Btrfs: Only do async bio submission for pdflush
[linux-2.6-block.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h> // for block_sync_page
26 #include <linux/workqueue.h>
27 #include "crc32c.h"
28 #include "ctree.h"
29 #include "disk-io.h"
30 #include "transaction.h"
31 #include "btrfs_inode.h"
32 #include "volumes.h"
33 #include "print-tree.h"
34
35 #if 0
36 static int check_tree_block(struct btrfs_root *root, struct extent_buffer *buf)
37 {
38         if (extent_buffer_blocknr(buf) != btrfs_header_blocknr(buf)) {
39                 printk(KERN_CRIT "buf blocknr(buf) is %llu, header is %llu\n",
40                        (unsigned long long)extent_buffer_blocknr(buf),
41                        (unsigned long long)btrfs_header_blocknr(buf));
42                 return 1;
43         }
44         return 0;
45 }
46 #endif
47
48 static struct extent_io_ops btree_extent_io_ops;
49 static struct workqueue_struct *end_io_workqueue;
50 static struct workqueue_struct *async_submit_workqueue;
51
52 struct end_io_wq {
53         struct bio *bio;
54         bio_end_io_t *end_io;
55         void *private;
56         struct btrfs_fs_info *info;
57         int error;
58         int metadata;
59         struct list_head list;
60 };
61
62 struct async_submit_bio {
63         struct inode *inode;
64         struct bio *bio;
65         struct list_head list;
66         extent_submit_bio_hook_t *submit_bio_hook;
67         int rw;
68         int mirror_num;
69 };
70
71 struct extent_map *btree_get_extent(struct inode *inode, struct page *page,
72                                     size_t page_offset, u64 start, u64 len,
73                                     int create)
74 {
75         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
76         struct extent_map *em;
77         int ret;
78
79 again:
80         spin_lock(&em_tree->lock);
81         em = lookup_extent_mapping(em_tree, start, len);
82         spin_unlock(&em_tree->lock);
83         if (em) {
84                 goto out;
85         }
86         em = alloc_extent_map(GFP_NOFS);
87         if (!em) {
88                 em = ERR_PTR(-ENOMEM);
89                 goto out;
90         }
91         em->start = 0;
92         em->len = i_size_read(inode);
93         em->block_start = 0;
94         em->bdev = inode->i_sb->s_bdev;
95
96         spin_lock(&em_tree->lock);
97         ret = add_extent_mapping(em_tree, em);
98         spin_unlock(&em_tree->lock);
99
100         if (ret == -EEXIST) {
101                 free_extent_map(em);
102                 em = NULL;
103                 goto again;
104         } else if (ret) {
105                 em = ERR_PTR(ret);
106         }
107 out:
108         return em;
109 }
110
111 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
112 {
113         return btrfs_crc32c(seed, data, len);
114 }
115
116 void btrfs_csum_final(u32 crc, char *result)
117 {
118         *(__le32 *)result = ~cpu_to_le32(crc);
119 }
120
121 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
122                            int verify)
123 {
124         char result[BTRFS_CRC32_SIZE];
125         unsigned long len;
126         unsigned long cur_len;
127         unsigned long offset = BTRFS_CSUM_SIZE;
128         char *map_token = NULL;
129         char *kaddr;
130         unsigned long map_start;
131         unsigned long map_len;
132         int err;
133         u32 crc = ~(u32)0;
134
135         len = buf->len - offset;
136         while(len > 0) {
137                 err = map_private_extent_buffer(buf, offset, 32,
138                                         &map_token, &kaddr,
139                                         &map_start, &map_len, KM_USER0);
140                 if (err) {
141                         printk("failed to map extent buffer! %lu\n",
142                                offset);
143                         return 1;
144                 }
145                 cur_len = min(len, map_len - (offset - map_start));
146                 crc = btrfs_csum_data(root, kaddr + offset - map_start,
147                                       crc, cur_len);
148                 len -= cur_len;
149                 offset += cur_len;
150                 unmap_extent_buffer(buf, map_token, KM_USER0);
151         }
152         btrfs_csum_final(crc, result);
153
154         if (verify) {
155                 int from_this_trans = 0;
156
157                 if (root->fs_info->running_transaction &&
158                     btrfs_header_generation(buf) ==
159                     root->fs_info->running_transaction->transid)
160                         from_this_trans = 1;
161
162                 /* FIXME, this is not good */
163                 if (memcmp_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE)) {
164                         u32 val;
165                         u32 found = 0;
166                         memcpy(&found, result, BTRFS_CRC32_SIZE);
167
168                         read_extent_buffer(buf, &val, 0, BTRFS_CRC32_SIZE);
169                         printk("btrfs: %s checksum verify failed on %llu "
170                                "wanted %X found %X from_this_trans %d "
171                                "level %d\n",
172                                root->fs_info->sb->s_id,
173                                buf->start, val, found, from_this_trans,
174                                btrfs_header_level(buf));
175                         return 1;
176                 }
177         } else {
178                 write_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE);
179         }
180         return 0;
181 }
182
183 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
184                                           struct extent_buffer *eb,
185                                           u64 start)
186 {
187         struct extent_io_tree *io_tree;
188         int ret;
189         int num_copies = 0;
190         int mirror_num = 0;
191
192         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
193         while (1) {
194                 ret = read_extent_buffer_pages(io_tree, eb, start, 1,
195                                                btree_get_extent, mirror_num);
196                 if (!ret) {
197                         if (mirror_num)
198 printk("good read %Lu mirror %d total %d\n", eb->start, mirror_num, num_copies);
199                         return ret;
200                 }
201                 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
202                                               eb->start, eb->len);
203 printk("failed to read %Lu mirror %d total %d\n", eb->start, mirror_num, num_copies);
204                 if (num_copies == 1) {
205 printk("reading %Lu failed only one copy\n", eb->start);
206                         return ret;
207                 }
208                 mirror_num++;
209                 if (mirror_num > num_copies) {
210 printk("bailing at mirror %d of %d\n", mirror_num, num_copies);
211                         return ret;
212                 }
213         }
214 printk("read extent buffer page last\n");
215         return -EIO;
216 }
217
218 int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
219 {
220         struct extent_io_tree *tree;
221         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
222         u64 found_start;
223         int found_level;
224         unsigned long len;
225         struct extent_buffer *eb;
226         int ret;
227
228         tree = &BTRFS_I(page->mapping->host)->io_tree;
229
230         if (page->private == EXTENT_PAGE_PRIVATE)
231                 goto out;
232         if (!page->private)
233                 goto out;
234         len = page->private >> 2;
235         if (len == 0) {
236                 WARN_ON(1);
237         }
238         eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
239         ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE);
240         BUG_ON(ret);
241         btrfs_clear_buffer_defrag(eb);
