
2506
2507         __setup_root(nodesize, leafsize, sectorsize, stripesize,
2508                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2509
2510         chunk_root->node = read_tree_block(chunk_root,
2511                                            btrfs_super_chunk_root(disk_super),
2512                                            blocksize, generation);
2513         BUG_ON(!chunk_root->node); /* -ENOMEM */
2514         if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2515                 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2516                        sb->s_id);
2517                 goto fail_tree_roots;
2518         }
2519         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2520         chunk_root->commit_root = btrfs_root_node(chunk_root);
2521
2522         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2523            (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2524            BTRFS_UUID_SIZE);
2525
2526         ret = btrfs_read_chunk_tree(chunk_root);
2527         if (ret) {
2528                 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2529                        sb->s_id);
2530                 goto fail_tree_roots;
2531         }
2532
2533         /*
2534          * keep the device that is marked to be the target device for the
2535          * dev_replace procedure
2536          */
2537         btrfs_close_extra_devices(fs_info, fs_devices, 0);
2538
2539         if (!fs_devices->latest_bdev) {
2540                 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2541                        sb->s_id);
2542                 goto fail_tree_roots;
2543         }
2544
2545 retry_root_backup:
2546         blocksize = btrfs_level_size(tree_root,
2547                                      btrfs_super_root_level(disk_super));
2548         generation = btrfs_super_generation(disk_super);
2549
2550         tree_root->node = read_tree_block(tree_root,
2551                                           btrfs_super_root(disk_super),
2552                                           blocksize, generation);
2553         if (!tree_root->node ||
2554             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2555                 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2556                        sb->s_id);
2557
2558                 goto recovery_tree_root;
2559         }
2560
2561         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2562         tree_root->commit_root = btrfs_root_node(tree_root);
2563
2564         ret = find_and_setup_root(tree_root, fs_info,
2565                                   BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2566         if (ret)
2567                 goto recovery_tree_root;
2568         extent_root->track_dirty = 1;
2569
2570         ret = find_and_setup_root(tree_root, fs_info,
2571                                   BTRFS_DEV_TREE_OBJECTID, dev_root);
2572         if (ret)
2573                 goto recovery_tree_root;
2574         dev_root->track_dirty = 1;
2575
2576         ret = find_and_setup_root(tree_root, fs_info,
2577                                   BTRFS_CSUM_TREE_OBJECTID, csum_root);
2578         if (ret)
2579                 goto recovery_tree_root;
2580         csum_root->track_dirty = 1;
2581
2582         ret = find_and_setup_root(tree_root, fs_info,
2583                                   BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2584         if (ret) {
2585                 kfree(quota_root);
2586                 quota_root = fs_info->quota_root = NULL;
2587         } else {
2588                 quota_root->track_dirty = 1;
2589                 fs_info->quota_enabled = 1;
2590                 fs_info->pending_quota_state = 1;
2591         }
2592
2593         fs_info->generation = generation;
2594         fs_info->last_trans_committed = generation;
2595
2596         ret = btrfs_recover_balance(fs_info);
2597         if (ret) {
2598                 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2599                 goto fail_block_groups;
2600         }
2601
2602         ret = btrfs_init_dev_stats(fs_info);
2603         if (ret) {
2604                 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2605                        ret);
2606                 goto fail_block_groups;
2607         }
2608
2609         ret = btrfs_init_dev_replace(fs_info);
2610         if (ret) {
2611                 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2612                 goto fail_block_groups;
2613         }
2614
2615         btrfs_close_extra_devices(fs_info, fs_devices, 1);
2616
2617         ret = btrfs_init_space_info(fs_info);
2618         if (ret) {
2619                 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2620                 goto fail_block_groups;
2621         }
2622
2623         ret = btrfs_read_block_groups(extent_root);
2624         if (ret) {
2625                 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2626                 goto fail_block_groups;
2627         }
2628         fs_info->num_tolerated_disk_barrier_failures =
2629                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2630         if (fs_info->fs_devices->missing_devices >
2631              fs_info->num_tolerated_disk_barrier_failures &&
2632             !(sb->s_flags & MS_RDONLY)) {
2633                 printk(KERN_WARNING
2634                        "Btrfs: too many missing devices, writeable mount is not allowed\n");
2635                 goto fail_block_groups;
2636         }
2637
2638         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2639                                                "btrfs-cleaner");
2640         if (IS_ERR(fs_info->cleaner_kthread))
2641                 goto fail_block_groups;
2642
2643         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2644                                                    tree_root,
2645                                                    "btrfs-transaction");
2646         if (IS_ERR(fs_info->transaction_kthread))
2647                 goto fail_cleaner;
2648
2649         if (!btrfs_test_opt(tree_root, SSD) &&
2650             !btrfs_test_opt(tree_root, NOSSD) &&
2651             !fs_info->fs_devices->rotating) {
2652                 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2653                        "mode\n");
2654                 btrfs_set_opt(fs_info->mount_opt, SSD);
2655         }
2656
2657 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2658         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2659                 ret = btrfsic_mount(tree_root, fs_devices,
2660                                     btrfs_test_opt(tree_root,
2661                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2662                                     1 : 0,
2663                                     fs_info->check_integrity_print_mask);
2664                 if (ret)
2665                         printk(KERN_WARNING "btrfs: failed to initialize"
2666                                " integrity check module %s\n", sb->s_id);
2667         }
2668 #endif
2669         ret = btrfs_read_qgroup_config(fs_info);
2670         if (ret)
2671                 goto fail_trans_kthread;
2672
2673         /* do not make disk changes in broken FS */
2674         if (btrfs_super_log_root(disk_super) != 0) {
