Btrfs: log changed inodes based on the extent map tree
[linux-2.6-block.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 #include "rcu-string.h"
48 #include "dev-replace.h"
49
50 #ifdef CONFIG_X86
51 #include <asm/cpufeature.h>
52 #endif
53
54 static struct extent_io_ops btree_extent_io_ops;
55 static void end_workqueue_fn(struct btrfs_work *work);
56 static void free_fs_root(struct btrfs_root *root);
57 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
58                                     int read_only);
59 static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
60 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
61 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
62                                       struct btrfs_root *root);
63 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
64 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
65 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
66                                         struct extent_io_tree *dirty_pages,
67                                         int mark);
68 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
69                                        struct extent_io_tree *pinned_extents);
70
71 /*
72  * end_io_wq structs are used to do processing in task context when an IO is
73  * complete.  This is used during reads to verify checksums, and it is used
74  * by writes to insert metadata for new file extents after IO is complete.
75  */
76 struct end_io_wq {
77         struct bio *bio;
78         bio_end_io_t *end_io;
79         void *private;
80         struct btrfs_fs_info *info;
81         int error;
82         int metadata;
83         struct list_head list;
84         struct btrfs_work work;
85 };
86
87 /*
88  * async submit bios are used to offload expensive checksumming
89  * onto the worker threads.  They checksum file and metadata bios
90  * just before they are sent down the IO stack.
91  */
92 struct async_submit_bio {
93         struct inode *inode;
94         struct bio *bio;
95         struct list_head list;
96         extent_submit_bio_hook_t *submit_bio_start;
97         extent_submit_bio_hook_t *submit_bio_done;
98         int rw;
99         int mirror_num;
100         unsigned long bio_flags;
101         /*
102          * bio_offset is optional, can be used if the pages in the bio
103          * can't tell us where in the file the bio should go
104          */
105         u64 bio_offset;
106         struct btrfs_work work;
107         int error;
108 };
109
110 /*
111  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
112  * eb, the lockdep key is determined by the btrfs_root it belongs to and
113  * the level the eb occupies in the tree.
114  *
115  * Different roots are used for different purposes and may nest inside each
116  * other and they require separate keysets.  As lockdep keys should be
117  * static, assign keysets according to the purpose of the root as indicated
118  * by btrfs_root->objectid.  This ensures that all special purpose roots
119  * have separate keysets.
120  *
121  * Lock-nesting across peer nodes is always done with the immediate parent
122  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
123  * subclass to avoid triggering lockdep warning in such cases.
124  *
125  * The key is set by the readpage_end_io_hook after the buffer has passed
126  * csum validation but before the pages are unlocked.  It is also set by
127  * btrfs_init_new_buffer on freshly allocated blocks.
128  *
129  * We also add a check to make sure the highest level of the tree is the
130  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
131  * needs update as well.
132  */
133 #ifdef CONFIG_DEBUG_LOCK_ALLOC
134 # if BTRFS_MAX_LEVEL != 8
135 #  error
136 # endif
137
138 static struct btrfs_lockdep_keyset {
139         u64                     id;             /* root objectid */
140         const char              *name_stem;     /* lock name stem */
141         char                    names[BTRFS_MAX_LEVEL + 1][20];
142         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
143 } btrfs_lockdep_keysets[] = {
144         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
145         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
146         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
147         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
148         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
149         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
150         { .id = BTRFS_ORPHAN_OBJECTID,          .name_stem = "orphan"   },
151         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
152         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
153         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
154         { .id = 0,                              .name_stem = "tree"     },
155 };
156
157 void __init btrfs_init_lockdep(void)
158 {
159         int i, j;
160
161         /* initialize lockdep class names */
162         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
163                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
164
165                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
166                         snprintf(ks->names[j], sizeof(ks->names[j]),
167                                  "btrfs-%s-%02d", ks->name_stem, j);
168         }
169 }
170
171 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
172                                     int level)
173 {
174         struct btrfs_lockdep_keyset *ks;
175
176         BUG_ON(level >= ARRAY_SIZE(ks->keys));
177
178         /* find the matching keyset, id 0 is the default entry */
179         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
180                 if (ks->id == objectid)
181                         break;
182
183         lockdep_set_class_and_name(&eb->lock,
184                                    &ks->keys[level], ks->names[level]);
185 }
186
187 #endif
188
189 /*
190  * extents on the btree inode are pretty simple, there's one extent
191  * that covers the entire device
192  */
193 static struct extent_map *btree_get_extent(struct inode *inode,
194                 struct page *page, size_t pg_offset, u64 start, u64 len,
195                 int create)
196 {
197         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
198         struct extent_map *em;
199         int ret;
200
201         read_lock(&em_tree->lock);
202         em = lookup_extent_mapping(em_tree, start, len);
203         if (em) {
204                 em->bdev =
205                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
206                 read_unlock(&em_tree->lock);
207                 goto out;
208         }
209         read_unlock(&em_tree->lock);
210
211         em = alloc_extent_map();
212         if (!em) {
213                 em = ERR_PTR(-ENOMEM);
214                 goto out;
215         }
216         em->start = 0;
217         em->len = (u64)-1;
218         em->block_len = (u64)-1;
219         em->block_start = 0;
220         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
221
222         write_lock(&em_tree->lock);
223         ret = add_extent_mapping(em_tree, em);
224         if (ret == -EEXIST) {
225                 free_extent_map(em);
226                 em = lookup_extent_mapping(em_tree, start, len);
227                 if (!em)
228                         em = ERR_PTR(-EIO);
229         } else if (ret) {
230                 free_extent_map(em);
231                 em = ERR_PTR(ret);
232         }
233         write_unlock(&em_tree->lock);
234
235 out:
236         return em;
237 }
238
239 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
240 {
241         return crc32c(seed, data, len);
242 }
243
244 void btrfs_csum_final(u32 crc, char *result)
245 {
246         put_unaligned_le32(~crc, result);
247 }
248
249 /*
250  * compute the csum for a btree block, and either verify it or write it
251  * into the csum field of the block.
252  */
253 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
254                            int verify)
255 {
256         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
257         char *result = NULL;
258         unsigned long len;
259         unsigned long cur_len;
260         unsigned long offset = BTRFS_CSUM_SIZE;
261         char *kaddr;
262         unsigned long map_start;
263         unsigned long map_len;
264         int err;
265         u32 crc = ~(u32)0;
266         unsigned long inline_result;
267
268         len = buf->len - offset;
269         while (len > 0) {
270                 err = map_private_extent_buffer(buf, offset, 32,
271                                         &kaddr, &map_start, &map_len);
272                 if (err)
273                         return 1;
274                 cur_len = min(len, map_len - (offset - map_start));
275                 crc = btrfs_csum_data(root, kaddr + offset - map_start,
276                                       crc, cur_len);
277                 len -= cur_len;
278                 offset += cur_len;
279         }
280         if (csum_size > sizeof(inline_result)) {
281                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
282                 if (!result)
283                         return 1;
284         } else {
285                 result = (char *)&inline_result;
286         }
287
288         btrfs_csum_final(crc, result);
289
290         if (verify) {
291                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
292                         u32 val;
293                         u32 found = 0;
294                         memcpy(&found, result, csum_size);
295
296                         read_extent_buffer(buf, &val, 0, csum_size);
297                         printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
298                                        "failed on %llu wanted %X found %X "
299                                        "level %d\n",
300                                        root->fs_info->sb->s_id,
301                                        (unsigned long long)buf->start, val, found,
302                                        btrfs_header_level(buf));
303                         if (result != (char *)&inline_result)
304                                 kfree(result);
305                         return 1;
306                 }
307         } else {
308                 write_extent_buffer(buf, result, 0, csum_size);
309         }
310         if (result != (char *)&inline_result)
311                 kfree(result);
312         return 0;
313 }
314
315 /*
316  * we can't consider a given block up to date unless the transid of the
317  * block matches the transid in the parent node's pointer.  This is how we
318  * detect blocks that either didn't get written at all or got written
319  * in the wrong place.
320  */
321 static int verify_parent_transid(struct extent_io_tree *io_tree,
322                                  struct extent_buffer *eb, u64 parent_transid,
323                                  int atomic)
324 {
325         struct extent_state *cached_state = NULL;
326         int ret;
327
328         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
329                 return 0;
330
331         if (atomic)
332                 return -EAGAIN;
333
334         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
335                          0, &cached_state);
336         if (extent_buffer_uptodate(eb) &&
337             btrfs_header_generation(eb) == parent_transid) {
338                 ret = 0;
339                 goto out;
340         }
341         printk_ratelimited("parent transid verify failed on %llu wanted %llu "
342                        "found %llu\n",
343                        (unsigned long long)eb->start,
344                        (unsigned long long)parent_transid,
345                        (unsigned long long)btrfs_header_generation(eb));
346         ret = 1;
347         clear_extent_buffer_uptodate(eb);
348 out:
349         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
350                              &cached_state, GFP_NOFS);
351         return ret;
352 }
353
354 /*
355  * helper to read a given tree block, doing retries as required when
356  * the checksums don't match and we have alternate mirrors to try.
357  */
358 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
359                                           struct extent_buffer *eb,
360                                           u64 start, u64 parent_transid)
361 {
362         struct extent_io_tree *io_tree;
363         int failed = 0;
364         int ret;
365         int num_copies = 0;
366         int mirror_num = 0;
367         int failed_mirror = 0;
368
369         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
370         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
371         while (1) {
372                 ret = read_extent_buffer_pages(io_tree, eb, start,
373                                                WAIT_COMPLETE,
374                                                btree_get_extent, mirror_num);
375                 if (!ret) {
376                         if (!verify_parent_transid(io_tree, eb,
377                                                    parent_transid, 0))
378                                 break;
379                         else
380                                 ret = -EIO;
381                 }
382
383                 /*
384                  * This buffer's crc is fine, but its contents are corrupted, so
385                  * there is no reason to read the other copies, they won't be
386                  * any less wrong.
387                  */
388                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
389                         break;
390
391                 num_copies = btrfs_num_copies(root->fs_info,
392                                               eb->start, eb->len);
393                 if (num_copies == 1)
394                         break;
395
396                 if (!failed_mirror) {
397                         failed = 1;
398                         failed_mirror = eb->read_mirror;
399                 }
400
401                 mirror_num++;
402                 if (mirror_num == failed_mirror)
403                         mirror_num++;
404
405                 if (mirror_num > num_copies)
406                         break;
407         }
408
409         if (failed && !ret && failed_mirror)
410                 repair_eb_io_failure(root, eb, failed_mirror);
411
412         return ret;
413 }
414
415 /*
416  * checksum a dirty tree block before IO.  This has extra checks to make sure
417  * we only fill in the checksum field in the first page of a multi-page block
418  */
419
420 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
421 {
422         struct extent_io_tree *tree;
423         u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
424         u64 found_start;
425         struct extent_buffer *eb;
426
427         tree = &BTRFS_I(page->mapping->host)->io_tree;
428
429         eb = (struct extent_buffer *)page->private;
430         if (page != eb->pages[0])
431                 return 0;
432         found_start = btrfs_header_bytenr(eb);
433         if (found_start != start) {
434                 WARN_ON(1);
435                 return 0;
436         }
437         if (!PageUptodate(page)) {
438                 WARN_ON(1);
439                 return 0;
440         }
441         csum_tree_block(root, eb, 0);
442         return 0;
443 }
444
445 static int check_tree_block_fsid(struct btrfs_root *root,
446                                  struct extent_buffer *eb)
447 {
448         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
449         u8 fsid[BTRFS_UUID_SIZE];
450         int ret = 1;
451
452         read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
453                            BTRFS_FSID_SIZE);
454         while (fs_devices) {
455                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
456                         ret = 0;
457                         break;
458                 }
459                 fs_devices = fs_devices->seed;
460         }
461         return ret;
462 }
463
464 #define CORRUPT(reason, eb, root, slot)                         \
465         printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
466                "root=%llu, slot=%d\n", reason,                  \
467                (unsigned long long)btrfs_header_bytenr(eb),     \
468                (unsigned long long)root->objectid, slot)
469
470 static noinline int check_leaf(struct btrfs_root *root,
471                                struct extent_buffer *leaf)
472 {
473         struct btrfs_key key;
474         struct btrfs_key leaf_key;
475         u32 nritems = btrfs_header_nritems(leaf);
476         int slot;
477
478         if (nritems == 0)
479                 return 0;
480
481         /* Check the 0 item */
482         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
483             BTRFS_LEAF_DATA_SIZE(root)) {
484                 CORRUPT("invalid item offset size pair", leaf, root, 0);
485                 return -EIO;
486         }
487
488         /*
489          * Check to make sure each items keys are in the correct order and their
490          * offsets make sense.  We only have to loop through nritems-1 because
491          * we check the current slot against the next slot, which verifies the
492          * next slot's offset+size makes sense and that the current's slot
493          * offset is correct.
494          */
495         for (slot = 0; slot < nritems - 1; slot++) {
496                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
497                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
498
499                 /* Make sure the keys are in the right order */
500                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
501                         CORRUPT("bad key order", leaf, root, slot);
502                         return -EIO;
503                 }
504
505                 /*
506                  * Make sure the offset and ends are right, remember that the
507                  * item data starts at the end of the leaf and grows towards the
508                  * front.
509                  */
510                 if (btrfs_item_offset_nr(leaf, slot) !=
511                         btrfs_item_end_nr(leaf, slot + 1)) {
512                         CORRUPT("slot offset bad", leaf, root, slot);
513                         return -EIO;
514                 }
515
516                 /*
517                  * Check to make sure that we don't point outside of the leaf,
518                  * just incase all the items are consistent to eachother, but
519                  * all point outside of the leaf.
520                  */
521                 if (btrfs_item_end_nr(leaf, slot) >
522                     BTRFS_LEAF_DATA_SIZE(root)) {
523                         CORRUPT("slot end outside of leaf", leaf, root, slot);
524                         return -EIO;
525                 }
526         }
527
528         return 0;
529 }
530
531 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
532                                        struct page *page, int max_walk)
533 {
534         struct extent_buffer *eb;
535         u64 start = page_offset(page);
536         u64 target = start;
537         u64 min_start;
538
539         if (start < max_walk)
540                 min_start = 0;
541         else
542                 min_start = start - max_walk;
543
544         while (start >= min_start) {
545                 eb = find_extent_buffer(tree, start, 0);
546                 if (eb) {
547                         /*
548                          * we found an extent buffer and it contains our page
549                          * horray!
