Btrfs: remove the time check in btrfs_commit_transaction()
[linux-2.6-block.git] / fs / btrfs / disk-io.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <linux/uuid.h>
34 #include <asm/unaligned.h>
35 #include "compat.h"
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "print-tree.h"
42 #include "async-thread.h"
43 #include "locking.h"
44 #include "tree-log.h"
45 #include "free-space-cache.h"
46 #include "inode-map.h"
47 #include "check-integrity.h"
48 #include "rcu-string.h"
49 #include "dev-replace.h"
50 #include "raid56.h"
51
52 #ifdef CONFIG_X86
53 #include <asm/cpufeature.h>
54 #endif
55
56 static struct extent_io_ops btree_extent_io_ops;
57 static void end_workqueue_fn(struct btrfs_work *work);
58 static void free_fs_root(struct btrfs_root *root);
59 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
60                                     int read_only);
61 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
62                                              struct btrfs_root *root);
63 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
64 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
65                                       struct btrfs_root *root);
66 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
67 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
68 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
69                                         struct extent_io_tree *dirty_pages,
70                                         int mark);
71 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
72                                        struct extent_io_tree *pinned_extents);
73 static int btrfs_cleanup_transaction(struct btrfs_root *root);
74 static void btrfs_error_commit_super(struct btrfs_root *root);
75
76 /*
77  * end_io_wq structs are used to do processing in task context when an IO is
78  * complete.  This is used during reads to verify checksums, and it is used
79  * by writes to insert metadata for new file extents after IO is complete.
80  */
81 struct end_io_wq {
82         struct bio *bio;
83         bio_end_io_t *end_io;
84         void *private;
85         struct btrfs_fs_info *info;
86         int error;
87         int metadata;
88         struct list_head list;
89         struct btrfs_work work;
90 };
91
92 /*
93  * async submit bios are used to offload expensive checksumming
94  * onto the worker threads.  They checksum file and metadata bios
95  * just before they are sent down the IO stack.
96  */
97 struct async_submit_bio {
98         struct inode *inode;
99         struct bio *bio;
100         struct list_head list;
101         extent_submit_bio_hook_t *submit_bio_start;
102         extent_submit_bio_hook_t *submit_bio_done;
103         int rw;
104         int mirror_num;
105         unsigned long bio_flags;
106         /*
107          * bio_offset is optional, can be used if the pages in the bio
108          * can't tell us where in the file the bio should go
109          */
110         u64 bio_offset;
111         struct btrfs_work work;
112         int error;
113 };
114
115 /*
116  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
117  * eb, the lockdep key is determined by the btrfs_root it belongs to and
118  * the level the eb occupies in the tree.
119  *
120  * Different roots are used for different purposes and may nest inside each
121  * other and they require separate keysets.  As lockdep keys should be
122  * static, assign keysets according to the purpose of the root as indicated
123  * by btrfs_root->objectid.  This ensures that all special purpose roots
124  * have separate keysets.
125  *
126  * Lock-nesting across peer nodes is always done with the immediate parent
127  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
128  * subclass to avoid triggering lockdep warning in such cases.
129  *
130  * The key is set by the readpage_end_io_hook after the buffer has passed
131  * csum validation but before the pages are unlocked.  It is also set by
132  * btrfs_init_new_buffer on freshly allocated blocks.
133  *
134  * We also add a check to make sure the highest level of the tree is the
135  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
136  * needs update as well.
137  */
138 #ifdef CONFIG_DEBUG_LOCK_ALLOC
139 # if BTRFS_MAX_LEVEL != 8
140 #  error
141 # endif
142
143 static struct btrfs_lockdep_keyset {
144         u64                     id;             /* root objectid */
145         const char              *name_stem;     /* lock name stem */
146         char                    names[BTRFS_MAX_LEVEL + 1][20];
147         struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
148 } btrfs_lockdep_keysets[] = {
149         { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
150         { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
151         { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
152         { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
153         { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
154         { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
155         { .id = BTRFS_QUOTA_TREE_OBJECTID,      .name_stem = "quota"    },
156         { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
157         { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
158         { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
159         { .id = 0,                              .name_stem = "tree"     },
160 };
161
162 void __init btrfs_init_lockdep(void)
163 {
164         int i, j;
165
166         /* initialize lockdep class names */
167         for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
168                 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
169
170                 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
171                         snprintf(ks->names[j], sizeof(ks->names[j]),
172                                  "btrfs-%s-%02d", ks->name_stem, j);
173         }
174 }
175
176 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
177                                     int level)
178 {
179         struct btrfs_lockdep_keyset *ks;
180
181         BUG_ON(level >= ARRAY_SIZE(ks->keys));
182
183         /* find the matching keyset, id 0 is the default entry */
184         for (ks = btrfs_lockdep_keysets; ks->id; ks++)
185                 if (ks->id == objectid)
186                         break;
187
188         lockdep_set_class_and_name(&eb->lock,
189                                    &ks->keys[level], ks->names[level]);
190 }
191
192 #endif
193
194 /*
195  * extents on the btree inode are pretty simple, there's one extent
196  * that covers the entire device
197  */
198 static struct extent_map *btree_get_extent(struct inode *inode,
199                 struct page *page, size_t pg_offset, u64 start, u64 len,
200                 int create)
201 {
202         struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
203         struct extent_map *em;
204         int ret;
205
206         read_lock(&em_tree->lock);
207         em = lookup_extent_mapping(em_tree, start, len);
208         if (em) {
209                 em->bdev =
210                         BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
211                 read_unlock(&em_tree->lock);
212                 goto out;
213         }
214         read_unlock(&em_tree->lock);
215
216         em = alloc_extent_map();
217         if (!em) {
218                 em = ERR_PTR(-ENOMEM);
219                 goto out;
220         }
221         em->start = 0;
222         em->len = (u64)-1;
223         em->block_len = (u64)-1;
224         em->block_start = 0;
225         em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
226
227         write_lock(&em_tree->lock);
228         ret = add_extent_mapping(em_tree, em, 0);
229         if (ret == -EEXIST) {
230                 free_extent_map(em);
231                 em = lookup_extent_mapping(em_tree, start, len);
232                 if (!em)
233                         em = ERR_PTR(-EIO);
234         } else if (ret) {
235                 free_extent_map(em);
236                 em = ERR_PTR(ret);
237         }
238         write_unlock(&em_tree->lock);
239
240 out:
241         return em;
242 }
243
244 u32 btrfs_csum_data(char *data, u32 seed, size_t len)
245 {
246         return crc32c(seed, data, len);
247 }
248
249 void btrfs_csum_final(u32 crc, char *result)
250 {
251         put_unaligned_le32(~crc, result);
252 }
253
254 /*
255  * compute the csum for a btree block, and either verify it or write it
256  * into the csum field of the block.
257  */
258 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
259                            int verify)
260 {
261         u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
262         char *result = NULL;
263         unsigned long len;
264         unsigned long cur_len;
265         unsigned long offset = BTRFS_CSUM_SIZE;
266         char *kaddr;
267         unsigned long map_start;
268         unsigned long map_len;
269         int err;
270         u32 crc = ~(u32)0;
271         unsigned long inline_result;
272
273         len = buf->len - offset;
274         while (len > 0) {
275                 err = map_private_extent_buffer(buf, offset, 32,
276                                         &kaddr, &map_start, &map_len);
277                 if (err)
278                         return 1;
279                 cur_len = min(len, map_len - (offset - map_start));
280                 crc = btrfs_csum_data(kaddr + offset - map_start,
281                                       crc, cur_len);
282                 len -= cur_len;
283                 offset += cur_len;
284         }
285         if (csum_size > sizeof(inline_result)) {
286                 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
287                 if (!result)
288                         return 1;
289         } else {
290                 result = (char *)&inline_result;
291         }
292
293         btrfs_csum_final(crc, result);
294
295         if (verify) {
296                 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
297                         u32 val;
298                         u32 found = 0;
299                         memcpy(&found, result, csum_size);
300
301                         read_extent_buffer(buf, &val, 0, csum_size);
302                         printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
303                                        "failed on %llu wanted %X found %X "
304                                        "level %d\n",
305                                        root->fs_info->sb->s_id,
306                                        (unsigned long long)buf->start, val, found,
307                                        btrfs_header_level(buf));
308                         if (result != (char *)&inline_result)
309                                 kfree(result);
310                         return 1;
311                 }
312         } else {
313                 write_extent_buffer(buf, result, 0, csum_size);
314         }
315         if (result != (char *)&inline_result)
316                 kfree(result);
317         return 0;
318 }
319
320 /*
321  * we can't consider a given block up to date unless the transid of the
322  * block matches the transid in the parent node's pointer.  This is how we
323  * detect blocks that either didn't get written at all or got written
324  * in the wrong place.
325  */
326 static int verify_parent_transid(struct extent_io_tree *io_tree,
327                                  struct extent_buffer *eb, u64 parent_transid,
328                                  int atomic)
329 {
330         struct extent_state *cached_state = NULL;
331         int ret;
332
333         if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334                 return 0;
335
336         if (atomic)
337                 return -EAGAIN;
338
339         lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
340                          0, &cached_state);
341         if (extent_buffer_uptodate(eb) &&
342             btrfs_header_generation(eb) == parent_transid) {
343                 ret = 0;
344                 goto out;
345         }
346         printk_ratelimited("parent transid verify failed on %llu wanted %llu "
347                        "found %llu\n",
348                        (unsigned long long)eb->start,
349                        (unsigned long long)parent_transid,
350                        (unsigned long long)btrfs_header_generation(eb));
351         ret = 1;
352         clear_extent_buffer_uptodate(eb);
353 out:
354         unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
355                              &cached_state, GFP_NOFS);
356         return ret;
357 }
358
359 /*
360  * Return 0 if the superblock checksum type matches the checksum value of that
361  * algorithm. Pass the raw disk superblock data.
362  */
363 static int btrfs_check_super_csum(char *raw_disk_sb)
364 {
365         struct btrfs_super_block *disk_sb =
366                 (struct btrfs_super_block *)raw_disk_sb;
367         u16 csum_type = btrfs_super_csum_type(disk_sb);
368         int ret = 0;
369
370         if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
371                 u32 crc = ~(u32)0;
372                 const int csum_size = sizeof(crc);
373                 char result[csum_size];
374
375                 /*
376                  * The super_block structure does not span the whole
377                  * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
378                  * is filled with zeros and is included in the checkum.
379                  */
380                 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
381                                 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
382                 btrfs_csum_final(crc, result);
383
384                 if (memcmp(raw_disk_sb, result, csum_size))
385                         ret = 1;
386
387                 if (ret && btrfs_super_generation(disk_sb) < 10) {
388                         printk(KERN_WARNING "btrfs: super block crcs don't match, older mkfs detected\n");
389                         ret = 0;
390                 }
391         }
392
393         if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
394                 printk(KERN_ERR "btrfs: unsupported checksum algorithm %u\n",
395                                 csum_type);
396                 ret = 1;
397         }
398
399         return ret;
400 }
401
402 /*
403  * helper to read a given tree block, doing retries as required when
404  * the checksums don't match and we have alternate mirrors to try.
405  */
406 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
407                                           struct extent_buffer *eb,
408                                           u64 start, u64 parent_transid)
409 {
410         struct extent_io_tree *io_tree;
411         int failed = 0;
412         int ret;
413         int num_copies = 0;
414         int mirror_num = 0;
415         int failed_mirror = 0;
416
417         clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
418         io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
419         while (1) {
420                 ret = read_extent_buffer_pages(io_tree, eb, start,
421                                                WAIT_COMPLETE,
422                                                btree_get_extent, mirror_num);
423                 if (!ret) {
424                         if (!verify_parent_transid(io_tree, eb,
425                                                    parent_transid, 0))
426                                 break;
427                         else
428                                 ret = -EIO;
429                 }
430
431                 /*
432                  * This buffer's crc is fine, but its contents are corrupted, so
433                  * there is no reason to read the other copies, they won't be
434                  * any less wrong.
435                  */
436                 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
437                         break;
438
439                 num_copies = btrfs_num_copies(root->fs_info,
440                                               eb->start, eb->len);
441                 if (num_copies == 1)
442                         break;
443
444                 if (!failed_mirror) {
445                         failed = 1;
446                         failed_mirror = eb->read_mirror;
447                 }
448
449                 mirror_num++;
450                 if (mirror_num == failed_mirror)
451                         mirror_num++;
452
453                 if (mirror_num > num_copies)
454                         break;
455         }
456
457         if (failed && !ret && failed_mirror)
458                 repair_eb_io_failure(root, eb, failed_mirror);
459
460         return ret;
461 }
462
463 /*
464  * checksum a dirty tree block before IO.  This has extra checks to make sure
465  * we only fill in the checksum field in the first page of a multi-page block
466  */
467
468 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
469 {
470         struct extent_io_tree *tree;
471         u64 start = page_offset(page);
472         u64 found_start;
473         struct extent_buffer *eb;
474
475         tree = &BTRFS_I(page->mapping->host)->io_tree;
476
477         eb = (struct extent_buffer *)page->private;
478         if (page != eb->pages[0])
479                 return 0;
480         found_start = btrfs_header_bytenr(eb);
481         if (found_start != start) {
482                 WARN_ON(1);
483                 return 0;
484         }
485         if (!PageUptodate(page)) {
486                 WARN_ON(1);
487                 return 0;
488         }
489         csum_tree_block(root, eb, 0);
490         return 0;
491 }
492
493 static int check_tree_block_fsid(struct btrfs_root *root,
494                                  struct extent_buffer *eb)
495 {
496         struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
497         u8 fsid[BTRFS_UUID_SIZE];
498         int ret = 1;
499
500         read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
501                            BTRFS_FSID_SIZE);
502         while (fs_devices) {
503                 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
504                         ret = 0;
505                         break;
506                 }
507                 fs_devices = fs_devices->seed;
508         }
509         return ret;
510 }
511
512 #define CORRUPT(reason, eb, root, slot)                         \
513         printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
514                "root=%llu, slot=%d\n", reason,                  \
515                (unsigned long long)btrfs_header_bytenr(eb),     \
516                (unsigned long long)root->objectid, slot)
517
518 static noinline int check_leaf(struct btrfs_root *root,
519                                struct extent_buffer *leaf)
520 {
521         struct btrfs_key key;
522         struct btrfs_key leaf_key;
523         u32 nritems = btrfs_header_nritems(leaf);
524         int slot;
525
526         if (nritems == 0)
527                 return 0;
528
529         /* Check the 0 item */
530         if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
531             BTRFS_LEAF_DATA_SIZE(root)) {
532                 CORRUPT("invalid item offset size pair", leaf, root, 0);
533                 return -EIO;
534         }
535
536         /*
537          * Check to make sure each items keys are in the correct order and their
538          * offsets make sense.  We only have to loop through nritems-1 because
539          * we check the current slot against the next slot, which verifies the
540          * next slot's offset+size makes sense and that the current's slot
541          * offset is correct.
542          */
543         for (slot = 0; slot < nritems - 1; slot++) {
544                 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
545                 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
546
547                 /* Make sure the keys are in the right order */
548                 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
549                         CORRUPT("bad key order", leaf, root, slot);
550                         return -EIO;
551                 }
552
553                 /*
554                  * Make sure the offset and ends are right, remember that the
555                  * item data starts at the end of the leaf and grows towards the
556                  * front.
557                  */
558                 if (btrfs_item_offset_nr(leaf, slot) !=
559                         btrfs_item_end_nr(leaf, slot + 1)) {
560                         CORRUPT("slot offset bad", leaf, root, slot);
561                         return -EIO;
562                 }
563
564                 /*
565                  * Check to make sure that we don't point outside of the leaf,
566                  * just incase all the items are consistent to eachother, but
567                  * all point outside of the leaf.