2675                 u64 bytenr = btrfs_super_log_root(disk_super);
2676
2677                 if (fs_devices->rw_devices == 0) {
2678                         printk(KERN_WARNING "Btrfs log replay required "
2679                                "on RO media\n");
2680                         err = -EIO;
2681                         goto fail_qgroup;
2682                 }
2683                 blocksize =
2684                      btrfs_level_size(tree_root,
2685                                       btrfs_super_log_root_level(disk_super));
2686
2687                 log_tree_root = btrfs_alloc_root(fs_info);
2688                 if (!log_tree_root) {
2689                         err = -ENOMEM;
2690                         goto fail_qgroup;
2691                 }
2692
2693                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2694                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2695
2696                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2697                                                       blocksize,
2698                                                       generation + 1);
2699                 /* returns with log_tree_root freed on success */
2700                 ret = btrfs_recover_log_trees(log_tree_root);
2701                 if (ret) {
2702                         btrfs_error(tree_root->fs_info, ret,
2703                                     "Failed to recover log tree");
2704                         free_extent_buffer(log_tree_root->node);
2705                         kfree(log_tree_root);
2706                         goto fail_trans_kthread;
2707                 }
2708
2709                 if (sb->s_flags & MS_RDONLY) {
2710                         ret = btrfs_commit_super(tree_root);
2711                         if (ret)
2712                                 goto fail_trans_kthread;
2713                 }
2714         }
2715
2716         ret = btrfs_find_orphan_roots(tree_root);
2717         if (ret)
2718                 goto fail_trans_kthread;
2719
2720         if (!(sb->s_flags & MS_RDONLY)) {
2721                 ret = btrfs_cleanup_fs_roots(fs_info);
2722                 if (ret)
2723                         goto fail_trans_kthread;
2724
2725                 ret = btrfs_recover_relocation(tree_root);
2726                 if (ret < 0) {
2727                         printk(KERN_WARNING
2728                                "btrfs: failed to recover relocation\n");
2729                         err = -EINVAL;
2730                         goto fail_qgroup;
2731                 }
2732         }
2733
2734         location.objectid = BTRFS_FS_TREE_OBJECTID;
2735         location.type = BTRFS_ROOT_ITEM_KEY;
2736         location.offset = (u64)-1;
2737
2738         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2739         if (!fs_info->fs_root)
2740                 goto fail_qgroup;
2741         if (IS_ERR(fs_info->fs_root)) {
2742                 err = PTR_ERR(fs_info->fs_root);
2743                 goto fail_qgroup;
2744         }
2745
2746         if (sb->s_flags & MS_RDONLY)
2747                 return 0;
2748
2749         down_read(&fs_info->cleanup_work_sem);
2750         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2751             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2752                 up_read(&fs_info->cleanup_work_sem);
2753                 close_ctree(tree_root);
2754                 return ret;
2755         }
2756         up_read(&fs_info->cleanup_work_sem);
2757
2758         ret = btrfs_resume_balance_async(fs_info);
2759         if (ret) {
2760                 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2761                 close_ctree(tree_root);
2762                 return ret;
2763         }
2764
2765         ret = btrfs_resume_dev_replace_async(fs_info);
2766         if (ret) {
2767                 pr_warn("btrfs: failed to resume dev_replace\n");
2768                 close_ctree(tree_root);
2769                 return ret;
2770         }
2771
2772         return 0;
2773
2774 fail_qgroup:
2775         btrfs_free_qgroup_config(fs_info);
2776 fail_trans_kthread:
2777         kthread_stop(fs_info->transaction_kthread);
2778 fail_cleaner:
2779         kthread_stop(fs_info->cleaner_kthread);
2780
2781         /*
2782          * make sure we're done with the btree inode before we stop our
2783          * kthreads
2784          */
2785         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2786
2787 fail_block_groups:
2788         btrfs_free_block_groups(fs_info);
2789
2790 fail_tree_roots:
2791         free_root_pointers(fs_info, 1);
2792         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2793
2794 fail_sb_buffer:
2795         btrfs_stop_all_workers(fs_info);
2796 fail_alloc:
2797 fail_iput:
2798         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2799
2800         iput(fs_info->btree_inode);
2801 fail_delalloc_bytes:
2802         percpu_counter_destroy(&fs_info->delalloc_bytes);
2803 fail_dirty_metadata_bytes:
2804         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2805 fail_bdi:
2806         bdi_destroy(&fs_info->bdi);
2807 fail_srcu:
2808         cleanup_srcu_struct(&fs_info->subvol_srcu);
2809 fail:
2810         btrfs_free_stripe_hash_table(fs_info);
2811         btrfs_close_devices(fs_info->fs_devices);
2812         return err;
2813
2814 recovery_tree_root:
2815         if (!btrfs_test_opt(tree_root, RECOVERY))
2816                 goto fail_tree_roots;
2817
2818         free_root_pointers(fs_info, 0);
2819
2820         /* don't use the log in recovery mode, it won't be valid */
2821         btrfs_set_super_log_root(disk_super, 0);
2822
2823         /* we can't trust the free space cache either */
2824         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2825
2826         ret = next_root_backup(fs_info, fs_info->super_copy,
2827                                &num_backups_tried, &backup_index);
2828         if (ret == -1)
2829                 goto fail_block_groups;
2830         goto retry_root_backup;
2831 }
2832
2833 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2834 {
2835         if (uptodate) {
2836                 set_buffer_uptodate(bh);
2837         } else {
2838                 struct btrfs_device *device = (struct btrfs_device *)
2839                         bh->b_private;
2840
2841                 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2842                                           "I/O error on %s\n",
2843                                           rcu_str_deref(device->name));
2844                 /* note, we dont' set_buffer_write_io_error because we have
2845                  * our own ways of dealing with the IO errors
2846                  */
2847                 clear_buffer_uptodate(bh);
2848                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2849         }
2850         unlock_buffer(bh);
2851         put_bh(bh);
2852 }
2853
2854 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2855 {
2856         struct buffer_head *bh;
2857         struct buffer_head *latest = NULL;
2858         struct btrfs_super_block *super;
2859         int i;
2860         u64 transid = 0;
2861         u64 bytenr;
2862
2863         /* we would like to check all the supers, but that would make
2864          * a btrfs mount succeed after a mkfs from a different FS.