242         found_start = btrfs_header_bytenr(eb);
243         if (found_start != start) {
244                 printk("warning: eb start incorrect %Lu buffer %Lu len %lu\n",
245                        start, found_start, len);
246                 WARN_ON(1);
247                 goto err;
248         }
249         if (eb->first_page != page) {
250                 printk("bad first page %lu %lu\n", eb->first_page->index,
251                        page->index);
252                 WARN_ON(1);
253                 goto err;
254         }
255         if (!PageUptodate(page)) {
256                 printk("csum not up to date page %lu\n", page->index);
257                 WARN_ON(1);
258                 goto err;
259         }
260         found_level = btrfs_header_level(eb);
261         spin_lock(&root->fs_info->hash_lock);
262         btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
263         spin_unlock(&root->fs_info->hash_lock);
264         csum_tree_block(root, eb, 0);
265 err:
266         free_extent_buffer(eb);
267 out:
268         return 0;
269 }
270
271 static int btree_writepage_io_hook(struct page *page, u64 start, u64 end)
272 {
273         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
274
275         csum_dirty_buffer(root, page);
276         return 0;
277 }
278
279 int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
280                                struct extent_state *state)
281 {
282         struct extent_io_tree *tree;
283         u64 found_start;
284         int found_level;
285         unsigned long len;
286         struct extent_buffer *eb;
287         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
288         int ret = 0;
289
290         tree = &BTRFS_I(page->mapping->host)->io_tree;
291         if (page->private == EXTENT_PAGE_PRIVATE)
292                 goto out;
293         if (!page->private)
294                 goto out;
295         len = page->private >> 2;
296         if (len == 0) {
297                 WARN_ON(1);
298         }
299         eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
300
301         btrfs_clear_buffer_defrag(eb);
302         found_start = btrfs_header_bytenr(eb);
303         if (found_start != start) {
304 printk("bad start on %Lu found %Lu\n", eb->start, found_start);
305                 ret = -EIO;
306                 goto err;
307         }
308         if (eb->first_page != page) {
309                 printk("bad first page %lu %lu\n", eb->first_page->index,
310                        page->index);
311                 WARN_ON(1);
312                 ret = -EIO;
313                 goto err;
314         }
315         found_level = btrfs_header_level(eb);
316
317         ret = csum_tree_block(root, eb, 1);
318         if (ret)
319                 ret = -EIO;
320
321         end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
322         end = eb->start + end - 1;
323         release_extent_buffer_tail_pages(eb);
324 err:
325         free_extent_buffer(eb);
326 out:
327         return ret;
328 }
329
330 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
331 static void end_workqueue_bio(struct bio *bio, int err)
332 #else
333 static int end_workqueue_bio(struct bio *bio,
334                                    unsigned int bytes_done, int err)
335 #endif
336 {
337         struct end_io_wq *end_io_wq = bio->bi_private;
338         struct btrfs_fs_info *fs_info;
339         unsigned long flags;
340
341 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
342         if (bio->bi_size)
343                 return 1;
344 #endif
345
346         fs_info = end_io_wq->info;
347         spin_lock_irqsave(&fs_info->end_io_work_lock, flags);
348         end_io_wq->error = err;
349         list_add_tail(&end_io_wq->list, &fs_info->end_io_work_list);
350         spin_unlock_irqrestore(&fs_info->end_io_work_lock, flags);
351         queue_work(end_io_workqueue, &fs_info->end_io_work);
352
353 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
354         return 0;
355 #endif
356 }
357
358 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
359                         int metadata)
360 {
361         struct end_io_wq *end_io_wq;
362         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
363         if (!end_io_wq)
364                 return -ENOMEM;
365
366         end_io_wq->private = bio->bi_private;
367         end_io_wq->end_io = bio->bi_end_io;
368         end_io_wq->info = info;
369         end_io_wq->error = 0;
370         end_io_wq->bio = bio;
371         end_io_wq->metadata = metadata;
372
373         bio->bi_private = end_io_wq;
374         bio->bi_end_io = end_workqueue_bio;
375         return 0;
376 }
377
378 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
379                         int rw, struct bio *bio, int mirror_num,
380                         extent_submit_bio_hook_t *submit_bio_hook)
381 {
382         struct async_submit_bio *async;
383
384         /*
385          * inline writerback should stay inline, only hop to the async
386          * queue if we're pdflush
387          */
388         if (!current_is_pdflush())
389                 return submit_bio_hook(inode, rw, bio, mirror_num);
390
391         async = kmalloc(sizeof(*async), GFP_NOFS);
392         if (!async)
393                 return -ENOMEM;
394
395         async->inode = inode;
396         async->rw = rw;
397         async->bio = bio;
398         async->mirror_num = mirror_num;
399         async->submit_bio_hook = submit_bio_hook;
400
401         spin_lock(&fs_info->async_submit_work_lock);
402         list_add_tail(&async->list, &fs_info->async_submit_work_list);
403         spin_unlock(&fs_info->async_submit_work_lock);
404
405         queue_work(async_submit_workqueue, &fs_info->async_submit_work);
406         return 0;
407 }
408
409 static int __btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
410                                  int mirror_num)
411 {
412         struct btrfs_root *root = BTRFS_I(inode)->root;
413         u64 offset;
414         int ret;
415
416         offset = bio->bi_sector << 9;
417
418         if (rw & (1 << BIO_RW)) {
419                 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num);
420         }
421
422         ret = btrfs_bio_wq_end_io(root->fs_info, bio, 1);
423         BUG_ON(ret);
424
425         if (offset == BTRFS_SUPER_INFO_OFFSET) {
426                 bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
427                 submit_bio(rw, bio);
428                 return 0;
429         }
430         return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num);
431 }
432
433 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
434                                  int mirror_num)
435 {
436         if (!(rw & (1 << BIO_RW))) {
437                 return __btree_submit_bio_hook(inode, rw, bio, mirror_num);
438         }
439         return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
440                                    inode, rw, bio, mirror_num,
441                                    __btree_submit_bio_hook);
442 }
443
444 static int btree_writepage(struct page *page, struct writeback_control *wbc)
445 {
446         struct extent_io_tree *tree;
447         tree = &BTRFS_I(page->mapping->host)->io_tree;
448         return extent_write_full_page(tree, page, btree_get_extent, wbc);
449 }
450
451 static int btree_writepages(struct address_space *mapping,
452                             struct writeback_control *wbc)
453 {
454         struct extent_io_tree *tree;
455         tree = &BTRFS_I(mapping->host)->io_tree;
456         if (wbc->sync_mode == WB_SYNC_NONE) {
457                 u64 num_dirty;
458                 u64 start = 0;
459                 unsigned long thresh = 96 * 1024 * 1024;
460
461                 if (wbc->for_kupdate)
462                         return 0;
463
464                 if (current_is_pdflush()) {
