Btrfs: deal with errors in write_dev_supers
[linux-2.6-block.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <linux/uuid.h>
34 #include <asm/unaligned.h>
35 #include "compat.h"
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "async-thread.h"
43 #include "locking.h"
44 #include "tree-log.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
50 #include "raid56.h"
51
52 #ifdef CONFIG_X86
53 #include <asm/cpufeature.h>
54 #endif
55
56 static struct extent_io_ops btree_extent_io_ops;
57 static void end_workqueue_fn(struct btrfs_work *work);
58 static void free_fs_root(struct btrfs_root *root);
59 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
60                                     int read_only);
61 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
62                                              struct btrfs_root *root);
63 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
64 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
65                                       struct btrfs_root *root);
66 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
67 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
68 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
69                                         struct extent_io_tree *dirty_pages,
70                                         int mark);
71 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
72                                        struct extent_io_tree *pinned_extents);
73
74 /*
75  * end_io_wq structs are used to do processing in task context when an IO is
76  * complete.  This is used during reads to verify checksums, and it is used
77  * by writes to insert metadata for new file extents after IO is complete.
78  */
79 struct end_io_wq {
80         struct bio *bio;
81         bio_end_io_t *end_io;
82         void *private;
83         struct btrfs_fs_info *info;
84         int error;
85         int metadata;
86         struct list_head list;
87         struct btrfs_work work;
88 };
89
90 /*
91  * async submit bios are used to offload expensive checksumming
92  * onto the worker threads.  They checksum file and metadata bios
93  * just before they are sent down the IO stack.
94  */
95 struct async_submit_bio {
96         struct inode *inode;
97         struct bio *bio;
98         struct list_head list;
99         extent_submit_bio_hook_t *submit_bio_start;
100         extent_submit_bio_hook_t *submit_bio_done;
101         int rw;
102         int mirror_num;
103         unsigned long bio_flags;
104         /*
105          * bio_offset is optional, can be used if the pages in the bio
106          * can't tell us where in the file the bio should go
107          */
108         u64 bio_offset;
109         struct btrfs_work work;
110         int error;
111 };
112
113 /*
114  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
115  * eb, the lockdep key is determined by the btrfs_root it belongs to and
116  * the level the eb occupies in the tree.
117  *
118  * Different roots are used for different purposes and may nest inside each
119  * other and they require separate keysets.  As lockdep keys should be
120  * static, assign keysets according to the purpose of the root as indicated
121  * by btrfs_root->objectid.  This ensures that all special purpose roots
122  * have separate keysets.
123  *
124  * Lock-nesting across peer nodes is always done with the immediate parent
125  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
126  * subclass to avoid triggering lockdep warning in such cases.
127  *
128  * The key is set by the readpage_end_io_hook after the buffer has passed
129  * csum validation but before the pages are unlocked.  It is also set by
130  * btrfs_init_new_buffer on freshly allocated blocks.
131  *
132  * We also add a check to make sure the highest level of the tree is the
133  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
134  * needs update as well.
135  */
136 #ifdef CONFIG_DEBUG_LOCK_ALLOC
137 # if BTRFS_MAX_LEVEL != 8
138 #  error
139 # endif
140
141 static struct btrfs_lockdep_keyset {
142         u64                     id;             /* root objectid */
143         const char              *name_stem;     /* lock name stem */
144         char                    names[BTRFS_MAX_LEVEL + 1][20];
145         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
146 } btrfs_lockdep_keysets[] = {
147         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
148         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
149         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
150         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
151         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
152         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
153         { .id = BTRFS_ORPHAN_OBJECTID,          .name_stem = "orphan"   },
154         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
155         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
156         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
157         { .id = 0,                              .name_stem = "tree"     },
158 };
159
160 void __init btrfs_init_lockdep(void)
161 {
162         int i, j;
163
164         /* initialize lockdep class names */
165         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
166                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
167
168                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
169                         snprintf(ks->names[j], sizeof(ks->names[j]),
170                                  "btrfs-%s-%02d", ks->name_stem, j);
171         }
172 }
173
174 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
175                                     int level)
176 {
177         struct btrfs_lockdep_keyset *ks;
178
179         BUG_ON(level >= ARRAY_SIZE(ks->keys));
180
181         /* find the matching keyset, id 0 is the default entry */
182         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
183                 if (ks->id == objectid)
184                         break;
185
186         lockdep_set_class_and_name(&eb->lock,
187                                    &ks->keys[level], ks->names[level]);
188 }
189
190 #endif
191
192 /*
193  * extents on the btree inode are pretty simple, there's one extent
194  * that covers the entire device
195  */
196 static struct extent_map *btree_get_extent(struct inode *inode,
197                 struct page *page, size_t pg_offset, u64 start, u64 len,
198                 int create)
199 {
200         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
201         struct extent_map *em;
202         int ret;
203
204         read_lock(&em_tree->lock);
205         em = lookup_extent_mapping(em_tree, start, len);
206         if (em) {
207                 em->bdev =
208                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
209                 read_unlock(&em_tree->lock);
210                 goto out;
211         }
212         read_unlock(&em_tree->lock);
213
214         em = alloc_extent_map();
215         if (!em) {
216                 em = ERR_PTR(-ENOMEM);
217                 goto out;
218         }
219         em->start = 0;
220         em->len = (u64)-1;
221         em->block_len = (u64)-1;
222         em->block_start = 0;
223         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
224
225         write_lock(&em_tree->lock);
226         ret = add_extent_mapping(em_tree, em, 0);
227         if (ret == -EEXIST) {
228                 free_extent_map(em);
229                 em = lookup_extent_mapping(em_tree, start, len);
230                 if (!em)
231                         em = ERR_PTR(-EIO);
232         } else if (ret) {
233                 free_extent_map(em);
234                 em = ERR_PTR(ret);
235         }
236         write_unlock(&em_tree->lock);
237
238 out:
239         return em;
240 }
241
242 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
243 {
244         return crc32c(seed, data, len);
245 }
246
247 void btrfs_csum_final(u32 crc, char *result)
248 {
249         put_unaligned_le32(~crc, result);
250 }
251
252 /*
253  * compute the csum for a btree block, and either verify it or write it
254  * into the csum field of the block.
255  */
256 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
257                            int verify)
258 {
259         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
260         char *result = NULL;
261         unsigned long len;
262         unsigned long cur_len;
263         unsigned long offset = BTRFS_CSUM_SIZE;
264         char *kaddr;
265         unsigned long map_start;
266         unsigned long map_len;
267         int err;
268         u32 crc = ~(u32)0;
269         unsigned long inline_result;
270
271         len = buf->len - offset;
272         while (len > 0) {
273                 err = map_private_extent_buffer(buf, offset, 32,
274                                         &kaddr, &map_start, &map_len);
275                 if (err)
276                         return 1;
277                 cur_len = min(len, map_len - (offset - map_start));
278                 crc = btrfs_csum_data(kaddr + offset - map_start,
279                                       crc, cur_len);
280                 len -= cur_len;
281                 offset += cur_len;
282         }
283         if (csum_size > sizeof(inline_result)) {
284                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
285                 if (!result)
286                         return 1;
287         } else {
288                 result = (char *)&inline_result;
289         }
290
291         btrfs_csum_final(crc, result);
292
293         if (verify) {
294                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
295                         u32 val;
296                         u32 found = 0;
297                         memcpy(&found, result, csum_size);
298
299                         read_extent_buffer(buf, &val, 0, csum_size);
300                         printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
301                                        "failed on %llu wanted %X found %X "
302                                        "level %d\n",
303                                        root->fs_info->sb->s_id,
304                                        (unsigned long long)buf->start, val, found,
305                                        btrfs_header_level(buf));
306                         if (result != (char *)&inline_result)
307                                 kfree(result);
308                         return 1;
309                 }
310         } else {
311                 write_extent_buffer(buf, result, 0, csum_size);
312         }
313         if (result != (char *)&inline_result)
314                 kfree(result);
315         return 0;
316 }
317
318 /*
319  * we can't consider a given block up to date unless the transid of the
320  * block matches the transid in the parent node's pointer.  This is how we
321  * detect blocks that either didn't get written at all or got written
322  * in the wrong place.
323  */
324 static int verify_parent_transid(struct extent_io_tree *io_tree,
325                                  struct extent_buffer *eb, u64 parent_transid,
326                                  int atomic)
327 {
328         struct extent_state *cached_state = NULL;
329         int ret;
330
331         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
332                 return 0;
333
334         if (atomic)
335                 return -EAGAIN;
336
337         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
338                          0, &cached_state);
339         if (extent_buffer_uptodate(eb) &&
340             btrfs_header_generation(eb) == parent_transid) {
341                 ret = 0;
342                 goto out;
343         }
344         printk_ratelimited("parent transid verify failed on %llu wanted %llu "
345                        "found %llu\n",
346                        (unsigned long long)eb->start,
347                        (unsigned long long)parent_transid,
348                        (unsigned long long)btrfs_header_generation(eb));
349         ret = 1;
350         clear_extent_buffer_uptodate(eb);
351 out:
352         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
353                              &cached_state, GFP_NOFS);
354         return ret;
355 }
356
357 /*
358  * helper to read a given tree block, doing retries as required when
359  * the checksums don't match and we have alternate mirrors to try.
360  */
361 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
362                                           struct extent_buffer *eb,
363                                           u64 start, u64 parent_transid)
364 {
365         struct extent_io_tree *io_tree;
366         int failed = 0;
367         int ret;
368         int num_copies = 0;
369         int mirror_num = 0;
370         int failed_mirror = 0;
371
372         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
373         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
374         while (1) {
375                 ret = read_extent_buffer_pages(io_tree, eb, start,
376                                                WAIT_COMPLETE,
377                                                btree_get_extent, mirror_num);
378                 if (!ret) {
379                         if (!verify_parent_transid(io_tree, eb,
380                                                    parent_transid, 0))
381                                 break;
382                         else
383                                 ret = -EIO;
384                 }
385
386                 /*
387                  * This buffer's crc is fine, but its contents are corrupted, so
388                  * there is no reason to read the other copies, they won't be
389                  * any less wrong.
390                  */
391                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
392                         break;
393
394                 num_copies = btrfs_num_copies(root->fs_info,
395                                               eb->start, eb->len);
396                 if (num_copies == 1)
397                         break;
398
399                 if (!failed_mirror) {
400                         failed = 1;
401                         failed_mirror = eb->read_mirror;
402                 }
403
404                 mirror_num++;
405                 if (mirror_num == failed_mirror)
406                         mirror_num++;
407
408                 if (mirror_num > num_copies)
409                         break;
410         }
411
412         if (failed && !ret && failed_mirror)
413                 repair_eb_io_failure(root, eb, failed_mirror);
414
415         return ret;
416 }
417
418 /*
419  * checksum a dirty tree block before IO.  This has extra checks to make sure
420  * we only fill in the checksum field in the first page of a multi-page block
421  */
422
423 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
424 {
425         struct extent_io_tree *tree;
426         u64 start = page_offset(page);
427         u64 found_start;
428         struct extent_buffer *eb;
429
430         tree = &BTRFS_I(page->mapping->host)->io_tree;
431
432         eb = (struct extent_buffer *)page->private;
433         if (page != eb->pages[0])
434                 return 0;
435         found_start = btrfs_header_bytenr(eb);
436         if (found_start != start) {
437                 WARN_ON(1);
438                 return 0;
439         }
440         if (!PageUptodate(page)) {
441                 WARN_ON(1);
442                 return 0;
443         }
444         csum_tree_block(root, eb, 0);
445         return 0;
446 }
447
448 static int check_tree_block_fsid(struct btrfs_root *root,
449                                  struct extent_buffer *eb)
450 {
451         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
452         u8 fsid[BTRFS_UUID_SIZE];
453         int ret = 1;
454
455         read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
456                            BTRFS_FSID_SIZE);
457         while (fs_devices) {
458                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
459                         ret = 0;
460                         break;
461                 }
462                 fs_devices = fs_devices->seed;
463         }
464         return ret;
465 }
466
467 #define CORRUPT(reason, eb, root, slot)                         \
468         printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
469                "root=%llu, slot=%d\n", reason,                  \
470                (unsigned long long)btrfs_header_bytenr(eb),     \
471                (unsigned long long)root->objectid, slot)
472
473 static noinline int check_leaf(struct btrfs_root *root,
474                                struct extent_buffer *leaf)
475 {
476         struct btrfs_key key;
477         struct btrfs_key leaf_key;
478         u32 nritems = btrfs_header_nritems(leaf);
479         int slot;
480
481         if (nritems == 0)
482                 return 0;
483
484         /* Check the 0 item */
485         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
486             BTRFS_LEAF_DATA_SIZE(root)) {
487                 CORRUPT("invalid item offset size pair", leaf, root, 0);
488                 return -EIO;
489         }
490
491         /*
492          * Check to make sure each items keys are in the correct order and their
493          * offsets make sense.  We only have to loop through nritems-1 because
494          * we check the current slot against the next slot, which verifies the
495          * next slot's offset+size makes sense and that the current's slot
496          * offset is correct.
497          */
498         for (slot = 0; slot < nritems - 1; slot++) {
499                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
500                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
501
502                 /* Make sure the keys are in the right order */
503                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
504                         CORRUPT("bad key order", leaf, root, slot);
505                         return -EIO;
506                 }
507
508                 /*
509                  * Make sure the offset and ends are right, remember that the
510                  * item data starts at the end of the leaf and grows towards the
511                  * front.
512                  */
513                 if (btrfs_item_offset_nr(leaf, slot) !=
514                         btrfs_item_end_nr(leaf, slot + 1)) {
515                         CORRUPT("slot offset bad", leaf, root, slot);
516                         return -EIO;
517                 }
518
519                 /*
520                  * Check to make sure that we don't point outside of the leaf,
521                  * just incase all the items are consistent to eachother, but
522                  * all point outside of the leaf.
523                  */
524                 if (btrfs_item_end_nr(leaf, slot) >
525                     BTRFS_LEAF_DATA_SIZE(root)) {
526                         CORRUPT("slot end outside of leaf", leaf, root, slot);
527                         return -EIO;
528                 }
529         }
530
531         return 0;
532 }
533
534 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
535                                        struct page *page, int max_walk)
536 {
537         struct extent_buffer *eb;
538         u64 start = page_offset(page);
539         u64 target = start;
540         u64 min_start;
541
542         if (start < max_walk)
543                 min_start = 0;
544         else
545                 min_start = start - max_walk;
546
547         while (start >= min_start) {
548                 eb = find_extent_buffer(tree, start, 0);
549                 if (eb) {
550                         /*
551                          * we found an extent buffer and it contains our page
552                          * horray!