550                          */
551                         if (eb->start <= target &&
552                             eb->start + eb->len > target)
553                                 return eb;
554
555                         /* we found an extent buffer that wasn't for us */
556                         free_extent_buffer(eb);
557                         return NULL;
558                 }
559                 if (start == 0)
560                         break;
561                 start -= PAGE_CACHE_SIZE;
562         }
563         return NULL;
564 }
565
566 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
567                                struct extent_state *state, int mirror)
568 {
569         struct extent_io_tree *tree;
570         u64 found_start;
571         int found_level;
572         struct extent_buffer *eb;
573         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
574         int ret = 0;
575         int reads_done;
576
577         if (!page->private)
578                 goto out;
579
580         tree = &BTRFS_I(page->mapping->host)->io_tree;
581         eb = (struct extent_buffer *)page->private;
582
583         /* the pending IO might have been the only thing that kept this buffer
584          * in memory.  Make sure we have a ref for all this other checks
585          */
586         extent_buffer_get(eb);
587
588         reads_done = atomic_dec_and_test(&eb->io_pages);
589         if (!reads_done)
590                 goto err;
591
592         eb->read_mirror = mirror;
593         if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
594                 ret = -EIO;
595                 goto err;
596         }
597
598         found_start = btrfs_header_bytenr(eb);
599         if (found_start != eb->start) {
600                 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
601                                "%llu %llu\n",
602                                (unsigned long long)found_start,
603                                (unsigned long long)eb->start);
604                 ret = -EIO;
605                 goto err;
606         }
607         if (check_tree_block_fsid(root, eb)) {
608                 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
609                                (unsigned long long)eb->start);
610                 ret = -EIO;
611                 goto err;
612         }
613         found_level = btrfs_header_level(eb);
614
615         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
616                                        eb, found_level);
617
618         ret = csum_tree_block(root, eb, 1);
619         if (ret) {
620                 ret = -EIO;
621                 goto err;
622         }
623
624         /*
625          * If this is a leaf block and it is corrupt, set the corrupt bit so
626          * that we don't try and read the other copies of this block, just
627          * return -EIO.
628          */
629         if (found_level == 0 && check_leaf(root, eb)) {
630                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
631                 ret = -EIO;
632         }
633
634         if (!ret)
635                 set_extent_buffer_uptodate(eb);
636 err:
637         if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
638                 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
639                 btree_readahead_hook(root, eb, eb->start, ret);
640         }
641
642         if (ret)
643                 clear_extent_buffer_uptodate(eb);
644         free_extent_buffer(eb);
645 out:
646         return ret;
647 }
648
649 static int btree_io_failed_hook(struct page *page, int failed_mirror)
650 {
651         struct extent_buffer *eb;
652         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
653
654         eb = (struct extent_buffer *)page->private;
655         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
656         eb->read_mirror = failed_mirror;
657         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
658                 btree_readahead_hook(root, eb, eb->start, -EIO);
659         return -EIO;    /* we fixed nothing */
660 }
661
662 static void end_workqueue_bio(struct bio *bio, int err)
663 {
664         struct end_io_wq *end_io_wq = bio->bi_private;
665         struct btrfs_fs_info *fs_info;
666
667         fs_info = end_io_wq->info;
668         end_io_wq->error = err;
669         end_io_wq->work.func = end_workqueue_fn;
670         end_io_wq->work.flags = 0;
671
672         if (bio->bi_rw & REQ_WRITE) {
673                 if (end_io_wq->metadata == 1)
674                         btrfs_queue_worker(&fs_info->endio_meta_write_workers,
675                                            &end_io_wq->work);
676                 else if (end_io_wq->metadata == 2)
677                         btrfs_queue_worker(&fs_info->endio_freespace_worker,
678                                            &end_io_wq->work);
679                 else
680                         btrfs_queue_worker(&fs_info->endio_write_workers,
681                                            &end_io_wq->work);
682         } else {
683                 if (end_io_wq->metadata)
684                         btrfs_queue_worker(&fs_info->endio_meta_workers,
685                                            &end_io_wq->work);
686                 else
687                         btrfs_queue_worker(&fs_info->endio_workers,
688                                            &end_io_wq->work);
689         }
690 }
691
692 /*
693  * For the metadata arg you want
694  *
695  * 0 - if data
696  * 1 - if normal metadta
697  * 2 - if writing to the free space cache area
698  */
699 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
700                         int metadata)
701 {
702         struct end_io_wq *end_io_wq;
703         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
704         if (!end_io_wq)
705                 return -ENOMEM;
706
707         end_io_wq->private = bio->bi_private;
708         end_io_wq->end_io = bio->bi_end_io;
709         end_io_wq->info = info;
710         end_io_wq->error = 0;
711         end_io_wq->bio = bio;
712         end_io_wq->metadata = metadata;
713
714         bio->bi_private = end_io_wq;
715         bio->bi_end_io = end_workqueue_bio;
716         return 0;
717 }
718
719 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
720 {
721         unsigned long limit = min_t(unsigned long,
722                                     info->workers.max_workers,
723                                     info->fs_devices->open_devices);
724         return 256 * limit;
725 }
726
727 static void run_one_async_start(struct btrfs_work *work)
728 {
729         struct async_submit_bio *async;
730         int ret;
731
732         async = container_of(work, struct  async_submit_bio, work);
733         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
734                                       async->mirror_num, async->bio_flags,
735                                       async->bio_offset);
736         if (ret)
737                 async->error = ret;
738 }
739
740 static void run_one_async_done(struct btrfs_work *work)
741 {
742         struct btrfs_fs_info *fs_info;
743         struct async_submit_bio *async;
744         int limit;
745
746         async = container_of(work, struct  async_submit_bio, work);
747         fs_info = BTRFS_I(async->inode)->root->fs_info;
748
749         limit = btrfs_async_submit_limit(fs_info);
750         limit = limit * 2 / 3;
751
752         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
753             waitqueue_active(&fs_info->async_submit_wait))
754                 wake_up(&fs_info->async_submit_wait);
755
756         /* If an error occured we just want to clean up the bio and move on */
757         if (async->error) {
758                 bio_endio(async->bio, async->error);
759                 return;
760         }
761
762         async->submit_bio_done(async->inode, async->rw, async->bio,
763                                async->mirror_num, async->bio_flags,
764                                async->bio_offset);
765 }
766
767 static void run_one_async_free(struct btrfs_work *work)
768 {
769         struct async_submit_bio *async;
770
771         async = container_of(work, struct  async_submit_bio, work);
772         kfree(async);
773 }
774
775 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
776                         int rw, struct bio *bio, int mirror_num,
777                         unsigned long bio_flags,
778                         u64 bio_offset,
779                         extent_submit_bio_hook_t *submit_bio_start,
780                         extent_submit_bio_hook_t *submit_bio_done)
781 {
782         struct async_submit_bio *async;
783
784         async = kmalloc(sizeof(*async), GFP_NOFS);
785         if (!async)
786                 return -ENOMEM;
787
788         async->inode = inode;
789         async->rw = rw;
790         async->bio = bio;
791         async->mirror_num = mirror_num;
792         async->submit_bio_start = submit_bio_start;
793         async->submit_bio_done = submit_bio_done;
794
795         async->work.func = run_one_async_start;
796         async->work.ordered_func = run_one_async_done;
797         async->work.ordered_free = run_one_async_free;
798
799         async->work.flags = 0;
800         async->bio_flags = bio_flags;
801         async->bio_offset = bio_offset;
802
803         async->error = 0;
804
805         atomic_inc(&fs_info->nr_async_submits);
806
807         if (rw & REQ_SYNC)
808                 btrfs_set_work_high_prio(&async->work);
809
810         btrfs_queue_worker(&fs_info->workers, &async->work);
811
812         while (atomic_read(&fs_info->async_submit_draining) &&
813               atomic_read(&fs_info->nr_async_submits)) {
814                 wait_event(fs_info->async_submit_wait,
815                            (atomic_read(&fs_info->nr_async_submits) == 0));
816         }
817
818         return 0;
819 }
820
821 static int btree_csum_one_bio(struct bio *bio)
822 {
823         struct bio_vec *bvec = bio->bi_io_vec;
824         int bio_index = 0;
825         struct btrfs_root *root;
826         int ret = 0;
827
828         WARN_ON(bio->bi_vcnt <= 0);
829         while (bio_index < bio->bi_vcnt) {
830                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
831                 ret = csum_dirty_buffer(root, bvec->bv_page);
832                 if (ret)
833                         break;
834                 bio_index++;
835                 bvec++;
836         }
837         return ret;
838 }
839
840 static int __btree_submit_bio_start(struct inode *inode, int rw,
841                                     struct bio *bio, int mirror_num,
842                                     unsigned long bio_flags,
843                                     u64 bio_offset)
844 {
845         /*
846          * when we're called for a write, we're already in the async
847          * submission context.  Just jump into btrfs_map_bio
848          */
849         return btree_csum_one_bio(bio);
850 }
851
852 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
853                                  int mirror_num, unsigned long bio_flags,
854                                  u64 bio_offset)
855 {
856         int ret;
857
858         /*
859          * when we're called for a write, we're already in the async
860          * submission context.  Just jump into btrfs_map_bio
861          */
862         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
863         if (ret)
864                 bio_endio(bio, ret);
865         return ret;
866 }
867
868 static int check_async_write(struct inode *inode, unsigned long bio_flags)
869 {
870         if (bio_flags & EXTENT_BIO_TREE_LOG)
871                 return 0;
872 #ifdef CONFIG_X86
873         if (cpu_has_xmm4_2)
874                 return 0;
875 #endif
876         return 1;
877 }
878
879 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
880                                  int mirror_num, unsigned long bio_flags,
881                                  u64 bio_offset)
882 {
883         int async = check_async_write(inode, bio_flags);
884         int ret;
885
886         if (!(rw & REQ_WRITE)) {
887                 /*
888                  * called for a read, do the setup so that checksum validation
889                  * can happen in the async kernel threads
890                  */
891                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
892                                           bio, 1);
893                 if (ret)
894                         goto out_w_error;
895                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
896                                     mirror_num, 0);
897         } else if (!async) {
898                 ret = btree_csum_one_bio(bio);
899                 if (ret)
900                         goto out_w_error;
901                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
902                                     mirror_num, 0);
903         } else {
904                 /*
905                  * kthread helpers are used to submit writes so that
906                  * checksumming can happen in parallel across all CPUs
907                  */
908                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
909                                           inode, rw, bio, mirror_num, 0,
910                                           bio_offset,
911                                           __btree_submit_bio_start,
912                                           __btree_submit_bio_done);
913         }
914
915         if (ret) {
916 out_w_error:
917                 bio_endio(bio, ret);
918         }
919         return ret;
920 }
921
922 #ifdef CONFIG_MIGRATION
923 static int btree_migratepage(struct address_space *mapping,
924                         struct page *newpage, struct page *page,
925                         enum migrate_mode mode)
926 {
927         /*
928          * we can't safely write a btree page from here,
929          * we haven't done the locking hook
930          */
931         if (PageDirty(page))
932                 return -EAGAIN;
933         /*
934          * Buffers may be managed in a filesystem specific way.
935          * We must have no buffers or drop them.
936          */
937         if (page_has_private(page) &&
938             !try_to_release_page(page, GFP_KERNEL))
939                 return -EAGAIN;
940         return migrate_page(mapping, newpage, page, mode);
941 }
942 #endif
943
944
945 static int btree_writepages(struct address_space *mapping,
946                             struct writeback_control *wbc)
947 {
948         struct extent_io_tree *tree;
949         tree = &BTRFS_I(mapping->host)->io_tree;
950         if (wbc->sync_mode == WB_SYNC_NONE) {
951                 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
952                 u64 num_dirty;
953                 unsigned long thresh = 32 * 1024 * 1024;
954
955                 if (wbc->for_kupdate)
956                         return 0;
957
958                 /* this is a bit racy, but that's ok */
959                 num_dirty = root->fs_info->dirty_metadata_bytes;
960                 if (num_dirty < thresh)
961                         return 0;
962         }
963         return btree_write_cache_pages(mapping, wbc);
964 }
965
966 static int btree_readpage(struct file *file, struct page *page)
967 {
968         struct extent_io_tree *tree;
969         tree = &BTRFS_I(page->mapping->host)->io_tree;
970         return extent_read_full_page(tree, page, btree_get_extent, 0);
971 }
972
973 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
974 {
975         if (PageWriteback(page) || PageDirty(page))
976                 return 0;
977         /*
978          * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
979          * slab allocation from alloc_extent_state down the callchain where
980          * it'd hit a BUG_ON as those flags are not allowed.