465                         thresh = 96 * 1024 * 1024;
466                 } else {
467                         thresh = 8 * 1024 * 1024;
468                 }
469                 num_dirty = count_range_bits(tree, &start, (u64)-1,
470                                              thresh, EXTENT_DIRTY);
471                 if (num_dirty < thresh) {
472                         return 0;
473                 }
474         }
475         return extent_writepages(tree, mapping, btree_get_extent, wbc);
476 }
477
478 int btree_readpage(struct file *file, struct page *page)
479 {
480         struct extent_io_tree *tree;
481         tree = &BTRFS_I(page->mapping->host)->io_tree;
482         return extent_read_full_page(tree, page, btree_get_extent);
483 }
484
485 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
486 {
487         struct extent_io_tree *tree;
488         struct extent_map_tree *map;
489         int ret;
490
491         if (page_count(page) > 3) {
492                 /* once for page->private, once for the caller, once
493                  * once for the page cache
494                  */
495                 return 0;
496         }
497         tree = &BTRFS_I(page->mapping->host)->io_tree;
498         map = &BTRFS_I(page->mapping->host)->extent_tree;
499         ret = try_release_extent_mapping(map, tree, page, gfp_flags);
500         if (ret == 1) {
501                 invalidate_extent_lru(tree, page_offset(page), PAGE_CACHE_SIZE);
502                 ClearPagePrivate(page);
503                 set_page_private(page, 0);
504                 page_cache_release(page);
505         }
506         return ret;
507 }
508
509 static void btree_invalidatepage(struct page *page, unsigned long offset)
510 {
511         struct extent_io_tree *tree;
512         tree = &BTRFS_I(page->mapping->host)->io_tree;
513         extent_invalidatepage(tree, page, offset);
514         btree_releasepage(page, GFP_NOFS);
515 }
516
517 #if 0
518 static int btree_writepage(struct page *page, struct writeback_control *wbc)
519 {
520         struct buffer_head *bh;
521         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
522         struct buffer_head *head;
523         if (!page_has_buffers(page)) {
524                 create_empty_buffers(page, root->fs_info->sb->s_blocksize,
525                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
526         }
527         head = page_buffers(page);
528         bh = head;
529         do {
530                 if (buffer_dirty(bh))
531                         csum_tree_block(root, bh, 0);
532                 bh = bh->b_this_page;
533         } while (bh != head);
534         return block_write_full_page(page, btree_get_block, wbc);
535 }
536 #endif
537
538 static struct address_space_operations btree_aops = {
539         .readpage       = btree_readpage,
540         .writepage      = btree_writepage,
541         .writepages     = btree_writepages,
542         .releasepage    = btree_releasepage,
543         .invalidatepage = btree_invalidatepage,
544         .sync_page      = block_sync_page,
545 };
546
547 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize)
548 {
549         struct extent_buffer *buf = NULL;
550         struct inode *btree_inode = root->fs_info->btree_inode;
551         int ret = 0;
552
553         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
554         if (!buf)
555                 return 0;
556         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
557                                  buf, 0, 0, btree_get_extent, 0);
558         free_extent_buffer(buf);
559         return ret;
560 }
561
562 static int close_all_devices(struct btrfs_fs_info *fs_info)
563 {
564         struct list_head *list;
565         struct list_head *next;
566         struct btrfs_device *device;
567
568         list = &fs_info->fs_devices->devices;
569         list_for_each(next, list) {
570                 device = list_entry(next, struct btrfs_device, dev_list);
571                 if (device->bdev && device->bdev != fs_info->sb->s_bdev)
572                         close_bdev_excl(device->bdev);
573                 device->bdev = NULL;
574         }
575         return 0;
576 }
577
578 int btrfs_verify_block_csum(struct btrfs_root *root,
579                             struct extent_buffer *buf)
580 {
581         return btrfs_buffer_uptodate(buf);
582 }
583
584 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
585                                             u64 bytenr, u32 blocksize)
586 {
587         struct inode *btree_inode = root->fs_info->btree_inode;
588         struct extent_buffer *eb;
589         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
590                                 bytenr, blocksize, GFP_NOFS);
591         return eb;
592 }
593
594 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
595                                                  u64 bytenr, u32 blocksize)
596 {
597         struct inode *btree_inode = root->fs_info->btree_inode;
598         struct extent_buffer *eb;
599
600         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
601                                  bytenr, blocksize, NULL, GFP_NOFS);
602         return eb;
603 }
604
605
606 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
607                                       u32 blocksize)
608 {
609         struct extent_buffer *buf = NULL;
610         struct inode *btree_inode = root->fs_info->btree_inode;
611         struct extent_io_tree *io_tree;
612         int ret;
613
614         io_tree = &BTRFS_I(btree_inode)->io_tree;
615
616         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
617         if (!buf)
618                 return NULL;
619
620         ret = btree_read_extent_buffer_pages(root, buf, 0);
621
622         if (ret == 0) {
623                 buf->flags |= EXTENT_UPTODATE;
624         }
625         return buf;
626
627 }
628
629 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
630                      struct extent_buffer *buf)
631 {
632         struct inode *btree_inode = root->fs_info->btree_inode;
633         if (btrfs_header_generation(buf) ==
634             root->fs_info->running_transaction->transid)
635                 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
636                                           buf);
637         return 0;
638 }
639
640 int wait_on_tree_block_writeback(struct btrfs_root *root,
641                                  struct extent_buffer *buf)
642 {
643         struct inode *btree_inode = root->fs_info->btree_inode;
644         wait_on_extent_buffer_writeback(&BTRFS_I(btree_inode)->io_tree,
645                                         buf);
646         return 0;
647 }
648
649 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
650                         u32 stripesize, struct btrfs_root *root,
651                         struct btrfs_fs_info *fs_info,
652                         u64 objectid)
653 {
654         root->node = NULL;
655         root->inode = NULL;
656         root->commit_root = NULL;
657         root->sectorsize = sectorsize;
658         root->nodesize = nodesize;
659         root->leafsize = leafsize;
660         root->stripesize = stripesize;
661         root->ref_cows = 0;
662         root->track_dirty = 0;
663
664         root->fs_info = fs_info;
665         root->objectid = objectid;
666         root->last_trans = 0;
667         root->highest_inode = 0;
668         root->last_inode_alloc = 0;
669         root->name = NULL;
670         root->in_sysfs = 0;
671
672         INIT_LIST_HEAD(&root->dirty_list);
673         memset(&root->root_key, 0, sizeof(root->root_key));
674         memset(&root->root_item, 0, sizeof(root->root_item));
675         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
676         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
677         init_completion(&root->kobj_unregister);
678         root->defrag_running = 0;