553                          */
554                         if (eb->start <= target &&
555                             eb->start + eb->len > target)
556                                 return eb;
557
558                         /* we found an extent buffer that wasn't for us */
559                         free_extent_buffer(eb);
560                         return NULL;
561                 }
562                 if (start == 0)
563                         break;
564                 start -= PAGE_CACHE_SIZE;
565         }
566         return NULL;
567 }
568
569 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
570                                struct extent_state *state, int mirror)
571 {
572         struct extent_io_tree *tree;
573         u64 found_start;
574         int found_level;
575         struct extent_buffer *eb;
576         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
577         int ret = 0;
578         int reads_done;
579
580         if (!page->private)
581                 goto out;
582
583         tree = &BTRFS_I(page->mapping->host)->io_tree;
584         eb = (struct extent_buffer *)page->private;
585
586         /* the pending IO might have been the only thing that kept this buffer
587          * in memory.  Make sure we have a ref for all this other checks
588          */
589         extent_buffer_get(eb);
590
591         reads_done = atomic_dec_and_test(&eb->io_pages);
592         if (!reads_done)
593                 goto err;
594
595         eb->read_mirror = mirror;
596         if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
597                 ret = -EIO;
598                 goto err;
599         }
600
601         found_start = btrfs_header_bytenr(eb);
602         if (found_start != eb->start) {
603                 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
604                                "%llu %llu\n",
605                                (unsigned long long)found_start,
606                                (unsigned long long)eb->start);
607                 ret = -EIO;
608                 goto err;
609         }
610         if (check_tree_block_fsid(root, eb)) {
611                 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
612                                (unsigned long long)eb->start);
613                 ret = -EIO;
614                 goto err;
615         }
616         found_level = btrfs_header_level(eb);
617         if (found_level >= BTRFS_MAX_LEVEL) {
618                 btrfs_info(root->fs_info, "bad tree block level %d\n",
619                            (int)btrfs_header_level(eb));
620                 ret = -EIO;
621                 goto err;
622         }
623
624         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
625                                        eb, found_level);
626
627         ret = csum_tree_block(root, eb, 1);
628         if (ret) {
629                 ret = -EIO;
630                 goto err;
631         }
632
633         /*
634          * If this is a leaf block and it is corrupt, set the corrupt bit so
635          * that we don't try and read the other copies of this block, just
636          * return -EIO.
637          */
638         if (found_level == 0 && check_leaf(root, eb)) {
639                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
640                 ret = -EIO;
641         }
642
643         if (!ret)
644                 set_extent_buffer_uptodate(eb);
645 err:
646         if (reads_done &&
647             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
648                 btree_readahead_hook(root, eb, eb->start, ret);
649
650         if (ret) {
651                 /*
652                  * our io error hook is going to dec the io pages
653                  * again, we have to make sure it has something
654                  * to decrement
655                  */
656                 atomic_inc(&eb->io_pages);
657                 clear_extent_buffer_uptodate(eb);
658         }
659         free_extent_buffer(eb);
660 out:
661         return ret;
662 }
663
664 static int btree_io_failed_hook(struct page *page, int failed_mirror)
665 {
666         struct extent_buffer *eb;
667         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
668
669         eb = (struct extent_buffer *)page->private;
670         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
671         eb->read_mirror = failed_mirror;
672         atomic_dec(&eb->io_pages);
673         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
674                 btree_readahead_hook(root, eb, eb->start, -EIO);
675         return -EIO;    /* we fixed nothing */
676 }
677
678 static void end_workqueue_bio(struct bio *bio, int err)
679 {
680         struct end_io_wq *end_io_wq = bio->bi_private;
681         struct btrfs_fs_info *fs_info;
682
683         fs_info = end_io_wq->info;
684         end_io_wq->error = err;
685         end_io_wq->work.func = end_workqueue_fn;
686         end_io_wq->work.flags = 0;
687
688         if (bio->bi_rw & REQ_WRITE) {
689                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
690                         btrfs_queue_worker(&fs_info->endio_meta_write_workers,
691                                            &end_io_wq->work);
692                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
693                         btrfs_queue_worker(&fs_info->endio_freespace_worker,
694                                            &end_io_wq->work);
695                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
696                         btrfs_queue_worker(&fs_info->endio_raid56_workers,
697                                            &end_io_wq->work);
698                 else
699                         btrfs_queue_worker(&fs_info->endio_write_workers,
700                                            &end_io_wq->work);
701         } else {
702                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
703                         btrfs_queue_worker(&fs_info->endio_raid56_workers,
704                                            &end_io_wq->work);
705                 else if (end_io_wq->metadata)
706                         btrfs_queue_worker(&fs_info->endio_meta_workers,
707                                            &end_io_wq->work);
708                 else
709                         btrfs_queue_worker(&fs_info->endio_workers,
710                                            &end_io_wq->work);
711         }
712 }
713
714 /*
715  * For the metadata arg you want
716  *
717  * 0 - if data
718  * 1 - if normal metadta
719  * 2 - if writing to the free space cache area
720  * 3 - raid parity work
721  */
722 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
723                         int metadata)
724 {
725         struct end_io_wq *end_io_wq;
726         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
727         if (!end_io_wq)
728                 return -ENOMEM;
729
730         end_io_wq->private = bio->bi_private;
731         end_io_wq->end_io = bio->bi_end_io;
732         end_io_wq->info = info;
733         end_io_wq->error = 0;
734         end_io_wq->bio = bio;
735         end_io_wq->metadata = metadata;
736
737         bio->bi_private = end_io_wq;
738         bio->bi_end_io = end_workqueue_bio;
739         return 0;
740 }
741
742 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
743 {
744         unsigned long limit = min_t(unsigned long,
745                                     info->workers.max_workers,
746                                     info->fs_devices->open_devices);
747         return 256 * limit;
748 }
749
750 static void run_one_async_start(struct btrfs_work *work)
751 {
752         struct async_submit_bio *async;
753         int ret;
754
755         async = container_of(work, struct  async_submit_bio, work);
756         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
757                                       async->mirror_num, async->bio_flags,
758                                       async->bio_offset);
759         if (ret)
760                 async->error = ret;
761 }
762
763 static void run_one_async_done(struct btrfs_work *work)
764 {
765         struct btrfs_fs_info *fs_info;
766         struct async_submit_bio *async;
767         int limit;
768
769         async = container_of(work, struct  async_submit_bio, work);
770         fs_info = BTRFS_I(async->inode)->root->fs_info;
771
772         limit = btrfs_async_submit_limit(fs_info);
773         limit = limit * 2 / 3;
774
775         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
776             waitqueue_active(&fs_info->async_submit_wait))
777                 wake_up(&fs_info->async_submit_wait);
778
779         /* If an error occured we just want to clean up the bio and move on */
780         if (async->error) {
781                 bio_endio(async->bio, async->error);
782                 return;
783         }
784
785         async->submit_bio_done(async->inode, async->rw, async->bio,
786                                async->mirror_num, async->bio_flags,
787                                async->bio_offset);
788 }
789
790 static void run_one_async_free(struct btrfs_work *work)
791 {
792         struct async_submit_bio *async;
793
794         async = container_of(work, struct  async_submit_bio, work);
795         kfree(async);
796 }
797
798 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
799                         int rw, struct bio *bio, int mirror_num,
800                         unsigned long bio_flags,
801                         u64 bio_offset,
802                         extent_submit_bio_hook_t *submit_bio_start,
803                         extent_submit_bio_hook_t *submit_bio_done)
804 {
805         struct async_submit_bio *async;
806
807         async = kmalloc(sizeof(*async), GFP_NOFS);
808         if (!async)
809                 return -ENOMEM;
810
811         async->inode = inode;
812         async->rw = rw;
813         async->bio = bio;
814         async->mirror_num = mirror_num;
815         async->submit_bio_start = submit_bio_start;
816         async->submit_bio_done = submit_bio_done;
817
818         async->work.func = run_one_async_start;
819         async->work.ordered_func = run_one_async_done;
820         async->work.ordered_free = run_one_async_free;
821
822         async->work.flags = 0;
823         async->bio_flags = bio_flags;
824         async->bio_offset = bio_offset;
825
826         async->error = 0;
827
828         atomic_inc(&fs_info->nr_async_submits);
829
830         if (rw & REQ_SYNC)
831                 btrfs_set_work_high_prio(&async->work);
832
833         btrfs_queue_worker(&fs_info->workers, &async->work);
834
835         while (atomic_read(&fs_info->async_submit_draining) &&
836               atomic_read(&fs_info->nr_async_submits)) {
837                 wait_event(fs_info->async_submit_wait,
838                            (atomic_read(&fs_info->nr_async_submits) == 0));
839         }
840
841         return 0;
842 }
843
844 static int btree_csum_one_bio(struct bio *bio)
845 {
846         struct bio_vec *bvec = bio->bi_io_vec;
847         int bio_index = 0;
848         struct btrfs_root *root;
849         int ret = 0;
850
851         WARN_ON(bio->bi_vcnt <= 0);
852         while (bio_index < bio->bi_vcnt) {
853                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
854                 ret = csum_dirty_buffer(root, bvec->bv_page);
855                 if (ret)
856                         break;
857                 bio_index++;
858                 bvec++;
859         }
860         return ret;
861 }
862
863 static int __btree_submit_bio_start(struct inode *inode, int rw,
864                                     struct bio *bio, int mirror_num,
865                                     unsigned long bio_flags,
866                                     u64 bio_offset)
867 {
868         /*
869          * when we're called for a write, we're already in the async
870          * submission context.  Just jump into btrfs_map_bio
871          */
872         return btree_csum_one_bio(bio);
873 }
874
875 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
876                                  int mirror_num, unsigned long bio_flags,
877                                  u64 bio_offset)
878 {
879         int ret;
880
881         /*
882          * when we're called for a write, we're already in the async
883          * submission context.  Just jump into btrfs_map_bio
884          */
885         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
886         if (ret)
887                 bio_endio(bio, ret);
888         return ret;
889 }
890
891 static int check_async_write(struct inode *inode, unsigned long bio_flags)
892 {
893         if (bio_flags & EXTENT_BIO_TREE_LOG)
894                 return 0;
895 #ifdef CONFIG_X86
896         if (cpu_has_xmm4_2)
897                 return 0;
898 #endif
899         return 1;
900 }
901
902 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
903                                  int mirror_num, unsigned long bio_flags,
904                                  u64 bio_offset)
905 {
906         int async = check_async_write(inode, bio_flags);
907         int ret;
908
909         if (!(rw & REQ_WRITE)) {
910                 /*
911                  * called for a read, do the setup so that checksum validation
912                  * can happen in the async kernel threads
913                  */
914                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
915                                           bio, 1);
916                 if (ret)
917                         goto out_w_error;
918                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
919                                     mirror_num, 0);
920         } else if (!async) {
921                 ret = btree_csum_one_bio(bio);
922                 if (ret)
923                         goto out_w_error;
924                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
925                                     mirror_num, 0);
926         } else {
927                 /*
928                  * kthread helpers are used to submit writes so that
929                  * checksumming can happen in parallel across all CPUs
930                  */
931                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
932                                           inode, rw, bio, mirror_num, 0,
933                                           bio_offset,
934                                           __btree_submit_bio_start,
935                                           __btree_submit_bio_done);
936         }
937
938         if (ret) {
939 out_w_error:
940                 bio_endio(bio, ret);
941         }
942         return ret;
943 }
944
945 #ifdef CONFIG_MIGRATION
946 static int btree_migratepage(struct address_space *mapping,
947                         struct page *newpage, struct page *page,
948                         enum migrate_mode mode)
949 {
950         /*
951          * we can't safely write a btree page from here,
952          * we haven't done the locking hook
953          */
954         if (PageDirty(page))
955                 return -EAGAIN;
956         /*
957          * Buffers may be managed in a filesystem specific way.
958          * We must have no buffers or drop them.
959          */
960         if (page_has_private(page) &&
961             !try_to_release_page(page, GFP_KERNEL))
962                 return -EAGAIN;
963         return migrate_page(mapping, newpage, page, mode);
964 }
965 #endif
966
967
968 static int btree_writepages(struct address_space *mapping,
969                             struct writeback_control *wbc)
970 {
971         struct extent_io_tree *tree;
972         struct btrfs_fs_info *fs_info;
973         int ret;
974
975         tree = &BTRFS_I(mapping->host)->io_tree;
976         if (wbc->sync_mode == WB_SYNC_NONE) {
977
978                 if (wbc->for_kupdate)
979                         return 0;
980
981                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
982                 /* this is a bit racy, but that's ok */
983                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
984                                              BTRFS_DIRTY_METADATA_THRESH);
985                 if (ret < 0)
986                         return 0;
987         }
988         return btree_write_cache_pages(mapping, wbc);
989 }
990
991 static int btree_readpage(struct file *file, struct page *page)
992 {
993         struct extent_io_tree *tree;
994         tree = &BTRFS_I(page->mapping->host)->io_tree;
995         return extent_read_full_page(tree, page, btree_get_extent, 0);
996 }
997
998 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
999 {
1000         if (PageWriteback(page) || PageDirty(page))
1001                 return 0;
1002         /*
1003          * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
1004          * slab allocation from alloc_extent_state down the callchain where
1005          * it'd hit a BUG_ON as those flags are not allowed.