568                  */
569                 if (btrfs_item_end_nr(leaf, slot) >
570                     BTRFS_LEAF_DATA_SIZE(root)) {
571                         CORRUPT("slot end outside of leaf", leaf, root, slot);
572                         return -EIO;
573                 }
574         }
575
576         return 0;
577 }
578
579 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
580                                struct extent_state *state, int mirror)
581 {
582         struct extent_io_tree *tree;
583         u64 found_start;
584         int found_level;
585         struct extent_buffer *eb;
586         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
587         int ret = 0;
588         int reads_done;
589
590         if (!page->private)
591                 goto out;
592
593         tree = &BTRFS_I(page->mapping->host)->io_tree;
594         eb = (struct extent_buffer *)page->private;
595
596         /* the pending IO might have been the only thing that kept this buffer
597          * in memory.  Make sure we have a ref for all this other checks
598          */
599         extent_buffer_get(eb);
600
601         reads_done = atomic_dec_and_test(&eb->io_pages);
602         if (!reads_done)
603                 goto err;
604
605         eb->read_mirror = mirror;
606         if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
607                 ret = -EIO;
608                 goto err;
609         }
610
611         found_start = btrfs_header_bytenr(eb);
612         if (found_start != eb->start) {
613                 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
614                                "%llu %llu\n",
615                                (unsigned long long)found_start,
616                                (unsigned long long)eb->start);
617                 ret = -EIO;
618                 goto err;
619         }
620         if (check_tree_block_fsid(root, eb)) {
621                 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
622                                (unsigned long long)eb->start);
623                 ret = -EIO;
624                 goto err;
625         }
626         found_level = btrfs_header_level(eb);
627         if (found_level >= BTRFS_MAX_LEVEL) {
628                 btrfs_info(root->fs_info, "bad tree block level %d\n",
629                            (int)btrfs_header_level(eb));
630                 ret = -EIO;
631                 goto err;
632         }
633
634         btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
635                                        eb, found_level);
636
637         ret = csum_tree_block(root, eb, 1);
638         if (ret) {
639                 ret = -EIO;
640                 goto err;
641         }
642
643         /*
644          * If this is a leaf block and it is corrupt, set the corrupt bit so
645          * that we don't try and read the other copies of this block, just
646          * return -EIO.
647          */
648         if (found_level == 0 && check_leaf(root, eb)) {
649                 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
650                 ret = -EIO;
651         }
652
653         if (!ret)
654                 set_extent_buffer_uptodate(eb);
655 err:
656         if (reads_done &&
657             test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
658                 btree_readahead_hook(root, eb, eb->start, ret);
659
660         if (ret) {
661                 /*
662                  * our io error hook is going to dec the io pages
663                  * again, we have to make sure it has something
664                  * to decrement
665                  */
666                 atomic_inc(&eb->io_pages);
667                 clear_extent_buffer_uptodate(eb);
668         }
669         free_extent_buffer(eb);
670 out:
671         return ret;
672 }
673
674 static int btree_io_failed_hook(struct page *page, int failed_mirror)
675 {
676         struct extent_buffer *eb;
677         struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
678
679         eb = (struct extent_buffer *)page->private;
680         set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
681         eb->read_mirror = failed_mirror;
682         atomic_dec(&eb->io_pages);
683         if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
684                 btree_readahead_hook(root, eb, eb->start, -EIO);
685         return -EIO;    /* we fixed nothing */
686 }
687
688 static void end_workqueue_bio(struct bio *bio, int err)
689 {
690         struct end_io_wq *end_io_wq = bio->bi_private;
691         struct btrfs_fs_info *fs_info;
692
693         fs_info = end_io_wq->info;
694         end_io_wq->error = err;
695         end_io_wq->work.func = end_workqueue_fn;
696         end_io_wq->work.flags = 0;
697
698         if (bio->bi_rw & REQ_WRITE) {
699                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
700                         btrfs_queue_worker(&fs_info->endio_meta_write_workers,
701                                            &end_io_wq->work);
702                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
703                         btrfs_queue_worker(&fs_info->endio_freespace_worker,
704                                            &end_io_wq->work);
705                 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
706                         btrfs_queue_worker(&fs_info->endio_raid56_workers,
707                                            &end_io_wq->work);
708                 else
709                         btrfs_queue_worker(&fs_info->endio_write_workers,
710                                            &end_io_wq->work);
711         } else {
712                 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
713                         btrfs_queue_worker(&fs_info->endio_raid56_workers,
714                                            &end_io_wq->work);
715                 else if (end_io_wq->metadata)
716                         btrfs_queue_worker(&fs_info->endio_meta_workers,
717                                            &end_io_wq->work);
718                 else
719                         btrfs_queue_worker(&fs_info->endio_workers,
720                                            &end_io_wq->work);
721         }
722 }
723
724 /*
725  * For the metadata arg you want
726  *
727  * 0 - if data
728  * 1 - if normal metadta
729  * 2 - if writing to the free space cache area
730  * 3 - raid parity work
731  */
732 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
733                         int metadata)
734 {
735         struct end_io_wq *end_io_wq;
736         end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
737         if (!end_io_wq)
738                 return -ENOMEM;
739
740         end_io_wq->private = bio->bi_private;
741         end_io_wq->end_io = bio->bi_end_io;
742         end_io_wq->info = info;
743         end_io_wq->error = 0;
744         end_io_wq->bio = bio;
745         end_io_wq->metadata = metadata;
746
747         bio->bi_private = end_io_wq;
748         bio->bi_end_io = end_workqueue_bio;
749         return 0;
750 }
751
752 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
753 {
754         unsigned long limit = min_t(unsigned long,
755                                     info->workers.max_workers,
756                                     info->fs_devices->open_devices);
757         return 256 * limit;
758 }
759
760 static void run_one_async_start(struct btrfs_work *work)
761 {
762         struct async_submit_bio *async;
763         int ret;
764
765         async = container_of(work, struct  async_submit_bio, work);
766         ret = async->submit_bio_start(async->inode, async->rw, async->bio,
767                                       async->mirror_num, async->bio_flags,
768                                       async->bio_offset);
769         if (ret)
770                 async->error = ret;
771 }
772
773 static void run_one_async_done(struct btrfs_work *work)
774 {
775         struct btrfs_fs_info *fs_info;
776         struct async_submit_bio *async;
777         int limit;
778
779         async = container_of(work, struct  async_submit_bio, work);
780         fs_info = BTRFS_I(async->inode)->root->fs_info;
781
782         limit = btrfs_async_submit_limit(fs_info);
783         limit = limit * 2 / 3;
784
785         if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
786             waitqueue_active(&fs_info->async_submit_wait))
787                 wake_up(&fs_info->async_submit_wait);
788
789         /* If an error occured we just want to clean up the bio and move on */
790         if (async->error) {
791                 bio_endio(async->bio, async->error);
792                 return;
793         }
794
795         async->submit_bio_done(async->inode, async->rw, async->bio,
796                                async->mirror_num, async->bio_flags,
797                                async->bio_offset);
798 }
799
800 static void run_one_async_free(struct btrfs_work *work)
801 {
802         struct async_submit_bio *async;
803
804         async = container_of(work, struct  async_submit_bio, work);
805         kfree(async);
806 }
807
808 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
809                         int rw, struct bio *bio, int mirror_num,
810                         unsigned long bio_flags,
811                         u64 bio_offset,
812                         extent_submit_bio_hook_t *submit_bio_start,
813                         extent_submit_bio_hook_t *submit_bio_done)
814 {
815         struct async_submit_bio *async;
816
817         async = kmalloc(sizeof(*async), GFP_NOFS);
818         if (!async)
819                 return -ENOMEM;
820
821         async->inode = inode;
822         async->rw = rw;
823         async->bio = bio;
824         async->mirror_num = mirror_num;
825         async->submit_bio_start = submit_bio_start;
826         async->submit_bio_done = submit_bio_done;
827
828         async->work.func = run_one_async_start;
829         async->work.ordered_func = run_one_async_done;
830         async->work.ordered_free = run_one_async_free;
831
832         async->work.flags = 0;
833         async->bio_flags = bio_flags;
834         async->bio_offset = bio_offset;
835
836         async->error = 0;
837
838         atomic_inc(&fs_info->nr_async_submits);
839
840         if (rw & REQ_SYNC)
841                 btrfs_set_work_high_prio(&async->work);
842
843         btrfs_queue_worker(&fs_info->workers, &async->work);
844
845         while (atomic_read(&fs_info->async_submit_draining) &&
846               atomic_read(&fs_info->nr_async_submits)) {
847                 wait_event(fs_info->async_submit_wait,
848                            (atomic_read(&fs_info->nr_async_submits) == 0));
849         }
850
851         return 0;
852 }
853
854 static int btree_csum_one_bio(struct bio *bio)
855 {
856         struct bio_vec *bvec = bio->bi_io_vec;
857         int bio_index = 0;
858         struct btrfs_root *root;
859         int ret = 0;
860
861         WARN_ON(bio->bi_vcnt <= 0);
862         while (bio_index < bio->bi_vcnt) {
863                 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
864                 ret = csum_dirty_buffer(root, bvec->bv_page);
865                 if (ret)
866                         break;
867                 bio_index++;
868                 bvec++;
869         }
870         return ret;
871 }
872
873 static int __btree_submit_bio_start(struct inode *inode, int rw,
874                                     struct bio *bio, int mirror_num,
875                                     unsigned long bio_flags,
876                                     u64 bio_offset)
877 {
878         /*
879          * when we're called for a write, we're already in the async
880          * submission context.  Just jump into btrfs_map_bio
881          */
882         return btree_csum_one_bio(bio);
883 }
884
885 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
886                                  int mirror_num, unsigned long bio_flags,
887                                  u64 bio_offset)
888 {
889         int ret;
890
891         /*
892          * when we're called for a write, we're already in the async
893          * submission context.  Just jump into btrfs_map_bio
894          */
895         ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
896         if (ret)
897                 bio_endio(bio, ret);
898         return ret;
899 }
900
901 static int check_async_write(struct inode *inode, unsigned long bio_flags)
902 {
903         if (bio_flags & EXTENT_BIO_TREE_LOG)
904                 return 0;
905 #ifdef CONFIG_X86
906         if (cpu_has_xmm4_2)
907                 return 0;
908 #endif
909         return 1;
910 }
911
912 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
913                                  int mirror_num, unsigned long bio_flags,
914                                  u64 bio_offset)
915 {
916         int async = check_async_write(inode, bio_flags);
917         int ret;
918
919         if (!(rw & REQ_WRITE)) {
920                 /*
921                  * called for a read, do the setup so that checksum validation
922                  * can happen in the async kernel threads
923                  */
924                 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
925                                           bio, 1);
926                 if (ret)
927                         goto out_w_error;
928                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
929                                     mirror_num, 0);
930         } else if (!async) {
931                 ret = btree_csum_one_bio(bio);
932                 if (ret)
933                         goto out_w_error;
934                 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
935                                     mirror_num, 0);
936         } else {
937                 /*
938                  * kthread helpers are used to submit writes so that
939                  * checksumming can happen in parallel across all CPUs
940                  */
941                 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
942                                           inode, rw, bio, mirror_num, 0,
943                                           bio_offset,
944                                           __btree_submit_bio_start,
945                                           __btree_submit_bio_done);
946         }
947
948         if (ret) {
949 out_w_error:
950                 bio_endio(bio, ret);
951         }
952         return ret;
953 }
954
955 #ifdef CONFIG_MIGRATION
956 static int btree_migratepage(struct address_space *mapping,
957                         struct page *newpage, struct page *page,
958                         enum migrate_mode mode)
959 {
960         /*
961          * we can't safely write a btree page from here,
962          * we haven't done the locking hook
963          */
964         if (PageDirty(page))
965                 return -EAGAIN;
966         /*
967          * Buffers may be managed in a filesystem specific way.
968          * We must have no buffers or drop them.
969          */
970         if (page_has_private(page) &&
971             !try_to_release_page(page, GFP_KERNEL))
972                 return -EAGAIN;
973         return migrate_page(mapping, newpage, page, mode);
974 }
975 #endif
976
977
978 static int btree_writepages(struct address_space *mapping,
979                             struct writeback_control *wbc)
980 {
981         struct extent_io_tree *tree;
982         struct btrfs_fs_info *fs_info;
983         int ret;
984
985         tree = &BTRFS_I(mapping->host)->io_tree;
986         if (wbc->sync_mode == WB_SYNC_NONE) {
987
988                 if (wbc->for_kupdate)
989                         return 0;
990
991                 fs_info = BTRFS_I(mapping->host)->root->fs_info;
992                 /* this is a bit racy, but that's ok */
993                 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
994                                              BTRFS_DIRTY_METADATA_THRESH);
995                 if (ret < 0)
996                         return 0;
997         }
998         return btree_write_cache_pages(mapping, wbc);
999 }
1000
1001 static int btree_readpage(struct file *file, struct page *page)
1002 {
1003         struct extent_io_tree *tree;
1004         tree = &BTRFS_I(page->mapping->host)->io_tree;
1005         return extent_read_full_page(tree, page, btree_get_extent, 0);
1006 }
1007
1008 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1009 {
1010         if (PageWriteback(page) || PageDirty(page))
1011                 return 0;
1012
1013         return try_release_extent_buffer(page);
1014 }
1015
1016 static void btree_invalidatepage(struct page *page, unsigned long offset)
1017 {
1018         struct extent_io_tree *tree;
1019         tree = &BTRFS_I(page->mapping->host)->io_tree;
1020         extent_invalidatepage(tree, page, offset);
1021         btree_releasepage(page, GFP_NOFS);
1022         if (PagePrivate(page)) {
1023                 printk(KERN_WARNING "btrfs warning page private not zero "
1024                        "on page %llu\n", (unsigned long long)page_offset(page));
1025                 ClearPagePrivate(page);
1026                 set_page_private(page, 0);
1027                 page_cache_release(page);
1028         }
1029 }
1030
1031 static int btree_set_page_dirty(struct page *page)
1032 {
1033 #ifdef DEBUG
1034         struct extent_buffer *eb;
1035
1036         BUG_ON(!PagePrivate(page));
1037         eb = (struct extent_buffer *)page->private;
1038         BUG_ON(!eb);
1039         BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1040         BUG_ON(!atomic_read(&eb->refs));
1041         btrfs_assert_tree_locked(eb);
1042 #endif
1043         return __set_page_dirty_nobuffers(page);
1044 }
1045
1046 static const struct address_space_operations btree_aops = {
1047         .readpage       = btree_readpage,
1048         .writepages     = btree_writepages,
1049         .releasepage    = btree_releasepage,
1050         .invalidatepage = btree_invalidatepage,
1051 #ifdef CONFIG_MIGRATION
1052         .migratepage    = btree_migratepage,
1053 #endif
1054         .set_page_dirty = btree_set_page_dirty,
1055 };
1056
1057 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1058                          u64 parent_transid)
1059 {
1060         struct extent_buffer *buf = NULL;
1061         struct inode *btree_inode = root->fs_info->btree_inode;
1062         int ret = 0;
1063
1064         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1065         if (!buf)
1066                 return 0;
1067         read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1068                                  buf, 0, WAIT_NONE, btree_get_extent, 0);
1069         free_extent_buffer(buf);
1070         return ret;
1071 }
1072
1073 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1074                          int mirror_num, struct extent_buffer **eb)
1075 {
1076         struct extent_buffer *buf = NULL;
1077         struct inode *btree_inode = root->fs_info->btree_inode;
1078         struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1079         int ret;
1080
1081         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1082         if (!buf)
1083                 return 0;
1084
1085         set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1086
1087         ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1088                                        btree_get_extent, mirror_num);
1089         if (ret) {
1090                 free_extent_buffer(buf);
1091                 return ret;
1092         }
1093
1094         if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1095                 free_extent_buffer(buf);
1096                 return -EIO;
1097         } else if (extent_buffer_uptodate(buf)) {
1098                 *eb = buf;
1099         } else {
1100                 free_extent_buffer(buf);
1101         }
1102         return 0;
1103 }
1104
1105 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1106                                             u64 bytenr, u32 blocksize)
1107 {
1108         struct inode *btree_inode = root->fs_info->btree_inode;
1109         struct extent_buffer *eb;
1110         eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1111                                 bytenr, blocksize);