679         root->defrag_level = 0;
680         root->root_key.objectid = objectid;
681         return 0;
682 }
683
684 static int find_and_setup_root(struct btrfs_root *tree_root,
685                                struct btrfs_fs_info *fs_info,
686                                u64 objectid,
687                                struct btrfs_root *root)
688 {
689         int ret;
690         u32 blocksize;
691
692         __setup_root(tree_root->nodesize, tree_root->leafsize,
693                      tree_root->sectorsize, tree_root->stripesize,
694                      root, fs_info, objectid);
695         ret = btrfs_find_last_root(tree_root, objectid,
696                                    &root->root_item, &root->root_key);
697         BUG_ON(ret);
698
699         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
700         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
701                                      blocksize);
702         BUG_ON(!root->node);
703         return 0;
704 }
705
706 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_fs_info *fs_info,
707                                                struct btrfs_key *location)
708 {
709         struct btrfs_root *root;
710         struct btrfs_root *tree_root = fs_info->tree_root;
711         struct btrfs_path *path;
712         struct extent_buffer *l;
713         u64 highest_inode;
714         u32 blocksize;
715         int ret = 0;
716
717         root = kzalloc(sizeof(*root), GFP_NOFS);
718         if (!root)
719                 return ERR_PTR(-ENOMEM);
720         if (location->offset == (u64)-1) {
721                 ret = find_and_setup_root(tree_root, fs_info,
722                                           location->objectid, root);
723                 if (ret) {
724                         kfree(root);
725                         return ERR_PTR(ret);
726                 }
727                 goto insert;
728         }
729
730         __setup_root(tree_root->nodesize, tree_root->leafsize,
731                      tree_root->sectorsize, tree_root->stripesize,
732                      root, fs_info, location->objectid);
733
734         path = btrfs_alloc_path();
735         BUG_ON(!path);
736         ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
737         if (ret != 0) {
738                 if (ret > 0)
739                         ret = -ENOENT;
740                 goto out;
741         }
742         l = path->nodes[0];
743         read_extent_buffer(l, &root->root_item,
744                btrfs_item_ptr_offset(l, path->slots[0]),
745                sizeof(root->root_item));
746         memcpy(&root->root_key, location, sizeof(*location));
747         ret = 0;
748 out:
749         btrfs_release_path(root, path);
750         btrfs_free_path(path);
751         if (ret) {
752                 kfree(root);
753                 return ERR_PTR(ret);
754         }
755         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
756         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
757                                      blocksize);
758         BUG_ON(!root->node);
759 insert:
760         root->ref_cows = 1;
761         ret = btrfs_find_highest_inode(root, &highest_inode);
762         if (ret == 0) {
763                 root->highest_inode = highest_inode;
764                 root->last_inode_alloc = highest_inode;
765         }
766         return root;
767 }
768
769 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
770                                         u64 root_objectid)
771 {
772         struct btrfs_root *root;
773
774         if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
775                 return fs_info->tree_root;
776         if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
777                 return fs_info->extent_root;
778
779         root = radix_tree_lookup(&fs_info->fs_roots_radix,
780                                  (unsigned long)root_objectid);
781         return root;
782 }
783
784 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
785                                               struct btrfs_key *location)
786 {
787         struct btrfs_root *root;
788         int ret;
789
790         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
791                 return fs_info->tree_root;
792         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
793                 return fs_info->extent_root;
794
795         root = radix_tree_lookup(&fs_info->fs_roots_radix,
796                                  (unsigned long)location->objectid);
797         if (root)
798                 return root;
799
800         root = btrfs_read_fs_root_no_radix(fs_info, location);
801         if (IS_ERR(root))
802                 return root;
803         ret = radix_tree_insert(&fs_info->fs_roots_radix,
804                                 (unsigned long)root->root_key.objectid,
805                                 root);
806         if (ret) {
807                 free_extent_buffer(root->node);
808                 kfree(root);
809                 return ERR_PTR(ret);
810         }
811         ret = btrfs_find_dead_roots(fs_info->tree_root,
812                                     root->root_key.objectid, root);
813         BUG_ON(ret);
814
815         return root;
816 }
817
818 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
819                                       struct btrfs_key *location,
820                                       const char *name, int namelen)
821 {
822         struct btrfs_root *root;
823         int ret;
824
825         root = btrfs_read_fs_root_no_name(fs_info, location);
826         if (!root)
827                 return NULL;
828
829         if (root->in_sysfs)
830                 return root;
831
832         ret = btrfs_set_root_name(root, name, namelen);
833         if (ret) {
834                 free_extent_buffer(root->node);
835                 kfree(root);
836                 return ERR_PTR(ret);
837         }
838
839         ret = btrfs_sysfs_add_root(root);
840         if (ret) {
841                 free_extent_buffer(root->node);
842                 kfree(root->name);
843                 kfree(root);
844                 return ERR_PTR(ret);
845         }
846         root->in_sysfs = 1;
847         return root;
848 }
849 #if 0
850 static int add_hasher(struct btrfs_fs_info *info, char *type) {
851         struct btrfs_hasher *hasher;
852
853         hasher = kmalloc(sizeof(*hasher), GFP_NOFS);
854         if (!hasher)
855                 return -ENOMEM;
856         hasher->hash_tfm = crypto_alloc_hash(type, 0, CRYPTO_ALG_ASYNC);
857         if (!hasher->hash_tfm) {
858                 kfree(hasher);
859                 return -EINVAL;
860         }
861         spin_lock(&info->hash_lock);
862         list_add(&hasher->list, &info->hashers);
863         spin_unlock(&info->hash_lock);
864         return 0;
865 }
866 #endif
867
868 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
869 {
870         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
871         int ret = 0;
872         struct list_head *cur;
873         struct btrfs_device *device;
874         struct backing_dev_info *bdi;
875
876         list_for_each(cur, &info->fs_devices->devices) {
877                 device = list_entry(cur, struct btrfs_device, dev_list);
878                 bdi = blk_get_backing_dev_info(device->bdev);
879                 if (bdi && bdi_congested(bdi, bdi_bits)) {
880                         ret = 1;
881                         break;
882                 }
883         }
884         return ret;
885 }
886
887 void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
888 {
889         struct list_head *cur;
890         struct btrfs_device *device;
891         struct btrfs_fs_info *info;
892
893         info = (struct btrfs_fs_info *)bdi->unplug_io_data;
894         list_for_each(cur, &info->fs_devices->devices) {
895                 device = list_entry(cur, struct btrfs_device, dev_list);