1006          */
1007         gfp_flags &= ~GFP_SLAB_BUG_MASK;
1008
1009         return try_release_extent_buffer(page, gfp_flags);
1010 }
1011
1012 static void btree_invalidatepage(struct page *page, unsigned long offset)
1013 {
1014         struct extent_io_tree *tree;
1015         tree = &BTRFS_I(page->mapping->host)->io_tree;
1016         extent_invalidatepage(tree, page, offset);
1017         btree_releasepage(page, GFP_NOFS);
1018         if (PagePrivate(page)) {
1019                 printk(KERN_WARNING "btrfs warning page private not zero "
1020                        "on page %llu\n", (unsigned long long)page_offset(page));
1021                 ClearPagePrivate(page);
1022                 set_page_private(page, 0);
1023                 page_cache_release(page);
1024         }
1025 }
1026
1027 static int btree_set_page_dirty(struct page *page)
1028 {
1029 #ifdef DEBUG
1030         struct extent_buffer *eb;
1031
1032         BUG_ON(!PagePrivate(page));
1033         eb = (struct extent_buffer *)page->private;
1034         BUG_ON(!eb);
1035         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1036         BUG_ON(!atomic_read(&eb->refs));
1037         btrfs_assert_tree_locked(eb);
1038 #endif
1039         return __set_page_dirty_nobuffers(page);
1040 }
1041
1042 static const struct address_space_operations btree_aops = {
1043         .readpage       = btree_readpage,
1044         .writepages     = btree_writepages,
1045         .releasepage    = btree_releasepage,
1046         .invalidatepage = btree_invalidatepage,
1047 #ifdef CONFIG_MIGRATION
1048         .migratepage    = btree_migratepage,
1049 #endif
1050         .set_page_dirty = btree_set_page_dirty,
1051 };
1052
1053 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1054                          u64 parent_transid)
1055 {
1056         struct extent_buffer *buf = NULL;
1057         struct inode *btree_inode = root->fs_info->btree_inode;
1058         int ret = 0;
1059
1060         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1061         if (!buf)
1062                 return 0;
1063         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1064                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1065         free_extent_buffer(buf);
1066         return ret;
1067 }
1068
1069 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1070                          int mirror_num, struct extent_buffer **eb)
1071 {
1072         struct extent_buffer *buf = NULL;
1073         struct inode *btree_inode = root->fs_info->btree_inode;
1074         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1075         int ret;
1076
1077         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1078         if (!buf)
1079                 return 0;
1080
1081         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1082
1083         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1084                                        btree_get_extent, mirror_num);
1085         if (ret) {
1086                 free_extent_buffer(buf);
1087                 return ret;
1088         }
1089
1090         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1091                 free_extent_buffer(buf);
1092                 return -EIO;
1093         } else if (extent_buffer_uptodate(buf)) {
1094                 *eb = buf;
1095         } else {
1096                 free_extent_buffer(buf);
1097         }
1098         return 0;
1099 }
1100
1101 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1102                                             u64 bytenr, u32 blocksize)
1103 {
1104         struct inode *btree_inode = root->fs_info->btree_inode;
1105         struct extent_buffer *eb;
1106         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1107                                 bytenr, blocksize);
1108         return eb;
1109 }
1110
1111 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1112                                                  u64 bytenr, u32 blocksize)
1113 {
1114         struct inode *btree_inode = root->fs_info->btree_inode;
1115         struct extent_buffer *eb;
1116
1117         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1118                                  bytenr, blocksize);
1119         return eb;
1120 }
1121
1122
1123 int btrfs_write_tree_block(struct extent_buffer *buf)
1124 {
1125         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1126                                         buf->start + buf->len - 1);
1127 }
1128
1129 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1130 {
1131         return filemap_fdatawait_range(buf->pages[0]->mapping,
1132                                        buf->start, buf->start + buf->len - 1);
1133 }
1134
1135 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1136                                       u32 blocksize, u64 parent_transid)
1137 {
1138         struct extent_buffer *buf = NULL;
1139         int ret;
1140
1141         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1142         if (!buf)
1143                 return NULL;
1144
1145         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1146         return buf;
1147
1148 }
1149
1150 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1151                       struct extent_buffer *buf)
1152 {
1153         struct btrfs_fs_info *fs_info = root->fs_info;
1154
1155         if (btrfs_header_generation(buf) ==
1156             fs_info->running_transaction->transid) {
1157                 btrfs_assert_tree_locked(buf);
1158
1159                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1160                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1161                                              -buf->len,
1162                                              fs_info->dirty_metadata_batch);
1163                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1164                         btrfs_set_lock_blocking(buf);
1165                         clear_extent_buffer_dirty(buf);
1166                 }
1167         }
1168 }
1169
1170 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1171                          u32 stripesize, struct btrfs_root *root,
1172                          struct btrfs_fs_info *fs_info,
1173                          u64 objectid)
1174 {
1175         root->node = NULL;
1176         root->commit_root = NULL;
1177         root->sectorsize = sectorsize;
1178         root->nodesize = nodesize;
1179         root->leafsize = leafsize;
1180         root->stripesize = stripesize;
1181         root->ref_cows = 0;
1182         root->track_dirty = 0;
1183         root->in_radix = 0;
1184         root->orphan_item_inserted = 0;
1185         root->orphan_cleanup_state = 0;
1186
1187         root->objectid = objectid;
1188         root->last_trans = 0;
1189         root->highest_objectid = 0;
1190         root->name = NULL;
1191         root->inode_tree = RB_ROOT;
1192         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1193         root->block_rsv = NULL;
1194         root->orphan_block_rsv = NULL;
1195
1196         INIT_LIST_HEAD(&root->dirty_list);
1197         INIT_LIST_HEAD(&root->root_list);
1198         INIT_LIST_HEAD(&root->logged_list[0]);
1199         INIT_LIST_HEAD(&root->logged_list[1]);
1200         spin_lock_init(&root->orphan_lock);
1201         spin_lock_init(&root->inode_lock);
1202         spin_lock_init(&root->accounting_lock);
1203         spin_lock_init(&root->log_extents_lock[0]);
1204         spin_lock_init(&root->log_extents_lock[1]);
1205         mutex_init(&root->objectid_mutex);
1206         mutex_init(&root->log_mutex);
1207         init_waitqueue_head(&root->log_writer_wait);
1208         init_waitqueue_head(&root->log_commit_wait[0]);
1209         init_waitqueue_head(&root->log_commit_wait[1]);
1210         atomic_set(&root->log_commit[0], 0);
1211         atomic_set(&root->log_commit[1], 0);
1212         atomic_set(&root->log_writers, 0);
1213         atomic_set(&root->log_batch, 0);
1214         atomic_set(&root->orphan_inodes, 0);
1215         root->log_transid = 0;
1216         root->last_log_commit = 0;
1217         extent_io_tree_init(&root->dirty_log_pages,
1218                              fs_info->btree_inode->i_mapping);
1219
1220         memset(&root->root_key, 0, sizeof(root->root_key));
1221         memset(&root->root_item, 0, sizeof(root->root_item));
1222         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1223         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1224         root->defrag_trans_start = fs_info->generation;
1225         init_completion(&root->kobj_unregister);
1226         root->defrag_running = 0;
1227         root->root_key.objectid = objectid;
1228         root->anon_dev = 0;
1229
1230         spin_lock_init(&root->root_item_lock);
1231 }
1232
1233 static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1234                                             struct btrfs_fs_info *fs_info,
1235                                             u64 objectid,
1236                                             struct btrfs_root *root)
1237 {
1238         int ret;
1239         u32 blocksize;
1240         u64 generation;
1241
1242         __setup_root(tree_root->nodesize, tree_root->leafsize,
1243                      tree_root->sectorsize, tree_root->stripesize,
1244                      root, fs_info, objectid);
1245         ret = btrfs_find_last_root(tree_root, objectid,
1246                                    &root->root_item, &root->root_key);
1247         if (ret > 0)
1248                 return -ENOENT;
1249         else if (ret < 0)
1250                 return ret;
1251
1252         generation = btrfs_root_generation(&root->root_item);
1253         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1254         root->commit_root = NULL;
1255         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1256                                      blocksize, generation);
1257         if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1258                 free_extent_buffer(root->node);
1259                 root->node = NULL;
1260                 return -EIO;
1261         }
1262         root->commit_root = btrfs_root_node(root);
1263         return 0;
1264 }
1265
1266 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1267 {
1268         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1269         if (root)
1270                 root->fs_info = fs_info;
1271         return root;
1272 }
1273
1274 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1275                                      struct btrfs_fs_info *fs_info,
1276                                      u64 objectid)
1277 {
1278         struct extent_buffer *leaf;
1279         struct btrfs_root *tree_root = fs_info->tree_root;
1280         struct btrfs_root *root;
1281         struct btrfs_key key;
1282         int ret = 0;
1283         u64 bytenr;
1284         uuid_le uuid;
1285
1286         root = btrfs_alloc_root(fs_info);
1287         if (!root)
1288                 return ERR_PTR(-ENOMEM);
1289
1290         __setup_root(tree_root->nodesize, tree_root->leafsize,
1291                      tree_root->sectorsize, tree_root->stripesize,
1292                      root, fs_info, objectid);
1293         root->root_key.objectid = objectid;
1294         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1295         root->root_key.offset = 0;
1296
1297         leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1298                                       0, objectid, NULL, 0, 0, 0);
1299         if (IS_ERR(leaf)) {
1300                 ret = PTR_ERR(leaf);
1301                 leaf = NULL;
1302                 goto fail;
1303         }
1304
1305         bytenr = leaf->start;
1306         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1307         btrfs_set_header_bytenr(leaf, leaf->start);
1308         btrfs_set_header_generation(leaf, trans->transid);
1309         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1310         btrfs_set_header_owner(leaf, objectid);
1311         root->node = leaf;
1312
1313         write_extent_buffer(leaf, fs_info->fsid,
1314                             (unsigned long)btrfs_header_fsid(leaf),
1315                             BTRFS_FSID_SIZE);
1316         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1317                             (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1318                             BTRFS_UUID_SIZE);
1319         btrfs_mark_buffer_dirty(leaf);
1320
1321         root->commit_root = btrfs_root_node(root);
1322         root->track_dirty = 1;
1323
1324
1325         root->root_item.flags = 0;
1326         root->root_item.byte_limit = 0;
1327         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1328         btrfs_set_root_generation(&root->root_item, trans->transid);
1329         btrfs_set_root_level(&root->root_item, 0);
1330         btrfs_set_root_refs(&root->root_item, 1);
1331         btrfs_set_root_used(&root->root_item, leaf->len);
1332         btrfs_set_root_last_snapshot(&root->root_item, 0);
1333         btrfs_set_root_dirid(&root->root_item, 0);
1334         uuid_le_gen(&uuid);
1335         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1336         root->root_item.drop_level = 0;
1337
1338         key.objectid = objectid;
1339         key.type = BTRFS_ROOT_ITEM_KEY;
1340         key.offset = 0;
1341         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1342         if (ret)
1343                 goto fail;
1344
1345         btrfs_tree_unlock(leaf);
1346
1347         return root;
1348
1349 fail:
1350         if (leaf) {
1351                 btrfs_tree_unlock(leaf);
1352                 free_extent_buffer(leaf);
1353         }
1354         kfree(root);
1355
1356         return ERR_PTR(ret);
1357 }
1358
1359 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1360                                          struct btrfs_fs_info *fs_info)
1361 {
1362         struct btrfs_root *root;
1363         struct btrfs_root *tree_root = fs_info->tree_root;
1364         struct extent_buffer *leaf;
1365
1366         root = btrfs_alloc_root(fs_info);
1367         if (!root)
1368                 return ERR_PTR(-ENOMEM);
1369
1370         __setup_root(tree_root->nodesize, tree_root->leafsize,
1371                      tree_root->sectorsize, tree_root->stripesize,
1372                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1373
1374         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1375         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1376         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1377         /*
1378          * log trees do not get reference counted because they go away
1379          * before a real commit is actually done.  They do store pointers
1380          * to file data extents, and those reference counts still get
1381          * updated (along with back refs to the log tree).
1382          */
1383         root->ref_cows = 0;
1384
1385         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1386                                       BTRFS_TREE_LOG_OBJECTID, NULL,
1387                                       0, 0, 0);
1388         if (IS_ERR(leaf)) {
1389                 kfree(root);
1390                 return ERR_CAST(leaf);
1391         }
1392
1393         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1394         btrfs_set_header_bytenr(leaf, leaf->start);
1395         btrfs_set_header_generation(leaf, trans->transid);
1396         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1397         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1398         root->node = leaf;
1399
1400         write_extent_buffer(root->node, root->fs_info->fsid,
1401                             (unsigned long)btrfs_header_fsid(root->node),
1402                             BTRFS_FSID_SIZE);
1403         btrfs_mark_buffer_dirty(root->node);
1404         btrfs_tree_unlock(root->node);
1405         return root;
1406 }
1407
1408 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1409                              struct btrfs_fs_info *fs_info)
1410 {
1411         struct btrfs_root *log_root;
1412
1413         log_root = alloc_log_tree(trans, fs_info);
1414         if (IS_ERR(log_root))
1415                 return PTR_ERR(log_root);
1416         WARN_ON(fs_info->log_root_tree);
1417         fs_info->log_root_tree = log_root;
1418         return 0;
1419 }
1420
1421 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1422                        struct btrfs_root *root)
1423 {
1424         struct btrfs_root *log_root;
1425         struct btrfs_inode_item *inode_item;
1426
1427         log_root = alloc_log_tree(trans, root->fs_info);
1428         if (IS_ERR(log_root))
1429                 return PTR_ERR(log_root);
1430
1431         log_root->last_trans = trans->transid;
1432         log_root->root_key.offset = root->root_key.objectid;
1433
1434         inode_item = &log_root->root_item.inode;
1435         inode_item->generation = cpu_to_le64(1);
1436         inode_item->size = cpu_to_le64(3);
1437         inode_item->nlink = cpu_to_le32(1);
1438         inode_item->nbytes = cpu_to_le64(root->leafsize);
1439         inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1440
1441         btrfs_set_root_node(&log_root->root_item, log_root->node);
1442
1443         WARN_ON(root->log_root);
1444         root->log_root = log_root;
1445         root->log_transid = 0;
1446         root->last_log_commit = 0;
1447         return 0;
1448 }
1449
1450 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1451                                                struct btrfs_key *location)
1452 {
1453         struct btrfs_root *root;
1454         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1455         struct btrfs_path *path;
1456         struct extent_buffer *l;
1457         u64 generation;
1458         u32 blocksize;
1459         int ret = 0;
1460         int slot;
1461
1462         root = btrfs_alloc_root(fs_info);
1463         if (!root)
1464                 return ERR_PTR(-ENOMEM);
1465         if (location->offset == (u64)-1) {
1466                 ret = find_and_setup_root(tree_root, fs_info,
1467                                           location->objectid, root);
1468                 if (ret) {
1469                         kfree(root);
1470                         return ERR_PTR(ret);
1471                 }
1472                 goto out;
1473         }
1474
1475         __setup_root(tree_root->nodesize, tree_root->leafsize,
1476                      tree_root->sectorsize, tree_root->stripesize,
1477                      root, fs_info, location->objectid);
1478
1479         path = btrfs_alloc_path();
1480         if (!path) {
1481                 kfree(root);
1482                 return ERR_PTR(-ENOMEM);
1483         }
1484         ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1485         if (ret == 0) {
1486                 l = path->nodes[0];
1487                 slot = path->slots[0];
1488                 btrfs_read_root_item(l, slot, &root->root_item);
1489                 memcpy(&root->root_key, location, sizeof(*location));
1490         }
1491         btrfs_free_path(path);
1492         if (ret) {
1493                 kfree(root);
1494                 if (ret > 0)
1495                         ret = -ENOENT;
1496                 return ERR_PTR(ret);
1497         }
1498
1499         generation = btrfs_root_generation(&root->root_item);
1500         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1501         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1502                                      blocksize, generation);
1503         if (!root->node || !extent_buffer_uptodate(root->node)) {
1504                 ret = (!root->node) ? -ENOMEM : -EIO;
1505
1506                 free_extent_buffer(root->node);
1507                 kfree(root);
1508                 return ERR_PTR(ret);
1509         }
1510
1511         root->commit_root = btrfs_root_node(root);
1512         BUG_ON(!root->node); /* -ENOMEM */
1513 out:
1514         if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1515                 root->ref_cows = 1;
1516                 btrfs_check_and_init_root_item(&root->root_item);
1517         }
1518
1519         return root;
1520 }
1521
1522 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1523                                               struct btrfs_key *location)
1524 {
1525         struct btrfs_root *root;
1526         int ret;
1527
1528         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1529                 return fs_info->tree_root;
1530         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1531                 return fs_info->extent_root;
1532         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1533                 return fs_info->chunk_root;
1534         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1535                 return fs_info->dev_root;
1536         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1537                 return fs_info->csum_root;
1538         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1539                 return fs_info->quota_root ? fs_info->quota_root :
1540                                              ERR_PTR(-ENOENT);
1541 again:
1542         spin_lock(&fs_info->fs_roots_radix_lock);
1543         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1544                                  (unsigned long)location->objectid);
1545         spin_unlock(&fs_info->fs_roots_radix_lock);
1546         if (root)
1547                 return root;
1548
1549         root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1550         if (IS_ERR(root))
1551                 return root;
1552
1553         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1554         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1555                                         GFP_NOFS);
1556         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1557                 ret = -ENOMEM;
1558                 goto fail;
1559         }
1560
1561         btrfs_init_free_ino_ctl(root);
1562         mutex_init(&root->fs_commit_mutex);
1563         spin_lock_init(&root->cache_lock);
1564         init_waitqueue_head(&root->cache_wait);
1565
1566         ret = get_anon_bdev(&root->anon_dev);
1567         if (ret)
1568                 goto fail;
1569
1570         if (btrfs_root_refs(&root->root_item) == 0) {
1571                 ret = -ENOENT;
1572                 goto fail;
1573         }
1574
1575         ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1576         if (ret < 0)
1577                 goto fail;
1578         if (ret == 0)
1579                 root->orphan_item_inserted = 1;
1580
1581         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1582         if (ret)
1583                 goto fail;
1584
1585         spin_lock(&fs_info->fs_roots_radix_lock);
1586         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1587                                 (unsigned long)root->root_key.objectid,
1588                                 root);
1589         if (ret == 0)
1590                 root->in_radix = 1;
1591
1592         spin_unlock(&fs_info->fs_roots_radix_lock);
1593         radix_tree_preload_end();
1594         if (ret) {
1595                 if (ret == -EEXIST) {
1596                         free_fs_root(root);
1597                         goto again;
1598                 }
1599                 goto fail;
1600         }
1601
1602         ret = btrfs_find_dead_roots(fs_info->tree_root,
1603                                     root->root_key.objectid);
1604         WARN_ON(ret);
1605         return root;
1606 fail:
1607         free_fs_root(root);
1608         return ERR_PTR(ret);
1609 }
1610
1611 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1612 {
1613         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1614         int ret = 0;
1615         struct btrfs_device *device;
1616         struct backing_dev_info *bdi;
1617
1618         rcu_read_lock();
1619         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1620                 if (!device->bdev)
1621                         continue;
1622                 bdi = blk_get_backing_dev_info(device->bdev);
1623                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1624                         ret = 1;
1625                         break;
1626                 }
1627         }
1628         rcu_read_unlock();
1629         return ret;
1630 }
1631
1632 /*
1633  * If this fails, caller must call bdi_destroy() to get rid of the
1634  * bdi again.