1112         return eb;
1113 }
1114
1115 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1116                                                  u64 bytenr, u32 blocksize)
1117 {
1118         struct inode *btree_inode = root->fs_info->btree_inode;
1119         struct extent_buffer *eb;
1120
1121         eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1122                                  bytenr, blocksize);
1123         return eb;
1124 }
1125
1126
1127 int btrfs_write_tree_block(struct extent_buffer *buf)
1128 {
1129         return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1130                                         buf->start + buf->len - 1);
1131 }
1132
1133 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1134 {
1135         return filemap_fdatawait_range(buf->pages[0]->mapping,
1136                                        buf->start, buf->start + buf->len - 1);
1137 }
1138
1139 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1140                                       u32 blocksize, u64 parent_transid)
1141 {
1142         struct extent_buffer *buf = NULL;
1143         int ret;
1144
1145         buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1146         if (!buf)
1147                 return NULL;
1148
1149         ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1150         return buf;
1151
1152 }
1153
1154 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1155                       struct extent_buffer *buf)
1156 {
1157         struct btrfs_fs_info *fs_info = root->fs_info;
1158
1159         if (btrfs_header_generation(buf) ==
1160             fs_info->running_transaction->transid) {
1161                 btrfs_assert_tree_locked(buf);
1162
1163                 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1164                         __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1165                                              -buf->len,
1166                                              fs_info->dirty_metadata_batch);
1167                         /* ugh, clear_extent_buffer_dirty needs to lock the page */
1168                         btrfs_set_lock_blocking(buf);
1169                         clear_extent_buffer_dirty(buf);
1170                 }
1171         }
1172 }
1173
1174 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1175                          u32 stripesize, struct btrfs_root *root,
1176                          struct btrfs_fs_info *fs_info,
1177                          u64 objectid)
1178 {
1179         root->node = NULL;
1180         root->commit_root = NULL;
1181         root->sectorsize = sectorsize;
1182         root->nodesize = nodesize;
1183         root->leafsize = leafsize;
1184         root->stripesize = stripesize;
1185         root->ref_cows = 0;
1186         root->track_dirty = 0;
1187         root->in_radix = 0;
1188         root->orphan_item_inserted = 0;
1189         root->orphan_cleanup_state = 0;
1190
1191         root->objectid = objectid;
1192         root->last_trans = 0;
1193         root->highest_objectid = 0;
1194         root->nr_delalloc_inodes = 0;
1195         root->nr_ordered_extents = 0;
1196         root->name = NULL;
1197         root->inode_tree = RB_ROOT;
1198         INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1199         root->block_rsv = NULL;
1200         root->orphan_block_rsv = NULL;
1201
1202         INIT_LIST_HEAD(&root->dirty_list);
1203         INIT_LIST_HEAD(&root->root_list);
1204         INIT_LIST_HEAD(&root->delalloc_inodes);
1205         INIT_LIST_HEAD(&root->delalloc_root);
1206         INIT_LIST_HEAD(&root->ordered_extents);
1207         INIT_LIST_HEAD(&root->ordered_root);
1208         INIT_LIST_HEAD(&root->logged_list[0]);
1209         INIT_LIST_HEAD(&root->logged_list[1]);
1210         spin_lock_init(&root->orphan_lock);
1211         spin_lock_init(&root->inode_lock);
1212         spin_lock_init(&root->delalloc_lock);
1213         spin_lock_init(&root->ordered_extent_lock);
1214         spin_lock_init(&root->accounting_lock);
1215         spin_lock_init(&root->log_extents_lock[0]);
1216         spin_lock_init(&root->log_extents_lock[1]);
1217         mutex_init(&root->objectid_mutex);
1218         mutex_init(&root->log_mutex);
1219         init_waitqueue_head(&root->log_writer_wait);
1220         init_waitqueue_head(&root->log_commit_wait[0]);
1221         init_waitqueue_head(&root->log_commit_wait[1]);
1222         atomic_set(&root->log_commit[0], 0);
1223         atomic_set(&root->log_commit[1], 0);
1224         atomic_set(&root->log_writers, 0);
1225         atomic_set(&root->log_batch, 0);
1226         atomic_set(&root->orphan_inodes, 0);
1227         atomic_set(&root->refs, 1);
1228         root->log_transid = 0;
1229         root->last_log_commit = 0;
1230         extent_io_tree_init(&root->dirty_log_pages,
1231                              fs_info->btree_inode->i_mapping);
1232
1233         memset(&root->root_key, 0, sizeof(root->root_key));
1234         memset(&root->root_item, 0, sizeof(root->root_item));
1235         memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1236         memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1237         root->defrag_trans_start = fs_info->generation;
1238         init_completion(&root->kobj_unregister);
1239         root->defrag_running = 0;
1240         root->root_key.objectid = objectid;
1241         root->anon_dev = 0;
1242
1243         spin_lock_init(&root->root_item_lock);
1244 }
1245
1246 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1247 {
1248         struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1249         if (root)
1250                 root->fs_info = fs_info;
1251         return root;
1252 }
1253
1254 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1255                                      struct btrfs_fs_info *fs_info,
1256                                      u64 objectid)
1257 {
1258         struct extent_buffer *leaf;
1259         struct btrfs_root *tree_root = fs_info->tree_root;
1260         struct btrfs_root *root;
1261         struct btrfs_key key;
1262         int ret = 0;
1263         u64 bytenr;
1264         uuid_le uuid;
1265
1266         root = btrfs_alloc_root(fs_info);
1267         if (!root)
1268                 return ERR_PTR(-ENOMEM);
1269
1270         __setup_root(tree_root->nodesize, tree_root->leafsize,
1271                      tree_root->sectorsize, tree_root->stripesize,
1272                      root, fs_info, objectid);
1273         root->root_key.objectid = objectid;
1274         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1275         root->root_key.offset = 0;
1276
1277         leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1278                                       0, objectid, NULL, 0, 0, 0);
1279         if (IS_ERR(leaf)) {
1280                 ret = PTR_ERR(leaf);
1281                 leaf = NULL;
1282                 goto fail;
1283         }
1284
1285         bytenr = leaf->start;
1286         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1287         btrfs_set_header_bytenr(leaf, leaf->start);
1288         btrfs_set_header_generation(leaf, trans->transid);
1289         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1290         btrfs_set_header_owner(leaf, objectid);
1291         root->node = leaf;
1292
1293         write_extent_buffer(leaf, fs_info->fsid,
1294                             (unsigned long)btrfs_header_fsid(leaf),
1295                             BTRFS_FSID_SIZE);
1296         write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1297                             (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1298                             BTRFS_UUID_SIZE);
1299         btrfs_mark_buffer_dirty(leaf);
1300
1301         root->commit_root = btrfs_root_node(root);
1302         root->track_dirty = 1;
1303
1304
1305         root->root_item.flags = 0;
1306         root->root_item.byte_limit = 0;
1307         btrfs_set_root_bytenr(&root->root_item, leaf->start);
1308         btrfs_set_root_generation(&root->root_item, trans->transid);
1309         btrfs_set_root_level(&root->root_item, 0);
1310         btrfs_set_root_refs(&root->root_item, 1);
1311         btrfs_set_root_used(&root->root_item, leaf->len);
1312         btrfs_set_root_last_snapshot(&root->root_item, 0);
1313         btrfs_set_root_dirid(&root->root_item, 0);
1314         uuid_le_gen(&uuid);
1315         memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1316         root->root_item.drop_level = 0;
1317
1318         key.objectid = objectid;
1319         key.type = BTRFS_ROOT_ITEM_KEY;
1320         key.offset = 0;
1321         ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1322         if (ret)
1323                 goto fail;
1324
1325         btrfs_tree_unlock(leaf);
1326
1327         return root;
1328
1329 fail:
1330         if (leaf) {
1331                 btrfs_tree_unlock(leaf);
1332                 free_extent_buffer(leaf);
1333         }
1334         kfree(root);
1335
1336         return ERR_PTR(ret);
1337 }
1338
1339 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1340                                          struct btrfs_fs_info *fs_info)
1341 {
1342         struct btrfs_root *root;
1343         struct btrfs_root *tree_root = fs_info->tree_root;
1344         struct extent_buffer *leaf;
1345
1346         root = btrfs_alloc_root(fs_info);
1347         if (!root)
1348                 return ERR_PTR(-ENOMEM);
1349
1350         __setup_root(tree_root->nodesize, tree_root->leafsize,
1351                      tree_root->sectorsize, tree_root->stripesize,
1352                      root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1353
1354         root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1355         root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1356         root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1357         /*
1358          * log trees do not get reference counted because they go away
1359          * before a real commit is actually done.  They do store pointers
1360          * to file data extents, and those reference counts still get
1361          * updated (along with back refs to the log tree).
1362          */
1363         root->ref_cows = 0;
1364
1365         leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1366                                       BTRFS_TREE_LOG_OBJECTID, NULL,
1367                                       0, 0, 0);
1368         if (IS_ERR(leaf)) {
1369                 kfree(root);
1370                 return ERR_CAST(leaf);
1371         }
1372
1373         memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1374         btrfs_set_header_bytenr(leaf, leaf->start);
1375         btrfs_set_header_generation(leaf, trans->transid);
1376         btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1377         btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1378         root->node = leaf;
1379
1380         write_extent_buffer(root->node, root->fs_info->fsid,
1381                             (unsigned long)btrfs_header_fsid(root->node),
1382                             BTRFS_FSID_SIZE);
1383         btrfs_mark_buffer_dirty(root->node);
1384         btrfs_tree_unlock(root->node);
1385         return root;
1386 }
1387
1388 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1389                              struct btrfs_fs_info *fs_info)
1390 {
1391         struct btrfs_root *log_root;
1392
1393         log_root = alloc_log_tree(trans, fs_info);
1394         if (IS_ERR(log_root))
1395                 return PTR_ERR(log_root);
1396         WARN_ON(fs_info->log_root_tree);
1397         fs_info->log_root_tree = log_root;
1398         return 0;
1399 }
1400
1401 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1402                        struct btrfs_root *root)
1403 {
1404         struct btrfs_root *log_root;
1405         struct btrfs_inode_item *inode_item;
1406
1407         log_root = alloc_log_tree(trans, root->fs_info);
1408         if (IS_ERR(log_root))
1409                 return PTR_ERR(log_root);
1410
1411         log_root->last_trans = trans->transid;
1412         log_root->root_key.offset = root->root_key.objectid;
1413
1414         inode_item = &log_root->root_item.inode;
1415         inode_item->generation = cpu_to_le64(1);
1416         inode_item->size = cpu_to_le64(3);
1417         inode_item->nlink = cpu_to_le32(1);
1418         inode_item->nbytes = cpu_to_le64(root->leafsize);
1419         inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1420
1421         btrfs_set_root_node(&log_root->root_item, log_root->node);
1422
1423         WARN_ON(root->log_root);
1424         root->log_root = log_root;
1425         root->log_transid = 0;
1426         root->last_log_commit = 0;
1427         return 0;
1428 }
1429
1430 struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1431                                         struct btrfs_key *key)
1432 {
1433         struct btrfs_root *root;
1434         struct btrfs_fs_info *fs_info = tree_root->fs_info;
1435         struct btrfs_path *path;
1436         u64 generation;
1437         u32 blocksize;
1438         int ret;
1439
1440         path = btrfs_alloc_path();
1441         if (!path)
1442                 return ERR_PTR(-ENOMEM);
1443
1444         root = btrfs_alloc_root(fs_info);
1445         if (!root) {
1446                 ret = -ENOMEM;
1447                 goto alloc_fail;
1448         }
1449
1450         __setup_root(tree_root->nodesize, tree_root->leafsize,
1451                      tree_root->sectorsize, tree_root->stripesize,
1452                      root, fs_info, key->objectid);
1453
1454         ret = btrfs_find_root(tree_root, key, path,
1455                               &root->root_item, &root->root_key);
1456         if (ret) {
1457                 if (ret > 0)
1458                         ret = -ENOENT;
1459                 goto find_fail;
1460         }
1461
1462         generation = btrfs_root_generation(&root->root_item);
1463         blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1464         root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1465                                      blocksize, generation);
1466         if (!root->node) {
1467                 ret = -ENOMEM;
1468                 goto find_fail;
1469         } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1470                 ret = -EIO;
1471                 goto read_fail;
1472         }
1473         root->commit_root = btrfs_root_node(root);
1474 out:
1475         btrfs_free_path(path);
1476         return root;
1477
1478 read_fail:
1479         free_extent_buffer(root->node);
1480 find_fail:
1481         kfree(root);
1482 alloc_fail:
1483         root = ERR_PTR(ret);
1484         goto out;
1485 }
1486
1487 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1488                                       struct btrfs_key *location)
1489 {
1490         struct btrfs_root *root;
1491
1492         root = btrfs_read_tree_root(tree_root, location);
1493         if (IS_ERR(root))
1494                 return root;
1495
1496         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1497                 root->ref_cows = 1;
1498                 btrfs_check_and_init_root_item(&root->root_item);
1499         }
1500
1501         return root;
1502 }
1503
1504 int btrfs_init_fs_root(struct btrfs_root *root)
1505 {
1506         int ret;
1507
1508         root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1509         root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1510                                         GFP_NOFS);
1511         if (!root->free_ino_pinned || !root->free_ino_ctl) {
1512                 ret = -ENOMEM;
1513                 goto fail;
1514         }
1515
1516         btrfs_init_free_ino_ctl(root);
1517         mutex_init(&root->fs_commit_mutex);
1518         spin_lock_init(&root->cache_lock);
1519         init_waitqueue_head(&root->cache_wait);
1520
1521         ret = get_anon_bdev(&root->anon_dev);
1522         if (ret)
1523                 goto fail;
1524         return 0;
1525 fail:
1526         kfree(root->free_ino_ctl);
1527         kfree(root->free_ino_pinned);
1528         return ret;
1529 }
1530
1531 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1532                                         u64 root_id)
1533 {
1534         struct btrfs_root *root;
1535
1536         spin_lock(&fs_info->fs_roots_radix_lock);
1537         root = radix_tree_lookup(&fs_info->fs_roots_radix,
1538                                  (unsigned long)root_id);
1539         spin_unlock(&fs_info->fs_roots_radix_lock);
1540         return root;
1541 }
1542
1543 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1544                          struct btrfs_root *root)
1545 {
1546         int ret;
1547
1548         ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1549         if (ret)
1550                 return ret;
1551
1552         spin_lock(&fs_info->fs_roots_radix_lock);
1553         ret = radix_tree_insert(&fs_info->fs_roots_radix,
1554                                 (unsigned long)root->root_key.objectid,
1555                                 root);
1556         if (ret == 0)
1557                 root->in_radix = 1;
1558         spin_unlock(&fs_info->fs_roots_radix_lock);
1559         radix_tree_preload_end();
1560
1561         return ret;
1562 }
1563
1564 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1565                                               struct btrfs_key *location)
1566 {
1567         struct btrfs_root *root;
1568         int ret;
1569
1570         if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1571                 return fs_info->tree_root;
1572         if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1573                 return fs_info->extent_root;
1574         if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1575                 return fs_info->chunk_root;
1576         if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1577                 return fs_info->dev_root;
1578         if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1579                 return fs_info->csum_root;
1580         if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1581                 return fs_info->quota_root ? fs_info->quota_root :
1582                                              ERR_PTR(-ENOENT);
1583 again:
1584         root = btrfs_lookup_fs_root(fs_info, location->objectid);
1585         if (root)
1586                 return root;
1587
1588         root = btrfs_read_fs_root(fs_info->tree_root, location);
1589         if (IS_ERR(root))
1590                 return root;
1591
1592         if (btrfs_root_refs(&root->root_item) == 0) {
1593                 ret = -ENOENT;
1594                 goto fail;
1595         }
1596
1597         ret = btrfs_init_fs_root(root);
1598         if (ret)
1599                 goto fail;
1600
1601         ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1602         if (ret < 0)
1603                 goto fail;
1604         if (ret == 0)
1605                 root->orphan_item_inserted = 1;
1606
1607         ret = btrfs_insert_fs_root(fs_info, root);
1608         if (ret) {
1609                 if (ret == -EEXIST) {
1610                         free_fs_root(root);
1611                         goto again;
1612                 }
1613                 goto fail;
1614         }
1615         return root;
1616 fail:
1617         free_fs_root(root);
1618         return ERR_PTR(ret);
1619 }
1620
1621 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1622 {
1623         struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1624         int ret = 0;
1625         struct btrfs_device *device;
1626         struct backing_dev_info *bdi;
1627
1628         rcu_read_lock();
1629         list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1630                 if (!device->bdev)
1631                         continue;
1632                 bdi = blk_get_backing_dev_info(device->bdev);
1633                 if (bdi && bdi_congested(bdi, bdi_bits)) {
1634                         ret = 1;
1635                         break;
1636                 }
1637         }
1638         rcu_read_unlock();
1639         return ret;
1640 }
1641
1642 /*
1643  * If this fails, caller must call bdi_destroy() to get rid of the
1644  * bdi again.