896                 bdi = blk_get_backing_dev_info(device->bdev);
897                 if (bdi->unplug_io_fn) {
898                         bdi->unplug_io_fn(bdi, page);
899                 }
900         }
901 }
902
903 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
904 {
905 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,23)
906         bdi_init(bdi);
907 #endif
908         bdi->ra_pages   = default_backing_dev_info.ra_pages * 4;
909         bdi->state              = 0;
910         bdi->capabilities       = default_backing_dev_info.capabilities;
911         bdi->unplug_io_fn       = btrfs_unplug_io_fn;
912         bdi->unplug_io_data     = info;
913         bdi->congested_fn       = btrfs_congested_fn;
914         bdi->congested_data     = info;
915         return 0;
916 }
917
918 static int bio_ready_for_csum(struct bio *bio)
919 {
920         u64 length = 0;
921         u64 buf_len = 0;
922         u64 start = 0;
923         struct page *page;
924         struct extent_io_tree *io_tree = NULL;
925         struct btrfs_fs_info *info = NULL;
926         struct bio_vec *bvec;
927         int i;
928         int ret;
929
930         bio_for_each_segment(bvec, bio, i) {
931                 page = bvec->bv_page;
932                 if (page->private == EXTENT_PAGE_PRIVATE) {
933                         length += bvec->bv_len;
934                         continue;
935                 }
936                 if (!page->private) {
937                         length += bvec->bv_len;
938                         continue;
939                 }
940                 length = bvec->bv_len;
941                 buf_len = page->private >> 2;
942                 start = page_offset(page) + bvec->bv_offset;
943                 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
944                 info = BTRFS_I(page->mapping->host)->root->fs_info;
945         }
946         /* are we fully contained in this bio? */
947         if (buf_len <= length)
948                 return 1;
949
950         ret = extent_range_uptodate(io_tree, start + length,
951                                     start + buf_len - 1);
952         if (ret == 1)
953                 return ret;
954         return ret;
955 }
956
957 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
958 static void btrfs_end_io_csum(void *p)
959 #else
960 static void btrfs_end_io_csum(struct work_struct *work)
961 #endif
962 {
963 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
964         struct btrfs_fs_info *fs_info = p;
965 #else
966         struct btrfs_fs_info *fs_info = container_of(work,
967                                                      struct btrfs_fs_info,
968                                                      end_io_work);
969 #endif
970         unsigned long flags;
971         struct end_io_wq *end_io_wq;
972         struct bio *bio;
973         struct list_head *next;
974         int error;
975         int was_empty;
976
977         while(1) {
978                 spin_lock_irqsave(&fs_info->end_io_work_lock, flags);
979                 if (list_empty(&fs_info->end_io_work_list)) {
980                         spin_unlock_irqrestore(&fs_info->end_io_work_lock,
981                                                flags);
982                         return;
983                 }
984                 next = fs_info->end_io_work_list.next;
985                 list_del(next);
986                 spin_unlock_irqrestore(&fs_info->end_io_work_lock, flags);
987
988                 end_io_wq = list_entry(next, struct end_io_wq, list);
989
990                 bio = end_io_wq->bio;
991                 if (end_io_wq->metadata && !bio_ready_for_csum(bio)) {
992                         spin_lock_irqsave(&fs_info->end_io_work_lock, flags);
993                         was_empty = list_empty(&fs_info->end_io_work_list);
994                         list_add_tail(&end_io_wq->list,
995                                       &fs_info->end_io_work_list);
996                         spin_unlock_irqrestore(&fs_info->end_io_work_lock,
997                                                flags);
998                         if (was_empty)
999                                 return;
1000                         continue;
1001                 }
1002                 error = end_io_wq->error;
1003                 bio->bi_private = end_io_wq->private;
1004                 bio->bi_end_io = end_io_wq->end_io;
1005                 kfree(end_io_wq);
1006 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1007                 bio_endio(bio, bio->bi_size, error);
1008 #else
1009                 bio_endio(bio, error);
1010 #endif
1011         }
1012 }
1013
1014 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1015 static void btrfs_async_submit_work(void *p)
1016 #else
1017 static void btrfs_async_submit_work(struct work_struct *work)
1018 #endif
1019 {
1020 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1021         struct btrfs_fs_info *fs_info = p;
1022 #else
1023         struct btrfs_fs_info *fs_info = container_of(work,
1024                                                      struct btrfs_fs_info,
1025                                                      async_submit_work);
1026 #endif
1027         struct async_submit_bio *async;
1028         struct list_head *next;
1029
1030         while(1) {
1031                 spin_lock(&fs_info->async_submit_work_lock);
1032                 if (list_empty(&fs_info->async_submit_work_list)) {
1033                         spin_unlock(&fs_info->async_submit_work_lock);
1034                         return;
1035                 }
1036                 next = fs_info->async_submit_work_list.next;
1037                 list_del(next);
1038                 spin_unlock(&fs_info->async_submit_work_lock);
1039
1040                 async = list_entry(next, struct async_submit_bio, list);
1041                 async->submit_bio_hook(async->inode, async->rw, async->bio,
1042                                        async->mirror_num);
1043                 kfree(async);
1044         }
1045 }
1046
1047 struct btrfs_root *open_ctree(struct super_block *sb,
1048                               struct btrfs_fs_devices *fs_devices)
1049 {
1050         u32 sectorsize;
1051         u32 nodesize;
1052         u32 leafsize;
1053         u32 blocksize;
1054         u32 stripesize;
1055         struct btrfs_root *extent_root = kmalloc(sizeof(struct btrfs_root),
1056                                                  GFP_NOFS);
1057         struct btrfs_root *tree_root = kmalloc(sizeof(struct btrfs_root),
1058                                                GFP_NOFS);
1059         struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
1060                                                 GFP_NOFS);
1061         struct btrfs_root *chunk_root = kmalloc(sizeof(struct btrfs_root),
1062                                                 GFP_NOFS);
1063         struct btrfs_root *dev_root = kmalloc(sizeof(struct btrfs_root),
1064                                               GFP_NOFS);
1065         int ret;
1066         int err = -EINVAL;
1067         struct btrfs_super_block *disk_super;
1068
1069         if (!extent_root || !tree_root || !fs_info) {
1070                 err = -ENOMEM;
1071                 goto fail;
1072         }
1073         end_io_workqueue = create_workqueue("btrfs-end-io");
1074         BUG_ON(!end_io_workqueue);
1075         async_submit_workqueue = create_workqueue("btrfs-async-submit");
1076
1077         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
1078         INIT_LIST_HEAD(&fs_info->trans_list);
1079         INIT_LIST_HEAD(&fs_info->dead_roots);
1080         INIT_LIST_HEAD(&fs_info->hashers);
1081         INIT_LIST_HEAD(&fs_info->end_io_work_list);
1082         INIT_LIST_HEAD(&fs_info->async_submit_work_list);
1083         spin_lock_init(&fs_info->hash_lock);