1635  */
1636 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1637 {
1638         int err;
1639
1640         bdi->capabilities = BDI_CAP_MAP_COPY;
1641         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1642         if (err)
1643                 return err;
1644
1645         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1646         bdi->congested_fn       = btrfs_congested_fn;
1647         bdi->congested_data     = info;
1648         return 0;
1649 }
1650
1651 /*
1652  * called by the kthread helper functions to finally call the bio end_io
1653  * functions.  This is where read checksum verification actually happens
1654  */
1655 static void end_workqueue_fn(struct btrfs_work *work)
1656 {
1657         struct bio *bio;
1658         struct end_io_wq *end_io_wq;
1659         struct btrfs_fs_info *fs_info;
1660         int error;
1661
1662         end_io_wq = container_of(work, struct end_io_wq, work);
1663         bio = end_io_wq->bio;
1664         fs_info = end_io_wq->info;
1665
1666         error = end_io_wq->error;
1667         bio->bi_private = end_io_wq->private;
1668         bio->bi_end_io = end_io_wq->end_io;
1669         kfree(end_io_wq);
1670         bio_endio(bio, error);
1671 }
1672
1673 static int cleaner_kthread(void *arg)
1674 {
1675         struct btrfs_root *root = arg;
1676
1677         do {
1678                 int again = 0;
1679
1680                 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1681                     down_read_trylock(&root->fs_info->sb->s_umount)) {
1682                         if (mutex_trylock(&root->fs_info->cleaner_mutex)) {
1683                                 btrfs_run_delayed_iputs(root);
1684                                 again = btrfs_clean_one_deleted_snapshot(root);
1685                                 mutex_unlock(&root->fs_info->cleaner_mutex);
1686                         }
1687                         btrfs_run_defrag_inodes(root->fs_info);
1688                         up_read(&root->fs_info->sb->s_umount);
1689                 }
1690
1691                 if (!try_to_freeze() && !again) {
1692                         set_current_state(TASK_INTERRUPTIBLE);
1693                         if (!kthread_should_stop())
1694                                 schedule();
1695                         __set_current_state(TASK_RUNNING);
1696                 }
1697         } while (!kthread_should_stop());
1698         return 0;
1699 }
1700
1701 static int transaction_kthread(void *arg)
1702 {
1703         struct btrfs_root *root = arg;
1704         struct btrfs_trans_handle *trans;
1705         struct btrfs_transaction *cur;
1706         u64 transid;
1707         unsigned long now;
1708         unsigned long delay;
1709         bool cannot_commit;
1710
1711         do {
1712                 cannot_commit = false;
1713                 delay = HZ * 30;
1714                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1715
1716                 spin_lock(&root->fs_info->trans_lock);
1717                 cur = root->fs_info->running_transaction;
1718                 if (!cur) {
1719                         spin_unlock(&root->fs_info->trans_lock);
1720                         goto sleep;
1721                 }
1722
1723                 now = get_seconds();
1724                 if (!cur->blocked &&
1725                     (now < cur->start_time || now - cur->start_time < 30)) {
1726                         spin_unlock(&root->fs_info->trans_lock);
1727                         delay = HZ * 5;
1728                         goto sleep;
1729                 }
1730                 transid = cur->transid;
1731                 spin_unlock(&root->fs_info->trans_lock);
1732
1733                 /* If the file system is aborted, this will always fail. */
1734                 trans = btrfs_attach_transaction(root);
1735                 if (IS_ERR(trans)) {
1736                         if (PTR_ERR(trans) != -ENOENT)
1737                                 cannot_commit = true;
1738                         goto sleep;
1739                 }
1740                 if (transid == trans->transid) {
1741                         btrfs_commit_transaction(trans, root);
1742                 } else {
1743                         btrfs_end_transaction(trans, root);
1744                 }
1745 sleep:
1746                 wake_up_process(root->fs_info->cleaner_kthread);
1747                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1748
1749                 if (!try_to_freeze()) {
1750                         set_current_state(TASK_INTERRUPTIBLE);
1751                         if (!kthread_should_stop() &&
1752                             (!btrfs_transaction_blocked(root->fs_info) ||
1753                              cannot_commit))
1754                                 schedule_timeout(delay);
1755                         __set_current_state(TASK_RUNNING);
1756                 }
1757         } while (!kthread_should_stop());
1758         return 0;
1759 }
1760
1761 /*
1762  * this will find the highest generation in the array of
1763  * root backups.  The index of the highest array is returned,
1764  * or -1 if we can't find anything.
1765  *
1766  * We check to make sure the array is valid by comparing the
1767  * generation of the latest  root in the array with the generation
1768  * in the super block.  If they don't match we pitch it.
1769  */
1770 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1771 {
1772         u64 cur;
1773         int newest_index = -1;
1774         struct btrfs_root_backup *root_backup;
1775         int i;
1776
1777         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1778                 root_backup = info->super_copy->super_roots + i;
1779                 cur = btrfs_backup_tree_root_gen(root_backup);
1780                 if (cur == newest_gen)
1781                         newest_index = i;
1782         }
1783
1784         /* check to see if we actually wrapped around */
1785         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1786                 root_backup = info->super_copy->super_roots;
1787                 cur = btrfs_backup_tree_root_gen(root_backup);
1788                 if (cur == newest_gen)
1789                         newest_index = 0;
1790         }
1791         return newest_index;
1792 }
1793
1794
1795 /*
1796  * find the oldest backup so we know where to store new entries
1797  * in the backup array.  This will set the backup_root_index
1798  * field in the fs_info struct
1799  */
1800 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1801                                      u64 newest_gen)
1802 {
1803         int newest_index = -1;
1804
1805         newest_index = find_newest_super_backup(info, newest_gen);
1806         /* if there was garbage in there, just move along */
1807         if (newest_index == -1) {
1808                 info->backup_root_index = 0;
1809         } else {
1810                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1811         }
1812 }
1813
1814 /*
1815  * copy all the root pointers into the super backup array.
1816  * this will bump the backup pointer by one when it is
1817  * done
1818  */
1819 static void backup_super_roots(struct btrfs_fs_info *info)
1820 {
1821         int next_backup;
1822         struct btrfs_root_backup *root_backup;
1823         int last_backup;
1824
1825         next_backup = info->backup_root_index;
1826         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1827                 BTRFS_NUM_BACKUP_ROOTS;
1828
1829         /*
1830          * just overwrite the last backup if we're at the same generation
1831          * this happens only at umount
1832          */
1833         root_backup = info->super_for_commit->super_roots + last_backup;
1834         if (btrfs_backup_tree_root_gen(root_backup) ==
1835             btrfs_header_generation(info->tree_root->node))
1836                 next_backup = last_backup;
1837
1838         root_backup = info->super_for_commit->super_roots + next_backup;
1839
1840         /*
1841          * make sure all of our padding and empty slots get zero filled
1842          * regardless of which ones we use today
1843          */
1844         memset(root_backup, 0, sizeof(*root_backup));
1845
1846         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1847
1848         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1849         btrfs_set_backup_tree_root_gen(root_backup,
1850                                btrfs_header_generation(info->tree_root->node));
1851
1852         btrfs_set_backup_tree_root_level(root_backup,
1853                                btrfs_header_level(info->tree_root->node));
1854
1855         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1856         btrfs_set_backup_chunk_root_gen(root_backup,
1857                                btrfs_header_generation(info->chunk_root->node));
1858         btrfs_set_backup_chunk_root_level(root_backup,
1859                                btrfs_header_level(info->chunk_root->node));
1860
1861         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1862         btrfs_set_backup_extent_root_gen(root_backup,
1863                                btrfs_header_generation(info->extent_root->node));
1864         btrfs_set_backup_extent_root_level(root_backup,
1865                                btrfs_header_level(info->extent_root->node));
1866
1867         /*
1868          * we might commit during log recovery, which happens before we set
1869          * the fs_root.  Make sure it is valid before we fill it in.
1870          */
1871         if (info->fs_root && info->fs_root->node) {
1872                 btrfs_set_backup_fs_root(root_backup,
1873                                          info->fs_root->node->start);
1874                 btrfs_set_backup_fs_root_gen(root_backup,
1875                                btrfs_header_generation(info->fs_root->node));
1876                 btrfs_set_backup_fs_root_level(root_backup,
1877                                btrfs_header_level(info->fs_root->node));
1878         }
1879
1880         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1881         btrfs_set_backup_dev_root_gen(root_backup,
1882                                btrfs_header_generation(info->dev_root->node));
1883         btrfs_set_backup_dev_root_level(root_backup,
1884                                        btrfs_header_level(info->dev_root->node));
1885
1886         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1887         btrfs_set_backup_csum_root_gen(root_backup,
1888                                btrfs_header_generation(info->csum_root->node));
1889         btrfs_set_backup_csum_root_level(root_backup,
1890                                btrfs_header_level(info->csum_root->node));
1891
1892         btrfs_set_backup_total_bytes(root_backup,
1893                              btrfs_super_total_bytes(info->super_copy));
1894         btrfs_set_backup_bytes_used(root_backup,
1895                              btrfs_super_bytes_used(info->super_copy));
1896         btrfs_set_backup_num_devices(root_backup,
1897                              btrfs_super_num_devices(info->super_copy));
1898
1899         /*
1900          * if we don't copy this out to the super_copy, it won't get remembered
1901          * for the next commit
1902          */
1903         memcpy(&info->super_copy->super_roots,
1904                &info->super_for_commit->super_roots,
1905                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1906 }
1907
1908 /*
1909  * this copies info out of the root backup array and back into
1910  * the in-memory super block.  It is meant to help iterate through
1911  * the array, so you send it the number of backups you've already
1912  * tried and the last backup index you used.
1913  *
1914  * this returns -1 when it has tried all the backups
1915  */
1916 static noinline int next_root_backup(struct btrfs_fs_info *info,
1917                                      struct btrfs_super_block *super,
1918                                      int *num_backups_tried, int *backup_index)
1919 {
1920         struct btrfs_root_backup *root_backup;
1921         int newest = *backup_index;
1922
1923         if (*num_backups_tried == 0) {
1924                 u64 gen = btrfs_super_generation(super);
1925
1926                 newest = find_newest_super_backup(info, gen);
1927                 if (newest == -1)
1928                         return -1;
1929
1930                 *backup_index = newest;
1931                 *num_backups_tried = 1;
1932         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1933                 /* we've tried all the backups, all done */
1934                 return -1;
1935         } else {
1936                 /* jump to the next oldest backup */
1937                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1938                         BTRFS_NUM_BACKUP_ROOTS;
1939                 *backup_index = newest;
1940                 *num_backups_tried += 1;
1941         }
1942         root_backup = super->super_roots + newest;
1943
1944         btrfs_set_super_generation(super,
1945                                    btrfs_backup_tree_root_gen(root_backup));
1946         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1947         btrfs_set_super_root_level(super,
1948                                    btrfs_backup_tree_root_level(root_backup));
1949         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1950
1951         /*
1952          * fixme: the total bytes and num_devices need to match or we should
1953          * need a fsck
1954          */
1955         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1956         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1957         return 0;
1958 }
1959
1960 /* helper to cleanup workers */
1961 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1962 {
1963         btrfs_stop_workers(&fs_info->generic_worker);
1964         btrfs_stop_workers(&fs_info->fixup_workers);
1965         btrfs_stop_workers(&fs_info->delalloc_workers);
1966         btrfs_stop_workers(&fs_info->workers);
1967         btrfs_stop_workers(&fs_info->endio_workers);
1968         btrfs_stop_workers(&fs_info->endio_meta_workers);
1969         btrfs_stop_workers(&fs_info->endio_raid56_workers);
1970         btrfs_stop_workers(&fs_info->rmw_workers);
1971         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
1972         btrfs_stop_workers(&fs_info->endio_write_workers);
1973         btrfs_stop_workers(&fs_info->endio_freespace_worker);
1974         btrfs_stop_workers(&fs_info->submit_workers);
1975         btrfs_stop_workers(&fs_info->delayed_workers);
1976         btrfs_stop_workers(&fs_info->caching_workers);
1977         btrfs_stop_workers(&fs_info->readahead_workers);
1978         btrfs_stop_workers(&fs_info->flush_workers);
1979         btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
1980 }
1981
1982 /* helper to cleanup tree roots */
1983 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1984 {
1985         free_extent_buffer(info->tree_root->node);
1986         free_extent_buffer(info->tree_root->commit_root);
1987         free_extent_buffer(info->dev_root->node);
1988         free_extent_buffer(info->dev_root->commit_root);
1989         free_extent_buffer(info->extent_root->node);
1990         free_extent_buffer(info->extent_root->commit_root);
1991         free_extent_buffer(info->csum_root->node);
1992         free_extent_buffer(info->csum_root->commit_root);
1993         if (info->quota_root) {
1994                 free_extent_buffer(info->quota_root->node);
1995                 free_extent_buffer(info->quota_root->commit_root);
1996         }
1997
1998         info->tree_root->node = NULL;
1999         info->tree_root->commit_root = NULL;
2000         info->dev_root->node = NULL;
2001         info->dev_root->commit_root = NULL;
2002         info->extent_root->node = NULL;
2003         info->extent_root->commit_root = NULL;
2004         info->csum_root->node = NULL;
2005         info->csum_root->commit_root = NULL;
2006         if (info->quota_root) {
2007                 info->quota_root->node = NULL;
2008                 info->quota_root->commit_root = NULL;
2009         }
2010
2011         if (chunk_root) {
2012                 free_extent_buffer(info->chunk_root->node);
2013                 free_extent_buffer(info->chunk_root->commit_root);
2014                 info->chunk_root->node = NULL;
2015                 info->chunk_root->commit_root = NULL;
2016         }
2017 }
2018
2019 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2020 {
2021         int ret;
2022         struct btrfs_root *gang[8];
2023         int i;
2024
2025         while (!list_empty(&fs_info->dead_roots)) {
2026                 gang[0] = list_entry(fs_info->dead_roots.next,
2027                                      struct btrfs_root, root_list);
2028                 list_del(&gang[0]->root_list);
2029
2030                 if (gang[0]->in_radix) {
2031                         btrfs_free_fs_root(fs_info, gang[0]);
2032                 } else {
2033                         free_extent_buffer(gang[0]->node);
2034                         free_extent_buffer(gang[0]->commit_root);
2035                         kfree(gang[0]);
2036                 }
2037         }
2038
2039         while (1) {
2040                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2041                                              (void **)gang, 0,
2042                                              ARRAY_SIZE(gang));
2043                 if (!ret)
2044                         break;
2045                 for (i = 0; i < ret; i++)
2046                         btrfs_free_fs_root(fs_info, gang[i]);
2047         }
2048 }
2049
2050 int open_ctree(struct super_block *sb,
2051                struct btrfs_fs_devices *fs_devices,
2052                char *options)
2053 {
2054         u32 sectorsize;
2055         u32 nodesize;
2056         u32 leafsize;
2057         u32 blocksize;
2058         u32 stripesize;
2059         u64 generation;
2060         u64 features;
2061         struct btrfs_key location;
2062         struct buffer_head *bh;
2063         struct btrfs_super_block *disk_super;
2064         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2065         struct btrfs_root *tree_root;
2066         struct btrfs_root *extent_root;
2067         struct btrfs_root *csum_root;
2068         struct btrfs_root *chunk_root;
2069         struct btrfs_root *dev_root;
2070         struct btrfs_root *quota_root;
2071         struct btrfs_root *log_tree_root;
2072         int ret;
2073         int err = -EINVAL;
2074         int num_backups_tried = 0;
2075         int backup_index = 0;
2076
2077         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2078         extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
2079         csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
2080         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2081         dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
2082         quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