981          */
982         gfp_flags &= ~GFP_SLAB_BUG_MASK;
983
984         return try_release_extent_buffer(page, gfp_flags);
985 }
986
987 static void btree_invalidatepage(struct page *page, unsigned long offset)
988 {
989         struct extent_io_tree *tree;
990         tree = &BTRFS_I(page->mapping->host)->io_tree;
991         extent_invalidatepage(tree, page, offset);
992         btree_releasepage(page, GFP_NOFS);
993         if (PagePrivate(page)) {
994                 printk(KERN_WARNING "btrfs warning page private not zero "
995                        "on page %llu\n", (unsigned long long)page_offset(page));
996                 ClearPagePrivate(page);
997                 set_page_private(page, 0);
998                 page_cache_release(page);
999         }
1000 }
1001
1002 static int btree_set_page_dirty(struct page *page)
1003 {
1004         struct extent_buffer *eb;
1005
1006         BUG_ON(!PagePrivate(page));
1007         eb = (struct extent_buffer *)page->private;
1008         BUG_ON(!eb);
1009         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1010         BUG_ON(!atomic_read(&eb->refs));
1011         btrfs_assert_tree_locked(eb);
1012         return __set_page_dirty_nobuffers(page);
1013 }
1014
1015 static const struct address_space_operations btree_aops = {
1016         .readpage       = btree_readpage,
1017         .writepages     = btree_writepages,
1018         .releasepage    = btree_releasepage,
1019         .invalidatepage = btree_invalidatepage,
1020 #ifdef CONFIG_MIGRATION
1021         .migratepage    = btree_migratepage,
1022 #endif
1023         .set_page_dirty = btree_set_page_dirty,
1024 };
1025
1026 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1027                          u64 parent_transid)
1028 {
1029         struct extent_buffer *buf = NULL;
1030         struct inode *btree_inode = root->fs_info->btree_inode;
1031         int ret = 0;
1032
1033         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1034         if (!buf)
1035                 return 0;
1036         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1037                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1038         free_extent_buffer(buf);
1039         return ret;
1040 }
1041
1042 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1043                          int mirror_num, struct extent_buffer **eb)
1044 {
1045         struct extent_buffer *buf = NULL;
1046         struct inode *btree_inode = root->fs_info->btree_inode;
1047         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1048         int ret;
1049
1050         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1051         if (!buf)
1052                 return 0;
1053
1054         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1055
1056         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1057                                        btree_get_extent, mirror_num);
1058         if (ret) {
1059                 free_extent_buffer(buf);
1060                 return ret;
1061         }
1062
1063         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1064                 free_extent_buffer(buf);
1065                 return -EIO;
1066         } else if (extent_buffer_uptodate(buf)) {
1067                 *eb = buf;
1068         } else {
1069                 free_extent_buffer(buf);
1070         }
1071         return 0;
1072 }
1073
1074 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1075                                             u64 bytenr, u32 blocksize)
1076 {
1077         struct inode *btree_inode = root->fs_info->btree_inode;
1078         struct extent_buffer *eb;
1079         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1080                                 bytenr, blocksize);
1081         return eb;
1082 }
1083
1084 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1085                                                  u64 bytenr, u32 blocksize)
1086 {
1087         struct inode *btree_inode = root->fs_info->btree_inode;
1088         struct extent_buffer *eb;
1089
1090         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1091                                  bytenr, blocksize);
1092         return eb;
1093 }
1094
1095
1096 int btrfs_write_tree_block(struct extent_buffer *buf)
1097 {
1098         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1099                                         buf->start + buf->len - 1);
1100 }
1101
1102 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1103 {
1104         return filemap_fdatawait_range(buf->pages[0]->mapping,
1105                                        buf->start, buf->start + buf->len - 1);
1106 }
1107
1108 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1109                                       u32 blocksize, u64 parent_transid)
1110 {
1111         struct extent_buffer *buf = NULL;
1112         int ret;
1113
1114         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1115         if (!buf)
1116                 return NULL;
1117
1118         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1119         return buf;
1120
1121 }
1122
1123 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1124                       struct extent_buffer *buf)
1125 {
1126         if (btrfs_header_generation(buf) ==
1127             root->fs_info->running_transaction->transid) {
1128                 btrfs_assert_tree_locked(buf);
1129
1130                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1131                         spin_lock(&root->fs_info->delalloc_lock);
1132                         if (root->fs_info->dirty_metadata_bytes >= buf->len)
1133                                 root->fs_info->dirty_metadata_bytes -= buf->len;
1134                         else {
1135                                 spin_unlock(&root->fs_info->delalloc_lock);
1136                                 btrfs_panic(root->fs_info, -EOVERFLOW,
1137                                           "Can't clear %lu bytes from "
1138                                           " dirty_mdatadata_bytes (%llu)",
1139                                           buf->len,
1140                                           root->fs_info->dirty_metadata_bytes);
1141                         }
1142                         spin_unlock(&root->fs_info->delalloc_lock);
1143                 }
1144
1145                 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1146                 btrfs_set_lock_blocking(buf);
1147                 clear_extent_buffer_dirty(buf);
1148         }
1149 }
1150
1151 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1152                          u32 stripesize, struct btrfs_root *root,
1153                          struct btrfs_fs_info *fs_info,
1154                          u64 objectid)
1155 {
1156         root->node = NULL;
1157         root->commit_root = NULL;
1158         root->sectorsize = sectorsize;
1159         root->nodesize = nodesize;
1160         root->leafsize = leafsize;
1161         root->stripesize = stripesize;
1162         root->ref_cows = 0;
1163         root->track_dirty = 0;
1164         root->in_radix = 0;
1165         root->orphan_item_inserted = 0;
1166         root->orphan_cleanup_state = 0;
1167
1168         root->objectid = objectid;
1169         root->last_trans = 0;
1170         root->highest_objectid = 0;
1171         root->name = NULL;
1172         root->inode_tree = RB_ROOT;
1173         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1174         root->block_rsv = NULL;
1175         root->orphan_block_rsv = NULL;
1176
1177         INIT_LIST_HEAD(&root->dirty_list);
1178         INIT_LIST_HEAD(&root->root_list);
1179         spin_lock_init(&root->orphan_lock);
1180         spin_lock_init(&root->inode_lock);
1181         spin_lock_init(&root->accounting_lock);
1182         mutex_init(&root->objectid_mutex);
1183         mutex_init(&root->log_mutex);
1184         init_waitqueue_head(&root->log_writer_wait);
1185         init_waitqueue_head(&root->log_commit_wait[0]);
1186         init_waitqueue_head(&root->log_commit_wait[1]);
1187         atomic_set(&root->log_commit[0], 0);
1188         atomic_set(&root->log_commit[1], 0);
1189         atomic_set(&root->log_writers, 0);
1190         atomic_set(&root->log_batch, 0);
1191         atomic_set(&root->orphan_inodes, 0);
1192         root->log_transid = 0;
1193         root->last_log_commit = 0;
1194         extent_io_tree_init(&root->dirty_log_pages,
1195                              fs_info->btree_inode->i_mapping);
1196
1197         memset(&root->root_key, 0, sizeof(root->root_key));
1198         memset(&root->root_item, 0, sizeof(root->root_item));
1199         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1200         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1201         root->defrag_trans_start = fs_info->generation;
1202         init_completion(&root->kobj_unregister);
1203         root->defrag_running = 0;
1204         root->root_key.objectid = objectid;
1205         root->anon_dev = 0;
1206
1207         spin_lock_init(&root->root_item_lock);
1208 }
1209
1210 static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1211                                             struct btrfs_fs_info *fs_info,
1212                                             u64 objectid,
1213                                             struct btrfs_root *root)
1214 {
1215         int ret;
1216         u32 blocksize;
1217         u64 generation;
1218
1219         __setup_root(tree_root->nodesize, tree_root->leafsize,
1220                      tree_root->sectorsize, tree_root->stripesize,
1221                      root, fs_info, objectid);
1222         ret = btrfs_find_last_root(tree_root, objectid,
1223                                    &root->root_item, &root->root_key);
1224         if (ret > 0)
1225                 return -ENOENT;
1226         else if (ret < 0)
1227                 return ret;
1228
1229         generation = btrfs_root_generation(&root->root_item);
1230         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1231         root->commit_root = NULL;
1232         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1233                                      blocksize, generation);
1234         if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1235                 free_extent_buffer(root->node);
1236                 root->node = NULL;
1237                 return -EIO;
1238         }
1239         root->commit_root = btrfs_root_node(root);
1240         return 0;
1241 }
1242
1243 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1244 {
1245         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1246         if (root)
1247                 root->fs_info = fs_info;
1248         return root;
1249 }
1250
1251 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1252                                      struct btrfs_fs_info *fs_info,
1253                                      u64 objectid)
1254 {
1255         struct extent_buffer *leaf;
1256         struct btrfs_root *tree_root = fs_info->tree_root;
1257         struct btrfs_root *root;
1258         struct btrfs_key key;
1259         int ret = 0;
1260         u64 bytenr;
1261
1262         root = btrfs_alloc_root(fs_info);
1263         if (!root)
1264                 return ERR_PTR(-ENOMEM);
1265
1266         __setup_root(tree_root->nodesize, tree_root->leafsize,
1267                      tree_root->sectorsize, tree_root->stripesize,
1268                      root, fs_info, objectid);
1269         root->root_key.objectid = objectid;
1270         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1271         root->root_key.offset = 0;
1272
1273         leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1274                                       0, objectid, NULL, 0, 0, 0);
1275         if (IS_ERR(leaf)) {
1276                 ret = PTR_ERR(leaf);
1277                 goto fail;
1278         }
1279
1280         bytenr = leaf->start;
1281         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1282         btrfs_set_header_bytenr(leaf, leaf->start);
1283         btrfs_set_header_generation(leaf, trans->transid);
1284         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1285         btrfs_set_header_owner(leaf, objectid);
1286         root->node = leaf;
1287
1288         write_extent_buffer(leaf, fs_info->fsid,
1289                             (unsigned long)btrfs_header_fsid(leaf),
1290                             BTRFS_FSID_SIZE);
1291         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1292                             (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1293                             BTRFS_UUID_SIZE);
1294         btrfs_mark_buffer_dirty(leaf);
1295
1296         root->commit_root = btrfs_root_node(root);
1297         root->track_dirty = 1;
1298
1299
1300         root->root_item.flags = 0;
1301         root->root_item.byte_limit = 0;
1302         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1303         btrfs_set_root_generation(&root->root_item, trans->transid);
1304         btrfs_set_root_level(&root->root_item, 0);
1305         btrfs_set_root_refs(&root->root_item, 1);
1306         btrfs_set_root_used(&root->root_item, leaf->len);
1307         btrfs_set_root_last_snapshot(&root->root_item, 0);
1308         btrfs_set_root_dirid(&root->root_item, 0);
1309         root->root_item.drop_level = 0;
1310
1311         key.objectid = objectid;
1312         key.type = BTRFS_ROOT_ITEM_KEY;
1313         key.offset = 0;
1314         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1315         if (ret)
1316                 goto fail;
1317
1318         btrfs_tree_unlock(leaf);
1319
1320 fail:
1321         if (ret)
1322                 return ERR_PTR(ret);
1323
1324         return root;
1325 }
1326
1327 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1328                                          struct btrfs_fs_info *fs_info)
1329 {
1330         struct btrfs_root *root;
1331         struct btrfs_root *tree_root = fs_info->tree_root;
1332         struct extent_buffer *leaf;
1333
1334         root = btrfs_alloc_root(fs_info);
1335         if (!root)
1336                 return ERR_PTR(-ENOMEM);
1337
1338         __setup_root(tree_root->nodesize, tree_root->leafsize,
1339                      tree_root->sectorsize, tree_root->stripesize,
1340                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1341
1342         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1343         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1344         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1345         /*
1346          * log trees do not get reference counted because they go away
1347          * before a real commit is actually done.  They do store pointers
1348          * to file data extents, and those reference counts still get
1349          * updated (along with back refs to the log tree).
1350          */
1351         root->ref_cows = 0;
1352
1353         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1354                                       BTRFS_TREE_LOG_OBJECTID, NULL,
1355                                       0, 0, 0);
1356         if (IS_ERR(leaf)) {
1357                 kfree(root);
1358                 return ERR_CAST(leaf);
1359         }
1360
1361         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1362         btrfs_set_header_bytenr(leaf, leaf->start);
1363         btrfs_set_header_generation(leaf, trans->transid);
1364         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1365         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1366         root->node = leaf;
1367
1368         write_extent_buffer(root->node, root->fs_info->fsid,
1369                             (unsigned long)btrfs_header_fsid(root->node),
1370                             BTRFS_FSID_SIZE);
1371         btrfs_mark_buffer_dirty(root->node);
1372         btrfs_tree_unlock(root->node);
1373         return root;
1374 }
1375
1376 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1377                              struct btrfs_fs_info *fs_info)
1378 {
1379         struct btrfs_root *log_root;
1380
1381         log_root = alloc_log_tree(trans, fs_info);
1382         if (IS_ERR(log_root))
1383                 return PTR_ERR(log_root);
1384         WARN_ON(fs_info->log_root_tree);
1385         fs_info->log_root_tree = log_root;
1386         return 0;
1387 }
1388
1389 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1390                        struct btrfs_root *root)
1391 {
1392         struct btrfs_root *log_root;
1393         struct btrfs_inode_item *inode_item;
1394
1395         log_root = alloc_log_tree(trans, root->fs_info);
1396         if (IS_ERR(log_root))
1397                 return PTR_ERR(log_root);
1398
1399         log_root->last_trans = trans->transid;
1400         log_root->root_key.offset = root->root_key.objectid;
1401
1402         inode_item = &log_root->root_item.inode;
1403         inode_item->generation = cpu_to_le64(1);
1404         inode_item->size = cpu_to_le64(3);
1405         inode_item->nlink = cpu_to_le32(1);
1406         inode_item->nbytes = cpu_to_le64(root->leafsize);
1407         inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1408
1409         btrfs_set_root_node(&log_root->root_item, log_root->node);
1410
1411         WARN_ON(root->log_root);
1412         root->log_root = log_root;
1413         root->log_transid = 0;
1414         root->last_log_commit = 0;
1415         return 0;
1416 }
1417
1418 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1419                                                struct btrfs_key *location)
1420 {
1421         struct btrfs_root *root;
1422         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1423         struct btrfs_path *path;
1424         struct extent_buffer *l;
1425         u64 generation;
1426         u32 blocksize;
1427         int ret = 0;
1428         int slot;
1429
1430         root = btrfs_alloc_root(fs_info);
1431         if (!root)
1432                 return ERR_PTR(-ENOMEM);
1433         if (location->offset == (u64)-1) {
1434                 ret = find_and_setup_root(tree_root, fs_info,
1435                                           location->objectid, root);
1436                 if (ret) {
1437                         kfree(root);
1438                         return ERR_PTR(ret);
1439                 }
1440                 goto out;
1441         }
1442
1443         __setup_root(tree_root->nodesize, tree_root->leafsize,
1444                      tree_root->sectorsize, tree_root->stripesize,
1445                      root, fs_info, location->objectid);
1446
1447         path = btrfs_alloc_path();
1448         if (!path) {
1449                 kfree(root);
1450                 return ERR_PTR(-ENOMEM);
1451         }
1452         ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1453         if (ret == 0) {
1454                 l = path->nodes[0];
1455                 slot = path->slots[0];
1456                 btrfs_read_root_item(tree_root, l, slot, &root->root_item);
1457                 memcpy(&root->root_key, location, sizeof(*location));
1458         }
1459         btrfs_free_path(path);
1460         if (ret) {
1461                 kfree(root);
1462                 if (ret > 0)
1463                         ret = -ENOENT;
1464                 return ERR_PTR(ret);
1465         }
1466
1467         generation = btrfs_root_generation(&root->root_item);
1468         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1469         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1470                                      blocksize, generation);
1471         root->commit_root = btrfs_root_node(root);
1472         BUG_ON(!root->node); /* -ENOMEM */
1473 out:
1474         if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1475                 root->ref_cows = 1;
1476                 btrfs_check_and_init_root_item(&root->root_item);
1477         }
1478
1479         return root;
1480 }
1481
1482 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1483                                               struct btrfs_key *location)
1484 {
1485         struct btrfs_root *root;
1486         int ret;
1487
1488         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1489                 return fs_info->tree_root;
1490         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1491                 return fs_info->extent_root;
1492         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1493                 return fs_info->chunk_root;
1494         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1495                 return fs_info->dev_root;
1496         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1497                 return fs_info->csum_root;
1498         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1499                 return fs_info->quota_root ? fs_info->quota_root :
1500                                              ERR_PTR(-ENOENT);
1501 again:
1502         spin_lock(&fs_info->fs_roots_radix_lock);
1503         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1504                                  (unsigned long)location->objectid);
1505         spin_unlock(&fs_info->fs_roots_radix_lock);
1506         if (root)
1507                 return root;
1508
1509         root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1510         if (IS_ERR(root))
1511                 return root;
1512
1513         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1514         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1515                                         GFP_NOFS);
1516         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1517                 ret = -ENOMEM;
1518                 goto fail;
1519         }
1520
1521         btrfs_init_free_ino_ctl(root);
1522         mutex_init(&root->fs_commit_mutex);
1523         spin_lock_init(&root->cache_lock);
1524         init_waitqueue_head(&root->cache_wait);
1525
1526         ret = get_anon_bdev(&root->anon_dev);
1527         if (ret)
1528                 goto fail;
1529
1530         if (btrfs_root_refs(&root->root_item) == 0) {
1531                 ret = -ENOENT;
1532                 goto fail;
1533         }
1534
1535         ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1536         if (ret < 0)
1537                 goto fail;
1538         if (ret == 0)
1539                 root->orphan_item_inserted = 1;
1540
1541         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1542         if (ret)
1543                 goto fail;
1544
1545         spin_lock(&fs_info->fs_roots_radix_lock);
1546         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1547                                 (unsigned long)root->root_key.objectid,
1548                                 root);
1549         if (ret == 0)
1550                 root->in_radix = 1;
1551
1552         spin_unlock(&fs_info->fs_roots_radix_lock);
1553         radix_tree_preload_end();
1554         if (ret) {
1555                 if (ret == -EEXIST) {
1556                         free_fs_root(root);
1557                         goto again;
1558                 }
1559                 goto fail;
1560         }
1561
1562         ret = btrfs_find_dead_roots(fs_info->tree_root,
1563                                     root->root_key.objectid);
1564         WARN_ON(ret);
1565         return root;
1566 fail:
1567         free_fs_root(root);
1568         return ERR_PTR(ret);
1569 }
1570
1571 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1572 {
1573         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1574         int ret = 0;
1575         struct btrfs_device *device;
1576         struct backing_dev_info *bdi;
1577
1578         rcu_read_lock();
1579         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1580                 if (!device->bdev)
1581                         continue;
1582                 bdi = blk_get_backing_dev_info(device->bdev);
1583                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1584                         ret = 1;
1585                         break;
1586                 }
1587         }
1588         rcu_read_unlock();
1589         return ret;
1590 }
1591
1592 /*
1593  * If this fails, caller must call bdi_destroy() to get rid of the
1594  * bdi again.