1084         spin_lock_init(&fs_info->end_io_work_lock);
1085         spin_lock_init(&fs_info->async_submit_work_lock);
1086         spin_lock_init(&fs_info->delalloc_lock);
1087         spin_lock_init(&fs_info->new_trans_lock);
1088
1089         init_completion(&fs_info->kobj_unregister);
1090         sb_set_blocksize(sb, BTRFS_SUPER_INFO_SIZE);
1091         fs_info->tree_root = tree_root;
1092         fs_info->extent_root = extent_root;
1093         fs_info->chunk_root = chunk_root;
1094         fs_info->dev_root = dev_root;
1095         fs_info->fs_devices = fs_devices;
1096         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1097         INIT_LIST_HEAD(&fs_info->space_info);
1098         btrfs_mapping_init(&fs_info->mapping_tree);
1099         fs_info->sb = sb;
1100         fs_info->max_extent = (u64)-1;
1101         fs_info->max_inline = 8192 * 1024;
1102         setup_bdi(fs_info, &fs_info->bdi);
1103         fs_info->btree_inode = new_inode(sb);
1104         fs_info->btree_inode->i_ino = 1;
1105         fs_info->btree_inode->i_nlink = 1;
1106         fs_info->btree_inode->i_size = sb->s_bdev->bd_inode->i_size;
1107         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1108         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1109
1110         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1111                              fs_info->btree_inode->i_mapping,
1112                              GFP_NOFS);
1113         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1114                              GFP_NOFS);
1115
1116         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1117
1118         extent_io_tree_init(&fs_info->free_space_cache,
1119                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1120         extent_io_tree_init(&fs_info->block_group_cache,
1121                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1122         extent_io_tree_init(&fs_info->pinned_extents,
1123                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1124         extent_io_tree_init(&fs_info->pending_del,
1125                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1126         extent_io_tree_init(&fs_info->extent_ins,
1127                              fs_info->btree_inode->i_mapping, GFP_NOFS);
1128         fs_info->do_barriers = 1;
1129
1130 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1131         INIT_WORK(&fs_info->end_io_work, btrfs_end_io_csum, fs_info);
1132         INIT_WORK(&fs_info->async_submit_work, btrfs_async_submit_work,
1133                   fs_info);
1134         INIT_WORK(&fs_info->trans_work, btrfs_transaction_cleaner, fs_info);
1135 #else
1136         INIT_WORK(&fs_info->end_io_work, btrfs_end_io_csum);
1137         INIT_WORK(&fs_info->async_submit_work, btrfs_async_submit_work);
1138         INIT_DELAYED_WORK(&fs_info->trans_work, btrfs_transaction_cleaner);
1139 #endif
1140         BTRFS_I(fs_info->btree_inode)->root = tree_root;
1141         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1142                sizeof(struct btrfs_key));
1143         insert_inode_hash(fs_info->btree_inode);
1144         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1145
1146         mutex_init(&fs_info->trans_mutex);
1147         mutex_init(&fs_info->fs_mutex);
1148
1149 #if 0
1150         ret = add_hasher(fs_info, "crc32c");
1151         if (ret) {
1152                 printk("btrfs: failed hash setup, modprobe cryptomgr?\n");
1153                 err = -ENOMEM;
1154                 goto fail_iput;
1155         }
1156 #endif
1157         __setup_root(4096, 4096, 4096, 4096, tree_root,
1158                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
1159
1160         fs_info->sb_buffer = read_tree_block(tree_root,
1161                                              BTRFS_SUPER_INFO_OFFSET,
1162                                              4096);
1163
1164         if (!fs_info->sb_buffer)
1165                 goto fail_iput;
1166
1167         read_extent_buffer(fs_info->sb_buffer, &fs_info->super_copy, 0,
1168                            sizeof(fs_info->super_copy));
1169
1170         read_extent_buffer(fs_info->sb_buffer, fs_info->fsid,
1171                            (unsigned long)btrfs_super_fsid(fs_info->sb_buffer),
1172                            BTRFS_FSID_SIZE);
1173
1174         disk_super = &fs_info->super_copy;
1175         if (!btrfs_super_root(disk_super))
1176                 goto fail_sb_buffer;
1177
1178         if (btrfs_super_num_devices(disk_super) != fs_devices->num_devices) {
1179                 printk("Btrfs: wanted %llu devices, but found %llu\n",
1180                        (unsigned long long)btrfs_super_num_devices(disk_super),
1181                        (unsigned long long)fs_devices->num_devices);
1182                 goto fail_sb_buffer;
1183         }
1184         nodesize = btrfs_super_nodesize(disk_super);
1185         leafsize = btrfs_super_leafsize(disk_super);
1186         sectorsize = btrfs_super_sectorsize(disk_super);
1187         stripesize = btrfs_super_stripesize(disk_super);
1188         tree_root->nodesize = nodesize;
1189         tree_root->leafsize = leafsize;
1190         tree_root->sectorsize = sectorsize;
1191         tree_root->stripesize = stripesize;
1192         sb_set_blocksize(sb, sectorsize);
1193
1194         i_size_write(fs_info->btree_inode,
1195                      btrfs_super_total_bytes(disk_super));
1196
1197         if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1198                     sizeof(disk_super->magic))) {
1199                 printk("btrfs: valid FS not found on %s\n", sb->s_id);
1200                 goto fail_sb_buffer;
1201         }
1202
1203         mutex_lock(&fs_info->fs_mutex);
1204
1205         ret = btrfs_read_sys_array(tree_root);
1206         BUG_ON(ret);
1207
1208         blocksize = btrfs_level_size(tree_root,
1209                                      btrfs_super_chunk_root_level(disk_super));
1210
1211         __setup_root(nodesize, leafsize, sectorsize, stripesize,
1212                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1213
1214         chunk_root->node = read_tree_block(chunk_root,
1215                                            btrfs_super_chunk_root(disk_super),
1216                                            blocksize);
1217         BUG_ON(!chunk_root->node);
1218
1219         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1220                  (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1221                  BTRFS_UUID_SIZE);
1222
1223         ret = btrfs_read_chunk_tree(chunk_root);
1224         BUG_ON(ret);
1225
1226         blocksize = btrfs_level_size(tree_root,
1227                                      btrfs_super_root_level(disk_super));
1228
1229
1230         tree_root->node = read_tree_block(tree_root,
1231                                           btrfs_super_root(disk_super),
1232                                           blocksize);
1233         if (!tree_root->node)
1234                 goto fail_sb_buffer;
1235
1236
1237         ret = find_and_setup_root(tree_root, fs_info,
1238                                   BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1239         if (ret)
1240                 goto fail_tree_root;
1241         extent_root->track_dirty = 1;
1242
1243         ret = find_and_setup_root(tree_root, fs_info,
1244                                   BTRFS_DEV_TREE_OBJECTID, dev_root);
1245         dev_root->track_dirty = 1;
1246
1247         if (ret)
1248                 goto fail_extent_root;
1249
1250         btrfs_read_block_groups(extent_root);
1251
1252         fs_info->generation = btrfs_super_generation(disk_super) + 1;
1253         fs_info->data_alloc_profile = (u64)-1;
1254         fs_info->metadata_alloc_profile = (u64)-1;
1255         fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1256
1257         mutex_unlock(&fs_info->fs_mutex);