2865          * So, we need to add a special mount option to scan for
2866          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2867          */
2868         for (i = 0; i < 1; i++) {
2869                 bytenr = btrfs_sb_offset(i);
2870                 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2871                         break;
2872                 bh = __bread(bdev, bytenr / 4096, 4096);
2873                 if (!bh)
2874                         continue;
2875
2876                 super = (struct btrfs_super_block *)bh->b_data;
2877                 if (btrfs_super_bytenr(super) != bytenr ||
2878                     super->magic != cpu_to_le64(BTRFS_MAGIC)) {
2879                         brelse(bh);
2880                         continue;
2881                 }
2882
2883                 if (!latest || btrfs_super_generation(super) > transid) {
2884                         brelse(latest);
2885                         latest = bh;
2886                         transid = btrfs_super_generation(super);
2887                 } else {
2888                         brelse(bh);
2889                 }
2890         }
2891         return latest;
2892 }
2893
2894 /*
2895  * this should be called twice, once with wait == 0 and
2896  * once with wait == 1.  When wait == 0 is done, all the buffer heads
2897  * we write are pinned.
2898  *
2899  * They are released when wait == 1 is done.
2900  * max_mirrors must be the same for both runs, and it indicates how
2901  * many supers on this one device should be written.
2902  *
2903  * max_mirrors == 0 means to write them all.
2904  */
2905 static int write_dev_supers(struct btrfs_device *device,
2906                             struct btrfs_super_block *sb,
2907                             int do_barriers, int wait, int max_mirrors)
2908 {
2909         struct buffer_head *bh;
2910         int i;
2911         int ret;
2912         int errors = 0;
2913         u32 crc;
2914         u64 bytenr;
2915
2916         if (max_mirrors == 0)
2917                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2918
2919         for (i = 0; i < max_mirrors; i++) {
2920                 bytenr = btrfs_sb_offset(i);
2921                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2922                         break;
2923
2924                 if (wait) {
2925                         bh = __find_get_block(device->bdev, bytenr / 4096,
2926                                               BTRFS_SUPER_INFO_SIZE);
2927                         BUG_ON(!bh);
2928                         wait_on_buffer(bh);
2929                         if (!buffer_uptodate(bh))
2930                                 errors++;
2931
2932                         /* drop our reference */
2933                         brelse(bh);
2934
2935                         /* drop the reference from the wait == 0 run */
2936                         brelse(bh);
2937                         continue;
2938                 } else {
2939                         btrfs_set_super_bytenr(sb, bytenr);
2940
2941                         crc = ~(u32)0;
2942                         crc = btrfs_csum_data((char *)sb +
2943                                               BTRFS_CSUM_SIZE, crc,
2944                                               BTRFS_SUPER_INFO_SIZE -
2945                                               BTRFS_CSUM_SIZE);
2946                         btrfs_csum_final(crc, sb->csum);
2947
2948                         /*
2949                          * one reference for us, and we leave it for the
2950                          * caller
2951                          */
2952                         bh = __getblk(device->bdev, bytenr / 4096,
2953                                       BTRFS_SUPER_INFO_SIZE);
2954                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2955
2956                         /* one reference for submit_bh */
2957                         get_bh(bh);
2958
2959                         set_buffer_uptodate(bh);
2960                         lock_buffer(bh);
2961                         bh->b_end_io = btrfs_end_buffer_write_sync;
2962                         bh->b_private = device;
2963                 }
2964
2965                 /*
2966                  * we fua the first super.  The others we allow
2967                  * to go down lazy.
2968                  */
2969                 ret = btrfsic_submit_bh(WRITE_FUA, bh);
2970                 if (ret)
2971                         errors++;
2972         }
2973         return errors < i ? 0 : -1;
2974 }
2975
2976 /*
2977  * endio for the write_dev_flush, this will wake anyone waiting
2978  * for the barrier when it is done
2979  */
2980 static void btrfs_end_empty_barrier(struct bio *bio, int err)
2981 {
2982         if (err) {
2983                 if (err == -EOPNOTSUPP)
2984                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2985                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2986         }
2987         if (bio->bi_private)
2988                 complete(bio->bi_private);
2989         bio_put(bio);
2990 }
2991
2992 /*
2993  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
2994  * sent down.  With wait == 1, it waits for the previous flush.