1645  */
1646 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1647 {
1648         int err;
1649
1650         bdi->capabilities = BDI_CAP_MAP_COPY;
1651         err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1652         if (err)
1653                 return err;
1654
1655         bdi->ra_pages   = default_backing_dev_info.ra_pages;
1656         bdi->congested_fn       = btrfs_congested_fn;
1657         bdi->congested_data     = info;
1658         return 0;
1659 }
1660
1661 /*
1662  * called by the kthread helper functions to finally call the bio end_io
1663  * functions.  This is where read checksum verification actually happens
1664  */
1665 static void end_workqueue_fn(struct btrfs_work *work)
1666 {
1667         struct bio *bio;
1668         struct end_io_wq *end_io_wq;
1669         struct btrfs_fs_info *fs_info;
1670         int error;
1671
1672         end_io_wq = container_of(work, struct end_io_wq, work);
1673         bio = end_io_wq->bio;
1674         fs_info = end_io_wq->info;
1675
1676         error = end_io_wq->error;
1677         bio->bi_private = end_io_wq->private;
1678         bio->bi_end_io = end_io_wq->end_io;
1679         kfree(end_io_wq);
1680         bio_endio(bio, error);
1681 }
1682
1683 static int cleaner_kthread(void *arg)
1684 {
1685         struct btrfs_root *root = arg;
1686         int again;
1687
1688         do {
1689                 again = 0;
1690
1691                 /* Make the cleaner go to sleep early. */
1692                 if (btrfs_need_cleaner_sleep(root))
1693                         goto sleep;
1694
1695                 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1696                         goto sleep;
1697
1698                 /*
1699                  * Avoid the problem that we change the status of the fs
1700                  * during the above check and trylock.
1701                  */
1702                 if (btrfs_need_cleaner_sleep(root)) {
1703                         mutex_unlock(&root->fs_info->cleaner_mutex);
1704                         goto sleep;
1705                 }
1706
1707                 btrfs_run_delayed_iputs(root);
1708                 again = btrfs_clean_one_deleted_snapshot(root);
1709                 mutex_unlock(&root->fs_info->cleaner_mutex);
1710
1711                 /*
1712                  * The defragger has dealt with the R/O remount and umount,
1713                  * needn't do anything special here.
1714                  */
1715                 btrfs_run_defrag_inodes(root->fs_info);
1716 sleep:
1717                 if (!try_to_freeze() && !again) {
1718                         set_current_state(TASK_INTERRUPTIBLE);
1719                         if (!kthread_should_stop())
1720                                 schedule();
1721                         __set_current_state(TASK_RUNNING);
1722                 }
1723         } while (!kthread_should_stop());
1724         return 0;
1725 }
1726
1727 static int transaction_kthread(void *arg)
1728 {
1729         struct btrfs_root *root = arg;
1730         struct btrfs_trans_handle *trans;
1731         struct btrfs_transaction *cur;
1732         u64 transid;
1733         unsigned long now;
1734         unsigned long delay;
1735         bool cannot_commit;
1736
1737         do {
1738                 cannot_commit = false;
1739                 delay = HZ * 30;
1740                 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1741
1742                 spin_lock(&root->fs_info->trans_lock);
1743                 cur = root->fs_info->running_transaction;
1744                 if (!cur) {
1745                         spin_unlock(&root->fs_info->trans_lock);
1746                         goto sleep;
1747                 }
1748
1749                 now = get_seconds();
1750                 if (!cur->blocked &&
1751                     (now < cur->start_time || now - cur->start_time < 30)) {
1752                         spin_unlock(&root->fs_info->trans_lock);
1753                         delay = HZ * 5;
1754                         goto sleep;
1755                 }
1756                 transid = cur->transid;
1757                 spin_unlock(&root->fs_info->trans_lock);
1758
1759                 /* If the file system is aborted, this will always fail. */
1760                 trans = btrfs_attach_transaction(root);
1761                 if (IS_ERR(trans)) {
1762                         if (PTR_ERR(trans) != -ENOENT)
1763                                 cannot_commit = true;
1764                         goto sleep;
1765                 }
1766                 if (transid == trans->transid) {
1767                         btrfs_commit_transaction(trans, root);
1768                 } else {
1769                         btrfs_end_transaction(trans, root);
1770                 }
1771 sleep:
1772                 wake_up_process(root->fs_info->cleaner_kthread);
1773                 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1774
1775                 if (!try_to_freeze()) {
1776                         set_current_state(TASK_INTERRUPTIBLE);
1777                         if (!kthread_should_stop() &&
1778                             (!btrfs_transaction_blocked(root->fs_info) ||
1779                              cannot_commit))
1780                                 schedule_timeout(delay);
1781                         __set_current_state(TASK_RUNNING);
1782                 }
1783         } while (!kthread_should_stop());
1784         return 0;
1785 }
1786
1787 /*
1788  * this will find the highest generation in the array of
1789  * root backups.  The index of the highest array is returned,
1790  * or -1 if we can't find anything.
1791  *
1792  * We check to make sure the array is valid by comparing the
1793  * generation of the latest  root in the array with the generation
1794  * in the super block.  If they don't match we pitch it.
1795  */
1796 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1797 {
1798         u64 cur;
1799         int newest_index = -1;
1800         struct btrfs_root_backup *root_backup;
1801         int i;
1802
1803         for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1804                 root_backup = info->super_copy->super_roots + i;
1805                 cur = btrfs_backup_tree_root_gen(root_backup);
1806                 if (cur == newest_gen)
1807                         newest_index = i;
1808         }
1809
1810         /* check to see if we actually wrapped around */
1811         if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1812                 root_backup = info->super_copy->super_roots;
1813                 cur = btrfs_backup_tree_root_gen(root_backup);
1814                 if (cur == newest_gen)
1815                         newest_index = 0;
1816         }
1817         return newest_index;
1818 }
1819
1820
1821 /*
1822  * find the oldest backup so we know where to store new entries
1823  * in the backup array.  This will set the backup_root_index
1824  * field in the fs_info struct
1825  */
1826 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1827                                      u64 newest_gen)
1828 {
1829         int newest_index = -1;
1830
1831         newest_index = find_newest_super_backup(info, newest_gen);
1832         /* if there was garbage in there, just move along */
1833         if (newest_index == -1) {
1834                 info->backup_root_index = 0;
1835         } else {
1836                 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1837         }
1838 }
1839
1840 /*
1841  * copy all the root pointers into the super backup array.
1842  * this will bump the backup pointer by one when it is
1843  * done
1844  */
1845 static void backup_super_roots(struct btrfs_fs_info *info)
1846 {
1847         int next_backup;
1848         struct btrfs_root_backup *root_backup;
1849         int last_backup;
1850
1851         next_backup = info->backup_root_index;
1852         last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1853                 BTRFS_NUM_BACKUP_ROOTS;
1854
1855         /*
1856          * just overwrite the last backup if we're at the same generation
1857          * this happens only at umount
1858          */
1859         root_backup = info->super_for_commit->super_roots + last_backup;
1860         if (btrfs_backup_tree_root_gen(root_backup) ==
1861             btrfs_header_generation(info->tree_root->node))
1862                 next_backup = last_backup;
1863
1864         root_backup = info->super_for_commit->super_roots + next_backup;
1865
1866         /*
1867          * make sure all of our padding and empty slots get zero filled
1868          * regardless of which ones we use today
1869          */
1870         memset(root_backup, 0, sizeof(*root_backup));
1871
1872         info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1873
1874         btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1875         btrfs_set_backup_tree_root_gen(root_backup,
1876                                btrfs_header_generation(info->tree_root->node));
1877
1878         btrfs_set_backup_tree_root_level(root_backup,
1879                                btrfs_header_level(info->tree_root->node));
1880
1881         btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1882         btrfs_set_backup_chunk_root_gen(root_backup,
1883                                btrfs_header_generation(info->chunk_root->node));
1884         btrfs_set_backup_chunk_root_level(root_backup,
1885                                btrfs_header_level(info->chunk_root->node));
1886
1887         btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1888         btrfs_set_backup_extent_root_gen(root_backup,
1889                                btrfs_header_generation(info->extent_root->node));
1890         btrfs_set_backup_extent_root_level(root_backup,
1891                                btrfs_header_level(info->extent_root->node));
1892
1893         /*
1894          * we might commit during log recovery, which happens before we set
1895          * the fs_root.  Make sure it is valid before we fill it in.
1896          */
1897         if (info->fs_root && info->fs_root->node) {
1898                 btrfs_set_backup_fs_root(root_backup,
1899                                          info->fs_root->node->start);
1900                 btrfs_set_backup_fs_root_gen(root_backup,
1901                                btrfs_header_generation(info->fs_root->node));
1902                 btrfs_set_backup_fs_root_level(root_backup,
1903                                btrfs_header_level(info->fs_root->node));
1904         }
1905
1906         btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1907         btrfs_set_backup_dev_root_gen(root_backup,
1908                                btrfs_header_generation(info->dev_root->node));
1909         btrfs_set_backup_dev_root_level(root_backup,
1910                                        btrfs_header_level(info->dev_root->node));
1911
1912         btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1913         btrfs_set_backup_csum_root_gen(root_backup,
1914                                btrfs_header_generation(info->csum_root->node));
1915         btrfs_set_backup_csum_root_level(root_backup,
1916                                btrfs_header_level(info->csum_root->node));
1917
1918         btrfs_set_backup_total_bytes(root_backup,
1919                              btrfs_super_total_bytes(info->super_copy));
1920         btrfs_set_backup_bytes_used(root_backup,
1921                              btrfs_super_bytes_used(info->super_copy));
1922         btrfs_set_backup_num_devices(root_backup,
1923                              btrfs_super_num_devices(info->super_copy));
1924
1925         /*
1926          * if we don't copy this out to the super_copy, it won't get remembered
1927          * for the next commit
1928          */
1929         memcpy(&info->super_copy->super_roots,
1930                &info->super_for_commit->super_roots,
1931                sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1932 }
1933
1934 /*
1935  * this copies info out of the root backup array and back into
1936  * the in-memory super block.  It is meant to help iterate through
1937  * the array, so you send it the number of backups you've already
1938  * tried and the last backup index you used.
1939  *
1940  * this returns -1 when it has tried all the backups
1941  */
1942 static noinline int next_root_backup(struct btrfs_fs_info *info,
1943                                      struct btrfs_super_block *super,
1944                                      int *num_backups_tried, int *backup_index)
1945 {
1946         struct btrfs_root_backup *root_backup;
1947         int newest = *backup_index;
1948
1949         if (*num_backups_tried == 0) {
1950                 u64 gen = btrfs_super_generation(super);
1951
1952                 newest = find_newest_super_backup(info, gen);
1953                 if (newest == -1)
1954                         return -1;
1955
1956                 *backup_index = newest;
1957                 *num_backups_tried = 1;
1958         } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1959                 /* we've tried all the backups, all done */
1960                 return -1;
1961         } else {
1962                 /* jump to the next oldest backup */
1963                 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1964                         BTRFS_NUM_BACKUP_ROOTS;
1965                 *backup_index = newest;
1966                 *num_backups_tried += 1;
1967         }
1968         root_backup = super->super_roots + newest;
1969
1970         btrfs_set_super_generation(super,
1971                                    btrfs_backup_tree_root_gen(root_backup));
1972         btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1973         btrfs_set_super_root_level(super,
1974                                    btrfs_backup_tree_root_level(root_backup));
1975         btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1976
1977         /*
1978          * fixme: the total bytes and num_devices need to match or we should
1979          * need a fsck
1980          */
1981         btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1982         btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1983         return 0;
1984 }
1985
1986 /* helper to cleanup workers */
1987 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1988 {
1989         btrfs_stop_workers(&fs_info->generic_worker);
1990         btrfs_stop_workers(&fs_info->fixup_workers);
1991         btrfs_stop_workers(&fs_info->delalloc_workers);
1992         btrfs_stop_workers(&fs_info->workers);
1993         btrfs_stop_workers(&fs_info->endio_workers);
1994         btrfs_stop_workers(&fs_info->endio_meta_workers);
1995         btrfs_stop_workers(&fs_info->endio_raid56_workers);
1996         btrfs_stop_workers(&fs_info->rmw_workers);
1997         btrfs_stop_workers(&fs_info->endio_meta_write_workers);
1998         btrfs_stop_workers(&fs_info->endio_write_workers);
1999         btrfs_stop_workers(&fs_info->endio_freespace_worker);
2000         btrfs_stop_workers(&fs_info->submit_workers);
2001         btrfs_stop_workers(&fs_info->delayed_workers);
2002         btrfs_stop_workers(&fs_info->caching_workers);
2003         btrfs_stop_workers(&fs_info->readahead_workers);
2004         btrfs_stop_workers(&fs_info->flush_workers);
2005         btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
2006 }
2007
2008 /* helper to cleanup tree roots */
2009 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2010 {
2011         free_extent_buffer(info->tree_root->node);
2012         free_extent_buffer(info->tree_root->commit_root);
2013         info->tree_root->node = NULL;
2014         info->tree_root->commit_root = NULL;
2015
2016         if (info->dev_root) {
2017                 free_extent_buffer(info->dev_root->node);
2018                 free_extent_buffer(info->dev_root->commit_root);
2019                 info->dev_root->node = NULL;
2020                 info->dev_root->commit_root = NULL;
2021         }
2022         if (info->extent_root) {
2023                 free_extent_buffer(info->extent_root->node);
2024                 free_extent_buffer(info->extent_root->commit_root);
2025                 info->extent_root->node = NULL;
2026                 info->extent_root->commit_root = NULL;
2027         }
2028         if (info->csum_root) {
2029                 free_extent_buffer(info->csum_root->node);
2030                 free_extent_buffer(info->csum_root->commit_root);
2031                 info->csum_root->node = NULL;
2032                 info->csum_root->commit_root = NULL;
2033         }
2034         if (info->quota_root) {
2035                 free_extent_buffer(info->quota_root->node);
2036                 free_extent_buffer(info->quota_root->commit_root);
2037                 info->quota_root->node = NULL;
2038                 info->quota_root->commit_root = NULL;
2039         }
2040         if (chunk_root) {
2041                 free_extent_buffer(info->chunk_root->node);
2042                 free_extent_buffer(info->chunk_root->commit_root);
2043                 info->chunk_root->node = NULL;
2044                 info->chunk_root->commit_root = NULL;
2045         }
2046 }
2047
2048 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2049 {
2050         int ret;
2051         struct btrfs_root *gang[8];
2052         int i;
2053
2054         while (!list_empty(&fs_info->dead_roots)) {
2055                 gang[0] = list_entry(fs_info->dead_roots.next,
2056                                      struct btrfs_root, root_list);
2057                 list_del(&gang[0]->root_list);
2058
2059                 if (gang[0]->in_radix) {
2060                         btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2061                 } else {
2062                         free_extent_buffer(gang[0]->node);
2063                         free_extent_buffer(gang[0]->commit_root);
2064                         btrfs_put_fs_root(gang[0]);
2065                 }
2066         }
2067
2068         while (1) {
2069                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2070                                              (void **)gang, 0,
2071                                              ARRAY_SIZE(gang));
2072                 if (!ret)
2073                         break;
2074                 for (i = 0; i < ret; i++)
2075                         btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2076         }
2077 }
2078
2079 int open_ctree(struct super_block *sb,
2080                struct btrfs_fs_devices *fs_devices,
2081                char *options)
2082 {
2083         u32 sectorsize;
2084         u32 nodesize;
2085         u32 leafsize;
2086         u32 blocksize;
2087         u32 stripesize;
2088         u64 generation;
2089         u64 features;
2090         struct btrfs_key location;
2091         struct buffer_head *bh;
2092         struct btrfs_super_block *disk_super;
2093         struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2094         struct btrfs_root *tree_root;
2095         struct btrfs_root *extent_root;
2096         struct btrfs_root *csum_root;
2097         struct btrfs_root *chunk_root;
2098         struct btrfs_root *dev_root;
2099         struct btrfs_root *quota_root;
2100         struct btrfs_root *log_tree_root;
2101         int ret;
2102         int err = -EINVAL;
2103         int num_backups_tried = 0;
2104         int backup_index = 0;
2105
2106         tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2107         chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2108         if (!tree_root || !chunk_root) {
2109                 err = -ENOMEM;
2110                 goto fail;