2083
2084         if (!tree_root || !extent_root || !csum_root ||
2085             !chunk_root || !dev_root || !quota_root) {
2086                 err = -ENOMEM;
2087                 goto fail;
2088         }
2089
2090         ret = init_srcu_struct(&fs_info->subvol_srcu);
2091         if (ret) {
2092                 err = ret;
2093                 goto fail;
2094         }
2095
2096         ret = setup_bdi(fs_info, &fs_info->bdi);
2097         if (ret) {
2098                 err = ret;
2099                 goto fail_srcu;
2100         }
2101
2102         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2103         if (ret) {
2104                 err = ret;
2105                 goto fail_bdi;
2106         }
2107         fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2108                                         (1 + ilog2(nr_cpu_ids));
2109
2110         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2111         if (ret) {
2112                 err = ret;
2113                 goto fail_dirty_metadata_bytes;
2114         }
2115
2116         fs_info->btree_inode = new_inode(sb);
2117         if (!fs_info->btree_inode) {
2118                 err = -ENOMEM;
2119                 goto fail_delalloc_bytes;
2120         }
2121
2122         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2123
2124         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2125         INIT_LIST_HEAD(&fs_info->trans_list);
2126         INIT_LIST_HEAD(&fs_info->dead_roots);
2127         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2128         INIT_LIST_HEAD(&fs_info->delalloc_inodes);
2129         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2130         spin_lock_init(&fs_info->delalloc_lock);
2131         spin_lock_init(&fs_info->trans_lock);
2132         spin_lock_init(&fs_info->fs_roots_radix_lock);
2133         spin_lock_init(&fs_info->delayed_iput_lock);
2134         spin_lock_init(&fs_info->defrag_inodes_lock);
2135         spin_lock_init(&fs_info->free_chunk_lock);
2136         spin_lock_init(&fs_info->tree_mod_seq_lock);
2137         spin_lock_init(&fs_info->super_lock);
2138         rwlock_init(&fs_info->tree_mod_log_lock);
2139         mutex_init(&fs_info->reloc_mutex);
2140         seqlock_init(&fs_info->profiles_lock);
2141
2142         init_completion(&fs_info->kobj_unregister);
2143         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2144         INIT_LIST_HEAD(&fs_info->space_info);
2145         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2146         btrfs_mapping_init(&fs_info->mapping_tree);
2147         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2148                              BTRFS_BLOCK_RSV_GLOBAL);
2149         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2150                              BTRFS_BLOCK_RSV_DELALLOC);
2151         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2152         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2153         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2154         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2155                              BTRFS_BLOCK_RSV_DELOPS);
2156         atomic_set(&fs_info->nr_async_submits, 0);
2157         atomic_set(&fs_info->async_delalloc_pages, 0);
2158         atomic_set(&fs_info->async_submit_draining, 0);
2159         atomic_set(&fs_info->nr_async_bios, 0);
2160         atomic_set(&fs_info->defrag_running, 0);
2161         atomic64_set(&fs_info->tree_mod_seq, 0);
2162         fs_info->sb = sb;
2163         fs_info->max_inline = 8192 * 1024;
2164         fs_info->metadata_ratio = 0;
2165         fs_info->defrag_inodes = RB_ROOT;
2166         fs_info->trans_no_join = 0;
2167         fs_info->free_chunk_space = 0;
2168         fs_info->tree_mod_log = RB_ROOT;
2169
2170         /* readahead state */
2171         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2172         spin_lock_init(&fs_info->reada_lock);
2173
2174         fs_info->thread_pool_size = min_t(unsigned long,
2175                                           num_online_cpus() + 2, 8);
2176
2177         INIT_LIST_HEAD(&fs_info->ordered_extents);
2178         spin_lock_init(&fs_info->ordered_extent_lock);
2179         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2180                                         GFP_NOFS);
2181         if (!fs_info->delayed_root) {
2182                 err = -ENOMEM;
2183                 goto fail_iput;
2184         }
2185         btrfs_init_delayed_root(fs_info->delayed_root);
2186
2187         mutex_init(&fs_info->scrub_lock);
2188         atomic_set(&fs_info->scrubs_running, 0);
2189         atomic_set(&fs_info->scrub_pause_req, 0);
2190         atomic_set(&fs_info->scrubs_paused, 0);
2191         atomic_set(&fs_info->scrub_cancel_req, 0);
2192         init_waitqueue_head(&fs_info->scrub_pause_wait);
2193         init_rwsem(&fs_info->scrub_super_lock);
2194         fs_info->scrub_workers_refcnt = 0;
2195 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2196         fs_info->check_integrity_print_mask = 0;
2197 #endif
2198
2199         spin_lock_init(&fs_info->balance_lock);
2200         mutex_init(&fs_info->balance_mutex);
2201         atomic_set(&fs_info->balance_running, 0);
2202         atomic_set(&fs_info->balance_pause_req, 0);
2203         atomic_set(&fs_info->balance_cancel_req, 0);
2204         fs_info->balance_ctl = NULL;
2205         init_waitqueue_head(&fs_info->balance_wait_q);
2206
2207         sb->s_blocksize = 4096;
2208         sb->s_blocksize_bits = blksize_bits(4096);
2209         sb->s_bdi = &fs_info->bdi;
2210
2211         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2212         set_nlink(fs_info->btree_inode, 1);
2213         /*
2214          * we set the i_size on the btree inode to the max possible int.
2215          * the real end of the address space is determined by all of
2216          * the devices in the system
2217          */
2218         fs_info->btree_inode->i_size = OFFSET_MAX;
2219         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2220         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2221
2222         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2223         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2224                              fs_info->btree_inode->i_mapping);
2225         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2226         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2227
2228         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2229
2230         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2231         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2232                sizeof(struct btrfs_key));
2233         set_bit(BTRFS_INODE_DUMMY,
2234                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2235         insert_inode_hash(fs_info->btree_inode);
2236
2237         spin_lock_init(&fs_info->block_group_cache_lock);
2238         fs_info->block_group_cache_tree = RB_ROOT;
2239         fs_info->first_logical_byte = (u64)-1;
2240
2241         extent_io_tree_init(&fs_info->freed_extents[0],
2242                              fs_info->btree_inode->i_mapping);
2243         extent_io_tree_init(&fs_info->freed_extents[1],
2244                              fs_info->btree_inode->i_mapping);
2245         fs_info->pinned_extents = &fs_info->freed_extents[0];
2246         fs_info->do_barriers = 1;
2247
2248
2249         mutex_init(&fs_info->ordered_operations_mutex);
2250         mutex_init(&fs_info->tree_log_mutex);
2251         mutex_init(&fs_info->chunk_mutex);
2252         mutex_init(&fs_info->transaction_kthread_mutex);
2253         mutex_init(&fs_info->cleaner_mutex);
2254         mutex_init(&fs_info->volume_mutex);
2255         init_rwsem(&fs_info->extent_commit_sem);
2256         init_rwsem(&fs_info->cleanup_work_sem);
2257         init_rwsem(&fs_info->subvol_sem);
2258         fs_info->dev_replace.lock_owner = 0;
2259         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2260         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2261         mutex_init(&fs_info->dev_replace.lock_management_lock);
2262         mutex_init(&fs_info->dev_replace.lock);
2263
2264         spin_lock_init(&fs_info->qgroup_lock);
2265         mutex_init(&fs_info->qgroup_ioctl_lock);
2266         fs_info->qgroup_tree = RB_ROOT;
2267         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2268         fs_info->qgroup_seq = 1;
2269         fs_info->quota_enabled = 0;
2270         fs_info->pending_quota_state = 0;
2271         mutex_init(&fs_info->qgroup_rescan_lock);
2272
2273         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2274         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2275
2276         init_waitqueue_head(&fs_info->transaction_throttle);
2277         init_waitqueue_head(&fs_info->transaction_wait);
2278         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2279         init_waitqueue_head(&fs_info->async_submit_wait);
2280
2281         ret = btrfs_alloc_stripe_hash_table(fs_info);
2282         if (ret) {
2283                 err = ret;
2284                 goto fail_alloc;
2285         }
2286
2287         __setup_root(4096, 4096, 4096, 4096, tree_root,
2288                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2289
2290         invalidate_bdev(fs_devices->latest_bdev);
2291         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2292         if (!bh) {
2293                 err = -EINVAL;
2294                 goto fail_alloc;
2295         }
2296
2297         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2298         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2299                sizeof(*fs_info->super_for_commit));
2300         brelse(bh);
2301
2302         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2303
2304         disk_super = fs_info->super_copy;
2305         if (!btrfs_super_root(disk_super))
2306                 goto fail_alloc;
2307
2308         /* check FS state, whether FS is broken. */
2309         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2310                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2311
2312         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2313         if (ret) {
2314                 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2315                 err = ret;
2316                 goto fail_alloc;
2317         }
2318
2319         /*
2320          * run through our array of backup supers and setup
2321          * our ring pointer to the oldest one
2322          */
2323         generation = btrfs_super_generation(disk_super);
2324         find_oldest_super_backup(fs_info, generation);
2325
2326         /*
2327          * In the long term, we'll store the compression type in the super
2328          * block, and it'll be used for per file compression control.
2329          */
2330         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2331
2332         ret = btrfs_parse_options(tree_root, options);
2333         if (ret) {
2334                 err = ret;
2335                 goto fail_alloc;
2336         }
2337
2338         features = btrfs_super_incompat_flags(disk_super) &
2339                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2340         if (features) {
2341                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2342                        "unsupported optional features (%Lx).\n",
2343                        (unsigned long long)features);
2344                 err = -EINVAL;
2345                 goto fail_alloc;
2346         }
2347
2348         if (btrfs_super_leafsize(disk_super) !=
2349             btrfs_super_nodesize(disk_super)) {
2350                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2351                        "blocksizes don't match.  node %d leaf %d\n",
2352                        btrfs_super_nodesize(disk_super),
2353                        btrfs_super_leafsize(disk_super));
2354                 err = -EINVAL;
2355                 goto fail_alloc;
2356         }
2357         if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2358                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2359                        "blocksize (%d) was too large\n",
2360                        btrfs_super_leafsize(disk_super));
2361                 err = -EINVAL;
2362                 goto fail_alloc;
2363         }
2364
2365         features = btrfs_super_incompat_flags(disk_super);
2366         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2367         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2368                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2369
2370         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2371                 printk(KERN_ERR "btrfs: has skinny extents\n");
2372
2373         /*
2374          * flag our filesystem as having big metadata blocks if
2375          * they are bigger than the page size
2376          */
2377         if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2378                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2379                         printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2380                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2381         }
2382
2383         nodesize = btrfs_super_nodesize(disk_super);
2384         leafsize = btrfs_super_leafsize(disk_super);
2385         sectorsize = btrfs_super_sectorsize(disk_super);
2386         stripesize = btrfs_super_stripesize(disk_super);
2387         fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2388         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2389
2390         /*
2391          * mixed block groups end up with duplicate but slightly offset
2392          * extent buffers for the same range.  It leads to corruptions
2393          */
2394         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2395             (sectorsize != leafsize)) {
2396                 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2397                                 "are not allowed for mixed block groups on %s\n",
2398                                 sb->s_id);
2399                 goto fail_alloc;
2400         }
2401
2402         /*
2403          * Needn't use the lock because there is no other task which will
2404          * update the flag.
2405          */
2406         btrfs_set_super_incompat_flags(disk_super, features);
2407
2408         features = btrfs_super_compat_ro_flags(disk_super) &
2409                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2410         if (!(sb->s_flags & MS_RDONLY) && features) {
2411                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2412                        "unsupported option features (%Lx).\n",
2413                        (unsigned long long)features);
2414                 err = -EINVAL;
2415                 goto fail_alloc;
2416         }
2417
2418         btrfs_init_workers(&fs_info->generic_worker,
2419                            "genwork", 1, NULL);
2420
2421         btrfs_init_workers(&fs_info->workers, "worker",
2422                            fs_info->thread_pool_size,
2423                            &fs_info->generic_worker);
2424
2425         btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2426                            fs_info->thread_pool_size,
2427                            &fs_info->generic_worker);
2428
2429         btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2430                            fs_info->thread_pool_size,
2431                            &fs_info->generic_worker);
2432
2433         btrfs_init_workers(&fs_info->submit_workers, "submit",
2434                            min_t(u64, fs_devices->num_devices,
2435                            fs_info->thread_pool_size),
2436                            &fs_info->generic_worker);
2437
2438         btrfs_init_workers(&fs_info->caching_workers, "cache",
2439                            2, &fs_info->generic_worker);
2440
2441         /* a higher idle thresh on the submit workers makes it much more
2442          * likely that bios will be send down in a sane order to the
2443          * devices
2444          */
2445         fs_info->submit_workers.idle_thresh = 64;
2446
2447         fs_info->workers.idle_thresh = 16;
2448         fs_info->workers.ordered = 1;
2449
2450         fs_info->delalloc_workers.idle_thresh = 2;
2451         fs_info->delalloc_workers.ordered = 1;
2452
2453         btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2454                            &fs_info->generic_worker);
2455         btrfs_init_workers(&fs_info->endio_workers, "endio",
2456                            fs_info->thread_pool_size,
2457                            &fs_info->generic_worker);
2458         btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2459                            fs_info->thread_pool_size,
2460                            &fs_info->generic_worker);
2461         btrfs_init_workers(&fs_info->endio_meta_write_workers,
2462                            "endio-meta-write", fs_info->thread_pool_size,
2463                            &fs_info->generic_worker);
2464         btrfs_init_workers(&fs_info->endio_raid56_workers,
2465                            "endio-raid56", fs_info->thread_pool_size,
2466                            &fs_info->generic_worker);
2467         btrfs_init_workers(&fs_info->rmw_workers,
2468                            "rmw", fs_info->thread_pool_size,
2469                            &fs_info->generic_worker);
2470         btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2471                            fs_info->thread_pool_size,
2472                            &fs_info->generic_worker);
2473         btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2474                            1, &fs_info->generic_worker);
2475         btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2476                            fs_info->thread_pool_size,
2477                            &fs_info->generic_worker);
2478         btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2479                            fs_info->thread_pool_size,
2480                            &fs_info->generic_worker);
2481         btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
2482                            &fs_info->generic_worker);
2483
2484         /*
2485          * endios are largely parallel and should have a very
2486          * low idle thresh
2487          */
2488         fs_info->endio_workers.idle_thresh = 4;
2489         fs_info->endio_meta_workers.idle_thresh = 4;
2490         fs_info->endio_raid56_workers.idle_thresh = 4;
2491         fs_info->rmw_workers.idle_thresh = 2;
2492
2493         fs_info->endio_write_workers.idle_thresh = 2;
2494         fs_info->endio_meta_write_workers.idle_thresh = 2;
2495         fs_info->readahead_workers.idle_thresh = 2;
2496
2497         /*
2498          * btrfs_start_workers can really only fail because of ENOMEM so just
2499          * return -ENOMEM if any of these fail.