2995  *
2996  * any device where the flush fails with eopnotsupp are flagged as not-barrier
2997  * capable
2998  */
2999 static int write_dev_flush(struct btrfs_device *device, int wait)
3000 {
3001         struct bio *bio;
3002         int ret = 0;
3003
3004         if (device->nobarriers)
3005                 return 0;
3006
3007         if (wait) {
3008                 bio = device->flush_bio;
3009                 if (!bio)
3010                         return 0;
3011
3012                 wait_for_completion(&device->flush_wait);
3013
3014                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3015                         printk_in_rcu("btrfs: disabling barriers on dev %s\n",
3016                                       rcu_str_deref(device->name));
3017                         device->nobarriers = 1;
3018                 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3019                         ret = -EIO;
3020                         btrfs_dev_stat_inc_and_print(device,
3021                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3022                 }
3023
3024                 /* drop the reference from the wait == 0 run */
3025                 bio_put(bio);
3026                 device->flush_bio = NULL;
3027
3028                 return ret;
3029         }
3030
3031         /*
3032          * one reference for us, and we leave it for the
3033          * caller
3034          */
3035         device->flush_bio = NULL;
3036         bio = bio_alloc(GFP_NOFS, 0);
3037         if (!bio)
3038                 return -ENOMEM;
3039
3040         bio->bi_end_io = btrfs_end_empty_barrier;
3041         bio->bi_bdev = device->bdev;
3042         init_completion(&device->flush_wait);
3043         bio->bi_private = &device->flush_wait;
3044         device->flush_bio = bio;
3045
3046         bio_get(bio);
3047         btrfsic_submit_bio(WRITE_FLUSH, bio);
3048
3049         return 0;
3050 }
3051
3052 /*
3053  * send an empty flush down to each device in parallel,
3054  * then wait for them
3055  */
3056 static int barrier_all_devices(struct btrfs_fs_info *info)
3057 {
3058         struct list_head *head;
3059         struct btrfs_device *dev;
3060         int errors_send = 0;
3061         int errors_wait = 0;
3062         int ret;
3063
3064         /* send down all the barriers */
3065         head = &info->fs_devices->devices;
3066         list_for_each_entry_rcu(dev, head, dev_list) {
3067                 if (!dev->bdev) {
3068                         errors_send++;
3069                         continue;
3070                 }
3071                 if (!dev->in_fs_metadata || !dev->writeable)
3072                         continue;
3073
3074                 ret = write_dev_flush(dev, 0);
3075                 if (ret)
3076                         errors_send++;
3077         }
3078
3079         /* wait for all the barriers */
3080         list_for_each_entry_rcu(dev, head, dev_list) {
3081                 if (!dev->bdev) {
3082                         errors_wait++;
3083                         continue;
3084                 }
3085                 if (!dev->in_fs_metadata || !dev->writeable)
3086                         continue;
3087
3088                 ret = write_dev_flush(dev, 1);
3089                 if (ret)
3090                         errors_wait++;
3091         }
3092         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3093             errors_wait > info->num_tolerated_disk_barrier_failures)
3094                 return -EIO;
3095         return 0;
3096 }
3097
3098 int btrfs_calc_num_tolerated_disk_barrier_failures(
3099         struct btrfs_fs_info *fs_info)
3100 {
3101         struct btrfs_ioctl_space_info space;
3102         struct btrfs_space_info *sinfo;
3103         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3104                        BTRFS_BLOCK_GROUP_SYSTEM,
3105                        BTRFS_BLOCK_GROUP_METADATA,
3106                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3107         int num_types = 4;
3108         int i;
3109         int c;
3110         int num_tolerated_disk_barrier_failures =
3111                 (int)fs_info->fs_devices->num_devices;
3112
3113         for (i = 0; i < num_types; i++) {
3114                 struct btrfs_space_info *tmp;
3115
3116                 sinfo = NULL;
3117                 rcu_read_lock();
3118                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3119                         if (tmp->flags == types[i]) {
3120                                 sinfo = tmp;
3121                                 break;
3122                         }
3123                 }
3124                 rcu_read_unlock();
3125
3126                 if (!sinfo)
3127                         continue;
3128
3129                 down_read(&sinfo->groups_sem);
3130                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3131                         if (!list_empty(&sinfo->block_groups[c])) {
3132                                 u64 flags;
3133
3134                                 btrfs_get_block_group_info(
3135                                         &sinfo->block_groups[c], &space);
3136                                 if (space.total_bytes == 0 ||
3137                                     space.used_bytes == 0)
3138                                         continue;
3139                                 flags = space.flags;
3140                                 /*
3141                                  * return
3142                                  * 0: if dup, single or RAID0 is configured for
3143                                  *    any of metadata, system or data, else
3144                                  * 1: if RAID5 is configured, or if RAID1 or
3145                                  *    RAID10 is configured and only two mirrors
3146                                  *    are used, else
3147                                  * 2: if RAID6 is configured, else
3148                                  * num_mirrors - 1: if RAID1 or RAID10 is
3149                                  *                  configured and more than
3150                                  *                  2 mirrors are used.
3151                                  */
3152                                 if (num_tolerated_disk_barrier_failures > 0 &&
3153                                     ((flags & (BTRFS_BLOCK_GROUP_DUP |
3154                                                BTRFS_BLOCK_GROUP_RAID0)) ||
3155                                      ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3156                                       == 0)))
3157                                         num_tolerated_disk_barrier_failures = 0;
3158                                 else if (num_tolerated_disk_barrier_failures > 1) {
3159                                         if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3160                                             BTRFS_BLOCK_GROUP_RAID5 |
3161                                             BTRFS_BLOCK_GROUP_RAID10)) {
3162                                                 num_tolerated_disk_barrier_failures = 1;
3163                                         } else if (flags &
3164                                                    BTRFS_BLOCK_GROUP_RAID5) {
3165                                                 num_tolerated_disk_barrier_failures = 2;
3166                                         }
3167                                 }
3168                         }
3169                 }
3170                 up_read(&sinfo->groups_sem);
3171         }
3172
3173         return num_tolerated_disk_barrier_failures;
3174 }
3175
3176 int write_all_supers(struct btrfs_root *root, int max_mirrors)
3177 {
3178         struct list_head *head;
3179         struct btrfs_device *dev;
3180         struct btrfs_super_block *sb;
3181         struct btrfs_dev_item *dev_item;
3182         int ret;
3183         int do_barriers;
3184         int max_errors;
3185         int total_errors = 0;
3186         u64 flags;
3187