1595  */
1596 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1597 {
1598         int err;
1599
1600         bdi->capabilities = BDI_CAP_MAP_COPY;
1601         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1602         if (err)
1603                 return err;
1604
1605         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1606         bdi->congested_fn       = btrfs_congested_fn;
1607         bdi->congested_data     = info;
1608         return 0;
1609 }
1610
1611 /*
1612  * called by the kthread helper functions to finally call the bio end_io
1613  * functions.  This is where read checksum verification actually happens
1614  */
1615 static void end_workqueue_fn(struct btrfs_work *work)
1616 {
1617         struct bio *bio;
1618         struct end_io_wq *end_io_wq;
1619         struct btrfs_fs_info *fs_info;
1620         int error;
1621
1622         end_io_wq = container_of(work, struct end_io_wq, work);
1623         bio = end_io_wq->bio;
1624         fs_info = end_io_wq->info;
1625
1626         error = end_io_wq->error;
1627         bio->bi_private = end_io_wq->private;
1628         bio->bi_end_io = end_io_wq->end_io;
1629         kfree(end_io_wq);
1630         bio_endio(bio, error);
1631 }
1632
1633 static int cleaner_kthread(void *arg)
1634 {
1635         struct btrfs_root *root = arg;
1636
1637         do {
1638                 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1639                     mutex_trylock(&root->fs_info->cleaner_mutex)) {
1640                         btrfs_run_delayed_iputs(root);
1641                         btrfs_clean_old_snapshots(root);
1642                         mutex_unlock(&root->fs_info->cleaner_mutex);
1643                         btrfs_run_defrag_inodes(root->fs_info);
1644                 }
1645
1646                 if (!try_to_freeze()) {
1647                         set_current_state(TASK_INTERRUPTIBLE);
1648                         if (!kthread_should_stop())
1649                                 schedule();
1650                         __set_current_state(TASK_RUNNING);
1651                 }
1652         } while (!kthread_should_stop());
1653         return 0;
1654 }
1655
1656 static int transaction_kthread(void *arg)
1657 {
1658         struct btrfs_root *root = arg;
1659         struct btrfs_trans_handle *trans;
1660         struct btrfs_transaction *cur;
1661         u64 transid;
1662         unsigned long now;
1663         unsigned long delay;
1664         bool cannot_commit;
1665
1666         do {
1667                 cannot_commit = false;
1668                 delay = HZ * 30;
1669                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1670
1671                 spin_lock(&root->fs_info->trans_lock);
1672                 cur = root->fs_info->running_transaction;
1673                 if (!cur) {
1674                         spin_unlock(&root->fs_info->trans_lock);
1675                         goto sleep;
1676                 }
1677
1678                 now = get_seconds();
1679                 if (!cur->blocked &&
1680                     (now < cur->start_time || now - cur->start_time < 30)) {
1681                         spin_unlock(&root->fs_info->trans_lock);
1682                         delay = HZ * 5;
1683                         goto sleep;
1684                 }
1685                 transid = cur->transid;
1686                 spin_unlock(&root->fs_info->trans_lock);
1687
1688                 /* If the file system is aborted, this will always fail. */
1689                 trans = btrfs_attach_transaction(root);
1690                 if (IS_ERR(trans)) {
1691                         if (PTR_ERR(trans) != -ENOENT)
1692                                 cannot_commit = true;
1693                         goto sleep;
1694                 }
1695                 if (transid == trans->transid) {
1696                         btrfs_commit_transaction(trans, root);
1697                 } else {
1698                         btrfs_end_transaction(trans, root);
1699                 }
1700 sleep:
1701                 wake_up_process(root->fs_info->cleaner_kthread);
1702                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1703
1704                 if (!try_to_freeze()) {
1705                         set_current_state(TASK_INTERRUPTIBLE);
1706                         if (!kthread_should_stop() &&
1707                             (!btrfs_transaction_blocked(root->fs_info) ||
1708                              cannot_commit))
1709                                 schedule_timeout(delay);
1710                         __set_current_state(TASK_RUNNING);
1711                 }
1712         } while (!kthread_should_stop());
1713         return 0;
1714 }
1715
1716 /*
1717  * this will find the highest generation in the array of
1718  * root backups.  The index of the highest array is returned,
1719  * or -1 if we can't find anything.
1720  *
1721  * We check to make sure the array is valid by comparing the
1722  * generation of the latest  root in the array with the generation
1723  * in the super block.  If they don't match we pitch it.
1724  */
1725 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1726 {
1727         u64 cur;
1728         int newest_index = -1;
1729         struct btrfs_root_backup *root_backup;
1730         int i;
1731
1732         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1733                 root_backup = info->super_copy->super_roots + i;
1734                 cur = btrfs_backup_tree_root_gen(root_backup);
1735                 if (cur == newest_gen)
1736                         newest_index = i;
1737         }
1738
1739         /* check to see if we actually wrapped around */
1740         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1741                 root_backup = info->super_copy->super_roots;
1742                 cur = btrfs_backup_tree_root_gen(root_backup);
1743                 if (cur == newest_gen)
1744                         newest_index = 0;
1745         }
1746         return newest_index;
1747 }
1748
1749
1750 /*
1751  * find the oldest backup so we know where to store new entries
1752  * in the backup array.  This will set the backup_root_index
1753  * field in the fs_info struct
1754  */
1755 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1756                                      u64 newest_gen)
1757 {
1758         int newest_index = -1;
1759
1760         newest_index = find_newest_super_backup(info, newest_gen);
1761         /* if there was garbage in there, just move along */
1762         if (newest_index == -1) {
1763                 info->backup_root_index = 0;
1764         } else {
1765                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1766         }
1767 }
1768
1769 /*
1770  * copy all the root pointers into the super backup array.
1771  * this will bump the backup pointer by one when it is
1772  * done
1773  */
1774 static void backup_super_roots(struct btrfs_fs_info *info)
1775 {
1776         int next_backup;
1777         struct btrfs_root_backup *root_backup;
1778         int last_backup;
1779
1780         next_backup = info->backup_root_index;
1781         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1782                 BTRFS_NUM_BACKUP_ROOTS;
1783
1784         /*
1785          * just overwrite the last backup if we're at the same generation
1786          * this happens only at umount
1787          */
1788         root_backup = info->super_for_commit->super_roots + last_backup;
1789         if (btrfs_backup_tree_root_gen(root_backup) ==
1790             btrfs_header_generation(info->tree_root->node))
1791                 next_backup = last_backup;
1792
1793         root_backup = info->super_for_commit->super_roots + next_backup;
1794
1795         /*
1796          * make sure all of our padding and empty slots get zero filled
1797          * regardless of which ones we use today
1798          */
1799         memset(root_backup, 0, sizeof(*root_backup));
1800
1801         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1802
1803         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1804         btrfs_set_backup_tree_root_gen(root_backup,
1805                                btrfs_header_generation(info->tree_root->node));
1806
1807         btrfs_set_backup_tree_root_level(root_backup,
1808                                btrfs_header_level(info->tree_root->node));
1809
1810         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1811         btrfs_set_backup_chunk_root_gen(root_backup,
1812                                btrfs_header_generation(info->chunk_root->node));
1813         btrfs_set_backup_chunk_root_level(root_backup,
1814                                btrfs_header_level(info->chunk_root->node));
1815
1816         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1817         btrfs_set_backup_extent_root_gen(root_backup,
1818                                btrfs_header_generation(info->extent_root->node));
1819         btrfs_set_backup_extent_root_level(root_backup,
1820                                btrfs_header_level(info->extent_root->node));
1821
1822         /*
1823          * we might commit during log recovery, which happens before we set
1824          * the fs_root.  Make sure it is valid before we fill it in.
1825          */
1826         if (info->fs_root && info->fs_root->node) {
1827                 btrfs_set_backup_fs_root(root_backup,
1828                                          info->fs_root->node->start);
1829                 btrfs_set_backup_fs_root_gen(root_backup,
1830                                btrfs_header_generation(info->fs_root->node));
1831                 btrfs_set_backup_fs_root_level(root_backup,
1832                                btrfs_header_level(info->fs_root->node));
1833         }
1834
1835         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1836         btrfs_set_backup_dev_root_gen(root_backup,
1837                                btrfs_header_generation(info->dev_root->node));
1838         btrfs_set_backup_dev_root_level(root_backup,
1839                                        btrfs_header_level(info->dev_root->node));
1840
1841         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1842         btrfs_set_backup_csum_root_gen(root_backup,
1843                                btrfs_header_generation(info->csum_root->node));
1844         btrfs_set_backup_csum_root_level(root_backup,
1845                                btrfs_header_level(info->csum_root->node));
1846
1847         btrfs_set_backup_total_bytes(root_backup,
1848                              btrfs_super_total_bytes(info->super_copy));
1849         btrfs_set_backup_bytes_used(root_backup,
1850                              btrfs_super_bytes_used(info->super_copy));
1851         btrfs_set_backup_num_devices(root_backup,
1852                              btrfs_super_num_devices(info->super_copy));
1853
1854         /*
1855          * if we don't copy this out to the super_copy, it won't get remembered
1856          * for the next commit
1857          */
1858         memcpy(&info->super_copy->super_roots,
1859                &info->super_for_commit->super_roots,
1860                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1861 }
1862
1863 /*
1864  * this copies info out of the root backup array and back into
1865  * the in-memory super block.  It is meant to help iterate through
1866  * the array, so you send it the number of backups you've already
1867  * tried and the last backup index you used.
1868  *
1869  * this returns -1 when it has tried all the backups
1870  */
1871 static noinline int next_root_backup(struct btrfs_fs_info *info,
1872                                      struct btrfs_super_block *super,
1873                                      int *num_backups_tried, int *backup_index)
1874 {
1875         struct btrfs_root_backup *root_backup;
1876         int newest = *backup_index;
1877
1878         if (*num_backups_tried == 0) {
1879                 u64 gen = btrfs_super_generation(super);
1880
1881                 newest = find_newest_super_backup(info, gen);
1882                 if (newest == -1)
1883                         return -1;
1884
1885                 *backup_index = newest;
1886                 *num_backups_tried = 1;
1887         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1888                 /* we've tried all the backups, all done */
1889                 return -1;
1890         } else {
1891                 /* jump to the next oldest backup */
1892                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1893                         BTRFS_NUM_BACKUP_ROOTS;
1894                 *backup_index = newest;
1895                 *num_backups_tried += 1;
1896         }
1897         root_backup = super->super_roots + newest;
1898
1899         btrfs_set_super_generation(super,
1900                                    btrfs_backup_tree_root_gen(root_backup));
1901         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1902         btrfs_set_super_root_level(super,
1903                                    btrfs_backup_tree_root_level(root_backup));
1904         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1905
1906         /*
1907          * fixme: the total bytes and num_devices need to match or we should
1908          * need a fsck
1909          */
1910         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1911         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1912         return 0;
1913 }
1914
1915 /* helper to cleanup tree roots */
1916 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1917 {
1918         free_extent_buffer(info->tree_root->node);
1919         free_extent_buffer(info->tree_root->commit_root);
1920         free_extent_buffer(info->dev_root->node);
1921         free_extent_buffer(info->dev_root->commit_root);
1922         free_extent_buffer(info->extent_root->node);
1923         free_extent_buffer(info->extent_root->commit_root);
1924         free_extent_buffer(info->csum_root->node);
1925         free_extent_buffer(info->csum_root->commit_root);
1926         if (info->quota_root) {
1927                 free_extent_buffer(info->quota_root->node);
1928                 free_extent_buffer(info->quota_root->commit_root);
1929         }
1930
1931         info->tree_root->node = NULL;
1932         info->tree_root->commit_root = NULL;
1933         info->dev_root->node = NULL;
1934         info->dev_root->commit_root = NULL;
1935         info->extent_root->node = NULL;
1936         info->extent_root->commit_root = NULL;
1937         info->csum_root->node = NULL;
1938         info->csum_root->commit_root = NULL;
1939         if (info->quota_root) {
1940                 info->quota_root->node = NULL;
1941                 info->quota_root->commit_root = NULL;
1942         }
1943
1944         if (chunk_root) {
1945                 free_extent_buffer(info->chunk_root->node);
1946                 free_extent_buffer(info->chunk_root->commit_root);
1947                 info->chunk_root->node = NULL;
1948                 info->chunk_root->commit_root = NULL;
1949         }
1950 }
1951
1952
1953 int open_ctree(struct super_block *sb,
1954                struct btrfs_fs_devices *fs_devices,
1955                char *options)
1956 {
1957         u32 sectorsize;
1958         u32 nodesize;
1959         u32 leafsize;
1960         u32 blocksize;
1961         u32 stripesize;
1962         u64 generation;
1963         u64 features;
1964         struct btrfs_key location;
1965         struct buffer_head *bh;
1966         struct btrfs_super_block *disk_super;
1967         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1968         struct btrfs_root *tree_root;
1969         struct btrfs_root *extent_root;
1970         struct btrfs_root *csum_root;
1971         struct btrfs_root *chunk_root;
1972         struct btrfs_root *dev_root;
1973         struct btrfs_root *quota_root;
1974         struct btrfs_root *log_tree_root;
1975         int ret;
1976         int err = -EINVAL;
1977         int num_backups_tried = 0;
1978         int backup_index = 0;
1979
1980         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
1981         extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1982         csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1983         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1984         dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
1985         quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
1986
1987         if (!tree_root || !extent_root || !csum_root ||
1988             !chunk_root || !dev_root || !quota_root) {
1989                 err = -ENOMEM;
1990                 goto fail;
1991         }
1992
1993         ret = init_srcu_struct(&fs_info->subvol_srcu);
1994         if (ret) {
1995                 err = ret;
1996                 goto fail;
1997         }
1998
1999         ret = setup_bdi(fs_info, &fs_info->bdi);
2000         if (ret) {
2001                 err = ret;
2002                 goto fail_srcu;
2003         }
2004
2005         fs_info->btree_inode = new_inode(sb);
2006         if (!fs_info->btree_inode) {
2007                 err = -ENOMEM;
2008                 goto fail_bdi;
2009         }
2010
2011         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2012
2013         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2014         INIT_LIST_HEAD(&fs_info->trans_list);
2015         INIT_LIST_HEAD(&fs_info->dead_roots);
2016         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2017         INIT_LIST_HEAD(&fs_info->delalloc_inodes);
2018         INIT_LIST_HEAD(&fs_info->ordered_operations);
2019         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2020         spin_lock_init(&fs_info->delalloc_lock);
2021         spin_lock_init(&fs_info->trans_lock);
2022         spin_lock_init(&fs_info->fs_roots_radix_lock);
2023         spin_lock_init(&fs_info->delayed_iput_lock);
2024         spin_lock_init(&fs_info->defrag_inodes_lock);
2025         spin_lock_init(&fs_info->free_chunk_lock);
2026         spin_lock_init(&fs_info->tree_mod_seq_lock);
2027         rwlock_init(&fs_info->tree_mod_log_lock);
2028         mutex_init(&fs_info->reloc_mutex);
2029
2030         init_completion(&fs_info->kobj_unregister);
2031         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2032         INIT_LIST_HEAD(&fs_info->space_info);
2033         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2034         btrfs_mapping_init(&fs_info->mapping_tree);
2035         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2036                              BTRFS_BLOCK_RSV_GLOBAL);
2037         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2038                              BTRFS_BLOCK_RSV_DELALLOC);
2039         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2040         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2041         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2042         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2043                              BTRFS_BLOCK_RSV_DELOPS);
2044         atomic_set(&fs_info->nr_async_submits, 0);
2045         atomic_set(&fs_info->async_delalloc_pages, 0);
2046         atomic_set(&fs_info->async_submit_draining, 0);
2047         atomic_set(&fs_info->nr_async_bios, 0);
2048         atomic_set(&fs_info->defrag_running, 0);
2049         atomic_set(&fs_info->tree_mod_seq, 0);
2050         fs_info->sb = sb;
2051         fs_info->max_inline = 8192 * 1024;
2052         fs_info->metadata_ratio = 0;
2053         fs_info->defrag_inodes = RB_ROOT;
2054         fs_info->trans_no_join = 0;
2055         fs_info->free_chunk_space = 0;
2056         fs_info->tree_mod_log = RB_ROOT;
2057
2058         /* readahead state */
2059         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2060         spin_lock_init(&fs_info->reada_lock);
2061
2062         fs_info->thread_pool_size = min_t(unsigned long,
2063                                           num_online_cpus() + 2, 8);
2064
2065         INIT_LIST_HEAD(&fs_info->ordered_extents);
2066         spin_lock_init(&fs_info->ordered_extent_lock);
2067         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2068                                         GFP_NOFS);
2069         if (!fs_info->delayed_root) {
2070                 err = -ENOMEM;
2071                 goto fail_iput;
2072         }
2073         btrfs_init_delayed_root(fs_info->delayed_root);
2074
2075         mutex_init(&fs_info->scrub_lock);
2076         atomic_set(&fs_info->scrubs_running, 0);
2077         atomic_set(&fs_info->scrub_pause_req, 0);
2078         atomic_set(&fs_info->scrubs_paused, 0);
2079         atomic_set(&fs_info->scrub_cancel_req, 0);
2080         init_waitqueue_head(&fs_info->scrub_pause_wait);
2081         init_rwsem(&fs_info->scrub_super_lock);
2082         fs_info->scrub_workers_refcnt = 0;
2083 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2084         fs_info->check_integrity_print_mask = 0;
2085 #endif
2086
2087         spin_lock_init(&fs_info->balance_lock);
2088         mutex_init(&fs_info->balance_mutex);
2089         atomic_set(&fs_info->balance_running, 0);
2090         atomic_set(&fs_info->balance_pause_req, 0);
2091         atomic_set(&fs_info->balance_cancel_req, 0);
2092         fs_info->balance_ctl = NULL;
2093         init_waitqueue_head(&fs_info->balance_wait_q);
2094
2095         sb->s_blocksize = 4096;
2096         sb->s_blocksize_bits = blksize_bits(4096);
2097         sb->s_bdi = &fs_info->bdi;
2098
2099         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2100         set_nlink(fs_info->btree_inode, 1);
2101         /*
2102          * we set the i_size on the btree inode to the max possible int.