2500          */
2501         ret = btrfs_start_workers(&fs_info->workers);
2502         ret |= btrfs_start_workers(&fs_info->generic_worker);
2503         ret |= btrfs_start_workers(&fs_info->submit_workers);
2504         ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2505         ret |= btrfs_start_workers(&fs_info->fixup_workers);
2506         ret |= btrfs_start_workers(&fs_info->endio_workers);
2507         ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2508         ret |= btrfs_start_workers(&fs_info->rmw_workers);
2509         ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
2510         ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2511         ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2512         ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2513         ret |= btrfs_start_workers(&fs_info->delayed_workers);
2514         ret |= btrfs_start_workers(&fs_info->caching_workers);
2515         ret |= btrfs_start_workers(&fs_info->readahead_workers);
2516         ret |= btrfs_start_workers(&fs_info->flush_workers);
2517         ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
2518         if (ret) {
2519                 err = -ENOMEM;
2520                 goto fail_sb_buffer;
2521         }
2522
2523         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2524         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2525                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2526
2527         tree_root->nodesize = nodesize;
2528         tree_root->leafsize = leafsize;
2529         tree_root->sectorsize = sectorsize;
2530         tree_root->stripesize = stripesize;
2531
2532         sb->s_blocksize = sectorsize;
2533         sb->s_blocksize_bits = blksize_bits(sectorsize);
2534
2535         if (disk_super->magic != cpu_to_le64(BTRFS_MAGIC)) {
2536                 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2537                 goto fail_sb_buffer;
2538         }
2539
2540         if (sectorsize != PAGE_SIZE) {
2541                 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2542                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2543                 goto fail_sb_buffer;
2544         }
2545
2546         mutex_lock(&fs_info->chunk_mutex);
2547         ret = btrfs_read_sys_array(tree_root);
2548         mutex_unlock(&fs_info->chunk_mutex);
2549         if (ret) {
2550                 printk(KERN_WARNING "btrfs: failed to read the system "
2551                        "array on %s\n", sb->s_id);
2552                 goto fail_sb_buffer;
2553         }
2554
2555         blocksize = btrfs_level_size(tree_root,
2556                                      btrfs_super_chunk_root_level(disk_super));
2557         generation = btrfs_super_chunk_root_generation(disk_super);
2558
2559         __setup_root(nodesize, leafsize, sectorsize, stripesize,
2560                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2561
2562         chunk_root->node = read_tree_block(chunk_root,
2563                                            btrfs_super_chunk_root(disk_super),
2564                                            blocksize, generation);
2565         if (!chunk_root->node ||
2566             !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2567                 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2568                        sb->s_id);
2569                 goto fail_tree_roots;
2570         }
2571         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2572         chunk_root->commit_root = btrfs_root_node(chunk_root);
2573
2574         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2575            (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2576            BTRFS_UUID_SIZE);
2577
2578         ret = btrfs_read_chunk_tree(chunk_root);
2579         if (ret) {
2580                 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2581                        sb->s_id);
2582                 goto fail_tree_roots;
2583         }
2584
2585         /*
2586          * keep the device that is marked to be the target device for the
2587          * dev_replace procedure
2588          */
2589         btrfs_close_extra_devices(fs_info, fs_devices, 0);
2590
2591         if (!fs_devices->latest_bdev) {
2592                 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2593                        sb->s_id);
2594                 goto fail_tree_roots;
2595         }
2596
2597 retry_root_backup:
2598         blocksize = btrfs_level_size(tree_root,
2599                                      btrfs_super_root_level(disk_super));
2600         generation = btrfs_super_generation(disk_super);
2601
2602         tree_root->node = read_tree_block(tree_root,
2603                                           btrfs_super_root(disk_super),
2604                                           blocksize, generation);
2605         if (!tree_root->node ||
2606             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2607                 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2608                        sb->s_id);
2609
2610                 goto recovery_tree_root;
2611         }
2612
2613         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2614         tree_root->commit_root = btrfs_root_node(tree_root);
2615
2616         ret = find_and_setup_root(tree_root, fs_info,
2617                                   BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2618         if (ret)
2619                 goto recovery_tree_root;
2620         extent_root->track_dirty = 1;
2621
2622         ret = find_and_setup_root(tree_root, fs_info,
2623                                   BTRFS_DEV_TREE_OBJECTID, dev_root);
2624         if (ret)
2625                 goto recovery_tree_root;
2626         dev_root->track_dirty = 1;
2627
2628         ret = find_and_setup_root(tree_root, fs_info,
2629                                   BTRFS_CSUM_TREE_OBJECTID, csum_root);
2630         if (ret)
2631                 goto recovery_tree_root;
2632         csum_root->track_dirty = 1;
2633
2634         ret = find_and_setup_root(tree_root, fs_info,
2635                                   BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2636         if (ret) {
2637                 kfree(quota_root);
2638                 quota_root = fs_info->quota_root = NULL;
2639         } else {
2640                 quota_root->track_dirty = 1;
2641                 fs_info->quota_enabled = 1;
2642                 fs_info->pending_quota_state = 1;
2643         }
2644
2645         fs_info->generation = generation;
2646         fs_info->last_trans_committed = generation;
2647
2648         ret = btrfs_recover_balance(fs_info);
2649         if (ret) {
2650                 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2651                 goto fail_block_groups;
2652         }
2653
2654         ret = btrfs_init_dev_stats(fs_info);
2655         if (ret) {
2656                 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2657                        ret);
2658                 goto fail_block_groups;
2659         }
2660
2661         ret = btrfs_init_dev_replace(fs_info);
2662         if (ret) {
2663                 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2664                 goto fail_block_groups;
2665         }
2666
2667         btrfs_close_extra_devices(fs_info, fs_devices, 1);
2668
2669         ret = btrfs_init_space_info(fs_info);
2670         if (ret) {
2671                 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2672                 goto fail_block_groups;
2673         }
2674
2675         ret = btrfs_read_block_groups(extent_root);
2676         if (ret) {
2677                 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2678                 goto fail_block_groups;
2679         }
2680         fs_info->num_tolerated_disk_barrier_failures =
2681                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2682         if (fs_info->fs_devices->missing_devices >
2683              fs_info->num_tolerated_disk_barrier_failures &&
2684             !(sb->s_flags & MS_RDONLY)) {
2685                 printk(KERN_WARNING
2686                        "Btrfs: too many missing devices, writeable mount is not allowed\n");
2687                 goto fail_block_groups;
2688         }
2689
2690         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2691                                                "btrfs-cleaner");
2692         if (IS_ERR(fs_info->cleaner_kthread))
2693                 goto fail_block_groups;
2694
2695         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2696                                                    tree_root,
2697                                                    "btrfs-transaction");
2698         if (IS_ERR(fs_info->transaction_kthread))
2699                 goto fail_cleaner;
2700
2701         if (!btrfs_test_opt(tree_root, SSD) &&
2702             !btrfs_test_opt(tree_root, NOSSD) &&
2703             !fs_info->fs_devices->rotating) {
2704                 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2705                        "mode\n");
2706                 btrfs_set_opt(fs_info->mount_opt, SSD);
2707         }
2708
2709 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2710         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2711                 ret = btrfsic_mount(tree_root, fs_devices,
2712                                     btrfs_test_opt(tree_root,
2713                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2714                                     1 : 0,
2715                                     fs_info->check_integrity_print_mask);
2716                 if (ret)
2717                         printk(KERN_WARNING "btrfs: failed to initialize"
2718                                " integrity check module %s\n", sb->s_id);
2719         }
2720 #endif
2721         ret = btrfs_read_qgroup_config(fs_info);
2722         if (ret)
2723                 goto fail_trans_kthread;
2724
2725         /* do not make disk changes in broken FS */
2726         if (btrfs_super_log_root(disk_super) != 0) {
2727                 u64 bytenr = btrfs_super_log_root(disk_super);
2728
2729                 if (fs_devices->rw_devices == 0) {
2730                         printk(KERN_WARNING "Btrfs log replay required "
2731                                "on RO media\n");
2732                         err = -EIO;
2733                         goto fail_qgroup;
2734                 }
2735                 blocksize =
2736                      btrfs_level_size(tree_root,
2737                                       btrfs_super_log_root_level(disk_super));
2738
2739                 log_tree_root = btrfs_alloc_root(fs_info);
2740                 if (!log_tree_root) {
2741                         err = -ENOMEM;
2742                         goto fail_qgroup;
2743                 }
2744
2745                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2746                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2747
2748                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2749                                                       blocksize,
2750                                                       generation + 1);
2751                 if (!log_tree_root->node ||
2752                     !extent_buffer_uptodate(log_tree_root->node)) {
2753                         printk(KERN_ERR "btrfs: failed to read log tree\n");
2754                         free_extent_buffer(log_tree_root->node);
2755                         kfree(log_tree_root);
2756                         goto fail_trans_kthread;
2757                 }
2758                 /* returns with log_tree_root freed on success */
2759                 ret = btrfs_recover_log_trees(log_tree_root);
2760                 if (ret) {
2761                         btrfs_error(tree_root->fs_info, ret,
2762                                     "Failed to recover log tree");
2763                         free_extent_buffer(log_tree_root->node);
2764                         kfree(log_tree_root);
2765                         goto fail_trans_kthread;
2766                 }
2767
2768                 if (sb->s_flags & MS_RDONLY) {
2769                         ret = btrfs_commit_super(tree_root);
2770                         if (ret)
2771                                 goto fail_trans_kthread;
2772                 }
2773         }
2774
2775         ret = btrfs_find_orphan_roots(tree_root);
2776         if (ret)
2777                 goto fail_trans_kthread;
2778
2779         if (!(sb->s_flags & MS_RDONLY)) {
2780                 ret = btrfs_cleanup_fs_roots(fs_info);
2781                 if (ret)
2782                         goto fail_trans_kthread;
2783
2784                 ret = btrfs_recover_relocation(tree_root);
2785                 if (ret < 0) {
2786                         printk(KERN_WARNING
2787                                "btrfs: failed to recover relocation\n");
2788                         err = -EINVAL;
2789                         goto fail_qgroup;
2790                 }
2791         }
2792
2793         location.objectid = BTRFS_FS_TREE_OBJECTID;
2794         location.type = BTRFS_ROOT_ITEM_KEY;
2795         location.offset = (u64)-1;
2796
2797         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2798         if (!fs_info->fs_root)
2799                 goto fail_qgroup;
2800         if (IS_ERR(fs_info->fs_root)) {
2801                 err = PTR_ERR(fs_info->fs_root);
2802                 goto fail_qgroup;
2803         }
2804
2805         if (sb->s_flags & MS_RDONLY)
2806                 return 0;
2807
2808         down_read(&fs_info->cleanup_work_sem);
2809         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2810             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2811                 up_read(&fs_info->cleanup_work_sem);
2812                 close_ctree(tree_root);
2813                 return ret;
2814         }
2815         up_read(&fs_info->cleanup_work_sem);
2816
2817         ret = btrfs_resume_balance_async(fs_info);
2818         if (ret) {
2819                 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2820                 close_ctree(tree_root);
2821                 return ret;
2822         }
2823
2824         ret = btrfs_resume_dev_replace_async(fs_info);
2825         if (ret) {
2826                 pr_warn("btrfs: failed to resume dev_replace\n");
2827                 close_ctree(tree_root);
2828                 return ret;
2829         }
2830
2831         return 0;
2832
2833 fail_qgroup:
2834         btrfs_free_qgroup_config(fs_info);
2835 fail_trans_kthread:
2836         kthread_stop(fs_info->transaction_kthread);
2837         del_fs_roots(fs_info);
2838         btrfs_cleanup_transaction(fs_info->tree_root);
2839 fail_cleaner:
2840         kthread_stop(fs_info->cleaner_kthread);
2841
2842         /*
2843          * make sure we're done with the btree inode before we stop our
2844          * kthreads
2845          */
2846         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2847
2848 fail_block_groups:
2849         btrfs_put_block_group_cache(fs_info);
2850         btrfs_free_block_groups(fs_info);
2851
2852 fail_tree_roots:
2853         free_root_pointers(fs_info, 1);
2854         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2855
2856 fail_sb_buffer:
2857         btrfs_stop_all_workers(fs_info);
2858 fail_alloc:
2859 fail_iput:
2860         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2861
2862         iput(fs_info->btree_inode);
2863 fail_delalloc_bytes:
2864         percpu_counter_destroy(&fs_info->delalloc_bytes);
2865 fail_dirty_metadata_bytes:
2866         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2867 fail_bdi:
2868         bdi_destroy(&fs_info->bdi);
2869 fail_srcu:
2870         cleanup_srcu_struct(&fs_info->subvol_srcu);
2871 fail:
2872         btrfs_free_stripe_hash_table(fs_info);
2873         btrfs_close_devices(fs_info->fs_devices);
2874         return err;
2875
2876 recovery_tree_root:
2877         if (!btrfs_test_opt(tree_root, RECOVERY))
2878                 goto fail_tree_roots;
2879
2880         free_root_pointers(fs_info, 0);
2881
2882         /* don't use the log in recovery mode, it won't be valid */
2883         btrfs_set_super_log_root(disk_super, 0);
2884
2885         /* we can't trust the free space cache either */
2886         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2887
2888         ret = next_root_backup(fs_info, fs_info->super_copy,
2889                                &num_backups_tried, &backup_index);
2890         if (ret == -1)
2891                 goto fail_block_groups;
2892         goto retry_root_backup;
2893 }
2894
2895 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2896 {
2897         if (uptodate) {
2898                 set_buffer_uptodate(bh);
2899         } else {
2900                 struct btrfs_device *device = (struct btrfs_device *)
2901                         bh->b_private;
2902
2903                 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2904                                           "I/O error on %s\n",
2905                                           rcu_str_deref(device->name));
2906                 /* note, we dont' set_buffer_write_io_error because we have
2907                  * our own ways of dealing with the IO errors
2908                  */
2909                 clear_buffer_uptodate(bh);
2910                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2911         }
2912         unlock_buffer(bh);
2913         put_bh(bh);
2914 }
2915
2916 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2917 {
2918         struct buffer_head *bh;
2919         struct buffer_head *latest = NULL;
2920         struct btrfs_super_block *super;
2921         int i;
2922         u64 transid = 0;
2923         u64 bytenr;
2924
2925         /* we would like to check all the supers, but that would make
2926          * a btrfs mount succeed after a mkfs from a different FS.
2927          * So, we need to add a special mount option to scan for
2928          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2929          */
2930         for (i = 0; i < 1; i++) {
2931                 bytenr = btrfs_sb_offset(i);
2932                 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2933                         break;
2934                 bh = __bread(bdev, bytenr / 4096, 4096);
2935                 if (!bh)
2936                         continue;
2937
2938                 super = (struct btrfs_super_block *)bh->b_data;
2939                 if (btrfs_super_bytenr(super) != bytenr ||
2940                     super->magic != cpu_to_le64(BTRFS_MAGIC)) {
2941                         brelse(bh);
2942                         continue;
2943                 }
2944
2945                 if (!latest || btrfs_super_generation(super) > transid) {
2946                         brelse(latest);
2947                         latest = bh;
2948                         transid = btrfs_super_generation(super);
2949                 } else {
2950                         brelse(bh);
2951                 }
2952         }
2953         return latest;
2954 }
2955
2956 /*
2957  * this should be called twice, once with wait == 0 and
2958  * once with wait == 1.  When wait == 0 is done, all the buffer heads
2959  * we write are pinned.
2960  *
2961  * They are released when wait == 1 is done.