3188         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3189         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3190         backup_super_roots(root->fs_info);
3191
3192         sb = root->fs_info->super_for_commit;
3193         dev_item = &sb->dev_item;
3194
3195         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3196         head = &root->fs_info->fs_devices->devices;
3197
3198         if (do_barriers) {
3199                 ret = barrier_all_devices(root->fs_info);
3200                 if (ret) {
3201                         mutex_unlock(
3202                                 &root->fs_info->fs_devices->device_list_mutex);
3203                         btrfs_error(root->fs_info, ret,
3204                                     "errors while submitting device barriers.");
3205                         return ret;
3206                 }
3207         }
3208
3209         list_for_each_entry_rcu(dev, head, dev_list) {
3210                 if (!dev->bdev) {
3211                         total_errors++;
3212                         continue;
3213                 }
3214                 if (!dev->in_fs_metadata || !dev->writeable)
3215                         continue;
3216
3217                 btrfs_set_stack_device_generation(dev_item, 0);
3218                 btrfs_set_stack_device_type(dev_item, dev->type);
3219                 btrfs_set_stack_device_id(dev_item, dev->devid);
3220                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3221                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3222                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3223                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3224                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3225                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3226                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3227
3228                 flags = btrfs_super_flags(sb);
3229                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3230
3231                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3232                 if (ret)
3233                         total_errors++;
3234         }
3235         if (total_errors > max_errors) {
3236                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3237                        total_errors);
3238
3239                 /* This shouldn't happen. FUA is masked off if unsupported */
3240                 BUG();
3241         }
3242
3243         total_errors = 0;
3244         list_for_each_entry_rcu(dev, head, dev_list) {
3245                 if (!dev->bdev)
3246                         continue;
3247                 if (!dev->in_fs_metadata || !dev->writeable)
3248                         continue;
3249
3250                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3251                 if (ret)
3252                         total_errors++;
3253         }
3254         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3255         if (total_errors > max_errors) {
3256                 btrfs_error(root->fs_info, -EIO,
3257                             "%d errors while writing supers", total_errors);
3258                 return -EIO;
3259         }
3260         return 0;
3261 }
3262
3263 int write_ctree_super(struct btrfs_trans_handle *trans,
3264                       struct btrfs_root *root, int max_mirrors)
3265 {
3266         int ret;
3267
3268         ret = write_all_supers(root, max_mirrors);
3269         return ret;
3270 }
3271
3272 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3273 {
3274         spin_lock(&fs_info->fs_roots_radix_lock);
3275         radix_tree_delete(&fs_info->fs_roots_radix,
3276                           (unsigned long)root->root_key.objectid);
3277         spin_unlock(&fs_info->fs_roots_radix_lock);
3278
3279         if (btrfs_root_refs(&root->root_item) == 0)
3280                 synchronize_srcu(&fs_info->subvol_srcu);
3281
3282         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3283                 btrfs_free_log(NULL, root);
3284                 btrfs_free_log_root_tree(NULL, fs_info);
3285         }
3286
3287         __btrfs_remove_free_space_cache(root->free_ino_pinned);
3288         __btrfs_remove_free_space_cache(root->free_ino_ctl);
3289         free_fs_root(root);
3290 }
3291
3292 static void free_fs_root(struct btrfs_root *root)
3293 {
3294         iput(root->cache_inode);
3295         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3296         if (root->anon_dev)
3297                 free_anon_bdev(root->anon_dev);
3298         free_extent_buffer(root->node);
3299         free_extent_buffer(root->commit_root);
3300         kfree(root->free_ino_ctl);
3301         kfree(root->free_ino_pinned);
3302         kfree(root->name);
3303         kfree(root);
3304 }
3305
3306 static void del_fs_roots(struct btrfs_fs_info *fs_info)
3307 {
3308         int ret;
3309         struct btrfs_root *gang[8];
3310         int i;
3311
3312         while (!list_empty(&fs_info->dead_roots)) {
3313                 gang[0] = list_entry(fs_info->dead_roots.next,
3314                                      struct btrfs_root, root_list);
3315                 list_del(&gang[0]->root_list);
3316
3317                 if (gang[0]->in_radix) {
3318                         btrfs_free_fs_root(fs_info, gang[0]);
3319                 } else {
3320                         free_extent_buffer(gang[0]->node);
3321                         free_extent_buffer(gang[0]->commit_root);
3322                         kfree(gang[0]);
3323                 }
3324         }
3325
3326         while (1) {
3327                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3328                                              (void **)gang, 0,
3329                                              ARRAY_SIZE(gang));
3330                 if (!ret)
3331                         break;
3332                 for (i = 0; i < ret; i++)
3333                         btrfs_free_fs_root(fs_info, gang[i]);
3334         }
3335 }
3336
3337 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3338 {
3339         u64 root_objectid = 0;
3340         struct btrfs_root *gang[8];
3341         int i;
3342         int ret;
3343
3344         while (1) {
3345                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3346                                              (void **)gang, root_objectid,
3347                                              ARRAY_SIZE(gang));
3348                 if (!ret)
3349                         break;
3350
3351                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3352                 for (i = 0; i < ret; i++) {
3353                         int err;
3354
3355                         root_objectid = gang[i]->root_key.objectid;
3356                         err = btrfs_orphan_cleanup(gang[i]);
3357                         if (err)
3358                                 return err;
3359                 }
3360                 root_objectid++;
3361         }
3362         return 0;
3363 }
3364
3365 int btrfs_commit_super(struct btrfs_root *root)
3366 {
3367         struct btrfs_trans_handle *trans;
3368         int ret;
3369
3370         mutex_lock(&root->fs_info->cleaner_mutex);
3371         btrfs_run_delayed_iputs(root);
3372         mutex_unlock(&root->fs_info->cleaner_mutex);
3373         wake_up_process(root->fs_info->cleaner_kthread);
3374
3375         /* wait until ongoing cleanup work done */
3376         down_write(&root->fs_info->cleanup_work_sem);
3377         up_write(&root->fs_info->cleanup_work_sem);
3378
3379         trans = btrfs_join_transaction(root);
3380         if (IS_ERR(trans))
3381                 return PTR_ERR(trans);
3382         ret = btrfs_commit_transaction(trans, root);
3383         if (ret)
3384                 return ret;
3385         /* run commit again to drop the original snapshot */
3386         trans = btrfs_join_transaction(root);
3387         if (IS_ERR(trans))
3388                 return PTR_ERR(trans);
3389         ret = btrfs_commit_transaction(trans, root);