2103          * the real end of the address space is determined by all of
2104          * the devices in the system
2105          */
2106         fs_info->btree_inode->i_size = OFFSET_MAX;
2107         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2108         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2109
2110         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2111         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2112                              fs_info->btree_inode->i_mapping);
2113         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2114         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2115
2116         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2117
2118         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2119         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2120                sizeof(struct btrfs_key));
2121         set_bit(BTRFS_INODE_DUMMY,
2122                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2123         insert_inode_hash(fs_info->btree_inode);
2124
2125         spin_lock_init(&fs_info->block_group_cache_lock);
2126         fs_info->block_group_cache_tree = RB_ROOT;
2127
2128         extent_io_tree_init(&fs_info->freed_extents[0],
2129                              fs_info->btree_inode->i_mapping);
2130         extent_io_tree_init(&fs_info->freed_extents[1],
2131                              fs_info->btree_inode->i_mapping);
2132         fs_info->pinned_extents = &fs_info->freed_extents[0];
2133         fs_info->do_barriers = 1;
2134
2135
2136         mutex_init(&fs_info->ordered_operations_mutex);
2137         mutex_init(&fs_info->tree_log_mutex);
2138         mutex_init(&fs_info->chunk_mutex);
2139         mutex_init(&fs_info->transaction_kthread_mutex);
2140         mutex_init(&fs_info->cleaner_mutex);
2141         mutex_init(&fs_info->volume_mutex);
2142         init_rwsem(&fs_info->extent_commit_sem);
2143         init_rwsem(&fs_info->cleanup_work_sem);
2144         init_rwsem(&fs_info->subvol_sem);
2145         fs_info->dev_replace.lock_owner = 0;
2146         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2147         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2148         mutex_init(&fs_info->dev_replace.lock_management_lock);
2149         mutex_init(&fs_info->dev_replace.lock);
2150
2151         spin_lock_init(&fs_info->qgroup_lock);
2152         fs_info->qgroup_tree = RB_ROOT;
2153         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2154         fs_info->qgroup_seq = 1;
2155         fs_info->quota_enabled = 0;
2156         fs_info->pending_quota_state = 0;
2157
2158         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2159         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2160
2161         init_waitqueue_head(&fs_info->transaction_throttle);
2162         init_waitqueue_head(&fs_info->transaction_wait);
2163         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2164         init_waitqueue_head(&fs_info->async_submit_wait);
2165
2166         __setup_root(4096, 4096, 4096, 4096, tree_root,
2167                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2168
2169         invalidate_bdev(fs_devices->latest_bdev);
2170         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2171         if (!bh) {
2172                 err = -EINVAL;
2173                 goto fail_alloc;
2174         }
2175
2176         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2177         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2178                sizeof(*fs_info->super_for_commit));
2179         brelse(bh);
2180
2181         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2182
2183         disk_super = fs_info->super_copy;
2184         if (!btrfs_super_root(disk_super))
2185                 goto fail_alloc;
2186
2187         /* check FS state, whether FS is broken. */
2188         fs_info->fs_state |= btrfs_super_flags(disk_super);
2189
2190         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2191         if (ret) {
2192                 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2193                 err = ret;
2194                 goto fail_alloc;
2195         }
2196
2197         /*
2198          * run through our array of backup supers and setup
2199          * our ring pointer to the oldest one
2200          */
2201         generation = btrfs_super_generation(disk_super);
2202         find_oldest_super_backup(fs_info, generation);
2203
2204         /*
2205          * In the long term, we'll store the compression type in the super
2206          * block, and it'll be used for per file compression control.
2207          */
2208         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2209
2210         ret = btrfs_parse_options(tree_root, options);
2211         if (ret) {
2212                 err = ret;
2213                 goto fail_alloc;
2214         }
2215
2216         features = btrfs_super_incompat_flags(disk_super) &
2217                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2218         if (features) {
2219                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2220                        "unsupported optional features (%Lx).\n",
2221                        (unsigned long long)features);
2222                 err = -EINVAL;
2223                 goto fail_alloc;
2224         }
2225
2226         if (btrfs_super_leafsize(disk_super) !=
2227             btrfs_super_nodesize(disk_super)) {
2228                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2229                        "blocksizes don't match.  node %d leaf %d\n",
2230                        btrfs_super_nodesize(disk_super),
2231                        btrfs_super_leafsize(disk_super));
2232                 err = -EINVAL;
2233                 goto fail_alloc;
2234         }
2235         if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2236                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2237                        "blocksize (%d) was too large\n",
2238                        btrfs_super_leafsize(disk_super));
2239                 err = -EINVAL;
2240                 goto fail_alloc;
2241         }
2242
2243         features = btrfs_super_incompat_flags(disk_super);
2244         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2245         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2246                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2247
2248         /*
2249          * flag our filesystem as having big metadata blocks if
2250          * they are bigger than the page size
2251          */
2252         if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2253                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2254                         printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2255                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2256         }
2257
2258         nodesize = btrfs_super_nodesize(disk_super);
2259         leafsize = btrfs_super_leafsize(disk_super);
2260         sectorsize = btrfs_super_sectorsize(disk_super);
2261         stripesize = btrfs_super_stripesize(disk_super);
2262
2263         /*
2264          * mixed block groups end up with duplicate but slightly offset
2265          * extent buffers for the same range.  It leads to corruptions
2266          */
2267         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2268             (sectorsize != leafsize)) {
2269                 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2270                                 "are not allowed for mixed block groups on %s\n",
2271                                 sb->s_id);
2272                 goto fail_alloc;
2273         }
2274
2275         btrfs_set_super_incompat_flags(disk_super, features);
2276
2277         features = btrfs_super_compat_ro_flags(disk_super) &
2278                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2279         if (!(sb->s_flags & MS_RDONLY) && features) {
2280                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2281                        "unsupported option features (%Lx).\n",
2282                        (unsigned long long)features);
2283                 err = -EINVAL;
2284                 goto fail_alloc;
2285         }
2286
2287         btrfs_init_workers(&fs_info->generic_worker,
2288                            "genwork", 1, NULL);
2289
2290         btrfs_init_workers(&fs_info->workers, "worker",
2291                            fs_info->thread_pool_size,
2292                            &fs_info->generic_worker);
2293
2294         btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2295                            fs_info->thread_pool_size,
2296                            &fs_info->generic_worker);
2297
2298         btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2299                            fs_info->thread_pool_size,
2300                            &fs_info->generic_worker);
2301
2302         btrfs_init_workers(&fs_info->submit_workers, "submit",
2303                            min_t(u64, fs_devices->num_devices,
2304                            fs_info->thread_pool_size),
2305                            &fs_info->generic_worker);
2306
2307         btrfs_init_workers(&fs_info->caching_workers, "cache",
2308                            2, &fs_info->generic_worker);
2309
2310         /* a higher idle thresh on the submit workers makes it much more
2311          * likely that bios will be send down in a sane order to the
2312          * devices
2313          */
2314         fs_info->submit_workers.idle_thresh = 64;
2315
2316         fs_info->workers.idle_thresh = 16;
2317         fs_info->workers.ordered = 1;
2318
2319         fs_info->delalloc_workers.idle_thresh = 2;
2320         fs_info->delalloc_workers.ordered = 1;
2321
2322         btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2323                            &fs_info->generic_worker);
2324         btrfs_init_workers(&fs_info->endio_workers, "endio",
2325                            fs_info->thread_pool_size,
2326                            &fs_info->generic_worker);
2327         btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2328                            fs_info->thread_pool_size,
2329                            &fs_info->generic_worker);
2330         btrfs_init_workers(&fs_info->endio_meta_write_workers,
2331                            "endio-meta-write", fs_info->thread_pool_size,
2332                            &fs_info->generic_worker);
2333         btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2334                            fs_info->thread_pool_size,
2335                            &fs_info->generic_worker);
2336         btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2337                            1, &fs_info->generic_worker);
2338         btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2339                            fs_info->thread_pool_size,
2340                            &fs_info->generic_worker);
2341         btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2342                            fs_info->thread_pool_size,
2343                            &fs_info->generic_worker);
2344
2345         /*
2346          * endios are largely parallel and should have a very
2347          * low idle thresh
2348          */
2349         fs_info->endio_workers.idle_thresh = 4;
2350         fs_info->endio_meta_workers.idle_thresh = 4;
2351
2352         fs_info->endio_write_workers.idle_thresh = 2;
2353         fs_info->endio_meta_write_workers.idle_thresh = 2;
2354         fs_info->readahead_workers.idle_thresh = 2;
2355
2356         /*
2357          * btrfs_start_workers can really only fail because of ENOMEM so just
2358          * return -ENOMEM if any of these fail.