1258         return tree_root;
1259
1260 fail_extent_root:
1261         free_extent_buffer(extent_root->node);
1262 fail_tree_root:
1263         mutex_unlock(&fs_info->fs_mutex);
1264         free_extent_buffer(tree_root->node);
1265 fail_sb_buffer:
1266         free_extent_buffer(fs_info->sb_buffer);
1267         extent_io_tree_empty_lru(&BTRFS_I(fs_info->btree_inode)->io_tree);
1268 fail_iput:
1269         iput(fs_info->btree_inode);
1270 fail:
1271         close_all_devices(fs_info);
1272         kfree(extent_root);
1273         kfree(tree_root);
1274 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,23)
1275         bdi_destroy(&fs_info->bdi);
1276 #endif
1277         kfree(fs_info);
1278         return ERR_PTR(err);
1279 }
1280
1281 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
1282 {
1283         char b[BDEVNAME_SIZE];
1284
1285         if (uptodate) {
1286                 set_buffer_uptodate(bh);
1287         } else {
1288                 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
1289                         printk(KERN_WARNING "lost page write due to "
1290                                         "I/O error on %s\n",
1291                                        bdevname(bh->b_bdev, b));
1292                 }
1293                 set_buffer_write_io_error(bh);
1294                 clear_buffer_uptodate(bh);
1295         }
1296         unlock_buffer(bh);
1297         put_bh(bh);
1298 }
1299
1300 int write_all_supers(struct btrfs_root *root)
1301 {
1302         struct list_head *cur;
1303         struct list_head *head = &root->fs_info->fs_devices->devices;
1304         struct btrfs_device *dev;
1305         struct extent_buffer *sb;
1306         struct btrfs_dev_item *dev_item;
1307         struct buffer_head *bh;
1308         int ret;
1309         int do_barriers;
1310
1311         do_barriers = !btrfs_test_opt(root, NOBARRIER);
1312
1313         sb = root->fs_info->sb_buffer;
1314         dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
1315                                                       dev_item);
1316         list_for_each(cur, head) {
1317                 dev = list_entry(cur, struct btrfs_device, dev_list);
1318                 btrfs_set_device_type(sb, dev_item, dev->type);
1319                 btrfs_set_device_id(sb, dev_item, dev->devid);
1320                 btrfs_set_device_total_bytes(sb, dev_item, dev->total_bytes);
1321                 btrfs_set_device_bytes_used(sb, dev_item, dev->bytes_used);
1322                 btrfs_set_device_io_align(sb, dev_item, dev->io_align);
1323                 btrfs_set_device_io_width(sb, dev_item, dev->io_width);
1324                 btrfs_set_device_sector_size(sb, dev_item, dev->sector_size);
1325                 write_extent_buffer(sb, dev->uuid,
1326                                     (unsigned long)btrfs_device_uuid(dev_item),
1327                                     BTRFS_UUID_SIZE);
1328
1329                 btrfs_set_header_flag(sb, BTRFS_HEADER_FLAG_WRITTEN);
1330                 csum_tree_block(root, sb, 0);
1331
1332                 bh = __getblk(dev->bdev, BTRFS_SUPER_INFO_OFFSET /
1333                               root->fs_info->sb->s_blocksize,
1334                               BTRFS_SUPER_INFO_SIZE);
1335
1336                 read_extent_buffer(sb, bh->b_data, 0, BTRFS_SUPER_INFO_SIZE);
1337                 dev->pending_io = bh;
1338
1339                 get_bh(bh);
1340                 set_buffer_uptodate(bh);
1341                 lock_buffer(bh);
1342                 bh->b_end_io = btrfs_end_buffer_write_sync;
1343
1344                 if (do_barriers && dev->barriers) {
1345                         ret = submit_bh(WRITE_BARRIER, bh);
1346                         if (ret == -EOPNOTSUPP) {
1347                                 printk("btrfs: disabling barriers on dev %s\n",
1348                                        dev->name);
1349                                 set_buffer_uptodate(bh);
1350                                 dev->barriers = 0;
1351                                 get_bh(bh);
1352                                 lock_buffer(bh);
1353                                 ret = submit_bh(WRITE, bh);
1354                         }
1355                 } else {
1356                         ret = submit_bh(WRITE, bh);
1357                 }
1358                 BUG_ON(ret);
1359         }
1360
1361         list_for_each(cur, head) {
1362                 dev = list_entry(cur, struct btrfs_device, dev_list);
1363                 BUG_ON(!dev->pending_io);
1364                 bh = dev->pending_io;
1365                 wait_on_buffer(bh);
1366                 if (!buffer_uptodate(dev->pending_io)) {
1367                         if (do_barriers && dev->barriers) {
1368                                 printk("btrfs: disabling barriers on dev %s\n",
1369                                        dev->name);
1370                                 set_buffer_uptodate(bh);
1371                                 get_bh(bh);
1372                                 lock_buffer(bh);
1373                                 dev->barriers = 0;
1374                                 ret = submit_bh(WRITE, bh);
1375                                 BUG_ON(ret);
1376                                 wait_on_buffer(bh);
1377                                 BUG_ON(!buffer_uptodate(bh));
1378                         } else {
1379                                 BUG();
1380                         }
1381
1382                 }
1383                 dev->pending_io = NULL;
1384                 brelse(bh);
1385         }
1386         return 0;
1387 }
1388
1389 int write_ctree_super(struct btrfs_trans_handle *trans, struct btrfs_root
1390                       *root)
1391 {
1392         int ret;
1393
1394         ret = write_all_supers(root);
1395 #if 0
1396         if (!btrfs_test_opt(root, NOBARRIER))
1397                 blkdev_issue_flush(sb->s_bdev, NULL);
1398         set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, super);
1399         ret = sync_page_range_nolock(btree_inode, btree_inode->i_mapping,
1400                                      super->start, super->len);
1401         if (!btrfs_test_opt(root, NOBARRIER))
1402                 blkdev_issue_flush(sb->s_bdev, NULL);
1403 #endif
1404         return ret;
1405 }
1406
1407 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
1408 {
1409         radix_tree_delete(&fs_info->fs_roots_radix,
1410                           (unsigned long)root->root_key.objectid);
1411         if (root->in_sysfs)
1412                 btrfs_sysfs_del_root(root);
1413         if (root->inode)
1414                 iput(root->inode);
1415         if (root->node)
1416                 free_extent_buffer(root->node);
1417         if (root->commit_root)
1418                 free_extent_buffer(root->commit_root);
1419         if (root->name)
1420                 kfree(root->name);
1421         kfree(root);
1422         return 0;
1423 }
1424
1425 static int del_fs_roots(struct btrfs_fs_info *fs_info)
1426 {
1427         int ret;
1428         struct btrfs_root *gang[8];
1429         int i;
1430
1431         while(1) {
1432                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1433                                              (void **)gang, 0,
1434                                              ARRAY_SIZE(gang));
1435                 if (!ret)
1436                         break;
1437                 for (i = 0; i < ret; i++)
1438                         btrfs_free_fs_root(fs_info, gang[i]);
1439         }
1440         return 0;
1441 }
1442
1443 int close_ctree(struct btrfs_root *root)
1444 {
1445         int ret;
1446         struct btrfs_trans_handle *trans;
1447         struct btrfs_fs_info *fs_info = root->fs_info;
1448
1449         fs_info->closing = 1;
1450         btrfs_transaction_flush_work(root);
1451         mutex_lock(&fs_info->fs_mutex);