2111         }
2112
2113         ret = init_srcu_struct(&fs_info->subvol_srcu);
2114         if (ret) {
2115                 err = ret;
2116                 goto fail;
2117         }
2118
2119         ret = setup_bdi(fs_info, &fs_info->bdi);
2120         if (ret) {
2121                 err = ret;
2122                 goto fail_srcu;
2123         }
2124
2125         ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2126         if (ret) {
2127                 err = ret;
2128                 goto fail_bdi;
2129         }
2130         fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2131                                         (1 + ilog2(nr_cpu_ids));
2132
2133         ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2134         if (ret) {
2135                 err = ret;
2136                 goto fail_dirty_metadata_bytes;
2137         }
2138
2139         fs_info->btree_inode = new_inode(sb);
2140         if (!fs_info->btree_inode) {
2141                 err = -ENOMEM;
2142                 goto fail_delalloc_bytes;
2143         }
2144
2145         mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2146
2147         INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2148         INIT_LIST_HEAD(&fs_info->trans_list);
2149         INIT_LIST_HEAD(&fs_info->dead_roots);
2150         INIT_LIST_HEAD(&fs_info->delayed_iputs);
2151         INIT_LIST_HEAD(&fs_info->delalloc_roots);
2152         INIT_LIST_HEAD(&fs_info->caching_block_groups);
2153         spin_lock_init(&fs_info->delalloc_root_lock);
2154         spin_lock_init(&fs_info->trans_lock);
2155         spin_lock_init(&fs_info->fs_roots_radix_lock);
2156         spin_lock_init(&fs_info->delayed_iput_lock);
2157         spin_lock_init(&fs_info->defrag_inodes_lock);
2158         spin_lock_init(&fs_info->free_chunk_lock);
2159         spin_lock_init(&fs_info->tree_mod_seq_lock);
2160         spin_lock_init(&fs_info->super_lock);
2161         rwlock_init(&fs_info->tree_mod_log_lock);
2162         mutex_init(&fs_info->reloc_mutex);
2163         seqlock_init(&fs_info->profiles_lock);
2164
2165         init_completion(&fs_info->kobj_unregister);
2166         INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2167         INIT_LIST_HEAD(&fs_info->space_info);
2168         INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2169         btrfs_mapping_init(&fs_info->mapping_tree);
2170         btrfs_init_block_rsv(&fs_info->global_block_rsv,
2171                              BTRFS_BLOCK_RSV_GLOBAL);
2172         btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2173                              BTRFS_BLOCK_RSV_DELALLOC);
2174         btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2175         btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2176         btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2177         btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2178                              BTRFS_BLOCK_RSV_DELOPS);
2179         atomic_set(&fs_info->nr_async_submits, 0);
2180         atomic_set(&fs_info->async_delalloc_pages, 0);
2181         atomic_set(&fs_info->async_submit_draining, 0);
2182         atomic_set(&fs_info->nr_async_bios, 0);
2183         atomic_set(&fs_info->defrag_running, 0);
2184         atomic64_set(&fs_info->tree_mod_seq, 0);
2185         fs_info->sb = sb;
2186         fs_info->max_inline = 8192 * 1024;
2187         fs_info->metadata_ratio = 0;
2188         fs_info->defrag_inodes = RB_ROOT;
2189         fs_info->trans_no_join = 0;
2190         fs_info->free_chunk_space = 0;
2191         fs_info->tree_mod_log = RB_ROOT;
2192
2193         /* readahead state */
2194         INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2195         spin_lock_init(&fs_info->reada_lock);
2196
2197         fs_info->thread_pool_size = min_t(unsigned long,
2198                                           num_online_cpus() + 2, 8);
2199
2200         INIT_LIST_HEAD(&fs_info->ordered_roots);
2201         spin_lock_init(&fs_info->ordered_root_lock);
2202         fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2203                                         GFP_NOFS);
2204         if (!fs_info->delayed_root) {
2205                 err = -ENOMEM;
2206                 goto fail_iput;
2207         }
2208         btrfs_init_delayed_root(fs_info->delayed_root);
2209
2210         mutex_init(&fs_info->scrub_lock);
2211         atomic_set(&fs_info->scrubs_running, 0);
2212         atomic_set(&fs_info->scrub_pause_req, 0);
2213         atomic_set(&fs_info->scrubs_paused, 0);
2214         atomic_set(&fs_info->scrub_cancel_req, 0);
2215         init_waitqueue_head(&fs_info->scrub_pause_wait);
2216         init_rwsem(&fs_info->scrub_super_lock);
2217         fs_info->scrub_workers_refcnt = 0;
2218 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2219         fs_info->check_integrity_print_mask = 0;
2220 #endif
2221
2222         spin_lock_init(&fs_info->balance_lock);
2223         mutex_init(&fs_info->balance_mutex);
2224         atomic_set(&fs_info->balance_running, 0);
2225         atomic_set(&fs_info->balance_pause_req, 0);
2226         atomic_set(&fs_info->balance_cancel_req, 0);
2227         fs_info->balance_ctl = NULL;
2228         init_waitqueue_head(&fs_info->balance_wait_q);
2229
2230         sb->s_blocksize = 4096;
2231         sb->s_blocksize_bits = blksize_bits(4096);
2232         sb->s_bdi = &fs_info->bdi;
2233
2234         fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2235         set_nlink(fs_info->btree_inode, 1);
2236         /*
2237          * we set the i_size on the btree inode to the max possible int.
2238          * the real end of the address space is determined by all of
2239          * the devices in the system
2240          */
2241         fs_info->btree_inode->i_size = OFFSET_MAX;
2242         fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2243         fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2244
2245         RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2246         extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2247                              fs_info->btree_inode->i_mapping);
2248         BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2249         extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2250
2251         BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2252
2253         BTRFS_I(fs_info->btree_inode)->root = tree_root;
2254         memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2255                sizeof(struct btrfs_key));
2256         set_bit(BTRFS_INODE_DUMMY,
2257                 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2258         insert_inode_hash(fs_info->btree_inode);
2259
2260         spin_lock_init(&fs_info->block_group_cache_lock);
2261         fs_info->block_group_cache_tree = RB_ROOT;
2262         fs_info->first_logical_byte = (u64)-1;
2263
2264         extent_io_tree_init(&fs_info->freed_extents[0],
2265                              fs_info->btree_inode->i_mapping);
2266         extent_io_tree_init(&fs_info->freed_extents[1],
2267                              fs_info->btree_inode->i_mapping);
2268         fs_info->pinned_extents = &fs_info->freed_extents[0];
2269         fs_info->do_barriers = 1;
2270
2271
2272         mutex_init(&fs_info->ordered_operations_mutex);
2273         mutex_init(&fs_info->tree_log_mutex);
2274         mutex_init(&fs_info->chunk_mutex);
2275         mutex_init(&fs_info->transaction_kthread_mutex);
2276         mutex_init(&fs_info->cleaner_mutex);
2277         mutex_init(&fs_info->volume_mutex);
2278         init_rwsem(&fs_info->extent_commit_sem);
2279         init_rwsem(&fs_info->cleanup_work_sem);
2280         init_rwsem(&fs_info->subvol_sem);
2281         fs_info->dev_replace.lock_owner = 0;
2282         atomic_set(&fs_info->dev_replace.nesting_level, 0);
2283         mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2284         mutex_init(&fs_info->dev_replace.lock_management_lock);
2285         mutex_init(&fs_info->dev_replace.lock);
2286
2287         spin_lock_init(&fs_info->qgroup_lock);
2288         mutex_init(&fs_info->qgroup_ioctl_lock);
2289         fs_info->qgroup_tree = RB_ROOT;
2290         INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2291         fs_info->qgroup_seq = 1;
2292         fs_info->quota_enabled = 0;
2293         fs_info->pending_quota_state = 0;
2294         fs_info->qgroup_ulist = NULL;
2295         mutex_init(&fs_info->qgroup_rescan_lock);
2296
2297         btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2298         btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2299
2300         init_waitqueue_head(&fs_info->transaction_throttle);
2301         init_waitqueue_head(&fs_info->transaction_wait);
2302         init_waitqueue_head(&fs_info->transaction_blocked_wait);
2303         init_waitqueue_head(&fs_info->async_submit_wait);
2304
2305         ret = btrfs_alloc_stripe_hash_table(fs_info);
2306         if (ret) {
2307                 err = ret;
2308                 goto fail_alloc;
2309         }
2310
2311         __setup_root(4096, 4096, 4096, 4096, tree_root,
2312                      fs_info, BTRFS_ROOT_TREE_OBJECTID);
2313
2314         invalidate_bdev(fs_devices->latest_bdev);
2315
2316         /*
2317          * Read super block and check the signature bytes only
2318          */
2319         bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2320         if (!bh) {
2321                 err = -EINVAL;
2322                 goto fail_alloc;
2323         }
2324
2325         /*
2326          * We want to check superblock checksum, the type is stored inside.
2327          * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2328          */
2329         if (btrfs_check_super_csum(bh->b_data)) {
2330                 printk(KERN_ERR "btrfs: superblock checksum mismatch\n");
2331                 err = -EINVAL;
2332                 goto fail_alloc;
2333         }
2334
2335         /*
2336          * super_copy is zeroed at allocation time and we never touch the
2337          * following bytes up to INFO_SIZE, the checksum is calculated from
2338          * the whole block of INFO_SIZE
2339          */
2340         memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2341         memcpy(fs_info->super_for_commit, fs_info->super_copy,
2342                sizeof(*fs_info->super_for_commit));
2343         brelse(bh);
2344
2345         memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2346
2347         ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2348         if (ret) {
2349                 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2350                 err = -EINVAL;
2351                 goto fail_alloc;
2352         }
2353
2354         disk_super = fs_info->super_copy;
2355         if (!btrfs_super_root(disk_super))
2356                 goto fail_alloc;
2357
2358         /* check FS state, whether FS is broken. */
2359         if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2360                 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2361
2362         /*
2363          * run through our array of backup supers and setup
2364          * our ring pointer to the oldest one
2365          */
2366         generation = btrfs_super_generation(disk_super);
2367         find_oldest_super_backup(fs_info, generation);
2368
2369         /*
2370          * In the long term, we'll store the compression type in the super
2371          * block, and it'll be used for per file compression control.
2372          */
2373         fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2374
2375         ret = btrfs_parse_options(tree_root, options);
2376         if (ret) {
2377                 err = ret;
2378                 goto fail_alloc;
2379         }
2380
2381         features = btrfs_super_incompat_flags(disk_super) &
2382                 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2383         if (features) {
2384                 printk(KERN_ERR "BTRFS: couldn't mount because of "
2385                        "unsupported optional features (%Lx).\n",
2386                        (unsigned long long)features);
2387                 err = -EINVAL;
2388                 goto fail_alloc;
2389         }
2390
2391         if (btrfs_super_leafsize(disk_super) !=
2392             btrfs_super_nodesize(disk_super)) {
2393                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2394                        "blocksizes don't match.  node %d leaf %d\n",
2395                        btrfs_super_nodesize(disk_super),
2396                        btrfs_super_leafsize(disk_super));
2397                 err = -EINVAL;
2398                 goto fail_alloc;
2399         }
2400         if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2401                 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2402                        "blocksize (%d) was too large\n",
2403                        btrfs_super_leafsize(disk_super));
2404                 err = -EINVAL;
2405                 goto fail_alloc;
2406         }
2407
2408         features = btrfs_super_incompat_flags(disk_super);
2409         features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2410         if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2411                 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2412
2413         if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2414                 printk(KERN_ERR "btrfs: has skinny extents\n");
2415
2416         /*
2417          * flag our filesystem as having big metadata blocks if
2418          * they are bigger than the page size
2419          */
2420         if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2421                 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2422                         printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2423                 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2424         }
2425
2426         nodesize = btrfs_super_nodesize(disk_super);
2427         leafsize = btrfs_super_leafsize(disk_super);
2428         sectorsize = btrfs_super_sectorsize(disk_super);
2429         stripesize = btrfs_super_stripesize(disk_super);
2430         fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
2431         fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2432
2433         /*
2434          * mixed block groups end up with duplicate but slightly offset
2435          * extent buffers for the same range.  It leads to corruptions
2436          */
2437         if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2438             (sectorsize != leafsize)) {
2439                 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2440                                 "are not allowed for mixed block groups on %s\n",
2441                                 sb->s_id);
2442                 goto fail_alloc;
2443         }
2444
2445         /*
2446          * Needn't use the lock because there is no other task which will
2447          * update the flag.
2448          */
2449         btrfs_set_super_incompat_flags(disk_super, features);
2450
2451         features = btrfs_super_compat_ro_flags(disk_super) &
2452                 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2453         if (!(sb->s_flags & MS_RDONLY) && features) {
2454                 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2455                        "unsupported option features (%Lx).\n",
2456                        (unsigned long long)features);
2457                 err = -EINVAL;
2458                 goto fail_alloc;
2459         }
2460
2461         btrfs_init_workers(&fs_info->generic_worker,
2462                            "genwork", 1, NULL);
2463
2464         btrfs_init_workers(&fs_info->workers, "worker",
2465                            fs_info->thread_pool_size,
2466                            &fs_info->generic_worker);
2467
2468         btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2469                            fs_info->thread_pool_size,
2470                            &fs_info->generic_worker);
2471
2472         btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2473                            fs_info->thread_pool_size,
2474                            &fs_info->generic_worker);
2475
2476         btrfs_init_workers(&fs_info->submit_workers, "submit",
2477                            min_t(u64, fs_devices->num_devices,
2478                            fs_info->thread_pool_size),
2479                            &fs_info->generic_worker);
2480
2481         btrfs_init_workers(&fs_info->caching_workers, "cache",
2482                            2, &fs_info->generic_worker);
2483
2484         /* a higher idle thresh on the submit workers makes it much more
2485          * likely that bios will be send down in a sane order to the
2486          * devices
2487          */
2488         fs_info->submit_workers.idle_thresh = 64;
2489
2490         fs_info->workers.idle_thresh = 16;
2491         fs_info->workers.ordered = 1;
2492
2493         fs_info->delalloc_workers.idle_thresh = 2;
2494         fs_info->delalloc_workers.ordered = 1;
2495
2496         btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2497                            &fs_info->generic_worker);
2498         btrfs_init_workers(&fs_info->endio_workers, "endio",
2499                            fs_info->thread_pool_size,
2500                            &fs_info->generic_worker);
2501         btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2502                            fs_info->thread_pool_size,
2503                            &fs_info->generic_worker);
2504         btrfs_init_workers(&fs_info->endio_meta_write_workers,
2505                            "endio-meta-write", fs_info->thread_pool_size,
2506                            &fs_info->generic_worker);
2507         btrfs_init_workers(&fs_info->endio_raid56_workers,
2508                            "endio-raid56", fs_info->thread_pool_size,
2509                            &fs_info->generic_worker);
2510         btrfs_init_workers(&fs_info->rmw_workers,
2511                            "rmw", fs_info->thread_pool_size,
2512                            &fs_info->generic_worker);
2513         btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2514                            fs_info->thread_pool_size,
2515                            &fs_info->generic_worker);
2516         btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2517                            1, &fs_info->generic_worker);
2518         btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2519                            fs_info->thread_pool_size,
2520                            &fs_info->generic_worker);
2521         btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2522                            fs_info->thread_pool_size,
2523                            &fs_info->generic_worker);
2524         btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
2525                            &fs_info->generic_worker);
2526
2527         /*
2528          * endios are largely parallel and should have a very
2529          * low idle thresh
2530          */
2531         fs_info->endio_workers.idle_thresh = 4;
2532         fs_info->endio_meta_workers.idle_thresh = 4;
2533         fs_info->endio_raid56_workers.idle_thresh = 4;
2534         fs_info->rmw_workers.idle_thresh = 2;
2535
2536         fs_info->endio_write_workers.idle_thresh = 2;
2537         fs_info->endio_meta_write_workers.idle_thresh = 2;
2538         fs_info->readahead_workers.idle_thresh = 2;
2539
2540         /*
2541          * btrfs_start_workers can really only fail because of ENOMEM so just
2542          * return -ENOMEM if any of these fail.