2359          */
2360         ret = btrfs_start_workers(&fs_info->workers);
2361         ret |= btrfs_start_workers(&fs_info->generic_worker);
2362         ret |= btrfs_start_workers(&fs_info->submit_workers);
2363         ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2364         ret |= btrfs_start_workers(&fs_info->fixup_workers);
2365         ret |= btrfs_start_workers(&fs_info->endio_workers);
2366         ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2367         ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2368         ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2369         ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2370         ret |= btrfs_start_workers(&fs_info->delayed_workers);
2371         ret |= btrfs_start_workers(&fs_info->caching_workers);
2372         ret |= btrfs_start_workers(&fs_info->readahead_workers);
2373         ret |= btrfs_start_workers(&fs_info->flush_workers);
2374         if (ret) {
2375                 err = -ENOMEM;
2376                 goto fail_sb_buffer;
2377         }
2378
2379         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2380         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2381                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2382
2383         tree_root->nodesize = nodesize;
2384         tree_root->leafsize = leafsize;
2385         tree_root->sectorsize = sectorsize;
2386         tree_root->stripesize = stripesize;
2387
2388         sb->s_blocksize = sectorsize;
2389         sb->s_blocksize_bits = blksize_bits(sectorsize);
2390
2391         if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2392                     sizeof(disk_super->magic))) {
2393                 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2394                 goto fail_sb_buffer;
2395         }
2396
2397         if (sectorsize != PAGE_SIZE) {
2398                 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2399                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2400                 goto fail_sb_buffer;
2401         }
2402
2403         mutex_lock(&fs_info->chunk_mutex);
2404         ret = btrfs_read_sys_array(tree_root);
2405         mutex_unlock(&fs_info->chunk_mutex);
2406         if (ret) {
2407                 printk(KERN_WARNING "btrfs: failed to read the system "
2408                        "array on %s\n", sb->s_id);
2409                 goto fail_sb_buffer;
2410         }
2411
2412         blocksize = btrfs_level_size(tree_root,
2413                                      btrfs_super_chunk_root_level(disk_super));
2414         generation = btrfs_super_chunk_root_generation(disk_super);
2415
2416         __setup_root(nodesize, leafsize, sectorsize, stripesize,
2417                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2418
2419         chunk_root->node = read_tree_block(chunk_root,
2420                                            btrfs_super_chunk_root(disk_super),
2421                                            blocksize, generation);
2422         BUG_ON(!chunk_root->node); /* -ENOMEM */
2423         if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2424                 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2425                        sb->s_id);
2426                 goto fail_tree_roots;
2427         }
2428         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2429         chunk_root->commit_root = btrfs_root_node(chunk_root);
2430
2431         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2432            (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2433            BTRFS_UUID_SIZE);
2434
2435         ret = btrfs_read_chunk_tree(chunk_root);
2436         if (ret) {
2437                 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2438                        sb->s_id);
2439                 goto fail_tree_roots;
2440         }
2441
2442         /*
2443          * keep the device that is marked to be the target device for the
2444          * dev_replace procedure
2445          */
2446         btrfs_close_extra_devices(fs_info, fs_devices, 0);
2447
2448         if (!fs_devices->latest_bdev) {
2449                 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2450                        sb->s_id);
2451                 goto fail_tree_roots;
2452         }
2453
2454 retry_root_backup:
2455         blocksize = btrfs_level_size(tree_root,
2456                                      btrfs_super_root_level(disk_super));
2457         generation = btrfs_super_generation(disk_super);
2458
2459         tree_root->node = read_tree_block(tree_root,
2460                                           btrfs_super_root(disk_super),
2461                                           blocksize, generation);
2462         if (!tree_root->node ||
2463             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2464                 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2465                        sb->s_id);
2466
2467                 goto recovery_tree_root;
2468         }
2469
2470         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2471         tree_root->commit_root = btrfs_root_node(tree_root);
2472
2473         ret = find_and_setup_root(tree_root, fs_info,
2474                                   BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2475         if (ret)
2476                 goto recovery_tree_root;
2477         extent_root->track_dirty = 1;
2478
2479         ret = find_and_setup_root(tree_root, fs_info,
2480                                   BTRFS_DEV_TREE_OBJECTID, dev_root);
2481         if (ret)
2482                 goto recovery_tree_root;
2483         dev_root->track_dirty = 1;
2484
2485         ret = find_and_setup_root(tree_root, fs_info,
2486                                   BTRFS_CSUM_TREE_OBJECTID, csum_root);
2487         if (ret)
2488                 goto recovery_tree_root;
2489         csum_root->track_dirty = 1;
2490
2491         ret = find_and_setup_root(tree_root, fs_info,
2492                                   BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2493         if (ret) {
2494                 kfree(quota_root);
2495                 quota_root = fs_info->quota_root = NULL;
2496         } else {
2497                 quota_root->track_dirty = 1;
2498                 fs_info->quota_enabled = 1;
2499                 fs_info->pending_quota_state = 1;
2500         }
2501
2502         fs_info->generation = generation;
2503         fs_info->last_trans_committed = generation;
2504
2505         ret = btrfs_recover_balance(fs_info);
2506         if (ret) {
2507                 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2508                 goto fail_block_groups;
2509         }
2510
2511         ret = btrfs_init_dev_stats(fs_info);
2512         if (ret) {
2513                 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2514                        ret);
2515                 goto fail_block_groups;
2516         }
2517
2518         ret = btrfs_init_dev_replace(fs_info);
2519         if (ret) {
2520                 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2521                 goto fail_block_groups;
2522         }
2523
2524         btrfs_close_extra_devices(fs_info, fs_devices, 1);
2525
2526         ret = btrfs_init_space_info(fs_info);
2527         if (ret) {
2528                 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2529                 goto fail_block_groups;
2530         }
2531
2532         ret = btrfs_read_block_groups(extent_root);
2533         if (ret) {
2534                 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2535                 goto fail_block_groups;
2536         }
2537         fs_info->num_tolerated_disk_barrier_failures =
2538                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2539         if (fs_info->fs_devices->missing_devices >
2540              fs_info->num_tolerated_disk_barrier_failures &&
2541             !(sb->s_flags & MS_RDONLY)) {
2542                 printk(KERN_WARNING
2543                        "Btrfs: too many missing devices, writeable mount is not allowed\n");
2544                 goto fail_block_groups;
2545         }
2546
2547         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2548                                                "btrfs-cleaner");
2549         if (IS_ERR(fs_info->cleaner_kthread))
2550                 goto fail_block_groups;
2551
2552         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2553                                                    tree_root,
2554                                                    "btrfs-transaction");
2555         if (IS_ERR(fs_info->transaction_kthread))
2556                 goto fail_cleaner;
2557
2558         if (!btrfs_test_opt(tree_root, SSD) &&
2559             !btrfs_test_opt(tree_root, NOSSD) &&
2560             !fs_info->fs_devices->rotating) {
2561                 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2562                        "mode\n");
2563                 btrfs_set_opt(fs_info->mount_opt, SSD);
2564         }
2565
2566 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2567         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2568                 ret = btrfsic_mount(tree_root, fs_devices,
2569                                     btrfs_test_opt(tree_root,
2570                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2571                                     1 : 0,
2572                                     fs_info->check_integrity_print_mask);
2573                 if (ret)
2574                         printk(KERN_WARNING "btrfs: failed to initialize"
2575                                " integrity check module %s\n", sb->s_id);
2576         }
2577 #endif
2578         ret = btrfs_read_qgroup_config(fs_info);
2579         if (ret)
2580                 goto fail_trans_kthread;
2581
2582         /* do not make disk changes in broken FS */
2583         if (btrfs_super_log_root(disk_super) != 0) {
2584                 u64 bytenr = btrfs_super_log_root(disk_super);
2585
2586                 if (fs_devices->rw_devices == 0) {
2587                         printk(KERN_WARNING "Btrfs log replay required "
2588                                "on RO media\n");
2589                         err = -EIO;
2590                         goto fail_qgroup;
2591                 }
2592                 blocksize =
2593                      btrfs_level_size(tree_root,
2594                                       btrfs_super_log_root_level(disk_super));
2595
2596                 log_tree_root = btrfs_alloc_root(fs_info);
2597                 if (!log_tree_root) {
2598                         err = -ENOMEM;
2599                         goto fail_qgroup;
2600                 }
2601
2602                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2603                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2604
2605                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2606                                                       blocksize,
2607                                                       generation + 1);
2608                 /* returns with log_tree_root freed on success */
2609                 ret = btrfs_recover_log_trees(log_tree_root);
2610                 if (ret) {
2611                         btrfs_error(tree_root->fs_info, ret,
2612                                     "Failed to recover log tree");
2613                         free_extent_buffer(log_tree_root->node);
2614                         kfree(log_tree_root);
2615                         goto fail_trans_kthread;
2616                 }
2617
2618                 if (sb->s_flags & MS_RDONLY) {
2619                         ret = btrfs_commit_super(tree_root);
2620                         if (ret)
2621                                 goto fail_trans_kthread;
2622                 }
2623         }
2624
2625         ret = btrfs_find_orphan_roots(tree_root);
2626         if (ret)
2627                 goto fail_trans_kthread;
2628
2629         if (!(sb->s_flags & MS_RDONLY)) {
2630                 ret = btrfs_cleanup_fs_roots(fs_info);
2631                 if (ret)
2632                         goto fail_trans_kthread;
2633
2634                 ret = btrfs_recover_relocation(tree_root);
2635                 if (ret < 0) {
2636                         printk(KERN_WARNING
2637                                "btrfs: failed to recover relocation\n");
2638                         err = -EINVAL;
2639                         goto fail_qgroup;
2640                 }
2641         }
2642
2643         location.objectid = BTRFS_FS_TREE_OBJECTID;
2644         location.type = BTRFS_ROOT_ITEM_KEY;
2645         location.offset = (u64)-1;
2646
2647         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2648         if (!fs_info->fs_root)
2649                 goto fail_qgroup;
2650         if (IS_ERR(fs_info->fs_root)) {
2651                 err = PTR_ERR(fs_info->fs_root);
2652                 goto fail_qgroup;
2653         }
2654
2655         if (sb->s_flags & MS_RDONLY)
2656                 return 0;
2657
2658         down_read(&fs_info->cleanup_work_sem);
2659         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2660             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2661                 up_read(&fs_info->cleanup_work_sem);
2662                 close_ctree(tree_root);
2663                 return ret;
2664         }
2665         up_read(&fs_info->cleanup_work_sem);
2666
2667         ret = btrfs_resume_balance_async(fs_info);
2668         if (ret) {
2669                 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2670                 close_ctree(tree_root);
2671                 return ret;
2672         }
2673
2674         ret = btrfs_resume_dev_replace_async(fs_info);
2675         if (ret) {
2676                 pr_warn("btrfs: failed to resume dev_replace\n");
2677                 close_ctree(tree_root);
2678                 return ret;
2679         }
2680
2681         return 0;
2682
2683 fail_qgroup:
2684         btrfs_free_qgroup_config(fs_info);
2685 fail_trans_kthread:
2686         kthread_stop(fs_info->transaction_kthread);
2687 fail_cleaner:
2688         kthread_stop(fs_info->cleaner_kthread);
2689
2690         /*
2691          * make sure we're done with the btree inode before we stop our
2692          * kthreads
2693          */
2694         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2695         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2696
2697 fail_block_groups:
2698         btrfs_free_block_groups(fs_info);
2699
2700 fail_tree_roots:
2701         free_root_pointers(fs_info, 1);
2702
2703 fail_sb_buffer:
2704         btrfs_stop_workers(&fs_info->generic_worker);
2705         btrfs_stop_workers(&fs_info->readahead_workers);
2706         btrfs_stop_workers(&fs_info->fixup_workers);
2707         btrfs_stop_workers(&fs_info->delalloc_workers);
2708         btrfs_stop_workers(&fs_info->workers);
2709         btrfs_stop_workers(&fs_info->endio_workers);
2710         btrfs_stop_workers(&fs_info->endio_meta_workers);
2711         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2712         btrfs_stop_workers(&fs_info->endio_write_workers);
2713         btrfs_stop_workers(&fs_info->endio_freespace_worker);
2714         btrfs_stop_workers(&fs_info->submit_workers);
2715         btrfs_stop_workers(&fs_info->delayed_workers);
2716         btrfs_stop_workers(&fs_info->caching_workers);
2717         btrfs_stop_workers(&fs_info->flush_workers);
2718 fail_alloc:
2719 fail_iput:
2720         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2721
2722         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2723         iput(fs_info->btree_inode);
2724 fail_bdi:
2725         bdi_destroy(&fs_info->bdi);
2726 fail_srcu:
2727         cleanup_srcu_struct(&fs_info->subvol_srcu);
2728 fail:
2729         btrfs_close_devices(fs_info->fs_devices);
2730         return err;
2731
2732 recovery_tree_root:
2733         if (!btrfs_test_opt(tree_root, RECOVERY))
2734                 goto fail_tree_roots;
2735
2736         free_root_pointers(fs_info, 0);
2737
2738         /* don't use the log in recovery mode, it won't be valid */
2739         btrfs_set_super_log_root(disk_super, 0);
2740
2741         /* we can't trust the free space cache either */
2742         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2743
2744         ret = next_root_backup(fs_info, fs_info->super_copy,
2745                                &num_backups_tried, &backup_index);
2746         if (ret == -1)
2747                 goto fail_block_groups;
2748         goto retry_root_backup;
2749 }
2750
2751 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2752 {
2753         if (uptodate) {
2754                 set_buffer_uptodate(bh);
2755         } else {
2756                 struct btrfs_device *device = (struct btrfs_device *)
2757                         bh->b_private;
2758
2759                 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2760                                           "I/O error on %s\n",
2761                                           rcu_str_deref(device->name));
2762                 /* note, we dont' set_buffer_write_io_error because we have
2763                  * our own ways of dealing with the IO errors
2764                  */
2765                 clear_buffer_uptodate(bh);
2766                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2767         }
2768         unlock_buffer(bh);
2769         put_bh(bh);
2770 }
2771
2772 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2773 {
2774         struct buffer_head *bh;
2775         struct buffer_head *latest = NULL;
2776         struct btrfs_super_block *super;
2777         int i;
2778         u64 transid = 0;
2779         u64 bytenr;
2780
2781         /* we would like to check all the supers, but that would make
2782          * a btrfs mount succeed after a mkfs from a different FS.
2783          * So, we need to add a special mount option to scan for
2784          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2785          */
2786         for (i = 0; i < 1; i++) {
2787                 bytenr = btrfs_sb_offset(i);
2788                 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2789                         break;
2790                 bh = __bread(bdev, bytenr / 4096, 4096);
2791                 if (!bh)
2792                         continue;
2793
2794                 super = (struct btrfs_super_block *)bh->b_data;
2795                 if (btrfs_super_bytenr(super) != bytenr ||
2796                     strncmp((char *)(&super->magic), BTRFS_MAGIC,
2797                             sizeof(super->magic))) {
2798                         brelse(bh);
2799                         continue;
2800                 }
2801
2802                 if (!latest || btrfs_super_generation(super) > transid) {
2803                         brelse(latest);
2804                         latest = bh;
2805                         transid = btrfs_super_generation(super);
2806                 } else {
2807                         brelse(bh);
2808                 }
2809         }
2810         return latest;
2811 }
2812
2813 /*
2814  * this should be called twice, once with wait == 0 and
2815  * once with wait == 1.  When wait == 0 is done, all the buffer heads
2816  * we write are pinned.
2817  *
2818  * They are released when wait == 1 is done.
2819  * max_mirrors must be the same for both runs, and it indicates how
2820  * many supers on this one device should be written.
2821  *
2822  * max_mirrors == 0 means to write them all.
2823  */
2824 static int write_dev_supers(struct btrfs_device *device,
2825                             struct btrfs_super_block *sb,
2826                             int do_barriers, int wait, int max_mirrors)
2827 {
2828         struct buffer_head *bh;
2829         int i;
2830         int ret;
2831         int errors = 0;
2832         u32 crc;
2833         u64 bytenr;
2834
2835         if (max_mirrors == 0)
2836                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2837
2838         for (i = 0; i < max_mirrors; i++) {
2839                 bytenr = btrfs_sb_offset(i);
2840                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2841                         break;
2842
2843                 if (wait) {
2844                         bh = __find_get_block(device->bdev, bytenr / 4096,
2845                                               BTRFS_SUPER_INFO_SIZE);
2846                         BUG_ON(!bh);
2847                         wait_on_buffer(bh);
2848                         if (!buffer_uptodate(bh))
2849                                 errors++;
2850
2851                         /* drop our reference */
2852                         brelse(bh);
2853
2854                         /* drop the reference from the wait == 0 run */
2855                         brelse(bh);
2856                         continue;
2857                 } else {
2858                         btrfs_set_super_bytenr(sb, bytenr);
2859
2860                         crc = ~(u32)0;
2861                         crc = btrfs_csum_data(NULL, (char *)sb +
2862                                               BTRFS_CSUM_SIZE, crc,
2863                                               BTRFS_SUPER_INFO_SIZE -
2864                                               BTRFS_CSUM_SIZE);
2865                         btrfs_csum_final(crc, sb->csum);
2866
2867                         /*
2868                          * one reference for us, and we leave it for the
2869                          * caller
2870                          */
2871                         bh = __getblk(device->bdev, bytenr / 4096,
2872                                       BTRFS_SUPER_INFO_SIZE);
2873                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2874
2875                         /* one reference for submit_bh */
2876                         get_bh(bh);
2877
2878                         set_buffer_uptodate(bh);
2879                         lock_buffer(bh);
2880                         bh->b_end_io = btrfs_end_buffer_write_sync;
2881                         bh->b_private = device;
2882                 }
2883
2884                 /*
2885                  * we fua the first super.  The others we allow
2886                  * to go down lazy.
2887                  */
2888                 ret = btrfsic_submit_bh(WRITE_FUA, bh);
2889                 if (ret)
2890                         errors++;
2891         }
2892         return errors < i ? 0 : -1;
2893 }
2894
2895 /*
2896  * endio for the write_dev_flush, this will wake anyone waiting
2897  * for the barrier when it is done
2898  */
2899 static void btrfs_end_empty_barrier(struct bio *bio, int err)
2900 {
2901         if (err) {
2902                 if (err == -EOPNOTSUPP)
2903                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2904                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2905         }
2906         if (bio->bi_private)
2907                 complete(bio->bi_private);
2908         bio_put(bio);
2909 }
2910
2911 /*
2912  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
2913  * sent down.  With wait == 1, it waits for the previous flush.