3390         if (ret)
3391                 return ret;
3392         ret = btrfs_write_and_wait_transaction(NULL, root);
3393         if (ret) {
3394                 btrfs_error(root->fs_info, ret,
3395                             "Failed to sync btree inode to disk.");
3396                 return ret;
3397         }
3398
3399         ret = write_ctree_super(NULL, root, 0);
3400         return ret;
3401 }
3402
3403 int close_ctree(struct btrfs_root *root)
3404 {
3405         struct btrfs_fs_info *fs_info = root->fs_info;
3406         int ret;
3407
3408         fs_info->closing = 1;
3409         smp_mb();
3410
3411         /* pause restriper - we want to resume on mount */
3412         btrfs_pause_balance(fs_info);
3413
3414         btrfs_dev_replace_suspend_for_unmount(fs_info);
3415
3416         btrfs_scrub_cancel(fs_info);
3417
3418         /* wait for any defraggers to finish */
3419         wait_event(fs_info->transaction_wait,
3420                    (atomic_read(&fs_info->defrag_running) == 0));
3421
3422         /* clear out the rbtree of defraggable inodes */
3423         btrfs_cleanup_defrag_inodes(fs_info);
3424
3425         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3426                 ret = btrfs_commit_super(root);
3427                 if (ret)
3428                         printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3429         }
3430
3431         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3432                 btrfs_error_commit_super(root);
3433
3434         btrfs_put_block_group_cache(fs_info);
3435
3436         kthread_stop(fs_info->transaction_kthread);
3437         kthread_stop(fs_info->cleaner_kthread);
3438
3439         fs_info->closing = 2;
3440         smp_mb();
3441
3442         btrfs_free_qgroup_config(root->fs_info);
3443
3444         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3445                 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
3446                        percpu_counter_sum(&fs_info->delalloc_bytes));
3447         }
3448
3449         free_root_pointers(fs_info, 1);
3450
3451         btrfs_free_block_groups(fs_info);
3452
3453         del_fs_roots(fs_info);
3454
3455         iput(fs_info->btree_inode);
3456
3457         btrfs_stop_all_workers(fs_info);
3458
3459 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3460         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3461                 btrfsic_unmount(root, fs_info->fs_devices);
3462 #endif
3463
3464         btrfs_close_devices(fs_info->fs_devices);
3465         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3466
3467         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3468         percpu_counter_destroy(&fs_info->delalloc_bytes);
3469         bdi_destroy(&fs_info->bdi);
3470         cleanup_srcu_struct(&fs_info->subvol_srcu);
3471
3472         btrfs_free_stripe_hash_table(fs_info);
3473
3474         return 0;
3475 }
3476
3477 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3478                           int atomic)
3479 {
3480         int ret;
3481         struct inode *btree_inode = buf->pages[0]->mapping->host;
3482
3483         ret = extent_buffer_uptodate(buf);
3484         if (!ret)
3485                 return ret;
3486
3487         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3488                                     parent_transid, atomic);
3489         if (ret == -EAGAIN)
3490                 return ret;
3491         return !ret;
3492 }
3493
3494 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3495 {
3496         return set_extent_buffer_uptodate(buf);
3497 }
3498
3499 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3500 {
3501         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3502         u64 transid = btrfs_header_generation(buf);
3503         int was_dirty;
3504
3505         btrfs_assert_tree_locked(buf);
3506         if (transid != root->fs_info->generation)
3507                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3508                        "found %llu running %llu\n",
3509                         (unsigned long long)buf->start,
3510                         (unsigned long long)transid,
3511                         (unsigned long long)root->fs_info->generation);
3512         was_dirty = set_extent_buffer_dirty(buf);
3513         if (!was_dirty)
3514                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3515                                      buf->len,
3516                                      root->fs_info->dirty_metadata_batch);
3517 }
3518
3519 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3520                                         int flush_delayed)
3521 {
3522         /*
3523          * looks as though older kernels can get into trouble with
3524          * this code, they end up stuck in balance_dirty_pages forever
3525          */
3526         int ret;
3527
3528         if (current->flags & PF_MEMALLOC)
3529                 return;
3530
3531         if (flush_delayed)
3532                 btrfs_balance_delayed_items(root);
3533
3534         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3535                                      BTRFS_DIRTY_METADATA_THRESH);
3536         if (ret > 0) {
3537                 balance_dirty_pages_ratelimited(
3538                                    root->fs_info->btree_inode->i_mapping);
3539         }
3540         return;
3541 }
3542
3543 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3544 {
3545         __btrfs_btree_balance_dirty(root, 1);
3546 }
3547
3548 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3549 {
3550         __btrfs_btree_balance_dirty(root, 0);
3551 }
3552
3553 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3554 {
3555         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3556         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3557 }
3558
3559 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3560                               int read_only)
3561 {
3562         if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3563                 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3564                 return -EINVAL;
3565         }
3566
3567         if (read_only)
3568                 return 0;
3569
3570         return 0;
3571 }
3572
3573 void btrfs_error_commit_super(struct btrfs_root *root)
3574 {
3575         mutex_lock(&root->fs_info->cleaner_mutex);
3576         btrfs_run_delayed_iputs(root);
3577         mutex_unlock(&root->fs_info->cleaner_mutex);
3578
3579         down_write(&root->fs_info->cleanup_work_sem);
3580         up_write(&root->fs_info->cleanup_work_sem);
3581
3582         /* cleanup FS via transaction */
3583         btrfs_cleanup_transaction(root);
3584 }
3585
3586 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3587                                              struct btrfs_root *root)
3588 {
3589         struct btrfs_inode *btrfs_inode;
3590         struct list_head splice;
3591
3592         INIT_LIST_HEAD(&splice);
3593
3594         mutex_lock(&root->fs_info->ordered_operations_mutex);
3595         spin_lock(&root->fs_info->ordered_extent_lock);
3596
3597         list_splice_init(&t->ordered_operations, &splice);
3598         while (!list_empty(&splice)) {
3599                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3600                                          ordered_operations);
3601
3602                 list_del_init(&btrfs_inode->ordered_operations);
3603
3604                 btrfs_invalidate_inodes(btrfs_inode->root);
3605         }
3606
3607         spin_unlock(&root->fs_info->ordered_extent_lock);
3608         mutex_unlock(&root->fs_info->ordered_operations_mutex);
3609 }
3610
3611 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3612 {
3613         struct btrfs_ordered_extent *ordered;
3614
3615         spin_lock(&root->fs_info->ordered_extent_lock);
3616         /*
3617          * This will just short circuit the ordered completion stuff which will
3618          * make sure the ordered extent gets properly cleaned up.