1452         btrfs_defrag_dirty_roots(root->fs_info);
1453         trans = btrfs_start_transaction(root, 1);
1454         ret = btrfs_commit_transaction(trans, root);
1455         /* run commit again to  drop the original snapshot */
1456         trans = btrfs_start_transaction(root, 1);
1457         btrfs_commit_transaction(trans, root);
1458         ret = btrfs_write_and_wait_transaction(NULL, root);
1459         BUG_ON(ret);
1460         write_ctree_super(NULL, root);
1461         mutex_unlock(&fs_info->fs_mutex);
1462
1463         if (fs_info->delalloc_bytes) {
1464                 printk("btrfs: at unmount delalloc count %Lu\n",
1465                        fs_info->delalloc_bytes);
1466         }
1467         if (fs_info->extent_root->node)
1468                 free_extent_buffer(fs_info->extent_root->node);
1469
1470         if (fs_info->tree_root->node)
1471                 free_extent_buffer(fs_info->tree_root->node);
1472
1473         if (root->fs_info->chunk_root->node);
1474                 free_extent_buffer(root->fs_info->chunk_root->node);
1475
1476         if (root->fs_info->dev_root->node);
1477                 free_extent_buffer(root->fs_info->dev_root->node);
1478
1479         free_extent_buffer(fs_info->sb_buffer);
1480
1481         btrfs_free_block_groups(root->fs_info);
1482         del_fs_roots(fs_info);
1483
1484         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
1485
1486         extent_io_tree_empty_lru(&fs_info->free_space_cache);
1487         extent_io_tree_empty_lru(&fs_info->block_group_cache);
1488         extent_io_tree_empty_lru(&fs_info->pinned_extents);
1489         extent_io_tree_empty_lru(&fs_info->pending_del);
1490         extent_io_tree_empty_lru(&fs_info->extent_ins);
1491         extent_io_tree_empty_lru(&BTRFS_I(fs_info->btree_inode)->io_tree);
1492
1493         truncate_inode_pages(fs_info->btree_inode->i_mapping, 0);
1494         flush_workqueue(end_io_workqueue);
1495         destroy_workqueue(end_io_workqueue);
1496
1497         flush_workqueue(async_submit_workqueue);
1498         destroy_workqueue(async_submit_workqueue);
1499
1500         iput(fs_info->btree_inode);
1501 #if 0
1502         while(!list_empty(&fs_info->hashers)) {
1503                 struct btrfs_hasher *hasher;
1504                 hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher,
1505                                     hashers);
1506                 list_del(&hasher->hashers);
1507                 crypto_free_hash(&fs_info->hash_tfm);
1508                 kfree(hasher);
1509         }
1510 #endif
1511         close_all_devices(fs_info);
1512         btrfs_mapping_tree_free(&fs_info->mapping_tree);
1513
1514 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,23)
1515         bdi_destroy(&fs_info->bdi);
1516 #endif
1517
1518         kfree(fs_info->extent_root);
1519         kfree(fs_info->tree_root);
1520         kfree(fs_info->chunk_root);
1521         kfree(fs_info->dev_root);
1522         return 0;
1523 }
1524
1525 int btrfs_buffer_uptodate(struct extent_buffer *buf)
1526 {
1527         struct inode *btree_inode = buf->first_page->mapping->host;
1528         return extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
1529 }
1530
1531 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
1532 {
1533         struct inode *btree_inode = buf->first_page->mapping->host;
1534         return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
1535                                           buf);
1536 }
1537
1538 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
1539 {
1540         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1541         u64 transid = btrfs_header_generation(buf);
1542         struct inode *btree_inode = root->fs_info->btree_inode;
1543
1544         if (transid != root->fs_info->generation) {
1545                 printk(KERN_CRIT "transid mismatch buffer %llu, found %Lu running %Lu\n",
1546                         (unsigned long long)buf->start,
1547                         transid, root->fs_info->generation);
1548                 WARN_ON(1);
1549         }
1550         set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, buf);
1551 }
1552
1553 void btrfs_throttle(struct btrfs_root *root)
1554 {
1555         struct backing_dev_info *bdi;
1556
1557         bdi = root->fs_info->sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
1558         if (root->fs_info->throttles && bdi_write_congested(bdi)) {
1559 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,18)
1560                 congestion_wait(WRITE, HZ/20);
1561 #else
1562                 blk_congestion_wait(WRITE, HZ/20);
1563 #endif
1564         }
1565 }
1566
1567 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
1568 {
1569         balance_dirty_pages_ratelimited_nr(
1570                                    root->fs_info->btree_inode->i_mapping, 1);
1571 }
1572
1573 void btrfs_set_buffer_defrag(struct extent_buffer *buf)
1574 {
1575         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1576         struct inode *btree_inode = root->fs_info->btree_inode;
1577         set_extent_bits(&BTRFS_I(btree_inode)->io_tree, buf->start,
1578                         buf->start + buf->len - 1, EXTENT_DEFRAG, GFP_NOFS);
1579 }
1580
1581 void btrfs_set_buffer_defrag_done(struct extent_buffer *buf)
1582 {
1583         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1584         struct inode *btree_inode = root->fs_info->btree_inode;
1585         set_extent_bits(&BTRFS_I(btree_inode)->io_tree, buf->start,
1586                         buf->start + buf->len - 1, EXTENT_DEFRAG_DONE,
1587                         GFP_NOFS);
1588 }
1589
1590 int btrfs_buffer_defrag(struct extent_buffer *buf)
1591 {
1592         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1593         struct inode *btree_inode = root->fs_info->btree_inode;
1594         return test_range_bit(&BTRFS_I(btree_inode)->io_tree,
1595                      buf->start, buf->start + buf->len - 1, EXTENT_DEFRAG, 0);
1596 }
1597
1598 int btrfs_buffer_defrag_done(struct extent_buffer *buf)
1599 {
1600         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1601         struct inode *btree_inode = root->fs_info->btree_inode;
1602         return test_range_bit(&BTRFS_I(btree_inode)->io_tree,
1603                      buf->start, buf->start + buf->len - 1,
1604                      EXTENT_DEFRAG_DONE, 0);
1605 }
1606
1607 int btrfs_clear_buffer_defrag_done(struct extent_buffer *buf)
1608 {
1609         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1610         struct inode *btree_inode = root->fs_info->btree_inode;
1611         return clear_extent_bits(&BTRFS_I(btree_inode)->io_tree,
1612                      buf->start, buf->start + buf->len - 1,
1613                      EXTENT_DEFRAG_DONE, GFP_NOFS);
1614 }
1615
1616 int btrfs_clear_buffer_defrag(struct extent_buffer *buf)
1617 {
1618         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1619         struct inode *btree_inode = root->fs_info->btree_inode;
1620         return clear_extent_bits(&BTRFS_I(btree_inode)->io_tree,
1621                      buf->start, buf->start + buf->len - 1,
1622                      EXTENT_DEFRAG, GFP_NOFS);
1623 }
1624
1625 int btrfs_read_buffer(struct extent_buffer *buf)
1626 {
1627         struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1628         int ret;
1629         ret = btree_read_extent_buffer_pages(root, buf, 0);
1630         if (ret == 0) {
1631                 buf->flags |= EXTENT_UPTODATE;
1632         }
1633         return ret;
1634 }
1635
1636 static struct extent_io_ops btree_extent_io_ops = {
1637         .writepage_io_hook = btree_writepage_io_hook,
1638         .readpage_end_io_hook = btree_readpage_end_io_hook,
1639         .submit_bio_hook = btree_submit_bio_hook,
1640         /* note we're sharing with inode.c for the merge bio hook */
1641         .merge_bio_hook = btrfs_merge_bio_hook,
1642 };