2914  *
2915  * any device where the flush fails with eopnotsupp are flagged as not-barrier
2916  * capable
2917  */
2918 static int write_dev_flush(struct btrfs_device *device, int wait)
2919 {
2920         struct bio *bio;
2921         int ret = 0;
2922
2923         if (device->nobarriers)
2924                 return 0;
2925
2926         if (wait) {
2927                 bio = device->flush_bio;
2928                 if (!bio)
2929                         return 0;
2930
2931                 wait_for_completion(&device->flush_wait);
2932
2933                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2934                         printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2935                                       rcu_str_deref(device->name));
2936                         device->nobarriers = 1;
2937                 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
2938                         ret = -EIO;
2939                         btrfs_dev_stat_inc_and_print(device,
2940                                 BTRFS_DEV_STAT_FLUSH_ERRS);
2941                 }
2942
2943                 /* drop the reference from the wait == 0 run */
2944                 bio_put(bio);
2945                 device->flush_bio = NULL;
2946
2947                 return ret;
2948         }
2949
2950         /*
2951          * one reference for us, and we leave it for the
2952          * caller
2953          */
2954         device->flush_bio = NULL;
2955         bio = bio_alloc(GFP_NOFS, 0);
2956         if (!bio)
2957                 return -ENOMEM;
2958
2959         bio->bi_end_io = btrfs_end_empty_barrier;
2960         bio->bi_bdev = device->bdev;
2961         init_completion(&device->flush_wait);
2962         bio->bi_private = &device->flush_wait;
2963         device->flush_bio = bio;
2964
2965         bio_get(bio);
2966         btrfsic_submit_bio(WRITE_FLUSH, bio);
2967
2968         return 0;
2969 }
2970
2971 /*
2972  * send an empty flush down to each device in parallel,
2973  * then wait for them
2974  */
2975 static int barrier_all_devices(struct btrfs_fs_info *info)
2976 {
2977         struct list_head *head;
2978         struct btrfs_device *dev;
2979         int errors_send = 0;
2980         int errors_wait = 0;
2981         int ret;
2982
2983         /* send down all the barriers */
2984         head = &info->fs_devices->devices;
2985         list_for_each_entry_rcu(dev, head, dev_list) {
2986                 if (!dev->bdev) {
2987                         errors_send++;
2988                         continue;
2989                 }
2990                 if (!dev->in_fs_metadata || !dev->writeable)
2991                         continue;
2992
2993                 ret = write_dev_flush(dev, 0);
2994                 if (ret)
2995                         errors_send++;
2996         }
2997
2998         /* wait for all the barriers */
2999         list_for_each_entry_rcu(dev, head, dev_list) {
3000                 if (!dev->bdev) {
3001                         errors_wait++;
3002                         continue;
3003                 }
3004                 if (!dev->in_fs_metadata || !dev->writeable)
3005                         continue;
3006
3007                 ret = write_dev_flush(dev, 1);
3008                 if (ret)
3009                         errors_wait++;
3010         }
3011         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3012             errors_wait > info->num_tolerated_disk_barrier_failures)
3013                 return -EIO;
3014         return 0;
3015 }
3016
3017 int btrfs_calc_num_tolerated_disk_barrier_failures(
3018         struct btrfs_fs_info *fs_info)
3019 {
3020         struct btrfs_ioctl_space_info space;
3021         struct btrfs_space_info *sinfo;
3022         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3023                        BTRFS_BLOCK_GROUP_SYSTEM,
3024                        BTRFS_BLOCK_GROUP_METADATA,
3025                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3026         int num_types = 4;
3027         int i;
3028         int c;
3029         int num_tolerated_disk_barrier_failures =
3030                 (int)fs_info->fs_devices->num_devices;
3031
3032         for (i = 0; i < num_types; i++) {
3033                 struct btrfs_space_info *tmp;
3034
3035                 sinfo = NULL;
3036                 rcu_read_lock();
3037                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3038                         if (tmp->flags == types[i]) {
3039                                 sinfo = tmp;
3040                                 break;
3041                         }
3042                 }
3043                 rcu_read_unlock();
3044
3045                 if (!sinfo)
3046                         continue;
3047
3048                 down_read(&sinfo->groups_sem);
3049                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3050                         if (!list_empty(&sinfo->block_groups[c])) {
3051                                 u64 flags;
3052
3053                                 btrfs_get_block_group_info(
3054                                         &sinfo->block_groups[c], &space);
3055                                 if (space.total_bytes == 0 ||
3056                                     space.used_bytes == 0)
3057                                         continue;
3058                                 flags = space.flags;
3059                                 /*
3060                                  * return
3061                                  * 0: if dup, single or RAID0 is configured for
3062                                  *    any of metadata, system or data, else
3063                                  * 1: if RAID5 is configured, or if RAID1 or
3064                                  *    RAID10 is configured and only two mirrors
3065                                  *    are used, else
3066                                  * 2: if RAID6 is configured, else
3067                                  * num_mirrors - 1: if RAID1 or RAID10 is
3068                                  *                  configured and more than
3069                                  *                  2 mirrors are used.
3070                                  */
3071                                 if (num_tolerated_disk_barrier_failures > 0 &&
3072                                     ((flags & (BTRFS_BLOCK_GROUP_DUP |
3073                                                BTRFS_BLOCK_GROUP_RAID0)) ||
3074                                      ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3075                                       == 0)))
3076                                         num_tolerated_disk_barrier_failures = 0;
3077                                 else if (num_tolerated_disk_barrier_failures > 1
3078                                          &&
3079                                          (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3080                                                    BTRFS_BLOCK_GROUP_RAID10)))
3081                                         num_tolerated_disk_barrier_failures = 1;
3082                         }
3083                 }
3084                 up_read(&sinfo->groups_sem);
3085         }
3086
3087         return num_tolerated_disk_barrier_failures;
3088 }
3089
3090 int write_all_supers(struct btrfs_root *root, int max_mirrors)
3091 {
3092         struct list_head *head;
3093         struct btrfs_device *dev;
3094         struct btrfs_super_block *sb;
3095         struct btrfs_dev_item *dev_item;
3096         int ret;
3097         int do_barriers;
3098         int max_errors;
3099         int total_errors = 0;
3100         u64 flags;
3101
3102         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3103         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3104         backup_super_roots(root->fs_info);
3105
3106         sb = root->fs_info->super_for_commit;
3107         dev_item = &sb->dev_item;
3108
3109         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3110         head = &root->fs_info->fs_devices->devices;
3111
3112         if (do_barriers) {
3113                 ret = barrier_all_devices(root->fs_info);
3114                 if (ret) {
3115                         mutex_unlock(
3116                                 &root->fs_info->fs_devices->device_list_mutex);
3117                         btrfs_error(root->fs_info, ret,
3118                                     "errors while submitting device barriers.");
3119                         return ret;
3120                 }
3121         }
3122
3123         list_for_each_entry_rcu(dev, head, dev_list) {
3124                 if (!dev->bdev) {
3125                         total_errors++;
3126                         continue;
3127                 }
3128                 if (!dev->in_fs_metadata || !dev->writeable)
3129                         continue;
3130
3131                 btrfs_set_stack_device_generation(dev_item, 0);
3132                 btrfs_set_stack_device_type(dev_item, dev->type);
3133                 btrfs_set_stack_device_id(dev_item, dev->devid);
3134                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3135                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3136                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3137                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3138                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3139                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3140                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3141
3142                 flags = btrfs_super_flags(sb);
3143                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3144
3145                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3146                 if (ret)
3147                         total_errors++;
3148         }
3149         if (total_errors > max_errors) {
3150                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3151                        total_errors);
3152
3153                 /* This shouldn't happen. FUA is masked off if unsupported */
3154                 BUG();
3155         }
3156
3157         total_errors = 0;
3158         list_for_each_entry_rcu(dev, head, dev_list) {
3159                 if (!dev->bdev)
3160                         continue;
3161                 if (!dev->in_fs_metadata || !dev->writeable)
3162                         continue;
3163
3164                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3165                 if (ret)
3166                         total_errors++;
3167         }
3168         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3169         if (total_errors > max_errors) {
3170                 btrfs_error(root->fs_info, -EIO,
3171                             "%d errors while writing supers", total_errors);
3172                 return -EIO;
3173         }
3174         return 0;
3175 }
3176
3177 int write_ctree_super(struct btrfs_trans_handle *trans,
3178                       struct btrfs_root *root, int max_mirrors)
3179 {
3180         int ret;
3181
3182         ret = write_all_supers(root, max_mirrors);
3183         return ret;
3184 }
3185
3186 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3187 {
3188         spin_lock(&fs_info->fs_roots_radix_lock);
3189         radix_tree_delete(&fs_info->fs_roots_radix,
3190                           (unsigned long)root->root_key.objectid);
3191         spin_unlock(&fs_info->fs_roots_radix_lock);
3192
3193         if (btrfs_root_refs(&root->root_item) == 0)
3194                 synchronize_srcu(&fs_info->subvol_srcu);
3195
3196         __btrfs_remove_free_space_cache(root->free_ino_pinned);
3197         __btrfs_remove_free_space_cache(root->free_ino_ctl);
3198         free_fs_root(root);
3199 }
3200
3201 static void free_fs_root(struct btrfs_root *root)
3202 {
3203         iput(root->cache_inode);
3204         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3205         if (root->anon_dev)
3206                 free_anon_bdev(root->anon_dev);
3207         free_extent_buffer(root->node);
3208         free_extent_buffer(root->commit_root);
3209         kfree(root->free_ino_ctl);
3210         kfree(root->free_ino_pinned);
3211         kfree(root->name);
3212         kfree(root);
3213 }
3214
3215 static void del_fs_roots(struct btrfs_fs_info *fs_info)
3216 {
3217         int ret;
3218         struct btrfs_root *gang[8];
3219         int i;
3220
3221         while (!list_empty(&fs_info->dead_roots)) {
3222                 gang[0] = list_entry(fs_info->dead_roots.next,
3223                                      struct btrfs_root, root_list);
3224                 list_del(&gang[0]->root_list);
3225
3226                 if (gang[0]->in_radix) {
3227                         btrfs_free_fs_root(fs_info, gang[0]);
3228                 } else {
3229                         free_extent_buffer(gang[0]->node);
3230                         free_extent_buffer(gang[0]->commit_root);
3231                         kfree(gang[0]);
3232                 }
3233         }
3234
3235         while (1) {
3236                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3237                                              (void **)gang, 0,
3238                                              ARRAY_SIZE(gang));
3239                 if (!ret)
3240                         break;
3241                 for (i = 0; i < ret; i++)
3242                         btrfs_free_fs_root(fs_info, gang[i]);
3243         }
3244 }
3245
3246 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3247 {
3248         u64 root_objectid = 0;
3249         struct btrfs_root *gang[8];
3250         int i;
3251         int ret;
3252
3253         while (1) {
3254                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3255                                              (void **)gang, root_objectid,
3256                                              ARRAY_SIZE(gang));
3257                 if (!ret)
3258                         break;
3259
3260                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3261                 for (i = 0; i < ret; i++) {
3262                         int err;
3263
3264                         root_objectid = gang[i]->root_key.objectid;
3265                         err = btrfs_orphan_cleanup(gang[i]);
3266                         if (err)
3267                                 return err;
3268                 }
3269                 root_objectid++;
3270         }
3271         return 0;
3272 }
3273
3274 int btrfs_commit_super(struct btrfs_root *root)
3275 {
3276         struct btrfs_trans_handle *trans;
3277         int ret;
3278
3279         mutex_lock(&root->fs_info->cleaner_mutex);
3280         btrfs_run_delayed_iputs(root);
3281         btrfs_clean_old_snapshots(root);
3282         mutex_unlock(&root->fs_info->cleaner_mutex);
3283
3284         /* wait until ongoing cleanup work done */
3285         down_write(&root->fs_info->cleanup_work_sem);
3286         up_write(&root->fs_info->cleanup_work_sem);
3287
3288         trans = btrfs_join_transaction(root);
3289         if (IS_ERR(trans))
3290                 return PTR_ERR(trans);
3291         ret = btrfs_commit_transaction(trans, root);
3292         if (ret)
3293                 return ret;
3294         /* run commit again to drop the original snapshot */
3295         trans = btrfs_join_transaction(root);
3296         if (IS_ERR(trans))
3297                 return PTR_ERR(trans);
3298         ret = btrfs_commit_transaction(trans, root);
3299         if (ret)
3300                 return ret;
3301         ret = btrfs_write_and_wait_transaction(NULL, root);
3302         if (ret) {
3303                 btrfs_error(root->fs_info, ret,
3304                             "Failed to sync btree inode to disk.");
3305                 return ret;
3306         }
3307
3308         ret = write_ctree_super(NULL, root, 0);
3309         return ret;
3310 }
3311
3312 int close_ctree(struct btrfs_root *root)
3313 {
3314         struct btrfs_fs_info *fs_info = root->fs_info;
3315         int ret;
3316
3317         fs_info->closing = 1;
3318         smp_mb();
3319
3320         /* pause restriper - we want to resume on mount */
3321         btrfs_pause_balance(fs_info);
3322
3323         btrfs_dev_replace_suspend_for_unmount(fs_info);
3324
3325         btrfs_scrub_cancel(fs_info);
3326
3327         /* wait for any defraggers to finish */
3328         wait_event(fs_info->transaction_wait,
3329                    (atomic_read(&fs_info->defrag_running) == 0));
3330
3331         /* clear out the rbtree of defraggable inodes */
3332         btrfs_cleanup_defrag_inodes(fs_info);
3333
3334         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3335                 ret = btrfs_commit_super(root);
3336                 if (ret)
3337                         printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3338         }
3339
3340         if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
3341                 btrfs_error_commit_super(root);
3342
3343         btrfs_put_block_group_cache(fs_info);
3344
3345         kthread_stop(fs_info->transaction_kthread);
3346         kthread_stop(fs_info->cleaner_kthread);
3347
3348         fs_info->closing = 2;
3349         smp_mb();
3350
3351         btrfs_free_qgroup_config(root->fs_info);
3352
3353         if (fs_info->delalloc_bytes) {
3354                 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
3355                        (unsigned long long)fs_info->delalloc_bytes);
3356         }
3357
3358         free_extent_buffer(fs_info->extent_root->node);
3359         free_extent_buffer(fs_info->extent_root->commit_root);
3360         free_extent_buffer(fs_info->tree_root->node);
3361         free_extent_buffer(fs_info->tree_root->commit_root);
3362         free_extent_buffer(fs_info->chunk_root->node);
3363         free_extent_buffer(fs_info->chunk_root->commit_root);
3364         free_extent_buffer(fs_info->dev_root->node);
3365         free_extent_buffer(fs_info->dev_root->commit_root);
3366         free_extent_buffer(fs_info->csum_root->node);
3367         free_extent_buffer(fs_info->csum_root->commit_root);
3368         if (fs_info->quota_root) {
3369                 free_extent_buffer(fs_info->quota_root->node);
3370                 free_extent_buffer(fs_info->quota_root->commit_root);
3371         }
3372
3373         btrfs_free_block_groups(fs_info);
3374
3375         del_fs_roots(fs_info);
3376
3377         iput(fs_info->btree_inode);
3378
3379         btrfs_stop_workers(&fs_info->generic_worker);
3380         btrfs_stop_workers(&fs_info->fixup_workers);
3381         btrfs_stop_workers(&fs_info->delalloc_workers);
3382         btrfs_stop_workers(&fs_info->workers);
3383         btrfs_stop_workers(&fs_info->endio_workers);
3384         btrfs_stop_workers(&fs_info->endio_meta_workers);
3385         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3386         btrfs_stop_workers(&fs_info->endio_write_workers);
3387         btrfs_stop_workers(&fs_info->endio_freespace_worker);
3388         btrfs_stop_workers(&fs_info->submit_workers);
3389         btrfs_stop_workers(&fs_info->delayed_workers);