3619          */
3620         list_for_each_entry(ordered, &root->fs_info->ordered_extents,
3621                             root_extent_list)
3622                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3623         spin_unlock(&root->fs_info->ordered_extent_lock);
3624 }
3625
3626 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3627                                struct btrfs_root *root)
3628 {
3629         struct rb_node *node;
3630         struct btrfs_delayed_ref_root *delayed_refs;
3631         struct btrfs_delayed_ref_node *ref;
3632         int ret = 0;
3633
3634         delayed_refs = &trans->delayed_refs;
3635
3636         spin_lock(&delayed_refs->lock);
3637         if (delayed_refs->num_entries == 0) {
3638                 spin_unlock(&delayed_refs->lock);
3639                 printk(KERN_INFO "delayed_refs has NO entry\n");
3640                 return ret;
3641         }
3642
3643         while ((node = rb_first(&delayed_refs->root)) != NULL) {
3644                 struct btrfs_delayed_ref_head *head = NULL;
3645
3646                 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3647                 atomic_set(&ref->refs, 1);
3648                 if (btrfs_delayed_ref_is_head(ref)) {
3649
3650                         head = btrfs_delayed_node_to_head(ref);
3651                         if (!mutex_trylock(&head->mutex)) {
3652                                 atomic_inc(&ref->refs);
3653                                 spin_unlock(&delayed_refs->lock);
3654
3655                                 /* Need to wait for the delayed ref to run */
3656                                 mutex_lock(&head->mutex);
3657                                 mutex_unlock(&head->mutex);
3658                                 btrfs_put_delayed_ref(ref);
3659
3660                                 spin_lock(&delayed_refs->lock);
3661                                 continue;
3662                         }
3663
3664                         btrfs_free_delayed_extent_op(head->extent_op);
3665                         delayed_refs->num_heads--;
3666                         if (list_empty(&head->cluster))
3667                                 delayed_refs->num_heads_ready--;
3668                         list_del_init(&head->cluster);
3669                 }
3670
3671                 ref->in_tree = 0;
3672                 rb_erase(&ref->rb_node, &delayed_refs->root);
3673                 delayed_refs->num_entries--;
3674                 if (head)
3675                         mutex_unlock(&head->mutex);
3676                 spin_unlock(&delayed_refs->lock);
3677                 btrfs_put_delayed_ref(ref);
3678
3679                 cond_resched();
3680                 spin_lock(&delayed_refs->lock);
3681         }
3682
3683         spin_unlock(&delayed_refs->lock);
3684
3685         return ret;
3686 }
3687
3688 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
3689 {
3690         struct btrfs_pending_snapshot *snapshot;
3691         struct list_head splice;
3692
3693         INIT_LIST_HEAD(&splice);
3694
3695         list_splice_init(&t->pending_snapshots, &splice);
3696
3697         while (!list_empty(&splice)) {
3698                 snapshot = list_entry(splice.next,
3699                                       struct btrfs_pending_snapshot,
3700                                       list);
3701                 snapshot->error = -ECANCELED;
3702                 list_del_init(&snapshot->list);
3703         }
3704 }
3705
3706 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3707 {
3708         struct btrfs_inode *btrfs_inode;
3709         struct list_head splice;
3710
3711         INIT_LIST_HEAD(&splice);
3712
3713         spin_lock(&root->fs_info->delalloc_lock);
3714         list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3715
3716         while (!list_empty(&splice)) {
3717                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3718                                     delalloc_inodes);
3719
3720                 list_del_init(&btrfs_inode->delalloc_inodes);
3721                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3722                           &btrfs_inode->runtime_flags);
3723
3724                 btrfs_invalidate_inodes(btrfs_inode->root);
3725         }
3726
3727         spin_unlock(&root->fs_info->delalloc_lock);
3728 }
3729
3730 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3731                                         struct extent_io_tree *dirty_pages,
3732                                         int mark)
3733 {
3734         int ret;
3735         struct page *page;
3736         struct inode *btree_inode = root->fs_info->btree_inode;
3737         struct extent_buffer *eb;
3738         u64 start = 0;
3739         u64 end;
3740         u64 offset;
3741         unsigned long index;
3742
3743         while (1) {
3744                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3745                                             mark, NULL);
3746                 if (ret)
3747                         break;
3748
3749                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3750                 while (start <= end) {
3751                         index = start >> PAGE_CACHE_SHIFT;
3752                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3753                         page = find_get_page(btree_inode->i_mapping, index);
3754                         if (!page)
3755                                 continue;
3756                         offset = page_offset(page);
3757
3758                         spin_lock(&dirty_pages->buffer_lock);
3759                         eb = radix_tree_lookup(
3760                              &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3761                                                offset >> PAGE_CACHE_SHIFT);
3762                         spin_unlock(&dirty_pages->buffer_lock);
3763                         if (eb)
3764                                 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3765                                                          &eb->bflags);
3766                         lock_page(page);
3767
3768                         wait_on_page_writeback(page);
3769                         if (PageDirty(page)) {
3770                                 clear_page_dirty_for_io(page);
3771                                 spin_lock_irq(&page->mapping->tree_lock);
3772                                 radix_tree_tag_clear(&page->mapping->page_tree,