2543          */
2544         ret = btrfs_start_workers(&fs_info->workers);
2545         ret |= btrfs_start_workers(&fs_info->generic_worker);
2546         ret |= btrfs_start_workers(&fs_info->submit_workers);
2547         ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2548         ret |= btrfs_start_workers(&fs_info->fixup_workers);
2549         ret |= btrfs_start_workers(&fs_info->endio_workers);
2550         ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2551         ret |= btrfs_start_workers(&fs_info->rmw_workers);
2552         ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
2553         ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2554         ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2555         ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2556         ret |= btrfs_start_workers(&fs_info->delayed_workers);
2557         ret |= btrfs_start_workers(&fs_info->caching_workers);
2558         ret |= btrfs_start_workers(&fs_info->readahead_workers);
2559         ret |= btrfs_start_workers(&fs_info->flush_workers);
2560         ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
2561         if (ret) {
2562                 err = -ENOMEM;
2563                 goto fail_sb_buffer;
2564         }
2565
2566         fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2567         fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2568                                     4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2569
2570         tree_root->nodesize = nodesize;
2571         tree_root->leafsize = leafsize;
2572         tree_root->sectorsize = sectorsize;
2573         tree_root->stripesize = stripesize;
2574
2575         sb->s_blocksize = sectorsize;
2576         sb->s_blocksize_bits = blksize_bits(sectorsize);
2577
2578         if (disk_super->magic != cpu_to_le64(BTRFS_MAGIC)) {
2579                 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2580                 goto fail_sb_buffer;
2581         }
2582
2583         if (sectorsize != PAGE_SIZE) {
2584                 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2585                        "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2586                 goto fail_sb_buffer;
2587         }
2588
2589         mutex_lock(&fs_info->chunk_mutex);
2590         ret = btrfs_read_sys_array(tree_root);
2591         mutex_unlock(&fs_info->chunk_mutex);
2592         if (ret) {
2593                 printk(KERN_WARNING "btrfs: failed to read the system "
2594                        "array on %s\n", sb->s_id);
2595                 goto fail_sb_buffer;
2596         }
2597
2598         blocksize = btrfs_level_size(tree_root,
2599                                      btrfs_super_chunk_root_level(disk_super));
2600         generation = btrfs_super_chunk_root_generation(disk_super);
2601
2602         __setup_root(nodesize, leafsize, sectorsize, stripesize,
2603                      chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2604
2605         chunk_root->node = read_tree_block(chunk_root,
2606                                            btrfs_super_chunk_root(disk_super),
2607                                            blocksize, generation);
2608         if (!chunk_root->node ||
2609             !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2610                 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2611                        sb->s_id);
2612                 goto fail_tree_roots;
2613         }
2614         btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2615         chunk_root->commit_root = btrfs_root_node(chunk_root);
2616
2617         read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2618            (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2619            BTRFS_UUID_SIZE);
2620
2621         ret = btrfs_read_chunk_tree(chunk_root);
2622         if (ret) {
2623                 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2624                        sb->s_id);
2625                 goto fail_tree_roots;
2626         }
2627
2628         /*
2629          * keep the device that is marked to be the target device for the
2630          * dev_replace procedure
2631          */
2632         btrfs_close_extra_devices(fs_info, fs_devices, 0);
2633
2634         if (!fs_devices->latest_bdev) {
2635                 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2636                        sb->s_id);
2637                 goto fail_tree_roots;
2638         }
2639
2640 retry_root_backup:
2641         blocksize = btrfs_level_size(tree_root,
2642                                      btrfs_super_root_level(disk_super));
2643         generation = btrfs_super_generation(disk_super);
2644
2645         tree_root->node = read_tree_block(tree_root,
2646                                           btrfs_super_root(disk_super),
2647                                           blocksize, generation);
2648         if (!tree_root->node ||
2649             !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2650                 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2651                        sb->s_id);
2652
2653                 goto recovery_tree_root;
2654         }
2655
2656         btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2657         tree_root->commit_root = btrfs_root_node(tree_root);
2658
2659         location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2660         location.type = BTRFS_ROOT_ITEM_KEY;
2661         location.offset = 0;
2662
2663         extent_root = btrfs_read_tree_root(tree_root, &location);
2664         if (IS_ERR(extent_root)) {
2665                 ret = PTR_ERR(extent_root);
2666                 goto recovery_tree_root;
2667         }
2668         extent_root->track_dirty = 1;
2669         fs_info->extent_root = extent_root;
2670
2671         location.objectid = BTRFS_DEV_TREE_OBJECTID;
2672         dev_root = btrfs_read_tree_root(tree_root, &location);
2673         if (IS_ERR(dev_root)) {
2674                 ret = PTR_ERR(dev_root);
2675                 goto recovery_tree_root;
2676         }
2677         dev_root->track_dirty = 1;
2678         fs_info->dev_root = dev_root;
2679         btrfs_init_devices_late(fs_info);
2680
2681         location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2682         csum_root = btrfs_read_tree_root(tree_root, &location);
2683         if (IS_ERR(csum_root)) {
2684                 ret = PTR_ERR(csum_root);
2685                 goto recovery_tree_root;
2686         }
2687         csum_root->track_dirty = 1;
2688         fs_info->csum_root = csum_root;
2689
2690         location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2691         quota_root = btrfs_read_tree_root(tree_root, &location);
2692         if (!IS_ERR(quota_root)) {
2693                 quota_root->track_dirty = 1;
2694                 fs_info->quota_enabled = 1;
2695                 fs_info->pending_quota_state = 1;
2696                 fs_info->quota_root = quota_root;
2697         }
2698
2699         fs_info->generation = generation;
2700         fs_info->last_trans_committed = generation;
2701
2702         ret = btrfs_recover_balance(fs_info);
2703         if (ret) {
2704                 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2705                 goto fail_block_groups;
2706         }
2707
2708         ret = btrfs_init_dev_stats(fs_info);
2709         if (ret) {
2710                 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2711                        ret);
2712                 goto fail_block_groups;
2713         }
2714
2715         ret = btrfs_init_dev_replace(fs_info);
2716         if (ret) {
2717                 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2718                 goto fail_block_groups;
2719         }
2720
2721         btrfs_close_extra_devices(fs_info, fs_devices, 1);
2722
2723         ret = btrfs_init_space_info(fs_info);
2724         if (ret) {
2725                 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2726                 goto fail_block_groups;
2727         }
2728
2729         ret = btrfs_read_block_groups(extent_root);
2730         if (ret) {
2731                 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2732                 goto fail_block_groups;
2733         }
2734         fs_info->num_tolerated_disk_barrier_failures =
2735                 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2736         if (fs_info->fs_devices->missing_devices >
2737              fs_info->num_tolerated_disk_barrier_failures &&
2738             !(sb->s_flags & MS_RDONLY)) {
2739                 printk(KERN_WARNING
2740                        "Btrfs: too many missing devices, writeable mount is not allowed\n");
2741                 goto fail_block_groups;
2742         }
2743
2744         fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2745                                                "btrfs-cleaner");
2746         if (IS_ERR(fs_info->cleaner_kthread))
2747                 goto fail_block_groups;
2748
2749         fs_info->transaction_kthread = kthread_run(transaction_kthread,
2750                                                    tree_root,
2751                                                    "btrfs-transaction");
2752         if (IS_ERR(fs_info->transaction_kthread))
2753                 goto fail_cleaner;
2754
2755         if (!btrfs_test_opt(tree_root, SSD) &&
2756             !btrfs_test_opt(tree_root, NOSSD) &&
2757             !fs_info->fs_devices->rotating) {
2758                 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2759                        "mode\n");
2760                 btrfs_set_opt(fs_info->mount_opt, SSD);
2761         }
2762
2763 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2764         if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2765                 ret = btrfsic_mount(tree_root, fs_devices,
2766                                     btrfs_test_opt(tree_root,
2767                                         CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2768                                     1 : 0,
2769                                     fs_info->check_integrity_print_mask);
2770                 if (ret)
2771                         printk(KERN_WARNING "btrfs: failed to initialize"
2772                                " integrity check module %s\n", sb->s_id);
2773         }
2774 #endif
2775         ret = btrfs_read_qgroup_config(fs_info);
2776         if (ret)
2777                 goto fail_trans_kthread;
2778
2779         /* do not make disk changes in broken FS */
2780         if (btrfs_super_log_root(disk_super) != 0) {
2781                 u64 bytenr = btrfs_super_log_root(disk_super);
2782
2783                 if (fs_devices->rw_devices == 0) {
2784                         printk(KERN_WARNING "Btrfs log replay required "
2785                                "on RO media\n");
2786                         err = -EIO;
2787                         goto fail_qgroup;
2788                 }
2789                 blocksize =
2790                      btrfs_level_size(tree_root,
2791                                       btrfs_super_log_root_level(disk_super));
2792
2793                 log_tree_root = btrfs_alloc_root(fs_info);
2794                 if (!log_tree_root) {
2795                         err = -ENOMEM;
2796                         goto fail_qgroup;
2797                 }
2798
2799                 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2800                              log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2801
2802                 log_tree_root->node = read_tree_block(tree_root, bytenr,
2803                                                       blocksize,
2804                                                       generation + 1);
2805                 if (!log_tree_root->node ||
2806                     !extent_buffer_uptodate(log_tree_root->node)) {
2807                         printk(KERN_ERR "btrfs: failed to read log tree\n");
2808                         free_extent_buffer(log_tree_root->node);
2809                         kfree(log_tree_root);
2810                         goto fail_trans_kthread;
2811                 }
2812                 /* returns with log_tree_root freed on success */
2813                 ret = btrfs_recover_log_trees(log_tree_root);
2814                 if (ret) {
2815                         btrfs_error(tree_root->fs_info, ret,
2816                                     "Failed to recover log tree");
2817                         free_extent_buffer(log_tree_root->node);
2818                         kfree(log_tree_root);
2819                         goto fail_trans_kthread;
2820                 }
2821
2822                 if (sb->s_flags & MS_RDONLY) {
2823                         ret = btrfs_commit_super(tree_root);
2824                         if (ret)
2825                                 goto fail_trans_kthread;
2826                 }
2827         }
2828
2829         ret = btrfs_find_orphan_roots(tree_root);
2830         if (ret)
2831                 goto fail_trans_kthread;
2832
2833         if (!(sb->s_flags & MS_RDONLY)) {
2834                 ret = btrfs_cleanup_fs_roots(fs_info);
2835                 if (ret)
2836                         goto fail_trans_kthread;
2837
2838                 ret = btrfs_recover_relocation(tree_root);
2839                 if (ret < 0) {
2840                         printk(KERN_WARNING
2841                                "btrfs: failed to recover relocation\n");
2842                         err = -EINVAL;
2843                         goto fail_qgroup;
2844                 }
2845         }
2846
2847         location.objectid = BTRFS_FS_TREE_OBJECTID;
2848         location.type = BTRFS_ROOT_ITEM_KEY;
2849         location.offset = 0;
2850
2851         fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2852         if (IS_ERR(fs_info->fs_root)) {
2853                 err = PTR_ERR(fs_info->fs_root);
2854                 goto fail_qgroup;
2855         }
2856
2857         if (sb->s_flags & MS_RDONLY)
2858                 return 0;
2859
2860         down_read(&fs_info->cleanup_work_sem);
2861         if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2862             (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2863                 up_read(&fs_info->cleanup_work_sem);
2864                 close_ctree(tree_root);
2865                 return ret;
2866         }
2867         up_read(&fs_info->cleanup_work_sem);
2868
2869         ret = btrfs_resume_balance_async(fs_info);
2870         if (ret) {
2871                 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2872                 close_ctree(tree_root);
2873                 return ret;
2874         }
2875
2876         ret = btrfs_resume_dev_replace_async(fs_info);
2877         if (ret) {
2878                 pr_warn("btrfs: failed to resume dev_replace\n");
2879                 close_ctree(tree_root);
2880                 return ret;
2881         }
2882
2883         return 0;
2884
2885 fail_qgroup:
2886         btrfs_free_qgroup_config(fs_info);
2887 fail_trans_kthread:
2888         kthread_stop(fs_info->transaction_kthread);
2889         btrfs_cleanup_transaction(fs_info->tree_root);
2890         del_fs_roots(fs_info);
2891 fail_cleaner:
2892         kthread_stop(fs_info->cleaner_kthread);
2893
2894         /*
2895          * make sure we're done with the btree inode before we stop our
2896          * kthreads
2897          */
2898         filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2899
2900 fail_block_groups:
2901         btrfs_put_block_group_cache(fs_info);
2902         btrfs_free_block_groups(fs_info);
2903
2904 fail_tree_roots:
2905         free_root_pointers(fs_info, 1);
2906         invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2907
2908 fail_sb_buffer:
2909         btrfs_stop_all_workers(fs_info);
2910 fail_alloc:
2911 fail_iput:
2912         btrfs_mapping_tree_free(&fs_info->mapping_tree);
2913
2914         iput(fs_info->btree_inode);
2915 fail_delalloc_bytes:
2916         percpu_counter_destroy(&fs_info->delalloc_bytes);
2917 fail_dirty_metadata_bytes:
2918         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
2919 fail_bdi:
2920         bdi_destroy(&fs_info->bdi);
2921 fail_srcu:
2922         cleanup_srcu_struct(&fs_info->subvol_srcu);
2923 fail:
2924         btrfs_free_stripe_hash_table(fs_info);
2925         btrfs_close_devices(fs_info->fs_devices);
2926         return err;
2927
2928 recovery_tree_root:
2929         if (!btrfs_test_opt(tree_root, RECOVERY))
2930                 goto fail_tree_roots;
2931
2932         free_root_pointers(fs_info, 0);
2933
2934         /* don't use the log in recovery mode, it won't be valid */
2935         btrfs_set_super_log_root(disk_super, 0);
2936
2937         /* we can't trust the free space cache either */
2938         btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2939
2940         ret = next_root_backup(fs_info, fs_info->super_copy,
2941                                &num_backups_tried, &backup_index);
2942         if (ret == -1)
2943                 goto fail_block_groups;
2944         goto retry_root_backup;
2945 }
2946
2947 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2948 {
2949         if (uptodate) {
2950                 set_buffer_uptodate(bh);
2951         } else {
2952                 struct btrfs_device *device = (struct btrfs_device *)
2953                         bh->b_private;
2954
2955                 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2956                                           "I/O error on %s\n",
2957                                           rcu_str_deref(device->name));
2958                 /* note, we dont' set_buffer_write_io_error because we have
2959                  * our own ways of dealing with the IO errors
2960                  */
2961                 clear_buffer_uptodate(bh);
2962                 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
2963         }
2964         unlock_buffer(bh);
2965         put_bh(bh);
2966 }
2967
2968 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2969 {
2970         struct buffer_head *bh;
2971         struct buffer_head *latest = NULL;
2972         struct btrfs_super_block *super;
2973         int i;
2974         u64 transid = 0;
2975         u64 bytenr;
2976
2977         /* we would like to check all the supers, but that would make
2978          * a btrfs mount succeed after a mkfs from a different FS.
2979          * So, we need to add a special mount option to scan for
2980          * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2981          */
2982         for (i = 0; i < 1; i++) {
2983                 bytenr = btrfs_sb_offset(i);
2984                 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2985                         break;
2986                 bh = __bread(bdev, bytenr / 4096, 4096);
2987                 if (!bh)
2988                         continue;
2989
2990                 super = (struct btrfs_super_block *)bh->b_data;
2991                 if (btrfs_super_bytenr(super) != bytenr ||
2992                     super->magic != cpu_to_le64(BTRFS_MAGIC)) {
2993                         brelse(bh);
2994                         continue;
2995                 }
2996
2997                 if (!latest || btrfs_super_generation(super) > transid) {
2998                         brelse(latest);
2999                         latest = bh;
3000                         transid = btrfs_super_generation(super);
3001                 } else {
3002                         brelse(bh);
3003                 }
3004         }
3005         return latest;
3006 }
3007
3008 /*
3009  * this should be called twice, once with wait == 0 and
3010  * once with wait == 1.  When wait == 0 is done, all the buffer heads
3011  * we write are pinned.
3012  *
3013  * They are released when wait == 1 is done.
3014  * max_mirrors must be the same for both runs, and it indicates how
3015  * many supers on this one device should be written.
3016  *
3017  * max_mirrors == 0 means to write them all.