3390         btrfs_stop_workers(&fs_info->caching_workers);
3391         btrfs_stop_workers(&fs_info->readahead_workers);
3392         btrfs_stop_workers(&fs_info->flush_workers);
3393
3394 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3395         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3396                 btrfsic_unmount(root, fs_info->fs_devices);
3397 #endif
3398
3399         btrfs_close_devices(fs_info->fs_devices);
3400         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3401
3402         bdi_destroy(&fs_info->bdi);
3403         cleanup_srcu_struct(&fs_info->subvol_srcu);
3404
3405         return 0;
3406 }
3407
3408 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3409                           int atomic)
3410 {
3411         int ret;
3412         struct inode *btree_inode = buf->pages[0]->mapping->host;
3413
3414         ret = extent_buffer_uptodate(buf);
3415         if (!ret)
3416                 return ret;
3417
3418         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3419                                     parent_transid, atomic);
3420         if (ret == -EAGAIN)
3421                 return ret;
3422         return !ret;
3423 }
3424
3425 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3426 {
3427         return set_extent_buffer_uptodate(buf);
3428 }
3429
3430 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3431 {
3432         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3433         u64 transid = btrfs_header_generation(buf);
3434         int was_dirty;
3435
3436         btrfs_assert_tree_locked(buf);
3437         if (transid != root->fs_info->generation)
3438                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3439                        "found %llu running %llu\n",
3440                         (unsigned long long)buf->start,
3441                         (unsigned long long)transid,
3442                         (unsigned long long)root->fs_info->generation);
3443         was_dirty = set_extent_buffer_dirty(buf);
3444         if (!was_dirty) {
3445                 spin_lock(&root->fs_info->delalloc_lock);
3446                 root->fs_info->dirty_metadata_bytes += buf->len;
3447                 spin_unlock(&root->fs_info->delalloc_lock);
3448         }
3449 }
3450
3451 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3452                                         int flush_delayed)
3453 {
3454         /*
3455          * looks as though older kernels can get into trouble with
3456          * this code, they end up stuck in balance_dirty_pages forever
3457          */
3458         u64 num_dirty;
3459         unsigned long thresh = 32 * 1024 * 1024;
3460
3461         if (current->flags & PF_MEMALLOC)
3462                 return;
3463
3464         if (flush_delayed)
3465                 btrfs_balance_delayed_items(root);
3466
3467         num_dirty = root->fs_info->dirty_metadata_bytes;
3468
3469         if (num_dirty > thresh) {
3470                 balance_dirty_pages_ratelimited_nr(
3471                                    root->fs_info->btree_inode->i_mapping, 1);
3472         }
3473         return;
3474 }
3475
3476 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3477 {
3478         __btrfs_btree_balance_dirty(root, 1);
3479 }
3480
3481 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3482 {
3483         __btrfs_btree_balance_dirty(root, 0);
3484 }
3485
3486 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3487 {
3488         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3489         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3490 }
3491
3492 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3493                               int read_only)
3494 {
3495         if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3496                 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3497                 return -EINVAL;
3498         }
3499
3500         if (read_only)
3501                 return 0;
3502
3503         return 0;
3504 }
3505
3506 void btrfs_error_commit_super(struct btrfs_root *root)
3507 {
3508         mutex_lock(&root->fs_info->cleaner_mutex);
3509         btrfs_run_delayed_iputs(root);
3510         mutex_unlock(&root->fs_info->cleaner_mutex);
3511
3512         down_write(&root->fs_info->cleanup_work_sem);
3513         up_write(&root->fs_info->cleanup_work_sem);
3514
3515         /* cleanup FS via transaction */
3516         btrfs_cleanup_transaction(root);
3517 }
3518
3519 static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
3520 {
3521         struct btrfs_inode *btrfs_inode;
3522         struct list_head splice;
3523
3524         INIT_LIST_HEAD(&splice);
3525
3526         mutex_lock(&root->fs_info->ordered_operations_mutex);
3527         spin_lock(&root->fs_info->ordered_extent_lock);
3528
3529         list_splice_init(&root->fs_info->ordered_operations, &splice);
3530         while (!list_empty(&splice)) {
3531                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3532                                          ordered_operations);
3533
3534                 list_del_init(&btrfs_inode->ordered_operations);
3535
3536                 btrfs_invalidate_inodes(btrfs_inode->root);
3537         }
3538
3539         spin_unlock(&root->fs_info->ordered_extent_lock);
3540         mutex_unlock(&root->fs_info->ordered_operations_mutex);
3541 }
3542
3543 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3544 {
3545         struct list_head splice;
3546         struct btrfs_ordered_extent *ordered;
3547         struct inode *inode;
3548
3549         INIT_LIST_HEAD(&splice);
3550
3551         spin_lock(&root->fs_info->ordered_extent_lock);
3552
3553         list_splice_init(&root->fs_info->ordered_extents, &splice);
3554         while (!list_empty(&splice)) {
3555                 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3556                                      root_extent_list);
3557
3558                 list_del_init(&ordered->root_extent_list);
3559                 atomic_inc(&ordered->refs);
3560
3561                 /* the inode may be getting freed (in sys_unlink path). */
3562                 inode = igrab(ordered->inode);
3563
3564                 spin_unlock(&root->fs_info->ordered_extent_lock);
3565                 if (inode)
3566                         iput(inode);
3567
3568                 atomic_set(&ordered->refs, 1);
3569                 btrfs_put_ordered_extent(ordered);
3570
3571                 spin_lock(&root->fs_info->ordered_extent_lock);
3572         }
3573
3574         spin_unlock(&root->fs_info->ordered_extent_lock);
3575 }
3576
3577 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3578                                struct btrfs_root *root)
3579 {
3580         struct rb_node *node;
3581         struct btrfs_delayed_ref_root *delayed_refs;
3582         struct btrfs_delayed_ref_node *ref;
3583         int ret = 0;
3584
3585         delayed_refs = &trans->delayed_refs;
3586
3587         spin_lock(&delayed_refs->lock);
3588         if (delayed_refs->num_entries == 0) {
3589                 spin_unlock(&delayed_refs->lock);
3590                 printk(KERN_INFO "delayed_refs has NO entry\n");
3591                 return ret;
3592         }
3593
3594         while ((node = rb_first(&delayed_refs->root)) != NULL) {
3595                 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3596
3597                 atomic_set(&ref->refs, 1);
3598                 if (btrfs_delayed_ref_is_head(ref)) {
3599                         struct btrfs_delayed_ref_head *head;
3600
3601                         head = btrfs_delayed_node_to_head(ref);
3602                         if (!mutex_trylock(&head->mutex)) {
3603                                 atomic_inc(&ref->refs);
3604                                 spin_unlock(&delayed_refs->lock);
3605
3606                                 /* Need to wait for the delayed ref to run */
3607                                 mutex_lock(&head->mutex);
3608                                 mutex_unlock(&head->mutex);
3609                                 btrfs_put_delayed_ref(ref);
3610
3611                                 spin_lock(&delayed_refs->lock);
3612                                 continue;
3613                         }
3614
3615                         kfree(head->extent_op);
3616                         delayed_refs->num_heads--;
3617                         if (list_empty(&head->cluster))
3618                                 delayed_refs->num_heads_ready--;
3619                         list_del_init(&head->cluster);
3620                 }
3621                 ref->in_tree = 0;
3622                 rb_erase(&ref->rb_node, &delayed_refs->root);
3623                 delayed_refs->num_entries--;
3624
3625                 spin_unlock(&delayed_refs->lock);
3626                 btrfs_put_delayed_ref(ref);
3627
3628                 cond_resched();
3629                 spin_lock(&delayed_refs->lock);
3630         }
3631
3632         spin_unlock(&delayed_refs->lock);
3633
3634         return ret;
3635 }
3636
3637 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3638 {
3639         struct btrfs_pending_snapshot *snapshot;
3640         struct list_head splice;
3641
3642         INIT_LIST_HEAD(&splice);
3643
3644         list_splice_init(&t->pending_snapshots, &splice);
3645
3646         while (!list_empty(&splice)) {
3647                 snapshot = list_entry(splice.next,
3648                                       struct btrfs_pending_snapshot,
3649                                       list);
3650
3651                 list_del_init(&snapshot->list);
3652
3653                 kfree(snapshot);
3654         }
3655 }
3656
3657 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3658 {
3659         struct btrfs_inode *btrfs_inode;
3660         struct list_head splice;
3661
3662         INIT_LIST_HEAD(&splice);
3663
3664         spin_lock(&root->fs_info->delalloc_lock);
3665         list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3666
3667         while (!list_empty(&splice)) {
3668                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3669                                     delalloc_inodes);
3670
3671                 list_del_init(&btrfs_inode->delalloc_inodes);
3672
3673                 btrfs_invalidate_inodes(btrfs_inode->root);
3674         }
3675
3676         spin_unlock(&root->fs_info->delalloc_lock);
3677 }
3678
3679 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3680                                         struct extent_io_tree *dirty_pages,
3681                                         int mark)
3682 {
3683         int ret;
3684         struct page *page;
3685         struct inode *btree_inode = root->fs_info->btree_inode;
3686         struct extent_buffer *eb;
3687         u64 start = 0;
3688         u64 end;
3689         u64 offset;
3690         unsigned long index;
3691
3692         while (1) {
3693                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3694                                             mark, NULL);
3695                 if (ret)
3696                         break;
3697
3698                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3699                 while (start <= end) {
3700                         index = start >> PAGE_CACHE_SHIFT;
3701                         start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3702                         page = find_get_page(btree_inode->i_mapping, index);
3703                         if (!page)
3704                                 continue;
3705                         offset = page_offset(page);
3706
3707                         spin_lock(&dirty_pages->buffer_lock);
3708                         eb = radix_tree_lookup(
3709                              &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3710                                                offset >> PAGE_CACHE_SHIFT);
3711                         spin_unlock(&dirty_pages->buffer_lock);
3712                         if (eb)
3713                                 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3714                                                          &eb->bflags);
3715                         if (PageWriteback(page))
3716                                 end_page_writeback(page);
3717
3718                         lock_page(page);
3719                         if (PageDirty(page)) {
3720                                 clear_page_dirty_for_io(page);
3721                                 spin_lock_irq(&page->mapping->tree_lock);
3722                                 radix_tree_tag_clear(&page->mapping->page_tree,
3723                                                         page_index(page),
3724                                                         PAGECACHE_TAG_DIRTY);
3725                                 spin_unlock_irq(&page->mapping->tree_lock);
3726                         }
3727
3728                         unlock_page(page);
3729                         page_cache_release(page);
3730                 }
3731         }
3732
3733         return ret;
3734 }
3735
3736 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3737                                        struct extent_io_tree *pinned_extents)
3738 {
3739         struct extent_io_tree *unpin;
3740         u64 start;
3741         u64 end;
3742         int ret;
3743         bool loop = true;
3744
3745         unpin = pinned_extents;
3746 again:
3747         while (1) {
3748                 ret = find_first_extent_bit(unpin, 0, &start, &end,
3749                                             EXTENT_DIRTY, NULL);
3750                 if (ret)
3751                         break;
3752
3753                 /* opt_discard */
3754                 if (btrfs_test_opt(root, DISCARD))
3755                         ret = btrfs_error_discard_extent(root, start,
3756                                                          end + 1 - start,
3757                                                          NULL);
3758
3759                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3760                 btrfs_error_unpin_extent_range(root, start, end);
3761                 cond_resched();
3762         }
3763
3764         if (loop) {
3765                 if (unpin == &root->fs_info->freed_extents[0])
3766                         unpin = &root->fs_info->freed_extents[1];
3767                 else
3768                         unpin = &root->fs_info->freed_extents[0];
3769                 loop = false;
3770                 goto again;
3771         }
3772
3773         return 0;
3774 }
3775
3776 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3777                                    struct btrfs_root *root)
3778 {
3779         btrfs_destroy_delayed_refs(cur_trans, root);
3780         btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3781                                 cur_trans->dirty_pages.dirty_bytes);
3782
3783         /* FIXME: cleanup wait for commit */
3784         cur_trans->in_commit = 1;
3785         cur_trans->blocked = 1;
3786         wake_up(&root->fs_info->transaction_blocked_wait);
3787
3788         cur_trans->blocked = 0;
3789         wake_up(&root->fs_info->transaction_wait);
3790
3791         cur_trans->commit_done = 1;
3792         wake_up(&cur_trans->commit_wait);
3793
3794         btrfs_destroy_delayed_inodes(root);
3795         btrfs_assert_delayed_root_empty(root);
3796
3797         btrfs_destroy_pending_snapshots(cur_trans);
3798
3799         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3800                                      EXTENT_DIRTY);
3801         btrfs_destroy_pinned_extent(root,
3802                                     root->fs_info->pinned_extents);
3803
3804         /*
3805         memset(cur_trans, 0, sizeof(*cur_trans));
3806         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3807         */
3808 }
3809
3810 int btrfs_cleanup_transaction(struct btrfs_root *root)
3811 {
3812         struct btrfs_transaction *t;
3813         LIST_HEAD(list);
3814
3815         mutex_lock(&root->fs_info->transaction_kthread_mutex);
3816
3817         spin_lock(&root->fs_info->trans_lock);
3818         list_splice_init(&root->fs_info->trans_list, &list);
3819         root->fs_info->trans_no_join = 1;
3820         spin_unlock(&root->fs_info->trans_lock);
3821
3822         while (!list_empty(&list)) {
3823                 t = list_entry(list.next, struct btrfs_transaction, list);
3824                 if (!t)
3825                         break;
3826
3827                 btrfs_destroy_ordered_operations(root);
3828
3829                 btrfs_destroy_ordered_extents(root);
3830
3831                 btrfs_destroy_delayed_refs(t, root);
3832
3833                 btrfs_block_rsv_release(root,
3834                                         &root->fs_info->trans_block_rsv,
3835                                         t->dirty_pages.dirty_bytes);
3836
3837                 /* FIXME: cleanup wait for commit */
3838                 t->in_commit = 1;
3839                 t->blocked = 1;
3840                 smp_mb();
3841                 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3842                         wake_up(&root->fs_info->transaction_blocked_wait);
3843
3844                 t->blocked = 0;
3845                 smp_mb();
3846                 if (waitqueue_active(&root->fs_info->transaction_wait))
3847                         wake_up(&root->fs_info->transaction_wait);
3848
3849                 t->commit_done = 1;
3850                 smp_mb();
3851                 if (waitqueue_active(&t->commit_wait))
3852                         wake_up(&t->commit_wait);
3853
3854                 btrfs_destroy_delayed_inodes(root);
3855                 btrfs_assert_delayed_root_empty(root);
3856
3857                 btrfs_destroy_pending_snapshots(t);
3858
3859                 btrfs_destroy_delalloc_inodes(root);
3860
3861                 spin_lock(&root->fs_info->trans_lock);
3862                 root->fs_info->running_transaction = NULL;
3863                 spin_unlock(&root->fs_info->trans_lock);
3864
3865                 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3866                                              EXTENT_DIRTY);
3867
3868                 btrfs_destroy_pinned_extent(root,
3869                                             root->fs_info->pinned_extents);
3870
3871                 atomic_set(&t->use_count, 0);
3872                 list_del_init(&t->list);
3873                 memset(t, 0, sizeof(*t));
3874                 kmem_cache_free(btrfs_transaction_cachep, t);
3875         }
3876
3877         spin_lock(&root->fs_info->trans_lock);
3878         root->fs_info->trans_no_join = 0;
3879         spin_unlock(&root->fs_info->trans_lock);
3880         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3881
3882         return 0;
3883 }
3884
3885 static struct extent_io_ops btree_extent_io_ops = {
3886         .readpage_end_io_hook = btree_readpage_end_io_hook,
3887         .readpage_io_failed_hook = btree_io_failed_hook,
3888         .submit_bio_hook = btree_submit_bio_hook,
3889         /* note we're sharing with inode.c for the merge bio hook */
3890         .merge_bio_hook = btrfs_merge_bio_hook,
3891 };