2962  * max_mirrors must be the same for both runs, and it indicates how
2963  * many supers on this one device should be written.
2964  *
2965  * max_mirrors == 0 means to write them all.
2966  */
2967 static int write_dev_supers(struct btrfs_device *device,
2968                             struct btrfs_super_block *sb,
2969                             int do_barriers, int wait, int max_mirrors)
2970 {
2971         struct buffer_head *bh;
2972         int i;
2973         int ret;
2974         int errors = 0;
2975         u32 crc;
2976         u64 bytenr;
2977
2978         if (max_mirrors == 0)
2979                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2980
2981         for (i = 0; i < max_mirrors; i++) {
2982                 bytenr = btrfs_sb_offset(i);
2983                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2984                         break;
2985
2986                 if (wait) {
2987                         bh = __find_get_block(device->bdev, bytenr / 4096,
2988                                               BTRFS_SUPER_INFO_SIZE);
2989                         if (!bh) {
2990                                 errors++;
2991                                 continue;
2992                         }
2993                         wait_on_buffer(bh);
2994                         if (!buffer_uptodate(bh))
2995                                 errors++;
2996
2997                         /* drop our reference */
2998                         brelse(bh);
2999
3000                         /* drop the reference from the wait == 0 run */
3001                         brelse(bh);
3002                         continue;
3003                 } else {
3004                         btrfs_set_super_bytenr(sb, bytenr);
3005
3006                         crc = ~(u32)0;
3007                         crc = btrfs_csum_data((char *)sb +
3008                                               BTRFS_CSUM_SIZE, crc,
3009                                               BTRFS_SUPER_INFO_SIZE -
3010                                               BTRFS_CSUM_SIZE);
3011                         btrfs_csum_final(crc, sb->csum);
3012
3013                         /*
3014                          * one reference for us, and we leave it for the
3015                          * caller
3016                          */
3017                         bh = __getblk(device->bdev, bytenr / 4096,
3018                                       BTRFS_SUPER_INFO_SIZE);
3019                         if (!bh) {
3020                                 printk(KERN_ERR "btrfs: couldn't get super "
3021                                        "buffer head for bytenr %Lu\n", bytenr);
3022                                 errors++;
3023                                 continue;
3024                         }
3025
3026                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3027
3028                         /* one reference for submit_bh */
3029                         get_bh(bh);
3030
3031                         set_buffer_uptodate(bh);
3032                         lock_buffer(bh);
3033                         bh->b_end_io = btrfs_end_buffer_write_sync;
3034                         bh->b_private = device;
3035                 }
3036
3037                 /*
3038                  * we fua the first super.  The others we allow
3039                  * to go down lazy.
3040                  */
3041                 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3042                 if (ret)
3043                         errors++;
3044         }
3045         return errors < i ? 0 : -1;
3046 }
3047
3048 /*
3049  * endio for the write_dev_flush, this will wake anyone waiting
3050  * for the barrier when it is done
3051  */
3052 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3053 {
3054         if (err) {
3055                 if (err == -EOPNOTSUPP)
3056                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3057                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3058         }
3059         if (bio->bi_private)
3060                 complete(bio->bi_private);
3061         bio_put(bio);
3062 }
3063
3064 /*
3065  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3066  * sent down.  With wait == 1, it waits for the previous flush.
3067  *
3068  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3069  * capable
3070  */
3071 static int write_dev_flush(struct btrfs_device *device, int wait)
3072 {
3073         struct bio *bio;
3074         int ret = 0;
3075
3076         if (device->nobarriers)
3077                 return 0;
3078
3079         if (wait) {
3080                 bio = device->flush_bio;
3081                 if (!bio)
3082                         return 0;
3083
3084                 wait_for_completion(&device->flush_wait);
3085
3086                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3087                         printk_in_rcu("btrfs: disabling barriers on dev %s\n",
3088                                       rcu_str_deref(device->name));
3089                         device->nobarriers = 1;
3090                 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3091                         ret = -EIO;
3092                         btrfs_dev_stat_inc_and_print(device,
3093                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3094                 }
3095
3096                 /* drop the reference from the wait == 0 run */
3097                 bio_put(bio);
3098                 device->flush_bio = NULL;
3099
3100                 return ret;
3101         }
3102
3103         /*
3104          * one reference for us, and we leave it for the
3105          * caller
3106          */
3107         device->flush_bio = NULL;
3108         bio = bio_alloc(GFP_NOFS, 0);
3109         if (!bio)
3110                 return -ENOMEM;
3111
3112         bio->bi_end_io = btrfs_end_empty_barrier;
3113         bio->bi_bdev = device->bdev;
3114         init_completion(&device->flush_wait);
3115         bio->bi_private = &device->flush_wait;
3116         device->flush_bio = bio;
3117
3118         bio_get(bio);
3119         btrfsic_submit_bio(WRITE_FLUSH, bio);
3120
3121         return 0;
3122 }
3123
3124 /*
3125  * send an empty flush down to each device in parallel,
3126  * then wait for them
3127  */
3128 static int barrier_all_devices(struct btrfs_fs_info *info)
3129 {
3130         struct list_head *head;
3131         struct btrfs_device *dev;
3132         int errors_send = 0;
3133         int errors_wait = 0;
3134         int ret;
3135
3136         /* send down all the barriers */
3137         head = &info->fs_devices->devices;
3138         list_for_each_entry_rcu(dev, head, dev_list) {
3139                 if (!dev->bdev) {
3140                         errors_send++;
3141                         continue;
3142                 }
3143                 if (!dev->in_fs_metadata || !dev->writeable)
3144                         continue;
3145
3146                 ret = write_dev_flush(dev, 0);
3147                 if (ret)
3148                         errors_send++;
3149         }
3150
3151         /* wait for all the barriers */
3152         list_for_each_entry_rcu(dev, head, dev_list) {
3153                 if (!dev->bdev) {
3154                         errors_wait++;
3155                         continue;
3156                 }
3157                 if (!dev->in_fs_metadata || !dev->writeable)
3158                         continue;
3159
3160                 ret = write_dev_flush(dev, 1);
3161                 if (ret)
3162                         errors_wait++;
3163         }
3164         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3165             errors_wait > info->num_tolerated_disk_barrier_failures)
3166                 return -EIO;
3167         return 0;
3168 }
3169
3170 int btrfs_calc_num_tolerated_disk_barrier_failures(
3171         struct btrfs_fs_info *fs_info)
3172 {
3173         struct btrfs_ioctl_space_info space;
3174         struct btrfs_space_info *sinfo;
3175         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3176                        BTRFS_BLOCK_GROUP_SYSTEM,
3177                        BTRFS_BLOCK_GROUP_METADATA,
3178                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3179         int num_types = 4;
3180         int i;
3181         int c;
3182         int num_tolerated_disk_barrier_failures =
3183                 (int)fs_info->fs_devices->num_devices;
3184
3185         for (i = 0; i < num_types; i++) {
3186                 struct btrfs_space_info *tmp;
3187
3188                 sinfo = NULL;
3189                 rcu_read_lock();
3190                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3191                         if (tmp->flags == types[i]) {
3192                                 sinfo = tmp;
3193                                 break;
3194                         }
3195                 }
3196                 rcu_read_unlock();
3197
3198                 if (!sinfo)
3199                         continue;
3200
3201                 down_read(&sinfo->groups_sem);
3202                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3203                         if (!list_empty(&sinfo->block_groups[c])) {
3204                                 u64 flags;
3205
3206                                 btrfs_get_block_group_info(
3207                                         &sinfo->block_groups[c], &space);
3208                                 if (space.total_bytes == 0 ||
3209                                     space.used_bytes == 0)
3210                                         continue;
3211                                 flags = space.flags;
3212                                 /*
3213                                  * return
3214                                  * 0: if dup, single or RAID0 is configured for
3215                                  *    any of metadata, system or data, else
3216                                  * 1: if RAID5 is configured, or if RAID1 or
3217                                  *    RAID10 is configured and only two mirrors
3218                                  *    are used, else
3219                                  * 2: if RAID6 is configured, else
3220                                  * num_mirrors - 1: if RAID1 or RAID10 is
3221                                  *                  configured and more than
3222                                  *                  2 mirrors are used.
3223                                  */
3224                                 if (num_tolerated_disk_barrier_failures > 0 &&
3225                                     ((flags & (BTRFS_BLOCK_GROUP_DUP |
3226                                                BTRFS_BLOCK_GROUP_RAID0)) ||
3227                                      ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3228                                       == 0)))
3229                                         num_tolerated_disk_barrier_failures = 0;
3230                                 else if (num_tolerated_disk_barrier_failures > 1) {
3231                                         if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3232                                             BTRFS_BLOCK_GROUP_RAID5 |
3233                                             BTRFS_BLOCK_GROUP_RAID10)) {
3234                                                 num_tolerated_disk_barrier_failures = 1;
3235                                         } else if (flags &
3236                                                    BTRFS_BLOCK_GROUP_RAID5) {
3237                                                 num_tolerated_disk_barrier_failures = 2;
3238                                         }
3239                                 }
3240                         }
3241                 }
3242                 up_read(&sinfo->groups_sem);
3243         }
3244
3245         return num_tolerated_disk_barrier_failures;
3246 }
3247
3248 int write_all_supers(struct btrfs_root *root, int max_mirrors)
3249 {
3250         struct list_head *head;
3251         struct btrfs_device *dev;
3252         struct btrfs_super_block *sb;
3253         struct btrfs_dev_item *dev_item;
3254         int ret;
3255         int do_barriers;
3256         int max_errors;
3257         int total_errors = 0;
3258         u64 flags;
3259
3260         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3261         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3262         backup_super_roots(root->fs_info);
3263
3264         sb = root->fs_info->super_for_commit;
3265         dev_item = &sb->dev_item;
3266
3267         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3268         head = &root->fs_info->fs_devices->devices;
3269
3270         if (do_barriers) {
3271                 ret = barrier_all_devices(root->fs_info);
3272                 if (ret) {
3273                         mutex_unlock(
3274                                 &root->fs_info->fs_devices->device_list_mutex);
3275                         btrfs_error(root->fs_info, ret,
3276                                     "errors while submitting device barriers.");
3277                         return ret;
3278                 }
3279         }
3280
3281         list_for_each_entry_rcu(dev, head, dev_list) {
3282                 if (!dev->bdev) {
3283                         total_errors++;
3284                         continue;
3285                 }
3286                 if (!dev->in_fs_metadata || !dev->writeable)
3287                         continue;
3288
3289                 btrfs_set_stack_device_generation(dev_item, 0);
3290                 btrfs_set_stack_device_type(dev_item, dev->type);
3291                 btrfs_set_stack_device_id(dev_item, dev->devid);
3292                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3293                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3294                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3295                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3296                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3297                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3298                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3299
3300                 flags = btrfs_super_flags(sb);
3301                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3302
3303                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3304                 if (ret)
3305                         total_errors++;
3306         }
3307         if (total_errors > max_errors) {
3308                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3309                        total_errors);
3310
3311                 /* This shouldn't happen. FUA is masked off if unsupported */
3312                 BUG();
3313         }
3314
3315         total_errors = 0;
3316         list_for_each_entry_rcu(dev, head, dev_list) {
3317                 if (!dev->bdev)
3318                         continue;
3319                 if (!dev->in_fs_metadata || !dev->writeable)
3320                         continue;
3321
3322                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3323                 if (ret)
3324                         total_errors++;
3325         }
3326         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3327         if (total_errors > max_errors) {
3328                 btrfs_error(root->fs_info, -EIO,
3329                             "%d errors while writing supers", total_errors);
3330                 return -EIO;
3331         }
3332         return 0;
3333 }
3334
3335 int write_ctree_super(struct btrfs_trans_handle *trans,
3336                       struct btrfs_root *root, int max_mirrors)
3337 {
3338         int ret;
3339
3340         ret = write_all_supers(root, max_mirrors);
3341         return ret;
3342 }
3343
3344 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
3345 {
3346         spin_lock(&fs_info->fs_roots_radix_lock);
3347         radix_tree_delete(&fs_info->fs_roots_radix,
3348                           (unsigned long)root->root_key.objectid);
3349         spin_unlock(&fs_info->fs_roots_radix_lock);
3350
3351         if (btrfs_root_refs(&root->root_item) == 0)
3352                 synchronize_srcu(&fs_info->subvol_srcu);
3353
3354         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3355                 btrfs_free_log(NULL, root);
3356                 btrfs_free_log_root_tree(NULL, fs_info);
3357         }
3358
3359         __btrfs_remove_free_space_cache(root->free_ino_pinned);
3360         __btrfs_remove_free_space_cache(root->free_ino_ctl);
3361         free_fs_root(root);
3362 }
3363
3364 static void free_fs_root(struct btrfs_root *root)
3365 {
3366         iput(root->cache_inode);
3367         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3368         if (root->anon_dev)
3369                 free_anon_bdev(root->anon_dev);
3370         free_extent_buffer(root->node);
3371         free_extent_buffer(root->commit_root);
3372         kfree(root->free_ino_ctl);
3373         kfree(root->free_ino_pinned);
3374         kfree(root->name);
3375         kfree(root);
3376 }
3377
3378 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3379 {
3380         u64 root_objectid = 0;
3381         struct btrfs_root *gang[8];
3382         int i;
3383         int ret;
3384
3385         while (1) {
3386                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3387                                              (void **)gang, root_objectid,
3388                                              ARRAY_SIZE(gang));
3389                 if (!ret)
3390                         break;
3391
3392                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3393                 for (i = 0; i < ret; i++) {
3394                         int err;
3395
3396                         root_objectid = gang[i]->root_key.objectid;
3397                         err = btrfs_orphan_cleanup(gang[i]);
3398                         if (err)
3399                                 return err;
3400                 }
3401                 root_objectid++;
3402         }
3403         return 0;
3404 }
3405
3406 int btrfs_commit_super(struct btrfs_root *root)
3407 {
3408         struct btrfs_trans_handle *trans;
3409         int ret;
3410
3411         mutex_lock(&root->fs_info->cleaner_mutex);
3412         btrfs_run_delayed_iputs(root);
3413         mutex_unlock(&root->fs_info->cleaner_mutex);
3414         wake_up_process(root->fs_info->cleaner_kthread);
3415
3416         /* wait until ongoing cleanup work done */
3417         down_write(&root->fs_info->cleanup_work_sem);
3418         up_write(&root->fs_info->cleanup_work_sem);
3419
3420         trans = btrfs_join_transaction(root);
3421         if (IS_ERR(trans))
3422                 return PTR_ERR(trans);
3423         ret = btrfs_commit_transaction(trans, root);
3424         if (ret)
3425                 return ret;
3426         /* run commit again to drop the original snapshot */
3427         trans = btrfs_join_transaction(root);
3428         if (IS_ERR(trans))
3429                 return PTR_ERR(trans);
3430         ret = btrfs_commit_transaction(trans, root);
3431         if (ret)
3432                 return ret;
3433         ret = btrfs_write_and_wait_transaction(NULL, root);
3434         if (ret) {
3435                 btrfs_error(root->fs_info, ret,
3436                             "Failed to sync btree inode to disk.");
3437                 return ret;
3438         }