3018  */
3019 static int write_dev_supers(struct btrfs_device *device,
3020                             struct btrfs_super_block *sb,
3021                             int do_barriers, int wait, int max_mirrors)
3022 {
3023         struct buffer_head *bh;
3024         int i;
3025         int ret;
3026         int errors = 0;
3027         u32 crc;
3028         u64 bytenr;
3029
3030         if (max_mirrors == 0)
3031                 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3032
3033         for (i = 0; i < max_mirrors; i++) {
3034                 bytenr = btrfs_sb_offset(i);
3035                 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3036                         break;
3037
3038                 if (wait) {
3039                         bh = __find_get_block(device->bdev, bytenr / 4096,
3040                                               BTRFS_SUPER_INFO_SIZE);
3041                         if (!bh) {
3042                                 errors++;
3043                                 continue;
3044                         }
3045                         wait_on_buffer(bh);
3046                         if (!buffer_uptodate(bh))
3047                                 errors++;
3048
3049                         /* drop our reference */
3050                         brelse(bh);
3051
3052                         /* drop the reference from the wait == 0 run */
3053                         brelse(bh);
3054                         continue;
3055                 } else {
3056                         btrfs_set_super_bytenr(sb, bytenr);
3057
3058                         crc = ~(u32)0;
3059                         crc = btrfs_csum_data((char *)sb +
3060                                               BTRFS_CSUM_SIZE, crc,
3061                                               BTRFS_SUPER_INFO_SIZE -
3062                                               BTRFS_CSUM_SIZE);
3063                         btrfs_csum_final(crc, sb->csum);
3064
3065                         /*
3066                          * one reference for us, and we leave it for the
3067                          * caller
3068                          */
3069                         bh = __getblk(device->bdev, bytenr / 4096,
3070                                       BTRFS_SUPER_INFO_SIZE);
3071                         if (!bh) {
3072                                 printk(KERN_ERR "btrfs: couldn't get super "
3073                                        "buffer head for bytenr %Lu\n", bytenr);
3074                                 errors++;
3075                                 continue;
3076                         }
3077
3078                         memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3079
3080                         /* one reference for submit_bh */
3081                         get_bh(bh);
3082
3083                         set_buffer_uptodate(bh);
3084                         lock_buffer(bh);
3085                         bh->b_end_io = btrfs_end_buffer_write_sync;
3086                         bh->b_private = device;
3087                 }
3088
3089                 /*
3090                  * we fua the first super.  The others we allow
3091                  * to go down lazy.
3092                  */
3093                 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3094                 if (ret)
3095                         errors++;
3096         }
3097         return errors < i ? 0 : -1;
3098 }
3099
3100 /*
3101  * endio for the write_dev_flush, this will wake anyone waiting
3102  * for the barrier when it is done
3103  */
3104 static void btrfs_end_empty_barrier(struct bio *bio, int err)
3105 {
3106         if (err) {
3107                 if (err == -EOPNOTSUPP)
3108                         set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3109                 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3110         }
3111         if (bio->bi_private)
3112                 complete(bio->bi_private);
3113         bio_put(bio);
3114 }
3115
3116 /*
3117  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3118  * sent down.  With wait == 1, it waits for the previous flush.
3119  *
3120  * any device where the flush fails with eopnotsupp are flagged as not-barrier
3121  * capable
3122  */
3123 static int write_dev_flush(struct btrfs_device *device, int wait)
3124 {
3125         struct bio *bio;
3126         int ret = 0;
3127
3128         if (device->nobarriers)
3129                 return 0;
3130
3131         if (wait) {
3132                 bio = device->flush_bio;
3133                 if (!bio)
3134                         return 0;
3135
3136                 wait_for_completion(&device->flush_wait);
3137
3138                 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3139                         printk_in_rcu("btrfs: disabling barriers on dev %s\n",
3140                                       rcu_str_deref(device->name));
3141                         device->nobarriers = 1;
3142                 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
3143                         ret = -EIO;
3144                         btrfs_dev_stat_inc_and_print(device,
3145                                 BTRFS_DEV_STAT_FLUSH_ERRS);
3146                 }
3147
3148                 /* drop the reference from the wait == 0 run */
3149                 bio_put(bio);
3150                 device->flush_bio = NULL;
3151
3152                 return ret;
3153         }
3154
3155         /*
3156          * one reference for us, and we leave it for the
3157          * caller
3158          */
3159         device->flush_bio = NULL;
3160         bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3161         if (!bio)
3162                 return -ENOMEM;
3163
3164         bio->bi_end_io = btrfs_end_empty_barrier;
3165         bio->bi_bdev = device->bdev;
3166         init_completion(&device->flush_wait);
3167         bio->bi_private = &device->flush_wait;
3168         device->flush_bio = bio;
3169
3170         bio_get(bio);
3171         btrfsic_submit_bio(WRITE_FLUSH, bio);
3172
3173         return 0;
3174 }
3175
3176 /*
3177  * send an empty flush down to each device in parallel,
3178  * then wait for them
3179  */
3180 static int barrier_all_devices(struct btrfs_fs_info *info)
3181 {
3182         struct list_head *head;
3183         struct btrfs_device *dev;
3184         int errors_send = 0;
3185         int errors_wait = 0;
3186         int ret;
3187
3188         /* send down all the barriers */
3189         head = &info->fs_devices->devices;
3190         list_for_each_entry_rcu(dev, head, dev_list) {
3191                 if (!dev->bdev) {
3192                         errors_send++;
3193                         continue;
3194                 }
3195                 if (!dev->in_fs_metadata || !dev->writeable)
3196                         continue;
3197
3198                 ret = write_dev_flush(dev, 0);
3199                 if (ret)
3200                         errors_send++;
3201         }
3202
3203         /* wait for all the barriers */
3204         list_for_each_entry_rcu(dev, head, dev_list) {
3205                 if (!dev->bdev) {
3206                         errors_wait++;
3207                         continue;
3208                 }
3209                 if (!dev->in_fs_metadata || !dev->writeable)
3210                         continue;
3211
3212                 ret = write_dev_flush(dev, 1);
3213                 if (ret)
3214                         errors_wait++;
3215         }
3216         if (errors_send > info->num_tolerated_disk_barrier_failures ||
3217             errors_wait > info->num_tolerated_disk_barrier_failures)
3218                 return -EIO;
3219         return 0;
3220 }
3221
3222 int btrfs_calc_num_tolerated_disk_barrier_failures(
3223         struct btrfs_fs_info *fs_info)
3224 {
3225         struct btrfs_ioctl_space_info space;
3226         struct btrfs_space_info *sinfo;
3227         u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3228                        BTRFS_BLOCK_GROUP_SYSTEM,
3229                        BTRFS_BLOCK_GROUP_METADATA,
3230                        BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3231         int num_types = 4;
3232         int i;
3233         int c;
3234         int num_tolerated_disk_barrier_failures =
3235                 (int)fs_info->fs_devices->num_devices;
3236
3237         for (i = 0; i < num_types; i++) {
3238                 struct btrfs_space_info *tmp;
3239
3240                 sinfo = NULL;
3241                 rcu_read_lock();
3242                 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3243                         if (tmp->flags == types[i]) {
3244                                 sinfo = tmp;
3245                                 break;
3246                         }
3247                 }
3248                 rcu_read_unlock();
3249
3250                 if (!sinfo)
3251                         continue;
3252
3253                 down_read(&sinfo->groups_sem);
3254                 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3255                         if (!list_empty(&sinfo->block_groups[c])) {
3256                                 u64 flags;
3257
3258                                 btrfs_get_block_group_info(
3259                                         &sinfo->block_groups[c], &space);
3260                                 if (space.total_bytes == 0 ||
3261                                     space.used_bytes == 0)
3262                                         continue;
3263                                 flags = space.flags;
3264                                 /*
3265                                  * return
3266                                  * 0: if dup, single or RAID0 is configured for
3267                                  *    any of metadata, system or data, else
3268                                  * 1: if RAID5 is configured, or if RAID1 or
3269                                  *    RAID10 is configured and only two mirrors
3270                                  *    are used, else
3271                                  * 2: if RAID6 is configured, else
3272                                  * num_mirrors - 1: if RAID1 or RAID10 is
3273                                  *                  configured and more than
3274                                  *                  2 mirrors are used.
3275                                  */
3276                                 if (num_tolerated_disk_barrier_failures > 0 &&
3277                                     ((flags & (BTRFS_BLOCK_GROUP_DUP |
3278                                                BTRFS_BLOCK_GROUP_RAID0)) ||
3279                                      ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3280                                       == 0)))
3281                                         num_tolerated_disk_barrier_failures = 0;
3282                                 else if (num_tolerated_disk_barrier_failures > 1) {
3283                                         if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3284                                             BTRFS_BLOCK_GROUP_RAID5 |
3285                                             BTRFS_BLOCK_GROUP_RAID10)) {
3286                                                 num_tolerated_disk_barrier_failures = 1;
3287                                         } else if (flags &
3288                                                    BTRFS_BLOCK_GROUP_RAID6) {
3289                                                 num_tolerated_disk_barrier_failures = 2;
3290                                         }
3291                                 }
3292                         }
3293                 }
3294                 up_read(&sinfo->groups_sem);
3295         }
3296
3297         return num_tolerated_disk_barrier_failures;
3298 }
3299
3300 static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3301 {
3302         struct list_head *head;
3303         struct btrfs_device *dev;
3304         struct btrfs_super_block *sb;
3305         struct btrfs_dev_item *dev_item;
3306         int ret;
3307         int do_barriers;
3308         int max_errors;
3309         int total_errors = 0;
3310         u64 flags;
3311
3312         max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3313         do_barriers = !btrfs_test_opt(root, NOBARRIER);
3314         backup_super_roots(root->fs_info);
3315
3316         sb = root->fs_info->super_for_commit;
3317         dev_item = &sb->dev_item;
3318
3319         mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3320         head = &root->fs_info->fs_devices->devices;
3321
3322         if (do_barriers) {
3323                 ret = barrier_all_devices(root->fs_info);
3324                 if (ret) {
3325                         mutex_unlock(
3326                                 &root->fs_info->fs_devices->device_list_mutex);
3327                         btrfs_error(root->fs_info, ret,
3328                                     "errors while submitting device barriers.");
3329                         return ret;
3330                 }
3331         }
3332
3333         list_for_each_entry_rcu(dev, head, dev_list) {
3334                 if (!dev->bdev) {
3335                         total_errors++;
3336                         continue;
3337                 }
3338                 if (!dev->in_fs_metadata || !dev->writeable)
3339                         continue;
3340
3341                 btrfs_set_stack_device_generation(dev_item, 0);
3342                 btrfs_set_stack_device_type(dev_item, dev->type);
3343                 btrfs_set_stack_device_id(dev_item, dev->devid);
3344                 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3345                 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3346                 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3347                 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3348                 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3349                 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3350                 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3351
3352                 flags = btrfs_super_flags(sb);
3353                 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3354
3355                 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3356                 if (ret)
3357                         total_errors++;
3358         }
3359         if (total_errors > max_errors) {
3360                 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3361                        total_errors);
3362
3363                 /* This shouldn't happen. FUA is masked off if unsupported */
3364                 BUG();
3365         }
3366
3367         total_errors = 0;
3368         list_for_each_entry_rcu(dev, head, dev_list) {
3369                 if (!dev->bdev)
3370                         continue;
3371                 if (!dev->in_fs_metadata || !dev->writeable)
3372                         continue;
3373
3374                 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3375                 if (ret)
3376                         total_errors++;
3377         }
3378         mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3379         if (total_errors > max_errors) {
3380                 btrfs_error(root->fs_info, -EIO,
3381                             "%d errors while writing supers", total_errors);
3382                 return -EIO;
3383         }
3384         return 0;
3385 }
3386
3387 int write_ctree_super(struct btrfs_trans_handle *trans,
3388                       struct btrfs_root *root, int max_mirrors)
3389 {
3390         int ret;
3391
3392         ret = write_all_supers(root, max_mirrors);
3393         return ret;
3394 }
3395
3396 /* Drop a fs root from the radix tree and free it. */
3397 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3398                                   struct btrfs_root *root)
3399 {
3400         spin_lock(&fs_info->fs_roots_radix_lock);
3401         radix_tree_delete(&fs_info->fs_roots_radix,
3402                           (unsigned long)root->root_key.objectid);
3403         spin_unlock(&fs_info->fs_roots_radix_lock);
3404
3405         if (btrfs_root_refs(&root->root_item) == 0)
3406                 synchronize_srcu(&fs_info->subvol_srcu);
3407
3408         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3409                 btrfs_free_log(NULL, root);
3410                 btrfs_free_log_root_tree(NULL, fs_info);
3411         }
3412
3413         __btrfs_remove_free_space_cache(root->free_ino_pinned);
3414         __btrfs_remove_free_space_cache(root->free_ino_ctl);
3415         free_fs_root(root);
3416 }
3417
3418 static void free_fs_root(struct btrfs_root *root)
3419 {
3420         iput(root->cache_inode);
3421         WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3422         if (root->anon_dev)
3423                 free_anon_bdev(root->anon_dev);
3424         free_extent_buffer(root->node);
3425         free_extent_buffer(root->commit_root);
3426         kfree(root->free_ino_ctl);
3427         kfree(root->free_ino_pinned);
3428         kfree(root->name);
3429         btrfs_put_fs_root(root);
3430 }
3431
3432 void btrfs_free_fs_root(struct btrfs_root *root)
3433 {
3434         free_fs_root(root);
3435 }
3436
3437 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3438 {
3439         u64 root_objectid = 0;
3440         struct btrfs_root *gang[8];
3441         int i;
3442         int ret;
3443
3444         while (1) {
3445                 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3446                                              (void **)gang, root_objectid,
3447                                              ARRAY_SIZE(gang));
3448                 if (!ret)
3449                         break;
3450
3451                 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3452                 for (i = 0; i < ret; i++) {
3453                         int err;
3454
3455                         root_objectid = gang[i]->root_key.objectid;
3456                         err = btrfs_orphan_cleanup(gang[i]);
3457                         if (err)
3458                                 return err;
3459                 }
3460                 root_objectid++;
3461         }
3462         return 0;
3463 }
3464
3465 int btrfs_commit_super(struct btrfs_root *root)
3466 {
3467         struct btrfs_trans_handle *trans;
3468         int ret;
3469
3470         mutex_lock(&root->fs_info->cleaner_mutex);
3471         btrfs_run_delayed_iputs(root);
3472         mutex_unlock(&root->fs_info->cleaner_mutex);
3473         wake_up_process(root->fs_info->cleaner_kthread);
3474
3475         /* wait until ongoing cleanup work done */
3476         down_write(&root->fs_info->cleanup_work_sem);
3477         up_write(&root->fs_info->cleanup_work_sem);
3478
3479         trans = btrfs_join_transaction(root);
3480         if (IS_ERR(trans))
3481                 return PTR_ERR(trans);
3482         ret = btrfs_commit_transaction(trans, root);
3483         if (ret)
3484                 return ret;
3485         /* run commit again to drop the original snapshot */
3486         trans = btrfs_join_transaction(root);
3487         if (IS_ERR(trans))
3488                 return PTR_ERR(trans);
3489         ret = btrfs_commit_transaction(trans, root);
3490         if (ret)
3491                 return ret;
3492         ret = btrfs_write_and_wait_transaction(NULL, root);
3493         if (ret) {
3494                 btrfs_error(root->fs_info, ret,
3495                             "Failed to sync btree inode to disk.");
3496                 return ret;
3497         }
3498
3499         ret = write_ctree_super(NULL, root, 0);
3500         return ret;
3501 }
3502
3503 int close_ctree(struct btrfs_root *root)
3504 {
3505         struct btrfs_fs_info *fs_info = root->fs_info;
3506         int ret;
3507
3508         fs_info->closing = 1;
3509         smp_mb();
3510
3511         /* pause restriper - we want to resume on mount */
3512         btrfs_pause_balance(fs_info);
3513
3514         btrfs_dev_replace_suspend_for_unmount(fs_info);
3515
3516         btrfs_scrub_cancel(fs_info);
3517
3518         /* wait for any defraggers to finish */
3519         wait_event(fs_info->transaction_wait,
3520                    (atomic_read(&fs_info->defrag_running) == 0));