3773                                                         page_index(page),
3774                                                         PAGECACHE_TAG_DIRTY);
3775                                 spin_unlock_irq(&page->mapping->tree_lock);
3776                         }
3777
3778                         unlock_page(page);
3779                         page_cache_release(page);
3780                 }
3781         }
3782
3783         return ret;
3784 }
3785
3786 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3787                                        struct extent_io_tree *pinned_extents)
3788 {
3789         struct extent_io_tree *unpin;
3790         u64 start;
3791         u64 end;
3792         int ret;
3793         bool loop = true;
3794
3795         unpin = pinned_extents;
3796 again:
3797         while (1) {
3798                 ret = find_first_extent_bit(unpin, 0, &start, &end,
3799                                             EXTENT_DIRTY, NULL);
3800                 if (ret)
3801                         break;
3802
3803                 /* opt_discard */
3804                 if (btrfs_test_opt(root, DISCARD))
3805                         ret = btrfs_error_discard_extent(root, start,
3806                                                          end + 1 - start,
3807                                                          NULL);
3808
3809                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3810                 btrfs_error_unpin_extent_range(root, start, end);
3811                 cond_resched();
3812         }
3813
3814         if (loop) {
3815                 if (unpin == &root->fs_info->freed_extents[0])
3816                         unpin = &root->fs_info->freed_extents[1];
3817                 else
3818                         unpin = &root->fs_info->freed_extents[0];
3819                 loop = false;
3820                 goto again;
3821         }
3822
3823         return 0;
3824 }
3825
3826 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3827                                    struct btrfs_root *root)
3828 {
3829         btrfs_destroy_delayed_refs(cur_trans, root);
3830         btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3831                                 cur_trans->dirty_pages.dirty_bytes);
3832
3833         /* FIXME: cleanup wait for commit */
3834         cur_trans->in_commit = 1;
3835         cur_trans->blocked = 1;
3836         wake_up(&root->fs_info->transaction_blocked_wait);
3837
3838         btrfs_evict_pending_snapshots(cur_trans);
3839
3840         cur_trans->blocked = 0;
3841         wake_up(&root->fs_info->transaction_wait);
3842
3843         cur_trans->commit_done = 1;
3844         wake_up(&cur_trans->commit_wait);
3845
3846         btrfs_destroy_delayed_inodes(root);
3847         btrfs_assert_delayed_root_empty(root);
3848
3849         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3850                                      EXTENT_DIRTY);
3851         btrfs_destroy_pinned_extent(root,
3852                                     root->fs_info->pinned_extents);
3853
3854         /*
3855         memset(cur_trans, 0, sizeof(*cur_trans));
3856         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3857         */
3858 }
3859
3860 int btrfs_cleanup_transaction(struct btrfs_root *root)
3861 {
3862         struct btrfs_transaction *t;
3863         LIST_HEAD(list);
3864
3865         mutex_lock(&root->fs_info->transaction_kthread_mutex);
3866
3867         spin_lock(&root->fs_info->trans_lock);
3868         list_splice_init(&root->fs_info->trans_list, &list);
3869         root->fs_info->trans_no_join = 1;
3870         spin_unlock(&root->fs_info->trans_lock);
3871
3872         while (!list_empty(&list)) {
3873                 t = list_entry(list.next, struct btrfs_transaction, list);
3874
3875                 btrfs_destroy_ordered_operations(t, root);
3876
3877                 btrfs_destroy_ordered_extents(root);
3878
3879                 btrfs_destroy_delayed_refs(t, root);
3880
3881                 btrfs_block_rsv_release(root,
3882                                         &root->fs_info->trans_block_rsv,
3883                                         t->dirty_pages.dirty_bytes);
3884
3885                 /* FIXME: cleanup wait for commit */
3886                 t->in_commit = 1;
3887                 t->blocked = 1;
3888                 smp_mb();
3889                 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3890                         wake_up(&root->fs_info->transaction_blocked_wait);
3891
3892                 btrfs_evict_pending_snapshots(t);
3893
3894                 t->blocked = 0;
3895                 smp_mb();
3896                 if (waitqueue_active(&root->fs_info->transaction_wait))
3897                         wake_up(&root->fs_info->transaction_wait);
3898
3899                 t->commit_done = 1;
3900                 smp_mb();
3901                 if (waitqueue_active(&t->commit_wait))
3902                         wake_up(&t->commit_wait);
3903
3904                 btrfs_destroy_delayed_inodes(root);
3905                 btrfs_assert_delayed_root_empty(root);
3906
3907                 btrfs_destroy_delalloc_inodes(root);
3908
3909                 spin_lock(&root->fs_info->trans_lock);
3910                 root->fs_info->running_transaction = NULL;
3911                 spin_unlock(&root->fs_info->trans_lock);
3912
3913                 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3914                                              EXTENT_DIRTY);
3915
3916                 btrfs_destroy_pinned_extent(root,
3917                                             root->fs_info->pinned_extents);
3918
3919                 atomic_set(&t->use_count, 0);
3920                 list_del_init(&t->list);
3921                 memset(t, 0, sizeof(*t));
3922                 kmem_cache_free(btrfs_transaction_cachep, t);
3923         }
3924
3925         spin_lock(&root->fs_info->trans_lock);
3926         root->fs_info->trans_no_join = 0;
3927         spin_unlock(&root->fs_info->trans_lock);
3928         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3929
3930         return 0;
3931 }
3932
3933 static struct extent_io_ops btree_extent_io_ops = {
3934         .readpage_end_io_hook = btree_readpage_end_io_hook,
3935         .readpage_io_failed_hook = btree_io_failed_hook,
3936         .submit_bio_hook = btree_submit_bio_hook,
3937         /* note we're sharing with inode.c for the merge bio hook */
3938         .merge_bio_hook = btrfs_merge_bio_hook,
3939 };