3439
3440         ret = write_ctree_super(NULL, root, 0);
3441         return ret;
3442 }
3443
3444 int close_ctree(struct btrfs_root *root)
3445 {
3446         struct btrfs_fs_info *fs_info = root->fs_info;
3447         int ret;
3448
3449         fs_info->closing = 1;
3450         smp_mb();
3451
3452         /* pause restriper - we want to resume on mount */
3453         btrfs_pause_balance(fs_info);
3454
3455         btrfs_dev_replace_suspend_for_unmount(fs_info);
3456
3457         btrfs_scrub_cancel(fs_info);
3458
3459         /* wait for any defraggers to finish */
3460         wait_event(fs_info->transaction_wait,
3461                    (atomic_read(&fs_info->defrag_running) == 0));
3462
3463         /* clear out the rbtree of defraggable inodes */
3464         btrfs_cleanup_defrag_inodes(fs_info);
3465
3466         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3467                 ret = btrfs_commit_super(root);
3468                 if (ret)
3469                         printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3470         }
3471
3472         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3473                 btrfs_error_commit_super(root);
3474
3475         btrfs_put_block_group_cache(fs_info);
3476
3477         kthread_stop(fs_info->transaction_kthread);
3478         kthread_stop(fs_info->cleaner_kthread);
3479
3480         fs_info->closing = 2;
3481         smp_mb();
3482
3483         btrfs_free_qgroup_config(root->fs_info);
3484
3485         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3486                 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
3487                        percpu_counter_sum(&fs_info->delalloc_bytes));
3488         }
3489
3490         free_root_pointers(fs_info, 1);
3491
3492         btrfs_free_block_groups(fs_info);
3493
3494         del_fs_roots(fs_info);
3495
3496         iput(fs_info->btree_inode);
3497
3498         btrfs_stop_all_workers(fs_info);
3499
3500 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3501         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3502                 btrfsic_unmount(root, fs_info->fs_devices);
3503 #endif
3504
3505         btrfs_close_devices(fs_info->fs_devices);
3506         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3507
3508         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3509         percpu_counter_destroy(&fs_info->delalloc_bytes);
3510         bdi_destroy(&fs_info->bdi);
3511         cleanup_srcu_struct(&fs_info->subvol_srcu);
3512
3513         btrfs_free_stripe_hash_table(fs_info);
3514
3515         return 0;
3516 }
3517
3518 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3519                           int atomic)
3520 {
3521         int ret;
3522         struct inode *btree_inode = buf->pages[0]->mapping->host;
3523
3524         ret = extent_buffer_uptodate(buf);
3525         if (!ret)
3526                 return ret;
3527
3528         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3529                                     parent_transid, atomic);
3530         if (ret == -EAGAIN)
3531                 return ret;
3532         return !ret;
3533 }
3534
3535 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3536 {
3537         return set_extent_buffer_uptodate(buf);
3538 }
3539
3540 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3541 {
3542         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3543         u64 transid = btrfs_header_generation(buf);
3544         int was_dirty;
3545
3546         btrfs_assert_tree_locked(buf);
3547         if (transid != root->fs_info->generation)
3548                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3549                        "found %llu running %llu\n",
3550                         (unsigned long long)buf->start,
3551                         (unsigned long long)transid,
3552                         (unsigned long long)root->fs_info->generation);
3553         was_dirty = set_extent_buffer_dirty(buf);
3554         if (!was_dirty)
3555                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3556                                      buf->len,
3557                                      root->fs_info->dirty_metadata_batch);
3558 }
3559
3560 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3561                                         int flush_delayed)
3562 {
3563         /*
3564          * looks as though older kernels can get into trouble with
3565          * this code, they end up stuck in balance_dirty_pages forever
3566          */
3567         int ret;
3568
3569         if (current->flags & PF_MEMALLOC)
3570                 return;
3571
3572         if (flush_delayed)
3573                 btrfs_balance_delayed_items(root);
3574
3575         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3576                                      BTRFS_DIRTY_METADATA_THRESH);
3577         if (ret > 0) {
3578                 balance_dirty_pages_ratelimited(
3579                                    root->fs_info->btree_inode->i_mapping);
3580         }
3581         return;
3582 }
3583
3584 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3585 {
3586         __btrfs_btree_balance_dirty(root, 1);
3587 }
3588
3589 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3590 {
3591         __btrfs_btree_balance_dirty(root, 0);
3592 }
3593
3594 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3595 {
3596         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3597         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3598 }
3599
3600 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3601                               int read_only)
3602 {
3603         if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3604                 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3605                 return -EINVAL;
3606         }
3607
3608         if (read_only)
3609                 return 0;
3610
3611         return 0;
3612 }
3613
3614 void btrfs_error_commit_super(struct btrfs_root *root)
3615 {
3616         mutex_lock(&root->fs_info->cleaner_mutex);
3617         btrfs_run_delayed_iputs(root);
3618         mutex_unlock(&root->fs_info->cleaner_mutex);
3619
3620         down_write(&root->fs_info->cleanup_work_sem);
3621         up_write(&root->fs_info->cleanup_work_sem);
3622
3623         /* cleanup FS via transaction */
3624         btrfs_cleanup_transaction(root);
3625 }
3626
3627 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3628                                              struct btrfs_root *root)
3629 {
3630         struct btrfs_inode *btrfs_inode;
3631         struct list_head splice;
3632
3633         INIT_LIST_HEAD(&splice);
3634
3635         mutex_lock(&root->fs_info->ordered_operations_mutex);
3636         spin_lock(&root->fs_info->ordered_extent_lock);
3637
3638         list_splice_init(&t->ordered_operations, &splice);
3639         while (!list_empty(&splice)) {
3640                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3641                                          ordered_operations);
3642
3643                 list_del_init(&btrfs_inode->ordered_operations);
3644
3645                 btrfs_invalidate_inodes(btrfs_inode->root);
3646         }
3647
3648         spin_unlock(&root->fs_info->ordered_extent_lock);
3649         mutex_unlock(&root->fs_info->ordered_operations_mutex);
3650 }
3651
3652 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3653 {
3654         struct btrfs_ordered_extent *ordered;
3655
3656         spin_lock(&root->fs_info->ordered_extent_lock);
3657         /*
3658          * This will just short circuit the ordered completion stuff which will
3659          * make sure the ordered extent gets properly cleaned up.
3660          */
3661         list_for_each_entry(ordered, &root->fs_info->ordered_extents,
3662                             root_extent_list)
3663                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3664         spin_unlock(&root->fs_info->ordered_extent_lock);
3665 }
3666
3667 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3668                                struct btrfs_root *root)
3669 {
3670         struct rb_node *node;
3671         struct btrfs_delayed_ref_root *delayed_refs;
3672         struct btrfs_delayed_ref_node *ref;
3673         int ret = 0;
3674
3675         delayed_refs = &trans->delayed_refs;
3676
3677         spin_lock(&delayed_refs->lock);
3678         if (delayed_refs->num_entries == 0) {
3679                 spin_unlock(&delayed_refs->lock);
3680                 printk(KERN_INFO "delayed_refs has NO entry\n");
3681                 return ret;
3682         }
3683
3684         while ((node = rb_first(&delayed_refs->root)) != NULL) {
3685                 struct btrfs_delayed_ref_head *head = NULL;
3686
3687                 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3688                 atomic_set(&ref->refs, 1);
3689                 if (btrfs_delayed_ref_is_head(ref)) {
3690
3691                         head = btrfs_delayed_node_to_head(ref);
3692                         if (!mutex_trylock(&head->mutex)) {
3693                                 atomic_inc(&ref->refs);
3694                                 spin_unlock(&delayed_refs->lock);
3695
3696                                 /* Need to wait for the delayed ref to run */
3697                                 mutex_lock(&head->mutex);
3698                                 mutex_unlock(&head->mutex);
3699                                 btrfs_put_delayed_ref(ref);
3700
3701                                 spin_lock(&delayed_refs->lock);
3702                                 continue;
3703                         }
3704
3705                         if (head->must_insert_reserved)
3706                                 btrfs_pin_extent(root, ref->bytenr,
3707                                                  ref->num_bytes, 1);
3708                         btrfs_free_delayed_extent_op(head->extent_op);
3709                         delayed_refs->num_heads--;
3710                         if (list_empty(&head->cluster))
3711                                 delayed_refs->num_heads_ready--;
3712                         list_del_init(&head->cluster);
3713                 }
3714
3715                 ref->in_tree = 0;
3716                 rb_erase(&ref->rb_node, &delayed_refs->root);
3717                 delayed_refs->num_entries--;
3718                 if (head)
3719                         mutex_unlock(&head->mutex);
3720                 spin_unlock(&delayed_refs->lock);
3721                 btrfs_put_delayed_ref(ref);
3722
3723                 cond_resched();
3724                 spin_lock(&delayed_refs->lock);
3725         }
3726
3727         spin_unlock(&delayed_refs->lock);
3728
3729         return ret;
3730 }
3731
3732 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
3733 {
3734         struct btrfs_pending_snapshot *snapshot;
3735         struct list_head splice;
3736
3737         INIT_LIST_HEAD(&splice);
3738
3739         list_splice_init(&t->pending_snapshots, &splice);
3740
3741         while (!list_empty(&splice)) {
3742                 snapshot = list_entry(splice.next,
3743                                       struct btrfs_pending_snapshot,
3744                                       list);
3745                 snapshot->error = -ECANCELED;
3746                 list_del_init(&snapshot->list);
3747         }
3748 }
3749
3750 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3751 {
3752         struct btrfs_inode *btrfs_inode;
3753         struct list_head splice;
3754
3755         INIT_LIST_HEAD(&splice);
3756
3757         spin_lock(&root->fs_info->delalloc_lock);
3758         list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3759
3760         while (!list_empty(&splice)) {
3761                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3762                                     delalloc_inodes);
3763
3764                 list_del_init(&btrfs_inode->delalloc_inodes);
3765                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3766                           &btrfs_inode->runtime_flags);
3767
3768                 btrfs_invalidate_inodes(btrfs_inode->root);
3769         }
3770
3771         spin_unlock(&root->fs_info->delalloc_lock);
3772 }
3773
3774 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3775                                         struct extent_io_tree *dirty_pages,
3776                                         int mark)
3777 {
3778         int ret;
3779         struct extent_buffer *eb;
3780         u64 start = 0;
3781         u64 end;
3782
3783         while (1) {
3784                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3785                                             mark, NULL);
3786                 if (ret)
3787                         break;
3788
3789                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3790                 while (start <= end) {
3791                         eb = btrfs_find_tree_block(root, start,
3792                                                    root->leafsize);
3793                         start += eb->len;
3794                         if (!eb)
3795                                 continue;
3796                         wait_on_extent_buffer_writeback(eb);
3797
3798                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3799                                                &eb->bflags))
3800                                 clear_extent_buffer_dirty(eb);
3801                         free_extent_buffer_stale(eb);
3802                 }
3803         }
3804
3805         return ret;
3806 }
3807
3808 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3809                                        struct extent_io_tree *pinned_extents)
3810 {
3811         struct extent_io_tree *unpin;
3812         u64 start;
3813         u64 end;
3814         int ret;
3815         bool loop = true;
3816
3817         unpin = pinned_extents;
3818 again:
3819         while (1) {
3820                 ret = find_first_extent_bit(unpin, 0, &start, &end,
3821                                             EXTENT_DIRTY, NULL);
3822                 if (ret)
3823                         break;
3824
3825                 /* opt_discard */
3826                 if (btrfs_test_opt(root, DISCARD))
3827                         ret = btrfs_error_discard_extent(root, start,
3828                                                          end + 1 - start,
3829                                                          NULL);
3830
3831                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3832                 btrfs_error_unpin_extent_range(root, start, end);
3833                 cond_resched();
3834         }
3835
3836         if (loop) {
3837                 if (unpin == &root->fs_info->freed_extents[0])
3838                         unpin = &root->fs_info->freed_extents[1];
3839                 else
3840                         unpin = &root->fs_info->freed_extents[0];
3841                 loop = false;
3842                 goto again;
3843         }
3844
3845         return 0;
3846 }
3847
3848 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3849                                    struct btrfs_root *root)
3850 {
3851         btrfs_destroy_delayed_refs(cur_trans, root);
3852         btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3853                                 cur_trans->dirty_pages.dirty_bytes);
3854
3855         /* FIXME: cleanup wait for commit */
3856         cur_trans->in_commit = 1;
3857         cur_trans->blocked = 1;
3858         wake_up(&root->fs_info->transaction_blocked_wait);
3859
3860         btrfs_evict_pending_snapshots(cur_trans);
3861
3862         cur_trans->blocked = 0;
3863         wake_up(&root->fs_info->transaction_wait);
3864
3865         cur_trans->commit_done = 1;
3866         wake_up(&cur_trans->commit_wait);
3867
3868         btrfs_destroy_delayed_inodes(root);
3869         btrfs_assert_delayed_root_empty(root);
3870
3871         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3872                                      EXTENT_DIRTY);
3873         btrfs_destroy_pinned_extent(root,
3874                                     root->fs_info->pinned_extents);
3875
3876         /*
3877         memset(cur_trans, 0, sizeof(*cur_trans));
3878         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3879         */
3880 }
3881
3882 int btrfs_cleanup_transaction(struct btrfs_root *root)
3883 {
3884         struct btrfs_transaction *t;
3885         LIST_HEAD(list);
3886
3887         mutex_lock(&root->fs_info->transaction_kthread_mutex);
3888
3889         spin_lock(&root->fs_info->trans_lock);
3890         list_splice_init(&root->fs_info->trans_list, &list);
3891         root->fs_info->trans_no_join = 1;
3892         spin_unlock(&root->fs_info->trans_lock);
3893
3894         while (!list_empty(&list)) {
3895                 t = list_entry(list.next, struct btrfs_transaction, list);
3896
3897                 btrfs_destroy_ordered_operations(t, root);
3898
3899                 btrfs_destroy_ordered_extents(root);
3900
3901                 btrfs_destroy_delayed_refs(t, root);
3902
3903                 /* FIXME: cleanup wait for commit */
3904                 t->in_commit = 1;
3905                 t->blocked = 1;
3906                 smp_mb();
3907                 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3908                         wake_up(&root->fs_info->transaction_blocked_wait);
3909
3910                 btrfs_evict_pending_snapshots(t);
3911
3912                 t->blocked = 0;
3913                 smp_mb();
3914                 if (waitqueue_active(&root->fs_info->transaction_wait))
3915                         wake_up(&root->fs_info->transaction_wait);
3916
3917                 t->commit_done = 1;
3918                 smp_mb();
3919                 if (waitqueue_active(&t->commit_wait))
3920                         wake_up(&t->commit_wait);
3921
3922                 btrfs_destroy_delayed_inodes(root);
3923                 btrfs_assert_delayed_root_empty(root);
3924
3925                 btrfs_destroy_delalloc_inodes(root);
3926
3927                 spin_lock(&root->fs_info->trans_lock);
3928                 root->fs_info->running_transaction = NULL;
3929                 spin_unlock(&root->fs_info->trans_lock);
3930
3931                 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3932                                              EXTENT_DIRTY);
3933
3934                 btrfs_destroy_pinned_extent(root,
3935                                             root->fs_info->pinned_extents);
3936
3937                 atomic_set(&t->use_count, 0);
3938                 list_del_init(&t->list);
3939                 memset(t, 0, sizeof(*t));
3940                 kmem_cache_free(btrfs_transaction_cachep, t);
3941         }
3942
3943         spin_lock(&root->fs_info->trans_lock);
3944         root->fs_info->trans_no_join = 0;
3945         spin_unlock(&root->fs_info->trans_lock);
3946         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3947
3948         return 0;
3949 }
3950
3951 static struct extent_io_ops btree_extent_io_ops = {
3952         .readpage_end_io_hook = btree_readpage_end_io_hook,
3953         .readpage_io_failed_hook = btree_io_failed_hook,
3954         .submit_bio_hook = btree_submit_bio_hook,
3955         /* note we're sharing with inode.c for the merge bio hook */
3956         .merge_bio_hook = btrfs_merge_bio_hook,
3957 };