3521
3522         /* clear out the rbtree of defraggable inodes */
3523         btrfs_cleanup_defrag_inodes(fs_info);
3524
3525         if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3526                 ret = btrfs_commit_super(root);
3527                 if (ret)
3528                         printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3529         }
3530
3531         if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3532                 btrfs_error_commit_super(root);
3533
3534         btrfs_put_block_group_cache(fs_info);
3535
3536         kthread_stop(fs_info->transaction_kthread);
3537         kthread_stop(fs_info->cleaner_kthread);
3538
3539         fs_info->closing = 2;
3540         smp_mb();
3541
3542         btrfs_free_qgroup_config(root->fs_info);
3543
3544         if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3545                 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
3546                        percpu_counter_sum(&fs_info->delalloc_bytes));
3547         }
3548
3549         btrfs_free_block_groups(fs_info);
3550
3551         btrfs_stop_all_workers(fs_info);
3552
3553         del_fs_roots(fs_info);
3554
3555         free_root_pointers(fs_info, 1);
3556
3557         iput(fs_info->btree_inode);
3558
3559 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3560         if (btrfs_test_opt(root, CHECK_INTEGRITY))
3561                 btrfsic_unmount(root, fs_info->fs_devices);
3562 #endif
3563
3564         btrfs_close_devices(fs_info->fs_devices);
3565         btrfs_mapping_tree_free(&fs_info->mapping_tree);
3566
3567         percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3568         percpu_counter_destroy(&fs_info->delalloc_bytes);
3569         bdi_destroy(&fs_info->bdi);
3570         cleanup_srcu_struct(&fs_info->subvol_srcu);
3571
3572         btrfs_free_stripe_hash_table(fs_info);
3573
3574         return 0;
3575 }
3576
3577 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3578                           int atomic)
3579 {
3580         int ret;
3581         struct inode *btree_inode = buf->pages[0]->mapping->host;
3582
3583         ret = extent_buffer_uptodate(buf);
3584         if (!ret)
3585                 return ret;
3586
3587         ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3588                                     parent_transid, atomic);
3589         if (ret == -EAGAIN)
3590                 return ret;
3591         return !ret;
3592 }
3593
3594 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3595 {
3596         return set_extent_buffer_uptodate(buf);
3597 }
3598
3599 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3600 {
3601         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3602         u64 transid = btrfs_header_generation(buf);
3603         int was_dirty;
3604
3605         btrfs_assert_tree_locked(buf);
3606         if (transid != root->fs_info->generation)
3607                 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3608                        "found %llu running %llu\n",
3609                         (unsigned long long)buf->start,
3610                         (unsigned long long)transid,
3611                         (unsigned long long)root->fs_info->generation);
3612         was_dirty = set_extent_buffer_dirty(buf);
3613         if (!was_dirty)
3614                 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3615                                      buf->len,
3616                                      root->fs_info->dirty_metadata_batch);
3617 }
3618
3619 static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3620                                         int flush_delayed)
3621 {
3622         /*
3623          * looks as though older kernels can get into trouble with
3624          * this code, they end up stuck in balance_dirty_pages forever
3625          */
3626         int ret;
3627
3628         if (current->flags & PF_MEMALLOC)
3629                 return;
3630
3631         if (flush_delayed)
3632                 btrfs_balance_delayed_items(root);
3633
3634         ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3635                                      BTRFS_DIRTY_METADATA_THRESH);
3636         if (ret > 0) {
3637                 balance_dirty_pages_ratelimited(
3638                                    root->fs_info->btree_inode->i_mapping);
3639         }
3640         return;
3641 }
3642
3643 void btrfs_btree_balance_dirty(struct btrfs_root *root)
3644 {
3645         __btrfs_btree_balance_dirty(root, 1);
3646 }
3647
3648 void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3649 {
3650         __btrfs_btree_balance_dirty(root, 0);
3651 }
3652
3653 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3654 {
3655         struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3656         return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3657 }
3658
3659 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3660                               int read_only)
3661 {
3662         /*
3663          * Placeholder for checks
3664          */
3665         return 0;
3666 }
3667
3668 static void btrfs_error_commit_super(struct btrfs_root *root)
3669 {
3670         mutex_lock(&root->fs_info->cleaner_mutex);
3671         btrfs_run_delayed_iputs(root);
3672         mutex_unlock(&root->fs_info->cleaner_mutex);
3673
3674         down_write(&root->fs_info->cleanup_work_sem);
3675         up_write(&root->fs_info->cleanup_work_sem);
3676
3677         /* cleanup FS via transaction */
3678         btrfs_cleanup_transaction(root);
3679 }
3680
3681 static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3682                                              struct btrfs_root *root)
3683 {
3684         struct btrfs_inode *btrfs_inode;
3685         struct list_head splice;
3686
3687         INIT_LIST_HEAD(&splice);
3688
3689         mutex_lock(&root->fs_info->ordered_operations_mutex);
3690         spin_lock(&root->fs_info->ordered_root_lock);
3691
3692         list_splice_init(&t->ordered_operations, &splice);
3693         while (!list_empty(&splice)) {
3694                 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3695                                          ordered_operations);
3696
3697                 list_del_init(&btrfs_inode->ordered_operations);
3698                 spin_unlock(&root->fs_info->ordered_root_lock);
3699
3700                 btrfs_invalidate_inodes(btrfs_inode->root);
3701
3702                 spin_lock(&root->fs_info->ordered_root_lock);
3703         }
3704
3705         spin_unlock(&root->fs_info->ordered_root_lock);
3706         mutex_unlock(&root->fs_info->ordered_operations_mutex);
3707 }
3708
3709 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3710 {
3711         struct btrfs_ordered_extent *ordered;
3712
3713         spin_lock(&root->ordered_extent_lock);
3714         /*
3715          * This will just short circuit the ordered completion stuff which will
3716          * make sure the ordered extent gets properly cleaned up.
3717          */
3718         list_for_each_entry(ordered, &root->ordered_extents,
3719                             root_extent_list)
3720                 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
3721         spin_unlock(&root->ordered_extent_lock);
3722 }
3723
3724 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3725 {
3726         struct btrfs_root *root;
3727         struct list_head splice;
3728
3729         INIT_LIST_HEAD(&splice);
3730
3731         spin_lock(&fs_info->ordered_root_lock);
3732         list_splice_init(&fs_info->ordered_roots, &splice);
3733         while (!list_empty(&splice)) {
3734                 root = list_first_entry(&splice, struct btrfs_root,
3735                                         ordered_root);
3736                 list_del_init(&root->ordered_root);
3737
3738                 btrfs_destroy_ordered_extents(root);
3739
3740                 cond_resched_lock(&fs_info->ordered_root_lock);
3741         }
3742         spin_unlock(&fs_info->ordered_root_lock);
3743 }
3744
3745 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3746                                struct btrfs_root *root)
3747 {
3748         struct rb_node *node;
3749         struct btrfs_delayed_ref_root *delayed_refs;
3750         struct btrfs_delayed_ref_node *ref;
3751         int ret = 0;
3752
3753         delayed_refs = &trans->delayed_refs;
3754
3755         spin_lock(&delayed_refs->lock);
3756         if (delayed_refs->num_entries == 0) {
3757                 spin_unlock(&delayed_refs->lock);
3758                 printk(KERN_INFO "delayed_refs has NO entry\n");
3759                 return ret;
3760         }
3761
3762         while ((node = rb_first(&delayed_refs->root)) != NULL) {
3763                 struct btrfs_delayed_ref_head *head = NULL;
3764
3765                 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3766                 atomic_set(&ref->refs, 1);
3767                 if (btrfs_delayed_ref_is_head(ref)) {
3768
3769                         head = btrfs_delayed_node_to_head(ref);
3770                         if (!mutex_trylock(&head->mutex)) {
3771                                 atomic_inc(&ref->refs);
3772                                 spin_unlock(&delayed_refs->lock);
3773
3774                                 /* Need to wait for the delayed ref to run */
3775                                 mutex_lock(&head->mutex);
3776                                 mutex_unlock(&head->mutex);
3777                                 btrfs_put_delayed_ref(ref);
3778
3779                                 spin_lock(&delayed_refs->lock);
3780                                 continue;
3781                         }
3782
3783                         if (head->must_insert_reserved)
3784                                 btrfs_pin_extent(root, ref->bytenr,
3785                                                  ref->num_bytes, 1);
3786                         btrfs_free_delayed_extent_op(head->extent_op);
3787                         delayed_refs->num_heads--;
3788                         if (list_empty(&head->cluster))
3789                                 delayed_refs->num_heads_ready--;
3790                         list_del_init(&head->cluster);
3791                 }
3792
3793                 ref->in_tree = 0;
3794                 rb_erase(&ref->rb_node, &delayed_refs->root);
3795                 delayed_refs->num_entries--;
3796                 if (head)
3797                         mutex_unlock(&head->mutex);
3798                 spin_unlock(&delayed_refs->lock);
3799                 btrfs_put_delayed_ref(ref);
3800
3801                 cond_resched();
3802                 spin_lock(&delayed_refs->lock);
3803         }
3804
3805         spin_unlock(&delayed_refs->lock);
3806
3807         return ret;
3808 }
3809
3810 static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
3811 {
3812         struct btrfs_pending_snapshot *snapshot;
3813         struct list_head splice;
3814
3815         INIT_LIST_HEAD(&splice);
3816
3817         list_splice_init(&t->pending_snapshots, &splice);
3818
3819         while (!list_empty(&splice)) {
3820                 snapshot = list_entry(splice.next,
3821                                       struct btrfs_pending_snapshot,
3822                                       list);
3823                 snapshot->error = -ECANCELED;
3824                 list_del_init(&snapshot->list);
3825         }
3826 }
3827
3828 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3829 {
3830         struct btrfs_inode *btrfs_inode;
3831         struct list_head splice;
3832
3833         INIT_LIST_HEAD(&splice);
3834
3835         spin_lock(&root->delalloc_lock);
3836         list_splice_init(&root->delalloc_inodes, &splice);
3837
3838         while (!list_empty(&splice)) {
3839                 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3840                                                delalloc_inodes);
3841
3842                 list_del_init(&btrfs_inode->delalloc_inodes);
3843                 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3844                           &btrfs_inode->runtime_flags);
3845                 spin_unlock(&root->delalloc_lock);
3846
3847                 btrfs_invalidate_inodes(btrfs_inode->root);
3848
3849                 spin_lock(&root->delalloc_lock);
3850         }
3851
3852         spin_unlock(&root->delalloc_lock);
3853 }
3854
3855 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3856 {
3857         struct btrfs_root *root;
3858         struct list_head splice;
3859
3860         INIT_LIST_HEAD(&splice);
3861
3862         spin_lock(&fs_info->delalloc_root_lock);
3863         list_splice_init(&fs_info->delalloc_roots, &splice);
3864         while (!list_empty(&splice)) {
3865                 root = list_first_entry(&splice, struct btrfs_root,
3866                                          delalloc_root);
3867                 list_del_init(&root->delalloc_root);
3868                 root = btrfs_grab_fs_root(root);
3869                 BUG_ON(!root);
3870                 spin_unlock(&fs_info->delalloc_root_lock);
3871
3872                 btrfs_destroy_delalloc_inodes(root);
3873                 btrfs_put_fs_root(root);
3874
3875                 spin_lock(&fs_info->delalloc_root_lock);
3876         }
3877         spin_unlock(&fs_info->delalloc_root_lock);
3878 }
3879
3880 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3881                                         struct extent_io_tree *dirty_pages,
3882                                         int mark)
3883 {
3884         int ret;
3885         struct extent_buffer *eb;
3886         u64 start = 0;
3887         u64 end;
3888
3889         while (1) {
3890                 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3891                                             mark, NULL);
3892                 if (ret)
3893                         break;
3894
3895                 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3896                 while (start <= end) {
3897                         eb = btrfs_find_tree_block(root, start,
3898                                                    root->leafsize);
3899                         start += root->leafsize;
3900                         if (!eb)
3901                                 continue;
3902                         wait_on_extent_buffer_writeback(eb);
3903
3904                         if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3905                                                &eb->bflags))
3906                                 clear_extent_buffer_dirty(eb);
3907                         free_extent_buffer_stale(eb);
3908                 }
3909         }
3910
3911         return ret;
3912 }
3913
3914 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3915                                        struct extent_io_tree *pinned_extents)
3916 {
3917         struct extent_io_tree *unpin;
3918         u64 start;
3919         u64 end;
3920         int ret;
3921         bool loop = true;
3922
3923         unpin = pinned_extents;
3924 again:
3925         while (1) {
3926                 ret = find_first_extent_bit(unpin, 0, &start, &end,
3927                                             EXTENT_DIRTY, NULL);
3928                 if (ret)
3929                         break;
3930
3931                 /* opt_discard */
3932                 if (btrfs_test_opt(root, DISCARD))
3933                         ret = btrfs_error_discard_extent(root, start,
3934                                                          end + 1 - start,
3935                                                          NULL);
3936
3937                 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3938                 btrfs_error_unpin_extent_range(root, start, end);
3939                 cond_resched();
3940         }
3941
3942         if (loop) {
3943                 if (unpin == &root->fs_info->freed_extents[0])
3944                         unpin = &root->fs_info->freed_extents[1];
3945                 else
3946                         unpin = &root->fs_info->freed_extents[0];
3947                 loop = false;
3948                 goto again;
3949         }
3950
3951         return 0;
3952 }
3953
3954 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3955                                    struct btrfs_root *root)
3956 {
3957         btrfs_destroy_delayed_refs(cur_trans, root);
3958         btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3959                                 cur_trans->dirty_pages.dirty_bytes);
3960
3961         /* FIXME: cleanup wait for commit */
3962         cur_trans->in_commit = 1;
3963         cur_trans->blocked = 1;
3964         wake_up(&root->fs_info->transaction_blocked_wait);
3965
3966         btrfs_evict_pending_snapshots(cur_trans);
3967
3968         cur_trans->blocked = 0;
3969         wake_up(&root->fs_info->transaction_wait);
3970
3971         cur_trans->commit_done = 1;
3972         wake_up(&cur_trans->commit_wait);
3973
3974         btrfs_destroy_delayed_inodes(root);
3975         btrfs_assert_delayed_root_empty(root);
3976
3977         btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3978                                      EXTENT_DIRTY);
3979         btrfs_destroy_pinned_extent(root,
3980                                     root->fs_info->pinned_extents);
3981
3982         /*
3983         memset(cur_trans, 0, sizeof(*cur_trans));
3984         kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3985         */
3986 }
3987
3988 static int btrfs_cleanup_transaction(struct btrfs_root *root)
3989 {
3990         struct btrfs_transaction *t;
3991         LIST_HEAD(list);
3992
3993         mutex_lock(&root->fs_info->transaction_kthread_mutex);
3994
3995         spin_lock(&root->fs_info->trans_lock);
3996         list_splice_init(&root->fs_info->trans_list, &list);
3997         root->fs_info->running_transaction = NULL;
3998         spin_unlock(&root->fs_info->trans_lock);
3999
4000         while (!list_empty(&list)) {
4001                 t = list_entry(list.next, struct btrfs_transaction, list);
4002
4003                 btrfs_destroy_ordered_operations(t, root);
4004
4005                 btrfs_destroy_all_ordered_extents(root->fs_info);
4006
4007                 btrfs_destroy_delayed_refs(t, root);
4008
4009                 /* FIXME: cleanup wait for commit */
4010                 t->in_commit = 1;
4011                 t->blocked = 1;
4012                 smp_mb();
4013                 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
4014                         wake_up(&root->fs_info->transaction_blocked_wait);
4015
4016                 btrfs_evict_pending_snapshots(t);
4017
4018                 t->blocked = 0;
4019                 smp_mb();
4020                 if (waitqueue_active(&root->fs_info->transaction_wait))
4021                         wake_up(&root->fs_info->transaction_wait);
4022
4023                 t->commit_done = 1;
4024                 smp_mb();
4025                 if (waitqueue_active(&t->commit_wait))
4026                         wake_up(&t->commit_wait);
4027
4028                 btrfs_destroy_delayed_inodes(root);
4029                 btrfs_assert_delayed_root_empty(root);
4030
4031                 btrfs_destroy_all_delalloc_inodes(root->fs_info);
4032
4033                 btrfs_destroy_marked_extents(root, &t->dirty_pages,
4034                                              EXTENT_DIRTY);
4035
4036                 btrfs_destroy_pinned_extent(root,
4037                                             root->fs_info->pinned_extents);
4038
4039                 atomic_set(&t->use_count, 0);
4040                 list_del_init(&t->list);
4041                 memset(t, 0, sizeof(*t));
4042                 kmem_cache_free(btrfs_transaction_cachep, t);
4043         }
4044
4045         mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4046
4047         return 0;
4048 }
4049
4050 static struct extent_io_ops btree_extent_io_ops = {
4051         .readpage_end_io_hook = btree_readpage_end_io_hook,
4052         .readpage_io_failed_hook = btree_io_failed_hook,
4053         .submit_bio_hook = btree_submit_bio_hook,
4054         /* note we're sharing with inode.c for the merge bio hook */
4055         .merge_bio_hook = btrfs_merge_bio_hook,
4056 };